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I. INTRODUCTION. 

This paper is about predicting recidivism. More precisely, it is 
about the use of actuarial models that seek to associate a 
failure probability with a set of selected attributes of an 
offender and his history.l 

Perhaps the simplest and most frequently encountered use of 
actuarial methods occurs in evaluative studies in which statist­
ical "controls" are introduced as a replacement for or supplement 
to a true experimental design. In a certain sense such studies 
may have more of a "historical" than an explicitly predictive 
purpose. They are concerned with achieving a careful and 
succinct summary understanding of what was observed to happen at 
a particular time and under a particular set of conditions. In 
this, of course, they demonstrate that spirit of objectivity and 
caution in generalization that characterizes all scientific 
research. However, they differ from research reports in the 
physical and biological sciences, say, in two important respects. 

First, criminology is still groping for a well tested set of 
theories that would reduce the great uncertainty that exists in 
determining what exogeneous conditions are important to specify 
in order to draw reliable inferences about intervention effects 
from actuarial models. In most cases a randomized assignment of 
subjects into treatment and control groups would serve to obviate 
that problem. But true experiments are notoriously difficult to 
implement and maintain within the operating criminal justice 
system. Which is, of course, why researchers must so often turn 
to statistical models. 

A second difference lies in the expectation that a study will be 
replicated. Repeated tests of findings are the rule in the 
laboratory sciences. For many reasons, however, careful 
replications of social science studies in general and recidivism 
studies in particular are quite rare. As a consequence, 
statistical methods for inferring something about the 
generalizability of results from a single study have received a 
great deal of attention and some of these methods have found 
their way into the standard operating procedures of the 
recidivism modeling process. Thus, for example, something about 
generalizibility is being conveyed in the reporting of the 
t-statistics associated with a model's parameters and 

lThis paper will not attempt to give an overview of the very 
large and diverse literature dealing with this topic. 
Fortunately, excellent critical reviews are contained in a number 
of works published quite recently. (Farrington and Tarling, 1985; 
Gottfredson and Gottfredson, 1986; Gottfredson and Tonry, 1987.) 
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characterizing as "not significant" those variables whose 
coefficients have t values below some specified number. 
Justification for any confidence placed in the predictive power 
of such models -- that is, analytic support for the assertion 
that the findings would be similar if the study were in fact 
replicated -- rests entirely on the assumptions and the logic of 
statistical distribution theory. 

More explicitly predictive in their stated purpose are those 
studies aimed at improving some specific class of criminal 
justice decisions. A simple example for recidivism prediction is 
the study in which individuals are assigned a risk score based on 
information pertinent to the prognosis of success and available 
at the time a decision such as parole release is to be made. 
Individuals whose scores fall below a pre-determined cutting 
point are the predicted successes; those with higher risk scores 
the predicted failures. The evaluation of such a prediction 
instrument consists in observing which subjects actually did fail 
during some follow-up period and calculating rates of true and 
false predictions. 2 

There would seem to be two possible justifications for this 
latter approach. Conceivably, the recidivism process is funda­
mentally deterministic. An individual is either a recidivating 
type or he is not. The model tries to distinguish the sheep from 
the goats and the evaluation tests how well it succeeds . 
Researchers may not subscribe literally to such an interpretation 
of what they are striving to achieve. But something of this 
notion has crept into the jargon of the trade with phrases like 
"error" rates, "false" negatives and "false" positives. 

Alternatively, one might consider recidivism to be fundamentally 
a process involving chance with different individuals having 
different probabilities of failure. But it is recognized that 
the model is to provide information for a dichotomous decision. 
The pragmatic test of the model is the costs and benefits 
associated with the number of "right" and "wrong" decisions that 
would be made in practice. 

2This over-simplifies the case. In the development of such 
a predictive instrument the researcher is inevitably interested 
in how its predictive accuracy compares with alternative decision 
schemes. The most obvious alternative is to assume that in terms 
of risk the subjects are indistinguishable. The recidivism 
probability assigned to all is the failure rate in the population 
as a whole. In this case, a measure of the benefit to decision 
making offered by a particular prediction device is the 
improvement over pure chance in the accuracy of a set of 
individual predictions, given the base rate for failures. (See, 
for example, Duncan et ale (1952), and Loeber and Dishion 
(1983». 
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Finally, there exists a sub-class of studies, unfortunately 
rather IsmaIl, in which a model is empirically validated by 
applying it to a population of subjects that is independent of 
the one used for model development. Most frequently, this is 
done under a split-sample design in which independent 
construc!tion and validation samples are randomly drawn from the 
same population. This method is not without its critics (e.g. 
Maltz, 1984) and admittedly falls rather short of the scientific 
ideal of multiple, independent replications. Nevertheless, given 
the problem of :saying something credible about generalizabili ty 
based on a single sample design, an empirical test of predictive 
power, even within a particular study population, would seem to 
offer SODle essential information about how the model might 
perform in use. 

In this paper we posit some simple assumptions -- not in the 
sense of theses t.o be tested formally but rather as points of 
departure determining what we attempt (and do not attempt) to do. 

First, recidivism is assumed to be an intrinsically stochastic 
process with each individual having a characteristic failure 
probability. 3 The "stochastic" part of this assertion simply 
recognizes the impossibility of forecasting with any specificity 
the chain of events leading to recidivism -- no matter how 
recidivism is operationalized. 

The "characteristicu part asserts that a person's habits and past 
experiences substantially determine the kinds of options leading 
to recivism that he is likely to encounter, the probabilities for 
the choices he will make and, perhaps, his chances of being 
observed t:o fail 'through his arrest or reconviction. 

Second, individual failure probabilities are assumed to be 
changing in time. Typically, for the person who has not yet 
failed, one would expect these probabilites to be increasing for 
a time as he repeatedly encounters failure opportunities. But 
after awhile, resistance to such temptations itself becomes 

3A corollary of this assumption is that each subject has a 
characteristic probability of not failing. Evidently, a model 
form that mathematically dictates eventual failure for all 
subjects is inconsistent with this assumption. An interesting 
line of research has, therefore, developed using mixed population 
models. Such models begin with the assumption that an observed 
population is made up of a sub-population of certain (or almost 
certain) successes and a complementary popUlation of recidivists. 
In criminal- career applications, this translates into sub­
populations of desisters and persisters. - (Maltz and McCleary, 
1977; Harris et al., 1981; Maltz, 1984; Blumstein et al., 1985; 
Barnett et al., 1987.) 
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something of a habit and his risk of failure should begin to 
decrease. 

Finally, we would assert that a model's performance under a split 
sample design contains information that can be used in an 
iterative procedure to improve its generalizability. For a 
number of reasons, a model can virtually never be expected to 
perform as well on new data as it did on the data used for model 
construction. The amount of degradation has come to be called 
"shrinkage" and statistical techniques are being developed for 
its estimation. (Copas, 1985; Copas and Tarling, 1986.). 
Given the assumption of a characteristic failure probability, 
what shrinkage effectively means is that any model is overly 
optimistic about its ability to discriminate between individuals 
based on the values of their independent variables. The 
empirical procedure explored in this paper is proposed as a 
method for reducing at least one of the major reasons for 
shrinkage. 

The primary focus of this paper is methodological: to explore 
empirically the notion that selected actuarial models can 
"plausibly" uncover individual failure probabilities on the basis 
of bits and pieces of information about the offender and his 
history and that these models can be shown to have reasonable 
predictive validity -- at least under a split-sample test. 
Obviously, a failure probability is not a directly observable 
individual characteristic. Rath~r, it is a construct defined by 
the model itself. Given a model with its individually assigned 
failure probabilities, we make inferences about its accuracy by 
asking how plausible an observed pattern of successes and 
failures in a large popUlation appears to be. Of interest is a 
comparison of the performance of mathematically different model 
forms -- in particular of the "static" logit model with a time 
dependent hazard model. 

Finally, we investigate briefly some of the practical and 
theoretical conclusions to which we are led if we accept the 
models that have been developed. 

A word about how the paper is organized. The next section deals 
in summary fashion with some of the mathematics of modeling used 
in the applications. Except for the definition of the particular 
form of the hazard model being explored here, this section will 
not be of much interest to people who either care little or know 
a grea't deal about such matters. section III describes the 
general analytic plan followed in the investigations, whose 
results are reported in sections IV and V. In section IV the 
data being analyzed are taken from a two year follow up of male 
inmates released from prison in North Carolina. The data for the 
models of section V cover ten years of criminal justice contacts 
following parole of the study subjects from a California youth 
Authority institution. 
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Finally, as an Afterword, Section VI attempts to explain what the 
authors of this report think they have learned. 
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II. A BIT ON MODELING MATHEMATICS. 

A. On Model Forms. 

1. The Legit Model. 

When the dependent variable is dichotomous (success=O; 
failure=l),-the assumptions of linear regression models are 
violated and their use may give misleading results. (See, e.g., 
Aldrich and Nelson, 1984.) The non-linear model form most widely 
adopted to overcome this difficulty is the 1ogit. This form is 
derived from the function 

p ( z ) = (1 + Ie -Hz)) 

If fez) varies from minus to plus infinity, p varies 
from zero to one wit.h symmetry through the point f(z)=O, p=1/2. 

In the logit models investigated here, f(~) is taken to be a 
simple linear function 

f(~) = ~'.9. 

where ~' is to be understood as the transpose of a vector of 
values of k covariates measured on an individual (possibly 
including a constant) and .9. is a vector of k coefficients. 
Matrix multiplication is implied. Algebraically then, 

In l~P = ~'2 
With P interpreted as the probability of failure within some 
fixed period of time, p/(l-p) expresses the odds of failing and 
this form of the logit model makes the assumption that the log of 
these odds for an individual characterized by £ is simply a 
weighted sum of these variable values. 

This is undoubtedly all familiar. Just as straightforward 
although less often discussed are the SUbstantive interpretations 
to be given to the model parameters Om. Standardized variables ~ 
do not seem appropriate for the kind of cross-validation 
investigations to be undertaken here so individual variables like 
age, sex, or number of prior arrests will cover very different 
ranges. This means that the values of the components of the 
vector .9. are not dimensionless and, consequently, are not 
directly comparable as measures of the contribution particular 
variables make to the recidivism probability. 

But suppose there are two hypothetical individuals, i and j, who 
are identical in all respects except for their values on variable 
m -- their age, perhaps. 
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~(i)'~ - Z(j)'£ = (zim - Zjm)Om 

or in terms of failure odds 

These expressions involve only the one parameter Om and its 
associated variable values Z m' It is in this sense that the 
"strength" of the individual'variables will be isolated and 
reported here. 

While this is mathematically correct, a word of caution about the 
phenomenological interpretation of these comparisons might not be 
out of order. A model is a sort of "recidivism gestalt," built 
out of a particular set of facts and attributes selected in 
advance by the analyst. The role of anyone variable cannot be 
divorced from the analytic context of all independent variables 
appearing in the model. Consider, for example, a variable such 
as "length of present term of incarceration." This variable 
conceivably could show very different "strengths" in models that 
do or do not also include the variable "age at release" if, in 
fact, the subjects in a study population who served longer terms 
also tended generally to be the older ones. The interpretation 
of "strength" adopted here is the usual one that appears in the 
literature as "controlling for other factors." The caution is 
simply that this can have no real meaning without an 
understanding of what those other factors are. In particular, it 
can at this stage of criminology's development never be read as 
"controlling for all other factors." 

2. Hazard Models. 

criminology was introduced to hazard models by Stollmack and 
Harris (1974). They were interested in the idea that time to 
failure might be a more sensitive measure to apply in a program 
evaluations than the more traditional failure rate within a 
specified follow-up period. Notable among the subsequent 
developments and applications of this methodology in recidivism 
studies are the works of Schmidt and witte (1980), Barton and 
Turnbull (1981), Schmidt and witte (1984), Maltz (1984), and 
Schmidt and witte (1987).4 

4For a more thorough mathematical exposition, see Lee (1980) 
and Kalbfleisch and Prentice (1980) -- especially for a 
discussion of biased censoring mechanisms and application of the 
proportional hazard model with a non-parametric time dependence. 
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The hazard function h(t) is defined as the conditional 
probability per unit time that an individual who has survived to 
time t will fail in the time between t and t+dt. Equivalently, 
in a very large population it is the rate at which failures are 
occurring at time t among those subjects who have survived to t. 

From this definition it follows that, if set) is the 
unconditioned probability of survival to t, then S(t)h(t)dt is 
the unconditioned probability of failure in the interval t to 
t+dt. In frequentist terms set) is the expected fraction of the 
initial population surviving to time t, S(t)h(t)dt the fraction 
of the initial population failing in [tf t+dt]. Therefore: 

dS = -S(t)h(t)dt 

and it follows that 

set) = e 
- f~h(X)dX 

Researchers, such as those whose w,orks are cited above, have 
investigated the implications of a variety of mathematical forms 
for the hazard function h. Here we are interested in finding a 
form consistent with the assumption that the typical subject's 
hazard rate begins by increasing in time, passing through a 
maximum and then decreasing. S The form considered in this paper 
is 

In h(t,~) = ~/(£ + Qt + g In[t)) 
or 

Here, again, ~' is the transpose of a vector of measurements of k 

SThere are, of course, many functional forms that would 
satisfy these conditions as well as the obvious requirement of 
being non-negative for all positive t. The form adopted here is, 
perhaps, the simplest at least in its property of being loglinear 
in the covariates. It might also be noted that the approach here 
differs from that of some researchers who haVe investigated 
parametrized forms of hazard models in that it makes an g priori 
assumption of the form of the hazard function rather than of the 
probability density, As pointed out in the Note following this 
section, this can lead to a defective probability distribution, 
and thus introduce some statistical complications. For example, 
the expected time to failure for any class of subjects is then 
defined only conditionally: given that a failure will occur. 
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variables made on each subject and £, Q, and g are each vectors 
of k parameter values -- some of which may be constrained to be 
zero. 

Some mathematical consequences of the assumption of this form for 
the hazard function are discussed in the Note at the end of this 
section. Here the concern is the substantive interpretation of 
the strength of the contribution each of the variables makes to a 
subject's recidivism probability. 

Just as in the logit model discussion, assume there are two 
individuals i and j differing only in their values on the mth 
variable. The log of the ratio of their hazard functions at time 
t is then 

This ratio, of course, compares the probability of failure in 
the near future of subject i to that of subject j -- assuming 
that both have survived to time t. Again it is in this sense 
that the contributions of the different variables will be 
compared. Unlike the comparison of odds in the logit model, 
however, the relative strengths of different variables will be 
changing over time. Some mention mi.ght be made of how the values 
of am' bm and Om determine this change. 

consider the function 

_ (<;n + bmt + ~ln[t]) 
g - e . 

m 

For very small t, In(t) will be negative and very large in 
absolute value. This term will dominate In gm. If am is 
positive, gm will approach 0 as t approaches o. Conversely, gm 
will tend to infinity near t = 0 if am is negative. For very 
large t, the term brut is dominant so that gm eventually ten~s to 
infinity or zero, depending on whether bm is positive or 
negative. 

It might be noted in making the comparisons between subjects i 
and j that the quantity (zi~ - Zj~) can be positive or negative, 
depending on which subject ~s arD~trarily designated as i. The 
limits of the hazard ratios at t = 0 and t = infinity will be 
zero or infinity, depending on this choice. All this means, of 
course, is that the interchange of subject i and j inverts the 
ratio of hazards so that zero maps into infinity and vice versa. 
It should be emphasized, however, that, if the variable z~ can 
take on only positive or only negative values for any subJect, 
the ~partial hazard" 
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~ = e l1n(cm + bm t + ~ In[lj) 

has the same limiting values at zero and infinity for all 
subjects. 

Roughly speaking the parameter a~ gives information about how the 
variable zm influences the recid1vism probability over the very 
short term following releasei b reflects its long term influence 
given long term survival. But a bit of care must be exercised in 
interpreting the hm ratios at very small and very large t. A 
very large value of this ratio near t = 0, for example, does not 
mean that subject i is doomed to instant failure. For both i and 
j the conditional probability of failure may be very small in an 
absolute sensei but in a relative sense i/s probability is much 
greater than j's in the early days of time at risk. 

If z~ is a categorical variable taking only values zero or one, 
the 1nterpretation is similar: tbe ratio is a comparison of the 
partial hazard of the subject with zm = 1 to the fixed value 
hm = 1 that is assigned ~ priori to the subject with zm = o. 

The parameter Cm plays a rather complicated role in that it 
determines a value about which hm varies in the course of time. 
Its function in the hazard model is discussed in somewhat greater 
detail in the Note following this section. Here it will suffice 
to mention two rather obvious roles it can play. 

If both a~ and bm are zero, the partial hazard hm is evidently 
constant 1n time with the value zmc~. Thus, the variable zm 
enters as a constant multiplicative factor exp(zmCm) into the log 
of the survival probability at time t. But in the more general 
case, consider the equation 

em + bmt + amln{t) = o. 

Depending on the values of Cm, bm and am' this equation can have 
0, 1 or 2 roots in t. In terms of the comparisons between 
subjects i and j, the roots of this equation are the times at 
which these two subjects are at equal risk. Their relative 
characterization as being the one at higher or lower risk then 
switches as t passes through a root value. 

B. On Likelihood Estimation. 

Given a model form with a particular set of parameter values, 
each subject in a study is assigned an individual probability of 
failure -- failure before some fixed time T in models like logit 
or failure within a variable interval t to t+dt in hazard models. 
By definition the likelihood function is simply the joint 
probability of occurrence of the whole pattern of observed 
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failures and successes, given the individual, model-assigned 
failure probabilities. The log of the likelihood function is, 
thus, 

In L = ~ In (p) + L In (l-p ) 
(allures ' successes , 

for a fixed-time model. For a hazard model the pattern of 
observations to be modeled includes not only the outcome 
variable/ success or failure, but also the time at which failure 
occurred for subjects who failed and the time of censoring for 
subjects who did not. The unconditioned failure probability for 
subject i is, again, Si(t)hi(t}dt. Dropping the constant factors 
dt, the log likelihood is 

In L = ~ (In h,[t,J + In S,[td) + ~ In S,[t,] 
(allures successes 

or 

In L = ~ In h,(t,) + ~ln S,(t,). 
(allures all 

Here ti is the observed time to failure or censoring of subject 
i. Since 

t 
- f ' h,(:z) dx 

S, (t,) = eO, 

it follows that 

Given competing sets of parameter values, it is certainly 
reasonable to prefer the one that would assign the greatest joint 
probability to the outcome pattern of failures and successes 
actually observed. The set of parameter values with the greatest 
probability among all possible sets is, of course, the maximum 
likelihood estimate of the "true" values. It is an estimate in 
the usual statistical sense in that it derives from a particular 
data base that may not be in every detail a faithful copy of the 
underlying population it is assumed to represent. 

The mathematical problem of likelihood maximization reduces to 
finding a solution to the system of equations obtained by setting 
to zero the first derivatives of the log likelihood with respect 
to each of the model parameters -- thus, with k parameters, a 
system of k simUltaneous, non-linear equations. 

In the computational process of carrying out a systematic, 
iterative search for solution values, the set of k(k+l)/2 second 
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derivatives of the log likelihood are also evaluated at each 
step. If 

then 

gives an estimate of the covariance matrix of the parameters. 
Thus the square roots of the diagonal elements of ~ are 
estimators of the parameters' standard deviations. 

13 



Note on the Gamma Hazard Model. 

The hazard model investigated in this paper has the form 

In h(~i,t) = ~i'(Q + Qt + ~ In(t)). 

