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An N Server Cutoff Priority Queue Where Arriving Customers 
Request a Random Number of Servers' 

by 

Christian Schaack 
and 

Richard C. Larson 

Operations Research Center 
Massach usetts Insti tu te of Technology 

ABSTRACT 

Consider aI~lUlti-priority, nonpreemptive, N-server Poisson arrival queueing 
system. The number of servers requested by an arrival has a known probability 
distribution. Service times are negative exponential. In order to save available 
servers for higher priority customers., arriving customers of each lower priority are 
deliberately queued whenever the number of servers busy equals or exceeds a given 
priority-dependent cutoff number. A queued priority i customer enters service the 
instant the number of servers busy is at most the respective cutoff number of servers 
minus the number of servers requested (by the customer) and all higher priority 
queues are empty. In other words the queueing discipline is in a sense HOL by 
priorities, FCFS within a priority. All servers requested by a customer start service 
simultaneously; service completion instants are independent. We derive the 
priority i waiting time distribution (in transform domain) and other system 
statistics. 

Keywords: priority queue, random number of servers, cutoffqueue. 
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1 INTRODUCTION 

The model described in this paper is motivated largely by applications in police 

-. and ambulance dispatching, but it applies equally well to other areas like 

communications systems. 

--

In police dispatching operations, Uemergency" calls frequently require sending 

several patrol units to the scene of an incident. The first unites) on the scene cannot 

respond effectively to the call until all response units have arrived. 

The problem is further complicated by the existence of several priority levels of 

emergency calls. Higher priority calls must get serviced before lower priority calls; 

lower priority calls have to wait for service until there are a ttsufficient" number of 

servers available and no higher priority calls backlogged. 

Unfortunately it is often impossible to recall patrol units responding to low 

priority calls and reassign them to a real high-priority emergency, should one arise. 

Because of the high risk of high priority (i.e., real emergency) calls it is therefore 

advisable to keep a ttstrategic reserve" of patrol units, even when there are low 

priority calls backlogged, in order to respond promptly to these potential real 

emergencies. 

In Section 2.1 of this paper we develop a realistic queueing model of a variety of 

dispatching procedures typically implemented in police departments. This model 

provides a useful tool for the planning and design of efficient dispatching protocols. It 

extends the applicability of most models proposed to date by overcoming some of 

their most important limitations. Section 2.2 reviews the literature most relevant to 

our model. In Section 3 we show how to derive various measures of operational 

performance, including the delay probability and the mean delay in queue 

experienced by a priority i customer. We discuss loss systems in Section 4. 

Extensions and variants of our model (e.g., to allow an upper and a lower bound on 

the number of servers required by any given arrival rather than to have every 

arrival request a specific number of servers) are briefly commented on in Section 5. 
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2.1 MODEL DESCRIPTION 

In this section we provide details of the basic mathematical model, which 

assumes that arriving customers either enter service immediately or join a priority

specific infinite capacity FCFS que~e. 

Customers are assumed to arrive in a homogeneous Poisson manner to an N 

server queueing system, with arrival rate Ai (customers/unit time) for priority i 

customers (i = I,2, ... ,T). All Poisson streams operate independently. By convention, 

type i customers have higher priority than type j customers if i <j. The time any 

given server spends on a job is assumed to be negative exponential with mean 1/p, 

independent of the priority of the customer or the identity of the server. 

Arriving customers require a random number of servers, in the sense that an 

arrival of priority i requires k servers with a probability O'ik, independent of anything 

else. All k servers requested must start service simultaneously, though they finish 

service independently of each other. 

We need to make this independence assuption for the mathematical tractability of the 

stochastic-server-requirements model. This assumption mayor may not be a good 

approximation of the reality of a potential application of the model. For police dispatching, 

Green and Kolesar [1984] empirically validate this independence assumption with data from 

New York City (pp.30-32). They conclude that "the Li.d. experimental model is very good for 

two-car jobs and reasonably good for three-car jobs". 

The service discipline is assumed to be non-preemptive, in the sense that once 

service has begun on a given call, it cannot be interrupted until it is completed. 

Priority i customers requiring k servers enter service immediately upon arrival only 

if there are fewer than Ni-k + 1 servers busy, where Ni is the server cutoff for 

priori ty i. Otherwise they are backlogged in a queue of other priority i customers; 

this queue is depleted in a FCFS manner, with each depletion instant corresponding 

to a moment of service completion (or, more precisely, a time instant when some 

server finishes service) arising when the next customer in queue requires k servers 

and precisely Ni-k + 1 servers are busy. Because the service discipline is non

preemptive, we also require that the priority i-I queue be empty before priority i 

customers are serviced (HOL). By convention, the server cutoff number for the 
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highest priority customers is N1 =N, the number of servers. By definition the server 

cutoff, Nb represents the maximum number of servers that may be busy upon the 

instant when a priority i customer enters service. Of course, if a priority i cutomer 

requests k servers, we require that k<Ni . (We also require that the cutoffs satisfy 

thefollowinginequalities:O<NT< ... < N2<Nl =N.) 

A proposed shorthand notation for our model is MlIvI/{Ni}®§}, designating 

Markovian (Poisson) input, Markovian (negative exponential) service times, a set of 

server cutoffs {Ni }, and a probability matrix S=(Uik) for the number of servers 

required. 

2.2 LITERATURE REVIEW 

The queueing model developed in this paper provides an analytical tool of 

considerable flexibility for assessing the efficiency of dispatching procedures 

implemented in most police departments. It overcomes some of the major limitations 

of most models proposed to date. One of these shortcomings is that most models are 

are unable to take into account multiple car dispatches. Few researchers have 

concerned themselves with this problem. Green [1980] argues that in the City of New 

York thirty percent of the dispatches involve mUltiple vehicles which makes single 

server queueing models rather unrealistic representations of the actual operations. 

Another weakness of most models used for police dispatching (and indeed of most 

dispatching centers' operational protocols) is that they hardly ever consider holding 

patrol cars in reserve for potential emergencies; such a strategy would prevent a 

critical shortage of resources when they are needed most. That particular problem is 

addressed in Taylor and Templeton [1980J .' Schaack and Larson [1985J and Rege and 

Sengupta [1985J. The MlMI{N j}®{§} model integrates both these features, i.e., it 

keeps servers in reserve for emergencies, and it allows for multiple servers to be 

assigned to a single job. 

The MlMI{NJ®{ID model must be considered an extension of a number of 

classical queueing models found in the literature. Table 2.1 summarizes the most 

important of these special cases. 

The two papers most relevant to this study are Green [1984J and Schaack and 

Larson [1985J. The MlMI{Nj}®{ID model merges the simple cutoff model, MIMI{N j } 
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#of S Cutoffs? Reference priorities 

1 an = 1, \Ii no - MlMlm-
Erlang [1917] 

T an = 1, \Ii no 
) 

Cobham [1954] 

Benn [1966], Jaiswal [1971] 
2 ail = 1, \Ii yes Descloux in Cooper [1972/81] 

Taylor & Templeton [1980] 

- M/M/{Ni} -
T ail = 1, \Ii yes Schaack & Larson [1985] 

Rege & Sengupta [1985] 

1 general no Green [1980] 

T general no Green [1984] 

T general yes - M/M/{Nj}®{§}-

Table 2.1 - References 

discussed in Schaack and Larson [1985], and the random-number-of-servers model 

proposed in Green [1984]. The former tackles the T-priority case with cutoffs where 

each arrival requires but a single server, while the lat~'~r develops results for a 

T-priority environment with stochastic number-of-servers requirements but no 

cutoffs. (To solve for the steady state probabilities and the waiting time distributions 

of the systems considered, one follows solution approaches based on MlG/1 queueing 

theory. This MlG/1 methodology shows promise in tackling other complicated 

Markovian queueing systems.) 

We would like to draw the readers attention to a small difference in assumptions 

between our basic MIM/{N j}®{§} model (as described above) and the model described 

in Green [1984] (apart from the cutoff issue which is not addressed in the latter 

paper). Green considers a priority i call irrevocably «assigned" the moment all 

higher priority queues are empty, and one server is ttfree" (i.e. fewer than N j servers 

are busy). If a higher priority call arrives while the priority i call is assigned, but not 

yet served (i.e., not all requested servers are available yet), Green queues the high

priority arrival. Our model in a sense allows preemption oflow-priority calls that are 

assigned but not yet served, i.e., if a higher priority call arrives while a priority i call 

is assigned, but not yet served, we serve the higher priority arrival first: we de-
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assign the priority i customer, (However, neither Green nor we allow preemption 

once tfservice" has actually started. The rationale behind this is that it is usually 

impractical or infeasible to recall police patrol units once they are active on the scene 

of an incident; remember, this is the reason why dispatchers would want to use 

cutoffs in the first place.) Schaack [1985] discusses in detail a family of queueing 

models that are extensions and variants of the basicMlM/{NJ®{ffi model described 

here; included in this family is the direct extension of Green [1984], where 

assignment may not be preempted. 

The M/M/{Ni}®{ID model is akin to both bulk arrival and bulk service models, 

although it does not fit the standard mold of either of these models. Typically, in bulk 

arrival models, one arrival brings a (random) number of customers to the system; 

these customers usually get serviced independently by individual servers. In classic 

bulk service models, the server(s) service customers when a group of a certain size is 

waiting in queue. In the M/M/{Ni}®{ID system, the arrival of a customer requesting 

k servers can be interpreted as the arrival of k quasi-customers requesting a single 

server. In that sense, M/M/{N i}®{§} is a bulk arrival model. These quasi-customers 

do not, however, start service independently (If each other, as in classic bulk arrival 

models. Service starts simultaneously on all k quasi-customers. In that sense, 

M/M/{Ni}®{§} is a bulk service model. It departs in two ways from the classic bulk 

service model: servers terminate service independently of each other, and, more 

significantly perhaps, the servers cannot select the group to be served by simply 

looking at the queue size. Thus while MIM/{NJ®{§} has features of both bulk 

arrival and bulk service models, it does not fit into the classic frame of ei ther of these 

models. It is a hybrid, and interpretation in terms of bulk arrival or bulk service 

must be carefully worded. The reader may want to think of it as a bulk service model, 

in which the size of the group to be served depends on the type of the customers in 

queue (Le., on the arrival process); all servers must begin service simultaneously on 

the group in question, cne server to a quasi-customer, and servers terminate service 

on their quasi-customers independently (with identical exponential service time 

distribu tions). 
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3 Analysis of the M/M/{Ni}®{ID Model 

This section is devoted to the mathematical analysis of the queueing model 

MIM/{N j}®§}, that addresses both the issues of efficiently implementing a 

preferential response policy (~cutoffs) and of assigning multiple response units 

when suchan allocation scheme is deemed necessary (~random-number-of

servers requirements). The modeling issues were discussed in detail in Section 2. 

We briefly recall the assumptions of the MlMI{Nj}®{IDmodel: 

G N identical servers. 

e T priority levels of customers. 
Ai == Poisson arrival rate of type i customers, i = 1,2, ... , T. 
aik == probability that a priority i customer requires k servers. 
11 == exponential service rate (identical for all priority levels and 

servers). 

@ Type i customers requiring k servers enter service immediately upon 
arrival only if fewer than Ni-k + 1 servers are busy (where 
O<NT<NT_1 < ... < N2 < Nl =N) and no calls of priority i or higher are 
backlogged; otherwise they join an infinite capacity queue of other 
priority i customers. The next of these customers to enter service, 
assuming she requests k servers, leaves the queue for the service 
facility at instants of server free-up arising when precisely Ni-k + 1 
servers are busy and all higher priority queues are empty (the service 
discipline is HOL by priority). 

G Within a priority, the service order, unless specified otherwise, is 
assumed to be FCFS. Other disciplines, that are tractable for MlG/1 
queues with exceptional first service in a busy period, are possible. 

