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ABSTRACT 

Several recent police studies have focused on the delay in 

police response for both high and low priority calls. There is 
evidence, especially for low priority calls, that citizen satis­

faction can be significantly improved by providing knowledge about 

response delay to the caller while he is still on the phone. We 
develop a mathematical expression for a response time estimator that 
can be easily implemented on a police department's computer aided 

dispatch (CAD) system. This delay estimate for an incoming call is 

based on the call's priority and the number and status of other 

calls already in the system. The estimator is shown to be mathe­

matically consistent in two special cases that can be solved 
exactly. Computational results show how the procedure developed 

can be helpful in providing the caller with useful information 

about the expected response delay. 
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1. Background 

Recent research projects like the Kansas City Response Time 

Study[5] and the Wilmington Split-Force Study[4] have shown that 

rapid police response is important only for a small minority of 

calls, approximately 10 to 15 percent of all calls for service at 

a police department. For the majority of calls, citizen dissatis­

faction is largely determined by the discrepancy between expected 

response time and actual response time. In light of these results, 

the tradi tional response "A patrol car ,vill be there as soon as 

possible" leaves much to be desired. A computer aided dispatch 

(CAD) system ought to give the caller some estimate of the 

response time. 

The purpose of this study, conducted under a National Institute 

of Justice (NIJ) grant (number 83-IJ-CX-0065), was to investigate the 

feasibility of such a response time estimation scheme. 

We developed a model that simulates emergency calls of several 

types and priorities, and we tested out potential estimators 

of the response time to a call. Each call was evaluated, given the 

number and types of the calls already in queue or in service when 

the new call carne in. The following simple dispatch policy was 

used: dispatch patrol cars to higher priority calls first. Within 

a priority class, dispatch them first-come-first-served. Service 

times have a type-dependent general probability distribution, and 

the priorities of every type of call are assumed to be known by 

the dispatcher. Service is assumed non-preemptive (i.e., all 

calls currently in service complete service, even if higher priority 

calls arrive while they are being served. 
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Every time an emergency call was generated, we estimated 

the response delay it would incur. When the actual delay be­

came known, we compared it to the estimate. 

Despite the high variability in the system at the typical 

load factors at which police departments tend to operate, we 

feel that the estimator we derived can be useful in providing 

the caller with an idea of the response delay. 

Section 2 below describes our model and assumptions in more 

detail. Section 3 derives analytic results for two special cases 

of the response time estimation problem. Based on these special 

cases, in Section 4 we derive an estimator for the more general 

case. We also describe our conputational experience with the 

estimator. Section 5 discusses the policy implications and 

conclusions from this phase of the study. The Appendix gives a 

brief description of the simulation program used to derive the 

computational results. 
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2. Description of the Model 

The police department's dispatch center is modeled as a 

queueing system where calls for service of different types 

arrive at a Poisson rate. Associated with every call type is a 

call priority and a service time probability distribution. 

If, when a call arrives at the dispatch center, there is a 

patrol unit available, it is dispatched to service the call. If 

no unit is available, the call is queued. When ~ patrol unit ter­

minates service on a call, it is immediately assigned to another 

call if the queue of backlogged calls is not empty. If there is a 

backlog, high priority calls are assigned a service uhit first. 

Within a priority, the call that has been queued longest gets 

serviced first. Service on a low priority call is not interrupted 

when a higher priority call arrives. In queueing theory jargon, 

this service discipline is referred to as non-preemptive, head-of­

the-line, first-come-first-served (FCFS) within a priority. 

We outht to point out that this service discipline can be 

improved on. In practice, it pays to hold patrol units in reserve, 

in anticipation of high priority calls in the near future, rather 

than to assign the last available units to low priority calls. 

We assume that service time on a call has a general probability 

distribution depending only on the type of call being serviced. 

This fact enables one to model ~ituations where travel time to 

and from an incident is negligible compared to on-scene service 

time, or where the patrol unit is required to return to its home 

base before its next assignment. The latter requirement may be 

inappropriate fOT police operations but applies to other emergency 
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services like ambulances. Therefore, we will assume for the 

purpose of this study, that travel times are negligible, thereby 

dispensing with the spatial aspect of the problem. 
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3. Analytic Results 

In this section we derive some analytic results for two 

special cases of the general model described above: the case 

of a single patrol unit and the case of multiple patrol units 

using identical exponential service times for all call types. 