Here Zi is a vector of measurements of k variables made on 
subject i; and Q, Q, and s are each vectors of k parameters 
some of which may be constrained to be zero. Matrix 
multiplication is implied: the right hand side is a scalar 
function of t. 

This particular form was chosen because, if ~'s is greater than 
zero and ~'Q less than zero, the resulting hazard function starts 
out at zero at t = 0, increases to a maximum at 

z'a 
t max = li'~1 

and then again decreases to zero as t becomes indefinitely large. 
This seems a mathematically simple way to reflect a plausible s 
priori assumption about how the probability of recidivism might 
change over time, conditioned on no recidivism up to time t. 

with this form of the hazard the value at maximum is 

z'a 

~ax = (~ :~I )-- E#'(s-!l. 

Furthermore, given any specified positive value hOI the equation 

~'£ + (~'Q)to + s In(to) - In(ho ) = 0 

has either 0 or 2 roots to' If there are no roots, the hazard 
function never reaches the value hOG In the case of 2 roots, the 
value of the hazard is greater than ho during the time interval 
between them. 

Thus, with this form of hazard function, the parameter vectors £, 
Q, and g would allow the individual subject's covariates to 
determine the time at which he is at greatest risk of failure, 
the magnitude of the risk, and its spread in time -- the last in 
the sense of the time interval over which his risk is greater 
than any specified value. 

Of course, the hazard function can assume other shapes than that 
of a typical IIgamma density". In particular, 

1. It is monotonic in t if ~'s and Z'Q have the same sign 
(increasing if they are both positive, decreasing if negative); 
and 
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2. It is U-shaped if ~'~ is negative and ~/Q positive. 

The probability of survival to time t is, as usual, given by 

t 
- f ' h(~,.x) d.t 

S (E.,t) = e 0 

The integral does not exist unless ~/a is greater than -1. This 
could create something of a nuisance in the analysis. In fact no 
problems have been encountered in parameter estimation. Under 
cross-validation, models estimated on different data bases have 
sometimes assumed invalid forms. When this situation arises, it 
is most often the case that the "a" coefficients of a particular 
variable have taken on relatively widely separated values in the 
two models. For some of the study subjects (no more than one or 
two in our experience) this has resulted in an invalid form of 
the model on cross validation. 

One property of interest is that, if the integral exists and if 
~/Q is negative, the integral converges in t. This means that 
under these conditions the model dictates a finite probability of 
long-term survival: 

where 

is the gamma function. 

z'e r ( z I a+ 1) 
e" - IE.' ~I (~.~ + I) 

Obviously, it would be very unsound to use such a model to 
project survival probabilities far beyond the span of time of the 
observations on which the model is built. At the same time this 
analytic feature of the model (or of any hazard model for which 
the integral of hex) converges as the upper limit becomes 
indefinitely large) might be considered of some interest in that 
its form does not imply a prior assumption that all subjects must 
eventually recidivate. 

A logically consistent interpretation of such a "defective 
probability distribution" is to consider the recidivism model as 
part of a larger model in which, over the long run, everyone must 
indeed fail in one way or another. That larger model would then 
consider as competing risks all the possible events a subj e.ct 
might experience whose prior occurrence would preclude the 
possibility of failure through recidivism. A subject's death is 
perhaps the most obvious example. In this sense the probability 
of survival to time t being investigated here is clearly a 
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conditional probabilj.ty -- the probability of no recidivism 
before time t, given that the subject is actually at risk of 
recidivating over the whole interval [0, t]. 

The assumption of a log linear form in the covariates means that 
the hazard function is a product of "partial hazards", each of 
which is a function of time and a single covariate: 

hm(z,t) = exp[zm(cm + bmt + amln(t»], 

where zm is a subject's measure on the mth covariate and Oml bm 
and am are the mth components of the coefficient vectors Q, Q, 
and g respectively. This property simplifies considerably the 
interpretation of the relative strengths of the different 
covariates in their contribution to recidivism probabilities. 

Finally, it should be noted that the values of the coefficients 
will depend on the unit of time chosen in the estimation. The 
transformation from one time scale to another is straightforward. 
Suppose, for example, time t is measured in units of years but it 
is desired to express everything in units of months. That is, 
coefficients of the model in which t"=12t are wanted. More 
generally, consider the time scale transformation til = rtf where 
r is a constant. 

Since the quantity h(t)dt is a conditional probability, it must 
be invariant under this change so that 

h"(ttt)dtll = h(t)dt. 

Substituting t=t"/r, one readily obtains 

exp[Z'(Q + Qt + g In[t])]dt 

= exp(-ln[r] + Z'([Q - g In(r)] + (l2/r)t" + S! In[t"]))dt''. 

Let the first component of each of the coefficient vectors be the 
constant term. Then the coefficient values for the model with 
time measured in the units of til are related to the originally 
estimated coefficient values by 

c1" = -In(r) + °1 - a1 In (r) ; 

<=mil = <=m- am In(r) m not equal to 1; 

bro" = bm/r all mi 

am " = am all m. 
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III. THE ANALYTIC APPROACH. 

A. The Overall Scheme. 

The two basic problems of building an actuarial model of 
recidivism are determining which covariates are systematically 
related to observed failure and deciding how these variables are 
to be combined mathematically to produce an estimate of failure 
probability. 6 Given a solution to the first problem, the second 
would reduce to investigating the relative validity of different 
model forms -- logit versus hazard models, for example. But in 
the absence of strong, well-confirmed theory of what individual 
attributes lead to success or failure, the analyst evidently 
faces something of a dilemma. 

The persistence of this dilemma over years of criminological 
research can, at least in part, be traced to the fact that quite 
independent theoretical concepts cannot easily be translated into 
statistically independent observables. Suppose measures of k 
covariates have been made on a subject population. Presumably, 
each of these was chosen because it has a theoretically plausible 
relation to recidivism and, consequently, cannot be rejected s 
priori. It is virtually certain that there exists a fair amount 
of correlation between these variables. For example, age at 
release, length of criminal record and time served in the last 
incarceration all have independent, theoretical justification as 
predictors of recidivsm. But length of criminal record is likely 
to increase with age across the population (for any given 
subject, it certainly cannot decrease); age at release might be 
expected to increase with time served; and time served probably 
increases with length of record. Which of these three or which 
combination actually has the greatest validity as a predictor 
must ultimately be determined empirically.7 

60iscllssion of the controversy of how "failure" itself 
should be operationlized is beyond the scope of this paper. We 
follow Maltz (1984) in using arrest for a new crime as the least 
objectionable among the alternatives -- at least for the purposes 
for which these analyses are undertaken. 

7Two systematic approaches that address the problem of which 
of a set of available covariates to include in a model are to be 
found in the recidivism literature. The first is simply to re­
estimate the model after removal of covariates found not to be 
significant at some pre-specified level. The second is to use 
multi-stage regression or some equivalent procedure to select the 
covariate that would at each step make the greatest improvement 
in model's fit. In terms of improving predictive power, however, 
both methods are open to criticism. (Copas (1985» 
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Implicit in the assertion that one model is demonstrably better 
than another is the notion that there exists an empirical scale 
for measuring how well any given model performs when applied to a 
given population sample. A number of analytic measures might be 
proposed that derive from the likelihood function. Since the 
likelihood is, by definition, simply the joint probability of 
occurrence of the observed pattern of failures and successes when 
individual failure probabilities are prescribed by a given model, 
it provides a straightforward measure by which to compare the 
relative explanatory power of different models. But it has some 
limitations when used as a basis for a statistic that attempts to 
provide an absolute measure in some "goodness of fit" sense. 

A simple, patently contrived example might serve to illustrate 
the point. 

Suppose in a study population of 1000 subjects, 550 failures and 
450 successes are observed. Under a naiv~ model, all subjects 
are assumed to be the same and the individual failure probability 
is taken to be the population failure rate, .55. The likelihood 
under this model is 

or 
Lo = (.55)550 x (1-.55)450 

In Lo = - 688.1. 

Suppose under a model that relates failure to a single, 
categorical covariate (and includes a constant term), 500 
subjects are assigned a failure probability of .50 and 500 a 
probability of .60. Suppose further that there were 250 observed 
failures in the first group and 300 in the second. The log 
likelihood in this case is given by 

In L = 250 In(.5) + 250 In(.5) + 300 In(.6) + 200 In(.4) 

= - 683.1. 

There is thus some modest improvement in explanatory power under 
the second model. Indeed, the likelihood ratio test in this case 
gives a chi-square of 10, [2(688.1-683.1)], which is 
statistically significant at a .005 level with 1 degree of 
freedom. 

While this suggests that the covariate of the hypothetical model 
does indeed bear a relationship to recidivistic failure, one 
might well want some absolute measure of how powerful this 
relation is. A rather straightforward measure of this might be 
the Nth root of the likelihood, where N is the total population 
size. This, of course, is just the geometric mean of the 
individual outcome probabilities: the model-assigned failure 
probabilities of those who failed and the success probabilities 
of those who did not. In this example the value is .505, which 
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is a slight improvement over the naive model's .503. 

The problem with using statistics based on the likelihood as 
absolute measures of the power of a model is that in a sense it 
forces one towards a deterministic conception of the recidivism 
process. If failure or success were the inexorable outcomes for 
individuals with or without certain traits, the likelihood might 
logically be seen as a scale for measuring how well a given model 
with a given set of covariate measures captures this elusive 
causal mechanism. The perfect model would predict individual 
futures with probabilities of 1. 

This kind of determinism may be an appropriate basis for 
~nterpreting results of studies in biology or medicine but one 
would be hard put to find empirical support for it in studies on 
criminal recidivism. Covariates such as age at first arrest or 
number of prior convictions may well be seen as measures of a 
variable propensity to recidivate. But suppose (as we do here) 
that chance plays an inherent role in the outcome and 
consequently in our ability to predict the outcome. It's as if 
success or failure were being determined by an "unfair" coin toss 
with each study subject tossing his own peculiar coin. The job 
of the model then is not to decide whether subject j does or does 
not have the mark of Cain put to try to figure out the 
probability that j's coin will come up heads. 

If that's the case, a measure of overall "goodness of fit" such 
as the Nth root of the likelihood will almost certainly remain 
disappointingly in the .50 -.60 range, no matter what marginal 
improvements we make in the model. Such a measure is simply 
telling us that the model really doesn't do very well in making 
absolute assertions about who will fail and who will succeed. 

To get back to the example, a probabilistic view of the 
recidivism process might interpret the accuracy of the model by 
noting that, with a failure probability of .60, the expected 
number of failures in a group of 500 identical subjects is 300 
with a standard deviation of 11.0. For the group of 500 with 
failure p~obability .50, 250 failures would be expected with a 
standard deviation of 11.2. Since the number of failures 
observed in the two groups of this contrived example were 300 and 
250, respectively, the actuarial-minded might indeed take some 
satisfaction in the model's ability to fit the data. But it 
should also be noted that the naive model does just as good a job 
in this sense since 550 failures would be expected among 1000 
subjects if they uniformly had an assigned failure probability of 
.55. 

The reason for this rather tedious discussion of what must seem 
quite obvious is that it is fundamental to the approach adopted 
in this inquiry. The likelihood function is the basis for 
deciding if one set of covariates is better than another in 
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capturing statistical relationships of importance to the 
individual failure probabilities. statistics based on the 
binomial distribution are the measures used to rate the goodness 
of the fit of any given actuarial model. 

B. Model Construction. 

Parsimony is generally advocated as one of the basic principles 
of good procedure in model building. (e.g. Box and Jenkins, 
1976:17). A model built on too rich a set of explanatory 
variables will be correspondingly weak as a predictor when 
applied to new data. Copas (1985) illustrates this point by 
suggesting using subjects' names as variables. A recidivism 
model judiciously built on such "data" could be made to fit 
perfectly. But it would scarcely be expected to have any 
predictive power. 

We assume that there is some structural relation between an 
individual's probability of recidivism and his measured values on 
some vector of theoretically defensible covariates. Further, we 
assume that such a structure is discoverable from observations 
made on a subject population. The problem is that we must expect 
random inter-sample differences in the correlations among 
variables and in their relationship to failure. Thus, to some 
unknown extent, each population sample is idiosyncratic. 
Shrinkage in the power of a set of independent variables to 
explain recidivism is to be expected when the fitted model is 
validated on a different population sample. The more variables 
used to achieve precision in explaining relationships found in 
the construction data, the greater the tendency of the model to 
reproduce faithfully that data's quirks and eccentricities. (See 
e.g. Reiss, 1951). Obviously such a model would not fit very 
well on data that has a randomly different set of peculiarities. 
The question is how to tell the difference between structure and 
noise. 

Given a set of candidate independent variables, this part of the 
modeling problem can be defined as determining which subset of 
variables can in some sense be regarded as doing the "best" job 
of simultaneously capturing the maximum of structural information 
while at the same time modeling a minimum of sample noise. S A 

8Note that this search is antecedent to the problem of 
estimation of and correction for the shrinkage expected from a 
given model built on a given data set. Criminological 
applications of statistical methods for shrinkage estimation are 
given in Copas (1985) and Copas and Tarling (1986). For an 
information theoretic approach see Larimore (1983) and Larimore 
and Mehra (1985). 
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one-sample procedure analogous to mUlti-stage regression could be 
used with models estimated by likelihood maximization. The 
likelihood ratio test would provide a measure of the statistical 
significance of the increase in likelihood produced by each 
variable added to the model. with considerably less statistical 
elegance and a correspondingly greater reliance on empirical 
results, we proceed here somewhat differently. 

The analytic plan follows this general recipe: 

1. The study population is randomly divided into three non­
overlapping samples of approximately equal size. Call them 
samples A, Band C. 

2. Starting wi·th a model that includes all independent 
variables of potential interest, coefficients are separately 
estimated on data samples A and B. 

3. The model estimated on B is applied to sample A data and 
vice versa. The four log likelihoods (two from estimation of the 
models on A and B and two from cross-validation) are then added. 
(Hazard models are treated here just like fixed time models. 
That is, the model parameters are used to calculate for each 
subject the probability of failure before some common time T 
two years, perhaps.) 

4. Constraining each of the coefficients in turn to be zero, 
approximations to the change that would be found in this sum of 
log likelihoods are now calculated. This, of course, is an 
attempt to approximate what the results might look like if one 
independent variable were deleted from the model. 

5. The variable whose elimination would result in the 
greatest algebraic increase in the sum of log likelihoods is 
dropped and the analysis starts over with the reduced set of 
independent variables. 

6. This programmed search ends when, in this approximation, 
dropping any of the remaining variables would decrease the log 
likelihood sum. 

7. If the final model is thought to be acceptable, the 
coefficients are then estimated on sets A and B combined and the 
"predictive" accuracy of the model is tested by validation of the 
result on data set c. 

Before setting out the mathematics of this estimation process, it 
might not be out of place to give a plain language description 
and, hopefully, some justification for what is going on at each 
step. 

In steps 1 and 2 it is asserted that each of the three randomly 
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selected sub-samples of the data has an equal claim to being a 
faithful copy of the underlying population of which the whole 
data base is itself a particular sample. (Somewhat more 
precisely, the claim is an increasing function of the number of 
subjects in each sub-sample. We take for granted that these sub­
samples are large enough in relation to the number of model 
parameters to give reasonable assurance that estimates have a 
chance of being stable.) We, therefore, have no reason to prefer 
either the A or the B model. This is the underlying reason for 
summing the four log likelihoods in step 3. 

Consider for the moment the model built on data set A. The two 
log likelihoods produced by this model (on A and B data 
separately) are independent probabilities whose product is the 
joint probability of observing the pattern of outcomes found in 
the combined sample -- conditioned, of course, on accepting model 
A's view of the world. The two likelihoods produced by model B 
are interpreted similarly. This means, of course, that we now 
have two competing views of the same world. To what extent can 
they be reconciled? 

By adding the four log likelihoods, we obtain a function which, 
except for omission ot a factor of 1/2, is the log of the 
geometric mean of these world views. We take this to be a 
simUltaneous measure of the discrepancy between them and the 
firmness with which each view is held. The former is measured by 
the two cross-validation terms, the latter by the construction 
log likelihoods. 

Since we are concerned at this stage of model construction with 
the parsimony issue, step 4 tries to arbitrate between the two 
models by proposing to eliminate one of the independent 
variables. Any such elimination must, of course, decrease both 
of the construction likelihoods. The amount of the decrease in 
each case measures the importance the model attaches to that 
variable in its explanation of its construction data results. 

It is possible, however, that dropping a variable could increase 
the cross-validation likelihoods. (For example, we would expect 
this to be the case if the coefficients of a particular variable 
have different signs in the two models.) We take such an 
increase as an indication that inclusion of the variable in 
question might be an important factor contributing to the 
discrepancies between the models' world views. 

At step 5 a compromise is imposed. That variable is selected 
whose elimination would on balance produce the greatest benefit 
in terms of reduction in the discrepancies between the two models 
net the cost of poorer fits to the two sets of construction data. 

The process is repeated until no further compromise can be 
reached through elimination of more variables. Step 7 then 
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dictates a best estimate of a single world view based on the 
combined data sets and those explanatory variables not eliminated 
in this process. 

What follows is the mathematical description of the process as it 
is applied in the analyses of this paper. 

Let L(Y,x) denote the likelihood calculated on data sample Y with 
the paramaters of a model estimated on sample X. Define 

U(A,B) = In L(A,a) + In L(B,a) + In L(B,b) + In L(A,b). 

If the discussion is restricted for the moment to fixed time 
models such as the logit, the terms L(A,a) and L(B,b) are the 
values of the likelihoods obtained in the model estimations, 
which means that for a given set of variables and a given data 
sample the parameter sets a and b are picked so that they 
maximize these likelihoods. Any change in parameter values, in 
particular the imposition of a constraint that the coefficient of 
one of the variables be zero, must decrease these likelihood 
values and, of course, their logs. Suppose, however, that a 
particular variable bears a quite different relation to 
recidivism probabilities in samples A and B. Elimination of this 
variable from the model might then produce a SUbstantial increase 
in the cross-validation log likelihoods. It is the net change in 
U when any given parameter is set to zero that is of interest 
here. 

The argument is virtually identical when hazard models are being 
explored. In this analysis the choice was made to calculate the 
function U by computing the individual success and failure 
probabilities and the four associated log likelihoods at a fixed 
time, thus allowing comparison of the results derived from 
mathematically different model forms. Model estimation using 
likelihood maximization with hazard models is somewhat different 
than with fixed time models in that the likelihood function 
depends not only on which subjects failed and which succeeded but 
also on the times at which the failures occurred or the times at 
which observation of the successes was stopped. It cannot, 
therefore, be asserted that the terms In L(A,a) and In L(B,b) 
would necessarily decrease under any change in parameter values 
since these are not precisely the functions that were maximized 
in the estimation procedure. In fact this makes no difference to 
the argument in support of the change in U as a plausible guide 
for exploring the parsimony question. 

The changes in U could obviously be calculated directly by re­
estimation of a model reduced by one variable. This would be a 
very time consuming procedure since at each stage of the 
exploration the process requires separate testing of each of the 
variables still under consideration. To speed things up, the 

23 



changes are approximated as perturbations, using the first few 
terms of a Taylor series expansion of U. Thus, with k 
coefficients we write for the change in U when the rth 
coefficient is set to zero 

It 

= L (:~ Sajr + :~ 6bjr ) 
J=I J J 

It It 

+ ~ 2: L (a;J~ SaJrS~r + 
J=I III = I 

The "r" subscript is simply a reminder of which coefficient is 
being constrained. The notation is not explicit but it is to be 
understood that all derivatives are calculated with current 
values of the coefficients. From the definition of U all second 
order mixed partials with respect to an "~" and a "b" coefficient 
vanish. 

