If you have issues wewmg or accessmg thls file contact us at NCJRS .8OV.
T e wmﬂ

im

: cllege of engmeermg

e i S THE UNWEF{SITY OF TENNESSEE
by | | KNOXVILLE .

' SERVICE

, TOWARD EXCELLENCE IN
| | | ENGINEERING EDUCATION, RESEARCH,
L | ﬂ AND PUBLIC SERVICE! :

[

&
I3
I
;
4
§
H
i
H

111792

U.S. Department of Justice
National Institute of Justice

This documsnt has been reproduced exactly as received from the
person or organization originaling it. Points of view or opinions stated
in this document are those of the authors and do not necesserily
represent the official position or policies of the National Institute of
Justice. ‘

Permission to reproduce this copyrighted material has been
granted by
College of Engineering
University of Tennessee/EKnoxville

to the National Criminal Justice Reference Service (NCJRS).

Further reproduction outside of the NCJRS system requires permis-
sion of the copyright owner.

ULTRASONIC DETECTION OF COMCEALED HANMDGUNS
Interim Report - Phase III/1

March 1988

‘

1t/7?$

ﬁLTRASONI;zDETECTION OF CONCEALED HANDGUNS

Phase III / 1: Electronies Development for a Field Test Unit

Written by:

Vig Sherrill
David Landau

Edited by:

Thomas Moriarty

University of Tennessee
310 Perkins Hall
Knoxville, TN 37996-2030

Mareh 1988
Interim Report - Phase Il / 1

MARCH 1987 - OCTOBER 1987

NGJIRS

JBH 1% 1088

ATRUISITIONS

. 14

ABSTRACT
In this research program the feasibility of using ultrasound to detect
concealed handguns has been demonstrated (Phase I) and the development of

an Ultrsonic Handgun Detesction System was carried out (Fhase II1).

In Fhagse II1I/1 the development of the digital electronics hardware and

software portions of the field test unit has beaoun.

The particular uwltrasonic technigque uwsed is called the Modal
Excitation Technigue (MET). This technigus uses ultrasound to excite the
natural modes of vibration of the target object. The set of Natural
Frequencies of an object is a distinctive “signature” of the obiect: this

“signatuwre” can be used to digcriminate between different types of obijects.

In FPhase I of this research program. the set of Natural Freguencies
{the ’siqnatﬁre*) o eight handguns and some nongun obijects commonly carried
aboul the body were experimentally determined. It was shown that the
“signatuwre” of the handguns could be distinauished from the “signature” of

the nonguns.

In Fhase II/1., the development of electronic units for transmitting
and receiving airborne uwltrasound relevant to handgun detection was begun

and preliminary ultrasonic systems wers tested.

In FPhase II/%, the develanment of a Field Test Unit was continued, a
Demonstration Unit was designed and built, and the biohazards of airborne

wltrasound were investigated.

L

In Fhase III/1, The development of digital electronics and the
Assciated software was bequn for a Field Test Unit. A Demanstration Unit
utilizing the digital electronics and software developed was designed and

built.

On the basis of the progress towards the development of the Field Test
nit, and the success of the Demonstration Unit, it is recommended that
Further work be done in a Fhase II11/2 effort to complete the development of

e Field Test Unit and beqgin field testing.

-

2

FREFACE
This report was prepared by the Ergineering Science and Mechanics
Department, Univerity of Tennessee, 3210 Ferkins Hall, EkKrnoxville, TM,
B7SAE-ZO30, undar Award numbar ©3-1J-CX-0052(85-3) for the National

Institute of Justice, U.S5. Department of Justice. Washington, D.C. 20521.

This Report summerizes the work done between March 1982 and Octobes

13233, Fhase I1I11/1 - Electronics Development for a Field Test Unit.

The NIJ Frogram Monitor for this research program was Joseph T,

Fochanski, Acting Director, CCLCR.

*

: .

TABLE OF CONTENTS

Section Title Fage

1 INTRODUCTION .uvviewusunssanennvnsnnnananuesnnunssanesu L

1.0 Overview of previous Work ceeeeseneenr wsnwneasnnns 1

1.1 Overview of current work - Fhase III/1 ...ccn.. s R
I1 HARDWARE W hrm s s sEENEEEETe s ANt et R

2.0 Description of Hardware .c.eesossaceso . =1

2.1 Hardware components coueeevessesarsavennasresunnnns 7
02 FONEr AMDLIFLIER wusesussronnnnnvasneesnsnnnecenans B
2.3 Twesters ciicecvssennannasons e =
2.4 Microphone and preamplifier cooveivncvesansarnasan
2.5 A/D sSection weeiieesrssnncanrernns s nanes ceraesal
I e T T R &
2.7 A/D cOnVErter v.accsennnasnsssennss e unuy e lid
L2 A/D controller and RAM tiueev i invensnnarsvansenanns 1T
2e® D/70 section oot iicisaesoscanassnssnavansnsweronnnnel?
210 070 Fillier v iunsnansssnsnnsanornnssrnsnsnns e 17
2011 D/A converter o seeraarsur s s unsan s aanannseselld

212 D/7A controller and RAM co it v vvconasousonessuvnesesld

213 Co-processor inNterface cvicarsvrsnsnsnnansannnssssssts

2.1

5~

CO-PIrOCESSOr v s s s s s unnsessssossumsussansosunssnsws o
2.15 Concluding thoughts on hardware development22
I1I SOFTWARE o v iy v uwun s vunnsnsnuanssusrnsssunsannnnssnunsnacil
3.0 Reasons for development scheme ... esvecvnsuneenssl
=, Actual development ciiccainscrsssusanennencnnnnnnsel
T E TransmiSSion ctee.severacsnansnvsnssnssssannensnnenncs
B¢l RecepliOn cveersncsserosernsasosunsnsnssesnsgisasssit?

T4 Board control v cei s s s s s nenenaa s iy nn o

v

L
o

0%}

Data transfer cesssverasnssns

7 ADC testing vecvvcnnannasvnnns

ok DADC testing c.euvucsvvnnvsonsnssnvsaunns

2.8 Running the frequency aeneration and analvysis

PACKOOE s ucusronannonnssnaansnssunusanssna

\£|

Results of development ...«

L)

vesuwawn a4

e

2,10 Splicing in additional software functionality47

RESEARCH«c.ovav.an Peer e st e w s

4.0 TransduCers cecsnscsssrsosras

4,1 Target chamber« cama e
4.2 Time delay spectrometry
4.3 Pattern recoqni%icn ssteumnwy
4.4 FFT systems .viavevesnnn .
4.5 Software FFT algorithms
CONCLUSIONS AND RECOMMENDATIONS ..
Bibliography iveceevesnsannannnnsa

Appendix A - Hardware listings ...

Appendix B -~ Software listings ..

[
N wwuwn oW w ool
e
" = s ouoww v o olel
[Lt
* « = e wwoow wdelt
[
cveranennanw b

v w " 9w a L}
- « s mas ws

()
‘<
e

4.4

LISY OF FIGURES

Title

RBlock diagram of preliminary field test unit ...

A/D Converter bDlock diaQr M vecoeonuesnsosonsuvusiss

& Pole Chebychev ILFF for A/D converter cecesssuises

A/ converter I covensns e, e
A/D converter control diagram ceeeressrssousonssenu

/78 converter block diagram cecovvvessosurnnssnnsune

& Pnle Chebvyechev LPF for the /A converter cuoeecvesa

T/70 converter. IL fuiviwevrersvenaossnusnsennsnnnsan

Attack, Sustain, and Decay waveForm cueeesesroscans

O/A converter control diagram @escesvesusvnsvasnansnn

Definicon interface I ..icucuancninnns Cenv e P
Definicon interface Il tueeusvencavsnansssnvsannsnna
Envelope of sweep mode transmission ..icceasnanvsnn
Envelope of discrete mode transmissioncavavan
A group of action vectolrS tescaseasvssnasusssnnsns
A section of C Code for a straightforward Discrete
Fourier Transform N cERe s e s et R e s
A section of T code for a Radi=x-2 Cooley~Tukey FFT
A single Radix-2 butterfly .oiieissacnsnsensnoansnns
A flowgraph of a length & Radix-2 FFT tesiveweavvan
Numbers of real multiplies and adds for different

conplex one butterfly FFT algorithms cvsessesevanua

24
et

E0

e
~

o
~

[xad
L1

I INTRODUGTION

1.4} Overview of previous work

Freviously, in phase I and Il of the NIJ project on ultrasound
detection of concealed handauns, much was accomplished on the theoretical
and practical sides of this problem. Frimary guestions., such as, do auns
have patterns of modal excitation which could be used to identify them,
can these modes of excitation be acoustically excited, and does the energy
raeguired for the acoustic excitement pose .any biological hazard for people

in the area of the dispersed enerqy. were ashked and answered.

In phase I of this research program, the set of natwral freguencies
{the “signature’) of eight handguns and some nonaun objects commonly
carried about the body were experimentally determined. It was shown that
the “signature” of the handouns could be distinguished Ffrom %the

“gsignaturs” of the nonquns.

In phase 11/1, the development of electronic units for transmitting
and receiving airborne ultrasound relevant to handgun detection was begun

and preliminary ultrasonic svystems were tested.

In phase I1I/%, the development of a Field Test Unit was continued, a
demonstration unit was desianed and built, and the bichazards of airbarne

uliraspund were investigated.

¥

i.1) Overview of current work - Phase III/1

After the completion of this preliminary research. it was decided that
a small, mobile, inexpensive, and quick Field Unit should be developed to
carry out the ultrasonic detection of concealed handauns. n order to
carry out this task, the operating philosophy was to streamline the desian
by wsing off the shelf components wherever possible to achieve the aims of
reduced costs, improved eeliability and availability, reduced development
time, and reduced size and complexity. Also, the aim was to come up with
a system which would be suitable and useful in the real.world of airports,
offices., and lobbies: and which would reguire no resident expert fo

operate.

The system under development for phase III of the projsct mests the
gnals of off the shelf construction and obtains the benefits which acorue
from this type of desian. Software was able to be written in Ye" which is
an excellent language for microprocessor based systems under development.
The hardware / software interfaces were therefore efficiently designed and
implemented. Work on the proiect has progressed to the point where

Lransducers are the subsyvstems of major interest.

In order to achieve patterns of modal excitation which are
distinqguishable from the accompanving noise and reverberation in any
practical s Field Unit., transducers must producs sound of sufficient power
and evenness to saturate a large field in which a suspect aqun may be
present. The qun may be concealed, in which case the sound will have to

pass throunh the concealing material and excite the aqun. The sound from

the excited gun will then have to pass through the concealing material,

~

-. n ¥

.

and then a receivinq transducer must pick up the resultant sound. along
with whatever other sound is pressnt, and convey it to the calculational
portion of the system. Eecause of this sequence of events, the
transmitting transducer must be able to project very loud sounds +to be
able +to reach the gun and excite it to a significant degree through a
varisty of possible concealing materials. It must also be able to

saturate a large field since the qun mav be anywhere within this field.

On the receiving side, the transducer must be able to pick wp the
signal at a much diministhed level from that of the transmitted signal due
to attenuation through the material of concealment, and dus to the dying
out of the modal excitation response. The receiving transducer must also
he able to pick up signals coming from anywhere within the area where &
qun may be located, reqgardless of the direction of the aun in relation to

any axis of preference for the receiver.

Becausg of the difficulty in satisfving these requirements for the
oparations of transducers in the system, this area is the probable focus
of fulture work for a Field Unit to do ultrasonic detection of concealed

handaguns.

Currently, the development of the Field Unit has progressed to the
puint where sounds are configured to a specified desian, sent, received,
encoded, and analvzed in a system desianed and implemented with off the

shelf components.

03

S

Figure 1.0 ~ Block Diagram of Preliminary Field Test Unit

_m Wm JOSREOOLL-0) O3 BReIIIIUT

IR

=8 1043400 pus B[OV
- Od War wOBREDOLS-0D WY BEIENUDD QY Lo ._Lw« ..«couu_ufm-\o

m)
A ...IHL “O3 1T P

SFRURMY «RISBAUDD QY
SuTg-0say PUWS
t\
% i 83 [14 P
LB3JBAO) Y/
’ll:l../ff))ll
IS
cISTEEL
!ll!"llllll'l-l

=

The rest of this report will describe the various subsections of the
Field unit. The report is divided inte sections on the hardware
comprising the unit, the software comprising the unit, and on some of the
research undertaken to further develop the functionality and efficiency of
the wunit. Finally, a section is included on cornclusions and possible

future directions for the proiject.

II HARDWARE

2.0) Description of hardware

The system bardware and software needed to be extremely flexible
hecause we were not sure on exactly what the final system would be like.
Thus by having & very qeneral system from the beginning we could
aexperiment with different approaches in both hardware and softwars aguite
wasily., With this in mind, the complete testing system was desianed to

ftave the following characteristics.

1) The complete system must be operational by lab technicians with
little or No knowledge of the system.

) The svetem needed to be somewhat portable.

] Cost of the system should be kept minimal.

4 The system should allow for virtually any type of complex wave
transmission between the freguencies of 20 and 100 khz,

=) The system should be flexible enouab that virtually any type
of signal analvsis could be used in signal detection.

&) The system did NOT have to be real time.

We selected early on to base our developments around the IBM FC. It
provided a very large base of existing hardware and software products from

which to choose fraom. Also because of its low cost and portability, it

provided an exéallent medium for upagrading towards a less flexible,

Faster, more efficient system.

To provide a system that would be useful in testing various different
types of trancited waves, and multiple signal processing algorithms, the
hardware needed to be veryv flexible. This implies hiqghly programmable

hardware, which is another reason for choosing the IEM PC.

The general hardware system design goals are listed as follows:

i The Transmitter must be capable of transmitting any wave
that has been specified:

al Foint by Foint.

b By an arbitrary Formula.

c) By an arbitrary Window.

d) Ey a previously RECEIVED wave.

2) The Transmitter should have a:
a)l Fully proarammable Attack time.
b) Fully proarammable Sustain tims.
c) Fully programmable Decay time.

=) The Transmitter should be accurate enough to ensure that
transmitted noise would be below the backaround noise.

43 The Transmitter should provide at least 120 db of sound
across the 20 - 100 Khz frequency spectrum.
95 The Receiver should be able to provide a minimum of &0 db of

dynamic range.

&) The Receiver should be triggerable from the start of the
Transmitter, with some programmable delay.

73 The Receiver frequency response should be flat to within +/-
«Sodb from 20 - 100 Khz.

For more detail on the usage of the system refer to the Software

section.

The First approach to the hardware consisted of a board external to
the IBM PC which provided th.~ above abilities. It however was extremely
slow - and because of this, not very usable. To down load a typical wave
would take over an hour to calculate and transfer to the board. This was
deemed to slow for even a workable prototype system. A second approach was
Lo place the system RAM inside the FC and to use a co-processor. The only
external device to the FC would then be the A/D and L/A subsystem. This
system worked very well and provided quite a usable system. A detailed

discussion of the final hardware design follows.

2.1) Hardware Components

The hardware is comprised of several blocks connected together as
shown in figuere 1.0. The Power AMP, Tweeters, Mike % Pre-amp, are
completely external to the FC where the a/0 Converter, and /A Converter
have hardware internal and external to the PC. The Co-processor Interface
and the Cao-Processor itself are comnletely internal to the FC. A overview
of the hardware designed follows. Because the hardware was designed making
extensive usage of Programmable Logic, it is difficult to explain in
detail the low level operation. In view of this, the listings for all the

Frogrammable parts are given in the appendix along with specific comments.

For mote detailed schematic listings also refer to the appendimx.

2.2) The Power AMP.

The Fower AMF used is the Hafler series 530. This FET AMF is capable
of ocutputting a sustained S50 watts into 4 ohms with 014 distortion from
20 to 250 khz +/- .1 db. It is also capable of outputting over 1000 watts
for short periods of time under the same spe=s. It was chosen because of
its electrical specifications, and it is commercially available for less
than 500 dollars. The AMF proved to be very powerful, rugaged, and

extremely useful.

2.3) Twerters.

The Transmitter chosen at first was based on the ribbon twseters
develo.ed by Magnipan Speaker Corporation. We used these because they
provided a purely resistive load of about 4 ohms, a bipolar, extremely
large radiating field, and were commercially available. The first tweeters
we tested with the system provide a flat frequency response up to about A0
Fhz. We f{thought that we would be able to bring the response up to around

100kR: with minimal worl.

After working with the people at Maanipan, we were able to increase the
freguency response up to about 72 khz (32 db point). As we suspected; the
limiting factor in freguency response was the mass of the ribbon. We
tried various less massive ribbons and were able to obtain even higher
responses, but the ribbon became too fragile to be practical. It became

appargnt that this approach needed much more work to be practical. We feel

that significant improvement in this area is possible.

D]

¥

We ended up using the transmitter array that was developed in phase I1
aof the project. Thie array consists of 10 of the FPolaroid ultrasonic
transmitters hooked in parallel. They were mounted in a circular fashion
on an aluminum plate about & inches in diameter. This provided a
directional and small transmitter field, but we were able tr transmit over
133 db of sound +/~ 3 db from 40 - 100 Khz. This array is documented in

tdetail in the last report.

2.4) Microphone and pre-amp

The Microphone & Fre-amp used were based on the desians from Phaee'II
of the project. It used a sinagle polarcid ultrasonic receiver with special
prre-~amplification and frequency correction circuitry. It proved to be very
sensitive the frequencies from 35 - 100 thz. It did not have a flat
frequency response (+2 db, -2 dbh}), but hecause of the digital signal
processing used, were able to correct for that in software. All in all the

Microphone % Fre-amp proved to very well designed, and practical. There is

A detailed design of the Microphone in the last report.

We do feel that significant improvement can be made on the sensitivity
of the mike. By exploiting different technologies such as a laser mike,
atomic scattering, different capacitance membranes, etc. ., we feel that
another 10 to 20 db of sensitivity could be achieved across the

freguencies of interest.

2.5) A/D Section

The A/D converter is really a stand alone hardware section that is
tapable of digitizing up to 128 K samples at 1 Mhe with 12 bit resolution
and 11 bit accuracy. It is stand alone in that once started,. it requires
no intervention to operate. This was deemed necessary so that the main
processor could be working on the previous samples while the A/LD converter
was taking new samples. In effect the A/D converter works in parallel with
the main processor. The number of samples digitized is programmable from
1 sample to 128 K samples. The digitizer also contains a programmable
trigger that provides delays from lus to . 122 seconds. The A/I section
contains 4 main blocks as shown in figure 2.0. Because of the extreme high
freguency noise in the power lines and signals, we placed the A/D
converter and Filters outside the FC on a separate board, with separate

power supplies. The Control section and RAM was inside the FC.

2.6) A/D Filter

The input filter section contains & Low Pass Filter (LFF) and & Hiah
Fass Filter (HFF). The LFF is used to remove the freguencies above 150
Fhz. It was designed as a & pole Chebychev to provide a minimum of 72 db
attenuation at S00 khz in Drder to avoid any aliasing. Its pass band
ripple was +/~ .3 db across the ranage of 20 - 100 kEhz., The HFF is used to
remove frequencies below 10 Khz. It was provided to remove any D bias and
noise at the lower freguencies. The circuit performed as indicated. The

complete Filtering circuit is shown in figqure 2.1.

1 0

- ARBILNIIUT JOBBRIOUL-0D Of
P

S

BORILBIUT SOSBBIOUL-O) OF
<

v Wy 213833 119 91 A X 821

11

l

Ty

BT 10UIUD) PUR JADUSNDES

|

a9 8T = S Y
330D bEug

S 3343000 QY B T 378 2T

Figure 2.0 - A/D Converter block diaqram

b

Figure 2.1 - & Pole Chebychev LPF for A/D Converter

5.

ot DFUT 10 1Gwm Rax

1z
<

i
.

L

2.7) A/D Converter

The A/D converter used is an Analog Devices HAS-1201. This is a 1 Mh:
12 bit hyirid converter. We chose the high freaguency conversion rate
because of the extra accuwracy we couwld get by oversampeling the input.
This part proved to very reliable and accurate. We were able to achieve 11
bit accuracy and 12 bit resolution Fgom the device. Accuracy refers to the
actual digital code generated vs. the actual input volt.age. Resolution
refers to the total number of different digital codes possible that are
monotonic. This part provided 7% db of dynamic range in theory and we were
able to get about 4% db dynamic range. The loss of 2 db was due to the
noise in and around the part itself. With proper circuit lavout and ground
planes an extra 2 db increase in dynamic range would be possible. We felt
that 4% db was fine for testing, and did not pursue this. The schematic of

ey

this part is shown in Figure Z.2.

2.8) A/D Controller and RAM

The RAM is contained in the control section and would be best
discussed in conjunction with the control section. The RAM for the A/D
converter is made of &, 32K by 8, Static RAMS., configqured in a contiquous
128K by 1l4. The purpose of the RAM is to store the incoming samples in a
continuous Ffashion. The control section is programmable with the inputs
faor two pointers, a control register and a trigger delay counter. The two
poninters are 24 bits wide and are used as address pointers to tell the A/D

converter where in RAM to START and STOF recording. This provides the

12

Bf- BYe

P sanees erseserbers sasere sseris sviaeehy rRsibSINORONIRARaIOROS SRS S RNR RS SrARIRSES & :
| ek L M
_ SrOT1es "D o0 - mln! [CLI
LT SIS B CD r _ 2 L
P T IT ™ srexa e v wwnn W vt I K
orrs o L srate” =8> ~ :
SALLw = LD srmvm e g e ? {
Py s vt srateca 10 jFold :
- &] o o 4 :
o ro'c
IV T8~ u
H Dra >0 - ‘
H ONTad an j
H Be @ ;
i nae >0 ”,
: < i
H annowe n :
onaa T} hd Xm.‘- o Ul) m
200HD E
i ord :
; 2e peieh o e 1RTTCY Mt :
R a '- — i
aa ome B ux o i g 0
P 19 EE we &Y 5 :
wad €13 5 Bxlif 0w 5
aas 213 1x tom EvY j=:4 i a 3 .V
p-+ 311 sy pwl ToRT-oue wee ;
200 0 =3 Lm0 .Iﬂl{((ll?v == B .4
3 -5 AR m b {* u
<IY :
i3 152 i
o8 13 M
% :

ciaa Hn T w_
vir oz) :
— % v :

D § ALY Lo ’
.;.k :«‘ a ﬂ)“ ’“ e .
AT iAS 2 e -.Dv..n!ps 193 tOTQ B0 1Oy i
Iy u

Figure 2.2 - A/D Converter IC

led

4

v
i
-~

ability to break RAM up into separate seagments for use in multiple
recording. The 24 bit trigger delay counter is programmed with the number
of microseconds of the delay. When started this counter counts down to O.
When 0 is reached, the A/D converter is st rted. This counter provides the
ability to delay from 1 microsecond to .12%8 seconds. The control register
is used to control the various modes of the A/D converter section. A
single bit is used to snable or disable the trigger delay. Another bit
determines whether the A/D converter will WRITE over RAM when recording.
or will ADD the current value from the A/D converter with what is already
in RAM. This is useful for averaging. The A/D convérter can ADD up to 7
samples before an overflow might occur (The RAM is 14 bits wide, 12 bits
are used for any particular sample, 3 bits are allowed for overflow when

adding multiple samples, and 1 bit is used in the control section?).

All the logic in the control section was implemented wusing standard TTL
and GALs (Gensric Array logic from Lattice Semiconductor). These GAL
devices are electrically programmable and erasable. They were chosen
because we could keep the parts count small, while allowing for a areat
deal of design freedom, and they are verv inexpensive (each GAL can
replace up to 15 or so smaller TTL devices). Because of the GAlls being
progerammable the schematics were drawn with a different symboal for each
GAL, indicating the various signals. The entire control and RAM section

for the A/D converter is given in Figure 2.3

»
-

Figure 2.3 - A/D Converter Control Diagram

H
by

R
§§_tamennliliy o || eenennliTid we

p ———
L,

-

$\E
z:.z.-—--—T lg:.'s N

2.9} D/A Section

The D/A converter is similar to the A/D converter in that it tbo is a
stand alone system. Once started no intervention from the main process.w
is required. The O/A converter section is used to convert the calculated
digital valués into an analog form suitable for transmission. We decided
to make the L0/A converter a stand alone device in order to relieve the
main processor so that it could be doing the spectrum analysis on the
received signal. There are 4 main blocls in the /A section as shown in
Figure 2.4. The actual I/A canverter and the anti-aliasing filters are
external to the FC, while the /A RAM and controller are internal to the

P,

Z2.10) D/A Filter

The input filter section contains a Low Fass Filter (LFF) and a High
Fags Filter (HFF). The ILPF is used to remove the freguencies above 150
kKhz, and tﬁé HPFF is used to remove any potentially damaging DO content in
the system. The design, implementation, and acrcuracy of the Filter is
identical to that of the A/D filter section. The schematic for this part

is shown in figure 2.3,

17

)

IDRIIBIUT LOBBOROUG-OD OF
P

T~

SOBSUBIUT OBBRICII-0D Of
s :

WRE T3S 1179 9T R N 82T i

™~

w81 1OLIUD)D PUT LADUENRES

94 @97 =

3 baa
Sn_soml.ln.l 44030 BB T

4 BT =
J30¥N3 heJy

e

—

~BFIIRNUICD H/Q

Figure 2.4 - D/A Converter Block Diagram

l

s

"0 € g
STETS" uED
otba u
SNBVE - ED
e ne
et e s

19

Figure 2.5 ~ & Pole Chebychev LPF for the D/A Converter

N . ¥

¥

2.11) /A Converter

The O/A converter used is a Burr Brown DAC-250-CBI-I. This is a 1 Mh=z
12 bit monontonic canverter. We chose the high frequency conversion rate
because «f the extra accuracy we get by filterinag down the input to less
than 120 kKhz. This part was very cost effective for its accuracy. We were
able to achieve better than 11 bit accwracy and 12 bit resolution from the
device. We were able to get about 4% db dynamic range. [similar to the
A/ converter, the % db loss was due mostly to the noise in and around
the part itself. Again, with proper circuit layout and qground planes the
extra 2 db increase in dynamic range would be possihle.]l After testing it
became clear that we only need about 30 db of resolution, so 4Y was quite

adequate. The schematic of this part is shown in Fiqure Z.4.

2.12) D/A Controller and RAM

After the wave has been created (see software section for the actual
wave creation) it is stored in O/A RAM (122K by 14 bits) by the main
processor. Once stored, and the mode register set, the processor need only
to issue a START command to start transmitting the wave. Each wave point
is sent to the /A converter at a rate of 1 Mhz. Once the transmission is
completed the controller provides a FINISHED flag to the processor. Thig

allows the processor to know the state of the transmitter. The mode

register controls the two modes of operation of the /A converter.

The first mode (sweep mode) is the most ageneral but only provides up

to 128 seconds of transmission. In this mode, once started, the /A

Figure 2.6 - D/A Converter IC

13

OTTERY At

CRIH Qdtuat

__ Wf:g_»—- __-__

T

LW B

33303085 Gaees sgi
s 2 T
¥
¥
g
H
§ 5
29 asrgrenane § I =
sesssceassnsasas s «
naasaasssaaosoaﬁgsy;m ‘4
«nnvoenpalI2NT80880 008
35.‘5555555555555555‘5.‘.5
LASARRABACARAARAGAREAARLL

.'

-

Figure 2.7 - Attack, Sustain, and Decay Waveform

SUSTAIN
ENVELOPE OF TRANBMITVED WAVE

N
\\

section sends 13 bits of data (the lower 12) to the DI/A converter

starting from location 00000 in RAM and continuing sequentially until it

Finds a STOF bit in RANM. It does this at a rate of 1 Mhz per sample. In

this mode any type of wave form is possible but only for .122 seconds.

In the second mode, (loop mode) there are three distinct sections of
RAM each being an arbitrary size with the total of the three less than
128K (see figure 2.7). The first section is the ATTACK portion of the
wave. This represents the initial output section of the O/A. This portion
iz only executed once, at the beginning of transmission. The ATTACE is
used mostly for the ramp up at the beginninag of transmfssion. If a ramp
is not provided, the output is essentially windowed using a rectangular
window on the data. This could provide unwanted frequencies in the
transmission. By selecting different windows for transmission, different
results could be obtained from the A/D converter. Also by making the
ATTACE, completely programmable, we could experiment with different tvpes
0f windows, and detérmina the optimum for different conditions. The
SUETAIN section of RAM is essentially a section of RAM that when repeated
will provide a completely continuous waveform. Thus at least one
repeatable .cycle of the waveform must fit in the SUSTAIN section. The
BUSTAIN section can be repeated up to 125K times. There is a proagrammable
reqister that determines the count of the sustain loop. This could provide
savearal miputes of wave generation. The DECAY section is similar to the
ATTACK, gsection. It is used only once and is used to provide the trailing
part of a window. After the SUSTAIN section is completed., the DECAY
section of RAM is output to the 0/A converter. The size of the three
sections is completely programmable, but must not overlap. This mode

proved very useful in experimenting with different transmission windows,

Figure 2.8 - D/A Converter Control Diagram

2 —— e Tt é::g a
= HEiE £:
——ir == s sls
@ ’_#L r—-&.n.a’
o i ;! [0 (T
i USTRIER, Vo REBSESIRIS ¥
B S ELg =§£§] sfila
'§;§' EEE = ,
5 5 :-- u:,--§ !
s =t ""‘:"': 2 Iy 3 2
— : —ii 33351885 R
[:= = = i BamnaneniilE ww || yanvnndii me g
- == Spp
=" IR —
LY .
S 2 i
L ™1
el sucm ' -
g
* =1y
= — 1
—===igst
: gy
e)
ohon
§ !
2 G L L
Ly . Tt]
, ti |
i ‘i Esaglmﬂl 3y
H L n
] i ‘
b
13
—Qna-:, ;nao.:g
E|
gl | ;
& “ - THITHE)
- sonasERy_ ;

»

where the first mode proved very useful in transmitting a sweep of

frequencies. The entire control and RAM section is shown in fiqure 2.8,

Again, the D/A controller section makes extensive usage of GAlLs., This
provides for a very compact system, as well as being very easy to modify.