To avoid tedious repetitions of the definitions, we shall from 

hereon refer to the general model as the M/Gi/m case, the single 

patrol unit model as the M/G./I case, and the identical expo-
l 

nential service model as the M/M/m case. We shall use the 

following notation: 

T 

A. 
l 

x· 
l 

x~ 
1 

P (i) 

m 

number of call types 

arrival rate of type i calls (for i=l .. T) 

service time probability density function (pdf) 
of type i calls (for i=l ... T) 

mean service time of type i calls 

mean squared service time of type i calls 

priority level of type l calls (for i=i ... T) 
By convention, type i has a higher priority than 
j if p(i) < p(j). 

number of patrol units (servers) 

The purpose of this study is to derive an estimator for the expected 

delay incurred by an incoming call based on the number of calls 

(their types, priorities, etc.) currently in the system. All this 

information is available to the operator who takes the call via 

the CAD-systems utilized by most police departments. 

Below, we derive closed form expressions for the expected 

delay for the prioritized M/Gi/l and M/M/m systems. (Unfortunately, 

we believe that closed form results do not exist for the general 
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The Single Server Case (M/G./l) 
----~~~--------------~~--1---

The analysis proceeds along a delay cycle approach (e.g., 

Kleinrock[lJ). Suppose a call of priority p comes in at time t . 
o 

For simplicity we shall refer to this call as call lip" (or 

customer "p"). 

wP 
d I 

delay cycle 
wP wP 

0 b 
initial delay delay busy period 

t 

to 

The delay, w~, incurred by "p" is equal to the sum of the initial 

delay, W;, incurred because of calls already in the system at 

time to, plus the delay busy period, Wb' incurred because of 

higher priority arrivals during WP: wP = wP + wP 
o d 0 b" 

W; is the sum of the service times of higher or equal priority 

calls in queue at t plus the residual service time of the call 
o 

being serviced at to' irrespectively of the latter's priority 

because the service discipline is non-preemptive. 

The second term, w~, is the sum of the sub-busy periods 

corresponding to the calls that arrive during W~, the initial 

delay. The computation of the distribution of W~ will be per­

formed in transform domain. 

Let Ki be the random variable "number of type i calls arriving 

during W~". Then, using an independence argument, we can write 

the Laplace-transform of the delay, conditioned on wP and K. as: o 1 
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r. - s wP I p - - . - . ] E Le d W 0 - y, K i - k i' 1 -1 . . . T, P ( 1 ) < P 
sy T 

=e II 
i=l 

p(i)<p 

(p~(s))ki 
1 

where pIcs) is the Laplace transform of the sub-busy period 

associated with one arrival of type i during y. 

Deconditioning on Ki' we find: 

T -sy = e II 
i=l 

p(i)<p 

T 
=e-(s+L 

i=l 
p(i)<p 

T -(A.-A.P. (s))y 
ell 1 

T CA.-A.P. (s)))y 
1 1 1 

And finally, deconditioning on 1~, we find: 

DpT (s) == Ere-SW~J = rT(s+ I (A.-A.P~(s))) L P i=l 1 1 1 

p(i)<p 

r~(s) is the Laplace transform of the pdf of W~. 

(3.1) 

I~(S) is easily obtained by multiplying the Laplace transforms of 

the (residual) service times of the appropriate customers in the 

system at time to' just before call lip" arrives. 

So the only unknowns that remain in our derivation are the 

pI's. Since the sub-busy delay incurred by "p" because of a type 

i arrival during W~ can be decomposed into the service time of "i" 

and another sub-busy delay, it is readily seen that P~(s) obeys 
1 
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an equation analogous to (3.1): 

P~(s) == G~ 
1 1 

T 
(S+2: 

j =1 
p(j )<p 

T (A.-A.P. (s))) 
J J J 

where GI is the transform of Gi(x). 

for i=l ... T 
p(i)<p 

Equations (3.1) and (3.2 i ) together determine the pdf of WX, the 

delay incurred by "p". 