We next have to determine the approximate changes d~ and db in 
the remaining coefficient values when the rth coefficient is set 
to zero. The values 'of the coefficients were determined by 
solving with A and B data separately the k simultaneous, non­
linear equations resulting from setting the first partial 
derivatives of the log likelihood equal to zero. Consider for 
the moment just the "~" coefficients. Let Vi(S.) denote the first 
derivative of the A data log likelihood with respect to ai. Vi(~) 
is to be considered as a function of all k "a" coefficients. 
(The likelihood function here is the form used in model 
estimation. For logit models it is the same fOl~ as the 
functions entering into the definition of U: In L(A/a). But for 
hazard models the functional fo~s ~~~ different in U and Vi 
because of the way we have chosen to define U). We now expand 
these k functions in a Taylor series about the solution values: 

It . 
\' aV I (~) 

Vir (~+os,.) = VI (a) + L aa caJr 
J=1 j 

Again, the r subscript is simply a reminder that the formalism 
aims at determining the effect of elimination of a particular 
variable. And again, it is to be understood that the functions 
on the right are evaluated with the current values of the 
parameters. Consequently, for any r the first term on the right 
vanishes in each of the expressions i = 1, .•. k. To approximate 
what happens when the rth coefficient is sst s~~al to zero, we 
now specify that 

We approximate the maximum likelihood solution for the parameter 
va.lues of the reduced model by setting Vir equal to zero for all 
i except i=r: 
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k 
\ aV I 
~ aa

J 
6aJr= O. 

J=I 

i = 1, 2, .•. (r-1), (r+l) ... 

For each r value this produces a system of (r-1) linear, 
irulomogeneous equations. Along with the condition darr = -ar , 
this determines the set of dajr to be used in the calculation of 
dUro An identical procedure, of course, is used to determine the 
set of dbjro 

Parenthetically, it might be noted that 

aVI a2 In L 
aaJ = aa1aaJ 

The matrices of coefficients in the equations determining the 
dajr's and dbjr's are thus related to the estimators of the 
information matrices and to the estimated covariance matrices of 
the parameters. Mathematically, the procedure of model 
investigation outlined here is, therefore, not unrelated to the 
traditional arguments of variable significance based on 
estimations of parameter t-statistics. It differs, of course, in 
its adoption of a decision rule for "non-significance" that is in 
part based on empirical results deriving from the simultaneous 
estimation and cross-validation of models using two independent 
sub-samples of observations. 

The values of dUr are calculated for each r from 1 through k. 
positive dU values indicate, at least in this approximation, that 
U would increase if any of these variables were dropped. As 
argued above, this is taken as evidence that a more parsimonious 
model would eliminate some of the differences in the world views 
that exist between the separately estimated A and B models. 
Given any positive dU values, the decision rule, of course, is to 
drop the variable associated with the largest. The whole 
process, beginning with separate parameter estimations on A and 
B, is then carried out with the reduced set of independent 
variables. This iteration procedure ends when, for a given set 
of variables, all the dUr turn out to be negative. Parameter 
estimates for a "final" model are then obtained from the combined 
A and B data. 9 

This procedure can lay no claim to providing a unique solution to 
the problem of finding that model that "best" fits both of the 
data samples. It is devised as a systematic and plausible 
substitute for the impossible task of exhaustive exploration of 
all- of tn-e 2- k_1- -o'··-emp"'y SUl-.=-_ ... - _.t: ... ~-.: "",1-., ""'''' .... h"' .... m; rrhi- ho 

. ,1, 'I '" '- IJ t;;J1I;ww loJ.L "Q_~U.~""Q';;;' "-..... 1100&'- ...- .... '"='- .. - --

9Note that it is at this point that one could introduce 
statistical methods for obtainin'::l "pre-shrunk" parameter 
estimates as in Copas (1985). 
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selected as candidate models. 

In the course of the analysis the algorithm may make some 
decisions that are questionable for one reason or another and so 
should be explored further. Perhaps the simplest reason for the 
procedure to take a turn down a dubious path is the truncations 
of the Taylor series that are explicitly built into the 
procedure. For example, the dajr's that result from setting darr 
equal to -ar may not be "small" enough so that the first few 
terms of the series give a reasonably good approximation to the 
values of the functions at the point s + dgr . This can be 
monitored to some extent by noting whether the value of U at the 
next iteration is reasonably close to the value expected from the 
approximation. 

More problematic is the situation in which the procedure throws 
out what looks like a perfectly good variable -- that is, one in 
which the coefficients in the two estimated models seem 
significant by their t-statistics and approximately equal in 
value. This can happen even when the truncated Taylor series 
proves to be a good approximation to dUo So by the decision 
rules of the algorithm it is a legitimate move. 

The reason for this rather odd behavior is that parameter values 
depend on the whole ccnstellation of variables currently 
appearing in the model. If two of the explanatory variables, x 
and y, are correlated to some degree (or more generally, if x is 
substantially correlated with some sub-set of independent 
variables), it is possible that the removal of x may change the 
remaining parameter values in such a way that the improvement in 
cross-validation log likelihoods overcomes the self-validation 
log likelihood decreases. But again, the question of whether the 
algorithm made a right decision can best be a.nswered 
"empirically" -- perhaps, by seeing what happens when variable x 
is re-introduced into the model at the end of the proqrammed 
search procedure.' - -

C. On Model Validation. 

A number of analytic measures might be proposed that derive from 
the log likelihood obtained when a model is validated on a data 
sample other than the one used for estimating its coefficients. 
But a test that is perhaps somewhat more closely akin to the 
actuarial spirit that underlies this investigation would seem 
more appropriate to a judgment of how accurate the model might 
prove as a predictor. 

For each individual in, a sample, the outcome, failure or success, 
is like the result of tossing an "unfair" coin. There are only 
two possibilities with p(i) being subject i's chance of failure, 
I-p(i) his chance of success. In a large population of subjects, 
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all of whom are identical to slwject i, the probability of 
finding any given number of successes and failures would follow a 
binomial distribution. On the average in a population of size N, 
one would expect to find Np(i) failures with a variance of 
Np(i) (1-pCi». 

Generalizing this, suppose we consider all those subjects in a 
sample whose model-assigned probabilities lie within some 
specified range, say p+ to P2' out of this group the expected 
number of failures is Just the sum of the individual 
probabilities 

E(nf) = 2 p(i) 
P1€ [Pt'P2) 

and the variance the sum of p(i) (1-p(i»: 

2 p ( i) (1-p ( i) ) 
C1 = PIE [p\,p2) 

Suppose then that in examining the cross-validation results the 
overall range of model-assigned probabilities is divided into a 
number of segments. Let E(nf)k and Obk be the expected and 
observed numbers of failures in the kth segment and nk the number 
of subjects that the model assigns to that segment. Then the 
quantity 

'" I\(E(nf}k- Obk )2 

L..E(nfk ) (1\ - E(nfk » 
k 

may be assumed to be chi-square distributed with degrees of 
freedom equal to 2K-1 where K is the total number of segments 
into which the raJ.'lge was divided. 

This follows from. the fact that both the nk and the E(nf)k are 
determined by the: model itself with the single constraint being 
that the sum of the nk must equal the number of subjects in the 
popUlation. Thi~5 is somewhat different from the more familiar 
examples of application of the chi-square test, in which the 
classification of Subjects into categories is determined on the 
basis of some observable characteristic like sex or age group. 

Here the null hypothesis is evidently that the observed and 
expected number:s of failures over the set of K intervals are from 
the same distributions. This chi-square test thus gives a 
familiar statistical measure of the plausibility of the model as 
demonstrated under a cross-validation. The analyst may derive 
further information, of course, from an examination of 'the 
standard deviat~ions. certainly, it would be quite encouraging to 
find that, for all k, the absolute value of E(nf)k - Obk is less 
than the traditional 1.96 times the estimated standard deviation 
for that interval. 

While this chi'-square test gives a simple and readily 
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intelligible result, it does have certain drawbacks. The first 
is not really serious although it adds a bit to the computational 
problem. For finite sized populations, the probability 
associated with a chi-square value depends on the validity of an 
approximation that requires that all cells be adequately 
populated. The usual rule of thumb is that no cell contain fewer 
than 4 or 5 subjects. In the application here, this means each 
of the K divisions of the probability range must have at least 
this number of expected failures gng expected successes. At the 
low end of the model-determined probability range this can mean 
combining the first few categories into one in order that the sum 
of assigned p-values meet the minimum requirement. At the high 
end of the p-range the problem is the analogous one -- in this 
case, getting enough expected successes. But, again, this is 
more of a nuisance than a troublesome flaw in the interpretation 
of the result as a measure of plausibility. 

More serious, perhaps, is the problem that the test depends on 
the arbitrarily chosen number of categories K and therefore 
offers something less than an ideal measure of goodness of fit. 
If K is chosen too small, the measure is unsatisfactory in that 
it doesn't tell us much about how precisely the model has 
distributed the failure probabilities among the subjects. But by 
the same token, if K were taken to be very large and at least one 
of the independent variables is continuous, each of the segments 
of the probability range would ultimately have either 0 or 1 
subject -- which is equally uninformative besides being about as 
gross an error as one could make in using a chi-squared 
statistic. The reason for this complication is that categorical 
variables necessarily introduce a certain lumpiness into the 
assignment of probabilities over the population. With M 
variables each able to take only 1 of two possible values, the 
subjects are necessarily distributed among the 2M distinct 
vectors that could be constructed from these values. If a model 
eventually becomes quite parsimonious, with a few continuous and 
a few categorical variables, there could be noticeable clustering 
of assigned piS around certain values. While this is hardly 
objectionable in itself, the chi-square statistic as a goodness 
of fit test could be quite sensitive to where the K-l division 
points on the p range fall with respect to the positions of the 
cluster peaks. 
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IV. THE NORTH CAROLINA DATA: Orsagh and Marsden (1984) 

A. The Data Base. 

In order to test a "rational choice" model of rehabilitation and 
recidivism, Thomas Orsagh and Mary Ellen Marsden collected 
information on all men released from prison in North Carolina in 
the first half of 1980. For their analyses they kept in the 
study population only those subjects who were under age 50 on 
January 1, 1980, and had spent at least six months in prison just 
prior to their release. This yielded a sample of 1,425 
individuals, whose criminal justice system contacts and 
employment history were followed in official records for two 
years from the date of release. 

For the present analysis, recidivism is defined as any arrest 
that was recorded by the North Carolina Police Information 
Network. 10 There were 1185 subjects for whom unambiguous 
information was available on time to failure or censoring and 
these records were randomly separated into three approximately 
equal sub-samples. Finally, within each sub-sample only those 
individuals were retained in the study populations whose records 
showed no missing data on any of the independent variables 
included in the analysis. 

The independent variables used are defined by Orsagh and Marsden 
as follows: 

Age = Inmate's age on 1 Jan. 1980. 

Alc pgmd = 1 if inmate participated in an alcoholics' 
rehabilitation program prior to exit date. Otherwise = o. 

Alchd = 1 if reported to hav.e been a frequent drinker. 

Arr. Rate = arrest rate per year between age 12 and the year of 
admission on the instant incarceration. 

Deterp = regional ratio of property arrests to reported property 
offenses in 1979. Property offenses are defined as larceny, auto 
theft, burglary and robbery. The region is that which contains 
the offender's home county. 

Deterv = like deterp but for homicide, rape and assault. 

10This is the state agency responsible for preparation of 
North Carolina's submissions to the FBI's Uniform Crime Reports. 
We are informed that PIN records arrests for UCR index crimes. 
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Dmh pgmd = 1 if inmate ever participated in a drug rehabilitation 
or mental health program during his instant incarceration. 
otherwise = O. 

Drmhd = 1 if the inmate reported a drug problem or had received 
treatment for a mental health problem. A drug problem is defined 
as "uses drugs frequently" or "former drug user." A mental 
health problem is defined as "any history of any mental problem." 
Definitions are derived from inmate history, compiled by the 
Department of Correction. 

Ed vocn = number of prison educational and vocational training 
programs the inmate enrolled in while in prison. GED exams are 
included if taken and passed during the present incarceration. 
(This variable differs from the Orsagh/Marsden definition by 
merging the GED variable with the original ad vocn.) 

Ed years = the number of years of schooling which the inmate is 
reported to have had. 

Job SkId = 1 if the inmate was employed as a skilled or semi­
skilled worker or was a student prior to his instant 
incarceration. If he was an unskilled worker, unemployed, or 
reported no occupation, Job SkId = O. 

Marryd = 1 if the inmate was married and living with his spouse 
at the time of the arrest resulting in the instant incarceration. 
otherwise = o. 

Numpty = the total number of property arrest counts relating to 
offenses committed prior to the instant incarceration as derived 
from the Police Information Network. 

Pracd = 1 if the inmate participated in the post-release 
component of the Pre-Release and After-Care program. 
otherwise = o. 

Race = 0 for "white" and 1 for "nonwhite". 

Released = 1 if the inmate was released from prison under 
supervision on his exit date. Unconditional release "maxing 
out" -- = o. 

Rule brk = the number of reported rule violations per year during 
the instant incarceration. 

Time In = the natural log of the number of years served by the 
inmate during his instant incarceration, rounded to the nearest 
quarter of a year. 
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Total = the total number of counts on all arrests prior to the 
inmate's instant incarceration. Note that each arrest may have 
several counts. 

Unemploy = the regional unemployment rate for males within the 
region in which the inmate's county of release was located. Data 
refer to 1980. 

Wrk hisd = 1 if the inmate's reported work history, based on his 
employment record as coded by the Department of correction, 
indicates a stable work record and working regularly at the time 
of the offense or that he was a student at that time. Any other 
code = O. 

Wrk Pd = 1 if the inmate participated in one or more prison duty 
programs or in one or more prison enterprise (industry) programs 
during his instant incarceration. If he participated in neither, 
this variable is O. It has the value 2 if he participated in 
both types of programs. (This v~riable is a combination of two 
separately defined variables in the orsagh/Marsden data.) 

Wrk ReId = 1 if the inmate was ever on work release during his 
instant incarceration. otherwise = O. 

Table A gives for the three subsamples the mean values of these 
variables along with total counts of variables taking only values 
of 0 or 1 and standard deviations of the remaining variables. 

Table A 
North Carolina Releases -- Samples A/B/C 

N=298/326/279 

variable Means 

Failed .43/.51/.49 
Time to failure 
or censoring 566/523/530 

(days) 
(Note: All 
Age 

non-failers were 

Ale pgm 
Alchd 
Arr Rate 
Deterp 
Deterv 
Dmh pgm 
Drmhd 
Ed vocn + 

Ged 

26/27/26 
.09/.12/.13 
.31/.33/.34 
.23/.24/.24 
.20/.20/.20 
.75/.74/.73 
.08/.08/.09 
.21/.17/.15 

.55/.51/.52 

Standard Devs. 

232/255/248 

"observed" for 731 days.) 
7.9/7.7/7.1 

.16/.17/.16 
.047/.048/.044 

.20/.21/.20 

.57/.53/.56 
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93/108/96 
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(Table A continued) 

Ed Yrs 9.8/10.0/9.6 2.4/1.9/2.1 
Job SkId .44/.46/.46 131/149/129 
Marryd .24/.22/.24 72/72/66 
Numpty 2.55/2.50/2.47 2.80/2.48/2.79 
Pracd .36/.27/.30 107/88/85 
Race .54/.54/.56 161/176/155 
Released .86/.80/.87 255/260/243 
Rule Brk 1.18/1.25/1. 06 1. 9/2 .1/1. 9 
Time In .23/.27/.20 .59/.64/.61 
Total 4.45/4.78/4.32 5.0/4.8/4.3 
Unemploy 4.98/4.65/4.72 1. 5/1. 5/1. 5 
Wrk Hisd .48/.48/.48 143/157/135 
Wrk Pd .80/ .84/ .77 .57/.57/.63 
Wrk ReId .45/.53/.48 134/173/135 

The three sub-samples obviously differ in certain population 
characteristics. But there is no a priori reason to suppose that 
this kind of variability would not also be found in single 
samples of this size drawn from a hypothetically infinite 
population of North Carolina Prison releases. Or, to put things 
in more practical terms, it is assumed that the next 300 or so 
releases would show a similar variability in their population 
characteristics. 11 

B. Logit Analysis. 

1. Model Construction. 

Table B gives the results of the initial logit models constructed 
separately on each of the samples. The independent variable is 
arrest for a new offense within two years following release. 
These are "initial" models in the sense that they are built using 
all independent variables. 

11Note the assumption here that inter-sample variability is 
random and that significant characteristics of the underlying 
population are unchanging in time. In practice this is not 
likely to hold over long time periods. (Reiss, 1951; Copas and 
Tarling, 1986) Prudence suggests periodic recalibration of any 
prediction instrument used in making dispositional decisions. 
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Table B 
Initial Logit Models 

Sample 

A B C 
N = 298 326 279 
Failures = 128 166 138 

Variable Coefficient Value 
(t statistic) 

Constant -2.811 2.196 0.326 
(1.852) (1.572) (0.204) 

Age -0.018 -0.047 -0.207 
(0.652) (1.853) (0.637) 

Alc pgm 0.121 0.315 -0.020 
(0.250) (0.770) (0.048) 

Alchd 0.138 -0.034 0.527 
(0.451) (0.115) (1. 630) 

Arr Rate 2.730 0.685 3.716 
(1. 660) (0.493) (2.287) 

Deterp 4.462 -3.505 -0.736 
(1.200) (0.974) (0.180) 

Deterv 0.977 1.123 0.652 
(1.112) (1.369) (0.691) 

Dmh pgm 0.221 -0.187 -0.325 
(0.435) (0.389) (0.633) 

Drmhd 0.300 0.413 0.414 
(0.876) (1.118) (1.024) 

Ed vocn -0.389 0.036 0.076 
(1.384) (0.137) (0.259) 

Ed Yrs 0.049 -0.130 -0.096 
(0.772) (1.887) (1.411) 

Job SkId -0.108 0.066 0.772 
(0.354) (0.242) (2.568) 

Marryd -0.221 -0.147 -0.417 
(0.640) (0.442) (1.151) 
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(Table B continued) 

Numpty 

Pracd 

Race 

Released 

Rule Brk 

Time In 

Total 

Unemploy 

Wrk Hisd 

Wrk Pd 

Wrk ReId 

-0.047 
(0.518) 

-0.587 
(1.835) 

0.199 
(0.673) 

0.304 
(0.655) 

0.167 
(1.909) 

0.109 
(0.415) 

0.158 
(2.001) 

-0.046 
(0.486) 

-0.162 
(0.549) 

-0.028 
(0.115) 

-0.411 
(1. 391) 

Log Likelihood 
-173.17 

Accept naive model?12 
p = .000029 
df = 23 

0.095 
(1.287) 

-0.219 
(0.685) 

0.207 
(0.746) 

-0.310 
(0.818) 

0.316 
(3.134) 

0.351 
(1.469) 

0.059 
(1.198) 

-0.206 
(2.289) 

-0.096 
(0.360) 

0.201 
(0.825) 

0.250 
(0.859) 

-191.75 

.0000022 
23 

0.026 
(0.285) 

-0.493 
(1.505) 

0.796 
(2.477) 

-0.105 
(0.233) 

0.092 
(0.910) 

-0.391 
(1.428) 

-0.010 
(0.150) 

-0.069 
(0.683) 

-0.496 
(1.665) 

-0.129 
(0.536) 

-0.412 
(1.288) 

-161. 43 

.000010 
23 

12The "naive" model assumes all subjects have the same 
failure probability: the failure rate found in the population on 
which the model is constructed. The p value is the chance of 
observing a difference in likelihood values equal to or greater 
than that between the naive and fitted models, given acceptance 
of the hypothesis that the model with covariates carries no more 
recidivism information than the naive model. (Aldrich and Nelson 
(1984» 
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Clearly, Table B suggests both consistencies and inconsistencies 
between the models built on the three different samples. What is 
not so obvious is the validity of inferences that might be drawn, 
given the modeling results from just one of these samples. 