-

The entire listings for GALs is given in appendix A.

2.13) Co-Processor Interface

ThE.CD—PPDCESSDP to the FC was a single internal card with a 42020 and
it's own &5EE81 Math Co-~-Processor. The &A2020 can provide up to 14 Gigabyte
of RAM interface, however we only used an external S12E bytes. The A/D and
/A section each have 122k of 14 bit wide RAM. That RAM is also mapped
into the address space of the 42020, This means that the 42020 has direct
access to all the data for the system, thus completely removing any type
of data transfer from one machine to another. The interface between the
A/T and D/A sections was merely a method of dual porting the RAM. The only
constraint is that the 42020 cannot access the memory at the same esmact
bLime as the A/D or D/A is accessing memory. Special timing circuitry was
provided to prevent this from happening. The overall result was a very
aefficient method of communication between the Co-Frocessor and its A/D /
/8 interfaces. The schematics for the Definicon interface are shown in

Figures 2.7 and 2.10.

" =

aaRre>
ey = SN
t T L bad L
! -
Sl Vet
[T &)
o
- m O
— . o]
e SO &0
U T ah
Fm o R AT, o i i
nl i g w ."ﬁw
e = i PO 98§ uEe i Cnerny B IR CI1ENCY
b . S -t | ERSIIRE
c P, . MR P v !
-t - S ate - TV e By 5T
ORI e S O3 . A . Setbesm PPy Y
c P I s iipedpnd
Q e
0 AR
) .
Y.
/]
foe]
i <
(e}
[]
N
o
L
]
o
oot
.

Figure 2.10 - Definicon Interface II

>
>
~

TR >
HET>
o T 3
ﬁaxunv-—-l-———ﬂg?
AT INET.

Ve
5%
ey

[T -
AR

e FARL
!cr‘l—

P oo AW o _corary pEL

I3 ~
IS >
BT >
[— % -~ .2

ey
o pia.

[u. 4

AN

=

= ond

ap 253, OTERNT

TRF FIRG_IRITE _sese

§ IR wu%
i kAR)
i

i

immnno-m ll'ﬂl'

s 2
£

E gg ! Mﬁﬂ!'nﬂnl ﬁﬂﬂ--‘.f‘“!ﬂ'ﬂ!

i g """"" SORRIRTAN= o ccannnanne : i -g:‘_i
B | e
- o
5 ennveanee it N lEE Ot R R R L ENAANINRGRRRII0IVNSIN
Y A S S

=
-

2.14) Co-Processor

When we first started the project we did not use a Co-Frocessor., but
used the IBM FC as the main processor. Because of the complexity of the
algorithms, this turr=d out to be unbearably slow (taking up to an hour to
calculate the different waves for transmission alone). So we decided to
add a Co-Processor to speed up the calculations. He evaluated several
diffaerent to-phocessars and chose the DSI-720+. by Definicon Systems Inc.
We chose this particular product because of it’s cost/performance ratio.
In raw computing power, its speed rivals that of a vax 11-720 (thus the
name DS8I-780+). The entire card was puwrchased for less than the cost of an
IBRM FC-AT and provided better than 100 times the performance of the IBM
FC. The Co-Frocessor is based upon the Motorola 42020 running at 14.5 Mhz
coupled with a 42321 math processor. It contains on board 1 Meg of RAM and
all the necessary hardware to interface with the FC. All of the software
processing runs on the OSI-730+ while the disk 1/0 and display run off the
IBM PC. This configuration provides a very computationaly powsrful and

efficient engine to run the algorithms on.

2.15) Concluding thoughts on hardware development

The final aystem design proved to be very efficient in space, and
power consumption, as well as being extremely flexible. The hardware was
fully operational as described in this report, and provided a very usable
system for testing. Because of the nature of research, we wanted a system

that would be very flexible to accommodate various wunknowns in

experimentation. However, i1if this were to become a commercially availabhle

-
e

b

L

product, most 1if not all of the hardware must be completely redesiaoned
(the flexibility is not needed in a final unit). We determined that it was
more advantageous at this stage in the project to have a usable system

that could accommaodate the various unknowns in hardware, and software.

The software ended up using a radix four FFT alagorithm to decomposs

the time domain into the rrequency doamain. This FFT was done completely in

software and (althouah highly optimized) would take several seconds to)

complete (depending on the number of points taken). Because the FFT will
probably be needed for use in the final pattern recognition algorithm, it
will have to be implemenfed in hardware. In fact, there exists several
different IC chip sets available on the market to do just this. We feel

that a speed increase of over 1000 would be possible using this approach.

Once a fairly good algorithm is determined, the hardware could be
optimized to execute the algorithm very efficiently. This could s=ven
svolve the design of ASIC (Application Specific Integrated Circuits) +to

make a very small and portable system.
The completed and opsrational system provided a very powerful vehicle

Far testing the various software algorithms as well as testing different

hardware sections.

L]

g - “-

ITI SOFTWARE
2.0} Reasons for Development scheme

A software package was needed which could perform a varving group of
tasks 1n a flexible and easily accessible manner, growing a&as our
development of hardware progressed. The reason for these needs has to do
with the nature of hardware development in & projisct such as ours where
differing versions of hardware, or even modifications to hardware, are
frequently assembled, tested., and used. Though we knew at the ocutset that
sound would have to be transmitted and received, and that data would have
to be run through an FFT algorithm and analysed, we did not know precisely
how we wanted to do these actions in the context of an overall operating

package. We had to develop the packaqs.

So, as far as software was concerned, ow first need was to create a
system which would drive functions, or groups of functions, from a
multilavered menu driven keyvboard input packaae, to control any piece of
hardware under development. In the system which we created, the functions
which drive the developing hardware can be placed in anvy sequence, or
aggregate, in order to associate a particular logical function (such as
calculating a compound wave and loading it in a section of RAM in & state
prepared for transmission) with a single keystroke in & meaningful wav.
The adoption of this flexible approach to system desian made it possible
Far us to guickly canfiqure a hardware/software package allowing for the

development of a field test unit for the ultrasound detection of handauns.

In o%der to have an automatic detector of handquns, several steps have
to be taken care of. We nazded to be able to fransmit sounds of DMP'DWH
design, designed to ewcite the particular resonances of the particular
handguns., We needed *to be able to receive the sounds generated by the
excited guns in a digitized form. We needed to be able to transform that
data from the time domain into the freguency domain in order to analyre
the frequency structure of the resonated sound. Finally., the freqguency
structure of the slicited sounds wowld have to be analyzed for patterns in
order to determine what type, iFf any., of gqun has been excited. Each of
these steps requires the abhility to esasily get at and contreol the
hardware. In addition., each of these steps reguires the working of other
amaller subsystems. For instance, to manipulate received sounds in the
digital domain we needed an A to [section to be workina and under
control. Therefore, we needed some software to enable the ADC to be
tested during it”'s development and use. The other functions similarly

reaquired testing and development, and therefore the need for the

fFlexibility and power of the software system. For these reasons the
spftware package for freguency generation and analysis was developsd along

the following lines:

2.1) Actual Development

At the top of the structure is a main menu. This menu allows the

selection of which area of opuration is tn he undertaken.

The choices are:!

31

"

transmission parameter select loun
reception parameter selection
board control

data transfer

DAC testing

ALIC testing

The actual operations for these areas are described below.

3.2) Transmission

A transmission parameter selecltion menu has been implemented allowing
the setting of all parameters which have to do with the transmission of
data. There are two basic modes of transmission which are supported. The
First mode is the swept frequency mode in which fregquencies are generated
and are then able to be transmitted. from low to high freguencv, with the
incremental increase in frequency following a linear function in the time
doamain. The second mode used is a discrete frequency mode which allows
Lhe selection of particular discrete freguencies to be aenerated which are

then able to be transmitted simultanseously.

Swept frequency mode - The user selects the starting and ending
frequencies in the sweep specifying a ranage between 20 Khz and 100 Ehz.
These endpoint frequencies are easily alterable but were chosen for
pr ical reasons. The 20 khz starting boundary point was chosen so that
no aucdible frequencies would be emitted at lowd volumes possibly imparting

anditory nerve damane to the researchers. The snding boundary point was

empirically chosén to be 100 Eh: because that was close to the point where
ouwr transducers ceased to be effective at transmission of desirable power
levels, in addition to the fact that as the freauencies get higher they

are more easily absorbed.

The user selects burst time, ramp time, and decay time in order to
specify the envelope containing the frequency sweep. The ramp time is the
amount of time to execute a linear ramp of power from zero to full power.
The decay time is the amount of time to execute a linesr decay from full
powsr to zero. These times are variable from O.001 mgec to 10.0 msecs.
The burst time is the time for the complete sweep to take place, from the
beainning of the ramp at zero power to the end of the decay at zero power.
The mamimum burst time for the sweep mode is 131.0 msecs. The entire
burst is not at full power because of the ramp up and the decay. However,
the freguency range selected is transmitted at full power. An additional
Skhz is tacked on to the end of the selected fregquency range and is also
transmitted at full power in order to facilitate +the time delay
spectrometry research. Firet & starting freguency to an ending freguency

are determined by:

c = tt - (rt + dt)

fpt = (fpef + S.0 - fpsf) / o
s = fpsf -~ (fpt # pt)
ef = fpef + 5.0 + (fpt % dt)
where
o ~ time of the full power region

v

tt
rt
dt
fpt

fpef

fpsf
s

af

Next, the

frequency)

- total, or burst, time

- ramp time

- decay time

- frequency per time

- full power ending freguency (user specifisd upper
endpoint)

- full power starting frequency (specified lower endpoint)

- starting frequency

- anding frequency

wave is calculated to be a linearly increasing (in

sinusonidal sweep from the determined starting freguency to the

determined ending freguency. The wave is then scaled to reach fFull power.

The ramp and decay functions are applied to the scaled version of the

wave, and then the full wave is loaded into the transmission board's RAM.

awaiting the command to begin transmission.

Wave Envelope Diagram

T burst time -=--- -,

/! ! HAN
/i i A
<. | swspecified {Skhet >
SN range ! VAN S
i \ . { v/ ¢
tramp up tdecay

The specified fregquency ranqge is transmitted
at FULL power. There is Skhz extra at full power
tacked on for time delay spectrometry investigations.
The ramp up and ramp down sections, while conforming
to the smooth freqgquency sweep, are not at full power,
but are enveloped as shown.

Figure 3.0 -~ Envelaope of sweep mode transmisson

¥

LDiscrete freguency mode - The user selects the freguencies desired for
simultaneous transmission, specifving any in the range between 20 kKhz and
100 Khz. The max=imum number of simultaneous freguencies allowed in the
current package is 100, The ma=zimum resolution is ©O.1 Khz in any
individual frequency. The user makes frequency selections by entering the
fraequency editor package which allows the selection and editing of a list
of freguencies to be included in a wave. When done specifying
Freguencies, the user exits the editor packaage and is then able to choose

gnvelope parametesrs.

The user selects burst time, ramp time, and decay time in order to
specify the envelope containing gke compound wave. The ramp time is the
amount of time to execute a linear ramp of power from zero to full power.
The decay time is the amount of time to execute a linear decay from full
powsr to zern. These times are variable from Q.001 msec to 10.0 msecs.
The burst time is the time for the complete wave to be transmitted., from
the beginning of the ramp at zero power to the end of the decay at zero
powar. The maximum burst time for the discrete mode is 40000.0 msecs. A

looping method is used to repeat compatible portions of the generated wave

to achieve this long time of transmission.

First, the wave is calculated to be a linear combination of the
sinusoids from each determined freguency. The wave is then scaled to
reach full power. The ramp and decay functions are applied to the scaled
version of the wave, and +then the full wave is loaded into the
transmission board?s RAM: awaiting the command to begin transmission.

l.oop hits are set to cause a 10.0 msec conztant portion of the wave to

A
o

_

repeat the proper number of times to obtain the desired burst time.
10.0 msec repeat portion "joins up" at beqginning and end because

resolution of 0.1 kKhz for each desianated fregquency.

Wave Envelope Diagram

g T ————— burst time ------ .
1 1
1 . 1
/1 AN
/ HEEAN
<o I
LN A
H A i/ / ,
framp up idecay

The

of &

Figure 2.1 - Envelope of discrete mode transmission

I

3.3) Reception

A reception parameter selection menu has been implemented which allows
the user +to control the process of receiving data through the Analog to
Digital Converter. This menu allows the setting of the record time, and

of the delay time.

The record time may be set anywhere within the range of 0.0 msecs to
121.0 msecs, and specifies the total time for which to gather data throuah
the ADC and into the reception RAM. The data is loaded starting at the oth
location and extends one address every microsecond for the duration of the

acaguisition.

The delay time mav be set anvwhere within the range of 0.0 msecs to
131.0 msecs, and specifies the total time to delay the start of
acquisition of data through the ADC after the transmission of data throuah

the DAC has started.

=7

¥

3.4) Bpard control

The board control menu allows the user to control the special purpose
hardware in order to carry out the actions of transmission and reception
of data. The options possible from this menu are transmit, receive,
transmit and receive, clear acouired data area. and transfer acouired data

Lo transmission aresa.

The receive option, when invoked, causes the reception apparatus to
become active., and the acguisition of data begins after the previously
specified delay time has slapsed. The reception takes place for the
amount of time previously specified as the reception time with the

acquired data being placed in the A& to s RAM.

The transmit option, when invoked, starts the process of transmisesion.
The data which is present in the I to A4“s RAM is sequentially sent out of

the I' to A, one value every microsecond, unless a stop bit or a loop bit

is encountered in the data. The presence of a loop bit causes the loop
count to be decremented and, if the loop count is not the critical value,
for the current address of transmission to be changed to 10000 addresses,
or 10 milliseconds, earlier. If the loop count is the critical values, or

if no loop bit is encountered., the current address is merely incremented
and transmission continues. Transmission ceases when a stop hit is

discovered.

The transmit/receive option causes both actiong to occuwr and for the
operations described immediately above to benin at the same time. This is

the usual actieon taken when testing an obiject for excitation and analvsis.

03
o

The clear acquired data option., when chosen, causes the A to D ram to
be =zeroed. Any data acquired solo, or during averaging procedures, is

cleared for new acquisitions.

The acauired data transferred to the transmission area option., when

chosen, qgets the data from the A to IYs RAM and moves it to the D to A's

RAM - For transmission. Because the acguired data is 14 bits per piece of

data while transmitted data ogoes through a 12 bit 0 to A converter, only
the top twelve bilts of the acauired data are loaded for retransmission.
The bottom Ffour bits of the RAM, which are control bits, are zerned

sxcent for the last piece of data in which the stop bit is setb.

2.3) Data transfer

The data transfer menu allows the wuser to control the Flow of data
from disk into the hardware, from the hardware to disk. and from the
hardware to the screen for disolav, Various manipulations of the data are

also allowed on the data when the display mode is current.

The current parameter set sent to file option., when chosen. causes the
complete set of parameters for a current run to be sent to a disk file.

alonag with any waveform which has been aenerated.
The current parameter set loaded from file option, when chosen, causes
the complete set of parameters for a current run to be loaded from a disk

file, along with anvy waveform which has been stored.

e

The acguired data sent to file option causes the data which has been
accumiitlated in the A to I sechtion of RAM during analysis to be sent to a

specified file on disk.

The transfer acquired data to screen and allow for manipulation of
data option opens up a special sub-package which gives access Lo several
tonls of analvsis and graphical manipulation. The options supported in

this section are as follows:

A starting time may be specified which is the point value, in either
an array A or B into which data under guestion will have been moved, at
which to begin a plot of the data. The time is related to the point value
by the ratio of one microsecond per point, since each sample creates one

point and the sample rate is 1 Mhz.

A stopping point may be specified which is the point value at which to
end plotting. The endpoint applies whether the A or B array is actually
plotted. A starting time (point) of O and a stopping time (point) of 999
would specify a plot of the first millisecond of data. A starting time of
1000 and a stopping time of 1792 would specify the use of the second

*

millisecond of data in a plot.

A lower Y valus may be set which specifies what the . value is +to
represent the bottom of the axis in any plot. The value is a scaling
factor and is used as a parameter for the plot routines. This value is
only used when the autoscale mode is not currently in effect, since

autoscale automatically figures the parameters for amis scaling.

40

An upper Y value may be set which specifies what the value iz to
represent the top of the axis in any plot. The value is a scaling factor
and is used as a parameter for the plot routines. This value is not used

when autoscaling is in effect.

A plot axis menu slot, when invoked, causes a ploh axis routine to use
the starting time, ending time, upper Y value, and lower Y value to create
a scaled awxis plot when not in autoscale mode. When autoscale mode is
current, the plot of the axis uses the user specified starting and ending
times, but not the upper and]oweﬁ Y values. Instead the plot routine

uses the data which is to be plotted to scale the Y axis.

The aget data in A menu option causes the acquired data in the A to o
RAM to be moved in the amount of the recorded time or S0000 microseconds,

whichever is less, to the array A for subsequent manipulation or analysis.

The get data in B menu option causes the acquired data in the 4 to I
RAM to be moved in the amount of the recorded time or 20000 microseconds,

whichever is less, to the array B for subseguent manipulation or analvsis.

The plot data in A menu option plots the data in array A according to
the parameters of starting time. stopping time. upper Y value. lower Y

value, and plot mode.

The plot data in B menu option plots the data in array B according to
the parameters of starting time, stopping time., upper Y value, lower Y

value, and plot mode.

41

The Auto F#T menu selection allows the repeated transmission of a
desired waveform, and the acguisition of the resulting data created by the
excited object, followed by the formation and displav of the freaguency
information found in the specified region of that acquired data. The plot

from each iteration of this cycle is in a different color.

First, the starting color is entered as a value from O to 135, Newt ,
the starting point from array & at which to beagin the FFT is entered.
Then the sxponent for the Radix four FFT is asked for which specifies the
powar to raise four to in order to obtain the number of points which are
to be analysed. The maximum value supported for the power of radix four

by this package is 7, which uses 14k points.

The awxis is then plotted in autoscale mode. The data in the I' to A's
RAM is - transmitted. The A to I section acquires data in it“s RAM
according to the current parameter set. The array A is filled with the
data which has been acquired. The radix four FFT is performed on the
specified region of the data in array A. The results of the FFT are put
in array B, and are then plotted. This series of events is repeated over

and over at the user's direction, creating new plots over the old of the
current frequency response elicited, uwuntil the user exits from this

section of the packaqge.

The clear screen option clears the screen of all contents and plots

and fthen provides the menu with current parameters listed.

55
k3

S

The transmit/receive option causes the transmission of the data in the
N to A‘s RAM. Simultaneously. the A to I section acquwires data in it”s

RAM according to the current parameter set.

The plot mode option allows the user to specify whether the plotting
is to be in autoscale mode, which means that the scaling will be
automatically set to the data which is to he plotted, making the ma=imum
and minimum values in the data correspond to the top and bottom boundaries
of the plotted axzis, respectively. The plot mode may also be sst +to
ahsolute scaling, which means that the upper and lower values for Y, which
are specified by the user in this mode, are to be used as the determining

factors in the top and bottom values for the axis boundaries.

The FFT on data in A with results to B menu selection causes the
following chain of actions to occur. The starting point from array A at
which to begin the FFT is enéered. Then the exponent for the Radix four
FFT is aéked for, which specifies the power to raise four to in order to
obtain the number of points which are to be analysed. The maximum value
supportaed for the power of radix four by this package is 7., which uses ié&lk
peints. Then the desired FFT is performed on the specified data and the

resuwlts are put in array EBE.
The ewit option is the last option in the screen data manipulation

portion and gets the user out of this portion of code and back up to the

next highest level, the data transfer menu.

4%

3.4) DAC testing

This menus allows the selection of what value is to be put out of the
oac. The wvalue to put out is entered. It can be any 14 bit hex value
from O to ffff. The value may then be adijusted up or down by hitting the
nlus or minus keys respectively. In addition, new starting values may be

specified and put out and then adjusted.

3.7} ADC testing

This menu allows the selection of bringing in values from the ADC. i

it values are brought in from the ALIC and are displaved in hex format. A

new ADIC read is performed and it“s corresponding value is displaved every

time a return key is hit on the kevboard.

2.8) Running the frequency generation and analysis package

To create the frequency gensration and analysis package:

(NOTE: must have appropriate definicon and custom hardware and software

available to the FC in use.)

1) First, compile the source files needed (.o - .i):

load -t ¢ freqg agen

44

load =t c ploti
load -t € al

load -t ¢ graph

2) Second, create the object files from the intermediate files

(i => .obj):

load jcode freq aen.i

load .jcode ploti.i

load jcode qgl.i

load jcode graph.i

2) Third, link the files {(,obj - .sz0):

load 1ink20 freg gen plotil gl graph «=lib paslib

4) Now the package can be run (.e20 files are executable):

load freag agen

3.9} Results of development

The system which evolved proved to be highly flexible and utilitarian.
After development was completed, the main usage of the package was to
follow a chain of actions which tested handquns for their = freguency
responses to ultrasonic bombardment. Either the sweep mode, or previous
knowledage as to what discrete freguencies were critical, was used to
generate a wave which had the freguencies of interest present. If in
sweep mode, the wave would be sent out with various delavs and lengths in
order to Find out which delays and lengths evoked the greatest responss
from the target gun. Then, by analysing the freguency response of the
target resonance, the frequencies of interest were more specifically
addressed by switchinag to the discrete mode of frezguency generation. &l
tailored single frequency, or compound, wave would then be agenerated anq

transmitted, and the received response would then be analv:sed.

At this time the auto FFT mode in the data transfer portion of the
system would be entsred tb allow the easy use of the developed tools in an
iterative manner so that repeated tests could be performed with the same
wave. This type of testing would be done when such factors as the
paosition of +the gun and the volume of the transmitted wave were under
investigation. They would be varied while the characteristics of the wave

itself would be held constant.

In an effective automaltic ultrasonic gun detector this same sequence
of events would be carried out, and would make automatic detection
possible provided that reliable excitation patterns were obtained from the

target.

3.10) Splicing in additional software functionality

The software package is flexible as to the addition of new menus,
expanding the existing menus, and adding new functions. Note however,
that a working piece of software is worth two (at least) software projects
wnder development (or should we say, "in the bush"). Buffice it to say
that it would behoove an ambitiocous user to keep a copy of the original. or
other, working code around while performing extensicns or remodeling the

package.

The main way to add functions should be through the system of menu driven

control. Basically, what happens is that:

A particular EEY is hit at the same time that a particular FOSITION in
the gystem is current and while certain FAST EVENTS have gone on dealing

with that position.

The KEY hit is taken in and assianed a number. which right now for the

purpase of menu driven control is:

down -0
up ~ 1
right - 2
left - =
end - 4
return - 5

47

-

: d ;

This number is used as an offset into a portion of a structure of
Yaction wvectorsg®. The offset gives a final pointer to a particular
"action wvector". What an action vector is. is a group of pointers to
functions (the function names) with an associated count of those pointers
to functions. A routine, called TAKE ACTION, takes as it“s input the key
number, gets the pointer to the action vector, and then executes the
"eount!" number of functions in that action vector. In this way., the hit

of a single key can cause a group of desired functions to be carried out.

Now, how does the system know which action vecteor to execute? The
action vector being addressed is the action vector at the current system

FOSITION of course.

A FOSITION is & structure containing the components of logical menu,
row, and column. These components specify where in the system, logically,
we are (i.e. the address). A structure of type FOSITION INFO contains all
of the action vectors. Using the position components to arrive at the
action wvectors, we also arrive at information specifying the phvsical
addresses of where the menu fields are (i.e. where on the screen to put
something). This physical information consists of absolute row, absolute
column, and field length. 8o by having the information of FOSITION, and a
FEY. we have available the physical information of where on the screen to
represent any changes desired, as well as a link to an action vector
whereby we can carry out any set of functions desired. In short, we have
a system for translating keystrokes and a agraphic background ipto actions,

or a menu driven operating system.

To modify or add functions-

Look at the structures of action vector and position info. Note that
structures of the type position info contain a structure of the type
action vector. The action vector contains a count and an array of

functions.

struct action vector

,f' *
L

int count:
void (#funclmax func dimenl) ()«

Fu

struct position info
& :

int lengths
int abs_rows
int abs_col;

struct action vector act vect [max keyls

>

As the primary example., look at the actual structure used (you will
most likely be modifying it). It“s an array LOCATION, and is of the type
FOSITION INFO. A small excerpt is shown below. Notice the liné across
from /- down -/. It is the first action vector of this menu and position.
2 is the count. Unhilight., inc row, and hiliaht are the functions. When
the hkey TOWN is hit and the position (menu.raw,column) leads us to this

particular position info structure, the 2 functions are carried out. If

ver wanted to run only the first two upon the reception of a DODWN key at

this position, merely chanae the number to 2. If vou want to run three
routines you have written yourself (say one, two, and three) merely change
the names to the names of the routines vou wish to run. Upon the receipt
of a down key when at this position., those three routines will be run in

sequence.

£
.

f2 leng, sfl row, box col+l3, <-- LENGTH, AES ROW., AES COLUMN

/~ down -/ . { €32, { unhilight, inc row, hilight oy,
/- up -/ HE O
/- right -/ e {02,
/- left -/ R £ 3, L unhiliaght, go to guit, hilight 3 2,
/- end -/ HE T2, € unhilight, qo to quit, hilight 2 2,

~y

A}
]
L

/- return ~/ N activate pos, menu select ago

i ACTION VECTORS

Figure 3.2 - A group of action vectors

Note that the absolute physical information is shown ijust before
the action vectors. By changing thege values, routines such as
hilight and unhilight will perform their duties at the newly

specified screen locations and lengths.

Maore drastic remodeling-

To expand menus to more than 7,

=0

add more than % functions to an action vector,
add more than 7 rows to a menu’'s choices,
.

add more than Z columns to a menu’s choices,

or to respond to more than 4 kevys,

vou must change the definitions for:
max menu
masx _row
masx col
masx key

mazx, func dimen

and must also change the structure LOCATION to accommodate the
new definitions. Ee extremely careful in how the brackets "{"
and "}" are used to define levels within the structure. The
current layout of these brackets and the data within was found
to be convenient. Remember, a "{" means going down a level in

the structure while a ">" means coming up a level.

A complete listing of the code comprising the freguency generation and

analysis package is included in appendix B.

v RESEARCH
4.0) Transducers

The receiver was based on the Folarcid uwltrasonic transduacer. This is
a capacitance based device which exhibits good sensitivity, but is very
directional and does not have a flat freguency response across the range
af 20 to 100 Khz. The freguency response can be compensated for
electronically, but the directionality posed a sizeable problem. The
directionality of mast receiver traducers is related to the phvysical sire
nf the actual receiver area. [Generally, the larger the receiver surface
area, the greater the sensitivity. But as the surface area increases, the
more directional the device becomes. Because ideal receivers for this

nroject would be omnidirectional, this poses a sizeable problem.

One method that could be used to overcome the directionality oproblem
would be to use several receivers and position them in such a manner that
when sound is radiated from a target (in a certain area), at least one of
the receivers would be in the direct path of the siagnal. By using
electronic switching devices, we could then sample all of the receivers,
and determine which one would have the largest signal from the target.
This poses a significant problem electronically in just determining which

of the receivers has the most signal energy as compared to noise enerqgy.

Another method the miaght minimize the directional effect would be to
use the receivers in an arvray format and effectively AVERAGE them in
frequency domain (the averaage must take place in the frequency domain not

the time domain because the phase needs to be separated from the signall.

Noise in the Freﬁuency domain will average out to & known level leaving an
averaged target value. The target value would then be the sum of many
different receivers, thus providing more signal to noise ratio as compared
to . just one receiver. This method, however is likely to become very
computationally intensive, where each receiver might need its own digital

signal processor. More research into this area showld be done.

Other areas of receiver interest would be to desiagn a receiver that is
extremely sensitive while remaining non-directional. Some effort was done
in researching different receiver technologies, and none were found to be
compatible with our requirements. Again we feel that much more wark needs

to be done on the receiver technology.

4.1) Target Chamber

Oue to limited personnel. we were not able to work on designinog a aood
target chamber. Consequentially we used the chamber material from the
Fhase II project. The chamber we used was not very good at dampening
reverberation guickly especially at frequencies above 33 Khz. This forced
us to use extra long trigger delays with the A/D converter, so that the
original transmitted signal has died down below the neoise floor. The
longer the delays, the less of the tarqgst sigqnal was present. With respect
to the chamber desiaqn, this is probably the largest problem in the system
{0 overcome. If however we could devise a chamber that would guickly
dampen out the reverberation effects, this would relax other elements in
the system [Guickly dampen means attenuating the reverberation to below

the noise floor with in about 10 to 20 ms. We feel that this is very

9
fa

o

obtainable using the right materials and with proper construction of the

chamberl.

Our ewxperiments indicated that the target would start to resonate
almost immediately after the sound waves hit it. The amount of time it
took to dampen out depended on several factors., such as gun placement
(relative to the incident sound wave), agun material (Steel. High carbon
steel, stainless steel, plastic, etc.)., what was touching the gun (cloths,
flesh, holster, etc.) and various other facteors. All of these variables
end up in reducing the amount of resonate time of the gun itself. For this
reason, the sooner that we can sample the target s?anal the better signal
to noise ratio. But because of the reverberation in the chamber., we were
forced to wait until it died out (below the noise floor or threshold of
the receiver) before we could actually sample the target signal. We feel
that a chamber could be designed to limit the effect of reverberation such
that the target signal could be sampled before most of its energy is
axpired. Again much more work in the area of chamber desian needs to take

place.

4.2) Time Delay Spectrometry

One method of removing the effects of reverberation is called Time
LIelay Spectromstry, This technigue has been extensively developed by
speakar manufacturers, in order to accurately measurs the VFPEDUEHCV
response or a speaker as if it was in a free field. The free field implies
that the only stimulus on the measurement device is coming directly from

what is being measured. In other words, all reflecticons and reverberations

[- -

are completely removed [A simple example of a way to take speaker
measurements in a free field would be to suspend a speaker by a rope from
a balloon a great distance above the ground and below the balloon. In this
case there would be no sound reflections or reverberations (except that of
the rope and the receiver itselfi.]. In gross terms, Time Delay
Spectrometry can remove the effects of reflected and reverberation sianals

electronically.