The M/M/{Nj}®{§} model. 

We have, in this basic version of the MlMI{NJ®{ID model, assumed that the 

queue capacity is infinite. The model is similarly tractable for zero-capacity 

(,tloss") systems, as illustrated in Section 3.6. 

The model implicitly assumes that all servers servicing a particular customer 

finish service independently of each other. This mayor may not be a reasonable 

assumption depending on the application, as we briefly discussed with respect to 

police patrol dispatching (in Section 2.1). 
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With the above assumptions, there is no permanent assignment of servers to a 

. priority i customer requesting k servers until all k servers are llavailable" 

(Le., until fewer than Ni -k + 1 servers become busy and the customer in question 

is the highest priority customer in line waiting to be served), at which time 

service begins. A low-priority customer that has been assigned a server but has 

not started service yet (Le., not all servers have been assigned) will be preempted 

by any higher priority arrival. Under no circumstance, however, will preemption 

occur once actual service has started. 

As an alternative to this assumption of preemptive assignment, one could 

consider a queueing policy that considers a customer irrevocably assigned upon 

the moment that one server becomes tlavailable" (cf., e.g., Green [1984]). Under 

such a policy, upon the instant that a customer has been assigned one (out of k 

requested) server, she rates a higher priority than any customer that may enter 

the system subsequently. She is therefore given, upon assignment, access to all N 

servers in the system, not just to the cutoff number Ni corresponding to her 

original priority clearance. Until she has received her quota of servers (Le., until 

she actually starts service), all other (arriving) calls must wait, regardless of 

their priority. In some sense, this latter policy forbids preemption on assignment, 

while the former (our default policy in this chapter) expressly allows it. The 

policy of nonpreemptive assignment and hybrid policies including features of 

both the preemptive and nonpreemptive assignment policies are mentioned in 

Section 5, but the reader is referred to Schaack [1985J for a detailed discussion of 

these alternative models. 

3.1 The M/G/1 Approach 

Our analysis of the M/M/{N j }0{ID queueing system is based on the same 

MlG/l approach that led to the successful solution of the simpler M/MI{NJ system 

Schaack and Larson [1985]. Albeit conceptually similar, the arguments that lead 

to the solution of the model with stochastic server requirements are substantially 

more delicate and involved. The MlMI{NJ system is skipfree positive as well as 

skipfree negative: To go from a state with k servers busy to a state with n servers 

busy (n:;t:k), the system has to pass through a state with n + 1 servers busy ifk>n 

(skipfree negative), or through a state with n-1 servers busy if k<n (skipfree 

positive). The M/M/{N j}0{ID system lacks part of this property: it is not skipfree 
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positive. Downward transitions are still skipfree in this model, but, unless ail = 1 

for all iE{l, 2, ... , T}, upward transition are not any more. However, enough 

structure is preserved to permit an analytical solution of the model along similar 

lines. 

For the analytical developments of the following sections, it is helpful to view 

the MJM/{N j}®{§} queueing system in the same way we viewed the MIM/{N j } 

system: Customers of priority i are waiting in queue i and have no information 

about the queues of other priorities, which form in other waiting rooms of the 

service facility (Figure 3.0). While they are in their waiting room, they firmly 

_~ Departing 
Customers 

Figure 3.0 

Arrival Streams of Different Priorities Enter Separate Queues 

believe that they wait in the only queue in the system. Therefore assume that the 

customers in queue i can only observe how their own queue behaves, i.e., when 

the next customer in their queue begins service. A priority i customer that 

arrives to a non-empty queue observes that the times between successive "move

ups" in queue position (say from position k to k-1, k> 1) are independent, 
,. 

identically distributed (i.i.d.) with a general distribution for the time between 

move ups. This queueing behavior is similar to that of an MlG/1 system (except 

in. general for the first customer who incurs a delay in a busy period, as we shall 

see,shortly), where G depicts a general service time distribution represented here 

by ,th~ time between successive move-ups. G is not, however, the distribution of 
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time actually spent in service by a type i customer. The observed G for times 

between move-ups is in fact the probability distribution of a delay cycle sustained 

by higher priority arrivals (Le., of priorities 1,2, ... , i -1), whose existence our 

priorityi customer is unaware of. We shall formalize these concepts as we go 

along. 

In Section 3.2 our aim is to determine the distribution of a family of delay 

cycles of importance to a priority i customer. These delay cycles are used in 

Section 3.3 to determine the probability that a random (tagged) customer arrives 

at the queueing system while 

(i) the system is congested (for the customer's priority clearance), or, 

(ii) the system is not congested and a certain number of servers are busy. 

We shall shortly define, in more rigorous terms, what we understand by a 

congested system. The particular state description outlined above reflects the 

minimum amount of detail needed to account for the stochastic server 

requirements (8). The probabilities computed in Section 3.3 are then used (in 

Section 3.4) for (un-)conditioning purposes, when we derive, again usmg our 

delay cycles, the waiting time distribution of a priority i customer. 

In summary, the three analytical steps: (1) derivation of the queue move-up 

times, (2) computation of the steady state (time average; Le., Poisson incidence) 

probabilities and (3) derivation of the waiting times in transform domain are 

essentially the same steps undertaken for the MlMI{Ni} model, described in 

Schaack and Larson [1985]. All steps are complicated by the fact that the upward 

transitions are not skipfree positive. In Step (1), the recursions defining the 

queue move-up times become more involved. In Step (2), our state description 

must reflect more detail than it did for MlMI{NJ The argumentation used for the 

simpler model is ineffective in the more convoluted setting of the MlMI{Ni}®{§} 
model. Finally, in Step (3), we must recognize that the first "virtual service" time 

(read: queue move-up time) in a Ilbusy period"* is, in general, different from the 

remaining {{service" times, and that appropriate adjustments to the MlG/1 results 

must be made. MlG/1 queues with exceptional first service have been studied in 

the literature (e.g., Welch [1964]), arid waiting time results for the MlMI{Ni}®{§} 

model can be derived by analogy with these models. 

* The term "busy period" is used rather loosely here. Appropriate concepts are defined 
rigorously in the next section. 
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3.2 Elementary Delay Cycles 

3.2.1 Definitions 

Definition 3.1: Unless stated otherwise, we define service completion instants 

to be time instants at which some server finishes servicing some 

customer. 

Indeed, in the M/M/{Nj}®§} queueing system, service completions are well defined in 

terms of servers, but not in terms of customers. In terms of customers one would need to 

specify whether one means the instant at which the first, ... , or the last (ofk) servers servicing 

a given customer finishes his job. 

We shall make extensive use of the following default convention for 

summations and products: Whenever the lower bound on a summation 

(respectively, a product) exceeds the upper bound, the value of the summation 

(respectively, the product) is taken to be zero (respectively, one): 
a 

and n xi == 1 
i=b 

if b>a. 

We also, by convention, denote the Laplace-Stieltjes transform of the 

distribution of a random variable X by X"(s). 

Table A.I in the appendix summarizes the plethora of variable definitions 

that we introduce throughout this paper. The reader will probably find it 

convenient to turn to this table as an aide-memoire. 

In this section we shall endeavour to obtain the probability distributions of 

certain elementary delay cycles* that will be useful in analyzing the 

M/M/{N i}®{§} queueing system. These elementary delay cycles are essentially 

building blocks for the following two sections on steady state probabilities and 

waiting time distributions. 

* For an introduction to standard delay cycles, the unfamiliar reader is referred to 
Kleinrock [1975], Vol. 2, pp. 111ff. 
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Definition 3.1: Elementary delay cycles Ri,n 

Assume that all arrival streams of priorities i + 1 through Tare 

suppressed from the system after time t. Let (n; q!, q2, qa, ... , qi) denote 'a 

(micro-)state in this system, where n is the number of busy servers, and 

<Ii is the number of customers of priority j in queue, for jE{I, 2, ... , i}. 

Suppose at time t, all queues (of priority 1 through i) are empty, and 

there are n servers busy, i.e., the system is in state (n; 0, 0, 0, ... ,0). Let 

(n; qb q2, ... , <li,., It, ... , e) denote the subspace ~~n servers busy, qk 

customers in queue, for kE{I, 2, ... ,j}, any number of customers in queue 

for kE{j + 1, ... , i}". 

Letr denote the lowest priority whose cutoffNr is at least equal to n, 

i.e., r == max{j, Nj ~ n}. Let rXin denote the first passage time from state 

(n; 0, 0, 0, ... ,0) to state (n -1; 0, ... , 0, qr=O, ., GI, ... , e), i.e., to absorption 

in the subspaceCn-l; 0, ... , 0, qr=O,.,., ... , e). 

Let ar + 1 C denote the number of arrivals of priority r + 1 during rXin. 

Let r+ lXin denote the first passage time from state 

(Nr+ 1; 0, ... , 0, qr+ 1 = ar+ {, ., ... , e) to state (N r+ 1; 0, ... , 0, qr+ 1 = 0, ., ... , .). 

Similarly, for kE{i, ... , r+l}, let al/ denote the number of arrivals of 

priority k during rXin + r+ lXin + ... + k-1Xin' + Let kXin denote the first 

passage time from state (Nk; 0, ... ,0, qk=al/, e, GI, ... , -) to state 

(N k; 0, ... , 0, qk = 0, 0, ., ... , ~). 

Then we define the elementary delay cycle by 

This defini tion calls for a number of comments: 

(1) Because the MlMI{Ni}®{ID system is skip free negative with respect to the 

number of busy servers, during one of the first passage times defined above, 

say from state Cn; 0, 0,0, ... ,0) to state (n-l; 0, ... ,0, qr= 0,0, -, ... ,0), no state of 

the form (m; 0, ... ,0, qr = 0, -, ., ... , e), with m <n -1, can be reached before 

state (n-I; 0, ... ,0, qr=O,.,., ... , -) is reached; i.e, before the end of the first 

passage time in question. The destination state (n; 0, ... ,0, qr=O, 0, 9, ... , II) is 

t This is an abuse of notation; to be rigorous, we should talk about the number of arrivals 
during the union of time intervals underlying the jXin's. 
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always reached upon a service completion from some (micro-)state in the 

subspace (n; 0, ... ,0, qr= 0,.,., ... , e). 

(2) Ri,n can be interpreted as a delay cycle with initial delay the time until the 

first service completion from state (n; 0, 0, 0, ... ,0), and with a delay busy 

period sustained by Poisson arrivals of priorities 1 through i. We call these 

delay cycles elementary because their initial delay is simple; and because, as 

we shall see shortly, they are elementary building blocks for more complicated 

first passage times. 

(3) Notice that Ri,n is typically not one continuous interval of time, but a union of 

time intervals separated by other time intervals, all of which belong to the 

same renewal cycle (where we define a renewal cycle as bounded by entries int 

... state (n = 0; 0, ... ,0)). This feature is illustrated in Example 3.1. 

For computational purposes it is useful to extend the definition of elementary 

delay cycles to include the following Cpriority 0") boundary condition: 

Definition 3.2: (Elementary Delay Cycles) Ro,n 

Suppose that, at time t, there are n servers busy. Then Ro,n is 

defined as the time until the first service completion subsequent to t, 

for ° <n:::;N1 =N. 

Ro,n can be viewed in the following way, consistent with our definition of 

elementary delay cycles: 

Assume that all arrival streams are suppressed from the system after time t. 

Let (n) denote a (micro-)state in this system, where n is the number of busy 

servers. Then Ro,n is the first passage time from state (n) to state (n -1) in this 

system. 

Ro,n can also be viewed as a delay cycle with initial delay the duration until 

the first service completion, and with delay busy period sustained by arrival 

streams of priority higher than priority 1 (Le., of rate zero: not sustained at all). 