The analysis proceeds by defining samples A and B to be the 
construction data and reserving sample C for empirical 
validation. As explained previously, a decision rule is adopted 
for successively dropping from the model that variable whose 
elimination would produce the greatest estimated increase in the 
sum of log likelihoods of the models built on A and B plus the 
sum of cross-validation log likelihoods. 

Table C shows the values of this sum and the order of elimination 
of variables. 

Table C 
variables successively eliminated in model construction and 

resulting value of log likelihood sum (U(A,E». 

Variable dropped 

(Initial Value) 
Constant 
Total 
Wrk Reld 
Ed Vocn 
Wrk Pd 
Job Skld 
Deterp 

Resulting U 

-784.945 
-778.102 
-776.887 
-773.862 
-771.980 
-770.598 
-770.479 
-770.395 

At this point, dropping any of the remaining variables would 
result in a decrease in U. 

It would be tedious to reproduce here the results of all 16 
models built in the course of this 8 stage process. But a few 
comments about what happened along the way might not be 
uninteresting. 

In general the effect of dropping the constant term was to 
decrease values of most of the coefficients estimated on data set 
A and increase those in model B. No coefficients changed sign at 
this stage. In particular, the coefficients of "total" became 
.158 and .039 in models A and B, respectively. From their 
definitions, we might expect "total" and "numpty" to be 
correlated in the data. In the stage 2 models (after dropping 
the constant), the "numpty" coefficients are -.044 and +.090. 

On the basis of sign consistency one might then expect that 
"total" would be kept and "numpty" dropped. The algorithm 
decided otherwise. After dropping "total", the "numpty" 
coefficients in the stage 3 model became +.075 and +.107. 
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The variables that are subsequently dropped through stage 6 have 
opposite sign coefficients. 

In the course of the first 4 stages, model A's coefficient of 
"deterp" has been positive but decreasing in value. At stage 5 
it changes sign. By stage 7 the A and B model coefficients for 
"deterp" are -.05 and --1.74, respectively. One would expect 
"deterv" to be the most closely related variable. Its 
coefficients have not changed much, taking on values of .928 and 
1.17 by stage 7. Dropping "deterp" brings these coefficients 
somewhat closer together at the eighth and final stage with A and 
B values of .919 and .888. 

The results for this final model are given in Table D for samples 
A and B separately as well as for the solution model estimated on 
the data of samples A and B combined. 

Table D 
Legit Solution Model 

Sample 
A B A+B 

N = 298 326 624 
Failures = 128 166 294 

Variable Coefficient Value 
(t statistic) 

Age -0.019 -0.014 -0.016 
(1.103) (0.846) (1.351) 

Alc pgm 0.062 0.368 0.260 
(0.132) (0.916) (0.886) 

Alchd 0.249 0.064 0.141 
(0.869) (0.222) (0.710) 

Arr Rate 2.974 2.221 2.399 
(2.378) (2.184) (3.117) 

Deterv 0.919 0.888 0.897 
(1.411) (1.616) (2.164) 

Dmh pgm -0.064- -0.093 -0.131 
(0.132) (0.199) (0.395) 

Drmhd 0.338 0.344 0.341 
(1.019) (0.965) (1.435) 

Ed Yrs -0.046 -0.634 -0.049 
(0.907) (1.188) (1.348) 
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(Table D continued) 

Marryd -0.089 -0.159 -0.110 
(0.270) (0.505) (0.494) 

Numpty 0.094 0.111 0.101 
(1.318) (1.604) (2.079) 

Pracd -0.484 -0.190 -0.326 
(1.593) (0.623) (1.571) 

Race 0.061 0.179 0.103 
(0.224) (0.682) (0.561) 

Released -0.403 -0.160 -0.286 
(1.042) (0.481) ( 1.161) 

Rule Brk 0.123 0.324 0.216 
(1. 567) (3.395) (3.679) 

Time In 0.001 0.414 0.249 
(0.003) (1.922) (1.605) 

Unemploy -0.140 -0.181 -0.165 
(1.622) (2.165) (2.834) 

Wrk Hisd -0.051 -0.02~ -0.040 
(0.193) (0.098) (0.217) 

Log Likelihood 
-181.193 -194.524 -380.259 

Accept Naive Model? 
p = .00015 1. 8E-'1 1. 2E-14 
df = 16 16 16 

37 



The final models on A and B give a more consistent picture of the 
variables associated with recidivism than do the initial models. 
In particular, the signs on the coefficients are the same in the 
two models even if some coefficient values differ considerably.13 

2. Model Validation. 

The next step in the analysis is an attempt to measure how good a 
job the solution model on the combined data does as a 
"predictor. II For this purpose the coefficients of the solution 
model were applied to the data of sample C, calculating the 
recidivism probability that the model associates with each 
C subject. The overall range of probability values was then 
divided into 19 non-overlapping and equal length segments. The 
expected number of failers and the standard deviation of that 
number, based on the binomial, were then calculated for each of 
the segments. The results are shown in Table E. (The number 19 
has no special significance. The computer program does this 

13What about variables whose coefficients have low t 
statistics? Would we obtain a more generalizable model by 
dropping these "non-significant" variables? In simple terms a 
low t value here means that the log likelihood function is 
relatively "flat" in certain directions in the neighborhood of 
the solution values and, therefore, relatively indifferent to 
small changes in values of low-t coefficients. Under certain 
distributional assumptions the usual single sample test of 
"significance" measures how reasonable it would be to assume that 
this neighborhood of indifference includes the coefficient value 
zero. One might also test whether it reasonably includes the 
value 7 or any other arbitrarily chosen number. But even if it 
does, one would hardly feel justified in substituting that number 
for the solution value. 

The reason the value zero is special lies not so much in the 
mathematics as in the purpose for which the model is being built. 
Suppose, for example, the study is an evalution and the 
coefficient in question measures the efficacy of a very expensive 
treatment. Policy makers might have second thoughts about any 
widespread implementation unless it would be unreasonable to 
interpret the study results as indicating no treatment effect. 
(The awkward double negative here corresponds to the scientific 
caution and conservatism typical of the significance levels used 
in such studies.) 

The purpose of the models of this paper is much simpler: to see 
how much predictive validity can be obtained in assigning failure 
probabilitie~i on the basis of individual covariates, using a 
particular algorithm to determine an "optimum" degree of 
parsimony. 
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validation in a loop with a variable number of segments. It 
seemed natural to look at the results for 1 and 10 segment 
divisions of the range; and, of course, 19 is the next number in 
this arith.metic series.) 

Table E 
Validation on Sample C of Logit Solution Model Estimated on A+B 

Upper p 
in segment 

.171 

.217 

.262 

.308 

.353 

.399 

.444 

.490 

.535 

.581 

.626 

.672 

.717 

.762 

.808 

.853 

.899 

.944 

.990 

Segment 
n 

6 
19 
19 
21 
27 
27 
20 
21 
26 
17 
18 
14 

5 
12 

7 
7 
6 
5 
2 

Failures 
Observed 

1 
3 
4 
8 

10 
11 

8 
12 
17 

8 
13 

8 
4 

10 
6 
5 
5 
4 
1 

Failures 
Estimated 

.908 
3.802 
4.617 
5.966 
8.851 

10.159 
8.412 
9.788 

13.395 
9.441 

10.910 
9.110 
3.531 
8.865 
5.490 
5.813 
5.257 
4.573 
1. 967 

Std. 
Dev. 

0.877 
1. 743 
1. 869 
2.066 
2.438 
2.516 
2.207 
2.285 
2.547* 
2.048 
2.072* 
1. 783 
1. 018 
1. 522 
1.088 
0.992 
0.806 
0.625 
0.179** 

* = Estimated and Observed failures differ by more than 1 
standard deviation in this segment. 
** = Estimated and Observed failures differ by more than 2 
standard deviations. 

The chi-square te::zt ,nc;:.i~·...,~~e:':J.s 0 ~A.n~l 'S 5.t.~..t.:L~til] t.",Ql":;. a~s~~~ i!1C] 
predictive validity. Given the null hypothesis, the test gives 
the probability of obtaining a chi-square value equal to or 
greater than the value generated by the observations. 14 

In order for all cells to be well enough populated to apply this 
test, the first two and the last five segments in the above table 

140r in frequentist terms. Suppose we accept the model. 
Chi-square is a function measuring the discrepancy between the 
vectors of observed and expected outcomes. The test here then 
gives the fraction of times in a set of hypothetical, repeated 
tests that we could anticipate a discrepancy equal 1:0 or larger 
than the one obtained. 
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were each combined into single segments. The resulting value of 
chi square is 8.503 and, with 27 degrees of freedom, the 
associated probability is .9997. 

It might be noted in passing that, if the same tests were applied 
to samples A and B (ignoring the fact that the solution model 
uses data from these samples), under the null hy~othesis the chi­
square probabilities are .989 and .995, respectively. 

3. Interpretation of Model Results. 

If one chooses to accept this model, the simplest question one 
might ask is how it assesses the relative strengths of the 
variables in their contribution to failure. As mentioned in an 
earlier section of this paper, the effects of individual 
variables can most easily be made apparent by hypothesizing two 
subjects who are identical except in the measures on one 
variable. The results for the logit solution of Table D (the A+B 
model) are given below in Table F. In each case, subject i is 
identical to j on all except one of the model variables. On that 
single variable i differs from j by the amount shown under the 
column heading lid". The difference is always in the direction 
making i the greater recidivism risk. For continuous variables 
the lid" values in this illustration were chosen to be close to 
the standard deviations of these variables found in the data. 

Table F 
Ratios of Failure Odds of Hypothetical Subjects i and j 

variable d = z (i) - z(j) Odds(i)/Odds(j) 

Age -7.5 1.13 
Alc pgm 1 1.30 
Alchd 1 1.15 
Arr Rate 0.165 1.49 
Deterv 0.2 1.20 
Dmh pgm -1 1.14 
Drmhd 1 1.41 
Ed Yrs -2 1.10 
Marryd -1 1.12 
Numpty 3 1. 35 
Pracd -1 1. 39 
Race 1 1.11 
Released -1 1.33 
Rule Brk 1.9 1.51 
Time In 0.62 1.17 
Unemploy -1. 5 1.28 
Wrk Hisd -1 1.04 

If i and j differ on several variables by the amounts of this 
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example, the odds ratio is simply the product of the 
correspondin9 ratios in the table. For example, if i is 7.5 
years younger than j, has a prior arrest rate that is .165 
greater, has two years less of schooling and 3 more property 
offense counts in his record, his odds of being arrested for a 
new offense within two years are 2.5 times j's odds. A;nd if i 
happens to differ from j by the amounts d on all variables, the 
model assesses his failure odds at 38 times j/s. 

These results do not contain many theoretical surprises. 
Recidivism adds decrease with age, increase with alcohol or drug 
abuse histories, increase with extent of prior involvement in 
criminalitYI' and so forth. Some comment might be offer,ed on a 
few of the model's conclusions. 

With regard to the two alcohol variables, the positive :sign on 
the program variable would reasonably seem to indicate that this 
is being seen by the model as an indicator of an alcohol problem 
rather than as a pernicious effect of the program itself. Indeed 
Orsagh and Marsden comment in th~ir report on the unreliability 
of the "alchd" variable. 

Taken at face value, the opposite signs of the coefficients of 
"dmh pgm" and "drmhd" would seem to indicate some rehabilitative 
success for the drug program. 

The "deterv" variable is interesting since its positive sign 
indicates that the comparatively greater risk of apprehE!nsion for 
violent offenses is not perceived as a differential level of 
threat by these subjects as a group~ A simple interpretation of 
this result, then, is that offense behavior is not much affected 
but, given an offense, the chance of being arrested is just 
greater in some jurisdictions than in others. 

The "pracd" and "released" coefficients are encouraging since 
both would say that North Carolina's post-prison policies and 
programs do indeed have some effect in reducing recidivism over 
the first two years after relea~e. 

"Rule brk" is, perhaps, surprisingly strong in its isolated 
effect. The reader should keep in mind that this varialole is 
measured as a rate since it would otherwise be hopelessly 
confounded with "time in." And with regard to "time in," the 
reader is reminded that this is expressed as the log of the years 
of the present incarceration term. Thus, the .62 of Talble F 
actually translates into i's term of imprisonment being about 
twice as long as j's. 

Finally, the variable "unemploy" obviously has the wrong sign to 
lend support to a theory that a general scarcity of jobs would 
contribute to the likelihood of recidivism. Like "deterv," this 
is an environmental variable. One might surmise that it stands 
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as a surrogate for a more complex set of societal conditions. 
For example, it is not totally implausible to guess that an area 
unemployment rate might somehow be a rough measure of a 
jurisdiction's position on a rural-urban scale. But from the 
data available for this analysis, it is impossible to confirm 
this or even to figure out which end of such a scale would be 
more conducive to recidivism. 

C. Hazard Models -- The Proportional Hazard Solution. 

1. Model Construction. 

The hazard models investigated in this paper are based on a 
function that is log linear in the covariates and has the form of 
a gamma density in time: 

In h(~,t) = ~'(g + g In(t) + £t) 

Here ~ is a vector of covariates characterizing the individual 
subject: g, £, and £ are vectors of model coefficients; and t is 
the time to failure or censoring. 

If g and £ are restricted in advance so that only the 
coefficients of the intercept terms are non-zero, one obtains a 
proportional hazard model -- so called because the ratio of the 
hazard function for different individuals remains constant in 
time: 

1n h(Z,t) = Z'g + al In(t) + blt. 

Like the logit analysis described above, the investigation of the 
proportional hazard model started with all variables and 
proceeded to apply the decision rule using the estimated change 
in the sum of log likelihoods to eliminate variables 
inconsistently related to recidivism in the construction data 
samples A and B. One additional variable, "released II was then 
dropped simply for reasons of programing conveni~ndei~ (ana the 
model reestimated. "Released" had had coefficient values -0.209 
and -0.056 with t-statistics -0.748 and -0.264 in samples A and B 
respectively. The final value of the sum of log likelihoods (the 
psi function) at the end of this construction phase was -771.631 

15The programs for the analyses reported here were written 
in Gauss, a PC matrix language created by Lee E. Edlefsen and 
Samuel D. Jones of Applied Technical Systems. Gauss puts a 
constraint on the size of matrices that can be handled at anyone 
time. "Programming convenience" simply means that the analyses 
here were tailored to conform to this constraint rather than 
adapted to a more general procedure requiring that data be read 
in in a loop. 
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-- slightly less than the logit model's -770.395. 

The results along with the solution model constructed on the 
combined data are given in Table G. 

Table G 
Proportional Hazard Solution Model 

Sample 
A B A+B 

N = 298 326 624 
Failures = 128 166 294 

variable Coefficient Value 
(t statistic) 

Coefficients of term constant in time: £ 

Age -0.011 -0.033 -0.025 
(0.737) (2.450) (2.543) 

Arr Rate 1. 973 0.612 1.013 
(2.342) (0.919) (1.971) 

Deterv 0.272 0.368 0.319 
(0.606) (1.050) (1.172) 

Drmhd 0.021 0.401 0.208 
(0.098) (1.902) (1.412) 

Ed Yrs -0.010 -0.044 -0.029 
(0.283) (1.254) (1.192) 

Marryd -0.113 -0.034 -0.075 
(0.473) (0.159) (0.479) 

• 
~ :~ .. • ~!umpty 0.068 0.065· 0.062 

(1.275) (1.413) (1. 777) 

Pracd -0.490 -0.233 -0.338 
(2.469) (1.241) (2.558) 

Rule Brk 0.129 0.153 0.142 
(3.095) (4.480) (5.621) 

Time In 0.008 0.113 0.080 
(0.048) (0.868) (0.819) 

Total 0.011 0.031 0.025 
(0.386) (1.152) (1.409) 

43 



(Table G continued) 

Unemploy -0.120 
(2.580) 

time coefficient: bl 
-0.939 
(2.580) 

ln time coefficient: a1 
0.S51 

(3.290) 

Log Likelihood 
-261. 02 

-0.120 
(2.086) 

-0.080 
(0.310) 

0.144 
(0.986) 

-304.36 

-0.127 
(3.119) 

-0.365 
(1.745) 

0.362 
(2.795) 

-572.21 

Comparison with hazard function constant in time and uniform 
across subjects: Accept null hypothesis? 
p(chi-square) = 1.8E-S 4.9E-9 1.5E-9 
df = 13 for all 3 samples. 

The proportional hazard model solution differs from the logit 
model by dropping both alcohol variables along with the drug 
program, race and work history variables. However, it has chosen 
to retain the variable "total" (number of arrest counts) along 
with "numpty" (number of property arrest counts). As noted 
above, "released" was dropped rather arbitrarily by the analyst. 

All three models of Table G have a similar time dependence. The 
hazard function starts at 0, passes through a maximum at 
t = -(al/b1) and then decays asymptotically to o. The models on 
samples A and B do, however, differ somewhat in position and 
shape. For the A sample, the hazard function passes through a 
maximum at about 11 months after release and through half its 
maximum at 2 months and 31 months. For the B sample the maximum 
occurs at 21 months with the half maxima at .06 and 169 months. 
The combined sample produces a time dependence closer to sample 
A's in position but to B's in shape: a maximum at 12 months and 
half maxima at.7 and 52 months. Essentially, then, the 
proportional hazard model solution represents a continuously 
rising risk of recidivism during the course of the first year 
followed by a quite slow decline in risk after that. It should 
be recalled that "risk" at any given time here means a 
probability of recidivism in the near future conditioned on the 
subject's not having yet recidivated. 
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2. Model Validation. 

Table H gives the results of validation of this model on the data 
of Sample C. 

Table H 
Validation on Sample C of Proportional Hazard Solution Model 

Estimated on A+B 

(p = probability of failure within two years after release.) 16 

Upper p Segment Failures Failures Std. 
in segment n Observed Estimated Dev. 

.175 5 1 0.778 0.810 

.221 11 2 2.219 1. 330 

.267 22 2 5.482 2.029* 

.313 21 7 6.173 2.087 

.359 22 9 7.413 2.216 

.404 29 12 11.027 2.613 

.450 36 17 15.359 2.966 

.496 26 12 12.229 2.544 

.542 24 17 12.420 2.447* 

.588 14 9 7.865 1. 856 

.634 10 9 6.119 1. 540* 

.679 13 7 8.572 1. 708 

.725 14 8 9.738 1.721* 

.771 13 12 9.745 1.561* 

.817 1 1 0.779 0.415 

.863 2 1 1. 714 0.495* 

.908 8 6 7.083 0.900* 

.954 4 3 3.747 0.487* 
1. 00 4 3 3.944 0.233** 

* = Estimated and Observed failures differ by more than 1 
standard deviation in this segment. 
** = Estimated and Observed differ by more than 2 standard 
deviations. 

