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Abstract. The method demonstrated here enables an investigator to analyse individual 

culprits’ dimorphic SNP profiles quickly without depending on “reference groups”,  to 

analyse composites of discrete SNP profiles,  and to analyse combinations of STR and 

SNP profiles.   

Keywords:  group membership;  singular group;  SNP profile;  Bayes;  Monte Carlo;  

stratified random sample   

1. Introduction   

The Monte Carlo Bayesian (MCB) method has several operational features worth noting.  

(a) The method is case-specific.  Both evaluation of and adjustment for substructure are 

automatic,  and they depend only on the profile at issue.  (b) The method accommodates 

variation in prior probabilities according to the investigator’s judgment regarding non-

profile evidence.  (c) The method produces probabilities as well as likelihood ratios.   

(d) The method does not rely on “reference group” allele frequency data.  The 

investigator can use the method when she/he lacks either knowledge of,  or immediate 

access to,  suitable frequency data.   
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2. Method   

The MCB method,  in the form of a computer program,  iteratively applies Bayes’ 

theorem to stratified random sample arrays comprising specimens taken,  in part,  from 

10 discrete,  equal-sized allele frequency ranges,  called “demes”.  The demes are 

modelled after Wright’s definition,  which is as follows:  “Most species contain many 

small,  random breeding local populations (demes) that are sufficiently isolated,  if only 

by distance,  to permit differentiation of their sets of gene frequencies,  but that are not so 

isolated as to prevent the gradual spreading of favorable gene complexes throughout the 

species from their centers of origin.  This differentiation need not be associated with 

conspicuous phenotypic differences.” [Reference 1i]    

Within the demes,  as modelled here,  the allele frequencies are the sampling random 

variables.  In addition to the 10 demes,  an 11th array element,  a “singular group” 

representing a suspect with a matching profile may be included. The computer program, 

during each iteration,  evaluates each deme (and also the suspect’s singular group) for its 

ability to produce the profile.  That is,  the program computes the profile likelihood for 

each array element.   

The contribution of the homozygous portion of the profile to the likelihood is obtained by 

using the Binomial Theorem to produce an expected value.  The contribution of the 

heterozygous portion of the profile is the product of the individual heterozygous SNP pair 

frequencies.  For details,  see the Appendix.   
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The MCB program develops a collection of probability sets on the sample arrays.  By 

taking the average of this collection,  the program calculates the set of probabilities that 

the culprit is either the suspect (a member of the singular group) or somebody else  

( a member of a non-suspect deme).   

Each MCB computation for this article consisted of 1000 iterations on a Pentium-4-

equipped machine running a MicroSoft Excel spreadsheet,  and took less than 40 

seconds.  The software is available from the author on request by post.   

3. Results   

The following two tables offer a sample of SNP identification results.  The computation 

for each table entry starts with the investigator’s judgment,  on evidence other than the 

SNP profile.  This judgment may produce a small subset,  perhaps only one,  of 

uncountably many possible values of prior probabilities (“priors”) that span the 

probability range.   

The three prior values used in these tables are their column headers.  The lowest value,  

0.0000000001,  is based on the estimated world population,  10 billion,  in 2050.  It can 

be regarded as a very conservative “cold hit” prior probability that the culprit is the 

suspect.  The highest prior value,  0.5,  interprets the non-profile evidence as saying that 

the culprit is as likely as not to be the suspect;  it is the “mimimum probable cause” prior.   
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Two parameters for the MCB computation are the number of all loci in the profile,  and 

the number of homozygous loci in the profile.  Table 1 corresponds to a 50-SNP profile;  

Table 2 corresponds to a 20-SNP profile.  In each table,  the number of homozygous loci 

in the profile is a row header.   

4. Discussion   

Even though a very large proportion of homozygous loci,  say,  40 or more out of 50,  

may hamper its usefulness,  it appears that the 50-SNP profile is greatly superior to the 

20-SNP profile,  especially under low (e.g., “cold hit”) prior probability conditions.  As 

will be shown in the demonstration to follow,  however,  this disparity in effectiveness is 

no reason to discard a 20-SNP database,  if it exists,  in favor of a 50-SNP one.   

For this demonstration,  the context shifts from a “culprit-suspect” scenario to one that 

involves unknown remains and a known missing person.   