In fact, equations (3.2 i ) can be collapsed into a single 
T equation -- (3.2) for the purpose of computing Dp(s), by multi-

plying (3.2 i ) by Ai and summing over i: 

T T T 
Let up (5) - :E A . P. (s) , 

. 1 1 1 1= 
p(i)<p 

then 

u~ (5) 
T T T 

1. .• G.(s+ L 
1 1 . 1 J = 

T (A.-A.P.(s))) 
J J J 

= L 
i=l 

p(i) p pO )<p 

Setting 

we get: 

T T 
- :E A.G. (s) 

. 1 1 1 1= 
p(i)<p 

and 
T 

AT
P - LA. 

. 1 1 1= 
p(i)<p 

(3.2) 

So, in ~ummary, to find DT (s.) we must solve the following two equatiuns: 
p 

I~(s+At-a~(s)) (3.1) 

T P T Ap(S+AT-Cl.pCS)) (3.2) 
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It is in general, difficult to get a closed form solution for DT (s), 
p 

but it is easy to derive the first moments of w~ given the state of 

the system 0 from (3.1) and (3.2). 

Differentiating (3.1) and (3.2) with respect to s and setting 

s to zero, we find that the conditional expected value of the delay 

is given by: 

T 
1- ~ A.x. 

1 1 i=l 
p(i)<p 

(3.3) 

This equation says that the expected delay incurred by call 

"P", given 0, (the state of the system upon arrival), is equal to 

the expected delay that "p" would incur if he only faced customers 

already in the system upon his arrival, multiplied by a constant 

factor accounting for potential incoming higher priority calls. 

One can similarly derive the conditional variance: 

Var [wP 
1 oJ 

Var [w~ I raJ = T a _ / 
(l-.r A.x.) 

. 1 1 1 1= 
p(i)<p 

T - 3 
(1- L Lx.) 

. 111 1= 

p(i)<p 

The variance breaks up into two terms, the latter of which is 

due to the variability in the arrival process. 

(3.4) 

Higher order moments can be derived with the same ease. Let 

us now look at one of the rare cases for which (3.1)(3.2) can be 

solved in closed form: 

Assume 

= -)..Ix V"-l l-le , 1- ••• T. (Then xi = 1 -) - x 
11 
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tt is easy to derive, then, that 

(3.5) 

where N is the number of calls in the system at t , that will be o 

served before lip". This result leads us very naturally to: 

*the identical exponential service case with 

multiple servers (M/M/m) 

Indeed, it is easy to see that the M/M/m system admits the solution: 

From (3.6) we immediately deduce 

or 

= 
E [w; In] 

T 
m-.2:

l 
A.x 

1= 1 
p(i)<p 

m-l -
-- x m 

N-(m-l) 
For N>m-l (3.6) 

(3.7a) 

(3.7b) 

Unfortunately, all our attempts to generalize the M/Gi/l model to 

multiple servers or the M/M/m model to dif~erent service rates for 

different call types have failed. 

However, the results of this section, especially when we 

compare equations (3.3) and (3.7b), give us valuable insights into 

the complexity of the problem and support an estimator for the 

more general M/Gi/m case. 
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4. Waiting Time Estimation and Computational Results 

In police applications, service times for a particular incident 

typically have means of 20 to 30 minutes and coefficients of 

variation of around 0.5. 

For this section, we chose values of the system parameters 

appropriate for the modeling of the operation of a police depart-

ment. We restricted the discussion to two types of calls: type 1, 

high priority calls, and type 2, low priority calls. We also chose 

the ratio of high to low priority calls equal to 10 percent, a 

typical value for police operations. 

Table 1 below summarizes typical values of system parameters 

for police operations. 

Parameter Value Description 

m 10 number of patrol units 
-x· J. 

20 to 30 minutes average service time 

CV. 0.5 coefficient of variation of the 
J. service time distribution 

p 65% to 75% system load factor 

Al 10% ratio of high to low priority 

XZ calls 

Table 1 

4.1 Estimating Waiting Times 

The reason the delay cycle method doesn't generalize to 

multiple servers is that the waiting time of customer tip" is not 

a sum of independent random variables when m>l, which made the 

derivations in transform domain of Section 3 possible. With 

multiple servers, the ordering of the calls in queue becomes 

11 
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important. This, however, makes analytic derivations intrac-

table. 