This method evolves transmitting a sweep of freguencies at a known
sweep rate, and then calculating the delay between the transmission of
the sweep and the reception of the first reflected incidence of the sweep
signal. Then by using heterodyning technigues, filter out all other
frequencies except the incident frequency. Any reverberation freguencies
at the receiver would be of a different freguency (because of the time
delay and sweep rate) and therefore would be filtered out. This method was
devised to input the reflected siagnal. not a secondary signal such as the
Pesonatina of a target. However, if the target is going to resonate at
some particular frequency, then, it will absorb more enerqgy at that
particular frequency that all the others. In this case. the absorption of
a particular freguency might be detectable rather than the ringing
itself. We were not able to pursue this method in detail but feel that it
can offer & possible spolution to the reverberation preblem that we have

encountered.

Finally ancther method that would not be prone to reverberation would
be to ewxcite the target using a frequency slightly below or above a
resonant freguency. At the receiver, filter out the transmitting freguency

hy a very narraw notch filter. Becauge the notch filter is not at the

n
i

point of resonance of the target, it should only filter out the transited
signal and not the resonating signal of the target. In addition to the
difficulty of designing a stable and accurately variable notch filter, we
found through esxperimental data that very little epergy is transferred to
the target unless the resonant freguency is transmitted. Even when the
transmitting freguency is .1% away from the resonant freguency, only about
204 of the mawimum energy transfer takes place. These experiments
confirmed the results of the previous test. Because of this, and the fact
that the number of different freguencies needed to cover even & small
number of the probable guns would be prohibitively large, we fesl that

this method would not be very practical.

4.3) Pattern Recognition

Freliminary studies were undertaken into pattern recognition
technigues involving fuzesy sets and rough sets approaches. The reason for
these particular approaches has to do with the nature of the data being
processed and the speed with which the problem must be solved in order to
have a detector which approaches anything like real time classification.
The great variety of acoustic situations and the large numbers of
variables which can affect those situations will cause any patterns in a
freqguaency response from environments including a gqun to exhibit a agreat
deal of variability. Even the detection pattern for a particular tvpe of
qun would not be the same for different real quns of the same make and
brand due to the differences in the aguns themselves. -Hecause of the

variability in patterns, a way must be found to get the most information

Ry
™

3
¥
o

put of imprecise data. When working with imprecise data, the technigques
of Zadeh, ‘and many who have followed his general tenets of Ffuzzy logic
systems (Zadeh){(Gupta)., and the rough sets techniques of Fawlak, become

likely candidates for use in classification schemes.

Very briefly, fuzzy set theory extends the mathematics of predicate
calculus and probability theory to include imprecise measurements., data,
and classifications. AN obiject may be classified with a degree of
membership to a set. In one case a pattern could be said to belong to the
set of patterns elicited from Smith and Wesson .3577s with a degrse of
membershib of 0.7%. A law in an expert system could describe an example
of this sort as a pattern which was "likely" that of a Bmith and Wesson
. 337 where the modifier "likelv" carried with it the numerical coefficient
.75, The mathematics for objects and sets described in terms of fuzzy
logic, though still relatively new, is well worked out and used in several

working systems.

Another system, that of rouagh sets, looks very promising because of
the speed with which it can work in a classification scheme. In rough

sats theory an information system is defined (Pawlalk),
8 = (U,RP,V,F}

where § is the system,
U is the universe of objects,
F is the set of attributes,
YV is the union of the domains of all p“s in F,

Fis U= P -» V.is a total function such that

13

Fix.n) is in Vg for every g in @ and every x in U, It

is called the information function

Suppose we have a finite set of objects U which make up the universe
{(possibly bhandgun excitation patterns). Elements of U are training
examples. U is the training set. Suppose that an expert breaks U into
classes {xl,...=n} based on absolute knowledge of the ob.iects. Suppose a
learning agent fries +to characterize the object of U in terms of
attributes from F. The descriptions of objects., based on F, represents
the knowledge of the learning aagent concerning objects in U,

To what degree can the learning agent s knowledae classify the aobiects
according to the available attributes to fit the empert’'s clasrification?
What is desired is a classification algorithm which provides the expert’s

tlasgification based on the attributes of obijects.

F{=) is the learning agent s knowledage about = in § (since it crosses
U ox P - V). Let's extend the information system by adding e, the
attribute describing the expert’s classification. (i.e. =13 =

Ky PRI
A

wl, w2, 0 smny, e#* is the classification of the aobjects by the expert, so
]

we get classes 1..n)

The new information system 8¢ = (U Q,V'.F“): & = F union {el, F
intersect {e)} = 0, is created where the expert’s knowledge on = in § is
the class to whic¢h x belongs. The problem on static learning becomas the
aquestion of whether the classification e# is FP-definable. If e# is F-

definable then the algorithm to "learn"” classification e# exits.

n

ba)

e%¥ i P-definable iff P - &: e depends on the set of attributes F.

Suppose r# is supplied by an espert. Can clagsification be ewpressed

in terms of p and g?

P q I
because the dependance
i 0 2 P = {p.g} -» r holds the
o 1 1 learning algorithm exists.
0 O
1 1 0
it is (pi= 1) (gi= Q) =2 (pi=)

(pi= O) => (pri= 1)

(pi= 2) + (pi= 1)(gi= 1) =% (ri= 0)

OFften tﬁcuqh the expert s knowledae (the extra attribute) will not be
definable by the attributes. In this case approxzimation is possible. The
classification of some objects correctly is possible. Rough sets theory
provides for coefficients which show to what degree such approximations
are valid in waat is termed Accuracy and Guality, where guality is a
function of what part of the obiects may be classified correctly and

accuracy is what part of decisions can be correct.

Consider the information system:

The

P TNF FEUR S——

xE 0
3] 2

e 1
w5 Q)

212 1
system

u/e~ p

£}
—
[

e 0
- -
=3 o

r
S
[

with

=2 assume r is the expert’s

1 knowledae, so that r# is the

Q experts classification.

k3

0

respect to all attributes is

ll\

The atoms of the
el 2l o= L{ml, =4, w133
i 22 = {uR, wb, R
0 23 = {2, x%7,x103
0 24 = (x5, 2, =113

&0

system are,

where U/0” means U with respect to the squivalence relation of [

denoted &~.

The classification vr# is not (p.qg) definable so we will approximate r#

by (p,g).

Classes of classification r# (equivalence classes of relation ™)

Al = L=l x4, =127

RaCR—] oy Y,
AZ = L322, b, %)

o= LwI wl, w7, w2 m10, w1l

Equivalence classes of relation (p,q)”™

1
-
it

e
%
-

s
-3
Y

a

-

[

N
e
Loy

RIS EEo B 5 I T RS

SoE LB, w7 w107

Thae concept of upper and lower approximation is now applied to the

classifications of the relations.

Let F = {p,a}. Then the following sets are the lower F approximations

af r*,

FAL = 0O

i

_PAZ = &2

_FAZ = BE

and the following sets are the upper F approximations of ri#.

-FAl = Bl
-FAZ = B2
-FAZ = Bl U B

We have arrived at the situation where A1 is internally F
nondefinable, A is P definable, and AZ is rouahly F definable. Or, stated
another way, A2 can be learned fully. AZ can be learned rouchly., while for
Al it is impossible to classify correctly xi,x=4,x12 by observing features

expressed by p and g (though negative instances may be learned anyway).
We have the non-deterministic classification algorithm

(pi= 1)(qi= O) =3 (ri= 2) + (pi= 0)
(p:=) (gi= O) =% (ri= 0O)

(pi= Oj(gt= 1) = (ri= 1)

Because of the simplicity with which classification algorithms are
specified the algorithms can run very guickly. If the alagorithm does not
provide enough accuracy or quality, more attributes may be added to the

information system urtil acceptable levels are reached.

Some researchers (Bupta)l) (Frade) have combined the fuz:z set theory
with rounh set classification schemes to make use of the benefits of each.

The ability to deal with varied and imprecise data makes these methods

very promisinag candidates for use in the automatic uwltrasonic handgun
detector.

4.4) FFT systems

The reason for developing an FFT system is that we have to take data
in the time domain., which is what we receive throuah our transducers and A
to I converters, and change it to the frequency domain so that we can
analyze ituin a meaningful form in the search for patterns representative
of handguns. The Fast Fourier Transform gives the same results as the
Discrete Fourier Transform since it is mathematically the same transform.
However, for computations done on machinery, often the case is true that
how the calculatians are done has an enormous impact on the speed and
accuracy of the obtained results. It was necessary to obtain our results
very quickly since the object of ouw research was a real time analysis.
Therefore, we decided to investigate the field and to find the proper FFT
algorithm for our application, first in software, and eventually
committing the algorithm to hardware where it would be fast enough for our

nesds.

4.35) Software FFT algorithms

A typical straightarward program for the direct calculiation of the

DFT might look something like (written in)3

a = L2831/ ng

For (j= 02 i n: j+4)
£
alijil = OQq
bLil = O
far (i= Qs i< ny i++)

£
t

alil += »wlil * cos(gw®i*j) + yv[il % sin(a*i®i):
bLjl += yLil % cos(g#i#i) ~ =[il % sin(g#ixi)s

%
4

2
4

Figure 4.0 - A Straightforward Discrete Fourier Transform

whare n is the number of points for which the transform is being done, a
is the degree to which the unit circle is broken down Ffor the
trigonometric factors to be applied at proper intervals, arvrayvs all and
Ll are the real and imaginary parts of the fregquency domain results of
the computation, and arrays =[]l and y[]l are the real and imaginary parts

of the time domain data which qgo into the transform.

There is. nothing inherently wrong about the piece of code written
above. Its straightforward. simple, and short, It's dust =low,
performing as an order n squared algorithm (note the nested loops which

run from O to n~1). Improvements can be made by adding a look up table for

ix.

the trigonometric calculation, by doing the trigonometric multiplications
outside of the inner loon and saving the results for the multiple uwusaqe
within the inner loop. Other modifications can be made which make use of
the fact that the trigonometric functions repeat. However, even thouah
useful, none get rid of the overwhelaing disadvantage of the n sqguared

order aof the alqgorithm itself.

The big break in this problem comes from the introduction of the
Cumley—Tuke§ FFT algorithm which achieved an n log n order of
computational complexity. Essentially all FFT algorithms make use of the
same technigques as the Cooley-Tukey algorithm. The basis behind the
reductions in calculation for their algorithm lies in the building up of
parts of larger calculations with smaller calculations while using the
smaller parts along the way, and agsnerally in coming up with a systematic
way to use portions of calculations where and when they are needed instead
of recalculating them whenever they are needed. The partial results must
of course be stored in places where they can be easily retrieved at the

propear moment during the execution of the algorithm in a real system.

=
(_1 ol

A typical Cbnley—Tukey nraagram for the radix-2 calculation of the IFT
might look something like (written in C):
nz = ns

for (k=1: k <= me: k++)

L

ni = N3y
nZ = na/2:
e = 4,223E5307179884 / (nl):
a = Qs
For (i=1s i <= n2z i++)
c = cos(al):
5 = sin(al:
a = % e3
for (i=j: i <= n: i += nl)
) /% the butterfly #/
1 = i + nZ:
wt = xw[i-13 - =[1-11:
wli=11 = wL0i~-1] + w=[1-11s
yt= y[i-1]1 - yv[1-17:
yEi=13= v[i-17 + y[L1-117:
/% the twiddle factor multiplications #/
wll1=-11 = c#xkt + syl
yil-11= c¥vyt - s#ut
¥ !
}
Figure 4.1 - A radix 2 Cooley-Tukey FFT proagram in C

Because of the way the flow diagrams look which express this building
up of calculations along the way to the final results of the algorithm,
and especially the way in which the smallest portion of the transform is

rapresented., the method has been called the butterfly transform.

[Xad
i~

(Y
-

Figure 4.2 - A single Radix 2 Butterfly

(0} X{(0)

x(1) 9 X(1)

Figure 4.3 - A flowgraph of a length & Radix 2 FFT

&7

There are many differing ways in which to implement the basic idea
behind the FFT. There are decimation in time algorithms and decimation in
frequency algorithms which specify in which direction the complexity of
the stages of the butterflies (algorithm subcomponents) increases. There
are different radices for the size of the smallest subcomponents, or
butterflies. There are schemes for efficiently applving the trigonometric
factors, commonly called "twiddle factors", skipping the multiplications
by unity and shortening the process when the factor is zero. The most
relevant of these differences comes with the use of radix as choite of

radix has the most to give in terms of reducing computational operatons.

Number of real multipies and adds for different
complex one butterfly FFT algorithms

Noter m
1

ax]

i e
al

-~

e 4

= e

at o

i
'

] e
£ 4
7 1im
g 256
P EiZ

10 1024
11 204z
12 40%4

1 4
ped 14
3 L4
4 24
31024
b A0RE

2 44
3 51z

4 4094

1 14
= 254

o 40948

14

=

iza
220
VA=
1742
4094
WElb
2040
45054
wER04

-;‘_ﬂ
~ENG D e

[or
b DS O R

L

N L3
X
'..

~
- 0N

multiplies

2EAD.

£H1440

adds

&

24

72

iwz

B8]

1152

2

&£144
1322

DO720

L7954

147454

el

i7&
1054

22140
135148

1 -
L4 N
=
o N U O
O SN

QL

RS

126704

ﬁulté4aadé'

10

40

120
20
SO0
1920
44 =0
10240
040
01200
1124640

BASAZ0

2704
42T20

2OBERE

0
o

Al
o~ -
X

Fa
’\:1 .
B

iz tthe power to which the radix is raised.

is the number of points in the FFT.

Figure 4.4

(Burris)

LW

L4

The radix EEFEPE to the size of the stages making up the individual
butterflies. .They are freguently powsrs of two, although others are
possible. The number of points in a transform is related to the radix by
the formula:

n = pEEm

where n is the number of points in the transform, + is the radiz. and m

is the number of dimensions. or stages required.

We found that using an algorithm with a radisx of four agave us 'a
savings in speed that was worth the problems encountered in the
additional complexity of code and the inconvenience inherent in the
limitations on the lenath of ouwr FFTs which were then limited toc being the
size of a power of four. Other improvements, such as the use of trig look
up tables, did very little in comparison to the radix chanqes in

decreasing the time for algorithm completion.

70

Vv

CONCLUSIONS AND RECOMMENDATIONS

Iin phase I1II1/1 of this research program:

a hardware system for the field test unit was designed and
implemented using off the shelf components for digital

electronics and for all of the amplifiers and transducsers,

a software package was developed which allows esasy accese to all
of the functions supported by the hardware, in a flexible and

extendable multilayered menu driven packange.

the total hardware/software system formed a package with the
ability to be used as & data acquisition system by people with

little or no training,

the hardware/software system achieved the ability for automatic
itzrative looping of the functions for configuring a specified
wave, placing the digital points of the wave with any looping
iAFDrmation present in the o0 to A RAM, transmitting the
specified wave, receiving incoming sounds at a designated time
delay after *he transmission has begun, placing a digitized
representation of the incoming sound in the A to 0 RAM. and
finally analyzing the data received in it”'s raw form, or after
transformation by fast fourier technigues into the Frequency
domain, and displaving the desired data graphically in a form

which may be chosen by the user and js easy to understand,
!

71

o em wEw W

a tradix four Fast Fourier Transform alaorithm was chosen and

Cimplemented in software to transform the time domain data inte

the frequency domain. Freliminary investigations into the
incorporation of this technigue into hardware have begun in
order to increase the speed of this task. The increase of speed
is important here because the number of points taken in an FFT
is linearly proportional to the resolution in the freguency
domain while it is n log n proportional to the number of
compuitations necessary. A large number of points is nesded to
gain great resolution which tends to take a lot of computation.
Since speed is of the utmost importance in a real time system of

detection. this topic is worthy of future development.

development of & Time Ielay Spectrometry system was bequn in
order to eliminate +the need for a long wait after the
transmission of sound before receiving. The reason for waiting
has been to let the transmitied sound., and it's reverbsrations,
die out before listening fo the sounds generated by the maodal
excitation of the taraget handguns. The TS system has the tashk
of making this wait unneccessary by using freaguency sweep and
time information to pick out the valid information while the
noise in the environment is still at high levels. The sound
containing the desired information is at higher levels when
obtained before a delay allows the sound to diminish due to

natural decay,

investigations into pattern recognition techrnigues involving

imprecise forms of data and data partitioning have begun. The

o G W RN RN W NN SW R .

It

speed with which the results must be obtained., and the nature of
the data received which will naturally exhibit a great deal of
variability, makes these types of pattern recognition technigues
the logical choice for the project at hand. Also such
technigues allow for easy implementation of threshold setting

which is important in a project involving security,

researrch into phased array polaroid transducers was beqgun.
Fhaged iarravs are to be used to allow the use of individual
tranaducers which are high in sensitivity but are poor in
impartiality to directionality. By using a large array of these
transducers, the directionality problem can be overcome by

averaging the results of many transducers, some of which will be

in a correct position for good reception,

materials testing was bequn to investigate various tvypes of
material as to the ability of these materials to stop sound from
penetrating and thus hampering the detection of concealed
handquns. Freliminary testing shows that porous substances such
as stryrofoam and clothing are not good sound insulators whereas
mere solid substances such as wood are better at stopping high

freguency sounds from penetrating.

iz recommended that the phase III effort be continued to completion

of a useful Field Test unit. To accomplish this:

73

- the development of transducers, or of a transducer system, which

is sensitive to low levels of sound as well as to sounds coming
from directionally different axis should be carried out. The
critical importance of the transducers in the success of this

project cannot be overemphasized,

the development of palttern recognition technioues which will
work with rules allowing for imprecise data partitioninag should
be carried out and shouwld allow the specification of levels for

threshold triggering.

the technique of Time Delay Spectroscopy should be further
developed and incorporated into the desian of the svystem to
allow a reduction in the dampening of the excited sound due to

the time delay currently neccessary,

the FFT algorithm should be implemented in hardware so as to
increase Lthe speed to the point where the calculations involved
take up a negligible time in proportion to a total iteration of

the detection loop. and finally,

that the system make use of the above mentioned developments in

a package which is usable by pepple with no training or

conception of the technical aspects of the underlving operation.

74

EIBLIOGRAPHY
Burris, C. 8., Parks, T. W.. DFT/FFT and Convolution Algorithms, John
Wiley & Sons, New York, 1235,

Crawford, Harold E., Williams, Joseph, Handbook of Electronics
Calculations, Mcgraw Hill, 1%7%.

Gupta, Madran M., et. al., Fuzzy Automata and Decision Processes.
Morth Holland Publishing Co.. Amsterdam, The Netherlands, 1977.

Jackson, Leland E.. Digital Filters and Signal Processing., Eluwer
Mrademic Publishers, 19784,

Kernighan, B. W., Ritchie, O. M., The C Programming Landquaqe,
frantice~Hall, Inc.. Englewaond Cliffs, NJ, 1973,

Manassewitsch, Vadim, Freguency Synthesizers., Theory and Desiagn,
Wiley-Interscience, !9%37.

Foawlalk, Z., "Rough Classification', Int. J. Man-Machine Studies, 20,
1334, pp. 44&9-4332,

Fawlak, Z., "On Learning - A Rough Sets Approach!, unpublished, 1934,

Rabiner, Lawrence R., Gold, Bernard, Theory and Application of Digital
Signal Processing, Frentice-Hall, Englewood Cliffs, NJ, 1773,

Van Valkenburg, M. E., Analog Fllter Design, CES College Fublishing,

L

Williams, Charles E., Designing Digital Filters, Prentice-Hall,
Fnglewood Cliffs, NdJ, 1924,

Zadeh, Lofti Asker, et. al., Fuzzy Sets and their Applications to
Cognitive and Decision Processes, Academic FPress, New York, 1%75.

el

i

3AL. listings

o

AFPENDIX A —3#—%-3%-

GAL16V8 7/21/87

FILENAME: ‘'ut3_dsak.pld'

DSACK* timing generator.

AUTHOR: James Vig Sherrill

e We 3 we W We ws

CNT1
DSACK11
RD_WR
DET
CNT2
CNT3
AS_RSTI
PWR

?
;Must have a
H

CNTO t=
CNT1 t=
-+
CNT2 1=
<
+
CNT3 t=
+
+
+
/DSACK1Y! 3=
R
-
/DE! Ttz
4+

This will generate the 2 DSACK signals back to the processor. It
also contains a watch dog timer to prevent any hang up in the system
if an incorrect memory position was decoded. The watchdog will take
place only after the HIT line has been activated, and 32 CPU clock
eycles have gone by.

GND

JESC QT QRN QT QI G R N Ve X o « EE [0 (1 6 BN - UL I \§ JRREY

.l
OOV WV -=0

9 Ve WE WA WE WE We WE WO WE VE WE We WE WS W Ve W

H
319
;20 is VCC

2 line break between pin descriptions and equations.

/HITI

7 1IT!
/HITY

/HIT!
/HIT!
/HIT!

/HITI
/HIT!
/HIT!
/HIT!

/HITI
/HIT!
/HIT)

/HIT!
/HITE

#

#

X

i e

Ww % k%

» 2 W

/CNTO
CNTO # /CNT1

/CNTO # CNT1

/CNT2 # CNT1 # CNTO
CNT2 # /CNT1
CNT2 ¥ /CNTO

/CNT3 # (CNT2 # CNT1 # CNTO
CNT3 # /CHT2
CNT3 # /CNT1
CNT3 * /CNTO
CNT3 # /GP_ DAY # PT DAl ;Wait 8 cyeles fast
CNT3 & CNT2 # /PT DAl ;Wait 12 cycles slow
CNT3 # CNT2 # CNT1 ;Wateh dog timer
CNT1 ;Delay because CNTO is not
CNT2 ;3 included.

+ /HIT! # CNT3
/RD_WR t= /HIT! * /RW * CNTQO #* /CNT3 # /GP DAl
+ /HIT! % /RW # CNT1 # /CNT3 ¥ /GP DA!
+ /HITY ® /RW # CNT2 % /CNT3 * /GP_DA! pRERERARRS
+ /HIT! % /RW % /CNT3 ¥ /PT DAl
+ /HIT! ®* /RW * CNT3 # /CNT2 # /PT DA!

/AS _RST! := /DSACK1l # AS!
DESCRIPTION

The CNTO - CNT3 are the counter lines. When HIT! is low, these lines will
count CPU cycles., When HIT! is high, they are reset to 0.

If the board has been HIT, and neither a PT DA! or a GP_DA! respond, then

the watch dog timer will generate DSACK1! and AS_ RST! after 16 CPU cycles.
If a PT_DA or a GP_DA has happened, then DSACK! will be generated after 4
CPU cycles. -

£t o B K d W

The PT DA and GP_DA have been removed.

DE! is the data enable for the Bidirectional latches that are on the CPU
DATA lines. DE! Becomes active 1 CPU cycle after HIT! becomes active. It
stays active as long as HIT! is active.

RD/WR! is the Read/Write line. This signal is based on the RW line
generated from the CPU. If RW is high (CPU reading from external RAM) then
RD/WR! line will be high. If RW is low (CPU Writing to external RAM) then
RD/WR! will go low when HIT! goes low and stay low for 3 CPU cyeles. It will
go high 1 CPU cycle BEFORE DSACK is generated.

A3 RST! is the AS reset line. It is used to reset the FF after A3 set it,

It is gated with the CPU AS! and DSACK. This is done to make sure that DSACK
is asserted long enough (Once DSACK is asserted, it stays asserted until AS!
goes inactive.

GAL20
FILEN
AUTHO

WO WS WE WE Ve WO WE WD WO WE WE W e WO

COUNT
NCO
LOAD
AD 13
AD” 14
AD_15
ADT16
NCT
NC2
NC3

C IN
GND
OUT E
Ncy™
C 13
CT14
c”15
cT16
c3o1
cs1!
cs2!
csS3!
NC5
PWR

ve 7/21/87

AME: 'ut3 cnt4.pld’
Rs James Vig Sherrill

4 bit extension counter with address decodes

The counter 1is a syncrounous 4 bit counter with syncrounuous load.
It is designed to be used with a ut3 ent7.pld and a ut3 cntb6.pld to

yield a total of 17 address lines. This gal provides bits

Address[16:13]. Also it decodes the outputs Address[16:15] into 4
seperate address decodes.

/CS0! = /
/C311 = /
/6821 =
/C831 =

N

A16
Alo
A16
A16

H
;Must have a 2 line

+ /LOAD
+ /JLOAD

w o R

Mo W oW

¥ /A15
2 A15
& /A15
& A15

;PIN 1 is COUNTER CLOCK pin table begins on line 5

;Not used

;PIN 3 is LOAD
s:Address input
sAddress input
;Address input
;Address input
’

-e

sCarry IN
sGND

-

;Output Enable (ACTIVE LOW)

sNOT USED

;Address 13
;Address 14
;:Address 15
;Address 16

;Chip Select 0 ACTIVE LOW
;Chip Select 1 ACTIVE LOW
;Chip Seleect 2 ACTIVE LOW
;Chip Select 3 ACTIVE LOW

;NOT USED
;Pin 24 power

break between pin descriptions and equations.

AD_13
/C_13 * C_IN
/CTIN # 713

AD 14

/¢ % ¢
cT1l4 # /C

/CTIN * ¢

13
14
15
16

4 S = ¥
5 N - = e 3
- " . 3 a - - 1
-

.

"

b+ o

c_16

R

/C304
/CS01.0E

/CS1t
/CS14,0E

/C82¢
/Cs21.0E

nn

/C383!
/CS31.0E

DESCRIPTION

LOAD
/LOAD
/LOAD
/LOAD
/LOAD

#® W ok koA

LOAD
/LOAD
/LOAD
/L.OAD
/LOAD
/LOAD

/C_16 #
/OUT_EN

/C_16 %
/0UT_EN

c_16 ®
/0UT_EN

L ORI

C 16 ¥
/0UT_EN

AD 15
/C15

¢15
/CTIN

AD 16
/616

C 16

c_16
/CTIN

/¢_15

/¢ 15

S

® x B =%

C_14
/C 1Y
/CT13
¢T15

C_15
/€715
/C 1
/€13
cT16

WA fe W

C_IN
CTIN
CTIN

C_13 *

C_IN
cTIN
CTIN
CTIN

: Ra—— L, .
.

GAL20
FILEN

AUTHO

O e e ws wa WE Ve W WO

we we w3 ws we

Csil
cs21
CS3t
NC5
PWR

V8 7/21/87

AME: 'ut3 entid.pld?

R: James Vig Sherrill

The counter is a synchronous Y4 bit counter with synchronous load.
It is designed to be used with a ut3 ent7.pld and a ut3_ent6.pld to
yvield a total of 17 address lines. This gal provides bits
Also it decodes the outputs Address[16:15] into 4

Address[16:1

31.

separate address decodes.

/C301
/C3 1
/€328
/C33!

/
/

A16
A16
A6
416

i
sMust have a 2 line

?

c_13

+ /LOAD
+ /LOAD

L A]

& e W W

/A15
¥ - A15
% /A5
¥ A15

sPIN 1 is COUNTER CLOCK pin table begins on line 5

;Not used

;PIN 3 is LOAD
;Address input
sAddress input
s;Address input
sAddress input

sCarry IN
$GND

'Output Enable (ACTIVE LOW)

sNOT USED

-Address 13
;Address 14
sAddress 15
sAddress 16

;Chip Select 0 ACTIVE LOW
;Chip Select 1 ACTIVE LOW
:Chip Select 2 ACTIVE LOW
;Chip Select 3 ACTIVE LOW

;NOT USED
;Pin 24 power

break between pin descriptions and equations.

AD 13
/€13 # C_IN
/CTIN # cT13

AD_14

/CT 14 *
CTl # /

/CTIN ¥ C

4 bit extension counter with address decodes

13
14
15
16

/C30!
/CS01.0E

/C31¢
/CS1!.0E

/Cs21
/C821.0E

/C33!
/CS31.0E

LR IE I

+ b oo

fnn

LOAD ‘* AD_15
/LOAD * /CT15
JLOAD * C_15
/LOAD * €15
/LOAD # /C_IN

LOAD # AD 16
/LOAD #* /CT16
/LOAD * €16
/LOAD * C”16
/LOAD * €16
/LOAD * /CTIN

/C_16 * /C_15

/0UT_EN1

/C 16 # C_15

/0UT_EN1

C 16 * /C_15

/0UT_EN1

C 16 # C_15
/0UT_EN1

*

*®

L3R 2 2F 2R J

C_14
/¢ 14
/€13

cT15

2 15
/¢”15
/¢ 14
/C_13
cT16

L

C—

13

1y

*
¥
#

#

c_IN
CTIN
cTIN

C_13 #

C_IN
CTIN
C_IN
CTIN

GAL20V8 7/29/87
FILENAME: 'ut3_datl.pld! The timing generator for all the D/A circuits
AUTHOR: James Vig Sherrill

This GAL will generate all the timing necessary to run the D/A
section., It is a clocked device. The signal inputs and outputs are as

H
H
H
H
$ follows.
H
?
3 CNTO-CNT3 The count lines that all the timing is based upon.
: These lines count from 0000 to 1111 (16 total states).
’
3 D0,D1 Inputs from the Definicon controller.
’
H
H
CLK $PIN 1 (IN)
HIT 32 (IN)
LOAD H (IN)
RUN o s U (IN)
CONV IN 35 (IN)
CNTO™ ;6 (IN)
CNT1 3 (IN)
CNT2 :8 (IN)
CNT3 19 (IN)
Do 310 (IN)
L1 111 (IN)
GND ;12 GND
OE 3113 (IN)
NC ;14 (IN)
STOP! 315 (ouT)
C END 3116 (0oUT)
NT 117 (ouT)
CNT CLK . ;18 (ouT)
AD OE! 319 {(ouT)
ADTLD ;20 (ouT)
RAM_OE! 321 (ouT)
RAM WR! ;22 {ouT)
RESET! 323 (IN)
PWR 324 POWER
y
H
/STOP¢ :t= /JCNT3 # CNT2 % CNT1 # DO # RUN # HIT
+ /CNT3 % CNT2 % CNT1 ®# LOAD
4+ J/CNT3 % CNT2 # CNT1 # ,/RESET]

C _END s= CNT3 # CNT2 # CNT1 ¥ CNTO
CNT CLK := /CNT3 % /CNT2 # CNT1 # LOAD

- + CNT3 # CNT2 # /CNT1 # CNTO % RUN
/AD_OE! stz CNT3 # RUN # HIT

» .