Example 3.1 

Suppose T=2, N=3, Nz=l, n=N, i=2. At time t the process is in state "3 servers busy, 

nobody in queue". Let us look at one particular occurrence of this process: At time t', the first r~ 

service completion occurs (i.e., the initial delay is equal to t'-t). A single (tagged) arrival, of 

priority 2 and requesting a single server, arrives in the interval [t,t'l, and no further arrival 
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occurs for a very long time after t'. At time t', the system contains work due to the one tagged 

priority 2 arrival. However, because N2 = 1 <3, this work cannot be resorbed until some later 

date t" when a service completion occurs from state "1 server busy". Because (in the present 

occurrence) of the process no further arrival is due for a long time, the following service 

completion, from state "1 server busy" to "0 servers busy", at time t"', marks the end of the 

time period lX23 • Regardless of the number of arrivals subsequent to t" (zero in this occurrence 

of the process), t' and t" are at the very least (in this system) separated by two service 

completions, one from from state "3 servers busy" to state "2 servers busy" and one from state 

"2 servers busy" to state "1 server busy"; therefore t" > t'. t" marks the beginning of the first 

time period 2X23, when the system takes care of the work added by the occurrence of our tagged 

arrival, R2.3 (R2.N) is the reunion of two non-contiguous time periods, [t,t'] and [t",t"'] as 

illustrated by Figure 3.1. (For other occurrences of the process, R2•N may be reduced to [t,t'].) 

The definition of the elementary delay cycles implies the following result: 

Resu1t3.1: In a system with arrival streams of priorities i + 1 through T 

suppressed, the first passage time, Fprri,n,m, from state 

Un servers busy and all queues (of priority 1 through i) empty" 

to state Hm servers busy and all queues (of priority 1 through i) 

empty" is given by 
n 

FPT - ") R form<N.~n. • -.t..... 'I l,n,m I, I 
I=m+ 1 

We argue this by induction on n: 

Arrival streams of priority i + 1 through T are non-existent. 

First, assume, n=m+l. Ri,n=rXin+r+1Xin+ ... +iXin; but r=max{j/Nj~n}=i, 

thus Ri,n =rXin = iXinr and Ri,n IS the first passage time from state 
(n; 0,0,0, .,., qi = 0) to (m; 0, 0, 0, ... , qi = 0). 

Now, suppose the result is true for n=s-l. Let us prove that it holds for n=s. 

Let r=maxUlNj~s}. Let rXis be the first passage time from (s; 0, 0,0, ... , qi = 0) to 

(s-l; 0, ... , qr=O,., ... , .). Let ar+l c denote the number of arrivals of priority r 

during rXis' Let us put all these arrivals in a dark room and forget about them 

temporarily; i.e., temporarily, it is as if the system were in state 

(n -1; 0, ... , qi = 0). The first passage time from this state to (s; 0, 0, 0, ... , qi = 0) is 

just FPTi,s-l,m; by our induction hypothesis, this is also Ri,s-l + ... +Ri,m+l' Now, 
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Figure 3.1 - Illustration of Ri,n 
(Data from Example 3.1 - Two priority system: T=2; 1 =N2 <N=3) 

let us look at the contribution of our locked-up priorityr+ 1 customers. They add 

a time interval of length r+lXis to FPTi,s-l,m, where r+1Xis is distributed as a first 
passage time from state (Nr+1; 0, ... , 0, qr+l = ar+lc,., ... , e) to state 

(Nr+1; 0, ... ,0, qr+l = 0, -, ... , e). Similarly, for kE{r+ 2, ... , i}, let akc denote the 

number of arrivals of priorityk during rXis+r+lXis+ ... +k-lXis (or, rather, the 
underlying union of intervals), and assume they are all locked up in a room until 

the servers can turn their attention to them. Then the length of time added by the 

need to service the akc priority k customers is given by kXis, which is distributed 
as a first passage time from state (Nk;O, ... ,O,qk=akc, ., ., ••• , e) to state 
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(Nk ; 0, ... ,0, qk =0,.,., ... , .). Thus 
r 

FPT 0 = FPT 0 1 + ~ kXoZ = FPT 0 1 + R 0 , l,s,m 1,8- ,m L I, 1,5- ,m 1,5 
k=i 

or, by our induction hypothesis, 
5 

FPT o ~ Rlo,l £Js,m L.. 
Z=m+l 

which concludes the induction. 

This result is the key to the success of the first passage times method that we 

use for the cutoff problems. The elementary delay cycles Ri,n are of interest only in 

as far as they allow us to successfully evaluate the actual downward first passage 

times FPTj ,/l,lIl' These are crucial random variables for the derivation of both the 

steady state probabilities (Section 3.3) and the waiting time distributions 

(Section 3.4). While the FPTj n m's are easier to understand, the Ri n's are easier to , , , 

evaluate. Moreover, as one can observe in Sections 3.2.2 and 3.3, there are O(N2) 

FPTi,n,m's that need to be evaluated, but only O(N) Ri,n's, which, all other 

considerations aside, offers an added incentive to use the (perhaps less intuitive) 

elementary delay cycles, Ri,/l' rather than the clumsier multi-stage first passage 

times, FPTi ,n,ll1' In order not to further add to an already complex notation, we will 

henceforth reason in terms of elementary delay cycles, Rj,n, and dispense with the 

FPTi n m notation. , , 

We finally introduce one last definition that will be useful in the next section: 

Definition 3.3: We define the random variable Vi,n as the time until the 

next transition from state un servers busy" in a system with 

arrival streams of priority 1 through i only, and this for iE{l, 

2, "', T} and nE{l, 2, ... , Ni-1}. 
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3.2.2 Derivation of the Elementary Delay Cycles Ri,n 

We briefly recall, in Table 3.1, the definitions of the most important random 

variables defined in the previous section: 

Rj,n -

Vj.n -

X*(s) -

elementary delay cycle from state ron servers busy, nobody in queue", in a 
system with no arrival streams of priority lower thani, for iE{O, 1,2, , .. , T} and 
nE{l, 2, .. " N}, 

time until next transition from state "n servers busy" in a system with no 
arrival streams of priority lower than i, foriE{l, 2, .. " T} and nE{l, 2, .. " N;-l}, 

Laplace-Stieltjes transform of the distribution of a random variable X, 

Table 3.1 - A few Definitions 

The Elementary Delay Cycles RON 

From the definition of RO,n, we trivially obtain the Laplace-Stileltjes 

transform: 

'" nll Ro (s)= -- forn=l, 2, .. "N. 
,n nll+s 

(3.1) 

The Elementary Delay Cycles Rl.N 

We now derive the Laplace-Stieltjes transform of R1,n, the elementary delay 
cycle from state (!n servers busy and no priority 1 customers queued" (to state 

(!n -1 servers busy and no priority 1 customers queued"), for a system with 

arrivals of priority 2 through T suppressed. 

First consider R1,N. Let there be N servers busy and no customers in queue at 

time t. Let Xl be the duration of time until the first service completion. Let K j be 

the number of customers of priority i requesting j servers that arrived during Xl, 

and let K denote the total number of customers of priority 1 that arrived during 

Xl (K=Kl + ... +KN). As they arrived, these K customers were conveniently 

locked up in a big dark room. 

After Xl has ended, we retrieve one by one the K arrivals from the dark room 

(in any order: e.g., LCFS) upon time instants at which the system enters a state 

where 

(i) N servers are busy, 

and 
(ii) no customers, except others in the dark room, are waiting to be served . 
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Let us focus on a particular customer as it is retrieved. We start a clock upon 

the moment of retrieval. If the retrieved customer requests j servers, she must 

wait until sufficient servers become available. However, not only must she wait 

until sufficient servers are available, we also decide that if there are any more 

arrivals, they (and she) are served in a LCFS manner. In other words, she will 

enter service only upon the first time instant when 

(i) j servers are available, 

and 

(ii)no customers, except in the dark room, are waiting to be served. 

In effect, this LCFS policy ensures that all ttdescendents" of this customer 

(i.e., all new arrivals that arrive while she is retrieved and waits for service) 

enter service before her, in a LCFS manner. We stop the clock when our retrieved 

customer finally enters service. 

In order to compute the elapsed time, consider that at each stage during which 

the system tries to free another server for our retrieved customer, that is during 

inter-service-completion intervals, more customers may arrive. Because, under 

our modified (work conserving!!!) policy, they get served in a LCFS manner, they 

in a sense Hpreempt" the retrieved customer Hon assignment". These new arrivals 

consequently contribute a delay cycle at each of the j stages. The delay cycle at 

stage k is distributed as RI,k, by definition of R1,k. Therefore, the added work 

contributed to the current renewal cycle by our retrieved customer contributes to 

R1,N a random length of time distributed as 

R I,N + R I,..'V _ 1 + ... + R 1,N _ j + 1 . 

The distribution of this sum of independent random variable, In transform 

domain, is given by: 
N .. '" ... n'" R 1,N(s)R 1,N_/s)' .. RI,N_j+l(s) = R1,n(s) 

n=N-j+l 

As all other customers in the dark room are, in turn, retrieved, they add 

similar time intervals to Rl N. Therefore, remembering to count the duration Xl of , 

the time until the first service completion (from HN servers busy") that started all 

this, we can write, for R1,N conditioned upon Kj and Xl: 
N N k. 

E[ e-sRI,N I Xl =y, (Kj=k
j

, IdjE{l, ... ,N}) 1 = e- SY n [ n. R~,n(S)]) 
)=1 n=N-)+l 

U ncondi tionining on the Kj's, we obtain: 
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[ 
-sR 1 ] N [ IX) -a (J Y O"'e .y) ; [N ] ki] 

E e 1,N Xl =y = e-
sy f1 LeI 1i kl~! n. R~)s) 

;=1 k .=0 ; n=N-;+l 
; 

or, 
N 

N -Y(A1C1 1 ·-a1C1 1 · n R*l (S») 

[ 
- sR -I]· [ J J . ,n ] E e 1,N Xl =y = e- sy f1 e n=N-;+1 

;=1 
or, 

Then, unconditioning on Xl (Le., RO,N), we find an equation defining the 

transform of the distribution ofR1,N: 

[ 

R 

1 ( 
N N . 

.. - s 1,N 01< '" n .. ) 
R l,N(:;l=E e = RO,N S+A 1- Al .t!- a lj . Rl.n(s) 

;=1 n=N-;+1 

(3.2) 

A different (simpler) argument is used to derive R1•N - 1. Because R1,N- 1is an 

actual first passage time, the argument is not quite so tricky. In the system where 

all arrivals of priority lower than priority 1 are suppressed, we condition R1•N - 1 

on the nature of the transition out of state ~'N -1 servers busy", i.e., whether it is 

a service completion (a downward transition) or an arrival (an upward 

transition). To simplify our equations, we introduce the Laplace-Stieltjes 

transform of the distribution of Vi n' Because of the Markovian nature of the , 

process, the transform is clearly given by 

A.: + nil 
'" L V. (s)=---
L.n 1.:+nil+ s 

L 

i 

wherell.:= I Ak 
I. 

k= 1 

Assume now that a (tagged) priority 1 customer requesting j servers arrives 

before one of the N -1 busy servers can finish service. This arrival will not start 

service until the moment when exactly j servers would become available. Now 

assume that during the time our tagged customer has to wait for this moment, 

there arrive more priority 1 customers. Since. the distribution of R1,N -1 is 

independent of the order in which priority 1 customers are processed, let's process 

them in a LCFS manner. This results, conditionally on a first arrival requesting j 

servers, in a CLCFS) waiting time distribution (for our tagged customer) whose 

Laplace-Stieltjes transform is given by: 
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N-l 

n R~)s). 
n=N-j+l 

Therefore, conditioning on the type of transition, we find that R1,N -1 IS 

determined by: 
A N N-l 

'" (N - 1)11 '" 1 I"'''' '" n 01< 
R 1,N 1(5) = V 1,N I(S) + a l' V 1,N l(s)R 1,N(s)R 1,N I(S) R l,n(s) 

- A
1
+(N-l)11 - A

1
+(N-l)11)' __ 1 J - - n=N-j+l 

or, 

'" 
of< V 1,N_l(s) ( N '" >I< N-l >I< ) (3.3a) 

R I,N_l(S)= _) (N-l)11+ A
1 I a 1j R I,N(s)R 1,N_I(S) n R 1,n(s) 

Al + (N 1 11 . -1 -N' . + I j- n- -) 

Similarly, for R1,n (0 <n <N -1), one can write (using the default convention that 

ttempty" products are equal to 1): 

'" V (5) [ .v II., (nHI!(N.n+jJ ] 
R>I<I (5)= l,n n11+Al') 0

1
,( n R*l (s)) n R>I<l (5)) 

,n A + nIl '-- J .n~ ,m 
1 r- j=l m=N-j+l m=n 

(3.3b) 

Equations (3.2) and (3.3), repeated below, completely define the generalized 

first passage times Ri,n, for i = 1 and 0 < n:5 N. 