We shall briefly describe a first, in retrospect rather short 

sighted estimator, that we tried and discarded. It helped/us 

understand some of the intricacies of the problem. This esti-

mator works roughly as follows: When call "p" arrive, to 

compute its estimated delay, simulate the system as if service 

and arrival times were deterministic with respective values xi 

and /., While this estimator does a good job for the single 
1 

server case, it behaves poorly for multiple servers. As an 

example, take an M/M/m queue with a single call type with service 

ra te w= l~ and wi th 10 servers . Given N, the number of calls in 

the system, an arriving call's expected waiting time is given by: 

A 

E[W/N] = N-(m-l) for N>m. 
m].1 

Let WN denote the "deterministic" estimator described above. 
A 

Table 2 compares WN and E[W/N] for various values of N: 

- I I N 10 11 12 13 14 15 16 17 18 19 20 21 22 
A 

WN 10 10 10 10 10 10 10 10 10 10 20 20 20 

E[W/N] 1 2 3 4 5 6 7 8 9 10 11 12 13 

Table 2 

I 

Note the high relative error when WN 1S used. Similar results 

can be shown to hold for M/M/m systems with several call types. 

The high relative error of this estimator makes it rather 

undesirable. We therefore rejected it. This experience shows 

that we cannot disregard the variability of the system (at 
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medium load factors, anyway). 

The estimator we finally settled for is based on the results 

! of Section 3. Equations (3.3) and (3.7b) suggest an estimate 

of the form: 

(4.1) 
E [w~ In] 

T 
m- ·l:l A.X. 1= 1 1 

P (i)<p 

where bp is a constant depending on the priority p. 

come back to the determination of bp in Section 4.2. 

We shall 

From the start, the estimator defined by (4.1) has a 

definite advantage over the "deterministic" estimator: it is 

exact (i.e., w~ = E[W~ln]) for one type of multiple server 

queueing system, the prioritized M/M/m system that yield equation 

(3.7b). While equations (3.3) and (3.7b) tell us that the esti-

mator (4.1) is consistent with the special cases that we could 

tackle analytically, practical experience must show how well this 

estimator works in practice. 

4.2 Computational Experience 

We essentially tested out the general behavior of the esti­

mator given by (4.1) under the following assumptions and para-

meter values: 

• For ease of interpretation we confined ourselves to two call 
types. 

• 10 servers 

• Service times Erlang distributed of order 4 (the forth-order 
Erlang distribution fits the general pattern of the service 
distributions encountered in practice; it also exhibits a 
coefficient of variation of 0.5). 
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0.1 ten percent of the calls ·are high priority calls. 

(We also ran a few simulations with Al = 0.5. Since 
they add no new insights, they are A2 omitted here.) 

. Load factors ranging from 65 to 85 percent . 

• Mean service times of 20 and 30 minutes. In practice, these 
times are typical. Average service time for high priority 
calls may be slightly smaller than for low priority calls in 
practice (i.e. runs 6 to 10 in Table 3). 

Table 3 summarizes th'j parameters distinguishing the various 

simulations we ran: 

Run It 1 2 3 4 5 6 7 8 9 10 

load factor p (in% ) 65 70 75 80 85 65 70 75 80 85 

(in minutes) 30 30 30 30 30 20 20 20 20 20 

(in minutes) 30 30 30 30 30 30 30 30 30 30 

Table 3 

Since we didn't know how to determine b in (4.1), we proceeded as p 

follows. For every set of parameters, we ran a Monte Carlo simu-

lation generating 3,000-plus calls incurring positive waiting 

times. During a simulation run, each time a call had to be 

queued, we computed the first term of (4.1) 

E[W~ln] 
T 

m- r: A.x. 
. 1 1 1 1= 

p(i)<p 

(from hereon denoted as fp)' (i.e., ~~ + bp)' 
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This quality was paired with the actual waiting time when 

this became known, and dumped into a file. Figures 1 to 5 show 

plots of the waiting time, w, versus fp' for p=2 (i.e., low 

priority calls) for runs 2, 3, 4, 6, and 10. 