Collapsing the first two and the last five segments into single 
elements, one obtains a chi-square of 22.17 with 27 degrees of 
freedom and probability of .729 under the assumption of the null 
hypothesis. Again, if this model were applied to samples A and B 
as a test of goodness of fit, the respective chi square 
probabilities are .999 and .925. 

16The test based on probability of failure within a fixed 
two year period allows straightforward comparisons between logit 
and hazard models. Results specifically aimed at examining the 
validity of the hazard model's time dependence are given in 
section E. below. 
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3. Interpretation of Model Results. 

Single variable effects in this model can again be isolated by 
considering the hazard ratios for two individuals who differ only 
in their values on one of the modeled variables. For the 
proportional hazard model these ratios remain constant in time. 
They are, of course, to be interpreted as ratios of conditional 
probabilities, valid for all t.i:me t under the assumption that 
both i and j have survived to t. 

The results are given in Table I. 

Table I 
Ratios of Conditional Failure Probabilities of Subjects i and j 

Proportional Hazard Model 

variable d = z(i) - z(j) Failure Probability Ratio 
p (i) /p (j) 

Age -7.5 1.21 
Arr Rate 0.165 1.18 
Deterv 0.2 1. 07 
Drmhd 1 1.23 
Ed Yrs -2 1. 06 
Marryd -1 1. 08 
Numpty 3 1. 20 
Pracd -1 1. 40 
Rule Brk 1.9 1. 31 
Time In 0.62 1. 05 
Total 4 loll 
Unemploy -1.5 1. 21 

These results are similar to the corresponding logit model odds 
ratios reported in Table F .. If hypothetical subject i happens to 
be so unfortunate as to differ from j by the amounts of Table I 
on all variables, his conditional failure probabilit.y would be 
6.6 times greater. 

D. The "Full" Hazard Model Solution. 

1. Model Construction. 

As mentioned above, the proportional form of the hazard model is 
obtained by imposing a restriction on the coefficients of the 
time dependent terms in the hazard function. This is quite a 
strong assumption to make about the recidivism process. It 
implies that all subjects, no matter how different they may be in 
terms of their values on the model's independent variables, will 
pass through the point of maximum risk at the same time. The 
spread of the risk function (as determined by the times at which 
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the risk passes through its half maximum value) will also be 
identical. Individual covariates can determine only the relative 
heights of the risk curves. 

We now want to investigate a hazard model that allows the data on 
the individual subjects more freedom to determine the time 
dependence of their recidivism risk: 

In h(~,t) = ~'(£ + g In(t) + Qt). 

If an intercept term and all 24 independent variables used in the 
logit and proportional hazard model estimations were included in 
each of the 3 coefficient vectors, a total of 75 model parameters 
would have to be calculated. The data samples A and B did not 
seem large enough to produce that many analytically stable 
results. The construction phase, therefore, begins with the 
variables retained in the proportional hazard solution but 
restores the variable "released" and tests for the effect of an 
alcohol problem by including "Alc Pgm." 

At the end of the construction run, "released" was again 
arbitrarily dropped for programing convenience and the 
coefficients reestimated. This variable had been retained in the 
model only in the linear term in time with coefficients -.043 and 
-.017 and standard deviations .432 and .468 for samples A and B. 

Finally, three more terms were dropped from the model because of 
very small coefficient values: "rule brk ll in the linear term with 
a coefficient of -.0039 and "rule brk" and "total" in the log 
term with coefficients -.00032 and -.0038, respectively. The 
results estimated on this final set of variables are shown in 
Table J. 

Table J 
Full Hazard Solution Model 

N = 
Failers = 

A 
298 
128 

Sample 
B 

326 
166 

Coefficient Value 
(t statistic) 

Time Independent Term: £ 

constant 

Arr Rate 

-1. 573 
(2.892) 

3.333 
(2.668) 

-1.111 
(2.582) 

2.439 
(2.223) 
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A+B 
624 
294 

-1.398 
(4.278) 

2.489 
(3.206) 



(Table J continued) 

Marryd -0.113 -0.115 -0.103 
(0.464) (0.544) (0.662) 

Numpty 0.371 0.115 0.281 
(1.577) (0.693) (2.321) 

Pracd -0.387 -0.210 -0.296 
(1.956) (1.107) (2.219) 

Rule Brk 0.296 0.093 0.143 
(1.80;:) (0.876) (5.642) 

Time In 0.347 0.432 0.489 
(0.428) (0.896) (1.191) 

Total -0.120 -0.039 -0.066 
(0.984) (0.414) (2.103) 

Unemploy -0.066 -0.105 -0.093 
(1.014) (1.792) (2.182) 

--------------------------------Linear Term in 'rime: 12 

Age -0.023 -0.015 -0.015 
(1.7,30) (1.351) (1.865) 

Alc pgm 0.108 0.149 0.123 
(0.383) (0.587) (0.662) 

Arr Rate -2.035 -1. 432 -1.287 
(1.477) (1.243) (1.573) 

Deterv 0.908 0.418 0.614 
(2.218) (1. 301) (2.502) 

Drmhd 0.196 0.014 0.123 
(1.017) (0.059) (0.867) 

Numpty -0.304 -0.065 -0.162 
(1.458) (0.439) (1.872) 

Rule Brk -0.191 0.079 omitted 
(1.219) (0.770) 

Time In -0.362 -0.202 -0.288 
(0.370) (0.466) (0.793) 

Total 0.147 0.063 0.093 
(1.268) (0.73~) (2.784) 
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(Table J continued) 

Log Term in Time: g 

Deterv 0.771 
(1.978) 

Drmhd 0.327 
(1.067) 

Numpty 0.075 
(0.512) 

Rule Brk 0,,042 
(0.557) 

Time In 0.154 
(0.324) 

Total -0.025 
(0.336) 

Log Likelihood 
-248.860 

0.155 
(0.754) 

-0.414 
(2.849) 

8.4E-5 
(0.001) 

-0.010 
(0.231) 

0.369 
(1.574) 

0.025 
(0.526) 

-300.870 

0.287 
(1.602) 

-0.198 
(1.529) 

0.027 
(0.820) 

omitted 

0.361 
(1.689) 

omitted 

-563.063 

comparison with hazard function constant in time and uniform 
across subjects: Accept null hypothesis? 
p(chi square) = 3.7E-9 3.4E-7 9.2E-20 
df = 23 23 20 

At the end of the construction phase (but before omission of the 
three terms with small coefficients) the log likelihood sum 
(U(A,B» was -765.598 -- an algebraically slightly greater value 
than that obtained with either the logit or proportional hazard 
models. 

2. Model Validation. 

The results of the validation of the A+B model on sample C data 
are given in Table K. Again, as in the validation results for 
the proportional hazard m.odel, the results here are given in 
terms of modeled probabilities of failure within two years after 
release from prison. 
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Table K 
Validation on Sample C of Full Hazard solution Model 

Estimated on A+B 

Upper p Segment Failures Failures std. 
in segment 11 Observed Estimated Dev. 

.187 3 1 0.475 0.632 

.232 10 1 2.141 1. 297 

.277 22 2 5.617 2.045* 

.322 29 14 8.594 2.458** 

.368 24 7 8.335 2.332 

.413 32 14 12.622 2.764 

.458 42 19 18.297 3.212 

.503 23 14 11.002 2.395* 

.548 18 10 9.441 2.118 

.593 17 12 9.701 2.040* 

.639 9 7 5.460 1.465* 

.684 14 9 9.231 1.773 

.729 10 8 7.015 1. 447 

.774 6 5 4.513 1. 057 

.819 0 

.864 7 6 5.919 0.955 

.910 5 3 4.400 0.726* 

.955 4 4 3.739 0.494 
1. 00 4 2 3.930 0.261** 

* = Estimated and Observed failures differ by more than 1 
standard deviation in this segment. 
** = Estimated and Observed failures differ by more than 2 
standard deviations. 

Taking the first three and the last seven segments as single 
divisions of the probability range, one obtains a chi square of 
12.8. Under the null hypothesis the chi square probability with 
21 degrees of freedom is .92. By this test the validation fit is" .o\> 

not as good as the .99 obtained with the logit model but 
considerably better than the proportional hazard's .73. The 
proportionality assumption for the recidivism process does indeed 
seem dubious. 

3. Interpretation of Model Results. 

Again individual variable effects will be investigated by 
considering the hazard function ratios for two individuals who 
are identical on all variables but one. The problem is more 
complicated than in the proportional hazard case since the ratios 
may be changing over time. Each variable of the solution model 
will, therefore, be discussed separately. The ratios that are 
given as examples in the discussion should be considered as short 
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term results, valid, say, for the ensuing month. And again the 
reader is reminded that these are ratios of conditional 
probabilities and assume that both subjects have survived to the 
time in question. 

Age: The hazard ratio of the 7.5 years younger to the older 
subject increases exponentially in time from an initial value of 
1. At t = 1 year, the ratio is 1.12; at t = 2 years, it 
increases to 1.26. 

Alc pgm: For a subject with an alcohol problem as evidenced by 
his participation in an alcohol program during the present 
incarceration, the hazard ratio again increases exponentially 
from an initial value of 1 when compared with the subject without 
such evidence of a problem.. At one year and two years following 
release, the hazard ratios are 1.13 and 1.28 respectively. 

Arr Rate: Initially, the individual with a prior arrest rate 
greater by .165 has a failure probability 1.5 times as great as 
his comparison subject. This decreases exponentially so that at 
the end of the first year their risk ratio is 1.2 and after two 
years the risks are virtually identical. 

Deterv: with a difference of 0.2 in the clearance rates for 
violent crimes in their respective jurisdictions, the log of the 
hazard ratio of the two subjects as a function of time is 

In h(i)/h(j) = .2(.614*t + .287*ln(t». 

The ratios after. one and two years are 1.1 and 1.3. Because of 
the positive coefficient of the In(t) term, the hazard ratio 
starts at zero. At two months it is .92 and passes through the 
point of equal risk at about 5 months. without putting too much 
credence in all this, it is still not uninteresting that, taken 
at face value, this model purports to detect a short-lived and 
rather weak deterrence effect. Any differential inhibitions of 
~ph~vinr WQ~~ 9ff r~ther Tli~klYI however; and a system effect 
takes over in which the probability of arrest given a crime is 
simply greater in some jurisdictions than in others. 

Drmhd: Here the ratio starts high, passes through a minimum at 
about 19 months and then begins to increase again. The person 
recorded as having a drug or mental health problem is the subject 
at greater risk throughout. The functional form of the ratio is 

ln h(i)/h(j) = .123*t -.198*ln(t) 

The values of this ratio are given below for selected times. 
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t (months) 

2 
12 
19 
24 

h(i)/h(j) 

1.455 
1.131 
1.109 
1.115 

A result like this might be "explained" by a gradual recidivism 
to drugs followed by a recidivism to crime. However, a rather 
more credible explanation is that the U-shape is simply a 
consequence of the limitations of the hazard's functional form: 
it cannot represent a function that is monotonically decreasing 
to an asymptote other than zero. It looks suspiciously like the 
model may be trying its best to do just that. 

Marryd: Here the hazard ratio remains constant in time with the 
single subject's risk being about 1.1 times that of his married 
counterpart -- essentially the same as the proportional hazard 
model result. 

Numpty: This is the number of all property offense arrest counts 
in the subject's record. Orsagh and Marsden introduced this 
variable under the hypothesis that the offender dedicated to 
property crime has a higher probability of recidivism than does 
his less specialized counterpart. It is to be noted that this 
model retains both "numpty" and "total'~ (the number of all prior 
arrest counts). Therefore, in comparing here two subjects who 
are identical on all variables other than "numpty", we are 
comparing individuals with the same "total", one of whom happens 
to have more property counts in his record than does the other. 
If a "numpty" difference of 3 between subjects i and j is 
assumed, the time dependence of the hazard ratio is given by: 

In h(i)/h(j) = 3*{.281 - .162*t + .027*ln(t». 

This is an ordinary gamma density curve, starting at 0, passing 
through a maximum at t = 2 months and declining asymptotically to 
O. The spread about the maximum is very wide. The curve passes 
through its half maximum values at 1.3 minutes and at 5 years. 
Clearly, the model is doing its best to represent a hazard ratio 
curve that starts out finite and with a very small initial slope, 
and then decreases over the course of time. 

with this interpretation imposed on the results, the model says 
that in the early months subject i's risk is a substantial 1.85 
times j's but by month 22, if i and j both survive that long, 
their risks are virtually identical. 

~qg: The model gives a hazard ratio that remains constant in 
time. The subject who did not participate in the post release 
program has a conditional probability of recidivism about 1.3 
times that of the program participant. 
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Rule Break: As noted above, the time dependent effect of this 
variable on the hazard function was so weak that it was decided 
to consider its contribution as constant in time. with a 
difference of 1.9 in the rate of rule violations over the course 
of the present incarceration, the hazard function for the 
individual with the higher rate of violations is 1.3 times that 
of his more conforming counterpart. The same ratio was obtained 
with the proportional hazard model. 

Time In: The model gives this variable a gamma density shape in 
time. with a difference of .62 in the log of the present term 
of incarceration (i/s term being almost double j/s), the hazard 
ratio becomes: 

In h(i)/h(j) = .62*(.489 -.288*t +.361*ln(t». 

This curve passes through its maximum at about 15 months and 
through half its maximum at 1 month and at 5 1/2 years. For 
about the first four months after release, the model credits the 
individual who served the longer time with a lower failure 
probability. At 15 months the ratio takes its maximum value of 
1.14, decreasing after that so that i and j would have about the 
same risk (given survival) 3 years after release -- which is, of 
course, well after the termination of observations in this data. 

The effect is clearly not a very strong one, especially when one 
considers the strength of the Iitreatment" in this example in its 
relation to the average experience of the population -- terms of 
about 15 months. It seems unlikely that subjects i and j could 
be essentially identical in all other significant respects and 
still have spent such different lengths of time in prison during 
their instant incarceration. 

Total: with a difference of 4 in the total number of counts 
in their arrest histories (but the same number of property crime 
arrest counts), the log of the hazard ratio over time iL given by 
the model as: 

In h(i)/h(j) = 4*{-.066 + .093*t). 

This ratio starts at a value of .77 and then increases 
exponentially, passing through the point of equal risk at about 
8.5 months. At 12 and 24 months, the ratios are 1.1 and 1.6 
respectively. It might be noted that both of the model 
coefficients here have quite solid t-statistics. Further, the 
difference of 4 prior arrest counts for non-property offenses is 
just about equal to the average number of total arrest counts 
across the population. Hypothetical subject i would seem to be a 
rather tougher case than j and the exponential increase in their 
recidivism risk ratio over time (always given survival of both to 
the time in question) is, perhaps, believable enough. However, 
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the reality and the interpretation of the inversion of their risk 
ratio during the first three quarters of a year following release 
are puzzling. 

Unemploy: The model says that the effect of the local 
unemployment rate on recidivism risk is constant in time and 
that, with a difference of 1.5 in this rate, the individual in 
the economically more favored jurisdiction has a conditional 
probability of recidivism that is about 1.15 times that of his 
counterpart in the area of greater unemployment. This same 
result was obtained with the proportional hazard model. 

E. Speculations on policy Use of Hazard Models. 

An indication might be given of how such a model could be used 
for establishment of a policy of differential allocation of 
resources to post-release supervision. This is simply an 
illustration and by no means suggests that the authors consider 
this particular model an adequate basis for actual development of 
such a policy. 

The hazard function at any time t gives a score that expresses 
the model's estimate of the near term risk of failure of those 
subjects who are still considered at risk. We imagine, then, a 
policy that at any time t sorts the subjects into four classes: 

1. Those who have already failed; say through arrest for a 
new crime, but are still under supervised release. 

2. Those whose hazard values lie above some policy­
determined upper cut point. 

3. Those subjects whose hazard values lie below this point 
but above some policy-determined lower cut point. 

4. Those with hazard values below this lower cut point. 

The policy, obviously, would consist in a distribution of 
resources so that the intensity of supervision decreases from 
class 1 through class 4. 

Under the assumption that the probability of recidivism in fact 
decreases with the increased intensity of supervision, is there 
any evidence in the analysis of the North Carolina data to 
suggest that such a policy might work? Do the people who fail 
tend in general to have a higher hazard score at the time of 
failure than do the successes at time of censoring? 

One bit of evidence suggesting that this is so is provided by the 
mean values of the hazard at time of failure for those who failed 
and at time of censoring for those who did not. Using the model 

54 



built on sample A+B but applying it to the whole popu.lation of 
903 subjects, we obtain: 

Mean h of failures at time of failure: .536 
Standard deviation: .615 

Mean h of successes at time of 
censoring (731 days for all): 

Standard deviation: 
.324 
.587 

The t-test for difference in means associates a probability of 
6.4E-8 with the null hypothesis. 

A rather more detailed picture of how such a policy might work in 
practice is given in Table L below. 17 We are assuming a scenario 
in which individuals are reclassified according to their hazard 
scores at four week intervals. Definitions of the column entries 
are: 

Col. 1. Days since release at the beginning of the interval. 

Col. 2. Number of subjects still at risk at the beginning of 
the interval. 

Col. 3. Observed failures within the ensuing four weeks. 

Col. 40 Expected failures within the ensuing fOUl: weeks along 
with the standard deviation. As in previous tables, the expected 
number of failures and the standard deviation are based on the 
binomial distribution. U~ing the hazard function assigned to 
each individual who is still at risk, we calculate the 
probability of failure within the next 28 days. (The mathematics 
of this calculation is described in Note 1 at the end of this 
section. ) 

Col. 5. Mean probability of failure and standard deviation for 
individuals who failed during this interval. (In the table 
entries these are multiplied by 100.) 

Col. 6. Mean probability of failure and standard deviation for 
individuals who survived this interval. 

Col. 7. Probability associated with t-test of null hypothesis 
for differences in the means reported in columns 5 and 6. 