AD_LD

/RAM OE}

RAMTOE!,OF

/RAM WR!

RAM WR!.0%

+ CONV_
t= /CNT3
+ CONV_
t= /CNT3
= /CNT3
s= CNT3
= CNT3

IN

IN

* RUN #* HIT
% RUN * HIT

% /CNT2
¥ /CNT2

RUN # HIT
¥ RUN # HIT

*

RUN *

HIT

B,

« .

GALZ
FILE
AUTH

g GE g E2 g

COUN
NCLR
1.0an
Lo o
101
Lo =
1.1l =
Lo_4
(X R
LD &
MOT
GNI
T
NCO
co
C_1

-
[

cC =
4
cCs
oA
c_ou
MIZO
FWR

s W ga

C_o

oVE 7/21/87
NAME: “utI_cocnt7.pld” 7 bit general purpose counter
ORs James Vig Sherrill

The counter is a synchronous 7 bit counter with synchronous load.
The carry_out bit becomes valid only when bits © through 4 are 1. Thersa
is no CARRY IN bit used, this will ALWAYE count or load.

T :Clock
s NOT USED (Fossibly used as a clear)
s LOAD strobe
s load input
s load input
s load input
sload i ok
sLoad . input
sload i ok
sload input
s NOT USED
s GND

()

et

LSE

DU RO S R

MSE

Loy

EN s Dutput Enable (ACTIVE 1 0W)

s NOT USEL
sCconik O
s Count
;['_‘.unnl',
s Count
sk
: Count
sC il A
T sCarry OUT
sNot used input
sFIN 24 I8 VCC

L o b

Ol

Must have a ® line break between pin descripfions and equations.

s= LOAD # LDO_O s L.OAO

+ /L0AD % /C_0 g HNLE

= LOAD = LIO_1 s LOAD

+ JLOAD % /C_1 % C_0 s PPN

+ /LDAD # C_1 % /C_ 0 s HOL.D

1= LOAD # LD_2 s L.OAD

+ /LOAD # /C 2% C_1 % C_0O s TOGGLE

+ /L0AD % ©O_2 % /C_1 . 25101

+ /LOAD # C_2 s /C_0 s HOL.V

s= . L.0AD # LD = s LOAD
+ /L0OAD % /C_ 3 % O 2% C_1 % C_O s TOGGLE
+ /LOAD % C_2 % /C_2 s HILLD
4+ /LDAD % C_Z % /C_1 s HOLD
+ /L0AD # C_ 3 % /C O s HOLD

¥
¥
b

C_4 =
+
+
+
o+
+
C_5 i=
-
EL
+
o+
ofe
+
2 A =
)
Fl.
-+
o+
+
+
-+
4+
cC_out =
2 OUT.QE =

LOAD
/L0OAD
/L.0An
/L0AD
/LOAL
/L.OAD

L.OAD
/L.0AD

/L0OAD
/L.0AD
/L.OAD
/L.DAL
/L.0AD

LOAD
/LOADR

/LOAD
/LOAD
/LDAD
/LOAD
/L.OAD
/L.0AD

/LOAD #

FWR

o ok ok ok %

ok
<

ok & sk X
[R

¥ o

¥ % ok % % %k

~Tr
HPPPPF
FRT TN
% ok % d ok

|
PR/

i

}

N R NS

!["J['JDDFJ

~
[y R
%J}

o~ oS

o)

!

G~ o

s}!

noooono

o~

C_t #

% %ok ok % ¥ %

¥ ok ok ok o %

/C_0

C_a
/04
/C_=
/C_2

s LOAD
* C 2% Cls CO s TOLG 2
s HOLD
s HOL.D
s HOLD
s HOLD

: L.OAD
O3+ C:x C 1% C_O s TOGEG

sHOLD
s HOL.D
s HOLD
s HOLLD
s HOLL

: LOAD
C 4% C2x® CE&x C_1l# [C_O s TOGG

s HOLD
s HOL.IY
s HOLL
s HOLI
s HOLD
s HOL.I

C4x Cax Cx% C_1#% CO

i

N EE ME IR Sy B O B am e

GAlLzova
FILENAME
AUTHOR:

ST sz 48 4w 48

FLE . R e T

CLE
I DUT
L
Al
CNYT
NTO
CNT1
CNTZ
CNTZ
110

ot
NI
OE
LN
LOOF Ck
AQD LD
ADD CLE
SN0 DE
NCH
CNVT DUT
STOR!

[FENI
NCO

AR

IN

3 az

C_END

BNVT OUT

ADD_CLK,

AL LD

L.OOP_CK

T/29/27
2 utE dal.pld”
James Viag Sherer

The timing aenerator for all the /A circuits

ill

This GAL will qgenerate all the timing necessary to run the /8

section. It

follows.

CNTO-CNT=

These lines count

42 up 4% am 48 I I am 4%

an

b et ek s

am 43 4w 46 4w 48 3x 3% 48 1% ag 43 4% a8

CNTZ %

JONTE #
+ CNVT IN

+ 0

CNT:Z
CNT=

* %

CNTZ
CNT2

+ 1
*x %

/ONT

%

from

N1

MO N>R

O O b

[urs

14

)

R N %]
RN A B B e

CNTZ
/CNTZ
/CNTZ,
/CNTZ

/CNTZ
/CNTZ

CNTZ

¢

% %

is a clocked device.

(IND
(IND
(IN)
(INDY
IND)
(IND
CIND
CTND
CING
(IND
(IN}
GND
(IN)
(IN)
(QuUT)
(OUT)
(QuUT)
(OUT)
(OuUT)
(OuUT)
(QuT)
(OUT)
(IN)
FOWER

CNT1

RUN

CNT1
CNTL

ENT1

The signal inputs and outputs are as

The count lines that all the timing is based upon.
QOO0 to 1111

(14 total states).

Carry Qut from LOOF COUNTER
Indicating a Loop Load is running
Indicating an Address Load is running
Indicating a CONVERT is running

LSE of counter

MSE of counter
Data line DO,
Data line Di,

indicates a STOF bit
indicates a LOOF bit

Running the /A Convi. !
Clocks the LOOF Counter

l.oads the Address Coebep

Clocks the Address Counter

Enables the Address Counters outouls

Not used

Convert signal to actuwal D/A lakches

FRegets RUN on 00 or RESET or AL or LL

ST

A pulse always on CNT = 15

NOQT USED

LCNTO v CNT = 15

JCNTO % RUN sRUN # 10

#* JONTO %+ AL AL % 10
RUN ® D1 % /C OUT
AL

/ONTO # RUM % 03 % /C OUT

/8TOR !

/ADD OE |

RN

+ 4+

JONT:
JENT=
/CNTZ

JONTS
/CNT =
/CNT2
/CNTS
JONTE
/CNTE
/CNTS
/CNTZ

RUN

% o

%*

% %k % ok % % ok %

CNT2
CNT2
CNT2

CNTZ
CNT2
CNTZ
CNTZ
CNTZ
CNTZ
CNTZ
CNT2

* kA&

¥ % %k ok ok ok %

CNT 1
ChT1
CNT1

CNT1
CNT1
CNT1
CNT1
CNT1
CNT1
CNT1
CNT1

E:3

#

&

¥ % % % ok ¥ ok %

CNTO
/CNTO
CNTO

JCNTO
CNTO
/CNTO
CNTO
ZONTO
CNTO
/CNTO
CNTO

* g oK

B o% oAk ok &k % ok ok

RUN % D1 % /0 oy

RUM # DO
RUN #% 10

CNVT IN
CNVT IN

GAL2OVE
FILENAME:

T/25/27
“utd dech.pld”

AITHOR: James Vig Sherril
H This is the
H that fits inside
. sections:
« Address[2Zii20] decoded on
: Address[2l:14] decoded on
ADDZI s 1
A2 s 4
ANDE7 .5
AT A s A
ADDZS 57
AR 5
R
«10
:11
< 13N
ADDZ20 R
Sy =14
ADDLE 15
AL T Y
ALl & 17
HLT HI P
HIT H s 19
LT L 30
EXTGEN! 2
nEL O i)
AG! PRt
R +PI

s Must have a 2

1

pin
pin

I3

N 24 1

1,
19,

IN HEX

“HIT H*
THIT L~

Vo

It decodes

Upper decoder for Definicon interface.

upper decoder for the definicon systems board
an IEBM FC-AT/XT.

the address intn 2
l4th MEG to 17th MEG
' Lower MEG

OLOX XXXX
0104 XXXX

line break between pin descriptions and equations.

/HIT H = /JADD31 « /JADDZO % /ADDZY % /ALDZS 1 010X . XXXX
* JADDZE7 % /ADDRA # JANDRS * ADDZ24
% JADLDZZ % /7ADLDZZE % /ZADDZ1 % /ADDZO + /A5

AHIT L = JADDZL # /ADDEO % /ADDIZY % /ADDES 0104, XXXX
* /ADDRT7 % /ADDRA % /JADD2S % ADDZ
#* /JANODEE % /ADDZZ # /A0NDEL # /0500020
/QLM1s % ADDIE % /ADDL7 % /ADDLA % /ASH

/HTT HI = /ADDIL % /ADDE0 » /ADDE? % /ANDES s 010X, XXXX
JALDZT7 % /AD0OZ4&A # /ADDZS # ADDR4
/ADDEE % /ADD2E * /ADRDZEL % /ADDRO % /AS!

/EXTGEM! = /ANDEL * /ADDE0 * /ADDZY * /JADDED 010X L XXXX
/ADDR7 % /ADDZG % /ADDES * ADDE4
#* /ADDEZE # /ADDZE % /ADDEL # /ADDEO % /AS! # DEL O
OESCRIFPTION

The HIT H is HIT HIGH. This is used to decode any where in the active
1 MEG that the decode logic will be using. The address decoded is set 010¥%,
XXXX in HEX, or 0000 Q001 0000 XXXX XXXX XXXX XXXX XXXX in binarv. The
HIT L bit is used to decode the address a little further. This is from
Q100 XXXX in HEX or Q000 0001 0000 0000 XXXX XXXX XXXX XXXX in binarvy.

BALZOVE

AUTHOR:

4% 2% 2

©3 a2 JdB ug 43 2

annDis
AlL4
ADDLZ
AR
ALDLL
ADDLO
AL
A0
ADD7
NAINA
NCO
A
NC1
MR
NG
N2 G
NCS
M
HIT!
M7
NCE
M
As!
PR

Must have a &

PP It

/HIT!

IHESCRIFTION

The Hit output will be active when all the address

7/25/87
FILENAME: “ut® decl.pld”

sections:

R RS |

Addressl15:14] decoded

JADDIS % /ADD14 +# /ADRDIR # /ADDRLE

an

Wy bt

NSO D

4% aw 38

i

=
-

-
2
®
=
-
n
»
5
»
H
w
H
"
s
-
H
"
H
-
H
K

]
-

Lower decoder for Definicon interface.

James Vig Sherrill

pin 18, “"HIT HY

AC13]
~E14gd
AL13]
13
AC113
Aol
AL]
AT
AC71]
NAD

24 13 v

/ARDi1 # /ADDLO % /JADDE
/O0DA

/Ann7
/A8

agual to 0. This is not a clocked machine.

This is the upper decoder for the definicon systems board
that fits inside an IBM FPC-AT/XT.

It decodes the address intn 2

BINARY

0000 OO0 OXX XXXX:

® /ADDS

line break between pin descriptions and equations.

s OO0 0000

inputs and

QOXX XXXX

A are

GAL1AVE 7/21/87
FILENAME: “utd dsak.pld”
AL THOR: James Vig Sherrill

OSACKE* timing aeneratop.

This will generate the 2 DUSACK signals back to the processor. It
also contains a watch dog timer to prevent any hang up in the systom
if an incorrect memory position was tdecoded. The watchdog will take
place only after the HIT line has bean activated, and 32 CFU clock
cycles have gone by.

0 S g B e 42 am

CLE

GF DA
NCio
=T DAL
NC11
HIT!

R

ASI

N2
13NT)

OE
IIMTO
CNT1
OSACK 1
RIN_WR
tE
CNTZ2
LNTS v
CNT4 2 1%

TR 220 iw YO

L ad

.
i

3k gk 3% 2w as

DR BT Sy

0

NI

49 e 2% Jw 28 a3
2 RS T

«x I sz i e

otk peb b deb e el pa
OGS O

« 1x

a2z

Must have a & line break betwsen pin descriptions and equations.

PO

CNTO i= /HITY % /CNTO
CNT1 = /HIT! % ONTO # /0NTL
+ /HIT!H # /ONTO % CNTH
CNT2 = /HIT! # /CNT2 # CNTL # ONTO
+ /HIT! # CN72 % /CNTH
+ /HIT! # ONMTZ % /0MYO
CNT= f= /HIT! % /CNTZ & CNTZ # CNTI % CNTO
+ /HIT! # CNTZ % /CNTZ
+ /HIT! # CONTZ % /CNT1
+ /HIT! % CNTZ % /0ONTO
CNT4 t= /HIT!I # /CNT4 % ONTZ # CNT2 # CONTiI % CNTO
+ /HIT! # CONT4 % /CNTZ
+ /HITU % CNT4 % /CNT2
+ /HIT! # CNT4 % /ONTH
o /HITE % CNT4 # /ONTO

. . N

/DS5ACK 1! f= /JHITE % ONTZ % /GF DAY & PT DAY :Wait 4 cvcles fast
+ /JHIT! # OCNT4 # (ONT2 = /FT DA sWait 22 cveles slo
W
/RD_WR t= /HITE % /RW % /CNTZ % DONTL # /GP DAl ¥ PT DAl
+ /HIT! # /RW 3 /CNTZ & OCNTO # /GFP DAY % P1o0Aald
+ /HIT! # /RW # /JCNT4 % ONTZ % /FT DA!
+ /HITI % /RW #% /CNT4 % CNTZ % /FT DA!
+ /HIT! % /RW # /CNT4 # CNTL # /PT DA
+ JHIT! # /RW # /CNT4 %= CNTO # /FT DAL
+ /HIT! # /RW ¥ CNT4 * /ONTZ % /FT DA
Iz = JHIT! % CNT1 % CNTO
+ /HIT! # /DE!
=t .0 = PR
DESCRIPTION
The CNTO ~ CNTZ are the counter lines. When HIT! is low., these lines will

count CFU cycles. When HIT! is hiah, they are reset to O.

* If the hoard has been HIT. and neither a FT IA&! or a GF DA! respond, then
the watch dog timer will generate DSACKL! after 3% COFY cvcles,

If a PT DA or a GF DA has happened. then DSACE! will be generated after 4
#* CPU ecvoles.

3

¥ The PT DA and GF_IA have been removed.

21 is the data enable for the Ridirectional latches that are on the :u¥J

UATA lines. [E! Becomes active 1 CPU cvcle after HIT! becomes active. It
slays active as long as HIT! is active.

RU/WR! ia the retimed Read/Write line. This siqgnal is based on the RW line
generated from the CPU., If RW is high (CPU readina from external RAM) then
RO/WRY line will be high. If RW is low (CPU Writinag to external RAM) then

RI/WR!D will ao low when HIT! goes low and stay iow for 2 CPU cvecles. It will
oo hiagh 1 CFU cyecle BEFORE DSACKE is generated.

A9 RST! is the A5 reset line. It is used to reset the FF aftor AY wae it il .

Tt is gated with the CFU AS1 and DSACK. This is done to make sure that DSACE
is asserted long enouagh (Once DSACKE is asserted, it stays asserted until AS!
noes inactive.

GALZOVE 7raa/m7 -

FILENAME: UTZ GFRAD.FLD

AUTHOR = James Vig Sherrill

3 select signals for the /4 converter.

H C8#, RO/WR, and OE lines for the static RAM.
3 ERR I B ol X B TRY .

2 are DdadressC 1S 153

LT RN e

M LSE!
RiA

st

NCi

N

8]

MIZE
cszl
el
csit
1501
RAM OE!
D WRY
LE!

NI
NC4
WR

an wE Ak

/CS0!
/0H01.0E

/C81!
/CS1L0E

/e8!
/0821 0E

/Ce3!
/531 .0E

/RAM OE!

RO/WR!

This is the fereral Furpose /8 Decoder

This gal will decode the DAdress lines and generate the proper
It will generate all the
They will be
The

Must have a 2

o

||

i

/HIT!
JHITI

/HITH
/HIT!

/HIT!
/HIT!

/HITH
/HIT!

/HIT!

3

B e T et aadl el ok B S B Y ¥ SR B S o ¢ O v B I S
I Rl

A IR

48 Sz AR wd AT aw AN oy AN a2 4 IR AW 49 x4
i i

“t R

(e

-
)
-
.
2

ALR
Al

Al
Alw

ALY
Alw

PN

CIBRER

¥+ /A1E
* /Al1E

/AlE
#* /ALE

* /ALE
#* /AlE

#* /A1
%* /A1

i

-

signal from the DAdress decoder,
signal from the AS020,

* %

% %

Mmoot ocet d e .
The HIT!
INUSE!

/AL7
/A17

/A17
/A17

Al7
Al7

A1z
Al7

% ¥ %

*

* %

line break between pin descriptions

/ALL
/Alk

Als
Alé

/Als
/Alk

AlA
Al

and equations.

au am

4 3%

FErTY

1300
1000

1001
1001

1010
1010

1011
1011

10XX

XXXX
XXXX

XXXX
XX%XX

XXXX
XXXX

XXXX
XXXX

=X
=X

oX
7X

AX
X

BX
BX

E vyl

signal from the /A logic,
and the CPU CLOCK.

XXXX /RW HIT!

i

it

/RAM DOELL.OE JHITE # ALY * /AlE r 1OXX XXXX /RW HIT!

JRO_WR! = /HIT! # a1y * /ALE # /RW . 1OXX XXXX
/RID WR!.OE = /HIT! # Al? # /A1Z * /RW s 1OXX XXXX
/TE! = /HIT! * Al v IXXX XXXX
/IEI.0E = /HIT! * ALy v IXXX “uXX
DESCRIFTION

This is the decoder set for the [/A section. The CS% lines are mampec =

=2

shown below:

QOGO QO] 0000 O0o0 QOOC o000 QOO0 ool
> 0801 0100 QOO0 to 0100 FFF
F .
QOO0 0O01 QOO0 QOO0 0111 1111 1111 1111
QOO0 OOO01 QOO0 0000 1000 QOO0 QO 500
> 811 Q101 Q000 to 010t FFF
F‘
GOOO 0001 Q000 OO00 1111 14311 1111 1111
' QOO0 0001 0000 OO0l QOO0 0000 QOO0 00
> CBRL Q102 0000 to 0102 FFF
=
QOO0 O0C1 0000 0001 Oi11 1111 1111 1113
Q000 0001 Q000 0001 1000 0000 0000 G000
> Ceat Q1O Q000 o 0103 FFF
g
OO0 0001 0000 OO0l 13141 11314 11131 1111

Ralt DE! is the RAM output Enable, this is active low and decoded only whan
reading from the area 0100 Q000 to Q102 FFFF (254k).

D WR is the RAM Read/Write line. This is low only when writing to the area
Q100 OCO0 to 0103 FFFF (254R). ‘

IE! is the Data Enable sianal that tells the DSACE (AL that data an I/0 is
Laking place in the decoded arga. It is active low and only in the area
Q100 0000 to 0102 FFFF (254D,

L
*

ETAVI W LV 7/28/57
FILENAME: UTZ FPTAD.FLD This is the A/D general 1/0 port.
AUTHOR# Jdames Vig Sherwrill

This gal decodes the low level control memory positions for the /A
converter. The decoding is agiven at the end of the document.

ApuE SE g

NO_ CL.K
AS
A4
A2
AZ
At
HIT H!
HIT Lt
RW
NOING
NOINI
END
NO_ OE

. NGt
Al LOAD
AL START
Al BUT1
AD ouTL!
Al QUTZ
Al ROWR
AL _REALD
N0 Ed R
NC4 e

R 24 uER

[y

ac am e a3
0y b

SEDS O

i
-

VonaN

48 g 4K g 48 .2 4% a8 2% 48 2@

R S e e S R i A I
RN T I N

FLI
e}

&1
i

o~
e

1 um am .c

-

sMust have a =& line break between pin descriptions and eguations.

AD_START = JHIT H! # /HIT Lt % AS % /84 % /A3 # /82 % /681 % /RW
A START.OE = FUWR

ALl LOALD = /JHIT Hi % /HIT L! % AS % /A4 % /A2 # /A% % Al = /RW
ALl LOAL. O = PWR

ALl READ = /HIT HI % /HIT L! # AS % /84 # /A ¥ A2 % /Al £ RN
AL READ. O = PR

ADl OUT1 = JHIT H! % /HIT. LI % AS % /84 & /A3 # A2 # Al # /KW
Al DUT1.0E = FUWR

/A0 _OUTL ! = /HIT HI # /HIT L! % @S % /A4 % /A% % AZ # Al # /R
/00 OUTL1.0E = PWR

Al OUT: = /HIT.H! # /HIT L! % AS % /A4 % AT % /AZ % /81 % /RW
AN OUT:E. 0E = PWR

/B0 ROWR ! JHIT HI # /HIT L1 % AS % /A4 % /RW

B

Al ROWR . OE /HIT_ HY # /HIT L1 % A5 # /A4 Rar

/AD_TIE!
Al DE1 . OE

JHIT HE % /HIT LV % A5 * /A4
ZHIT HE % /HIT L! # A5 # /A4

it u

DESCRIFTION
Signal

AD START
ALl _LOAD
A0 _READ
Al OUTt
An ouTR
ADl_QUT:

RO/WR

WR
WR
RD
WR
WR
WR

only
only
only
only
only
only

Address decode

o104
0104
0104
0104
0104
0104

0020
0022
Qo4
Q0264
Oy

QOZA

¥
s

f3Alzove
FILENAME:
AUTHOR:

7/28/87
UT® FTDA.FLI
Jdames Vig Sherrill

This is the /A deneral I1/0 part.

This gal decodes the low level control memory positions for the /A

N N N s EE

_ A ‘ ' -
.

HE ue uT ww

NI NG
NOIN1
BN
NO_OE
1
oA_DE!
oA OuUT
DA REG
oA START
DA AL

[L
oA FT _WR
0A ISAK !
NC4

PR

4a us 3z

OIS P

o
i

-

SROUND

Ul 35 1 ko

DO

%, s
s of
e sy

SR .k A2 . 48 w8 SE I A% AW IR w3 ek AW

F I O I I e e e ol T i

.

L.
T
S alel

124

PLIER

Must have a 2 line breal between pin descriptions and

equations.

converter. The decoding is given at the end of the document.

0A START = /HIT H!U % /HIT_L! % /A5 # /A4 # /A% # /A2 % /01 /RM
A START.OE = PWR

LA REG = /HIT H! % /HIT L! # /A5 # /04 % /03 % /A2 % Al /W
DA REG.DE = PWR

A AL = /HIT_ H! # /HIT_L! % /A5 # /084 # /A2 % A2 # /41 /W
A Al OE = FWR

na Ll = /HIT_HU # /HIT_L! # /085 % /A4 % /A% % A2 # A1 /RW
oA L., 0F = PR

oA _ouT = /HIT_H! # /HIT LI % /A5 # /A4 #+ A% % /A% # Al /RW
oA ouUT.OE = PFWR

LA PT_WR = /HIT HU % /HIT L % /A5 % /A4 # A2 % A2 % /Al /RW
DA PT_WR.0E = FUR

/DA TISAk: | = /HIT H! # /HIT LI

08 DSAKIL0E = FWR
/1A _TE! = /HIT HI
+ /HIT HIi
+ /HIT H!
+ /HIT H!
+ /HIT H!
+ /HIT HI
/DA DEL.OE = /HIT H!
DESCRIFTION
Signal RO/ WR
113 START WR only
oA _REG WR only
on Al WR only
oA LL WR only
on ouT WR only
DA _DA_FT WR only
A UE
/DA ISAE!

% % %k ¥ g

JHIT Lt
JHIT LV
/HIT LI
JHIT L1
JHIT LI
JHIT_L!

s d Kk ok ok %

AHIT LU %

/AT
/A5
/AT
/A5
/AS
/A5

/A3

ode % %k %k ok

/R4
/A4
/A4
/A4
/A4
/84

Address decode

0104
0104
0104
0i04
olo4
0104

OO00
laTalu)ed
OO0A
[#IaTaTX
QO0A
O0O0C

Output enable for data transfers

% % o ¥ %k 3k

A2
FEAKS
/A
as
AZ

bhat an access to the range 0104 000X has occurred.

* /0

*
#*

AZ
AZ

¥ /A%
% /AZ

#*

Az

* % ok ok % %

Al
/Al
Al
/Al
Al
/a1

FRATal
+ DA
PRATAT
« DA
1A
1 DA

REG
AL

GF
CNVT
RO

This signsal is used to sianal back to the DSACK generator

.

~#—%-%- APPENDIX B -#-%-%-

Source code listinas for frreq gen.c and associated code, plotl.c,
al.c, and graph.c, which together comprise the frequency generation
and analysis package.

E mE T EE N

Ly

frinciude

Yetdio. h"

e lude "matbh.on®

SRR E SR ERRE R R F R L RERR RSN REFRFUR S F R RHAEE SR RE RN E RS SRR AR FHRE R L SFR

Nefinitions-

S E SR 3 3 T N SR L A S 2 3E 6 3 2 S I H 30 A SE R H S 0636 I R AR

fiddefine
hdiafine
fidefine
it ine
ftdefine
HisFine
fidefine
Thafine

#derineg
Tl Fine
fdefine
Mlefine
*/

#defineg
HuhmFine
#define
HoeFine

/# Colors for IBM pc ROM-BIOS calls %/

b RI0)

black
blue
areear
cvan
red
purplie
brown
wnikte

lblack
Iblue
lureen
leyan

ired
lournle
veellow
lwnite

/4 COLORS are 4 bits long for mode 3 ®/

/% These colors,

when used as backaround., ¥/

/% make the foreaground blink.

fdoFine hi_ccoclor, fo virl Low
Ydefine hi_color_ba biack
fidefine whi_color fg whirte /4% Hilignted and Mon hilighted colors ®/
#define uhi_color Do blue
#define m bar _color fg vellow
#imFine m bar_color ba b1un
#define fld color_fq wnite
hlefine Fld color_ by b1
#fdefine opht color_fa wnite
ihdafine opt_color bn blue
#define fr_color_fa vellow
Hdefine fr_color_bag biue
fidefine fir _bar color fg vellow
lefine fr bar color ba btue
#define fr_hl_color_ fa vellow
flefine fr_hl color bno blanck
#define fr_uhl color_fg luhite
fidefine fr_uhl_color_bg blue /% freguency editor stuff #/ :
e Fine fr get color fa lred
ffdefine r aet_color_ bag blue
fefine fr_mess color fa lyesoen
ftdefine fr mess _color_bg blue

]

Fine
frdefine
fdefineg
#define
ddafine
fidefine
define
#define
Hdefine

#define
#dufine
dodpfine
fdefine
#iefine
#define

define
#define
Hde e
#odefinege
Sdefine
#idefine
Ydefine
#define
Yl Fine
fidefine
ThaFine

HdoFine
tilieFine
fdefine
Hletine
fidefine
svlafine
fidefine
jafine
#idefine
Mlefine
#define

Mlafine

fdefine
~pfFine
{idefine
vdefFine
fdefine

hinfine
ficleFine
jidefine

fr bow _ienyg
0 Fld_lena
fr_pnage
frr_mess_row
fr _mess_col
fr_bowx_row
fir. box_col
fras_ col
fras_raow

auit_col
oult_ row
go_cnol
ao_row
first col
First row

/% Hes

ti Ouda
e Qwb ¥
bi QD
Lt
heh
s
im
rin
tin
fali
cHnter

11 d
L
bl
br d
het d
virt d
Im_d
rm_u
tm_d Qxch
bin_ri Omua
centar_d Oxce

blank Qw20

max_menw 7
max_tow 7
max_col =
max_kay &

may_ func _dimen

rinht _key
left kev
uo _key

L4~
~

-

21

[e s
Y

Y]
o0

(%]
1
8]
(0]
1

(%]

/% Menu position indices #/

verrsions of Box characiters %/

7% single width box characterse #/

/¥ llouble width box characters %/

el
D4 G0
QOad OO
Qw300

/% dimensions for action vectors #/

/% keyboard kevy values to intEé =/

-

Hia¥ine down key
ffdefine end_key
fdefine raturn _key
#define plus_key
e Fine minus_key

#idefine mess_row
kdefine mess_col

#define stat_row
Hdefine stat _col

#define act row
Miofine act ool

ficefine sel row
fdefine sel _col
&/

fidefine oue_row
Fuefine oue col

fidetine inf_row
ddefine 1nf_col

#define box_row
teving bhus ool

sfl_row
sfl col

#tdefine = row
fdafine sf2 ool

#define fl _lenng
thrafines F2 lzng

#define mess_uno, leng
Fdafine mess fld leno

fidefine ous und_lano
himfine aue fld__lena

fidefine stat und_leng
ddiefine stat fld _lena

#define inf_fld_leno

char in_filel:0I.

ithar out FilelI0l:
char biopufi40o%s]:.
FTLE #10 phirs

=4 0d
delb

=t /% row anag ool positions of arephics

/% file i/0 variables ®/

P R L D R R L T T L L e S R

-

efinicon register descriptions for FPC interfacing
B T T R e o e A S T T T e T

sLnet REGS €
unsianed short ax:
unsigned short flag.
unsianed short
unsignoed shork
unsigned short

¢
m

ng

DRy
R O
moag ARy 4w

unsigned short si

unsiaonsd short di

unsigned short ds:

unsioned short 25«
> inens:

L D R L LT R S B P P ST S T L s e s e R R LR L R D e L

Fositinons are structures concaining the values which specify a partiouiar
place in the svsatem. 0OFten tnese values will be used as incices into olhisr
siptctures in order to find out a melevant action for that position.