In this case,  the investigator receives three distinct sets of DNA evidence.  The first set 

consists of only four CODIS STR loci:  D3S1358,  with allele pair (17,17);  VWA,  with 

allele pair (19,19);  FGA,  with allele pair (22,23);  and D8S1179,  with allele pair 

(12,14).  The second set of DNA evidence is a 20-SNP profile,  of which 18 SNPs are 

homozygous.  The third set of evidence is a profile comprising 50 SNPS,  all different 

from those in the 20-SNP profile;  of these 50 SNPs,  47 are homozygous.  Although all 

three sets match the corresponding loci of an individual entry in a comprehensive 

database,  the investigator chooses to start the analysis of the data with the very 

conservative “cold hit” prior probability,  0.0000000001,  that the unknown source and 

the known entry are the same person.   
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The first evidence to be analysed is that of the partial CODIS profile.  Using the “STR” 

version of the MCB method that is described in Reference 2ii,  the investigator obtains a 

Bayesian posterior probability of 0.00005 that the unknown and known persons are the 

same.  This posterior can now be used as the prior for the analysis of the two SNP 

profiles.   

However,  instead of analysing the two SNP profiles serially,  the investigator realises 

that,  because they comprise entirely different SNPs,  they can be combined into one 

profile.  Thus,  the 20-SNP profile,  of which 18 SNPs are homozygous,  combined with 

the 50-SNP profile,  of which 47 SNPs are homozygous,  yields a 70-SNP profile,  of 

which 65 SNPs are homozygous.   

A “cold hit” prior,  when applied to this combined profile,  results in a posterior 

probability of only 0.18.  When,  however,  the results of the STR analysis,  0.00005,  are 

used as the prior,  the final result becomes the probability 0.99998 that the unknown 

source and the known individual are the same person.   
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The following part of the discussion returns to the context of a “culprit-suspect” scenario.   

In a courtroom,  the question may arise,  “What is the likelihood of a SNP profile match,  

given that the culprit is not the defendant?”  In other words,  “What is the likelihood of a 

random match?”  Bearing in mind that,  by definition,  the likelihood of a match between 

defendant and culprit is exactly 1,  the random match likelihood is easily obtained from 

Bayes’s theorem.  The theorem,  stated in terms of odds instead of probabilities,  tells us 

that if the prior odds on a hypothesis are even (“50-50”, 1/1,  “same chance either way”),  

then the posterior odds are numerically equal to the likelihood ratio.  Therefore,  setting 

the prior probability of identity to 0.500... results in the following relationship between 

the posterior probability,   Ppost, 0.5 and the random match likelihood  

L(match|non-defendant):   

 

L(match|non-defendant) = (1 - Ppost, 0.5 )/ Ppost, 0.5 .   

 

For a 50-SNP profile,  the MCB method gives,  as examples,  the following random 

match likelihoods.  If all 50 SNPs are homozygous,  the random match likelihood is  

~ 0.02;  if 49 SNPs are homozygous,  the random match likelihood is ~ 0.0004;  and  

if 45 SNPs are homozygous,  the random match likelihood is ~ 0.000000007.   

The corresponding likelihood ratios are ∼ 50,  ∼ 2500,  and ∼ 1.43 × 108,  respectively.   
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5. Conclusion   

This article has demonstrated,  through more than 110 computations taking a total of 

about 1 ¼ hours,  that the Monte Carlo Bayesian approach enables the investigator to 

analyse SNP profiles quickly without depending on “reference groups”,  to analyse 

composites of discrete SNP profiles,  and to analyse combinations of STR and SNP 

profiles.   
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Appendix:  The likelihood of a SNP profile   

In the derivation that follows,  it must be kept in mind that the investigator knows only 

how many loci the SNP profile contains,  how many of the loci are heterozygous and how 

many are homozygous.  It is,  thus,  impossible to know which of the two possible alleles 

at a locus is the A allele (with frequency f) and which is the B allele (with frequency  

1 - f).   

The homozygous loci in the profile could be all AA,  or all BB,  or some mixture of the 

two.  Therefore all possible mixtures are considered,  and a weighted average,  or 

expectation,  of these mixtures’ likelihoods is taken as the factor FHOM that contributes to 

the profile likelihood.  For this purpose,  the reduced sample space that contains only 

homozygous loci,  with correspondingly modified locus frequencies,  is analysed by 

means of the Binomial Theorem,  summing over a running index,  k,  that scans the field 

of possible mixtures from all-AA to all-BB.   

Let there be a single nucleotide polymorphism (SNP) profile consisting of N dimorphic 

loci.   