High priority calls typically get served very fast. In none 

of our runs did a high priority call wait more than 15 minutes, 

(as Figure 6 shows in the most unfavorable case, p=85%, xI=x Z= 30 minutes), 

Therefore, we shall concern ourselves exclusively with low priority 

calls for the moment. Indeed, these are the calls that incur the 

longer waiting times. It is also for these calls that citizen 

dissatisfaction is determined through the discrepancy between 

expected and actual delay. This is not so for high priority calls 

where fast response is primordial. 

Therefore, we shall concentrate on the type Z calls. Hetero­

scadicity of the data makes unweighted least squares regression of 

W on f a poor data exploration tool. Therefore, we proceeded as 

follows: We broke up the data into intervals of length 1.2 minutes 

along the f axis. We used these intervals as levels in an analysis 

of variance; that ~s, for a given interval of f, we computed the 

means and standard deviations of the waiting times of the data 

points contained in a vertical slice (on the plots in Figure 1 

through 5) centered around f. 

Figures 7 through 11 show plots of the group mean of the 

waiting times at level f versus f for runs 2, 3, 4, 6, and 10. Next 

we regressed the group-means on f. Table 4 summarizes the 

results of these regressions. The notation used is: 

group-mean(f) = a o + a l f. 
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-
Run If 1 2 3 4 5 6 7 8 9 10 

ao 

al 
R2 

(in minutes) -17.52 -17.17 -15.36 -17.40 -17.64 -14.82 -15.00 -14.64 -16.14 -16.38 

1.001 0.975 0.891 0.975 0.975 0.923 0.920 0.901 0.965 

(in %) 97.4 97.3 98.2 98.6 99.2 97.2 97.9 98.5 98.7 

Table 4 

Coefficients from regression of mean waiting time on 

estimated waiting time (all coefficients are significant). These 

results call for the following remarks: 

(a) The slope al is close to 1 (except for run 3), but seems 
to be consistently smaller than 1. A look at the plots 
(e.g., figure 7) shows a slight convexity of the plot. 
One expects the slope to be equal to 1 asymptotically, but 
not necessarily so at small waiting times. It is surprising 
that the slope is so close to 1 overall. In practice, one 
should in fact give the same weight to every level of (and 

0.958 

99.0 

not to every observation), thus giving relatively more weight to 
long waiting times since calls suffering long delays are more 
scarce, but more important. Figure 12 shows a plot of run 

(b) 

2 of the group mean for level f against f (one data point 
per level. Some levels had to be pooled to contain enough 
observations). The regression of the mean waiting time 
(given f) on f yields the coefficients: a o=-17.85 

a l =1.0l2, 

both very significant. Only one such analysis was 
performed because the data were difficult to get at, but 
we feel confident, in light of the other results, that 1 is 
indeed the value of a 1 when all levels are equally weighted. 

The intercept a seems to be insensitive to the load factor, 
at least for load factors in the range 65 to 85 percent as 
runs 1 to 5 and 6 to 10 in Table 4 show. Since CI. ~ 1, we 
also have that a ~ -b.. Therefore, our results 1seem to 
indicate that thg corr~ction factor bp does not depend on 
system load. This in itself, is rathar amazing, although 
equation (3.7b) shows that this is indeed so for the special 
case of the M/M/m system. 

As a result, we think that there may be a way of computing bp 
from the arrival rates and service 'distributions. 

16 



Figure 13 illustrates the output of the analysis of variance 

(ANOVA) performed on run 2. From this analysis, we get estimates 

of the standard deviation of the waiting time given f. Figure 14 

plots the coefficient of variation for a given level f against the 

mean Ivai ting time at the same level. Notice the downward sloping 

curve. The coefficient of variation gets smaller as the waiting 

time increases. This is not altogether unexpected, but is 

certainly a welcome confirmation of our intuition. This 

information can be used in practice to find confidence intervals 

for the estimated waiting time. 

The l~st question that remains is how the estimator can be 

implemented in practice, and in particular, how bp is determined. 

In actual police department implementation we suggest the following 

procedure. As a call for service of priority p comes in at time t, 

compute the first term of equation (4.1). 