(3.2) 

v'l< (S) [ N n )( min(N,n+ j) )] 

R:,n.(s) = A l:tn n11+ A
1 I oli rr. R~,m(s) n R:,m(s) 

1 11 )=1 m=N-)+1 m=n 

(3.3) 
for O<n<N 

These expressions look rather repulsive; however, differentiating them (once) 

with respect to s and setting s to zero yields a linear system of equations, the 

variables of which are the (first) moments of the first passage times R1,n, as the 

equations below show. 

E[Rl,N]=E[RO,N](l+Ali alj f.. E[R 1,n]) = ~11(l+Ali 0lj f.. E[Rl,n]) ' 
)=1 n=N-)+1 )=1 n=N-)+1 (3.4) 

and for 0 <n <N, 

Eh,J A ~np + A ~lnJ 0 1;[( i +1,m))+(minr+il Eh,m))) 
1 1 )=1 m=N-)+1 m=n (3.5) 

This differentiation procedure can, of course, be repeated to obtain linear 

systems for the higher moments 9fRl,n (in terms of the lower moments). 
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The Generalized Delay Cycles Ri,n (for i > 1) 

We now consider that all arrival streams of priorityi+1 or lower are 

suppressed. 

As before, let us first focus our attention on the random variables Ri,m for the 

case where Nrs;nsN. In order to be able to use an argument that parallels the 

argument that led to equation (3.2), we establish the following decomposition 

result, which is deeply rooted in the HOL structure of the system: 

Result 3.2: The elementary delay cycle Ri,n can be considered as a delay cycle 

with initial delay Ri-1,m sustained by arrivals of priority i during 

R i -1.n and by arrivals of priorities 1 through i that arrive in 

subsequent intervals .. 

By definition, 

Ri,n =rXin +r+lXin + ... +iXin, and Ri - 1,n =rXi-l,n +r+lXi-l,n + ... +i-1Xi-l,n. Notice 
that, by definition of the kXjn'S: kXin =kXi-l,n for rsk <i. Thus, Ri,n =Ri-1,n + iXin. 

But iXin is the first passage time from (Ni, 0, 0, ... , qi = an to (Ni -1,0,0, ... , qi = 0), 

where aie is the number of arrivals of priority i during rXin + r+ 1Xin + ... + iXi-1,m 

i.e., during Ri- 1,n. 

This result now enables us to apply the same reasoning that we used 

previously on R1,N to the generalized first passage time Ri,n, for Ni~nsN. 

Paralleling the arguments that led to the derivation of equation (3.2), we can 

write: 

*' [-SR.]. *' ( Ni Ni "') 
R. (s)=E e ~,n = R. 1 s+A.-A. L o. n R. (S) 

I,n 1- ,n I I Ij I,m 
j=l m=N-j+l 

I 

forN.snSN. 
I 

(3.6) 

For nsNi -1, the derivation follows directly along the lines of the argument 

leading to equation (3.3), without envoking Result 3.2: 
V'" () . N minlN ,n+j) 

R~ (s)= i,n S [nll + ~ A ~ 0.( nn R~ (s»)· ( nr 

R~ (s»)],'dnE{I, ... ,N.-I} 
I,n"l.e L rL rj I,m I,m I 

JI..+nll r=l j=l m=N -j+l m=n 
I . r (3.7) 

As above, for i = 1, differentiating these equation yields simple linear systems 

that are easily solved for the first (and higher) moments of the random 

variables Ri n: , 
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E[R. ] = E[R'_ l ](1 +.h.. i cr.. i E[R.]) I,n I ,n I lJ I,m 
j=l m=Ni-j+l 

and, for nE{l, """' Ni -I}: 

", 

• l ;1t 
~,. ~.t •. ,--" •.. 1_.' 

for N. S; ns;N, 
I 

(3.8) 
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j ';~.t • 

\,3~;,:,Steady State Incidence Probabilities 
, • "\,t ~'I \' 

'In this :section we derive the steady state probabilities that a Poisson arrival 

,sees the queueing system in a certain state. Indeed, in order to evaluate the 

'distribution,of the waiting time incurred by an arrival of a given priority, it is 

, iinportantL to know with what probability this arrival finds the system 
~ " 

'ttcongest;ed" for her priority class, and with what probability the system is 
ttuncongested" . 

\ 

Der.¥1itioh 3.4: Congestion 
The system is said to be congested for priority i if ttat least one 

queue of priority i or higher is nonempty, or more than Ni 

servers are busy". 

Similarly, we define a system state as uncongested for 

priority i if in that state ttall queues of priority 1 through i are 

empty and at most Ni servers are busy". 

Under our default service discipline (FCFS within a priority), if the system is 

t, ,\~on'gested (for priority i) when a (priority i) customer arrives to the system, the 
Ii 

"c~stomer will have to wait. Indeed, either a customer of equal or higher priority 

is alr~ady in queue, or more than the cutoff Ni number of servers are busy. If on 

the,othei1 hand, the system is uncongested when a new arrival occurs, the 

arriving customer may or may not enter service immediately depending on the 

numbe~ of servers she requests. For example if an ar.rival requesting 2 servers 

occurs:w hile the system is uncongested and N i - 3 servers busy, this arrival can 

enter service right away, while if Ni -1 servers were busy, she would have to 

wait. (It may appear counter-intuitive that the state !tall queues of priority 1 

through i are empty and Ni servers busy" is defined as uncongested for priority i, 
/' d~ 

fbI' any priority i arrival to that state will have to wait for service. For reasons of 

analytical tractability, it is preferable to include this state among the 

uncongested states.) Notice that the system is necessarily congested or 

uncongested for priority i at any point in time. 

In order to simplify our argumentation somewhat, we introduce the following 

concepts and notations: 
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(continuous) time period during which a system is congested for 
arriving priority i customers; by extension, Ci also denotes the 
macro-state "system congested for priority i". 

(continuous) time period during which the system is 
uncongested for priority i customers; by extension, Ui also 
denotes the macro-state "system uncongested for priority i". 

steady state probability that the system is in state Ci 

steady state probability that the system is in state Vi 

probability that there are n servers busy, given that the system 
is uncongested for priority i, where nE{O, 1, ... , NiJ. 

Notice that the queuemg system goes through cycles of congested and 

uncongested periods. In order to obtain the steady state probabilities Pb qi and 

PnlUi , we need only concern ourselves with a single CiUUicycle. The probabilities 

Pi and qi are easily determined from 

E[U.] 
! 

P i= E[U.]+E[C.] 
! ! 

and q.=l-p. , 
! ! 

(3.10) 

once we compute the expected values of the durations of blocked and un congested 

periods for priol'ityi. We shall now proceed to compute recursively, for all 

iE{l, 2, ... , T}, E[UiJ ,E[Ci], Pi, qi and PnlUj, 

Outline of the derivations 

18 We have an initial lever on the steady state probabilities at the low priority 

end (i =T) of our state space (Section 3.3.1). 

• In steady state, the uncongested state, UT, is always entered through state 

((NT servers busy, all queues empty". It is easy to evaluate, using standard 

Markovian methods, how often the system visits state (tn servers busy" 

while it is uncongested (UT). The holding times per visit in these states are 

known (they are exponential with rates ATc+nll). The expected holding 

times and the expected number of visits enable us to derive the steady 

state probabilities that n servers are busy, given that the system is 

uncongested (P nIU
T

) for priority T; and, similarly, they yield the expected 

sojourn time in state UT (E[UT]) 
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• The expected sojourn time in "a congestion period, E[CT], is obtained by 
direct probabilistic arguments. Conditioning on what state in UT the 

transition to CT is initiated from, and u!:ling the elementary delay cycles 

derived in the previous section, one finds the expected duration of a 

congestion period (E[CTD. 

• Finally, the incidence probabilities PT and qT are easily determined from 
equation (3.10). 

• We then proceed by induction from priority i + 1 to priority i (Section 3.3.2). 

• We investigate the congestion period Ci+l by looking at substates of Ci +1• 

These sub states are (i) Ch the congestion state for priority i (CdCi+1), and 

(ii) the uncongested state CUi) with n busy servers, but congested for 

priority i + 1 CUi&nIC i +1). Using a conceptually similar, but substantially 

more involved Markovian approach than for i =T, we count the number of 

visits to these substates during one occupancy of Ci + 1. The expected 

holding times in all but one of these states (state CdCi+l) are known. The 

expected holding time in CdC i + 1 can be obtained from a conservation 

equation based on the expected duration of Ci +1 (this is part of our 

induction hypothesis). Armed with these expected numbers of visits and 

holding times, it is then easy to obtain the probabilities that n servers are 

busy and the system is uncongested for priority i, given that the system is 

congested for priority i + 1 (U i&nIC i +1) and the probability that the system 

is congested for priority i, given that it is congested for priority i + 1 

(CdC i +1). 

• Finally, unconditioning on incidence into U i +1 or Ui&nICi+b with nsNi, 

one finds pi, the steady state probability of an uncongested period for 

priority i. Further careful unconditioning yields the steady state 

probabilities that n servers are busy, given that the system is uncongested 

for priority i (Pn/U). 

.. This concludes our induction argument. All quantities of interest can now 

be computed recursively. 
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Let us now turn to the derivations proper, starting with i=T, which case 

yields the bou.ndary condition from which we start our recursive procedure. Let 

us concentrate on a priorityT arrival, and on the system states that are of 

importance to her. It is convenient to assume that priorityT customers can only 

tell how many servers are busy when the system is uncongested (i.e., states nIUT, 

for O<nsNT). We therefore first focus on whether the system is or is not 

congested; next, if it is not congested, we focus on how many servers are busy. 
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3.3.1 The System USeen" by Priority T Customers 

• Let us first think about the uncongested macro-state UT, specifically how it is 

entered, and how it is left. In steady state, UT starts with a transition from CT to 

state ~~NT servers busy and all queues empty". While UT lasts, no more than NT 

servers are busy, and no queues (of any priority) form. As soon as a queueJorms or 

more than NT servers become busy the system enters a ~~congested period" CT' 

Now assume that the system (in steady state) is uncongested. What is the 

probability that there are exactly n servers busy? -This question can be answered 

easily if we know the expected number of visits to each of the states ~~o servers busy" 

through ttNTservers busy" during one UT period. Let K be the (NT+l)-by-(NT +l) 

matrix defined by Kmn =ProbCsystem is still uncongested and n servers are busy 
after the next transition" given (~system is now uncongested and m servers are 

busy"), for (m,n)E{O, 1, ... , N p. The transition probability matrix K is given by: 

T T T T 

L \a i1 L "Pi2 L\ai3 L APi,N 
i=1 i=1 i=1 i=1 T 

0 
,\~ "C 

T AC 

T AC 
T 

T T T 

L Aia i1 L Aia i2 I Aiai,N -1 

1:1 i=1 i=1 i=1 T 
0 ----

A~+1:1 AC +1:1 T A~+1:1 AC +1:1 T 

T T 

L :\a il I Aiai,N -2 
21:1 i=1 i=1 T 

0 0 
A~+21:1 A~+21:1 A~+21:1 

T 

L \ai,N -3 
31:1 i=1 T 

0 0 0 
A~+31:1 A~+31:1 

0 0 0 
NTI:1 

0 
A~+NTI:1 

K is the transition probability matrix of a discrete trial Markov process with 

(artificial) trap state CT1 with the row and column corresponding to the congestion 

- 29-

I-



state, OT, removed. Define the matrix L == (I - K) -1. (Since K is a substochastic - - - -
matrix, the absolute values of its eigenvalues are strictly smaller than 1; therefore 

.., ! - K is invertible, which guarantees the existence of L.) For a Markov process with 

absorbing (or trapping) states,L yields the expected number of visits to states 0 

~. through NT during one occupancy of macro-state UT; more precisely, Lmn is the 

expected number of visits to state "n servers busy and system has not left UT", given 

the system started in state "m servers busy and system in UT". 