Let any dimorphic locus i contain either one or both of 2 alleles,  denoted by Ai and Bi .  

That is,  the locus can be described by (Ai,Ai) or (Bi,Bi) or (Ai,Bi) .   

Let the population frequency of allele Ai be denoted by f;  then the population frequency 

of Bi is (1-f).  The frequency f is assumed to be the same for all loci in the profile;   

0 ≤ f ≤ 1 .   
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Let the number of homozygous loci in the profile be denoted by n.  These n homozygous 

loci contribute the factor FHOM to the profile’s likelihood product.   

The number of heterozygous loci in the profile in the profile is thus (N-n) .  These (N-n) 

heterozygous loci contribute the factor FHET to the profile’s likelihood product.   

The profile’s likelihood,  given the allele frequency f,  is therefore  

P(profile | f) = FHET*FHOM .   

Let the number of (A,A) homozygous loci in the profile be denoted by k.  Then the 

number of (B,B) homozygous loci is (n-k) .   

Trivially,  the factor FHET can then be calculated as  

   FHET(N,n,f) = [2f (1-f)](N-n)  .   

In order to compute FHOM,  we define a reduced locus sample space that contains only 

homozygous loci;  that is,  it contains only those loci in the profile whose form is either 

(A,A) or (B,B) .   

Now,  in the complete sample space,  the frequency of (A,A) loci is f 2;  and,  similarly,  

the frequency of (B,B) loci is (1 - f)2 .   

Therefore,  in the reduced space,  the frequency, p,  of (A,A) is  

   22
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Similarly,  in the reduced space,  the frequency of (B,B) is   

   22
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By the Binomial Theorem,  the probability of having k loci of type (A,A),  with single-

trial probability p,  in n homozygous loci,  is (0 ≤ k ≤ n)   
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The factor FHOM(n,f) can then be computed as the expectation,  over k,   

of f 2k * [(1-f)2](n-k) .  That is,   

FHOM(n,f) =     ,  where   
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 Prior probabilities   

 0.0000000001 0.00001 0.5 

Number of homozygous SNPs in the profile Posterior probabilities   

50 0.0000007 0.04 0.981 

49 0.0000034 0.13 0.99962 

48 0.000029 0.48 0.999985 

47 0.000241 0.923 0.99999912 

46 0.0026 0.993 0.999999931 

45 0.024 0.9993 0.999999993 

44 0.15 0.99992 0.9999999992 

43 0.50 0.999989 0.9999999999 

42 0.85 0.9999982 1.0000000000 

41 0.968 0.99999967 . . .  

40 0.993 0.99999993 . . .  

30 0.999999924 1.000000000 . . .  

20 0.9999999994 . . .  . . .  

10 0.9999999968 . . .  . . .  

0 0.9999989 . . .  . . .  

 

Table 1.  The probability,  given a match between 50-SNP profiles,  that the culprit is the 

suspect.   
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Prior probabilities   

 0.0000000001 0.00001 0.5 

Number of homozygous SNPs in the profile Posterior probabilities   

20 0.000000005 0.00046 0.955 

19 0.00000005 0.00051 0.99771 

18 0.00000052 0.047 0.999782 

17 0.0000035 0.26 0.999968 

16 0.000018 0.62 0.999994 

15 0.000068 0.865 0.99999843 

14 0.00021 0.954 0.99999952 

13 0.00058 0.9826 0.999999823 

12 0.00136 0.9924 0.999999924 

11 0.00267 0.9961 0.999999961 

10 0.00444 0.99768 0.9999999768 

9 0.00623 0.99838 0.9999999838 

8 0.00757 0.99867 0.9999999867 

7 0.00793 0.99874 0.9999999874 

6 0.00716 0.99859 0.9999999860 

5 0.00561 0.99822 0.9999999822 

4 0.00398 0.99749 0.9999999749 

3 0.00259 0.99613 0.9999999615 

2 0.00162 0.99378 0.9999999375 

1 0.00096 0.9895 0.999999894 

0 0.00056 0.9820 0.999999814 

 

Table 2.  The probability,  given a match between 20-SNP profiles,  that the culprit is the 

suspect.   
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	0.9999999749
	3
	0.00259
	0.99613
	0.9999999615
	2
	0.00162
	0.99378
	0.9999999375
	1
	0.00096
	0.9895
	0.999999894
	0
	0.00056
	0.9820
	0.999999814
	Table 2.  The probability,  given a match between 20-SNP profiles,  that the culprit is the suspect.  
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