R R e S S A I R R 6 I I 2 IR I S S SR R SR R

shevlict position

K"
int menu:
1Nt o *
it ool

S 1oL

/RS RNEREEFEE ISR FEESFEY AR AR RAARRFF AR RFT RIS RETRRBF SRR E R BB R REHRRERTERE Ny

¥

¥

Selection matrices hold a picturs of what fnas been selected for any
civen manu.

TR AR HE R RS FETRT RRERR RSB RR G RN SRR F B H RN H I H R R SR H S F SRS

siret selection_matris

pe

int menus
int row Cmax rowl:
int col Limams _colls

I eurrent_sms

P st Tt 2 T R TR TR T P e P L TR L T P L PR L PO PR LI TR R e T S L e BT

fction Vectors consist of a count of the number of functions (or
actions) fo carry out, alona wiin an array of pointers to thesse functioans.

N multi-dipensional array of poanters to action vectors allows the
creation of Yaction cnains® for each position/kev combination. The inoices
For bthess dimensions are the members of a position structure and a key value.

S SR B SIS IR W S SE 3 1 SR ST SRS SR N R R O SIS S B S SR 3 A R SR R S E SRS

wtruct action _vecior
i
int count:
void (#funcimax, func_dimenl) ()1

et
-

struct position_in¥o

int lenote:
it abs o
1t abs_col:

etruct action_ vector act vect [ras_keyls

P e L R L g R T D s 2
. Memory man of NRefincicon/Ram interface
EHEEEEREF SRR FEEFE LS LERT SFRERFFERLF LR R AAREFFEREF B A ST FERREFERRAREF RIS DB R HF

foefine ca_ ram e QOOO00
aFine da ssbart CraaQ 1000
define ca_reo Croe] OaQ00R /% Ioto A section #/
Ahadime da_al Q1040004
fidefine maji] Q1040006
Mdevine da_ous i

ffdevine s ram

tlhafine ad _start QueQ 1 OADrE
fidefine ad_load QuO1040052 /% A to I section #/
#define ad read QuOlCGao0z4
#idefine ad_outl 001 040054

“dafine o _val o

/% qlobal vars #/

Alafine pi BE N S
#tdefine mawx_int_size FRTES
sthetire points per sec . Gnk

FA LT EL RS S P LT LR L P T T R T e R e S AT P L L L E LT L R R SRR Rt R T R L T T

parm set to completsly snecify a run

B R L R L e T T R R R L 2 TR P R PR R X S Y4
/# transmission/reception control parms #/

float total_time:

fioat ramp tiine:

float decay time:

Float record _times
floal delay time:

it looo_stariy
int 1loop &nds
ini looo cotuns

/¥ Fregusencies and Foints %/

tonag num oFf points
int num _of_ freos:
ind cur _Freg mams °
float Freq[1ﬂﬁ?.
Fhaat poinkl700007.

/% Swent freguency parameters #/
inal Freg ooer time;

loat fo o Freag
) L orn & _Freas
Ea

-

unsiancad Iono mix

lag_cnty
wrsianad long mix_lag ontds
/% misc flags #/

Sk wmit_modas
int tesnt_dac_oul:

R Y Y e
/E%E main. boundsoint FuE/
SR ERBEF SRR E RS S LA L F R RAEL LR,

/% (NOTE: the boundpoint message: iz to relate this section to a
coprasponding section of code written fur microsoft operation #/

FEETEEERFERR G AR ERAFERFEF RS SR AR AEF AR L ESTHRARE S B E R R EN R RS FH R RN EFF b5

MATN

Prints first scoreen. Zeros ram.
Dues appropriate action as long as keys are hit.

main ()

s

4
pr_common():
P meenuO ()

num,_of_ freogs=0:
misx _lag = 0.0;:

while (1)

*

take_action(kevnum (aetikey ())i

[

FHFERBSFERSHFREEF R AR R R EHS S
JiE#e hoardZ.oc boundpoint was/
P e e L L

F R RS R EERAREREE RS S AR AR AL HFA AR S AR AR AR LA DS FF AR SR AR R H SR BB RSB E RS D

bvtes)

)

Twypmam hhe A wo Doram (12 O+

AEREERAASEEEAFIRFFIERAYL AL FF LA A IR H SRR I EERERFFRFE RS S ERF B LR S FER AR E R RSB B R/

p=oad rams
For (i=0s 1 < OmOQOZ0000y i) s#pt+ o= 0.0,

P T L T R A R T T R P R R R R Ry R T Y
Zeros tha U to A ram (122k of 2 bytes)
SR SRR I I R S Y NN R R FHH AR I 36 A B 2 3 S S S SRR/

Susn dal)
£
t
short #Dj
inc i

o o: Q& ram:

Fore (i=0s 1 0 QuOO0Q20000s i++) #p++ = 0.0y

R DY S Ly D e R R R 2 R L T S T L T St B R L R S T A R T T

- ean A W’ -

/SRS N S R I R B 3330 30 B 20 S 2 S 3R 3 ST S5 3 3026 A S S I SR R B R S R RS
Starts the I to A rolling out values

HRHFEREFHEAERH %******%'ﬁ'%%%*%**%%*%%-%1‘-&i&%%*—}**—'A'-*'ﬁ-*v‘#'}%*%**%*******%**%*****-ﬁ-%* /

% let 1t roll, don't wait or stop #/

R R R P R S I X
Find values for looo cantrol and point placement.
Called after total, ramp, anag decay times have been eniered,

B R R X R R L T E TR B R e L S e N e

calc looo_wals(}

/4% Fioure out number of 149 msec loops nezded #/

centire = kotal time - (decav timsg + ramo_time)s
loops = centre/id:

.

remain = centre - (10 = loops s

if { loops == O) /% no looning to be done #/

lpop_mnd = O
loop start = 0y

num_of_pointg = total_time / 1000.0 4 points_per_secs

T
A

=14 /% put loop in prooper place anc number %/

)

e

lpoo_stard = (ramp_time + remain) # 1400y
loon _snd = loop_start + 10000

nun_of ooints = (ramo_time + remain + 10 4 decay time) # 1000

I
loop_count = 2192 - loops: /3% Qx2QO0 - loop_count %/
}

RS B R A R 3 SR S SR S 0 S B M 2 R 2K S e 30 2 I S R SR S N

Find values for sween control and point placement.

Called after total, ramp, and decavy times: and starting and endiao

fregquemniies have bDeen sntered.

HERERARE L ERAF RS PRARN T LA AR USSR SIS AR IRR RS I AR RE IR RS S A SR EHFBRER TR E S ed/

B3

ioat centrew
unsigned lono oelay. t_Ekha:

/% lenagth of center full power region %/

canire = total fime ~ {(ramp_time + decavy_timeds

~.

w NOTE: Full Power end fregunecy is effectively fp e_freog + o kov =/
f& Freg per Lime i in Mz oo point (or EH: per msect /7

~.

frea per Lime = (fp, & _freo + 5 - fo

frenld /7 centires

u

/% Fing starting and ending freauencies «/

z_Ffreq = fp 5_Freo - (freg per_time #* ramo_Ttime J:

LF (a_freg < Q) -
printf ("Ramp time too Jlona for starting freqg and burgt i1ime.

3

e_frea = fp_eo_frea + % + (freg_per_time # decay_time)

a1

/% find out values for address counters (mix lag counts) %/

cmlocs():

/% set nunber of points to do and soecitfy no loopipg #/

num of _points = total time / 1000.0 % points_per sec;

looo_stardi + Oy
1o smnt s Oy

J R AT SR SR S 60 2 2E 0 AR 3 SE S FE A 26 S R 2006 SR 2 S S H 6 e B
lLoad addrass 1
B R L T R K L LT T L TR R R AT L A R TR BT B KR

Toad addel (adoae)
unsiancd lono addrs

+“

srnorl #p:

o= da tea:
= addrs /% address in address register #/

/% kit the addross lalch to move address alonn path

CH R FF SRR S R RS ERL

vl a2 Cadide

ITona agodrs

o=
Foot e gdovess wn sdoress recicter ®/

a7
&
FE T R T T r T TR S R Y E s L E L Rt P L R L R P T T

Load the address to begin the 1ooD.

HASHFREFERRL S FHERE BN E NS FEHTFA L SF LU B REFFRNR LI A SRR E AR B FEHEFRAB S SR I A FRHS

#p o loopn stari: Jr oadoress in adoress rogisisr #/

P R L R R L T R g Y D L T L E TR TR R R T A R)
Load number of times to loob.

B R R LT b R D S TR L X R S R T

ned loop couni ()

ke
(N

slhort ¥oe

< E R
<o ¢ joop_count: S loon count in loop counter w7
FEEEERRRFATR AR A AR SRS E SR IIELE A E SR EREEN SRS S LA F TS A E IR e

g Aan O, guim; fon

LG Enw array oF ooinhs
munDe ofFf points. was i

17 mEeued.

R B et P ey £
L efed (O
EETE AL 1.4
WA ey
3FE Jloor pna s D) SE onrin tnes wecvoon 17 nod Ismcing aee Do
A

18

Fgen 3=G0 19D looo Enag - 1w dde)

A F¥ oupvart HMER L mzero potocom Four bioe ok
s
#gdt = ({onort) peintli]d ™ OpSo00) & Uxfit0.
7% load loop eonc 4/
/% inverit MER | set looo Sit #/

#o++ = (({ghort) pointlil < 0=2000) & Ouffe0; | Ox00z;

"

Forr (1 = Jooe_end « i < nun_of_points - 1 3 i++4)

£
SR odnvert MER . zero botiom four Bits ®/
#nd+ = o (shorh) oointlid ™ O=BO00) & OufFFls
’:.

-~

17 iswmit mooe v= 17 /% 1 swoebd mode ... %S
£
/% Fero out anv remaining points */
For (i = O « 1 < (QelffFFf - num_of_points) 3 i++)
{
#¥pobt = OuBOO0y /% invert MSB, send zero ¥
}
_';.

e+ o= QEE00Ls /HF dnverd MSE, set stoo bibk %/

()

FAFr RS ERF AN IR AERF ISR BRI S BERARFERRBFEEFHFFHRHF LS B FF RN IR F TR S8 deoh
inanErate compler wave based upon supplied frsousncies in

Feea [num, of frecsd.

o
%
a

AR FHARATHIRHAAFTRRNFIRAERFTERFTASR

%

N-Y .‘R'.}_i Dl

%

R g T L T TR R

rpat scale facltor, lemp, inor, two pi, maw _val:
Lo Iy

unsinned fona 1

two ol = FoO o opi

meak AL = 0

dart owith clean

L lat
St (1s=0y 1 4 b, of _points ¢ i) pointDil = 0.0y

£oR

e

7% do For all fredusncics @/

For (n=0 s n % pum_o¥_freas s ntd)

=

incr = two_ i # frealnd % 1000.0 / points_per secs
Lemo = Oy

/% do for all onints %/

for (1=0:s i <2 num _of points ¢ i++)
i
KX

temo 4= incr:
if (temp > iwo pi) tens -= Lwo, pi:
pointfil += sin(temn):

IF eaoinb il B omax val) mas_val = oointlid:

/¥ scale fFor max value found #/
scale factor = -1.0 % max _int_size / mawx _vals
for (i=0: 1 < num_of_points: i++)

i

LS
pointfil %= scale Ffactor: /# =30 to 3E Ok oa/

[

tremon 1o ()
docay ()

loan points(i:

[

s el A TR T PR T R T R S e L T L P LR P B T TR RS R OIS DS PR LR P R Dl

nengrats swenit fregquency wave based upnon suoblied freousncies and
time varameters,

HHPREHATREFEFRRIRRIRNE L SRS SETE IR TLFE A S RTHRANSFEIAEARA AL R AR IRRZ AR RF AR HEF TR

"
N

A gend il

s

.

Float scale factor, temn., i xs_dnc?. inci, inci, lwo oil. mas val:
e s

s onEd Lono e

Two_ 0l oF Fu0 % pi
inds wal @ Oy

/F start with clean slate %/
for (i=0; i < pum of points ¢ i++) oointfildl = 0.0

it

el two_pi % =_freg % 1000,0 / pointe per_sec: /¥ s freq is iz

incy = Llwo_pi % freo _per time / points per secs /% Trreq per_time is
Mae %/

temn = (O
L_ms incg = Oy
F# Fill point array with freauency sweep #/
for (i=0: i < pum_of_points : i++H)
temp += (incl + i ws_ incZ)y

if (temp > iwo o0i) temo -= {wo_pis /% kpep aroument small @

pointiil += sin(temD)

i_ms_ incd 4= incls
Ry o/

/% iner = incl + id{inc

if (pointlil > mawx_val) max_val = pointlils

/% scale for max value found #/

Fore {i=0e i nwn_of pointg: i++)

-1.0 # max_int_ size

/ max _vals

pointfil == scale factor: /% =33k lte Xk R/
}
e o)y
uerav()
load_points(ly
&
JHERE RS ERRAFERA FHE R RN ERE RS FRF S EF RGN N BB BRI H B R R BRI e

Ramz un linsarly from O address for
Lne ramo, bime.

FRRAFRLAL FERFFAEE BFE AR R DR AR FH AR RSH A

Laoo ey

int poimts to _ramp. iz
Flaase Factor, incr:

zpecified # o millisoconds.

EE T LD Rk a1 s S T RN A R T

peints_to_ramn = ramp_time / 1000.0 % poinls_per_secs

ince = 1.0 / points _to ramp:
factor = O»

For (i=0y 1 < points, to, ramp @ i++)
£
L3
factor += incr:

pointlil #= faclior:

(o)

e

L TR LR T e R L LI L L L PR S P e i L T L R T Y B R ST T R e

Decay linearly for soecified & of milliseconds, the decay time,

before Lhe eno.

s

HEFHENRFFXIREAREI ST RERFREAA LIS HELRAFRHARARAZHAFFRLHAFIRAABR AR EE ST AU FER G0/

tharzay ()

L

int points_to_decavs
ansigned long i
filoat factor, incr:s

points. to_cecay = decav_time / 1000.0 % points_per_sec
ince = 1. / points _to_decay:
factor = 1.0

fors {1 = pum_cf_points - points_to _decay: i < pum_of oointo: i+t

pointlid #= factors
factor -= incr:

P L L L R Y T I S 2
FrdE bhozrdi.oc boundooint x%x/

FREFRTEREERA SRS RER R RRHE S H R/
SRR R A ER AR FEAARFEA R AT SR I ESF AR RFTRERRRH AR R EF R RSB RHHBRHR 5 E W8 S0

MUt s shopn bit at khe orooer numbsr of points past the star:
of ithe 0 to L ram.

B D i e L L T e B D R kDL L T S e

Traad pecoicd time()
L

int &:

BROrT Fy

o = ad_pamsg
a = pecoro_time # 1000
#(p+ta) = OmO00l:

()

J R B R N 36 SR S R I 2 2 58 3 B A0S 36 R M S R SRR

Tpad the delav counter with Ou«fFFfff minus the pumber of micro
seconds to delay.

WRAEHEFEREEEHREARFE R TR EERLE LSS A SR ERRFA S FERR AR F YR G ERERBER DAL SR G S S SRS/

Toad delav_time()
€

short #ps

p = ad_load:
¥ = QufffFF - ((int) delay_time % 1000),

L]

SR EEREFERREREREREAR SRR RREE/
FrEx claar.ec boundooint wex/
JHBRRBEFREEH S LA RS SRS F SRR FEHRFHE/

SERENGEFEEF AR AR AR RFHFRE R S EFFERFFLEHFSHFFFHRE TSR R R FRFR RS ERHR SR SRS

These routines mlear conceptually defined sections of the
inlerface screen.

e Rk b T E e S e Ll S DL S R L P R e S S L L L e S

s lrar selact ()
K
1

int ig

/% clear menu selection fielos #/

okl Es i)
col+i, oot color fg. opit color_bag, O, f1 lenao,

for {(i=z=box row+l:
{ corchar(i. boms,
lank)
corchar(i, bow col+lZ, opt _color fg, opt_color bao. . i _lena
.o obiankye

o

clear _status ()

“
il i

/% clear status section #/

for (imstat row+d: idstat row+Ss ib+)

corchar(i, stat_col, black, black, 0, stat_fld_lena, blank):
¥

clear nessages ()

4
int i-

/% ¢clear mecsane section %/

For (i=mess row+dy 1dmess powtSe i44)

corgnar(i, mess col, wnite, black, O, mess _fld_leng, blank):
>

-

clear_guestions ()
r
kY

int i

/% clear guestions section %/

for (i=gue_row+2; idague _row+S
black,

cprchar (i, gue_col-2, while,

clear _info ()

i++)

fotte)

£
int 1=
/4 clear info secuion «/
for (i=inf row: 1i9inf row+ss
cprchar(i, inf_col, wnite, black, O,
.;'

clear _screen ()

4

FEF clear screen ¥/

corchar{(l, 1, white, black, 0.
5

Slanls Fimlds)

L

tlear selecti):
clear status();
clear ausstions()y
clear infol():

SOEEEEREEEERF RN RS LE SRR RELRERS
FEu% efregs.c boundooint x#%/
FO SRR R H A BN R R R FR RS RS

SR BT R A R RN S W AR H W AR I 2 I SN A RIS H SR R S SN

This sechbion deals with the frequency editor

gntry of freguencies osslred)

1920,

=l

gue_fld_lena+2, blank)s

int_ffld _leng, blanb)s

blamb)y

{which allows thsg

b+

AEAFRFEHRTRARFASERNFRERFERF R RS TR REFRDFHFT B RNH

P T T g R R D e e L e T IS A A T L R R e LT S S T B L T Y L

Print the background sc

reen for the editor

SRS 2R S SR S A R S0 I R ST I I I 30332 S SR I R B
/
make fr_backgnd()
int i-
FS¥ blank screen #/
corchar (fr box rrow. Fr posx cel, fr_coler fg, fr_ color_ bag,
frr paga, 1220, biank?: .
/F print corners ®#/
corchar (v _box row. fr bosx_col, fr_par_color_fag. fr_bar_color ba,
fr page, 1, £1 ol
cprchar(fir_vox_row, fr bows_col+75. fr_bar_color fa, fr_bar_color bg,
fr pane, 1, tr_d):
cprchar (fr_box_row+z2Z, fr bowx_col, fr_ bar_color_fg. fr_bar_colar po.
fr page, 1, bl d’):
corchar(fr, bos _rowtEZ2, fr_bowx col+73, fr _bar_celor_fa. fr_bar coclov b
vy,
fr page, 1, br_dl:
/% horizontal bars &/
corchar{(fr_Los_frow, fr box_cel+i, fr bar_ _coloe_+o, fr bar colo- bo.
fr pane, fr_bpos_leng, hzt d): '
corchar (Fr_bow_rtmwtds, fr_box col+l, fr bar_color_fg, fr bar_ coioe 7u
fir_pane, fr_box_ leno, hzt_d):
/% vertical bars #/
for (i= fr bowx_prowt+l: i < fr_bowx_rowtZZs i++)
£
1
cpirchar (i, fr bos_col, fr_bar_color_fao, fr_bar_color_bo.
fir_page, 1, vrt_d }:
corchar{i, fr bowx col+72, fr bar_color fg, fr_bar_color_bo.
fir_page, 1, vri_d)
}
PR L T g e L P e I R Y LR T ey

N

Set mode (sweepn or discrete) and get the freguencies of interest.

¥

-

FRFRRH SRR BB F R FRESE A FTTEITHEER B RBPRE ARG ARIHERFTRR TR RRERRRBEEES ST ERER TSR
/

get_fregs()

make_fr_backgnd():
' get xmit_modea(),
if {mmit_mode == 1)
n=t_sw _freags();
el se
ael_dis_freas(l:
.

/HERES A ER AR ERFAFFERRRFEAE SR ERFREFTERFEARRR RS F RS F R FREFFHEFRRFRFHRFERHFFFEERN

Get and set the transmission mode.

o
R L e e D e L A b e e e Rt b e R L e T e LA

/
aget_«mit_ mode()

»

int 1. temp:
/% print nessages telling how to set ... #/

corinkf e ness rowtd, fromess col. fr o mess color_fg, fir_mess _wolor o

a.
fr pans, " Dhoose mode of freguency transmission.')s
corintf (Ffr_ness row+d fr o mess _col., fr mess color g, fib _muss coloe
a.
i~ nage, " 1 - Bwept freguency ")
corintf(fr_mess _row+d, fr _mess_col, fr_mess _color fg, fr mwss_rcolor_ b
Q.
fr_paoe, " O - Discrete freauency)
/% and get bthe mode desired %/
corintf(fr_mess_rowt+7, fr_mess_col, fr_aget_ color_+a, fr_ocet color- bag.
fr page, " -~ ")y
scanf ("4d", &temo):
=mik_mode = tempoy ’
/¥ clear nessage sbace #/
for (i=0: i<13; i-~4+)
corchar(fr _mess_rowtz+i, fr mess_col, fr_color_ fo, fr _color b
‘31

o

-

.

PN o

. page. 40, blank)s

ot

P R R L L T L g s
Get and set the sweeb freguencies.

HFHRBFE RS R RFFHERF S S DT HERRF B R A FERFE R LA R R R SRR R R AR W FFFHFFFEHFRH SR ER A HFFHHR5
aet_sw, fregs()

et _start frea():
et _end_fregtl:
clear coreen(l:
pir common{)
pr_menul ()

D)

SERBRFHEFEEFFEREHFHFFFERERE RS ESFFEFFRE SRS BRI H R IR IR R F S H R0
Get and set the starting frecusncvy of a sweeo.

HHEFEETERFERRLERA IR FERY R AL UL R XA AR F AR IRF RS LAARRARE S E AR FHERRTE A RFFHHFIFE st

-

et _start_fredql)

iml i
float temoe

/% print messages telling how to set ... #/
cprint F{fr _mess row+d, fro_mess _col, fr_mess color_fag, fr_mess_color b
a.
fr_page., " Choose starting frequency."):
cprint f (fir_mess_row+3, fr_mess col, fr_mess_color_fg, fr_mess_color_b

fi~_page, " (Ranae 20.0 - 100,0 Khz) ")y

/% and get tha freguency desired %/

cprintf(fir_mess_rowtd, fr_mess_col, fr_get_color_+g, fr_get color_ovg,
fir Dage, M = V)

scanf ("AF"Y, &temp):

fp_ s, freq = temp:

/% clear meEssaie space *7

for (i=0; 113y i++)

cprehar(fr_mess_rowt2+i, fr_mess_col, fr_color_ fg, fr_color b

fr_page,

L & - TS P B Rk kL e e S s R R R L UL DD S e R D e ek A

40, blank)s

Get and set the ending freaguency of a sweep.

HEHFEE LR TR RL RS AE I AN S AT EIHF AN AT UARFAR T L ARG HHEEI TSR ETTHR
i
i

)

int i
Floal iemo:

/% print messages telling

cprintf (fr _mess_row+:, fr

mess_col, fr o mess_color fg, fr_mess_color =

how to set ... =/

.

ending freguency. "’

_mass_coi, fr _mess color fg, fr mess _coloe o

(Ranoe 20,0 ~ 100,0 Ehe) i

mess. _col, fr_get color fg. e _aget color ba.

cpirchar (Fr_mess_prow+i+i, fr _mess_col, fr_color_fg, fr_color b

fr_page, 40, blank)s

a.
fr_page, " Chouose
corint Ffr _mass _row+s, fr
e
fir_Daogs, "
/# and nerc the fFreauency desired %/
cosintFFr mese _row+S, fir
- frr page, " -F ");
ascanf ("EUFY, Ltempls
fi e _freg = temo:
/% clear message space #/
Ffor (i=04 i15s i+4)
7,
)
4

g DL ST PR L T ey R P e e R e P e R L s e S et e R D R g g

GCet ann set discrete frequencies. (up to 100)

S LT e

RHHFFHFAAFEHLRARSTEEAIFFSTIAFFRERRAFARALEH R RAR LR TR ERER AR DFREREHF R F R AR A ARG

s

I

qet_dis_fregs()

R
.

float temp:

int i, aqf_go, choice;

/% print current freoc ®/

if (num_of_ fregs == 0)
1

corinlf(fras, row, fros col, lred, black, fr_page, "1} "i:

for {1 = O v 1 < pum_of_ freas : i++)

;

cprintf{ fros_row + 1 - (20 # (i /

PUL/RGIER)

20)y, fros col+

fr_uhl_color_+g, fr_uhl_color_bo,
fr_page, "Au) A.1F", i+l freqlill:

/# hilight position %/
cur_ fr=o num = O
fr-hilight(J:

/% print lanels %/

corintfifr mess_row, Fr_mess_col+s, fr_bar_color_fo,
fiv pange, Y MESBAGES Y

corchiar(fr_mess row+l, fr messz_col, fr_bar_color _fo,

fr_page, 1%, nzb o)

P2 corintf{fr_mess_rrow, r_mess_col+35, fr _bar_color {o,

fr_page, " FREQUENCIES “):

fir_bar cclor bog,

fr_bar color ba,

fr_bar_color Lo

cprechar (Fr_mess_row+l, fr_mess_col-+33, fr bar_color_ fu, #r_ bar color_

fr_page, 1%, hzt d)y

/% print instructions */

’

cprintf{fr_mess_row+2, fr_mess_col, fr_set_color_fg, fr_get_cojor_bu.

fr_page,

cprintf{fr_mess

fr page,

cprintf(fr_mess_

fr_paas,

/% process input

af ao = 1y

" ARROWS position bar ")

row+s, fr_mess_col, fr_get_celor_fg,
" RETURM to enter values ")

row+d, fr_mess_col, fr_get_color_fg,
" END to ouit editing “).

%/

fr_get color_bag,

fir_oet_color_bg,

hilight

while (of oo)
ks
L

choice =
’

switch (choice)
new place %/
{

case OF

case 1

casae Hi

keynum(

getkey() s

/% Set current frequency number and

/% down_key */

if (cuwr_frea num < num_of_freqs)

fr_urnhilight()y
cur _freg_num += 13
frr_hilioht()s

broaky

/% un_key #/

if (cwr_ frea_num > Q)
frr_unhilight ()
cur_frea_num -= 1:
frr_hilight():

}

break:

/% right_key #/

if (cur_freo_num+z2Q < pum_of fregs)
{

Frunhilight ().
cur _freg_num += 20y
Ffrr_hiliaht ()

3
&

bteak:

/% left _key #/

if (cur_freg num-20 >= O)

{
fr_unhilight(}:
cur,_freq_num ~= Z0:
fr_nilight()s
B
breaks

/% end_key %/
af_go = s
breal

/% get out #/

/% return, key #/
enter freqs{():

o)

3

clear screen(},
pr_common{):
pr_menul {):

ra

/AR RS R R R F A S S S A BRI B B A R R A 2 N

Actually enter the frequency values

FRFRFHXAIFIFEAFAF AR AAH I FREE I RAARALF R R F S A AL A IR AR B R AU SR AR SRR RS HE S FERSF RS REFH

enter_freos()

L2

imnt i
float temps
/% clear message space #/

for (i=0y i3 1++)

corchar(fr_mess_rowt+I+1i, fr_

mess_col, fr_color_fg, fr_color b

fr_omess_ color fo, fr mess color b

fr_mess_color fq. fr mess color b

fr_mess_color _fg., fr_mess _color b

1,
frr_page. 27, biank):s
/% print messages teliling how to aget ... %/
cprintfiFr_mess, rowt+d, fr mess_col,
LRI
fr page, " Enter freguencies in Ehz."):
corintf{fr_mess_rowt+d, f~ mess col,
o,
fr_page, " Range is 20,0 - 100.G "),
corintf (Fr _mess _row+d, fr_mess col,
Q.

fr_paae, "

/% and get the latest freguency #/

cprintf{fr mess_rowt+éd, fr_mess_col,

fr page, " Freguency # %u¥,
cprintf{fr_mess_row+7. fr_mess col,
fir_page, " = ")

scanf ("%Af", Ltemp):

cprehar(fr_mess_row+7, fr_mess_col,
frr_page, 10, blankl:

i = cur_freg_rum:

Enter 1.0 to aquit. ")

fr_oet_color_fa, fr_get_color_bg,
cur _freg_num+l):
fr_get_ecolor_fg, fr_get_color_ba,

fr_color_fg, fr_color_bg,

- - ‘ -‘ ~ ‘l R -/ ‘

while ((temp I= 1.0) &% (3<1003) /% do until signal to owit is snie
vad R/
{
if ((tempn <= 100.0) %% (temp »= 30.0)) /% but only if in rang
i %/
£
freqlil = itemp: '
cprintf(fras_row + i - (20 # (i / 20)), frgs_col+
COL/20) %30,
fir_uhl color_ +g., fr_uhl_color_ bg,
frr page, "Aw Z.ifv, i+l, freqlridy
fir unhiliaht ()
cur freq _num += 1:
i += 13
CFr_ hilight ()
)
else /% out of range message #/

-

cprint{(Fr_mess_rowtl0, fr_mess_col+Z, yellow, lred,
fi* page, " OUT OF RANGE ")

/% get next fFreguency entry #/
cprintf{fr _mess rowtd, Fr_mess_col, froget_colior_fao, fr get o
r1lair D,
frr page. " Fregusncy # %4u", cur_frea_numl)s
corint F(Ffr _mess row+7, Ffr_mess col, fr_get color _fao, fr_oet o
(1l D,
fr opage, " = ")
scanf("UF, ktemo) s
cprchar{fr_mess_row+?, fr mess_col, #r color_fu, 7r colo; bo.
fr_page, 10, blapk):
cprchar(fr_mess_row+l0, fr_mess_col. fr_color fo. Fr_coloe, bo

fir_page, 14, blank):

if (i ¥ num_of_ froos) num_of_freqgs = i
/% clear message space #/

Ffor (i=0s; i<13y i++)
corchar(fr_mess_row+i+i, fr_mess_col, fr_color_fo, fr_color b

fr_page, 27, blank)gs

/% print instiruchinnes #/

cprinlf{fr_mess, Pow+d, f~ mess_col, fr_oet_color_fo., fr_get _color bo,

PR [SPIp

fr pace, " ARROWS position bar ")
cprintf(fr mess_rowtd, Ffr_mess_col, fr_get_ color_7g, fr cet color bo,
: fr_page, " RETURN to enter values ")
corintf(fr_mess_roawt+d, fr_mess_col, fr_get_color_ fg, fr_get_color_bg,
fr_page, " END to quit editing ")

¥
JHERFFFERFHFHF IS TSR ABFHEE TSR RS IR A LR RS FEFFE S FHE R E R BN H AN AR R AB R R G F 55
FReguency MILIGHT and UNHILGHT -

Thase routines
hilight and unhilight a field in freguency seleclion situation.