The holding time in substate ttn servers busy and system in UT" is exponentially 

distributed with rate ATc+np.. Since in steady state, the queueing system always 

enters macro-state UT (from macro-state 0T) through substate (tNT servers busy", we 

can now write, for the expected duration of an uncongested period: 

NT LN .n 

E[UTl = L T 

n=O A~+nJ:l 

(3.11) 

Therefore PnIUT, the steady state probability that there are n busy servers at a 

random time during an uncongested period UT, is given by: 

L 
NT,n 

A~+nll 
p -----

nlU T - NT L 
NT,k 

') -c--
k=O AT+kJ:l 

(3.12) 

• Now, let us focus on the congested macro-state OT, and, more precisely, on the 

expected duration of a congested period, E[OTJ. In steady state, a congested period, 

OT, begins when an arrival (of any priority) requesting more than NT-n servers 

occurs while the system is uncongested and n servers are busy, for O:::;;n:::;;NT. \Ve 

refer to this arrival as the arrival that triggers the congested period. 

Suppose OT is triggered by a priorityi arrival requesting k servers to state ttn 

servers busy" in UT. Because the process is skipfree negative, OT will last until the 

system drops down to state ttNT servers busy" again, with all queues empty. Using 

the generalized delay cycles derived in Section 3.2, we can write for the Laplace

Stieltjes transform of the distribution of OT, conditional upon the triggering event, 

as: 

(3.13) 
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Indeed, the system must first try to free 11 sufficient number (N j -k) of servers to 

start service on the triggering customer. As this customer enters service, the system 

must drop down to state NT servers busy again to leave the congested period. In the 

meantime there may have arrived additional customers. These introduce delay busy 

periods that must finish before the system becomes uncongested again. Figure 3.2 :-

illustrates this process graphically, using the elementary delay cycles introduced in 

Section 3.2: 

RTN -k+l , 1 

808 
~a _ .. ct- ~MI D ...... 

RTN +·1 RT N· ,.I.. l' ' , 

Figure 3.2 - CT triggered by a priority i customer requesting k servers. 

In order to uncondition on the triggering event, we need to know the probability 

that a congested period CT is triggered by an arrival of priori ty i requesting k servers 

to substate (In servers busy" (in an uncongested period) .. This probability is simply 

given by: 

p IU A..a·k n T L L 

NT T Ni 

L P mlU L.\ i L a ij 
m=O T i=l j=N -m+l 

T 
Unconditioning on the properties of the Poisson arrival that triggers CT we can 

write, using equation (3.13): 

(3.14) 
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which easily yields, by differentiation, the expected value, E[CT], of the duration of a 

congestion period: 
NT T N. min(N.,n+k) 

I PnluT~ \ i °ik(( ± E[R T,m1) + ( i E[RT,mJ)) 
n=O l=l k=NT -n+l m=N.-k+l m=NT +l (3.15) 

E[C
T

1= l 

NT T Ni 

I P mlU L Ai L ° ij 
m=O T i=l i=N -m+l 

T 

• Equations (3.10), (3.11)and (3.15) now enable us to compute the probability PT 

(respectively, qT) that a random priority T arrival finds the system 

uncongested (respectively, congested): 

EfUTJ 
and (3.16) 

This completes the derivation of the steady state probabilities that we sought for 

priority T. Based on the boundary conditions for i =T (equations (3.11-12) 

and (3.15-16», we proceed to derive, by induction, the same probabilities for 

customers of priori ties 1 through T -1. (We actually work backwards: from T -1 to 

1.) Suppose we know the following quantities for priority i + 1: E[Ci+1], E[Ui+d, Pi+l, 

qi+l and PnIUi + l
" we now derive recursive relationships that define these same 

quantities (E[CiJ, E[UiJ, pj, qi and PnIU) for priority i. 

Again, assume a priority i arrival can see substructure (i.e., how many servers 

are busy) when the system is uncongested (for priority i), but not when it is 

congested. What happens within the macro-state Cj, is invisible to priority i 

customers. 
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3.3.2 The System ttSeen" by Priority i Customers (1 < i < T) 

If the system is uncongested for priorityi+1 (UHI ), it is necessarily 

uncongested for priorityi (Ui ). If, however, the system is congested for 

priority i + 1 (CHI), it may be either congested or uncongested for priority i, 

depending on the state of the queues and the number of busy servers. In order to 

gain more information on U i and Ch we therefore focus on state CHI. 

Definition 3.5: For notational convenience, define, for this section (3.3.2), 
state n m" to be the state ~~m servers busy and the system is in 

macro-state Uj, given that the system is in macro-state C j + I" 

forl::;;m<N i . 

And define uN j + I" to be the state ~'the system is in macro

state Cj, given that it is in macro-state C j + 1". 

We draw the reader's attention to the fact that although we write ttm" for 

convenience, state ttm" is conditioned on macro-state C[+1. More importantly, we 

would like to stress that state ttN j + I" does not, in general, refer to a state where 

N i + I servers are busy. uN j + 1" is a macro-state corresponding to ttcongestion for 

priority i given congestion for priority i + 1". Since we are about to define 

matrices whose indices vary from 1 to N i + 1 and correspond to states ttl" through 

t~Nj + I", it is convenient to use the above notation. (We shall, whenever possible, 

use boldfaced characters for state ttNj + I", to distinguish this state from states 

With these definitions in mind, we propose to compute the expected number of 

visits to states ttm" (l::;;m::;;Ni +l), during a priorityi+1 congested period (C i + 1). 

If we know the expected holding time in these states, we can easily compute the 

conditional steady state probability of an arrival finding the system in one of 

these states, conditional on the arrival occuring while the system is congested for 

priorityi+l (C i +1). We then decondition on C[+1 to find E[CiJ, E[Ui ], Ph qi and 

PnlUi, which completes the inductive (recursive) derivation of the quantities of 

interest. 

In order not to break the flow of the arguments of this section, we only present 

here the bare essentials of the derivation of the steady state results that '!Ie seek. 

For a detailed technical discussion and justification of these derivations the 

reader is referred to the appendix. With that remark, let us now turn to the 

steady state results. 
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How is a priority i + 1 blocked period (C i +1) initiated? Obviously, just before 

the transition that first congests the system for priority i + 1, the system is in 

macro-state U i +I. Ci +I is triggered by an arrival of priority 1 through i + 1; 

arrivals of lower priority cannot, by definition of the congestion period, trigger 

CHI. (Note that if we had include the state !tNi servers busy and all queues of 

priority i or higher empty" in the congested macro-state, lower priority arrivals 

could have triggered Ci + 1, which would have singularly complicated our 

derivations.) Now, a triggering arrival of priority higher thani has access to Ni 

(and possibly more) servers, while a triggering arrival of priority i + 1 only has 

access to N i + 1 servers. We must therefore distinguish two cases: 

(i) Ci+I is triggered by an arrival of priority i + 1, and 

(H) Ci + 1 is triggered by an arrival of priori ty 1 through i. 

We define: 

Definition 3.6: Triggering Probabilities 

Gin is the probability that Ci+1 is triggered by an arrival 

of priority i or higher and that the first state reached in 

Ci+I is state ttn", for nE{Ni+1 + 1, ... , Ni + I}. (Recall that (!n" is 

the state !(n servers busy and system in CHI".) 

13ilk is the probability that C i +1 is triggered by a 

priority i + 1 arrival that arrives to state nl servers busy and 

system in Ui +1" and requests k servers. 

In the appendix, we show that 

!ornE{N i + 1 + 1, ... ,N), (3.50) 

(3.51) 

and, 
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(3.52) 

We now define: 

Definition 3.7: Expected number of visits 

:Bin is the expected number of visits to state ~~n" during a 

congestion period C i + 1. 

:qimn is the expected number of visits to state un" during 

an elementary delay cycle Hi,nu for mE{l, 2, ... , Ni + I} and 

nE{l, 2, ... , Ni + I}. Define the (Ni + l)-by-(Ni + 1) matrix Hi as 

CHi)mn =:qimn. 

We show in the appendix that!!i is determined by Ri =! + !!i'Hi, where the 
matrix Ai is determined by: 

with 

and, 

o 

N.-m+t 
I 

L 6. imk 
k=l-m+l 

for m E {l, 2, ... , N. + l} and l E {I, 2, ... , m-l} 
I 

for m E {l, 2, ... , N. + 1} and l E {m, ... ,N. + 1} 
I I 

for mE {1,2, ... ,N.+l} and kE {1,2, ... ,N.-m} , 
1 1 

N 
i r 

I Ar Lark 
r= 1 k=N.-m+l 6. == ____ 1 __ _ 

i,m,N.-m+l 
I 

for m E {I, 2, ... , N. + I} 
I 

Using equations (3.50-52), Sin is obtained from: 

';:' = 
~in 

N.+l 
I 

'L 

- 35-

(3.60) 
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-. 

~. 

N i+1 Ni+1 

+ Ai+ 1E[Bi+l] L °i+1,k L l1imn · 
(3.64) 

k=l m=Ni+ 1-k+l 

From the expected number of visits to states nn" (for nE{1,2, ... ,Nj +l}) 

during a congestion period Cit1 , it is now easy to complete our recursions. 

For nE{l, 2, ... , N i}, the expected holding time, E[Tin], in state ~~n" , per visit, is 

given by lI(Aic+np). For n=N j + 1, however, the expected time E[Ti,Ni
+l] spent in 

state nN j + I" is not so easily computed. Notice especially that the time spent in 

state ~~Nj + I" depends on where the transition into state (INi + I" is made from. 

While there may be ways of deriving the expected time spent in I~Ni + I" directly, 

it is more expedient at this stage to make use of our knowledge of the expected 

duration OfC i + 1• Indeed, the following identity holds: 
N +1 N. 

I I 1 
E[G·+11= ') 8. E[T. ] = )' 2. +2' N +l E[T N +11 , 

t ~ In tl! -- II! \ C + 1,1 • I, • 
I! = 1 I! = 1 '\ nll 1 1 

from which one easily deduces E[Ti,N;td: 
N. 

I 1 
E[G. tl] - ~ 2. 

I L tl! C 
n= 1 A. +nll 

t 
E[T. N t 11 = . I 

1,1 j ';:;' ...... i,N.tl 
1 

(3.17) 

(3.18) 

We are now ableto compute the steady state probabilities QnlCi+l of being in 

state ~(n", given that the system is in macro-state Citl. They are given by 

2. E[T. 1 
Q 

_ II! II! 

IC - fornE{1,2,,,.,N.+l}. 
I! itl Nitl I 

(3.19) 

L 8 .. E[T .. 1 
IJ !J 

j=l 

Now define Pi as the probability of a random Poisson arrival finding the system in 

a non-busy period (for priority i), U i , and qi as the probability of finding it in a 

priority i busy period Ci. Notice that, by definition of state uN j + 1", 

E[Ci] =E[Ti,Njtl]' A simple conditioning argument lets us write Pi and qi as: 
N. 