17In Table L the entire study population was used to give a 
relatively fine-grained picture of how the modeled probabilities 
are changing in time. The Table in the appendix to this section 
gives similar information for the results of the (A+B) model 
applied to the data of the validation sample (C). But there the 
time period is divided into 8 intervals of 91 dalYs each. 
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Table L 
4 Week Interval Comparisons of Observed and Expected Failures 

Among Popultation still at Risk 
(Data Sample A+B+C. Model built on A+B.) 

t1 N (t1) Obs. Exp. fail. Av. P(fail) Av. P(Sllrv. ) p (t) 
days fail (s.d.) (s.d.) (s.d.) 

x100 x100 

1 903 9 14.3* 3.43 1. 57 .007 
(3.7) (2.27) (2.15 ) 

29 894 19 19.1 7.68 2.02 .004 
(4.3) (9.22) (2. 16) 

57 875 29 20.3* 5.94 2.19 .0006 
(4.4) (6.25» (2.15 ) 

85 846 30 20.2** 3.03 2.37 .026 
(4.4) . (1.82) (2.36) 

113 816 25 20.5* 3.90 2.46 .027 
(4.4) (3.70) (2.44) 

141 791 8 20.3** 6.17 2.53 .013 
(4.4) (4.63) (2.49) 

169 783 17 20.4 3.11 2.60 .26 
(4.4) (3.31) (2.53) 

197 766 24 20.3 3.34 2.63 .13 
(4.4) (3.31) (2.53) 

225 742 17 19.8 5 .. 76 2.67 .018 
(4.3) (6.21) (2.40) 

253 725 19 19.1 2.95 2.63 .20 
(4.3) (1.65) (2.46) 

281 706 19 18.7 4.44 2.60 .0005 
(4.2) (2.41) (2.42) 

309 687 21 18.0 3.37 2.60 .082 
(4.1) (2.53) (2.52) 

337 666 16 17.4 2.84 2.60 .36 
(4.1) (2.60) (2.57) 

365 650 19 17.0 4.87 2.55 .069 
(4.0) (6.79) (2.37) 
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(Table L continued) 

393 631 18 16.1 2.65 2.56 .41 
(3.9) (1. 53) (2.42) 

421 613 8 15.7* 3.74 2.55 .027 
(3.9) (1. 73) (2.45) 

449 605 15 15.5 3.58 2.53 .048 
(3.8) (2.41) (2.49) 

477 590 13 14.9 5.49 2.47 .057 
(3.8) (6.90) (2.32) 

505 577 16 14.3 2.69 2.47 .21 
(3.7) (1. 02) (2.39) 

533 561 9 13.8* 3.10 2.46 .042 
(3.6) (1. 07) (2.46) 

561 552 13 13.6 2.88 2.45 .16 
(3.6) (1. 50) (2.54) 

589 539 7 13.2* 3.48 2.44 .015 
(3.5) (1.22) (2.61) 

617 532 16 13.0 2.75 2.44 .20 
(3.5) (1.40) (2.71) 

645 516 15 12.6 3.70 2.41 .016 
(3.4) (2.28) (2.79) 

673 501 15 12.1 2.58 2.40 .22 
(3.4) (0.71) (2.90) 

701 486 14 11.7 3.46 2.38 .088 
(3.3) (2.95) (2.97) 

* = Expected and Observed Failures differ by more than one 
standard deviation. 
** = Expected and Observed Failures differ by more than two 
standard deviations. 

There is no single statistic (known to the authors, at least) to 
measure the overall goodness of fit between the sequences of 
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observed and expected failures. 18 The model doesn't seem to be 
doing too bad a job, considering that failure in any given four 
week period is a relatively rare event. Some further insight 
might be obtained by comparison with the results obtained from a 
"naive" model in which it is assumed that the number of failures 
in each interval is a constant fraction of the population 
surviving up to that time. Fitting this naive model at the two 
end points (903 subjects initially, 472 survivors after 26 
intervals), we obtain .0246 as an estimate for this fraction. 
(See Note 2 at the end of this section.) 

Such a model must obviously produce a monotonically decreasing 
sequence of expected failures. The values obtained decrease from 
22.3 in the first interval to 12.0 in the last. In a comparison 
with the hazard function results of Table L, the naive model's 
expected numbers of failures are greater during the first 4 
intervals, fall somewhat below the hazard model's estimates 
through interval 18, and are virtually identical in both models 
thereafter. Except for the naive model's very weak start, there 
would be little reason to prefer one model over the other simply 
in terms of its ability to explain the sequence of failures 
observed. Indeed, as shown in Note 2, this might have been 
anticipated if most of the individual hazard functions are not 
changing too rapidly in time and the overall observation time is 
not too long. 

What is of interest for the triage policy application is not so 
much the model's fit to the sequence of observed numbers of 
failures but the question of whether the model does a sensible 
job of assigning differential levels of risk to subjects in the 
population at risk. The naive model by definition does not 
attempt to do so. Some evidence in support of the fitted hazard 
model's ability to differentiate between individuals is contained 
in the results shown in the last three columns of Table L. 

In each of the 26 intervals the means of the conditional failure 
probabilities of those who failed are greater than the means of 
the survivors. Because of this consistency, the differences must 

be regarded as systematic even though the t-statistics for 
differences between means indicate that in only half of the 26 
intervals is this difference significant at the 95% confidence 
level. Furthermore, the mean p of the failures remains 
throughout greater than the .0246 estimated under the naive 
model's assumption of recidivism as a purely random process. 

For the survivors, the mean conditional failure probability 

18Successive intervals are not independent since each 
subject remains in the population through the interval in which 
he fails. Successes, of course, are contained in all intervals. 
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increases monotonically for the first 9 intervals and then begins 
to decrease quite slowly. 

In comparing the sequences of average hazard scores of failers 
and survivors, it is importcmt to keep in mind that under this 
model two things should be going on. First, the surviving 
population should gradually be depleted of some of its higher 
scoring members. And simultl:lneously, the individual hazard 
scores are changing in time. The mathematical form assumed for 
the model allows individual hazards to take one of four shapes 
as functions of time. Table M shows how these four functional 
forms were distributed by thils model among subj ects who 
eventually failed and those who did not. 

Table M 
Distribution of Subjects Among Different Forms Of Hazard Function 

Monotonically Increasing 
Monotonically Decreasing 
U-Shaped 
"Gamma density" 

Failers 

81 
14 
21 

316 

Successes 

114 
11 
23 

323 

"Gamma density" means a hazard rclte that starts at 0, passes 
through a maximum and then declin\es asymptotically to o. For 61 
of the failers and 89 of the successes with this type hazard 
function, the maximum is not reacned until some time t greater 
than the two years over which follow-up data was collected. So, 
according to the model, 203 (= 114 + 89) of the study's 471 
successes had a risk score that was increasing throughout the two 
year follow-up period. This doesn't imply that these models can 
see beyond the data on which they are built. Prediction in that 
sense is not being tested in this paper. It does suggest, 
however, that a longer follow-up time might well be warranted in 
analyzing recidivism among a population similar to the North 
Carolina releasees studied here. 
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Note 1: On the Probability Calculations in Table L. 

The problem is to determine the probability of failure during 
some finite time interval [tl,t2 ] conditioned on survival to t 1 . 
We define H(tl,t2) to be this conditional probability. with 
f(t) denoting the unconditioned probability density for failure 
and set) the unconditioned probability of survival to time t, 

I [2 f(t) dt 
II 

since 

f(t) = - dS/dt, 

this becomes: 

H (t t) 1 _ S (t2 ) 
I' 2 = S (t

l
) 

Note 2: On the "Naive" Model. 

Let n~ be the surviving population expected at the beginning of 
the k h interval and fk the estimated number failing during that 
interval. We define the naive model by assuming that 

fk = cx~ 

where alpha is a constant. Essentially, this assumption regards 
recidivism as a process of random sampling from the survivor 
population with a fixed sampling fraction. From this definition 
it follows that 

or 

1\.+1 = (1 - CX)k n l • 

Here we determine alpha simply by making the model fit the 
initial and final surviving populations: 

In -1Z. . ( n ) 

InCl-cx) = i6
nl 

. 

With nl = 903 and n27 = 472, alpha equals .0246. 

To examine the relation this has to the fitted hazard model, 
define HiCk) to be the probability of failure of subject i during 
interval k, conditioned on his surviving the first k-l intervals. 
Using the result of Note 1 and summing over all subjects still at 
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risk at the beginning of the kth interval, we obtain 

\' SI (t2) 

~ SI (tl ) 

2: H, (k) = '\( 1 - '''' '" 
lEn\; 

where t1 and t2 are the beginning and end points of the interval. 

Using the definition of Si(t) and the mean value theorem, we can 
write without loss of generality 

( 

I~ exp (-hi (k) "T) ) 
L HI (k) = I\ 1- \; I\ 

lEn\; 

Here T = (t2 - t 1 ) = constant interval length, and hi(k)* is some 
(unknown) value taken on by subject i's hazard funct~on in the 
course of the kth interval. The,result holds for any hazard 
function that is continuous over the time interval. 

The sum on the left is, of course, the expected number of 
failures in the kth interval under the fitted model. The term in 
parentheses on the right is the average failure probability taken 
over the population at risk during that interval. If most of the 
individual hazard functions are not changing too rapidly in time 
around interval k, this average might to a good approximation be 
considered as constant for a set of adjacent intervals. Provided 
the number of intervals in this set is not too large so that the 
higher risk population is substantially depleted through failure, 
the expected numbers of failures in each interval of the set 
reduces in this approximation to the form of the equation on 
which the naive model is based. It should be noted, however, 
that nothing in this approximation requires the strong assumption 
that individual subjects have the same risk -- an assumption that 
is necessarily implied by the naive model. 
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APPENDIX 

13 Week Interval Comparisons of Observed and Expected Failures 
Among Population still at Risk 

Data Sample = C 
Model = Full Hazard Solution on Data Samples A+B 

t1 N(t1) 
days 

1 279 

92 258 

183 240 

274 223 

365 191 

456 181 

547 168 

638 155 

Obs. Exp. fail. 
fail. (s.d.) 

21 18.4 
(4.0) 

18 20.7 
(4.2) 

17 20.7 
(4.2) 

32 19.2** 
(4.0) 

10 15.6* 
(3.7) 

13 14.8 

13 

14 

(3.6) 

13.4 
(3.4) 

12.4 
(3.2) 

Av. P(fail) 
(s.d.) 
x100 

14.1 
(12.0) 

8.4 
(3.1) 

11.3 
(9.2) 

11.8 
(8.4) 

8.7 
(4.2) 

10.6 
(6.1) 

8.5 
(3.3) 

11.3 
(8.7) 

Av. P(surv) 
(s.d.) 
x100 

6.0 
(5.8) 

8.0 
(7.7) 

8.4 
(7.8) 

8.1 
(7.3) 

8.1 
(7.3) 

8.0 
(7.5) 

8.0 
(7.9) 

8.0 
(8.0) 

* = Expected and Observed Failures differ by more than one 
standard deviation. 
** = Expected and Observed Failures differ by more than two 
standard deviations. 
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.001 
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V. CALIFORNIA YOUTH AUTHORITY DATA: Haapanen and Jesness (1982) 

A. The Data Base. 

The Orsagh and Marsden North Carolina data used in the previous 
section allowed models to be built that were rich in covariates 
but limited to a two year follow-up observation period. In this 
section the models are built using a very small set of 
explanatory variables but the data contain recidivism information 
for a period of eight to ten years following parole. 

These data were initially analyzed by the California Department 
of the youth Authority to assess the feasibility of the early 
identification of chronic adult offenders. 19 Male youths 
released from California youth Authority institutions (Preston 
School of Industry, Northern California youth Center and Fricott 
Ranch) during the 1960s and early 1970s constituted the sampling 
base. 20 During their stay with the youth Authority, 
psychological, behaviorial and demographic information was 
collected. Follow-up arrest data were obtained on these 
individuals in the late 1970s and 1980. These follow-up data 
were obtained primarily from official arrest records of the 
California Bureau of Criminal Investigation with supplemental 
data received from the Federal Bureau of Investigation and the 
California Bureau of Vital Statistics. 21 

The present analyses were conducted using only the data from the 
Preston School of Industry. From the original sample of 1715 
subjects, 1699 cases contained information on relevant covariates 

19The data were not originally collected for this purpose. 
Most background and behavioral data were collected by the 
institution at the time of incarceration for purposes of 
assessing program effectiveness. 

20It should be noted that the California youth Authority is 
essentially the "last stop" for delinquent youths, often after 
previous interventions by local and county authorities. 
Consequently, these youths represent the more serious or habitual 
offenders and thus are not representative of the entire 
delinquent population. 

21A detailed description of the study can be found in 
Haapanen and Jessness's final report: Early Identification of the 
Chronic Offender (1982). 

63 



and subsequently served as our final sample. 22 

The common event initiating the time at risk is the date of 
parole from the Preston School with time to failure or censoring 
reported in days. For the logit model and the fixed-time 
validation of the hazard models it was decided to use an 
observation period of 8 years following release. Inferences to 
be drawn from such models require that all "successes" have the 
same time at risk. The exclusion of cases censored earlier than 
8 years after parole resulted in a final sample size of 1633 for 
all fixed-time analyses. 23 It should be noted that individuals 
whose first arrest occurs after 8 years are by definition 
considered "successes" in these analyses. For the hazard models 
all 1699 cases were available for use in parameter estimations. 

Recidivism has been defined in numerous ways in the literature. 
For example, Waldo and Chiricos (1977) offer eighteen different 
operationalizations. The data allowed four operationalizations, 
representing varying degrees of restrictiveness in the behaviors 
deemed failures: 

1. Any arrest 
2. Arrest with a subsequent conviction for that incident, 

although not necessarily for the arresting offense. 
3. Arrest for a felony offense regardless of the subsequent 

disposition of the case. 
4. Arrest for a felony with subsequent conviction, whether 

or not the conviction was for the arresting offense. 

The analytic models of this section were built using the third of 
these operationalizations. Appendix A lists those offenses used 
in the construction of this variable. 

The explanatory variables used in this study represent a 
parsimonious set of variables that have been identified as 
associated with recidivism (Pritchard, 1979): race, commitment 
type, age at parole, number of prior arrests and age at first 
arrest. 

22After one year of good behavior individuals may petition 
the court to have juvenile records sealed. Through inadvertence 
on our part 27 such cases are included among the 1699 used in the 
analyses of this section. 

23For example, in the full sample 110 youths are r.eported to 
have died during the follow-up period. For these subjects the 
mean time to death following parole was 5 years 4 months. The 
fixed time analyses include any of these individuals who are also 
reported to have been arrested for a felony within 8 years but 
exclude those who died within that period and whose records give 
no indication of a prior failure. 
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~ is a "dummy" variable coded 1 if the youth 
was white, 0 if nonwhite. 

Commitment type is a four category variable 
representing the offense for which the individual 
was arrested and sentenced to the Youth Authority. 
Values of 1 were coded for violent crimes, 2 for 
violent-economic offenses, 3 for property and 4 for 
minor offenses. 24 

Age at parole with a range of 13 to 22 years is self­
explanatory. 

Number of prior arrests ranges from 0 through 15. Dr. 
Haapanen points out that these are arrests contained in t~e 
records of 'the California Bureau of Criminal Investig,atitm. 
To that extent they may be regarded as arrests for serious 
offenses. But what constitutes a serious offense may vary 
considerably from one reporting jurisdiction to another. 

Age at first arrest has a range of 9 to 20 years. Again 
this is the first arrest reported in the state records. 

Table N gives summary statistics both for the reduced sample of 
1633 subjects used for the 8 year follow-up analyses and for the 
full sample of 1699 subjects used in the hazard model 
estimations. Failure here is a felony arrest (definition 3). 

, . 

24See Appendix C to this section. 

1) Violent offenses are offenses 1 through 7. 
2) Violent-economic are offenses 8 through 12. 
3) Property are offenses 13, 15-17, 26 and 34. 
4) Minor offenses are all others. 

In the case of multiple charges only the most serious charge in 
each incident was coded in the original data collection. 
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Table N 
Means and standard deviations 

FUll and Reduced samples 

Reduced Sample Full Sample 
(8 follow-up) 

N 1633 1699 
Failures 1346 1377 

Variable x x 
(sd) (sd) 

failure 3 0.824 0.810 

race 0.488 0.488 

commitment type 3.090 3.091 
(1.090) (1.091) 

age at parole 17.564 17.566 
(1.104) (1.104) 

prior arrests 1. 388 1. 347 
(1. 754) (1. 740) 

age first arrest 15.620 15.640 
(1. 698) (1. 710) 

The racial composition of the study population is approximately 
50% white and 50% nonwhite with most youths committed to the 
institution for property offenses. On average these youths had 
one recorded arrest prior to their present commitment and 
experienced their first recorded arrest in their fifteenth year. 
In addition, on average these youths were between seven'teen and 
eighteen years of age when released from Preston. 

Appendix B contains summary information on the three other 
operationalizations of recidivism not employed in the present 
analyses. This information is included only to allow for a more 
complete understanding of the Preston sample. Appendix C lists 
all the offenses for which any subjects were arrested 
(failure 1). They include crimes against persons and property, 
sex offenses, auto and vehicle violations, liquor violations and 
drug andst.atus offenses. As Appendix B indicates f approximately 
93% of the Preston sample were arrested for one or more of these 
offenses subsequent to their parole. 

The second operationalization .(failure. 2) requires a conviction 
for the definition of failure. \See Appendix 0 for dispositions 
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employed in the construction of this variable). Ninety percent 
(1532) of the individuals released from Preston were later 
convicted of some violation. 

Finally, failure 4 considers as "failures" only those 
individuals who were subsequently arrested for a felony and were 
convicted, whether or not the conviction was for the arresting 
offense. Seventy-two percent of the Preston sample met this 
criterion of recidivism. 

Table 0 reports separately for failures (felony arrests) and 
successes the means and standard deviations for all variables 
used in the analysis. For those individuals who subsequently 
recidivated, the average time to ?~rest for a felony was 
approximately two years (712 days) with a range of one week to 
thirteen years. 

Table 0 

Means and Standard deviations for successes and failures 

Reduced Sample Full Sample 
(8 follow-up) 

N = 1633 1699 
Failures = 1346 1377 
Successes = 287 322 

Variable x (sd) x (sd) 

race 
failures 0.458 0.460 
successes 0.631* 0.609* 

commitment type 
failures 3.091 (1.088) 3.092 (1.087) 
successes 3.087 (1.098) 3.090 (1. 111) 

age at parole 
failures 17.536 (1. 092) 17.535 (1.097) 
successes 17.693 (1.151)* 17.696 (1.125)* 

prior arrests 
failures 1.534 (1. 786) 1. 513 (1. 778) 
successes 0.704 (1.409)* 0.637 (1.354)* 

age first arrest 
failures 15.481 (1.669) 15.492 (1.669) 
successes 16.275 (1.684)* 16.276 (1. 740) * 

* significantly different: p less than .05 
In both samples "successes" were significantly different from 
failures in racial composition. Nonwhites were more likely to be 
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failures than were white youths (t=5.37 reduced sample; 4.85 
sample full). The number of recorded prior arrests for successes 
and failures also differed significantly in both samples. 
Successes had fewer prior arrests than those who recidivated 
(t=8.62 and 9.81). Finally, those individuals who did not 
recidivate were older at the time of their recorded arrest than 
were recidivists (t=7.31 and 7.53). 

No significant differences were observed in regard to the 
committing offense. And the differences in means of age at 
parole, while statistically significant, are too small to be 
meaningful. (Appendix E presents means and standard deviations 
for successes and failures for the other three recidivism 
operationalizations). 

A life table represents a convenient, non-parametric way of 
examining the distribution of failures over time. One may expect 
that with recidivism data failure will tend to occur in the early 
years following parole, with the risk of being arrested inversely 
related to the length of survival. 

Table P presents three empirical functions describing survival 
rates i.n the Preston data. set) is the cumUlative survival rate 
at the end of each interval of time. It represents the product 
of the probabilities of survival up to and including the current 
interval. The function f(t) is the estimated probability per 
unit time of arrest for a felony ocurring within the interval 
(i.e., the unconditional failure rate). This value is computed 
by dividing the number of failures in the interval beginning at 
time t by the product of the total number of indi.viduals (here, 
1699) and the length of the interval (here, one year). Finally, 
h(t} is the hazard rate or conditional failure rate. It is 
computed as: 

number of failures in interval 

(interval length) (number of survivors - 1/2 (number of failures» 
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Table P 

Empirically estimated survival function, probability density, 
and hazard rate 

FUll sample (N=1699) 

Interval 
starting time 
(in years) set) f(t) h(t) 

0 .6518 .3479 .4215 
1 .4695 .1807 .3252 
2 .3518 .1148 .2868 
3 .2897 .0594 .1935 
4 .2490 .03;83 .1510 
5 .2242 .02130 .1051 
6 .2105 .0124 .0627 
7 .1927 .0159 .0887 
8 .1865 .0()53 .0323 
9 .1802 .0053 .0345 

10 .1734 .0053 .0382 
11 .1705 .01018 .0172 
12 .1705 .0000 .0000 
13 .1667 .0006 .0225 
14 .1667 .0000 .0000 

All three functions indicate that indeed failure does occur 
primarily early on in follow-up period, with the probability of 
failing in each interval, given survival to the beginning of that 
interval, decreasing virtually monotonically. Appendix F 
presents similar life tables for the other operationalizations of 
failure. 