AR ABRFEFRREFRAHETATERRFFEFARARARFFEFIEERITRERRE R A LR AR AR ESFYRE RS SR THF RS
f hilight (3

.

fr_celor change { fr_hl_color_bg, fr_hl_color_fg)

fro_unhiliaght ()

=

fr. color_change (fr_uhl_cgoler_ba., fr_uhl_color fg 7

et

fir, color change (color bg. colore fo)

ene olor bha, color o

£
K
A
il Limg:, row. col, paoe:
times = fr fld leng:
row = fras_row + cue_ frea_num - {20 F (cur_frea num /O)
col = frags col + ((cur _freg_num / 20) * 9).
page = fi_page;
while (times-- >) /% forr the lengtn of field
2/
L
curset (row, col++, pagel:
inregs.ax = QuOS00: /% read the charscrer and
%/
inregs.bx = page < 8, /% and it”s atiribute
%/

‘

INT2A(OI0, Rinregs)

inregs. ax
inregs. an
inreEas. D
inregs. b

i
i
]

inregs.ax & QOO
w00
inregs. b & OxFFOOD.

= ((color_bag << 4)
+ color_ fa)s

/% write back same char #/
/% mame page ¥/

/% different attributes w/

L

g
r

nraas. ocx = 1 /% one copy (no rebeats

t

} ES

INT2L(OR10, &inregs)

(o)

[

/A R e S R RSN E A R RRENR S
FE¥% Ftrans. ¢ boundooint $##/
SREEH A EHRREHFF RN T EE RN R RS S

A L L2 - L L L Ly ke e P RS b B il D E e e e T TR

This section dsals with file lransfers of pzrms and data.

AREREHAEFRERSRATTHRHSFARESLRFS A SRR TR R SRR F R LR L AR RHEBNRER B LSRN HELRRR ey

L2 R R R L b e e E L L T A L L e Iy ke P e LR L B Dt B

kS

Transfer a file to current parameter set.

FREARHEEAF LR R AP AR RR RS LARTAFEHE SRR FREFRFRREEE R LERFRSEER LIRSS

file_ fto_ parmsi)

£
"

unsigned lonmog i
Tlioar temog

/7 Print messaoss ®/
clwar status(ls

cprints{stat _row+2, stat col, ourple. loreen, O, " Transfering +rom
u).
7
cprintf{stat row+d, stat_col, purple., lareen, 0O, " file to parms ...
Al).

if ({io_ptr = fopen(in file,"r*)) == 0)
corintf{inf rowtz, inf col, vellow, lred, ¢, " Can’t create i

aput File: ")
corintf{inf row+:, inf _col, yellow, lred, O, " & ¥%s = ™, in_
Filads

returns

<

setbuf {(io ptr, biagbuf):

[,

/% 1lpad parms from file into cuwrrently active parms %/

fscanf(iao _ptr, "iFf ", Ltotal time):
fscanflio ptr, "4%4f ", &ramp_time):
fscanf(io_ptr, "if ", Ydecay_time):

fscanf(io_ptr, "4f ", %record_time);
fscanf(io _ptr, "4f ", Ldelay_time)s

fescanf(iu_ ptr, "Zu ", &loop_start)
fscanf(io ptr, "Zu %, &loop_end)
fscanf(io ptr, "4u ", &loop_count)

fecanfiio ptr, "Au M. &num of freos)
fFscant{io_otr, YZu Y, Snum, of_ points)

For (i=0y i = pum of fregss i++)

anfl(io_ptr., "Wif ", &temp)
glil = temnn:

+
g N

e

for (i=G: 1 < num_of points: i4+ 3

K

-
fgmanfiio_ptr, "4& Y, Ltemp)i
pointli]l = temp:

3.

folosel(io_ ptr):
clear stacus():

o

o+

FARRRF R AT R AR IR AEI RS A SR RFHA S AR T LA RE SRR N R F S FRE RN A L E N F NS B R BB R Rwomn ¥ iRt
e

&

Transfer current parameter set to a fils.

DA ARERHLABHAEEARF AR EFER AR FAR R FRFE S HE R R F SRR RSB E B R F R F R BB R R R it
H#/

PENS N

to_file()

.

K4
.

Weisigned long i

/% Frint messages %/

clear status():

cprintf(stat_row+2, stat_col, purple. loreen, 0, " Transfering from

cprintfistat, rowts, stat_col., nurple, lareen, 0, * parms to file ...

s

{{io_ptr = fopen{out_Ffile,"w")) == 0)

[
 h

corintflinf_row+2, inf_col, vellow, lred, ¢, " Can“t creste o

o File: ")s

File)s

~

corintflinf_row+3, inf_col, vellow, lred, 0, " < %s » ', out

return;

[y

sethuf (io_ptr, bigbufl:

#* load parwms from cucre y active parms into file
/% load | ! ntly act P o to Fil /
forintf(io aer, "4 L3FY, total _time)s

Forintf(io_ptr. "Z 377, ramp_time)d:

Forintfiio ptr, "4 3F", decay _time)d:

forintfiio_ptr, "% .3Ff", recordc_time);
fprintf(io _ptr, "4 J3F", delav timm);

forintfiio ptr, " ") .
Forintflio_ptr, "4 u ", looo _start)i
forintfiio ptr, "4 u ", loop end)

forintfiio_ptr, "4 u ", looo count)

forintflio_ptr, "4 u ", num_of freas)
Fforinetf(io_ptr, "4 u ", num _of points). .

Far (i=0. i 9 pum of freasy 14+)
forintr{ia ntr, "4 J3F ", frealil s

For- (=0 1 < num_of pointsy i++)
forintf(io ptr, "4 J1F ", oointfil)

For (i=0y <10y i++) Forintflic optr,"Zc",24)s /% gof's w=/

fclosael{io ptr):
clear status{):

.

e P TS T T PSRt DI T TR L R e e e L L p I R LR L T T R L

-3

=

Save agquired data io a file.

HEERFHEFRFFFHEGSFFSFERE R AR TR RHER EREHRERF RSN ER TR R F R IR R SRR WA AR

%/

sauired_ to file()

*

*

lono counts
int i

char b,cs
shart #ps
short as

/% Print messaqes #/

clear status();

cprintfistat_ rowtd, stat_col. pwple, lgreen, O, “ Transfering from
,I)‘

corintf(stat_row+2, stat_col, puwrple, lgreen, 0, " boord to file ...
"y,

if ((ip_ptpr =

£
1

foper(out file,"wbh")) == 0)

cprintfiinf row+2, inf col, vellow, lred, 0. " Can’i creats o

.

ainut Filer ")

cprintflinf row+E, inf_col, vellow, lred, @, " I Zs o " gut

Fiie)s

returny ,

.

zetbuf (io_ptr, bigbuf).

/% headsr %/

coun record_Lime # 1000:

forintfliio ptr,” V'This file contains %lu opoipts.\"\n", couni »:

/% put data ooints into File until all are in for seleched rangs %/

D = ad_pram:
For (i=0: 1 < count:s i4++4)
L
a = w(p+i)s
b = a
C = As '
pute(b ,io_ptr):
putc(e ,in _ptr):
J.

’

for (i=0y 110, /% eof’s w®/

folose(io ptrds

i++) fprintflio_ptr, "%c",26),

clear status():

et

JRERERER RS EFARHAREEFERH HFFHFERAFHF AR RRF T REHEFRE R HF R AN SRR TR SRS HR st
#

L.oad a specified amount of data to an array to graph
L L TR R TR R Y I R E R Y X R S AR e T SR T Y 2
#*/
board_to_array (a_plr)

Fimat a ptrily

<

lono count, i
cavsigned shori o)
vnsigned int temps

count = record Lime # 1000,
ifF (count > 3¢ D) count = S0000s

/% pul gata points into arrav unltil all are in for selected ranoe =/
n = ad _rams:

For (1 = O 1 < counths d14er)

.
a ptrlil = (#lp+i) & Ouiffe) > 1y
whila (tomp = a_ptrlil)
temo = a piriils ,
a_ptrlil = (#{p21) & Oufffe) > i
}
} »

ot

JOHER R AR SRR RFA AR EHF IR AR AR RN/

JRER Qo _av.c boundooint wE%/

FERE SRR FRERRR R ARERRFHH SRR ARR/

X L L T e L T s e e Ty)
Get the burst length

HoE SRR EREHF TSR AR FIETERRERFTHELRALERRSRRRLELERER WD HB RS EREFRRREEL SRR T
/

.

P T R

pet burst lenoth()

x
LS
F

loat {temp:

cprintf(aue_rowt+Z, gue_col, yellow, black, ¢, " Enter burst time in.m
s M)

cprintf(gque_row+d, gue_col, vellow, black, 0, " Range is 0.0 - 40%
WOL0O 8 ")y

scanf ("4F", &Gtempn):
total _time = bamng

clear ouezlions():

corint

F =2 mol, white, blus, O, " Dy
coitintfis

.
=F2 onl+2, white, bilus, 0, "4L.1f msecs™, twmyis

1
4
P e L e TR E e P P e Ry Ry R Y T L L P T S L e X R

. Gt the ramo length

GFRRRHEFERFEERFTRHARES RS SEFEL SRS HRSF R R RS R AR F R SR FFHRFF S S YR 5

/

oail_ramp

€44y

Float tompes

zorintFings rowed, oue ool wellow, black, 0, 0 Enter ramo Lo Tn e
e i
corintfloue rowed, gquo_col. vellow, plack. O, " Ranue 1o Goohp -
ARV L)

scantF ("4AF"Y, htemo):
trrammy bime = tems;

clear guestions{):

FL_rowt+S, st col, white, blue, O, "4 R
o=

corintf . X
(3F2 rowtd, sfI _col+z, white, blue, 0, "Z.if msecs', tana)d;

corintf

=
5B

[

FRERREFRREERSRAF LR R AHAG AR AR SR EEHEHA B A RE AR H A A NR AR F RN B SR A RSS2
Get the dmcay lengkh

.

HFFRRRRFRRFFRERR BN A F R F T H AR EEHHE RN R R R SRR NN FHU WA RE R H A RN F RS F SRS S5
/

gat decay()

=

Fleat temo:

eacd. M)

0,0 H

corintfigue_rowtd. cus col, vellow,

k]
cprintf (aus_roewes,
Il).

aue caol, yellow, black, O, " Rangw is 0,001 -~ 4

scanf {"4LF", “temp):
diecay_time = teimog

clear ouraslionzs{:

crtinl FURFR_rowr?, mfE col. white, blus, O, "4 IR
corinitFisFE rowt?, sfZ-col+Z, whiwe, blue, O, "4.1F mesecs”, bemnl:

EHFEERRRAXNEHTIIRAFHSEBA AR AR FREAFEFRR AT AW R ETAFIIER D

yellow, black, @, * Enter miw iag Lime iv

vellow, black, @, © Lefore ihe 2 orr oo

Cimar AgEsLions(s
corinl F(afE_ rowes : white, blue, @, " e
cprintfisfl _rowtd, 5Ff2 _coli+2, white, blua. D, "A.1Ff msecs™, tewmsi

F RSN N R RN N M SR A R S0 R B S N AR S S A et S S SRS 2

Get the amount of time to record for

TR AR R FR SR EE RS EFFRRAFAFFAFTRIF AR AR AR AR A AR FRARAL B F RN R RS HH KR H S A2

/

aet_record. time()

black, ©, " Fnlsr decay Limg in o

corint Flgue rowrd, aue ool vellow, black, O, " Enler record fime in

b

RTERA% ThAr SR

corintf(ous_rowkd, gue_col, yellow, black, ¢, " Range is 0.0 - 1321
L0 I

scanf ("4AF", Stemp):

record_time = fwmo;

clear questions():

cprinlflsfe rowtl, sf2 _col, white, bluwe, G, "4 AL

corintF{sFR _row+l, 3F2 col+Z, white, bius, 0O, YA, if msecs", tampl:
B e Y LT L S T LR R P S R L

Ot the amount of time to delay bafore rocording
HREBHEFHASFEFFIFFF I SIS LTS LIRS EF SR DY FAYF AL F XL A SRR B E TR EFF LSRR R IR B FEUR BB B H 22
4

et delay_time(}

loat temp:

corintf{aue row+l, oue_col, vellow. black, O, " Enter delay Lims in ow
CoEMIE A

crrinty (gue ok, que col, vellow, black., &, " Ranae is .0 - 131

0 3oy,
seant (PALFY, bremndy
delay Dime - D
clear oussvions(l:
corintfisfz_rowrd, sfZ _col., white, blue. O, "4 R
cprintf (sf2 _rowed, =Ff3 _col+z, white, blue, 0, "Z.if mseus”", temni:
¥

B L R S L Ty T X e s e i e s
D2t the data to write out of the DAC
Y L Y LA r T r T EEEE e PR ERE ST P R SRR T S L s
et dac _owk_data ()
;
(%
cprintf{ous row+d, que_col, vellow, black, O, "Enter hex value (0 - £
FFFI™as
cprintf(ous_row+3, gue col, vellow, black, 0, "to put oul of the DAC:
”)-
scanf("Lu", btest dac _out):

corint F{s

rowRl, sTE col, white, blue, O, M RS
corintf (s =

i
2 prowtl, sf& _col+2, white, biue, Q, "4x".test_dac _ouii:

clear_queslions ()

[

£ BRI T SR H A R N N H EHH o H N AN H R HERH A
*
.
The action vector (AV) section must have certain routines includeg
bafore it in order that pointers to the routines calied will be
oroperly initislized.

HHEFEEHIFIRSEEIRASAF S S S AL RN H SRS ST F RIS T FEE LA S BS LR EE SR IR H TSR AN ST HS
@/

P TR e L R R e R L R R R L Lt L P LT L L T P D S D b L R R R g

SR

Stuff ko put bsfore go_av For use in av structure withoub having to
include whole cperations there. (convienience factor)

ARGRAFRFRARFARTAFHERAFAFEFEI NS EFRPLE RS TR E T SRR IR FREARFFERREALERDERRRT I LR FoeSdE

/

P S R E kT R T N R R TR S I PR SO R SR W S P
Based on active position, do the oroose fils transfer.

L Y T

;

if (cuwrronl sm.rowliol == 1) /% narms Lo File s/
parms_to, Fileld:
}
clse i{ (current sm.rowllld == 1} /% file to varms ®/
file to_parms():
T,
4
elze if (current sm.rowlzl == 1) /% aguired to file #/
{
aauwired to_file():
K
rero_sel mabtrimi)s
¥

FHH G ER RS A AR RRERERRRFFE A RHL Y R ERFFREAREF SRR RAREFRENFFFEIA R FERHFR R EF AL ES

calculate valuss for looping. and generate the wave.

FRFARBYFRAEHEHBEI A AT FRARARAS R T RAR AL L FRRAER RN FE R F R DR S H IR R U RE LU RH IR
/

calo_wave ()

€
iF (umit_mode == 1)
{
calec sweep vals():
wave geni):
.';.
elze
{
calo looo wals(ly
wave _genll):
}
¥

i S R D LT e L LR R .3
Adiust the mix lag up or down from within board control menu

FHEHAIRFHEA S EHHRIR AR E AR AR IAEE AL RXISHEIRR TS HE ISR A AERA SR AFARERELRNNTHAR RN HFE

adjunt miw_lang()

clear messages():
pro adj msi).

twst go = 1
while (Lest oo) /% do until return_key hit (once a key hit)
%/
{
/% print value #/
cprintfisfi_rowtst, sf2 col, white, blue, @, "«
Wy,

cprintf(sf2_rowtd, sf2_col+Z, white, blue, 0, "%Z.1f msecs”, m
i lagls
/% aet new key (should we get more o guit) #/

choice = akaynum{ getikey()):
switch (choice)

-

o
=

.
3

caze 51 lest_go = G break:s /7% return kev =/

case &! mix_lag += Q.13 break: /% plus kev #/

case 7: mix_lag -= O.1: breaik: /% minus key #/

default: break:

(o]

Dir_messages ()

3
L R T T TR TR L TR T

Calenlate the mix lag constants

HREFEHFEIAIHALHFREFR I IR R R LI HE AR H AR DX R ERARR R0 SRR R S H o F D FH RS
/

cmlcs()

s W)

loat t_Dihz. delav:

/¥ Find and set freg time lag and delay for loading addr 1 & 2 %/

o Gkhe o= 3000 / freq_per time ;3 /% points #/
delay = i_Skhzr - (mix_lag % 1200): /% points {(or micro sec:) #/

miz_lag okl = OmOFEFff, /% defaull %/
if (delay < 0.0
<
mix_lag_ecnt? 4= delay, /% Lrans before mix #/
detlay = 0,0y /% trans starts at 9, o ol
TR Anyway #/
T
mix_lag_cnt = O=OFEIFF - delay: /% val put in addrl %/

R L L TR E e R L L T T T R Y e T R RS
Load transmit control parms and ao

L R e R A T e L D L R e Rk L L L i e S S T R
/

transmit ()

3

-

arnort #Ds
load_ loop_count(}s
/% currenl version has no difference between sween and discrete here
load_addrl(0.0)
load loop _stari()s

p = ad_oull:
®#p = go vals

[

SRR AR R R SRR SRS ER R R A LTI H LR E RS ARHAREFFEEEA SRR EHRER I ERRFHERFFEF RSS2 E SRS

i
3

-
[z

iate a transmit and a recieve

HAAREHAFRTRFXAARTARR A DAL RAFIRATRHEIRAFFARHEIRALCHFRRAR SRR AR HFRRHRHERD A HRAH HH RS0
/

trans_rec()

lopad_delay_ time();
load mecord time()s

transmit().
recieve(

o,
+

HEXRHEFALERNLE RN F AR AT RS HEI RS RRFTRFLR SRR B SARER S SRR RAT SRR A AR DL RS H ST RRIIE T EFAY

recieve()
£

mhort #p.

P
¥n = go, _val:
T

T R R e R E T r T L L T T T TR
i-oad parms and initiate 3 reciept without a prior transmit

R T T S T R R R S T
/

..

.

raecieve onlyi)

*

short #p:

load_delay_time():
load record timel);:

p = ad_start;
#p = go_val:

[

B T R R e L T R B R D L X T L ey 2
Move the recorded data to the area for retransmission

HEFHFHE AR AT IS IS IO H RN AL AT R HF AN B E R A AR A S S H AL AR R AR H A S F LR RSB H RS S H RS L F 5848
/ .

ad_to da()

£
",

short %#pl, $pl:
ik oi,an

pl = ad_ram:
p2 = da rain;

/% move Lhe number of points in recorded time from AL ram to & ram %

/I
o= pecora bime # 1000
For (i=0y i4 ay i-++) #pld4+ = (#pl+r 0 3 & OxfFfor
¥pR o= OQuiBO0l: /¥ mtop bit met ¥/

", .

&

P S L E R T g s & L T T T R D e D)
indirect call to get fFreouencies

R Rt S T L P ey e e e T R R L T e T R)
/
get_ freqas_ind(}

-

kN

get_ fregs(d,

P LR R e L R L T Ty 2 B e P T e
Firint appropriate mepu based on position of keystroke
g L T T T e e e

e, select _go ()

'
L

<

int i
/% Print the wmenu corresponding fto the row selected %/
for (1 = 0s 1 < max_tow: i++)
"
*
if (cwrrent_sm.rowlil == i}
.
<
pr_ment (141}
zero_sel matrix ()j
returns
H
N
o+
3.

FRSRBEHAEREE RS LSS IS RN FH AT F LA A LR LS FE S S FFFRET TR RS AR S FRAFE LSRR B HFE T HNRH R modn
Clepar the selection materisx
By R L R L L T e T Y S e

Ao sel matrix ()
i~

kS
int is
current_sm.menu = O
for (i=0: 1 = mas=_row: S+
current sm.rowlil = O
Fror (i=0: 1 4 max cols 144)
current, sm.collil = O
¥ .
P L T L S R e T R S E ST R

P MENU~ moves the position to the first place in the menu of &
level ong above the cuwrrent one, ana then prints the new menu.

Y P Ry R e e I LS R A R R R L S R L E T T O e e
up_menu () .
{

zaro sel_matris()s

if ((pos.menu < masx_menul} &% (pos.menu > 0))

r
L -
pos.menu = O
POs. row = 0Oy
pos.col o= O
g menu (pos.menu) s
T
o+

else if (pos.menu == 0) exit_sys():

exit_sys{)

{
clear_screen()s
vmoda () s
exit (0O):

}

SRR AR F R AR ARRESFRARRFEX LR FRIRF S RAERF I RGBSR IR AR RRTEFHE B YR H AR XA S5 F S

-
L

i Uhe logical position to refleci the desired choice

HFHEETFHEE RS FIEIAAFE RN AT ERLAT AR S FRAHFRRARF AR RR R FFHEAFFERRERRGHF R FIERS/

1100 ko auit (O

€
pos.col = guit _col:
pos.row = auit eowg

ao to_oo ()

pos.col = 0o, col:
LOG. DN F 0] Ik

[

ao_to _Frerst O)

-

It

poOsS. el
DOS.row

first colys
First oo

Hi

[

Y R L Ty L L Y L X)
move one space in the proper directian

BB R RS S S SO N S S0 B 3R S AR ISR I I A 2 2R 2/

rice row (3

RPOS. row += 1:

it

daoc, row ()

COS. mow -= s

A

a ey e s

e e e E T L e e s L L L
HILIGHT and UNHILGHT -

There routines perform the switch function in order to
hilight and unhilight a field in a menu selection situation.

S SNSRI FHUSI RSN RFHEREER TR E SRR EHL R R FRFREHF RSN H R RS RS ERRERRAIRE/
milight O
S

“

chanoe_pos_color (hl coler bg, hl_color_fg)

(e

unhilight)

change_pos, color (uwhl_color_bg, uhl_color_+a).

e L T T At L T S LR S i e e Lt L e I r L S L et e T T e S s e e Rt

HRFELAFSEEREYRHETERLHFFRFSFA BRI ERRALARAFRAER YRR EFEH SRS LSRG REE R IR RRHFEAEBSLEEERS

whivabs pos {7
i

/% mark as selected: current mend. row, and column %/

CUMPRENE_SMm, meNy = POS. mEnu:
current _sm.row [poo.rowl =
curirent _smaonl [pos.colld = 4

- 4w

/S A I S S IR 2R 0 S S 2 26 B R B R 6 A SR B e 6 A N H AR R E R
Get input filename
R R A L Ly R R T S T L o T R e S e S e R L T e Y T

et filename _in (7
K
13

- /¥ Frint gquestion #/

-

cprintf(gue, row+?, aue_col, vellow, black, ¢, "Enter filename: ")
scanf{"4s", in file):

clear_ouestions ()

Mark place in the selection matrisx as chosen.

3

corintfi=f2_ rowt+s, =2 col, white, blus, 0, "% EANE

cprintFisfZ row+s, sf2_col+?, white, blue, 0O, "is", in_filel:

o

T g R e L e T Ty R T L e
Get output filename

Y O R R Y e e T B E R T T PRI e L R R S I Y

et filenam=_out ()

g
w

int place:
/% Frint cuestion #/

cprintfique_row+s, aoue_col, vellow, black, 0

., "Enter filename: ")
scanf("%4s" out_fFile): .

clear _aguestions ()

/% Frint filenams in proper place #/

if (current_sm.rowlid] == 1) place = sfX_rowtl:
elese 1if (current_sm.rowlil == 1) place = sfi _row+3:

corintfiplace, sfi_col, white, blue, 0, "< L ¥
cprintf(place, sfZ _col+Z. white, blue, O, "XAs", out Ffiln);

)

(9

R g L L L L L L L
Fipt the data desir=d

R L L L L R Y R T L P R e S

data bto_screen()

£

plot_data():

clear_ screeni);
vmode (1A):

pr_comnon() s
pr_menud ()

FHERREEFERHEERRL NI HHRRFRARERER SRS RAEW AR EREEFREF SRR HRR R RRE RS ERARHRNR

Test the 4 to I converter by pulling in current vailues until

done.

N

L e L e R i L i b L e L P L LR L S L T St SR T S LR Y e L

#3517

oY

adec_qo ()

; -t
kg

(8

int choice:
int test go;
short #ps
short temps

/% Print messages #/

clear status(d,
corinlfistat_row+2, stat_col, purple, lgreen. 0, " Testing A to I ...

clear messagss():
Dr_test_ms():

p = ad_read;
test_go = 13
while (test_ao) /% do until end_key hil {(once a key hit) #/

Ky
.

/% get an A to I value and print it (bite 1-12)%/

temp = %o > 1

cprintfinf _row+z, inf_col, lgreen, black, O,
©OINFUT value is: YZSx"_ temn & QxOFFf)

/% get new kev (should we get more or guit) %/

choice = keynum(getkey())
switch (choice)

case 4: test_go = 0: breaks:s /% end key #/

default: break:

[t}

pr_messages();s
clear status():
clear_info()s

A T A B A0 e S S I S R B R H R R IR H I N SRR FH R R R R

Test the I to A converter by oputting out specified values
until done.

FFFHRRURRERFFAREHRENSEF RSB RAF R D ERER R E R R F 0 H 5 3330236 N % S S I /

Dt dac go ()
{

int choice:
int test _quog
shori #p:

/¥ Print messages #/

clear_stakus():
cprintflstat_ row+s, stat_col, purple., lgreen., O,
n);

clear_messages():
pr_test dac _ws()3
D = da_ out;

test qo = 1;
while (test_oo)

7

#p = teet_dac_out:
/

" Testing U to A ...

/% do until end or return hit (once a kav h

cprintflinf_row+®, inf_cel, lgreen, black, 0, " Value pul oui

i

we
an

"y

cprintflinf_row+z, inf_col, lareen, black, O, " Value put out

i: Zw' test dac oub):
choice = akeynum{ getkey() }:

swikbch (choice)

7
LY

case 4: test _go = Oy breaks

=1

/% and key #/

FE plus hey @

/% minus key

casze 5@ get _dac_out_dalba(); break: /% return key %/
case & test_dac_out += 0x10; breaj:
/
case 74 test_dac _out -= 0xi0: breals
%/
default: breal:
T
".
promessages()
clear status():
clear info():
}

g LTI T b e T L e L E P L LT RSP T e s s et e T PR PR R L N I L L e L L R L L

G

action Vaorctor

initialization

Basically. this section is & large structure of pointers to routine

They are organized so as to allow the chaining together of routines
into action chains for meaningful menu driven operations control.

of the menu

There is also information contained as to what position
in the menu the action is pertaining to, and what the physical layout

is at that point.

HHFRARHEHELRF AR AR AR AL R FTHRRSFREER AR H 3303330303 3030 3356 2 R WS R S St 3t

/

struct position info

r
hA

/H®

.,
S

/H
/&
/7
/%
/%

7/
/7
s
g
/%
/%

Bracket & dats labels

aAn =

B

1 owWn
up
right
left
end

:
i
1
H
13
1

n @

B w11
%+ 3

Co

] .

n

x03

2 lenna, sfi_row,

o v
H P A Al
H ikl b 1 bl
] el 5 | si
| ini H H
Ri Cigl R 1 Ci
of oit! o | ol
wi 1iht w 1 1%
% ¥ % %
£
(8]
-
€

#/ i
*/

#*/

*/

#*/

return #/

down
up
right
left
end
return

o~
[]

Lo’

i

L i e W)

(SRR}

-

a

ey e

fi_lena., sfl_row,

#/ {
#/
#/
*/
*/
*/

L]

T B e B

0
0
~

'

0
]
1]

"

LNE Y

[N

ocation ‘ma;::»:: menut ik POW (7= o =
location [max_menul [max_ rowl Cmax_coll

(See structures of:
pasition,
action_vector,
and position _info
for further edification.?

/% nuli vector %/

box col+lE,

unhilight, inc _row. hilight),
unhilight, go, _to_gquit, hilight ¥ >,
unhilinht, go_to_quit, hilight > I,
activate _pos, menu_select_go Y Xy oL,
bowx_col+l,

unhilight, go_to_first, hilight 7,
axit_svs L

/%
/3
Vg
Vg

VL

e
Ve
e
£

3
54

FE

N T NN
%o o

2

down ¥*/
up */
right 3%/
left */
nd ®/
return #/
ki
rIwn #/
uo */
right #/
left #/
=nd #/
return %/
€
own t- 4
LN */
right #/
lafi: =/
w2l %7
return #/
4

down #/

up %/
right %/
laft */
and */

return */

~

e

.