! 

Pi = Pitl + qi+l L QnlC'tl = Pitl + (1- Pitl)(l-QN.tlIC'tl) 
n= 1 ! 1 ! 

and q.=l-p. 
! I 

(3.20) 

Finally, the probabili ties P nlUi of finding the system in state lIn servers busy given 

the system is unblocked for priority i" are given by: 
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p. IP IU +q. 1Q Ie 1+ n i+l 1+ n i+l 
p - --------------------~----nlUi - Ni+1 Ni 

{ornE{O, 1, 2, ... ,N.}. 
1 

(3.21) 

Pi+1 I P miU. +qi+1 I Qmle. 
m=O 1+1 m=l 1+1 

To cloSE: the induction argument, we use equations (3.10), (3.18) and (3.20) to 

complete this section by the recursions for E[Ud: 

Pi Pi 
E[U.J = --E[G.] = --E[T J 

t I-p. 1 l-p. N i +l 
1 1 

(3.22) 

With the steady state probabilities computed in this section, we now finally 

have the building blocks necessary for the derivation of the waiting time 

distributions of the various prioritized arrival streams. 
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384 WAITING TIME DISTRIBU1:"10NS 
" 

'\, 

The waiting time,s for the various pri~{:riti~s can now be determined from the 
• " ).' I'A • 

quantities derived in the preceding seetions. We focus on a r"l?ndom (tagged) 
, 

priori ty i customer. 

3.4.1 FCFS within a Priority 
\ 

• With probability Pi she arrives during Ui. Given that she arrives to an 

uncongested system, she has ~ probability PnlUj of arriving while yxactly n servers 

are busy, nE{O, 1, ... , N i }.· J.ndep'~nden:tly of anything else~ she requires exactly k 

servers with probability O'ik, and may therefore have to wait until ~. sufficient 

number of servers are idle. Her, conditional waiting time distrii.bution (in 

transform domain) will be equal to: 

] 

n ' 

arrivalre:qu~stirl'g k servers during Ui while n servers busy =n, R;_l,mCs) 

\ m=N.-k+l 
,I I

J 
L (3.23) 

• Alternatively, the tagged priority i customer may arrive during a blocked 

period, Ci . She must then wait in the priority i queue until she may enter servico'. 

This queue moves up at independent identically distributed intervals, except for 

the first (priority i) customer who arrives during a congestion period. The first 

queue move-up time is still independent of the others, but it is not governed by 

the same distribution: 

A congestion period, Ci, can be started by arrivals of priorities 1 through i + 1 reqm.'sting 

varying numbers of servers, In general, the probability that the triggering customer 

requests k servers, even if she is of priority i, is not equal to 0ik, as ,evidenced by 

equation (3.26) below. On the other hand, priority i customers that arrive (and enter service) 

during Ci request k servers with probability 0ik, independent of anything else. Therefore 

queue move-ups between these customers are independent, identically distributed, while the 

distribution from the beginning of a congested period until the first priority i customer could 

get served is in general distributed differently. 

Definition 3.8: Queue Move-up Times 

We define the first queue move-up time, Fj, as the duration 

of the time interval that starts from the instant a (priorityi) 

congestion period, Ch begfhs, and ends with the first 

instant a (random priority i) cti.stomer could enter service. 
~ , 
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Similarly, we define a regular queue move-up time, Sj, as 

the duration of the time interval that starts from the instant 
some (priority i) customer that arrived during the congestion 

period, Ci, enters service, until the first moment the next 
(random priority i) customer could enter service. 

By analogy with MlG!.1 queues with exceptional first service time during a 

busy period, in the MJMJ{Ni}®@} system, a random priority i customer that 

arrives to a congested system will experience a waiting time distributed as 

[ -sw.! ] 1-F~(s) 
Eel arrival during a congestion period (G) = ( :)' (3.24) 

S-I!.. + I!..S .(s) E[G.] 
\ I. t I I 

where Fi"'(s) and stCs) are, respectively, the transform of the first queue move-up 

time and the transform of a regular queue move-up time (for priority i) during 

the congestion period Ci . 

The direct derivation of the above (Pollaczek-Khinchin) transform equation is shown in 

the appendix. We would like to emphasize the fact that, conditional upon arrival during a 

congestion period, our random arrival is confronted with an M/G/1 queue with (regular) 

service time Si and a special first service time Fi at the beginning of the M/G/1 busy 

(congestion) period. Such systems have been studied extensively (e.g., Welch [1964]), notably 

in server vacation models 

st(s) is easily found (Figure 3.3) using delay cycles: 

T INi ( Nni '" ) (3.25) 
S. (s)=: a'

k 
R. 1 (s) 

I I !- ,m 
k=l m=N.-k+ 1 

! 

Ft(s) is a little more complicated since this quantity depends on who initiates the 

blocked period. The probability that a congestion period is initiated by a priorityj 
customer (j~i) requesting k servers arriving to state ((nservers busy, given 

system uncongested", is given by: 
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Ri-l N·-k+l , I , 

- Figure 3.3 -

N. . N. 
, fornE{O, 2, ... ,N.},kE{N.-n+l, ... ,N .}andjE{l, ... , i} 

t! J 
! t J 

I PmIU . I Ar I aJl 
m=O ! r=l l=N.-m+l 

! 

Unconditioning, we can write (see Figure 3.4): 

Finally, we obtain for the transform of the distribution of the waiting time, 

( 

n ) I-F~(s) n R~ 1 (s) + q. ( !). t- ,m! >I< 

m=N.-k+l S-A.+A.B.(S) E[G] 
! ! Itt 

(3.27) 

Note that, for k < Ci - n, the product (II) in the above expression reduces to 1, 

by our default convention. We find that the waiting time distribution does indeed 

exhibit the ex.pected impulse at zero: 
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r---------, 
: k>Nj-n: 
I.. _________ ..J 

r---------, 
I k<N.-n I 
I - J I L. _________ .J 

80 (0 

- Figure 3.4 -

N.-l N.-n 
I I 

Prob(W1=O)=Pi I Pn!u. L °ik 
n=O I k=l 
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3.5 Stability 

We have hitherto implicitly assumed that the system analyzed is stable, in the 

sense that, for all priorities, the expected waiting times are finite. We now 

address the stability issue in more detail. Apart from global system stability, 

there are, in general, for the M/M/{Ni}®@ system, stability conditions for each 

individual priority stream: finite expected waiting times for each stream. 

Because of the HOL service discipline, it is clear that if the system is unstable for 

priority i, it is necessarily unstable for priori ty j, where j > i. 

Assume the system is stable for priority i -1. A necessary condition for 

stability up to priorityi is given by 
N. N. 

"'A.E[s·I=A."fo .. i E[R' l 1<1 (3.29) 
I I I-!J 1- ,11 

j=l n=N
i
-j+1 

This condition is clearly necessary, since it merely requires that during a random 

(regular) priority i queue move-up time there occur less than one arrival on 

average. This condition is the typical (M/G/l) condition that the utilization factor 

of the (here virtual) server be less than 1. 

We now show, more rigorously, that this condition is both necessary and 

sufficient. 

If the system is unstable, equations (3.6), (3.7) and (3.9) still hold. The way 

equation (3.8) was derived, however, it implicitly assumes that 
N. N. 

1 I 

~.-.\.)o .. n R~(O)=O, 
I 1- !J ~n 

)=1 n=N.-j+1 
I 

and it must therefore be given special attention when the system is unstable: The 

stability of the M/M/{N i}®{§} system depends on the mathematical stability of 

the delay cycle equations: 

[ 

-sR';N ] ( Ni Ni 
R~,N(s)=E eli = R~ 1M s+h -~. ') 0.. n R~ (s)) 

t • t - ."'. I I ~ !J I,n 
I I j=l n=N.-j+l 

I 

(3.6) 

Stability up to priority i -1 requires that 

E [R. 1 I < 00 , for 1 :s; n :s; N 
1- ,n 

By differentiation of equation (3.6), we obtain, in general: 
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",-
- --~------ -- -------..---- --

dR'" Ni Ni 

E[R. ] = - ~-l,nCA._A. "'" 0.. n R~ (0))· 
I,n X I ! -:::-!J . I,n 

J=l n=N.-J+l 
I 

Fonning a weighted sum of these equations: 

N. N. N. N. dR~ Ni Ni I 0.. I E[R.] = - I 0.. I [ l-l,n(A._A. L 0.. n 
!J I,n !J dx I I.!J . 

j=l n=N.-j+l j=l n=N.-j+l J=l n=N.-J+l 
I 

R~ (0)) 
I,n 

." 

whence: 

Ni Ni dR"" Ni Ni 

. - )' 0.. L _t_-l-,-,n (A.-A. L 0.. n 
N. N. - lj dx t I. lj _ 

I I [ j j=l n=Ni-j+l J=l n=Ni -j+l '0 .. ' ER. =-------L LJ L I,n N. N. '" N. N. 
j=l II=N.-j+l I I dR. 1 L I 

I 1 + L 0ij L ~: ,n (A/-I\ L 0ij n R;,nCO)) 
j=l n=N.-J+l j=l n=N.-J+l 

I I 

>I< 

R. (0)) 
I ,It 

(3.32) 

Because the system is stable for i-I, we can write,by continuity atll.j =0: 
N. N. 

I 

3A>0, 'IIA.<A, A.-A. ") 0 .. 
I I t - IJ 

I 

n "" R. (0)=0 . 
I,n 

(3.33) 

j=l n=Ni-j+l 

In other words, 3A>0, "iiAi<A, the system is stable for priorityi. Equation(3.32), 

for Ai<A, can be rewritten as: 
N. N. 

t t 

- I o i)' L N. N. 
L I [] j=l n=Ni-j+l 

3A>0,'II"A.</\., L 0.. L E R. =----------
I !J I,n N. N. ... 

j=l n=N.-j+l t I dR. 1 
I l+A."" 0 .. , 1-,n(O) 

,L IJ L dx 
}=l n=N.-j+l 

I 

dR* 
I-l,n (0) 
dx 

or: 
N. N. 

i 0.. i E[R. 1 ] N. N. !J 1- ,n 
I I [ ] j=l n=Ni -}+l 

3A>O,'II"A.<A, L 0.. L E R. =-.---------
t !J I,n N. N. 

j=l n=N.-j+l t I [ ] l-A·Lo .. L ER' l I!J 1- ,n 
j=l n=N.-j+l 

I 

(3.34) 
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Therefore, 

and: 

~-

N. N. 

3A>O, 'ilA.<A, i 0.. i E[R.] < 00 
I IJ I,n 

}=1 n=N.-}+1 
I 

1 
As ----------

N. N. 

~ 0.. i E[R. 1 ] L IJ....... I-,n 
}=1 n=N.-}+l 

I 

which proves our necessary condition. 

Now, let us prove sufficiency. 

Let Amax be defined as: 

A = max{A>O I max 
~ Nni "'-} 'ilA.<A, A.-A." 0.. R. (0) -·0 

I I 1 --.. IJ I,ll 

}=1 n=N.-J+l 

Suppose 

1 
A <----------

max N. N. 

i D. i E[R. 1 ] U""'" 1- ,II 
J=t n=Ni-j+l 

By definition of Amax,the system is unstable for Ai = Amax: 
N. N. 

forA.=i\ , i D.. ~ E[R.] = 00 
1 ma."C ....... U L... I,ll 

J= 1 n=Ni-j+1 

But, from equation (3.34), we know that, 
N. N. 

N. N. U 1- ,II 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

i D.. i E[R. 1 ] 

! I [) j=l II=N.-j+l (3.40) 
forA.<i\ ,"\:' D.. )' E R. < N! N < 00 

! max L... IJ ""- I,n .. 