E [w~ I n] 
i.e., f - The numerator E[w~1 n] is easily obtained T _ 

m- 2: A..x . 
. 1 1 1 1= 

p(i)<p 

by summing the expected residual service times of calls in serVlce 

at time t and the expected service times of higher or equal priority 

calls in queue at time t (calls with priority ~ p). The estimated 

waiting time at time t is given by (4.1), but originally bp is 

unknown. (One can use a reasonable hunch for bp during the first 

phase of the implementation, or wait until the system is calibrated 

before giving any response time estimates to callers.) The calibration 

of bp is done as follows. As calls get served, one updates GM(f) , 

the mean waiting time of calls for a given level of f (by levels we 
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understand small fixed intervals into which the values of f fall). 

When a few hundred calls have come in, one averages GM(f)-f for 

those levels that contain more than, say, 10 data points. This 

average GM(f)-f yields the calibration factor bp . In other words, 

the system is calibrated with data from real calls for service. 

After a few hundred calls, the value of bp has settled down (this value 

of bp can be periodically refined or updated). The system is now 

operational. Equation (4.1) provides the caller with a response time 

estimate*. The nice feature of the method outlined above is that 

the system fine-tunes itself as it gathers more data. To complement 

this estimate of the response time, one can similarly compute the 

standard deviation GS(f) of the waiting time for the levels of f to 

obtain confidence intervals on the estimator (4.1). 

Finally, we would like to make one last comment. Our limited 

experience with the estimator (4.1) indicates that bp might be 

rather insensitive to the load factor (as long as the ratio of high 

to low priority calls remains unchanged). This insensitivity may 

make frequent adjustments of bp due to call frequency changes over a 

day unnecessary, but more research would be necessary to ascertain 

this fact. 

* In fact, the estimate should be Qd=max (O,f-b ) instead of f-bp since it may occasionally happen ~hat f-b isPnegative. p 1 
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5. Policy Implications and Conclusions 

We conclude this paper with a few general comments and 

suggestions as to how to apply the results of this study in 

practice. 

The premise for our recommendations that citizens exper-

ience dissatisfaction regarding police responses only when their 

expectations are inconsistent with the reality. Therefore, for 

high priority calls, it is unnecessary to give the caller a fore­

cast of when a unit will respond to his call for help. Indeed, 

these calls are real emergencies. The standard response, "A 

patrol car will be there right away," fits this situation very well, 

especially in light of the short waiting times.actually exper­

ienced by high priori ty calls (see Figure 6). 

For low priority calls, we suggest the following strategy: 

For short expected waiting times it may still make sense to give 

the "We'll be there right away" response because of the large 

relative variance of our estimator in the range below 1.5 minutes 

(see Figure 14). Since most calls in this category would incur 

relatively short delays, this response is accurate enough given 

the nature of the call. 

For the calls that are likely to incur longer waiting times, 

(W~ > 15 minutes), we suggest using w~ as a response time estimate. 

These callers are more likely to get upset when they experience 

long delays after they are led to expect a fast response. 
A 

Estimating response time can be done by using W~ plus some 

multiple of the standard deviation to give the caller a conservative 

delay estimate. Alternately, the dispatcher can give the caller 

an interval of the form [W~ (l-Cv), w~ (l+Cv)]' where Cv is the 
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coefficient of variation. For example, the operator could say 

"A police car will be there in 30 to 45 minutes." 

It is difficult to say which of these or possibly other 

alternative schemes would be best received by the public. The 

decision of how exactly to implement the delay forecast into day 

to day police operations lies with the policy makers at police 

departments. We cannot, without further surveying the public's 

preferences, recommend one alternative over another. 
""p However, we believe that giving just a point estimate Wd without 

accounting for the variance may be rather misleading and create 

unnecessary citizen dissatisfaction. 

To conclude this paper, we will summarize our results. We 

modeled the dispatching operation of a police department by a 

prioritized non-preemptive head-of-the-line M/Gi/m queueing system. 

We derived analytic results for the expected waiting time of a 

call for the special cases of a single server M/Gi/l and a 

multiple server, identical exponential service M/M/m system. 

Based on these results we derived an approximation of the expected 

conditional waiting time for the general M/Gi/m system. Finally, 

we analyzed the performance of our delay estimator in a number of 

typical simulation runs. 