L

e

-~

(s

fi
{
8]
& leno, s
K
LS
0
f2 leng, =
A
0
5]
L)

-

DR TR e B

o

L]

i

L

L

F3

s

L e I

e T

L

Lo Tt

2_rowtd, box_col+13,

_leng, sfi_rowtl, bowx_tol+13,

2, { unhilight, inc_row, hilight
{ unhilight, dec_row, hilight

2, £ unhilight, go_to_quit, hilight

unhilight, go_to_guit, hilight
2, { activate_pos, menu_select_go

J¥ null vector ®/

Lpowtl, box col+lE,

Z, L unhilight, inc ow, hitight
{ unhilight, dec_row, hilight

%, L wnhilight., go_to ouit, hilight
. 4 unhilight, go to_oguit, hilight

2, 1 activate_pos, menu_select o

/% null vector %/

powtd, box col+llX,

unhilight, inec_row, hilight
unhilight. dec row, hilight

(% G
.

-
ey

o
’

[

urnhilight, go_to_ouit, hilicht
unhilignt, go_to_quit, hilight
activate_ pos., menu_select oo

4

a
e R

f2 e L

2

/% null vector */

2, € unhilight, inc _prow, hilight

2, { unhilight, dec_row, hilight

0 >,

H, L unhilight, go_to_guit, hilignht
2. { unhilight, go_to_aquit, hilight
2, { activate_pos, menu_select_oo

oo

[R A)

[

L L L

et

[NERR R W

o o

(SRR]

LW Ry LNE R)

[

DRERRN

e

et

(ST |

[WCRr e

LAtk

[N

p

v

L)

e

[

(3]

/*
/&
/%

FaEN

V-

£
/%
/%
/&

¢y

TN NN N
a&Meowr o oae

/3

£
§ A

/%

]

down */
wuo */
right %/
left */

=114 */
return #/

Jown */
up =/
right =/
1afi %/
end %/

atuen #/

gdowmn =/
Lip %/
it ¥/
lesf i #/
wand #/
return %/

L)

down #/
up */
might %/
left */
s */
return #/

30w #*/
o #*/

)

Q /% null vector %/

£

f2_leng, sfZ_row+3, box_col+l3,

™y

unhilight, dec_row, hilight

unhilight, go_to_quit, hilioht
unhilight, go_to_guit, hilight
activate_pnos, menu_select_ogo

N e R W e R e

SEEREEREERE Monu #1 - (Xmit Farms) $SES8ssssess/

=

f1_leno, sfl_row, box_col+i,

£ 42, { unnilight, inc_row, hilight
T 0 3,
{3, { unhilight., go_to_+first, hilight
L0 3,
£ 3, { unhilight, go_tlo_ouit |, hiliont
L 1, f calc_wave

2 leng, sfi_row, boxm _col+lE,

42, L unhilight, inc_row, hilight
L0 3,
L0 3,
{ 3, 4 unhilight., go_to_ge, hilight
{ { unhilight, go _to_ouit, hilight
{ { a=t_+regs_ind

L

fl_lena, sfl_row+l, bomx col+l,

I T
{ %, { unhiliaoht, dec_row, hilight
£ 2, { unhilight, go_to_first, hilight
L0 >,
103,
{1, { upn_menu

f2_ leng, sf2_rowt:, box_col+l3,

K
+“

unhilight, inc row, hilight
unnilight, dec_row, hilight

o K
{ O .
oo Kd
(3 ()

W28y

L

[

(SR A)

et

o

"

LU

[Ry W]

et
.

[
»

L L
N

T

e

.

[N)
2

0%
[
£y

3
X,
by

/%
/%

]

/¥

3¢

NN, e
ax k&

-~

. \‘ \'-.
Woue

TN
no Mo e Ve wx

e~
Mou

rloghlt %/
left */
end */
return %/

Kd
LN L
"]
3
o
<
i leng,
1iown %7
up #/
right #/
left #/
2l #/

return %/

D}
-~

f2_leng,

cluwn */

uo */
right =/
ledt ®*/
wrid #/
return ¥/
[w]
<
fz_lenqg,
tiown 7/
up ®/
riaght #/
left */
@21 */
return %/
+ £
0

e Fh ey
oy

N}
]
P

£ 0

.
B

'
ey

¥

{0 0
P

ey ey
A

oy iy 4

R XY |

a

2 _rowts,

o

P Tk B ae Ao

R T e

G

Laie}

e R

o~

LT o W T

(o}

unhiliont,
unhilight,

go_to_go, hilioht
go _to_gaguit, hilight

aet_burst_length

/% null vector #/

unhilight,
unhilight,

unhilight,
unhilight,
get ramp

rowtd, box_col+13,

inc row, hilight
cec pow, hilight

go_to_go, hilight
oo to_ouit, hilight

/% null vector %/

unhiliaght,
unhilight,

unhilight,
unhilignht,
cet oecay

box col+iZ.

inc _row, hilight
dec_roaw., hilight

ao_to_po, hilight
go_to_auit, hiliaght

£% null vector =/

box_col+1X,

unhilight,
unhilight,

get_mix_lag

{ unhilignht, dec_row, hilight

go_to_go, hilight
go _to_gquit, hilight

/% null vector %/

-

ot L

s
<

[

LeCaR
L et

.
[SRR

L gl

ot

[
ut ot

Pt

Lo

(SRR SR}

s
oo

(AT)
L W2
PR
o
L

-
£ R

/&

=
/%
i

e

-~
.

~

~, »
o W e

£ ¥
/¥
/R
/#*
AR
/%

L

down
un
right
Iaft
and
reiurn

W
un
right
Twafi
eno
return

down
up
riaht
left
end
return

-

B

-

% '/
&/
=*/
&/

*/

=/
#/
*®/
#/
H7
%/

*/
#*/
%/
%/
*#/
*/

™y

-

~y

131

1 leno,

£

8]

/EEFSFHAREE Menu #2 -~ (Receotion Farms) HHEEH AR AR HR S

0

o

d
!
o

.leng,
O

W
O

[

lang,

[t

[

sfl_row,

EE e £
(O N ™
L0 3,
T a3,
{05, f
S <
Lo, i
{1, £
sfl_row,
£ 40 3,
10 3,
L5, 4
0 5,
0,
+ 1, %

/% null vector #/

/% null vector =/

box_ col+13,

stl_rowt+d, dbox_col+lX,

e

G I N B

Y

"
o

g
1

*
{
K
“
£
L

unnilight, inc _row, hilight >3,
unhilight, go_to_guit, hilight 2 32,
unhilight, go _to_aquit. hilight ¥ %,
get_record_time Y oi
bow col+l S

unhiilight, go_to firet, hilight 3 I,
wo_menu ¥y
unnilight., dec_row, hilight >3,
unhiliont, go_to_guit, hilight 3 »,
unhilight, 9o _to_guit, hilight 3 2,
cet_delay_time o2

/% null vector %/

/% null vector #/

L7

Nt

[

v

Ex £
15 .
0 /# null vector #/
¥,
£
LS
0O /% null vector %/
.
I I
A L
] /¥ null vector #/
¥,
K
1=
0 F% null vector =/
3. .‘; .
Kl ol
AN LN
(%] /% null vector #/
£
O /% null vector %/
R T
FEFEREEEFREE Menu #3 ~ (Board Control) Sessssesgess/
.;: ;:
@ /7% null vector %/
¥,
L)
£
f2_leng, sfl_row, boM_col+i:,
/& down #/ { i, { unhilight, inc_row. hilight o2
SEOUD %/ 0

[RCR]
.

/% pright %/ 0

L B A I P

/% lett #/ =, { unhilight, go_to_quit, hilight 3 3
S' oand */ . { unhilight, go_to_guit, hiiight 3 2
/% return #/ I, € transmit 3

™
"

fl_leno, sfil_row, bowx col+l,

A
A

/& down #/ 4
#oup w/

-

LV

/% right %/ {03, 4 unhiliant, o to, First, nilight 3
/& Taft &/ 0 ¥,
/'._':‘c E.‘l'id .:\:J/ ;: (:, }‘
/% return #/ © 1., 4 up menu b
£
4+
f2_lena, sfl_rowtl, bow_col+13,
/% down %/ € <2, { unhiliant, inc_row, hilight >
/¥ up %/ { 3. f unhilight, dec_row, hilight 3
/% right %/ L0 3,
/% lefl #/ { { unhiliont, go_to_quil, hiliaht 32
A% end #/ 4 { unhiltight, go_to_guit, hilight 2
/E return %/ { { recieve_only
DO ¥
) /% null vector #/
%
L
f2 leno, sTl_rowtd, box_col+lZ,

ddown ®/ {4 { unhilight, inc_row, hilight >
/% up *x/ € %, { unhilight, dec_row, hilicht ¥
/% right &/ L0,

/% laft #/ £ 3, { unhilight, go_to_guit, hilight
/& and &/ 03, Cunhilight, go _to_guit, hilight 7
/% return 27 {1, 1 trens_rec S
i
o ¥ onuill veclor #/
¥,
Ey
3
fz2_ lena, s¥l_rowr?, bosx col+i3,
/% down ®/ i 4 { unpiltight, inc row, hiliaght 3
FEOUD %4 £ { unhilight., dec_prow, hilight ¥
A% eahlt %/ < .
/& left %/ et { unhilight, go_to_guit, hilight 3
FSE g #/ { { unhilight, go_to_guit, hilight %
7 oreturn kS { { zere_ad, load_record_time,
wnnilight, dec _row, hilioht ¥
0 7% null vector #/
g
s
£ lena, s71_rowrd. bow col+l2,

JE down w 4R A ounhiliont, inc _row, hiliaht ¥

()

[ET Ry

LS I SO A

L

[
ia

Lok

Lot ted

Lat

L% e

[T

"
/o
i/ W
s

/%

#/
¥/
2/
*/

L
right
1wt
e2ryed
return

T4
]
<
Tol leng, =
Eatn Il w4 4
#1a] w7
pight &4
ledt %2/
20 %/

raiurn %/

71 leme, =
MRl S0 7
33 =7
R Ll =/
iwfi #*/
et %

rabuen &/

L

F2_leng,

w4 <
7
B3 ./
#/

#7

3w
un
might
left
@
redrn

i)
"

1 _leno,

#/ <
%/

viiawem
LA

i Cunnilignt
S I

i urhiliaght,
£

FERAE

af

{
{ unhilight,
{ ad_to_da.

doe row,

o to_aqui

go_to_guit,

unhilight:,

hilighi
t, nilight
hilight
dec_trow,

dec_row,

hilight

I _rowki,

/4% null vector */

Do, ool 3,

L0,

<3, 4 wnhiliaht, dec_irow,
o0,

< 50 4 unmhilight, ao to_auit,
fF, D uwnnilight, go to_guit,
Tk, f adiust_mix_lag

blens

§o 4%

hiliaghti

Filight
hilight

\ X : .
) o AEEReERHER

€07, anhitioht, ing smow. Riliancs
Ty,

T L, 4D unhilighl. go_to_firsi, hilicht
LGk,

{ %, « upnhilight, go_to_ouit | hilioht
o £ filwe wransfer go

rom,

bou_col+l3,

.

Loz, L unhilight, inc row, fi
L0 3,

L0 3,

{ { umhiliaht, go_to_oo,

b { unniiignt, go_to_guit,
{ { activate_pos,

wfl_rowd

‘f_' 3 ‘:;) P

1

-

. box col+l,

i

ight

hilioht

hilight

get_filename_out

urniliaht, dec_praw, hilight

ot

o,

[N

(o)

LK RS W}

PRI

(o)

[N SRR

e Lt

[

~

Lo}

[

[

[y

v
13

J# right %/

b ': ot o -
S lefFi %/ 0 2.
/% end %=/ 0

/% return #/ L1, £

s

% Jdown */ S {
/E R *7 L {
J# pight %/ £ .
4 left %7/ i 4
F# end */ L i
/e pelurn %/ < {

2 _leng, sfi_row+2, bowx _col+ll
—— = — g kl

unirilaght, go _to_first, hillaght

up_ menu

unhilight, inc _row, hilight
unhilight, dec_row, hilight

unhilight, go_{io_go, hilight
wnhilinht, go _to_owit, hiiight
activate poo, get Filenams_ in

<9
v /2 null vector #/
K
.
F2 lena, s72_rowtd, bow _col+ld,
2 odown */ VO L umhilight, inc_row., hilight
¥ oup ¥4 < { unhilight, dec_row, pilight
S oeight #/ £ ¥,
/% lert %/ i < wnhilioht, go_to_ oo, hilight
S oaend */ £ L unhilight, qo _to_auit, hilight
/% return #/ < 1 activate pos, cet_filename out
1
C /4% nuilt vecltor #/
Fa.
[
. f2 lenn, sfi_rowt7, bowx col+l3,
/% down %/ {10 %,
/¥ oup */ {3, { unhiliunt, dec_row, hilioht
JE oright %/ { ¥,
7 lefi */ 0 { unhilight, co_to_go, hilight
F% pnd */ i { unhilight., go_to_ouit, hilight
/3 relurn %/ { 1, { data_to_screen
lI T £
; o /% null vector #/
' 3. ’
; -
.
I o % null vector =/
- L
~ Iy

v

L

LS

DRI o W0

[N

tat LI

L

w2

[NE RN W

et

o

e T

(SRR

b

[

L L R

LI R

/%
/%
/4
f’ %
/#

N
7%

-

down
uo
riaht
iefl
erd
PERTLrn

i
Lo
wiaht
left
14
return

domwn
Lo
might
leaft
e
return

oy

P

®/
E-3 ',’

%/

%/
w/

n
.\’- \\

A WM

b
~

=/
i3/

®/
= /'
%/
& /

4/

L’

=

"y

L)

i

))
s } &
EHSRAEFEH
leng, &f
Kd o
. W
K
£
€
€
K
(8
Ky
.
leng., sfi,
Lo
LS "
T
Ed
*
Ke
"
Ke
{
Ke
LN
leng, s¢1_
»'- .'-
L .
£
LY
Ka
-
K
-
£
S
K
(8
% ,
J +

(%3

Menu #% -

1”0k,
"y %

o,
Ty

A
SR

Wwor,
) e
Wt 3
- -~
et
[e
g L

(o]

/% null vector */

/% null vector %/

(Test LDAC) #%$witddkasst/

bomx_col+l,
unhilinht, inc _row, hilight
unhiliaht, go_to_firsl, hilight

unhiliaght,
tesl dac go

go_to_auit, hilight

bow, col+iz,

unhilicnt. oo to_aa, niliant
wunhiligint, go to_quit., hiliaht
activate_pos., getl dac_ out_data,
wunhilight. go_to_go, nitight

-1, box, col+l,

unhilight, dec_row, hilight
unhilight, go to_first, hilight

up _menu

/% null vector #/

*

(9

oL

P

LT

e LS

3 /% null vector %/
T,
ks
-
% /% null vector %/
>,
Lo
0 /% null vector %/
>,
I
o /% null vector #/
I
L1 '
] /% null vector %/
¥.
¥ 7 null vector #/
oo,
CA
QO 7% null vector =/
.
<
] 7% null vector =/
% T X
/EASRERREEE Menu #é& - (Test ALD)Y #%#3438885343%/
Ed
1%
¢ £
O /% null veclor #/
oy
£
F2_ lena, sfl_row, box_col+lz,
S#E down #/ 44
UL ®/ <
AR opeight ®/ {
/3 left 5/ { unbilight. go_to_guit. hilight » 2,
Tk ownd %/ { wnnitight, oo _to_auibt, hilight > 7,

't

N

~
s
a

4

return #/ test ado oo

£ s
(5 LS
f1l_leng, sfl_row, box_col+l,
down #*/ £ L0 3,
un %/ 0 2,
right #/ { &%, { unhilight, go_to_first, hilight
left */ L0 3, :
end */ L0 X,
return #/ 1. 4 up_meny
K
A
C /% null vector #/
I
£ <
0 /% null vector */
>
£
19
O /% null vector %/
ooy,
£ 5
] /% null vector #/
., 0 /% null vector %/
o,
EE
0 /% null vector #/
>,
Ks
1S
0 /% null vector %/
yoor, ’
K Kad
® -
0 /% null vector %/
¥
{
] /% null vector %/

fa)

[

Lo
ot

D]

[

P T R T R e T Ty S S AL T T T e R EE R L T
Take Action-

Thig routine takez in & given kevy and the pocition for
whicn that ey was hit, and causes the proper chain of actions
to be carried out.

HEFHFHFERAFFEH ARSI A ERARRAAFRRR AR ESRAERHFRAEHAAR AR FFE IR IR FRABR B I LR AT RD5

int kevs

£

“

int counl.indexs

shenct position_info #locus:

locus = &ecation [pos.menul [pos.rowl [bos.coll:
count = locus-rack vectlhksyl.count:

indewx = Oy

Bile (counbt-- 2 O)

.
o

(#locus-ract_ vectlkevi.Ffunclindex++37 ()

/RS S H R B R I 2 S R 6 R A S RIS B SR
(08 ¢all to get the kevboard key value

SRR H R RN DR HR R R R N KR E R R E R R H ISR A S H S B

ink netkey ()
inregs, ax = (xO000; /% use read kevboard character #/
INTE&Ou1A, Rinregs)y /% service #/
retwrn (inreds. as)s /% ratwn the 146 bit key #/

‘v

FEERHEES RS R RAAF S F AT R FERYERFIF R R L AR F R RR AR AR TR FHER LSRR EEREREERF RS AFHS

Change the color of

the uspace ai

the current position.

HETER R REFHRERIAFAZT RN AL SRR R AL RRRAARIRFR SIS HBHARAF ISR RS SRR WH RS FRFRRERES S

change _pos color (color_bg,

int color_bg,

Ke
.

struct position_info

color_fg)

color_fas

*#locuss !

int times, row, col:
locus = Ylocation [pos.menul (pos.rowld [pos.colls
times = locus->lengihs
row = locus-Iah
col o= loous-s
while (times-- 09 /% for the lenguh oF Field
&7
<
cursaet (row. col+t, page);
inPregs.as = ORS00, /2 read tho cnaractor and
w/
inregs.bx = pages 0 S 7% and it s atiributs
%/
N INTSA(C=I0, Zinreas Js
inregs. a B OmGOFFy /% write bacl same char %/
inregs.as 1= 05 Chs
inregs. o = odnreas.bs & Oxf /% same paoe #/
inregs. b im ((color bu
4+ color_fg)e A4 different atiribuies s
inregs. e = 1 [one copy (nD reosals! e
/
INTEE (010, Linregs) .
..I'
.;.
P T e e E P e P e L P PR T TR T e T
EEYNUM~ returns an inteoer value to be used as an index for each
meaninaful keyv.

HRFRERBHEYRE R ET R SRR R EESREARE RS FREFEESFIRERRRFESRHH R LRSS A R RS RRHRERSRERERFRRRER)S

ink keynum (key)

int kevs

int temp:

switch (kev)

case down kew?

temnp=0s break:

case un ey
temp=1; breoak:

case right_key:
temp=2; break

we

case left_key:
temp=3: break;

case end_key:
temp=4: break:

case return _key:
temp=5: break:

default:
temp=0;

o]

return {(temp):

*E

SEERALERRREERFFRRAR R SRR H ISR RAF SRR B F AR BR BN F S HR RS H R N F R R AR AR F R R L FF P HEF
AEEYNUM- returns an integer value to be used as an index for each
meaningful key. (A for Alternate)

B L Y R T R T E T TR P e . S e E e
init akeyvnum {key)

int kevs
-

int temp:

switclt (wev)

"

T
case down_ kev:
temp=Q: break:

case up_key:
temp=1+s breai:

case right_key:
temp=2Zs break;

case left key:
temp==: breaks

case end_key!
temp=4s brecalk:

case return_key:
temp=Si: break,

n
R
ul
i

plus _koy:?
temp=bi: breabks

S et wes hhden ma s o e

casg minus_key:
temp=73 break:

default:
temp=Q0;s

return (temp)s

[y

P T R P T Y T L X
FERw pr.c boundpoint #xe/
P I YT

SETEARREREA RS RIS EA A AT LRI HLE AU R G EREFE B W RS SRS AN RN U SR A RF LA SR

334

3
FR _MENU- prints the menu corrssponding to the menu numbear passed in.
R R R R R L E L DX T b DL R R X R]

it el (manu num)

ift menu__nums

{
switch {menu, num)
casge O
pr_menud () break.
casa 1t
or_meruwl (3s bireaky
Cass 2
pr_menus (2 brealks
case 5)
or_menu: (s break:
case 43
pr_menud (): break:
case 3%
pr_menus () breaks
case &
pr_menus (s breals;
default:
break:
.
o
3.

JE LT LR TS S R Y L T X A T e L P LR T P e ST L L S D T LR LR T

Frint thoses soctions comman to all of the main menus.

=

o
<

HHFAFEEFLEREIRARER I LT RE IR TS SRR F AL E RS AL SRR AT R AR FRASA LR F T AR H AR AR R RARNERS

e _common ()
p
‘o

int is
/% Print in text mode, on page O #/

vpaga{0);
vimode (14)

/% Print headers %/

cprintfimess_row, mese_col, red, black, G, "MESCSAGES"):
cpirintf{gue row, guoe col, red, black, O, "GUESTIONS");
corintf{ack row. act_col., red, blacis, &, "ACTION"):

cprintfisel row, sel col, red, black, €. "SELECTION®?
corintf(star_row. stat_coli., red, black, @, "ETATUE"):

ETY

/% Print messages #/
pr_messaaes();
/% Print horizontal bars %/

cprchar{ness row+l, mess, col, brown, black, G, mess_und_leno, Rzl _ 4y
cprchari{cus row+sl, gue _col, bprown, olack. Q. aue_und leng, hzt JdYe
cpirchar(stat_rowtl., stat col, brown, black, O, stat_und_lengy. bzt dis

coruchar(box_row, bow coli+l, m bar color_fg, m_bar _color _bg, O, Fi_l=
no. hzt dis

cprchardhow_rowriZ, box col+l, m bar_color_fg, m bar_color ng. O, Fi
“sarted, hEt _d)a

covrchar(box row, box col+l3, m bar_ctolor_fg, m_bar-_color b, <. F2 lo
wy, fizi o dla

corchar{bo
g, hat_dog

rrowtiZ. bow col4lI mobar_color fo., m_par_color bo. G, £7

/% Frint corners #/

cprchar{box row, box col, m_bar_color_fag, m_bar _color_bg, O, 1, 1 o
- 3 - — - —— v — -)

7

cprchar(box_row, bowx_col+lZ, m_bar_color_fg, m_bar_color_bg, O, 1, tm
i)

cprchar(box_row, box_col+iZ, m_bar_color_ fo, m_ bar_color bg, ¢, 1, tr
4y

cprchar{boyx_row+lZ, bowx_col, m_bar_color_fg. m_bar_ctolor_bg, 0, i, bl
GRE

cprchar(box_row+l2, bowx_ col+lZ, m_bar_color_fg, m_bar_ceolor_bg, O, 1,
isim i) 4

corchar{box_row+iZ, box_col+33, m bar_ceoleor_fg, m_bar_colaor_bo, O, 1,
STy B

/% Print verlical barsg #/

for (i=bow powtl: idbow_rowelZ; 1tr)

£ cprchar (i, box_col, m bar_celor_fg. m_bar_color_bg, O, i

2idy
corchari{i, box_col+lZ, m_bar_color_fg, m_bar_color_bg, 0, 1,

virk _d)s

cprchar(i, box_ m_bar_color_fg, m_bar_color_bg, 0, 1,

vl)

A7

>

P Y R S L L T Ry I T B e T L
Frint standard messages concerning control keys

B L B L T Lt R T

o moessagas ()

K
“

cprintf(mess rowri, mess_col, vellow., black, ¢, "ARROWS Move in ar
caaes direction®):
corintfimess, rowti, ness_col, yvellow, black, O, "RETURN

fat o actiontle

Select opt

corintfimess row+d, mess_col, vellow, black, O, YEND - 0o 1o guit
4y
%
-
Y T e Y L e e T
Frint manu O - The main menu
HUBREUFARFLALRFRFRER S S LD FHFRFRE R AL I AR L RASH AL S SR F S A AU LRSS S LB FFHE SR AR R ARS8

om0 (O

=l

/% Frint color Figlas s/
bBlank _flelds (r:

/% Print field choice labels #/
cprintf{sfl_row, sfl_col, opt color_fg, opt_color_bag, 0, "EXIT"):

cprintFisfl _row, sf2_col, opt _color_fa, opt_color_bg, O, "TRANSMISSIO
N PARMSY) »

cprintf(sfl_ row+i, s¥2_col, ort_color_fa, opt_color_bag, 0, "RECEFTION
SARME") 5
' cprintfisfl_row+Z, sfz_col, opt_color_fg, ont_color_bg, ©, "BOARL CON
TROLL")

corintf(sfl_prowt+d, sfi_col, opnt_color_fg, opt_color_ba. O, "DATA TRAN
SRR) g . :
cprintfi{sfl_row+d, sf? col, opt color_ fg, opt_color_bg, €, "TEST DAC
Y

cprintf(sfi_rowt+s, sf2_col, opt_color fo, opt_coleor_bg, €, “TEST AlC"
Ts

/% FPrint status %/

cprintf(stat_row+z, stat_col, yvellow, black, 0, "At top menu. Selecti
13") g :
cprintfistat_row+i, stat_col, yellow, black, O, "function to carry ou

LD

/% Set current locetion #/
POS.manu = O

pos.trow O

pos.col = 1=

/¥ and hilight current location #/
hilyrght ().

()

P R R L R b Tk L L R e Ty Y LT 2

Frint menu 1 - The freguency transmission selection menu
o Y e Xt Yy
g menul ()
{
/% clear fields %/
blank fields (};
/% Print field choice labels #/
cprintf(sfl_row, =fl_col. oot_color_fa, opt_color_bg., @, "CALC WAVE™":
corintf(sfl_row+l, sfl_col, opt_color_fa, opt color_bg, O, Y"UFY):
cprintfisfl row., sf2 _col, opt color_fa, opt_color _bg, ©, "FREGUENCIES
Ui
cprintfisfi_row+Z, sfZ_col, opnt_color_ fg, opt_color_ba, ¢, "BURST TIM
'.ll): .
cprintflsfi_row+s, sf2_col, opt color_fag, opt_color_bg, O, Y4
‘;.,n)!:

corintf(sfi_rowts, sfZ col+Z, opt_color_fg, opt_golor_bg. O, "%Z.1Ff ms
s, ftotal_time): .

corintf(sfl_rowt+d, sfZ_col., opt_color_+o., opt_color_bg, ©. "RAMF LUF")

corintf{(sfi_row+s, sfZ_col, opt_color_fa, opt_color_bg, ¢, "<

"ty
0
cprintfisfl_row+s, sf2_cold+?, opt_coler_ fg, opl_color_bg, O, "4.1f ms
s, pramn _time):
cprintf(sFl_rawt+sd, sfE _col, opt color fa, opt_color_bg, O, "LDECAYY).
cprintfistl _rowtr?, sfI _col, opt color fg, opt_color_bg, €, "
A

corintf(sfl row+?, =f2 coldi, opt_color_ fg, opt_color_bg, O, "4.1f ms
ezt decay time)d:

corinlfisfl_rowrd,

an

s¥Z col, opt, zelor fg, opt color_bg, ©, "HIX LAG"}

cprintf(sfl_row+?, sfZ_col, opt_color_fg, opi_coler_bg, G, "<

}u)_
- k4

cprintf(sfl_row+¥,
s, miw_lagls

/4 Print status */

cprintfiztat_ rowts,

wP“);

cprintfistat rowt+3,

carziz) H

corintfistat_ rowtd,

s¥2_col+Z, opt_color_fg, opt_color_bg, O, "wh.1f ms

stat_col., vellow, black, 0, "Transmission patramei
stat _col, yellow, black, €, "selection menu. Bel

stat_col, veliow, black, 0, “operating parameiers

au):
fr el current location #/
pos.manu = 1g
pus.row = O3
pos.col = 1
/% and hiliaht current location #/ °
hilight ()4
a3,
o

LHERERFEFFEERF R ESF AR AR RIS

Firint menuw £ - The

L L R L L S e L L D R

sception control menu

e L L L R D R L L

D meEnuE ()

/% clear fielos #/7

+

blank _fields (!

/% Print field choice labsis %/

cprintf{sfl_row, sfl_col, opt_color_+g, opt_color_bg, O, "UF"):

cprintf(sfi _row, s

1) «

cprintf(sfi_row+l,
).

corintf(sfl_rowtl,
as”, record time)d:

cprintf(sfl_row+s,
")

cprintfisfl_row+3,
LU I

cprintf{sfl_rowti,
szt delay timels

f2_rol, opt_celor_fag, opt_color_bag, ¢, "RECORD TIME
af2 col, ont_color_fg, opt_color_bg, O, "I

sfZ _col+Z, opt_color_fg, opt_color_bg., 0O, "4.1f ne

sf2 caol, opt_color_fo, opt_color_bg, ©, "DELAY TIM
sfZ_col, opt_color_fg, opt_color_bg, €, "<

sf2 col+Z, opt_color_fg, opt_color_ba, 0, "Z.1f ms

ar

/% Praint stetus =/
cprintfi{stat_row+:, stat col, yellow, black, ¢, "Receplion parameter"

cprintfi{stat_row+Z, stat_col, vellow, black, ¢, "selection menu. Sel
ETof il I :
cprintfistat_row+4, stat_col, vellow, black, 0, "operating parameters

. nl}; -

/% Bet current location */

POs. MmN = ¥

Dos.row = O)
pos.col = 1

/% and hilight current location #/
hilight ()3

g T R R S L PR LR PR R R T L R S
Frint menu 2 - Tha board control menu
B R L T R e L R e T L E T E R R T T Ry

4

g nenus)

M
kN
/% clear fields %/ .
blank _fields (1)

/v Frint fiela choice labels %/
corintf(sfl_row, sfl_col., opt_color_fg, opt_color_bg, O, “UF"):

corintf{sfl_row, sf2 col, opt _color_fg, oot _color bg. O, “"TRANSMIT");

corintf{sfl_row+l, sfZ col, opt_color_fg, opt_color_bg, O, "RECEIVE")
| U corintf(sfl_row+s, sfi_col, opt_color_ fg, opt_color _bg. ¢, "TRANS/REL
itlf : eprintfisfl_rowt+3, sfi_col, opt_ color_ fg, opt_color _bg. ©, "CLEAR AL
ffM,):" cprintf(sfi_row+d, sfi_col, opt color_fg, opt_color_ba, O, "Al RAM -
N m.?)éprintf(sﬂ__,rowafs, sfZ_col, opt_color_fg, opt_color_bg, ©, "A0JUST MJ
THLAb);CDPintF(SFj_PGW+6, sfz col, oot _color fg, opt_color bg, 0, "<
): corintf(sfl rowrs. sf2 col+2, opt_colar fg. opt_color bg, 0. "X.1f ms
sz mix_lag)y

/% Frint status %/

-

corintfi{stat rowr?, stat_ col, yellow, black, &, "Board control menu.
Salacting®)y .

cprintfistal_rowtz, stat col, yellow, black, O, "actione for board pe
cfarmance.)