;=1 n=Ni -}+l I I. [ ) 
I-A "\:' 0.. "\:' E R. 1 

max L...!J L ! - ,n 
}=1 II=Ni -}+l 

The upper bound in equation (3.40) is finite and independent of Ai, yet E[Ri,nJ is a 

continuous function of Ai; thus we arrive at a contradiction. Therefore, our 

original hypothesis (3.38) is false, and: 

1 
A ~ -------------

max ~ ~ [ ] 
,D.. L... E R. 1 
-- !J 1- ,n 
}= 1 II=Ni -J+l 

(3.41) 
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Finally, combining equations (3.36) and (3.41), we conclude that: 

1 
A =---------max N. N. 

~ 0.. ~ E[R. 1 ] L.. IJ L.. 1- ,n 
j=l n=N.-j+l 

I 

or, equivalently, 

condition. 

that equation (3.29) is a necessary and sufficient 

4 Loss Systems 

(3.42) 

stability 

It is easy to extend the results for the MlMJ{Ni}®{§} model to systems where 

customers of certain priorities are lost if they arrive when the system is 

congested. 

Assume that priority i customers are lost if the system is congested for 

priority i. Then equation (3.6) must be modified to: 
>I< .. 

R, (5) = R. I (5) 
l,n t- ,n 

Similarly, equation (3.8) becomes: 

ErR 1=E[R 1 I,n I-I.n 

forN.SnsN. 
I 

forN.snSN, 
I 

These equations are used for the recursions defining the Ri.n's. 

(4.1) 

(4.2) 

The steady state probabilities are computed from the expected number of 

visits, llimn, to state lIn" during a delay cycle Ri,m' These IJ.imn'S have to be 

appropriately modified if customers arriving to a congested system are lost: 
N.-m+1 
I", ,,' ~k n { for mE{1.2, ... ,Ni +l} (4.3) 

11· = 8 + L I.l k L 'Il d { } lmn mn im n an nE 1,2, .. "N.+l 
k=l l=m I 

where Dij is Kronecker's delta, and 6.'imk is the probability that the first transition 

from state 11m servers busy" is caused by an arrival (of priority i -lor higher) 

requesting k servers. 6.'imk is defined by: 
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." 
and, 

i-I 

L \Ork 
, r=1 

~ =---
imk -"Ac + 

i-I mll 

forkE{l, 2, ... ,N.-m+l} , 
t 

i-I N r 

L \ L ark 
r=1 k=N.-m+1 , t 

~ = --------------i,m,N.-m+1 
t 

(4.4) 

(4.5) 

Note that the loss system described here only loses customers that arrive 

during a congestion period. We have assumed that a customer that arrives to an 

uncongested system gets served, even though she may have to wait until 

sufficient servers become available. One can, of course make the assumption that 

a priority i customers that arrives to an uncongested system is also lost, if she 

requests more servers than are available upon arrival. The arguments about 

initiations of congestion periods can be easily adjusted for this alternative (which 

we shall not treat, here). 

5 Concluding remarks on the M/M/{Ni}®§} System 

All important steady state probabilities derived in Section 3 (and Section 4) 

can be computed by solving (invertible) linear systems: the mathematical 

complexity is thus minimal. The heaviest calculations are matrix inversions of 

matrices of size on the order ofN-by-N; for many practical applications, N $;25, so 

the computational burden is not very heavy. The only painful part is the setting 

up of the bounds on the (sometimes triple) summations that abound throughout 

the derivations. 

In this paper, we have presented a methodology for solving a moderately 

complex queueing model by an MlG/1 based decomposition approach, where 

classical solution procedures based on global balance equations and discrete 

transform techniques would have di~mally failed. The basic MIMI{Nj}®{S} 

system presented in this paper is but one of a family of models that can be tackled 

in a similar fashion: 

A conceptually simple extension of the MlMI{Ni}®{§} system is the following 

(proposed by Green [1984]): Assume every arriving customer arrives, not with a 

- 46-



server requirement of k servers, but with a requirement of the form (s,8) 

meaning that the customer wants S servers if the system is not too busy, but she 

will do with s, s+l, ... , or S-l if necessary. This modification changes the 

coefficients of certain equations and matrices of Section 3, but the general 

argument remains valid. 

The case with non-preemption during the assignment 

phase, Green [1984],s version of the stochastic-server-requirements problem, 

briefly alluded to in Section 2.2, above) is similarly tractable by the MlG/1 

decomposition method. 

Other extensions and hybrid policies pose no major theoretical or 

computational problems. The reader is referred to Schaack [1985] for a detailed 

discussion of some such generalizations. We believe the family of cutoff models 

developed there, of which the basic M/M/{NJ®{S} model is a prime 

representative, will offer a tool for evaluating a whole range of interesting and 

useful policy alternatives for prioritized service environments. 
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APPENDIX 

Appendix A.l contains the step-by-step derivations of some intermediate 

results that enable us to compute the steady state results of Section 3.3.2. These 

derivations were relegated to the appendix, so as not to overburden the main body 

of the text with an excessive number of definitions and equations. Appendix A.2 

derives the Pollaczek-Khinchin waiting time transform formulas for the 

MIM/{Ni}®{§} queue.Appendix A.3 contains, for quick reference, a table of the 

major definitions used throughout Section 3. 

A.I The Expected Number of Visits to States Hm" 

We focus here on priority i congested and uncongested periods, and we derive 

some intermediate results for the recursive arguments of Section 3.3.2). 

We obtain the expected number of visits to states ttm", with IsmsN i +1. We 

recall (from Definition 3.5 in Section 3.3.2) that tim" is defined as 11m servers are 

busy and the system is uncongested for priorityi, given that the system is 

congested for priorityi+ I" (Le., U/\mIC i + 1), for IsmsNh and IINj+ I" is defined 

as lIthe system is congested for priorityi, given that it is congested for 

priority i + I" (Le., CiIC i + 1). 

In order to simplify the derivations, we further use the definitions of the 

triggering probabilities introduced in Section 3.3.2 (Definition 3.6): 

probability that Ci + 1 is triggered by an arrival of priority i or higher and the 
first state reached in Ci+ 1 is state "n"; for nE{Ni+ 1 + I, ... , Nj + I}. 

probability that Bi + 1 is triggered by a priority i + 1 arrival that arrives to 
state "l servers busy and system in Ui+Z" and requests k servers. 

The probabilities ain and !3ilk are obtained directly from the conditional 

probabilities P nlU
i
+

1 
and the server requirements S, by appropriate conditioning: 

U. ex 
In 

i N i+ 1 

I Aj I PlIU . lOj,n-l 
j=l l=O 1+ 

. C'+1 c. 
1 1 J 

u j ,N}.+1 ex I Aj I p tlu . I 0jk 
j=1 l=O 1+1 k=C.-l+l 

1 
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,/ 
I 

And, 

~ilk ex: 1I.i+ ll!Ui+1 ai + 1,k for ZE{l, 2, ... , N i +1} and kE{N i+ 1-Z+ 1, ... , N i + 1}· 

The constant of proportionality is found to be the inverse of 

Ni+1 i+1 N j 

IT=Ipl!U. (I1I.j L ajk ) 
1=0 1+1 j'=1 k=N -1+1 

i+1 

(3.49) 

So: 

. N'+ 1 1 I I 

a. = - "" 11.. "" PI!U a. 1 
In II;:-1 j 1-:-0 i+l },n-

(3.50) 

N'+ l N. 1 II} 

a' N +1= - L 11.. ') PI!U L a k 
I, • IT } ....... . 1 J 

I j=l 1=0 1+ k=N.-l+1 
1 

(3.51) 

1 
~ 'lk = - 11.. 1P l! U a. 1 k I IT 1+ i+ 1 1+ , 

for lE{l, 2, ... ,N
i
+ 1} and kE{N

i
+ 1-l+1, ... ,Ni+ 1}. (3.52) 

N ow that we know how Cj + 1 is triggered, we ask the question: What is the 

expected number of visits, ~in, to state (tn" from the moment the system enters 

Cj + 1, until absorption in state «N i +1 servers busy, priority i unblocked and 

triggering customer has started service"? (This moment of absorption always 

occurs on a downward transition, for the system is skipfree negative on the state 

space f<l", «2", ... , IfNi + I"}.) This moment of absorption can be viewed as the time 

instant at which the system would drop into macro-state U i + 1 again had there 

occurred no priority i + 1 arrival during Ci +1. (For simplicity, assume 

therefore that the priority i + 1 arrival stream is temporarily suppressed. We 

shall restore it shortly.) 

• Suppose C i +1 is triggered from state (tl servers busy and system in macro

state U i +1" by a priority i + 1 arrival requesting k servers. Then the til11e until 

absorption in state IfCi +1 servers busy, priority i unblocked and triggering 

customer has started service" is given simply by the time it takes to start service 

on the triggering (priority i + 1) arrival. This time is distributes as 

R. 
'1m , 

m=Ni + 1-k+l 

1 

L (3.53) 

as Figure 3.5 illustrates.Therefore ~in is given by 
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008 
- Figure 3.5 -

Ci+ 1 triggered by a priority i + 1 customer requesting k servers (i <T). 

I 
'Y 
..c...... '1imn ' 

(3.54) 
m=Ni+ 1-k+l 

where IJ.imnis the expected number of visits to tfn" (excluding the last transition to 

m-I servers busy) during Ri,m' 

The transient process IS skip-free negative on the state space 

ftl", tt2", ... , ttNi + I"}; therefore we can write, conditioning on the first transition 

from state ttm servers busy": 
.V.-m+l k 

t ~ n~ { for mE{l, 2, ... ,N.+l} (3.55) 
'1. = 8 + :> !J. "11 ! !mn mn imk L. In andnE{l, 2, ... ,N,+l} 

k=l l=m ! 

where Oij is Kronecker's delta, and Llimk is the probability that the first transition 

from. state urn servers busy" is caused by an arrival (of priority i or higher) 

requesting k servers, for k<Ni-m+l; and, for k=Ni-m+l, Llimk is the 

probability that the first transition from state ttm servers busy" is caused by an 

arrival (of priority i or higher) requesting at least Ni -m + 1 servers. 

Note that llj.m.NI-m+l is the transition probability from state "m" into superstate UN; + 1", 

i.e. into a priority i congestion period,. CI • 

Llimk is given by: 

and, 

i 

I ArO rk 
"= 1 !J. == ---

imk AC+ i mp 
for k E {I, 2, ... , N, - m + 1} , 

t 

(3.56) 
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i Nr 

I Ar I ark 
r=l k=N.-m+l fi. == ____ I __ _ 

i,m,N.-m+l , 
Equations (3.55) canbe rewritten as 

N.+l N.-m+l 

(3.57) 

y ( ! "") { for mE{l, 2, ... , N. + I} (3.58) 
l1imn = 8 mn + _ L fi. imk l1iln and nE{l, 2, ... ,N~ + I} . 

l=m k=l-m+l ' 
One recognizes a linear system of the form !Ii =! + fu·Hi, where Hi and Ai are 

matrices defined by: 

and: 
(H.) == q. 

I mn ,mn 

o 

(Aj\nl == { Ci-m+ 1 

for(m,n) E {1, 2, ... ,N.+1}2 
! 

for II! E {I, 2, ... , N . + I} and l E {I, 2, ... , m - I} 
! 

') ':'imk for mE{1,2, ... ,N
i
+l}and lE{m,···,Ni+ 1} 

k=l-m+ 1 

I -A is an upper triangular matrix of full rank and therefore invertible. 

(3.59) 

(3.60) 

All diagonal elements of A; are between 0 and 1, therefore all eigenvalues of A; are 

between 0 and 1; thus A;n~oo as n~oo, and: !1=(!_A;)-1=!+A;+A;2+:~~}+ ... exists. (Since 

A; is a non-negative matrix, !!; is non-negative: !1 indeed yields sensible values for the 

expected number of visits !limn.) 