B. Logit Analysis. 

1. Model Construction. 

As stated previously, the logit model is a static model. 
Consequently, the criterion variable (failure 3) must occur some 
time within a fixed window period. This window period in many 
studies is defined as being one to three years. One reason for 
this is that these studies are interested i:n relatively short 
term effects of some "treatment". The other reason, of course, is 
the expense involved in collecting data covering a long period of 
time for study populations of sUbstantial size. The present 
analysis takes advantage of the excellent work of CYA's Rudy 
Haapanen in assembling a data base that followed up Preston 
parolees for more than a decade. We chose an eight year window 
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period for this study as a compromise in that it provides a 
fairly long period of time at risk without at the same time 
excluding too many subjects from the analysis due to early 
censoring. However, by doing this we make the assumption that, 
given two individuals A and B, if A is first arrested for a 
felony two months after his parole and B is first arrested seven 
and a half years after his parole, A is equivalent to B. 
Cases failing after the window period are necessarily regarded as 
successes (see Maltz, 1984 for a discussion). 

Three mutually exclusive, random samples were drawn from the 
total analysis sample of 1633. Table Q gives the means and 
standard deviations for the three samples. 

N = 
Failures = 
Variable 

failure 3 

race 

commitment 
type 

priors arrests 

age at 
parole 

age first 
arrest 

Table Q 

Means and standard deviations for 
the three reduced samples 

A B 

546 554 
453 456 

x (sd) x (sd) 

0.830 0.823 

0.491 0.507 

3.106 (1.095) 3.083 (1.086) 

1.390 (1. 742) 1.341 (1.768) 

17.595 (1.126) 17.572 (1.125) 

15.652 (1. 727) 15.606 (1. 768) 

C 

533 
437 

x (sd) 

0.820 

0.465 

3.081 (1.090) 

1. 435 (1.754) 

17.523 (1.059) 

15.602 (1.594) 

Initially, logit models making use of all five variables were 
estimated separately on the three samples. Table R presents the 
results. 
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Table R 

Initial Logit Estimates 

Sample A B C 

N 546 554 533 
Failers 453 456 437 

Coefficient Values (t statistics) 
variable 

constant 5.352 (2.63) 4.464 (2.26) 9.749 (4.24) 

race -0.607 (2.40) -0.743 (3.00) -0.285 (1.17) 

commitment 
type -0.056 (0.48) 0.012 (0.11) 0.085 (0.79) 

prior arrests 0.322 (2.80) 0.364 (3. 14 ) 0.496 (4.07) 

age at parole -0.019 (0.15) -0.048 (0.36) -0.472 (3.26) 

age first 
arrest -0.204 (2.15 ) -0.130 (1.40) -0.036 (0.37) 

LL -228.87 -238.59 -229.14 
x2 40.66 39.88 44.41 
df 5 5 5 
P 1.11E-7 2.07E-8 1.60E-7 

As explained previously, samples A and B were then used as joint 
construction samples to identify mutually consistent variables 
with parameters of the final model estimated on the combined A 
and B samples. The decision rules built into the analytic scheme 
eliminated commitment type and age at parole from the model. 
The results are shown in Table S. 
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Sample 

N 
Failers 

Variable 

constant 

race 

prior arrests 

age first 
arrest 

LL 
x2 
df 
P 

Table S 

Logit estimates: Final Models 

A 

546 
453 

B 

554 
456 

Coefficient Values (t statistics) 

4.968 (3.72) 3.991 (3.20) 

-0.634 (2.57) -0.743 (3.07 ) 

0.314 (3.05) 0.347 (3.30) 

-0.210 (2.59 ) -0.150 (1. 97) 

-228.99 -238.66 
40.42 39.74 

3 3 
1.01E-8 1.34E-8 

A+B 

1100 
909 

4.437 (4.87) 

-0.694 (4.03) 

0.332 (4.55) 

-0.178 (3.18) 

-467.86 
79.8 

3 
1. 55E-9 

Generally, one can conclude from the model of Table S that the 
odds of being arrested for a felony within eight years subsequent 
to parole are greater for nonwhites, those with more priors and 
those who had their first first official contact at an early age. 
The individual effects of the variables, though, may prove more 
informative. Recall that this can be determined by examining the 
ratio of odds for two individuals who differ only in their value 
on the mth variable. Thus, given two individuals who differ only 
in regard to race, the odds of failing within eight years for 
nonwhites is approximately two times the odds i~or whites. In the 
case where two individuals differ only in regal:,d to the number of 
priors with one having one prior arrest while the other has five, 
the odds of failing for the youth with five priors is 
approximately four times the odds of the individual with one 
prior arrest. (The odds ratio is 1.79 to 1 if the difference is 
taken as 1.8 -- the standard deviation of the variable in the 
data.) If two individuals differ only in regard to the age of 
onset as measured by the first official arrest with individual i 
beginning at age nine and person j beginning at age fifteen, the 
odds of failing within the window period for the individual who 
began at age nine are approximately three times those of the 
individual whose first arrest was six years later. (The odds 
ratio is 1.37 to 1 if the difference is 1.7 years, the standard 
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deviation of the age at first arrest.) Finally, if i is 
nonwhite, has six priors and was first arrested at age nine and j 
is a white with one prior and was arrested for the first time at 
age fifteen, person i's odds of being arrested for a felony 
within eight years after parole are approximately twenty two 
times j's odds. 

2. Model Validation. 

The solution model (A + B) was then applied to the data of sample 
C. The range of model-assigned probability values was .592 to 
.997 and this was divided into five non-overlapping and equal 
length segments. Table T presents the observed and expected 
numbers of failures in sample C when coefficients from the 
construction model are imposed. 

Table T 

Validation on sample C of logit model estimated on sample A+B 

upper p segment failures :railures std 
in segment n observed expected dev 

0.673 19 12 11. 95 2.10 
0.754 103 73 72.56 4.62 
0.835 143 111 115.14 4.73 
0.916 134 116 117.60 3.79 
0.997 134 125 126.88 2.58 

Chi-square equals 1.478 with 9 degrees of freedom. The 
associated probability under the null hypothesis is .997. 
Further, the difference between observed and expected failures 
never exceeds one standard deviation in any segment. 

C. Hazard Models. 

1. The Proportional Hazard Model. 

a. Model Construction. 

Unlike the logit model, hazard models consider the time to 
failure or censoring to be an essential component of the model. 
Recall that the model being investigated in this paper takes the 
proportional hazard form: 
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Here ~ is a vector of coefficients; al and b1 are constants. 
All cases (N=1699) can be used at least in model construction. 
Table U presents the means and standard deviations for the three 
sample.s. 

Table U 
Means and standard deviations for three sub-samples 

based on the full sample (N=1699) 

Sample A B C 

N = 571 574 554 
Failures = 464 466 447 

Variable x (sd) x (sd) x (sd) 

failure 3 0.813 (0.391) 0.812 (0.391) 0.807 (0.395) 

race 0.487 0.503 0.473 

commitment 
type 3.084 (1.107) 3.098 (1.080) 3.092 (1.089) 

prior arrests 1. 356 (1. 730) 1. 301 (1. 752) 1. 386 (1.740) 

age at parole 17.597 (1.134) 17.564 (1.114) 17.534 (1. 062) 

age first 
arrest 15.658 (1.751) 15.634 (1. 763j 15.628 (1.611) 

Following the scheme used with the logit analysis, a solution 
model was obtained, the results of which are presented in Table 
V. As can be seen, the proportional hazard retains the same 
variables as did the logit model with estimated effects showing a 
qualitatively similiar relationship to failure. 
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Sample 
N 
Failers 

Table V 

proportional Hazard Solution Model 

A 
571 
464 

B 
574 
466 

A+B 
1145 

930 

Coefficient Values (t statistics) 
variable 

Time independent term: Q 

constant. 

race 

prior arrest 

age first 
arrest 

time 
coefficient 

b1 

Ln time 
coefficient 

a1 

LL 
x2 
df 
p 

0.867 (1. 92) 

-0.338 (3.48) 

0.117 (4.68 ) 

-0.091 (3.25) 

-0.326 (8.63) 

0.168 (2.71) 

-992.05 
299.83 

5 
1.55E-9 

0.388 (0.92) 

-0.440 (4.63) 

0.161 (6.44) 

-0.058 (2.23) 

-0.352 (8.88) 

0.222 (3.40) 

-997.82 
315.55 

5 
1. 55E-9 

0.608 (1. 99) 

-0.392 (5.76) 

0.138 (7.67) 

-0.073 (3.84) 

-0.339 (12.84) 

0.193 (4.33) 

-1991. 05 
613.10 

5 
1. 55E-9 

In sample A the hazard function passes through its maximum at six 
months, while sample B/s maximum hazard is at about seven and a 
half months. For the combined sample, the hazard function 
maximum is about seven months after parole. That is, the risk of 
recidivism is rising for the first seven months and then 
gradually declines. 

Generally, one may conclude from the solution model that, given 
survival to time t, nonwhites, those with more priors and those 
younger at first arrest are more likely to fail in the interval 
t to t+dt. Using the example where we have two individuals who 
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differ only on the value of one variable (i.e., white vs. 
nonwhite, one prior vs. five priors, nine at first arrest vs. 
fifteen at first arrest), we are able to assess the relative 
strength of the variables. For the proportional hazard model 
these ratios of risks of near term failure remain constant in 
time. with regard to race, the risk of recidivism per unit time 
for a nonwhite is about one and a half times that of a white. An 
individual who differs from another only in that he has five 
prior arrests while the other just has one is 1.74 times more 
likely to fail. And an individual who was first arrested at age 
nine poses about one and a half times the risk of failure of the 
individual who was fifteen. Consequently, a nonwhite with five 
priors who was first arrested at age nine is about four times 
more likely to be arrested for a felony in each time interval 
subsequent to parole (given survival to the beginning of the 
interval) than the white with one prior and age fifteen when 
first arrested. 

b. Model Validation. 

Table W asseses the final model as a "predictor" using the data 
of sample C. 

Table W 

Validation on sample C of Proportional Hazard solution model 
built on sample A + B 

upper p segment failures failures std 
in segment n observed estimated dev 

0.687 69 44 45.36 3.94 
0.765 100 78 72.31 4.46* 
0.844 127 102 102.81 4.42 
0.922 140 122 123.13 3.84 
1. 000 97 91 92.92 1.97 

* = Estimated and observed failures differ by more than one 
standard deviation in this segment. 

This division of the probability range into five segments 
produces a chi-square of 2.80 with 9 degrees of freedom. Under 
the hypothesis that the pattern of observed and expected outcomes 
are from the same population, the associated probability is .972. 
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, 2. The ItFull" Hazard Model. 

a. Model Construction. 

As stated above the proportional hazard restricts the covariate 
coefficients of the time dependent terms to 2.l'ero. Alternatively, 
it may be plausible that covariate effects change over time as 
defined by the model 

In h(~,t) = ~'(£ + g In (t) + ~t) 

Table X presents the the solution obtained in the usual way by 
using samples A and B as the data for model construction. 

Table X 

Full Hazard Solution Model 

Sample 

N 
Failers 

A 

571 
464 

B 

574 
466 

Coefficient Values (t Statistics) 
Variable 

Time independent term: £ 

race -0.335 (3.45) -0.425 (4.38) 

priors 0.114 (3.93) 0.147 (5.25) 

parole age 0.047 (1.57) 0.051 (1.82) 

age first 
arrest -0.089 (2.78) -0.089 (2.87) 

Linear term in time: ~ 

commitment 
type -0.023 (1.21) -0.024 (1.26) 

parole age -0.015 (3.75) -0.017 (4.25) 

Ln term in time: g 

race 0.029 (0.37) 0.058 (0.72) 
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A+B 

1145 
930 

-0.381 

0.131 

0.047 

-0.087 

-0.023 

-0.016 

0.043 

(5.60) 

(6.55) 

(2.35) 

(3.95) 

(1. 64) 

(5.33) 

(0.77) 



(Table X continued) 

commitment 
type 0.040 (1.00) 

parole age -0.013 (0.68) 

age first 
arrest 

LL 
x2 
df 
P 

0.018 (0.86) 

-991.32 
301. 29 

9 
1.55E-9 

0.047 (1. 09) 

-0.024 (1.20) 

0.032 (1.45) 

-994.92 
321. 36 

9 
1.55E-9 

0.043 (1.48) 

-0.018 (1.29) 

0.024 (1.60) 

-1987.26 
620.69 

9 
1.55E-9 

Unlike the logit and proportional hazard models, all variables 
are retained. In the final model, race, commitment type, parole 
age and age at first arrest appear to be changing in effect over 
time, while prior arrest effects remain constant. Retaining the 
example used in both the proportional and logit models, the 
~elative effects of the variables may be illustrated as follows: 

Race: 
ln h(i)/h(j) = -1*(-.381 + .043*ln(t» 

This function decreases monotonically in time but very slowly 
after the first month or so. Again it should be remembered that 
it estimates a near term probability of failure, given that the 
subject has survived to time t. with two individuals who are 
indentical except for their race, by the end of the first year 
the nonwhite is approximately one and a half times more likely to 
be arrested for a felony in the near future than is the white. 
By year ten the hazard ratio has decreased to 1.3. Recall that 
with the proportional hazard, nonwhites in every interval were 
approximately one and one half times more likely to fail. A 
likely interpretation of this weak time dependence is that the 
model has picked up from the data a signal of a relatively 
stronger risk differential based on race in the first few months 
after release, followed by a risk ratio that remains relatively 
constant in time. Indeed, the data shows the overall ratio of 
non-white to white failure rates to be 1.12 when calculated for 
the entire follow-up period. For the first six months at risk, 
however, this ratio is 1.51. 
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t 
(years) 

1 
2 
5 
8 

10 

commitment type: 

h (i) /h (j) 

1.46 
1.42 
1. 37 
1. 34 
1. 33 

In h(i}/h(j) = -3*(-.023*t + .043*ln(t» 

The function in parentheses has the ti~ical gamma density shape, 
starting at zero, passing through a maximum and then returning 
asymptotically to zero. with the -3, representing the difference 
in commitment type between two subjects, of course, the function 
maps into a U-shaped curve in time. Thus, if person i was 
committed for a violent offense and person j for a minor offense, 
the individual with the more serious committing offense is 
approximately 1.07 times more likely to be arrested for a felony 
at the end first year. The function passes through its minimum 
at about 22 and a half months. By year ten, the individual with 
a violent committing offense is approximately one and a half 
times more likely to be arrested for a felony given survival to 
the beginning of year ten. 

t 
(years) 

1 
1. 86 

2 
5 
8 

10 

h(i)/h(j) 

1. 07 
1. 049 
1. 05 
1.15 
1. 33 
1.48 

One might surmise that the U-shape is the model's attempt to 
represent a hazard ratio that increases slowly but monotonically 
in time, starting from a finite value. 

Prior arrests: 

In h(i)/h(j) = 4*(.131) 

Given two individuals who differ only in the number of prior 
official arrests, where individual i has one prior and person j 
has five, the individual with four more priors is 1.7 times more 
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likely to fail in any interval given survival to the 'beginning of 
that interval relative to the individual with just one prior. 
This result differs little from that estimated with the 
proportional hazard model. 

Parole age: 

In h(i)/h(j) = 2*(.047 - .015*t - .018*ln(t» 

Having two individuals differing only in their age at the time of 
parole from Preston, where person i was 17 and person j was 15, 
results in a decreasing function in time. After one year the 17 
year old at parole is 1.07 times more likely to fail but this 
ratio decreases over the ten year period. For instance, by the 
end of year two they have approximately equal probabilities of 
failing given survival. However, after eight years at risk, the 
individual who was 15 at parole (j) is about 1.3 times more 
likely to fail relative to the person who was 17 (i). The 
variation in the ratio is shown in the tabla below: 

t h (i) /h (j) 
(years) 

~or._' -

1 1.06 
2 1. 01 
3 0.96 
4 0.92 
5 0.88 
6 0.85 
7 0.82 
8 0.79 
9 0.76 

10 0.74 

Age at first arrest: 

In h(i)/h(j) = -6*( -.087 + .024*ln{t» 

Where person i was 9 and individual j was 15 at their first 
officially recorded arrest, at t = 1 year after release the 
youth who was 9 at first arrest is about 1.7 times more likely to 
fail. The ratio decreases monotonically over time. By year 10 
it has the value 1.21. Recall that the proportional hazard model 
estimated that the individual who was 9 at first arrest was 
constantly about one and a half times more likely to be arrested 
for a felony than the youth who was 15. 
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t 
(years) 

1 
2 
5 
8 

10 

b. Model Validation. 

h (i) jh (j) 

1. 69 
1.52 
1. 33 
1.25 
1.21 

------ ---~---~ 

Validation on sample C of the model built on the co~~ined sample 
A + B gives the results shown in Table Y. 

Table Y 

Validation on Sample C of full hazard solution model estimated 
on sample A + B 

upper p segment failures failures 
in segment n observed expected 

0.682 55 36 36.23 
0.761 108 82 77.81 
0.841 134 105 108.10 
0.920 141 126 123.75 
1. 000 95 88 90.70 

*= Estimated and observed failures differ by more than one 
standard deviation in this segment. 

with 9 degrees of freedom the chi-square is 3.38 with a 
probability under the null hypothesis of .947. 

std 
dey 

3.51 
4.66 
4.56 
3.88 
2.02* 

Finally, we may assess the adequacy of the model built on the 
combined data set A+B for "predicting" failure within time 
intetvals. Table Z compares the observed and predicted failures 
for successive 13 week intervals spanning eight years of risk. 
In addition, the predicted average hazard rate for both successes 
and failures are given for each interval. As in the similar 
analysis of the North Carolina data, W9 have here combined the 
observations from all three samples. 
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Table Z 
Predicted and expected failure among population 

at risk at 13 week intervals 
(N = 1699) 

t1 N (t1) Obs Exp fail Av. P(fail ) Av. P (surv) pet) 
(days) fail (sd) (sd) (sd) 

x100 x100 

1 1699 149 155.4 12.14 8.86 .000 
(11. 7) (6.37) (4.70) 

92 1548 194 160.7** 12.32 10.10 .000 
(11. 9) (6.05) (4.41) 

183 1354 138 139.31 11.42 10.16 .001 
(ll.07) (4.74) (4.12) 

274 1215 110 121.5* 11.26 9.88 .002 
(10.37) (4.89) (3.76) 

365 1105 92 105.7* 10.67 9.47 .002 
(9.70) (3.90) (3.49) 

456 1008 92 91.7 10.26 8.98 .001 
(9.07) (3.92 ) (3.19) 

547 911 68 77.9* 9.98 8.44 .001 
(8.39) (3.95) (2.88) 

638 841 54 67.3* 9.34 7.91 .001 
(7.83) (3.43) (2.61) 

729 784 65 58.60 8.69 7.36 .000 
(7.33 ) (2.77) (2.37) 

820 718 51 49.8 7.78 6.87 .001 
(6.78) (2.09 ) (2.21) 

911 665 46 42.9 7.04 6.41 .05 
(6.31) (2.53) (2.02) 

1002 615 33 37.0 6.64 5.98 .02 
(5.88) (1. 75) (1.88) 

1093 578 32 32.3 5.75 5.58 .29 
(5.51) (1.74) (1. 75) 

1184 543 25 28.3 5.81 5.18 .02 
(5.17) (1.41) (1. 64) 
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(Table Z continued) 

1275 516 21 25.0 4.78 4.85 .57 
(4.86) (1.70) (1. 51) 

1366 492 23 22.2 4.66 4.51 .32 
(4.59) (1. 55) (1.40) 

1457 468 18 19.7 4.54 4.19 .07 
(4.33) (0.96) (1.31) 

1548 448 18 17.4 3.89 3.90 .51 
( 4 • 09) (1. 07) (1. 22) 

1639 425 19 15.47 4.05 3.60 .10 
(3.84) (1. 48) ( 1.11) 

1730 406 10 13.6 3.25 3.35 .63 
(3'.61 ) (0.84) (1. 04) 

182'L 395 11 12.3 3.57 3.09 .06 
(3.44) (1.01) (0.96) 

1912 384 9 11.0 3.17 2.86 .20 
(3.27) (1. 13) (0.88) 

"\ 

2003 372 11 9.9 3.05 2.64 .08 
(3.10 ) (0.95) (0.81) 

2094 360 9 8.8 2.77 2.44 .07 
(2.93 ) (0.64) (0.76) 

2185 348 8 7.9 2.55 2.25 .08 
(2.77) (0.61) (0.70) 

2276 339 5 7.1 2.34 2.08 .13 
(2.63) (0.51) (0.66) 

2367 332 6 6.4 1.99 1.92 .40 
(2.50) (0.63) (0.61) 

! 