The estimator provides a useful method of calculating waiting 

times for low priority calls in a waiting range greater than 15 

lninutes. For high priority calls and for calls with waiting times 

of less than 15 minutes, an estimator is not necessary because the 

response time to these calls is quasi-immediate. 
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Figures 

Notation: On the following figures: 

a * stands for 1 observation 

a 2 through 9 represents 2 throu~h 9 observations 

a + stands for more than 10 observations 

All times are expressed in minutes 
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Figure I 

Plot of Waiting Time vs. Uncorrected Estimator 

for Low Priority Calls (Run 2) 
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Figure 2 

Plot of Waiting Time vs. Uncorrected Estimator 

for Low Priority Calls (Run 3) 
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Figure 3 

Plot of Waiting Time vs. Uncorrected Estimator 

for Low Priority Calls (Run 4) 
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Figure 4 

Plot of Waiting Time vs. Uncorrected Estimator 

for Low Priority Calls (Run 6) 
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Figure 5 

Plot of Waiting Time vs. Uncorrected Estimator 

for Low Priority Calls (Run 10) 
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Figure 6 

Plot of Waiting Time vs. Uncorrected Estimator 

for High Priority Calls (Run 5) 
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Figure 7 

Plot of Group Mean Waiting Time (for f 2) vs. 

Uncorrected Estimator, f2 for Low Priority Calls (Run 7) 
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Figure 8 

Plot of Group Mean Waiting Time (for f 2) VS. 

Uncorrected Estimator t f2 for Low Priority Calls (Run 3) 
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Figure 9 

Plot of Group Mean Waiting Time (for f 2) vs. 

Uncorrected Estimator, f2 for Low Priority Calls (Run 4) 
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Figure 10 

Plot of Group Mean Waiting Time (for f2l.Y~ 

Uncorrected Estimator, f2 for Low Priority Calls (Run 6) 
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Figure 11 

Plot of Group Mean Wai ting Tim'e (for £2) vs. 

Uncorrected Estimator, £2 for Low Priority Calls (Run 10) 
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Figure 12 

Plot of Group Mean Waiting Time vs. Level f2 

(One Data Point Per Level; Certain Levels Pooled) 

(Run 2) 
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Figure 13 

Summary of ANOVA for Low Priority Calls in Run 2 

mean 
waiting standard 

uncorrected time deviation 
estimator # of observ. for for 

f2 in level f2 level f2 level f2 

16.8 20 0.04738 0.05306 
18.0 69 0.04145 0.03854 
19.2 186 0.04583 0.04014 
20.4 311 0.04715 0.04362 
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22.8 305 0.07862 0.06017 
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Figure 14 

Plot of the Coefficient of Variation vs. the 

Group Mean Waiting Time for Low Priority Calls in Run 2 
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.-\ppendix 

An Event-Paced Simulation Program Modelling Incoming 

Emergency Calls to a Police Dispatcher 

This appendix gives a brief description of the PLIG program 

used to derive the results of this study. The simulations were 

run on the PRIME 850 at the Sloan School of Management at the 

Massachusetts Institute of Technology. 

Description of Program 

The program simulates calls for service arriving at a police 

department with Poisson rates. There are * t types of calls for ser-

vice of various priorities, * s patrol units and * the service type i 

~ has an Erlang probability distribution with parameters (r i , ~i)' i=l ... t. 

' .. 

The service discipline is non-preemptive with head-of-the-line priority 

structure. 

The following is a list of the main variables used in the 

simulation program: 

ct = It of call types 

i = call type 

m = It of servers (patrol units) 

p = priority 

Q(p) = priority-p queue 

tl = time horizon/end of simulation 

t = time/clock 

* In our simulation, we generate Erlang (r,A) distributed random 

number from e(r,A) = ~ In (iIlr i ), where r i are uniformly dis­
tributed random numbers in the interval [0,1]. 



T· = type i interarrival time 
1 

T· . 
1J 

= service time of server j on call of type 1, (independent 
of j) 

tnc. = time of next type i call 
1 

tss. = time of service start of 
J 

tsf· = time 
J 

of service finish of 

server j 

server j 

f~ = estimated unvorrected waiting time 
1 given, Q, the state of the system. 

(if busy) 

(if busy) 

of a type i 

Figure Al illustrates the flow of the simulation program 

call 
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Figure A.I 

Program Flowchart 
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