So far, we have only considered the case where the priority i + 1 congestion 

period Ci + 1 is triggered by an arrival of priority i + l. 

• Now suppose C i +1 is triggered by an arrival of priority 1 through i. 

Assume the first state reached in Ci + 1 is state um". The time until absorption in 

state ~~Ci+l servers busy, priority i unblocked and triggering customer has started 

service" is given simply by the time it takes the system (recall that priority i + 1 is 

temporarily suppressed) to drop down to state (~Ni+l'" The conditional value of Sin 

is thus given by 

(3.61) 

as Figure 3.6 illustrates. 

• Unconditioning on the triggering event, we can now write, using 

equations (3.50-52), (3.54) and (3.61), for nE {1, 2, ... , Ni + 1}: 
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• 

/ 

N.+1 Ni+1 N i + 1 1 t m 

~in = I a. I llimn + I I 13 ilk I 11imn. 
(3.62) 

tm 
m=Ni+ 1 +1 l=Ni + 1 +1 l=1 k=Ni + 1-Z+1 m=Ni+1- k+1 

008 
~~~ 

Ri,m 

- Figure 3.6 -

C i +1 triggered by a priority j customer requesting k servers (j::;;i <T). 

/I Up to this point we have assumed that the priority i + 1 arrival stream was 

turned off once Ci+1 had been triggered. By definition, ~in counts the number of 

visits to state lIn" in Ci+1, from the moment Ci+1 is triggered until the system 

traps in state uCi +1 servers busy, priority i unblocked and triggering customer has 

started service". If there occurred no priority i + 1 arrivals since Ci +1 was 

triggered, the system would upon the last transition counted in ~i,NiTl have left 

macro-state Ci+1 for macro-state U i +1; that is, the system would become 

uncongested for priorityi + 1 upon this last transition. On the other hand, if there 

did occur one (or more) priority i + 1 arrivals during Ci + b upon the last transition 

to state HNi+1 servers busy" counted in ~i,Nl+l' the congestion period Ci +1 would 

continue. We therefore now restore the suppressed priority i + 1 arrival 

stream. During Ci +1, there arrive an expected Ai+1E[Bi+d priorityi+l 

customers. Depending on the number of servers requested, each of these 

customers will contribute an expected number of visits to state lIn" equal to 

11. ,wherek is the nurnberofservers requested by the customer, 
tmn 

m=Ni+1- k+ 1 

as illustrated in Figure 3.7. 

Therefore, a random priority i + 1 customer contributes 
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N i+1 Ni+l 

I °i+l,k I 11imn 
(3.63) 

k=l m=Ni + 1-k+l 

visits to state ttn". Define Sin as the expected number of visits to state nn" in a 

Ri,N. -k+l 

- Figure 3.7 -

Ci +1 sustained by a priority i + 1 customer requ.esting k servers (i <T). 

priority i + 1 congestion period, CHI .Then one may write, for nEil, 2, ... , Ni + I}: 

N i+1 N i+1 

8. =~. + A·+1E[B'+lJ "" o'+lk Y 11· I tn tn ! ! L t, - Imn 
k=l m=Ni+1-k+l 

or, using equation (3.62), 
N.+l Ni + 1 Ni+1 [ t m 

';;' = I a. I Ilimn + L I 13 ilk I I1imn .... ,. 
In 1m 

m=Ni+ 1+l l=Ni+1+l [=1 k=Ni+ 1-l+l m=Ni+ 1-k+l 

Ni+l N i+1 

+ Ai+ 1E[Bi + 1] L °i+l,k L I1imn 
(3.64) 

k=l m=Ni + 1-k+l 

This concludes the derivation of the expected number of visits, Sin, to states 

!tn" (for nEil, 2, ... , N i + I}) during a congestion period, Ci +I . In Section 3.3.2, 

these Sin'S are used to derive the steady state probabilities Ph qi and PnlUi , 
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A.2 Conditonal PollaczekmKhinchin Waiting Time Transform 
Formula (FCFS) 

The duratir.;Yn of the time period, Fb from the initiation of a congestion period 

(for priority i) to the time instant when the first priority i customer (arriving after 

the beginning of the congestion period) could be served has a distribution that is 

different from the queue move-up times experienced by subsequent arrivals to 

the priority i queue. This situation is analoguous to what happens in an MlG/1 

queue in which the first customer served during a busy period experiences a 

service time distribution different from the one experienced by all other 

customers served during the busy period. Results for the MlG/1 case can be found 

in various places in the literature. The argumentation presented here closely 

parallels Kleinrock [1976, pp.219ff.]. 

The waiting time distribution for an arrival to a congested system is obtained 

in the following way. Consider a congestion period, Ch for priority i. Let Xo denote 

the first queue move-up time of the congestion period. All those customers who 

arrive during Xo are served during the next interval whose duration is Xl. Xl is 

the sum of the queue move-up times of all priority i customers who arrive during 

Xo. Similarly, at the expiration of Xl, all priority i customers who have arrived 

during Xl get served during the next interval X2• And so on, from Xt to Xt + 1. We 

know that, if the system is stable, with probability one, there is a 1:>0, such that 

there are no priority i arrivals during Xt • Since Ci denotes the total duration of 

the busy period, we have: 
DO 

Ci= I X t 
t=O 

Conditioning on the duration of Xt - l and on Nt-I, the number of priorityi 

arrivals during Xt - 1, we can write: 

E[e- SXt I xt _
1
=y,Nt_

1
=n] = [S;(s)]n. 

Unconditioning successively on Nt-I, and then on Xt - 1, we obtain: 
... 

[ 

-sX, I ] -(,\.-lI.S.<s»)y E e ~ X =y = e I t I 
t-l ' 

(3.65) 
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Now, let's look at a (tagged) priorityi customer who arrives during the 

congestion period. Suppose she arrives during Xt • Moreouer assume Xt has a 

residual life Yt and Mt priority i arrivals have already occurF;d during Xt prior to 

our tagged arrival. Then we may write, for the waiting time of our new arrival: 

[ -sw'l ], '" E e f Xt=y, Yt=y',Nt=n = e-
sy [Si(s)t . 

Successive uncondi tioning yields: 
... 

E e t [ -sW'1 
] 

-Sy'-(A.-A.8.(s»)(y-y') 
X =y Y =y' = e I t f 

t ' t 

... ... 

[ 
-sW I 

Eel 

.. -(S-A.+A.8.(s»y -8Y -(5-,\,+A.8.(s»y 
-I -('\.-.\.8.(s»ye tIt -.1 e _ e ttl X =y = ell I = ________ _ 

t ... '" -(s-'\'.+'\'.8.(s») y (S-A.+'\'.8.(s)) y 
I I I I t I 

or, using (3.65), 

E e t [ -SW'I (3.66) 

Now, 

Proh [ incidence into X, I incidence into congestion period J = E [[ Xl]] (3.67) 
E e. 

I 

Thus, unconditioning on t, and noting that Xo is equal to Fj, we find the 

conditional Pollaczek-Khinchin transform equation: 
.. 

[ 

S W ] 1 - X o(s) 
E e - i I incidence into congestion period = --------

[s- A. + A .S~(s)] E[e.] 
I I I t 

.. 
1 - F.(s) 

f 

[S-A. + A.S\S)]E[C.] 
tIt I 

(3.68) 
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A.3 Tables of Definitions 

number of priorities. 

total number of servers. 

server cutoff for priority i. 
Poisson arrival rate for priori ty i. 
cumulative arrival rate for priorities 1 through i. 
exponential service rate. 

probability that a priority i customer requests k servers. 

T-by-N matrix: (S)ik=<Jik. 

time until first service completion after time t, when n servers are 

busy at t. 

elementary delay cycle from state ~n servers busy and all queues (of 

priority 1 through i) empty", in a system with arrival streams of 

priorities i + 1 through T suppressed (cf. also Table A.2). 

" FPTi,n,m first passage time from state ~~n servers busy and all queues (of 

priority 1 through i) empty" to state ~~m servers busy and all queues 

(of priority 1 through i) empty", in a system with arrival streams of 

• Pi 
• qi 
• PnIU, 

priorities i + 1 through T suppressed. 
time until next transition form state~!n servers busy", in a system 

with arrival streams of priorities i + 1 through T suppressed. 

Laplace-Stieltjes transform of the distribution of the random 

variable X. 

congestion state (or period) for priority i: at least one queue of 

priority i or higher is n.onempty, or more than Ni servers are busy. 

uncongested state (or period) for priority i: all queues of priority 1 

through i are empty and at most Ni servers are busy". 

steady state probability that the system is in state Ci. 

steady state probability that the system is in state Vi. 
probability that there are n servers busy, given that the system is 

uncongested for priority i, where nE{O, 1, ... , Ni}. 

Table A.I - Definitions 
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• n
m" state 1m servers busy and the system is in macro-state U il given that 

the system is in macro-state Ci+ I" for 1 sm < Ni. 

,. "Ni + I" state nthe system is in macro-state Cb given that it is in macro-state 

• 13ilk 

• Llimk 

• ~in 

"..., 

.. .!:!.in 

• l1imn 

• H· _1 

• Tim 

• Wi 
• Si 

• Fi 

C " i+ 1 • 

probability that Ci+1 is triggered by an arrival of priority i or higher 

and that the first state reached in 

nE{N i +1 + 1, ... , Ni + I}. 

C . tt (1"C: i+l IS S a en, lor 

probability that CHI is triggered by a priority i + 1 arrival that 

arrives to state (tl servers busy and system in U i+1" and requests k 

servers. 

probability that the first transition from state I(m servers b.usy" is 
caused by an arrival (of priority i or higher) requesting k servers, for 

k<Ni-m+1; and, for k=Ni-m+l, Llimk is the probability that the 

first transition from state I(m servers busy" is caused by an arrival Cof 

priority i or higher) requesting at least Ni -m + 1 servers. 

number of visits to state ((n" from the moment the system enters Ci +1, 

until absorption in state ((NiH servers busy, priority i unblocked and 

triggering customer has started service". 

expected number of visits to state ((n" during a congestion period 

Ci +1• 

expected number of visits to state (In" during an elementary delay 

cycle Ri.m, for mE{l, 2, ... , Ni + I} and nE{I, 2, ... , Ni + I}. 

(Ni + l)-by-CNi + 1) matrix: CHi)mn == l1imn. 
expected holding time in state ((m" ,per visit. 

wai ting time of a random priority i customer. 

regular queue move-up time. 

exceptional first queue move-up time in a congestion period. 

Table A.I (cont.) - Definitions 
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• 

c 

• Ri,n Elementary delay cycle from (n; 0, 0, 0, ... ,0) in a system with 
arrival streams of priorities i + 1 through T suppressed. 

• All arrival streams of priority i + 1 through T suppressed. State 

description: (n; qI, ... , qi), where n is the number of busy servers and qi the 

number of priority i customers in queue. 

• At time t, all queues are empty, n servers are busy: (n; 0, 0, 0, ... ,0). 

• rXin first passage time from state (n; 0, 0, 0, ... ,0) to state 
(n -1; 0, ... , 0, qr= 0, ., ., ... , 0), i.e., to absorption in the subspace 

(n-1; 0, ... , 0, qr=O,.,., ... , e). 

• akc number of arrivals of priorityk during rXin+r+1Xin+ ... +k-1Xin, 
for kE{i, ... , r+ I} . 

" kXin first passage time from state (Nk; 0, ... , 0, qk=akc,.,., ... , e) to state 

(Nk; 0, ... , 0, qk=O,., fI, ... , e), for kE{i, ... , r+ I} . 

Table A.2 - Elementary Delay Cycles: Definition 
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