2458 325 2 5.8* 1. 64 1. 78 .71 
(2.38) (0.34) (0.57) 

2549 323 5 5.3 1.52 J... 65 .73 
(2.29) (0.48) (0.S3) 

2640 316 9 4.8* 1. 82 1. 52 .14 
(2.18) (0.84) (0.45) 

2731 306 6 4.3 1. 41 1.41 .50 
(2.06 ) (0.20) (0.45) 
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(Table Z continued) 

2822 297 7 3.9* 
(1.95) 

1.23 
(0.21) 

1.30 
(0.42) 

.81 

* = Expected and Observed failures differ by more than one 
standard deviation. 

** = Expected and Observed failures differ by more than two 
standard deviations. 

A comparison of the sequences of observed and expected failures 
seems to indicate that from years 3 to 7 the model is doing a 
pretty good job of tracking the changing probabilities over time. 
Initially, its performance is more erratic -- especially in the 
second quarter following parole. 

The sequences of hazard scores for survivors and failures are, 
perhaps, more interesting. For the survivors, the average scores 
increase for the first three quarters of a year and then decrease 
monotonically. For the failures the average score peaks at the 
second quarter. Then with the exception of the periods beginning 
at times 1184, 1639, 1821 and 2640 days, it decreases steadily 
throughout the remainder of the eight years. 

For the first three years the differences between failures' and 
survivors' average scores are statistically significant. After 
the interval beginning on day 1093 the significance test results 
become quite variable; and, indeed, in 6 of the last 20 intervals 
the failures' averages are less than the survivors'. 

Finally, the decreasing standard deviations of both sequences of 
scores should be noted. 

Qualitatively, at least, th~s seems to be saying that the model 
is doing pretty much what we expect of it. Conditional 
probabilities of failure are changing over time and in each 
interval a greater fraction of the high scorers are being d~opped 
from the population as failures. Gradually, the very highest 
risk individuals have either been weeded out or they have 
survived long enough to be well beyond their time of greatest 
risk. The population of scores thus tends to become more and 
more homogeneous. 
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Appendix A 

Offenses used for construction of arrest for a felony and arrest 
for a felony resulting in conviction. 

1) murder1 
2) murder2 
3) manslaughter 
4) assault-felony 
5) forcible rape 
6) other crimes against person 
7) bank robbery 
8) armed robbery 
9) strong armed robbery 

10) burglary 
11) forgery 
12) grand theft 
13) arson 
14) buying and receiving 
15) auto burglary 
16) other felony theft 
17) grand theft auto 
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Appendix B 
Fraction failing; means and standard deviations of observation 
time for other failure operationalizations. 

N = 1699 
Time = days to failure or censoring 

variable x sd min max 

failurel 0.929 

timel 575.806 1044.034 6 5156 

failure2 0.902 

time2 769.034 1217.570 6 5191 

failure4 0.722 

time4 1743.180 1665.606 11 5258 
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f/ Appendix C 

1) murder 1 56) other liquor 
2) murder 2 57) drug sale-heroin,coke,morphine 
3) manslaughter 58) drug sale-LSD,hallucinogenics 
4) assault-felony 59) drug sale-pot,hashish 
5) forcible rape 60) drug sale-pills 
7) assault-misd 61) other sale,manufacturing 
8) person-other 62) drug use-herion,coke,morphine 

10) robbery-bank 63) drug use-LSD,hallucinogenics 
11) robbery-armed 64) drug use-pot,hashish 
12) robbery-strongarm 65) drug use-pills 
13) burglary 66) drug use-sniffing 
14) trespass 67) other use or possession 
15) receiving stolen property 68) drugs and driving 
16) forgery 69) drug,situational violations 
17) theft'""grand 70) suspicion of drug use 
18) theft-petty 71) other misc drug 
19) shoplifting 73) runaway 
20) arson 76) missing person 
21) malicious mischief 78) truancy 
22) burglary-auto 80) curfew 
25 ) child molestation 81) beyond control 
26) other felony theft 82) possession of alcohol 
27) other misd theft 84) violation of juvenile 
29) statutory rape probation 
30) homosexual relations 85) failure to app~ar 

" ' 
31) incest 86) escape 
32) prostitution-solicitation 89) other status offenses 
33) other sex crimes 90) held for other jurisdiction 
34) grand theft auto 91) family dispute 
35) joyriding 92) no precipitating 
36) hit and run offense 
37) traffic 93) missing child 
38) other auto violations 94) no offense given 
39) weapon,possession 95) neglect, abused 
40) resisting,obstruction 96) expelled from home 
41) loitering, vagrancy 97) attempted suicide 
42) disturbing the peac 98) nonspecified offense 
43) gambling 
44) parole violation 
45) probation violation 
46) game violation 
47) other local codes 
48) public safety 
49) suspicion of felony 
50) suspicion of misd 
51) aiding and abetting 
52) other non-status 
53) drunk 
54) drunk driving 
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Appendix D 

conviction was considered to have occurred if any of the 
following resulted. 

1) dismissed, convicted of other charge 
2) suspended sentence 
3) convicted, sentence unknown 
4) fine or restitution 
5) work project 
6} probation without wardship 
7) probation with wardship 
8) adult probation 
9) county juvenile 

10) jail 
11) California Rehabilitation center 
12) California Youth Authority 
13) California Department of Corrections 
14) Non-California prison 
15) death penalty 
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Appendix E 

Means and standard deviations 
for successes and failures 

failure1 failure2 
mean(sd) mean(sd) 

race 
failures 0.481 0.478 
successes 0.583* 0.575* 

commi tment type 
failures 3.10 (1. 09) 3.09 (1.09) 
successes 3.03 (1.14 ) 3.13 (loll) 

age at parole 
failures 17.55 ( loll) 17.54 (1.10) 
successes 17.84 (1.06)* 17.80 (1.11)* 

prior arrests 
failures 1.42 (1. 77) 1. 44 (1.77) 
successes 0.36 (0.84)* 0.47 (1.06)* 

age first arrest 
failures 15.57 (1. 69) 15.55 (1. 69) 
successes 16.55 (1.74)* 16.47 (1.70)* 

time (in days) 
failures 350 ( 499) 438 (542) 
range 6 - 4749 6 - 4207 

successes 3541 (1647) 3804 (1477) 
range 44 - 5156, 44 - 5191 

Number of cases 1699 1699 
failures 1579 1532 
successes 120 167 

* significantly different: p less than .05 
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failure4 
mean(sd) 

0.452 
0.581* 

3.09 (1. 08) 
3.10 (1. 12) 

17.52 (1. 08) 
17.67 (1.16)* 

1. 55 (1.80) 
0.82 (1.45)* 

15.45 (1. 68) 
16.13 (1.71)* 

894 (852) 
11 - 4726 

3944 (1170) 
44 - 5258 

1699 
1226 
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interval 
starting 
time 
(years) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Appendix F 

Estimated survival, probability density 
and hazard rates 

failure1 failure2 

set) f(t) h(t) S (t) f(t) h (t) S (t) 

.3219 •. 6775 1. 026 .4274 .5721 .8023 .7443 

.1668 .1530 .6349 .2406 .1848 .5592 .6061 

.1196 .0453 .3298 .1746 .0642 .3182 .4901 

.0969 .0212 .2093 .1382 .0347 .2327 .4183 

.0873 .0088 .1049 .1225 .0147 .1202 .3670 

.0820 .0047 .0623 .1117 .0100 .0924 .3345 

.0732 .0077 .1135 .1032 .0077 .0785 .3149 

.0676 .0047 .0796 .0973 .0053 .0596 .2924 

.0669 .0006 .0108 .0945 .0024 .0285 .2800 

.0638 .0024 .0462 .0896 .0041 .0536 .2706 

.0615 .0018 .0380 .0881 .0012 .0167 .2641 

.0597 .0012 .0290 .0872 .0006 .0101 .2611 

.0597 .0000 .0000 .0872 .0000 .0000 .2573 

.0566 .0006 .0526 .0872 .0000 .0000 .2573 

.0566 .0000 .0000 .0872 .0000 .0000 .2573 
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failure4 

f(t) h(t) 

.2554 .2931 

.1371 .2047 

.1136 .2116 

.0695 .1582 

.0489 .1305 

.0306 .0928 

.0182 .0604 

.0206 .0739 

.0112 .0433 

.0082 .0341 

.0053 .0244 

.0018 .0116 

.0012 .0147 

.0000 .0000 

.0000 .0000 
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VI . SOME CONCLUDING REMARKS. 

The work reported here was begun as an exploration of where 
certain analytic methods might lead in the study of recidivism 
considered as an inherently stochastic process. This final 
section of what is already an overly long paper will attempt to 
summarize very briG fly what we feel are some of the more 
interesting things we've noted along the way. 

1. On the Prediction of Individual Failures. 

We think that the analyses clearly support the concept of 
"recidivism" as a process in which chance plays an essential 
role. Of course, this is no proof. Some different set of 
explanatory variables or different mathematical forms could 
conceivably produce results that reliably separate a study 
population into distinct groups: almost certain successes and 
almost certain failures. But the variables and relatively simple 
mathematical forms used here assign to most subjects failure 
probabilities that lie in some middle ground -- between .10 and 
.90 in the two year follow-up of North Carolina subjects; between 
.60 and .90 in the 8 years of the CYA data. 

The implication, of course, is that analyses that force a 
population division into predicted successes and failures must 
contend with SUbstantial and relatively irreducible rates of 
prediction error -- a result that will hardly astonish anyone 
with even the most cursory familiarity with the prediction 
literature. If prediction instruments are to be useful in 
practice as guides for dichotomous decisions on individual 
dispositions, it is essential that they also take into account 
the benefits and costs associated with their expected rates of 
right and wrong decisions. with failure probabilities 
distributed continuously over a wide range, these rates can be 
quite sensitive to the value chosen as the boundary between the 
"good" and "bad" risks. That choice seems to us to be an 
important matter for policy makers. 

2. On a More Direct Policy Use of Failure Probabilities. 

criminal justice policy makers are being compelled nowadays to 
experiment with a variety of non-incarcerative sanctions, with an 
attendant concern over the risks to public safety entailed in 
leaving convicted offenders more or less free in society. It is 
in the "more or less" aspect of these sanctioning policies that 
actuarial models would seem to find a natural role. To the 
~xtent that non-incarcerative sanctions can still impose some 
variability in restricting offenders' freedom, these models offer 
a basis for the differential allocation of criminal justice 
resources available for supervision and surveillance. 
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We would argue as well that it is here that hazard models offer a 
practical advantage over static models such as the logit. If a 
term of probation or parole supervision is of any substantial 
duration, it can be assumed that an agency would, as time goes 
on, "reclassify" individuals who are still under their official 
charge. Changes in risk assessment over time are precisely what 
hazard models would purport to be able to do. 

3. On the Importance of Demonstrations of Model Validity. 

In a sense the general analytic plan used in this study 
considered sub-samples from a population as the units of 
analysis. This was done in an attempt to build into the 
investigation some rudimentary requirement of model 
replicability. We think this deserves further research 
consideration. Given a data base of SUfficient size, the 
question is whether we can get more useful information by 
studying it as a collection of independent sub-samples or by 
analyzing all the data at once. 

The authors don't have an answer to which procedure is better. 
But we would point out that the question is not simply a 
technical one. In criminal justice policy applications it can be 
assumed that there is some rough order of population size for 
which a model must give reliable results -- something, perhaps, 
like the number of "predictions" that would have to be made over 
a period of six months or a year. It seems essential to give 
potential users of a model some practical sense of its accuracy 
when applied to samples of that size. statistical assurances 
that the model will prove to be valid over the long run may not 
be convincing and, indeed, could be misleading. We recommend 
that, whenever possible, some empirical demonstration of validity 
be built into the design of all studies that would draw 
conclusions and make policy recommendations based on statistical 
models. 

4. Reporting Probability Distributions. 

Virtually all attempts to synthesize some field of criminal 
justice research and infer what cumUlative progress has been made 
lament the lack of comparability among studies investigating 
similar questions. In this regard researchers using an actuarial 
model to study recidivism could, we think, take a small and 
relatively easy step in the right direction by reporting how 
their mode1 distributes the probability of failure among the 
study population -- not just the model results. In the same vein 
studies evaluating a treatment program or policy innovation 
should report the change found in the probability distribution 
rather than just their determination of whether or not a 
significant effect was found. 
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5. The North Carolina Results. 

In the North Carolina data three variables were retained that the 
authors find particularly interesting. 

First, the rate of in-prison rule violations turned out to have a 
surprisingly strong relation to failure. The literature on this 
gives rather more mixed results. We would certainly encourage 
further investigation of this variable in future recidivism 
modeling studies. 

Second, the crime clearance rate in a subject's jurisdiction of 
release is quite obviously related to his recidivism risk when 
"failure" is observed only through some criminal justice system 
action. This need not have anything at all to do with theories 
of deterrence. If this variable is not included in a model, the 
analyst is making the assumption that, given a crime, the 
probability of arrest (or conviction, or return to prison) is 
uniform across the jurisdictions represented in his study 
population. The results reported here suggest that it might well 
be worthwhile to test that assumption. 

Third, the fact that a jurisdiction's unemployment rate seems to 
have a fairly stable if not particularly powerful ~elation to 
recidivism in the models developed here warrants further research 
attention. As noted earlier, the unemployment rate seems to us 
to be standing as a surrogate for a more complex set of social 
conditions. For it is difficult to conceive of a process in 
which a higher unemployment rate would directly produce a lower 
recidivism probability. Recidivism modeling studies might, 
therefore, be recommended in which some more extended set of 
measures of local socio-economic conditions are tested. 

Something might also be said about some of the variables that 
were not retained -- the modeling algorithm's way of saying it 
could find no consistent relation with recidivism probability. 
In particular, the three variables indicating whether the subject 
had been on work release, whether he had participated in 
educational or vocational training programs and whether he had 
been involved with prison industries or been assigned prison 
duties were all dropped from both the logit and hazard models. 

Theoretically, these variables were intended as measures of some 
improvement in the individual's competence in the job market 
after release from prison. The disappointing result here is not 
inconsistent with orsagh and Marsden'S conclusion based on a very 
different set of analyses. They find only weak evidence for a 
main effect of these variables but rather more encouraging 
results in analyses of interactive effects. 
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6. The Preston Results. 

What is perhaps most surprising is that models built on such a 
small number of covariates and spanning such a long period of 
time would fit the validation sample outcomes at all. Be that as 
it may, comparisons between the North Carolina and the Preston 
results would seem to give some clues for general improvement in 
such models. 

The covariate-rich North Carolina data base results in models 
that distribute individual failure probabilities over a very wide 
range. The parsimonious data set used for the Preston analyses 
result in models that see the population as much more 
homogeneous. And unlike the North Carolina models, the 
proportional hazard model here does about as well as the fully 
parametrized form. Is the recidivism process really fairly 
uniform and simple among the Preston youths and quite different 
from the process operating among adult offenders in North 
Carolina? 

From Table A it might be noted that the two year failure rate 
among North Carolina releasees was about .48. Table P gives the 
two year rate for the Preston sample as .53. The somewhat higher 
value might well be "explained" in terms of differences in 
average ages of the two populations. 

Even more striking, however, is the comparison of Table Z with 
the table given in the Appendix to the North Carolina section of 
the paper. Among those who failed in each 13 week interval, the 
vectors of average failure probabilities assigned by the hazard 
models are quite close during the first two years at risk. The 
average failure probability of survivors, however, is 
systematically smaller in the North Carolina than in the Preston 
results -- at least up to the eighth quarter year. This suggests 
to us that the Preston models are overly parsimonious -- that the 
use of a more extensive set of individual characteristics might 
have resulted in a reliable model that, at least over the near 
term following release, discriminates better between subjects' 
recidivism risks. Indeed, it might be the case that short and 
long term failure probabilities depend on somewhat different sets 
of subject characteristics. 

7. Further Research. 

The logit model was found to perform somewhat better in assigning 
individual probabilities of failure within some fixed period of 
time. These results suggest that it might be preferred as a 
basis for informing dichotomous decisions since the 
characteristic decision criterion in that case typically is 
concerned with relative risk over some policy-determined period 
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following release. 

But hazard models quite generally possess practical as well as 
analytic advantages. Their case is eloquently argued by Maltz 
(1984). In evaluation studies hazard models might uncover an 
effect of delayed time to failure that would be meaningful to a 
policy decision but would be completely masked in the results 
obtained from a fixed-time model. And, as illustrated in this 
paper, the time dependent assignment of risk scores could find 
application in the allocation of parole or probation supervision 
resources. 

We ourselves found particularly interesting the latitude the 
hazard model results give for speculation about why the 
recidivism probability evolves in time the way a model says it 
does. certainly, caution and a very generous amount of 
skepticism are to be advocated in interpreting modeling results 
in such detail -- especially when considering the isolated 
contributions of particular variables as reflecting potential 
causes of failure. 

But it is not entirely fanciful, we think, to look on hazard 
models as a sort of dynamic counterpart of fixed-time models. It 
would not require much of an extension of the hazard modeling 
formalism used here to allow the explanatory variables to change 
in the course of time -- basing risk assessments on current 
values of individual and contextual variables rather than simply 
on the information available at the time of release. A further 
extension of the formalism could also allow for multiple 
failures, offering a method for examining the sequence of events 
that go to make up a criminal career. 

Given the ready accessibility and the power of today's computers, 
recidivism research is no longer much constrained by the costs of 
parameter estimation, even for models that would investigate 
questions of considerable analytic complexity. Of course, the 
large data bases needed for building and testing such models are 
expensive and time consuming to assemble. Slowly but steadily, 
however, such data bases are becoming more readily available for 
modeling research • 
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