/% Set current location %/
ROS. My = I3

DOS. oW = Qs
pos.col = 1

/% and hilight current location =/
hilight (7

[

R L T L kL TR F R R 8 O R 03
Frint menu 4 - The data transfer control menu
B T ey e R R R R Ly R E L s 2 e e e 7

o menud (O
1

/% clear fields #/

blank fielids ()

7% Print Field choice lapels %/

corintfi{st]_ row. sfl_col, oot color_fg. opt color_bo, 0, "GO
corintfi{sfi_prow+l, =fi col, ont_color_fq, opt color bg, G, "UF").

corintf(sfi_row, sF2 col-1, opt_color fao, opt_color_bg, 0, "PARME TO
e Dt) s

cprintfl=fl_row+i, =f2 col-1, opt_color_fo., opt_color_bg, O, "I
“y .

cprintf{sfi_row+?, sf2_col-1, opt_color_ g, opt_color_bag., ¢, "FILE T4
SOIRMBY Y .

cprintfisfl_row+?, sf2 col-1, opt_color_fg, opt_color_bg, 0, "
LD I

cprintf{sfl_row+d, sf2 _col-1, opt_color_fa, opt_color_bg, 0, "RAM LAT
A TGO FILE") .

cprintflisfl_rowtd, sfZ_col-1, opt_color_fg, opt_color_bg, 0, "<
ERD W

corintf{sfl_row+7, sfZ_col-1, opt_color_fq, opt_color _ba, ¢, “RAM DAT
N TO SCREEN") .

/% Print status %/

corintfistat_row+2, sltat_col, yellow, black, ¢, "File transfer me=nu.
eplecling™)

cprintfi{stat_row+, stat_col, vellopw, bhlack, 0, "desired file transfe
roachion." s

=

Lol

/# St current Jlocation =/
pas.menu = 4;

pOS.IrOW = (O

pos.col = 13

/% and hiliaoht current Jocaltion %/

hilight ()

K

R R e R L L N T T R O k2 T L eI T TR TR N S)
Feint menu 9 - The test AC control menu

R E T LT T R T L T T B T Y L L N oY

et R ()

a0

;

/% clear fields #/
blank fields ()4

/% Frint field choice

labels =/

corintfis§i _row, sfl col, opt_tolor_fg, opt_color og, G, "GDO%):
cprintfisfl _row+l, sfl_col, opt _color_+uo, opt _colo- bg, 0, PUFY

corintf(sFl row,
TS s
corintfl{sefl _prowtl, s7& col,

sfi col,

ont, color_+o,

opt color_ fa.

vellow,

' Ty s
F¥ 0 Print status #/
cprintfistat row+:. stat_col,
/% Set current location %/
pOsS.menut = S
pDOS. row = Oy
pos.col = 1:
/% and hilight current location #/
hilight ()
7

opt_color_ba, <, "FPUT VALLE O

A}

opt_ celor _ba, O, M

black, €, "D to A test menu. ")

gD E S L EE S TR B el i et T TP P S T B E L L L L L L e et E D R L L L P T

Frint menu & ~ The test ALD control menu

EL e R L L P R e D e e e R A b R L L e L L L L e L L L L L

P oneEnud ()

Cr

/% clear fields =/
blank_ fields ()3

/% Frint field choice labels %/

cprintf(sfl_row, sfi_col, opt_color_fg. opt_color_bg, O, "UF"},

cprintf({sFl _prow, sf2 col., opt _color_fq. opt_color bg, 0, "READ VALLUZ
AT ADC")

/% Frint status #/

corintfistat_yow+s, stat_col, vellow, black, 0, "4 to I test menuv. *1

/% et current location %/
DC5. ML = b

DOS. oW = O

nos.col 1

]

F¥ and hilighl current Jocation #/
hilight)

a
S

FEEERERE RS ERFERF R AR EEERE ARG DS RS BAFREREF SRR B A RBRRARERFRR PR FFHFF A H R HeX
Frint messages fto be disolavad during testing of ade.

T B R R L L.V
wir_kwest mzm ()
“
cprintfimess_row+:, mess col, vellow, red, ¢, " Hit END to stop tegst.

") "

cprintfimess_row+l, mess_col, vellow, red, O, " Hit RETURN for more v
AT, "
‘.
o

.

T e PR e Y e PP R P L PR TR T T TR T R T TR R
frint messages to be displaved during testing of dac.
L R LT LR L e e I e L P P ey S e e I e e PRI e S 4

ew_testﬁﬁac”ms ()
: cprintfimess_rowt:, mess_col, vellow, red, O, " Hit END to stop test.
: cprintfimess_ row+s, mess col, yellow, red, O, " Hit RETURN for more v
SRR ")y
:L& 1 c’:‘%.linw"mess,mw+4, mess _col. yellow, red. O, " Hit PLUS or MINUS to
A justh. 4

P Y T A t X B e s ST R TR P
Frint messages to be displayed during adjustments
L R L T g T L T e Ty

it adj oms ()
T
s

corintf(mess_row+d, mess_col, yvellow, red, ©, " Hit PLUS or MINUS to
ad jush, Y.

cprintfimess_row+s, mess _col, yellow, red, ¢, Y RETURN when cone adiu
sringe M)

K
J

HRESRERBRA SRS U R I E RIS BRI FERES/
» e~ utils.c boundpoint #a#/
% T P Y T

R R EH

/

*

-
A
=

L3
SERRARLEFRERE R RS LIS SRR BFEFFE GRS EH AR EF SR FF R EH R H I H S S G H T F Y Fod
Color FRint CHARackar -

.

This routine prints a cnaracter &t a place, with atloibules,
ard wiich a repeat factor.
HHBPEEAHRENE FARAEFE RS LSS FHRF AR RAS R LS I FEAFF T ARSI F R BB A F RS SR ARG AR RARFH S R0 5 et
cerenar O row, col, color_fg, color- bg, page, repsat _factor, char to_orint)

shorl color_fo, color bag, char_to print:

int row, col, page, repeat _factor;
Kd
(N

/% place the cursor in desired position %#/

curset (row,col page):

/% use interrupt Oxl0 to print character #/

inregs.an = (QuOR00 | (0=00ff & chat _to print)):
inregs.bx = (page << 8 | ((O=OF & color_bg) <0 4) | {color_¥fg & 0OxOf

)4
inregs.cxr = repeat_factor;
INTEACOx10, Zinrags)

.'>

4

K e L R T A SR E L L P EL S D Tk L R L L L E e L L T P

This Ffunction will print the string STRING with associateu
aroumerts at the location row, col, page and in the color
specified by color. This works just like printf()

3636 SE I R KRN T WA ST IR R R B R RR ORI RS FH N AN SR/
roarintf(row,col,colorf,colaorb, page, string,al, az, az, ad4,ad, aé, a7z, as)
int row,col,colorf,colorb,page;

hvar s#steings

unsianed al, a2, «af, a4, a3, ad,a7, a8
P

A9
chiar bufLIO0T,
IERT A

ax

For{i=0: (buflid} C1al130) g 1)
cursat (row, coltr, pacels . FE FPos:itiocn curaor o

ety */
INCEOS. a F

v raracter #/
INPegS. & T

rint ¥/
inregs.bs = page OO /% Page wo print on

/% Tgll BIOE to pul

qobufLidis f% The charagher Lo

inmegs.bx = Inreos. b 3T & colaord) /% Color valus

Inregs.bn o oinregscbe 4 ((0s00F & colorb) D 4y /% Oolor value
InrseBs. g = 1 JA omanier of chiaran,

etvs ko pront #/
INTEACDIO Binrea

§y

SE Do obne imler o

Hi

(o

el iror. col.oans).

erdanrry (g

SRR SRR RE R HRRAL R H AT SR AL E R R RS A NS FHR L LR A RRERFEAARLHA R F S ER A SR LSS T HE B HSRNH
This function will s2t the video mode to the valuwz passed.

HHAFERAERH SR TR HH G Y SRR RSB B F IR RS R R RRRFLRHRERAFFRHEFEHEF R G E IR ASARERAR G FSSY S
int vmods (mode)
int modes

“

inregs.as = Q /% Use BIDE call! O to cet
el E-4

inreas. . = GafT 8 mooe: /4 Vigeo mod« dtupber

INTRA(CR IO irenas Z% Lo Lhe interraat

returninons)

P R L PR R L R T P R P L LTS PR T T T T P P e
This function will =et the LISFLAY page to the value passed.
T R L L T T E E R R D L L A T T B T L S R TR R R S SO X %)

oy (Daga)
it page:

IAPOOs. an =

f4 Cx1Y BIGE to

inrags. e = dneecs.as 4+ (0FF 8 pagsl: /% el page #

2 4
IRTEE(Cr o Rinregs g
b3
FEERERREERFE LR AF S IR R A A NI RS AR FRAR A S IR S AR FFAH S S FRREFHHFEXRFLEHH L FRE S H RSB n s
his Function will set the cursor to the position row, oo
and pags.
B R R e O T T L R Lt T SR P PR L L CL - SR Ty
LR EERT UG, 01, DageE)
P o S e vl (- ol Lhadies
FT=1e DR S w i /% Cail RIOS to s=i cursor ¥
inrag X alull o /% s8t row number .
inregs .dw = inregs.ds + (Quff o+ coliy /4 set col number
3, ,/
inrege.bw = Ouff % page. /% sel page number % 4
INTRE(O=1O, inregs)
¥

ISP r R g e A S e L e I e s etk L e R L s e PR T T R T D

This function will return the current video mode, an integer .
from 1 to 14, i

R L b e g R R A L s e L L e R R L SR o S R L L L

nt getmode()

SN

inrecs, s = GO fQo, /% Use BIOS call 19 4o gel mods

3
~.

TRNTEA (Gl O anrens 3y /% DALL 0010 1g the video «tuff «/
FE oan = # of columns w/
/% al = cwrent digplay mode =/
/% bh = current dieplay page */

return{inregs.ax)

R R L T T X F R R L 2 S R R B R R A A gt T TR S
This function will set the foreground color to the value passed.
HRAFEBHE AR REAFS B R L FFEFHFR Y S EHE SR FE LR R TR R HH B H W U S RN E N W Rk Foe s

T g (o lor)
int color:

L

INrens. e = Gy /% Call RBIGE Lo ol fo
cargd ®/

inregs. b = Ga0100, /#% Foreand ndmbre = 3
#/

inregs. b = o inreas.bs + (OoFF & color)s /4 Color number

INT2A(0:1G, Rinregs)

:

J.

Ry R L e Ly E T e R B e LS T E e
This function will set the background color to the valus passed.

R R R L LT E R PR I e S R TR X Y P L X EE I R TR

Sackand (color?
int color;
~

calor &= O=0Fx

inregs. ar = OmOBOC, /% Call BIOS to set kackan
d o ws

intregs.bx = Oy /% backgnd number = 0
&/

inregs.bx = inregs.bx + (Oxff & color):s /% Color numbet

INTSA (D210, Zinregs §s

£ AR SR A B S 36 3 8 SR SR ST I SE 36 26 S S 2 N S S0 22 B2 S 26 3226 S 0 0 46 A 0 2 A 6 S S He 2R 3

This function will put a dot at the X.Y position in the color
specifisa by COL.

Bl L e T L L L L L X A e e L E R L L E T A D L T e e D s S L D T O e L T

amdot (s, y,cnll

int w.v.cols
inregs.ax = 0x0C00: /% Call BIOS to set backgnd

inregs.ax = inregs.ax + (Oxff & col)s /% pixel color value 3
/ .
inregs.ds = vs /¥ Y position
/7
inregs.cx = x: /% X position
%/
INTSZA(OD=IO, Zinreas
}

B T L R DL e L e P T P Y L L RS S s P L T T E s £
This function will nut a character at the ouwrrent location af fthe
cursor on tne specifieo page.

ARLEASHERHRF L ASFH LR LR RAFE S AR BRAFH SR FRFRRRRFHRHERFERRFFEFEHRERERF I HRIATRER R,

wrchr(chir, color, page)
int chr.color,pagas

(S
inreds.ax = w000, /% Call BIGE to pul char
i/
inregs.ax = Guff & che /% set character
i/
inreas. by = color O B /R et color mumber:
&/)
inrens. by s inrges, b+ (Ox{T & pageldy /¥ set page #
7/

inregs. o 1y /% number of times to weils char i

IMTZa G0, hinregs)

.
M

[HERFRERAREEL ARG EESFRARF AR LR AR R AR TR T ERRA ARSI RIFLENL R FFFRRHEERAIRRHRFFFIIF oI

2ONR R R AN R H S A B S SR B S 3 3R B R I SR 3 R N R I R AN RN RER S

/%%*%%%**%%&%%%*%%%%%*%%*%*****%*%*%*%*%%*%%**%*%ﬁ***%%%*****%*%*%%**%*#*#*%

This f+t code performs a radix 4 FFft.

w - contains the real valued data
y =~ contains the imaginary valued data
n - is the number of points

m - is the powszr to which the radix is raised

el T R L L B ey T et b s TR P P ER T e D R LS L e R Tt N

L

Frefila,v,n,m)

int n,ms
double =[J, v[l;

.

int ni, nZ, 1, i, k, i1, ,i2,i%:
gouble a, e, c, s, =t, vt, col,coZ,coi,sil,siZ, siz b,rl,r2,r3,rd, sl 52,3,

a
3

nE = n

For (k=1s bk <= my lb+)

£
L

i

rid rads
ns = r‘l':;'/4:
oo A,2ETLDRIOTLIIVEEL /o nis

& = Oy

Ffor (j=1: j <= nZ: 3++)

i

B o=
[

a -+
a +

/¥ Twiddle factor calculations #/

0

col = cos{al:
coZ = cos(bl:
cod o= cos{c):
=il = sinfal:
si ?2

I

213 = gin(c]

for- {(i=3js i = ny i += ni;

/% radis four butterflies #/

Al

it = 1 + n

i2 = 11 + nx
i% = 12 + n2

P2
48 4 sa

b2

vl = mbfi-13 + w[iZ-17s
r3 o= wmli-13 - =[i2-11;
sl = vli-11 + y[iZ2~11]:
g2 = yLi-17 - yL[iZ~-1]:

pEow wlil-13 + =w[iZ-117:
r4 #Lil-11 wliz-~174,
g = ylLil-13 + y[iZ-11.
sd = wLiz-13;

4
t

1
<
—
o
-
[
>
[5]
i

wli~11 = rl + P2
1, =g o=

B o= pE o+

4
5
ey
i
m w3
BB

(W)

~
B

. For (i=1: 1 <= nls i++])
) iF (1o)
) st
#L3=-11
ni-11
=t
vii-11
vyLi~-11
b= /4
while ((k*3)
e
d=3-
b = k/74:
}
J o= o+ ki
>

()

wli~11 = g1 + =F:
s = sl - s¥;
s1 = g + gy
s = 83 -~ rd;

/% Twiddle factor multiplications %/

#Lil-11 = col # r3 + sil # s3;
viil=11 = col # 53 - sil * rZ
wLiZ-17 = co2 # r2 + siZ # g2
yi12-1] = o2 % 2 - gil2 % r2.
#Li3~-11 = col % rl + si3 # si;
yhi%=-17 = col # sl - gi2 % i

descramble the oraering of the data

-
3

Ci-11s

i
]

i

= y[ji-13;
= y[i-11s
= wly

j_ - ‘- ‘

#inciude "math.n®
Fineliude "CDanqh
fiinclude "stdio.h"
tiefine FAGE O

axtern float record_times

float date_alS0O000],.data_bhIS00001s /% 2
ditlb le »E1/1~4] y[ihun43
.;‘t./‘

arrays, each 50 msez of data #/
/# arrays for lék point fFft

P e L L L D e L e L L L e T 2 LD T R P X)

This routine allows for the plotting, manipulation,

of recieved data

and trigosring

Entersd by choosing LATA Lo SLREEN ontion from Lhe data iransior

zacltion of thoe Board 05 .

HHFTHEREY LSS RIS S H RSP FERERERRFFRFH S TS SR HRREE TR BEHH RS R G SRR SR EH S FHRT et/

nloh datal) £

int plot_mode,stari_time,ston_time:
Fhisat lower“y,value.unper_y“v alues
int answer, i, modea:r

ik colar,styles

imt m,n,offset, signalsy

Flaat deita Fs
vmooe{ 1A, /% Initalize

sharto Lime = Oy
stop_ time = O

sorean Lo FMOOE 14 %/

wioper vy valum = O
lowsr v vaiue = Oy
viot mode = 1
answer = J . /% print options and current parm values
whnilel{answer =)
corintF(17,22, RED, RED, FAGE,)
cprintf{17,1,RED, RED, FAGE, "L0] :Starting time [Zd 1Y,start_timel:
cprintf (18, 22, RED, RED, PAGE, ¥ s
corintf (131, RED, RED, FAGE, “EiJ t8tooping time [%d 1Y,stop_timels
cprintf{iy, 4; RED, RED, FAGE, "
cpr1ntf(17 l,RED,REU.FADh,“E 21 ilower Y value [%44.2F 1", lower _y_val
uele
corintF(20, 22, RED, RED, FAGE, ¥ ")
cprintf (20,1, RED,RER, FAGE, Y121 sUpper Y value [%4.2F 1", ,upper_y_va
luesls
cprintf(Ri, 1 ,RED.RED.FABE, "L4] :Flot AXIS ")

gorintf (17,35, RED.RED, FAGE, "L10]
corintF 18, 25, RED, RED, FAGE, "L111
corintf (19,25, RED, RED, PAGE, "L1X]

tGet data in NAY)
tGet data in B'™)
tFlot Data At

an w® an

ax

an

an

corintF (20, 35, RED.REDR.FAGE, L1321 Plot Iata

corintf (21,25 RED,RED,FPAGE, "[14] tAuto FFfL

cprintf (17, 40, RED, RED,PABE,"[EO] iClear screen

cprintf(ie, 75, RED, RED, PAGE, " ")

CDPlnLF(i”,LU,RED RED, FQG:,“EEE] tFlot model %d 1",plot_mode)s

CDPintF(EO,éO,RED,HED,PAGE,"EEB] tfFt A-2E

cprint F{2L,40,RED, RED,FAGE, "L247 EXIT

corintF (22, 1,RED,REDX, FASE, "Enter number of
szanf("4AdY, kanswer) s
clear line(24):

/% perform action based on action number entered on auery ¥/

switcch{answer)

J
(8

cprintf (22, 1 ,REL,RED,FAGE., "Enter
scanf{"id", &start _timne):
clear_line(24) .
break:

.;-

case 1@

£
cprintF{2E, 1. RelN, ReED, FAGE, "Enier
scanf ("hAd" . Lstoo _time)
claar_linse(24).
pireak:

}

cane Wt

cprintf {2z, 1, RED, RED, FAGE., "Enter
scant ("AfY, klower_y_value):
clear_line(z4):
bireak

case
cprintf{22, 1,RED,REL., FAGE, "Enter
scant ("4AF", bupper_y_ value).
clear linel{24).
bireaks

case 41

Gtarting Time

Bt

menu)y

ll);
CDr1ntF(1J.au,RED RED,FAGE, "[21] sTrans/Recieve”l:

"y
u);

action to take

Stoping Time

Lower ¥ valus

Upper

’

ki

vajlue

va

H)

ll)

corintF (22,1, REN, RED.PAGE, "Plotiling AXIS ")
stvle = O:mogz = l:color = BLUE,
axig("X~axis", "MAGY, (float)start_time, (ficatletop_tine, lower

v value, upper_vy _valu=,1,0,7%,14,color)

o

wa upper Yy value) s

an

¥
case 10:
{
s
o

(o]

1
T
o
m
=
)

)
J

case 13:
e
+

clear_line(Z4):
break;

cprintf (22, 1, RED,RED, PACE, "Getting NEW Data in “A° ")
board to_array (data_a):

clear line(z4).
brealks

corintF (22,1, RED,RED,FAGE, “G2tting NEW Data in "B ")
board_to_array (data_b Jj

ar line(Z4):

o0
3

il 11
%
ax

corintF(RE, 1, RED, RED.FAGE, "Mlot Data “A°. what color P

zoant { "4 koolor) s

clear line(i4):

style = 13

if (plot_mode == 1)
mode = 1:

else

~

mode = 2
plotidata a,start_time,stop_time,.stvle.color, mode. lower_ v _val

birreak:

cprintf (22, 1,RED,RED,FAGE, "Flot Data “B”, what color)

scanf(Yid", 4color) s
clear line(24):
stvlia = 1

if (plot_mode == 1}
mode = 1
else

B A

-
o

mocgs =

®
H

plot(data_b,start_time.stop_time,stvle,color,mode, lowei-_ v _val
W, upper vy _value))

break:
>
tase 14:
1
/¥ Initialize evervthing for auto fft action %/

vinode (143

cprintf (32, 1 RED.RED, FAGE, "Enter starting color:™):
scanf("4d" , wcolor)

clear line(24l.

style = 1;

cprintf (22, 1,RED, RED, FAGE, "Enter starting point:®i,
scanf("4d", ¥offset) ’
clear_line(Zd):

cprint+f {2z, 1 ,RED,RED, PAGE, "Enter power for Radix four Fft (i.
3, MEvals 4uds = 40951V 0y

scanft ("4Ad", &m) s

clear_ line(i4);

H=‘—'1:
for (i=0; i<m: i++) n %= 4,

1f (plot _moogs == 1)
mode: = 1l
zige
mode = 2

signal = 13

stvle = Oscolor = RBLUE:

a=is ("FREQUIENLCY", "MAG", (float)start_time, (float)stop_ time, low
2ic v, value,uppar v _value,1,0,7%, 14, color):

/% pNow do the auto stuff until we desire to aouit #/

while (signal}
{
trans_ rec():

Foro (i=0s 101000000 i++) isiy /% gelay #/
board_to_array (data_a)j

for{i=0s isny i++) { %[i] = data_ali+offsetld: y[il =
T3 P ¢ PR

FFES{m,yv.n,mds

Far (i=0y ivn: i++)

data BLil = sart(x0il # =013 + yLil % y[il)g

‘

2 v value uopor y_value):

 stops™).

case 20!

.l’
(s

cabion. ")

b

w32

wsizale

dxdvals

G

color++: 1 (colar % 14 == O) color++;

plot(data_b,start_time,stop_time,style.color,mode, 1ow

cprintf (22,1, RED,REL, PAGE, "Enter 1 to keep going, O t
scanf{"%d" usignal):
clear_line(24}).

A
4

clear_line(24):
break:

vimode{lads /% Initalize screen to MOLE ié4 s/
breaks

corintf (2, 1, RED,RED,FAGE, "Initiation of transmit/recieve ope
trans_rec ()

clear line(24):
breas

corintf (22, 1, RED,RED, PAGE, "Flot mode (1~ aulo scale. - apanl
scanf("ud" ., dplot mode) s

zlear line(24);
brealk:

/% Do fFt of zpocified A data into B array #/

corintf(z2, 1,RED,RED, FAGE, "Enter starting point:¥).
scanf("id", 4offset):
clear line(24).

cprintf (22, 1, RED, RED, FAGE, "Enter power for Radix four €74 (i.
= 4O9LI")

scanf ("4d", qm) ¢

clear,line(ﬁ#);

for (i=0: i<my i+4) n #= 4y

delta f = 1000000,0 / ny

o

0 .

L)
Lo
[N
L)

Tordi=0y i<ns i++) = date _alitoffsetls v[il = ©.0; 7
FFES (s, v, n.om) :

for (i=0; i<ny i++)
data_blil = sart(=x{iJ % wLil + y[il % y[il):

clmar_line(24);
break:

N

£)
answer = -1,
ciear lin2{(24);
breaks

".

default @

kS
break;
5
¥
",
J
>
LERREFERRFIRARRFREEE R AR FLRREFFFH R FRFR R R FER R FHF R FHE RS FR BRI RS FRRRERHEREHE
%

R D R Tk Ll L3 e R e e Lt

;

clear_line(row’
L 0w

if{lrow > 24) (i (rowd M))return{0):
carink (22, 1, RED,RED, FAGE,

ll>;

raturn{0):

T,
]

finclude “stdic.nh”
irhrfine PT 201403

tidefine TRUE 1

Bdafine FALSE u]

#define max(a,.b) ((a)(b)ry7{a): (b}
“efine abs i} ()O3)2 ())

#define sign(al) ((a)F071: ((a)==070:1(~1)))

shiuet REGE ¢
short oam

0 s
S

.

short flags,

short b

shoet e

ahart dxe

wshort S1:

short dis

shori ds:

snort e@s:
¥ oinrens:
N R s T R R g Ry R T T R R F i R R R A R A M P R L IS
L X R g X xR T R T ERUE L R T RS
.§.
Name orling - Drew a colored line
Bvrigpsics npts = arlinel{pstart,oend,color)s
He
3 int nois The number of points plotted is returned
& P ospstart Fointer to starting point of line
& T #oeng Fointer to encina peint of line

ink color Color of the line: chosen from 1he

currently cet palette.

Lescrinticn Thiz Funclion draws o line on the current disnlay psoe
from #*pstart to #nend using the specified color. e
actual number of points plotted to draw the line is
returned. If #postart and #pend represent the same
location, only one point is plotted.

Method The variables « and v keeo count of when the tracinag
point coordinates whould be incremented. The variable
fplot is used as a flag wher a new point is plolted.
The same point is not plotted twice, because a coloe
value areater than 138 should XOR the current point.

g o o e ok Fox ko %k om0 ow

Returns . npts Numper of points plotted to trace the line
#*
Version 2.0 (C)Copyrioht Rlaise Computing Tnc. 1983, 1924, 1984
%
B I S S 2 S S S 56 I S0 S S0 S B A S A R SRR B S S S S A R S N

il Qe ling (ae, Yo, wm, vn, colon?
int =0, vyo,sm, v
it colors

3

Y

-

(9%

int deltaw.deltav,steps. iy
int incx,incy,=,v, foloo,misia;
int e, vys

/% First set up the increments and determine how many points must

/% b2 plotted to trace the line.

deltax = um-=oy

deltay = vin~-yos

incx = abs(deltam):
incy = abs{deltav):
eteps = ma={incx,incy):

/% Initialire ihe countino variable, plot the
/# trace the rest of th: lina.

5 = (s
y = (_;

e = MO8

Yy = vyoi

npte = 1;
wtdot(xo,.vo.color):

for (i = Os i <= steps; i4+)

£

fplot = FALSE:
= incxs

v ot= IACYs

iF (v > steps?

<
v -= sieps:
vy += signideltav):
folot = TRUE:

5

if (= > steos)

-= etepg:
signidelitamny;
= TRUE.

}

if (fplot) /4 Only plot if a new point
wtdot (mx, yw.color):
npts+ts

¥

3.

return{npltsls

VAL LT L L X T L R L L Y L o D et XY

first point ang

S iada "skdiol o

#idefine JUST_RIGHT
fdefine JUST LEFT
#idefine JUST CENTER

FOU O

int X0, Y0, XM, YM:

Float XINC, YINC, XRANGE, YRANGE:
Float maxed () mined():

Float YOFFSET, YMAX, YMIN:

Hhafine TICS 10
#define VINED FAGE 0
o e X _PIXEL SIZE &
fdefine ¥ FIXEL_SIZE 14
hledine TIC LENGTH 5
#define Yy AXTS_ TITLE _ELOCK SI2E =
SieFine X AXIS _FITLE BLOCK 5IZ8 1

LSE THESZ ONLLY IF YOu WANT CONTROL OF THE GLOAERAL VARIGHLES
it X0, Y0, £, YH:

float XINL, YIND, XRANGE, YRANGE:

float pointsl{HO1i3.

float YOFFSET, YMOX, YMIN.

Float mawed() ,minsd{}y

VAT OSSR LR T L T e L e X e L e T LB L B S R L T T B T R T
R R R R A et S L b L Ll et L e e e L]

ARIE(ATITLE, YTITLE, XMIN, XraX, YMIN, YMAX., XORIG, YORIG, XMaX, YMAX, COLOR)
Zeles e @ Function that wiill print amn AXIS at the position designeted Ly

the row andg column numbers XORIG, YORIG (upper left row/column) and xMax, YM&A
Clowse right row/column). The row/column is in CHARACTER format, in other
words, 4 < CTOL < 50, and 1 < ROW < 28 (this is from 20 characters across. and
o lines of temt).

YTITLE char arrav 1 title of Y axis.

ATTTLE char array t kitle of X awxiw,

XMAX float ! number printed on X axis fare RIGHT
MIN float i number nrinted on X axis far LEFT
YHOX float ! number printed on Y Axis at TOF
Vi TM float f pumber printed on Y Axis at BOTTOM
XORIG int : Upper right COLUMN value (1-7%)
YIIRIG int ! Upper right ROW value (1-24)

xMax int : PBottom left COLUMN value (1-79)
AMTN int ¢ Bottom ieft ROW value (1-24)

COLOR int : Valid COLOR from O to 15

AXIS does not return anythinng and provides no checking to see if the corpact
values were pasged. BE CAREFUL

PR s

WO =] Firet column

v o= 1 First row

wweo= 72 last coidmn

va = 12 half wav down ithe soreen

example axis("X title ","Y title ",~10.0,10,0,-100,0,0,0,x0, yo, xm, ym, BLUE}
B

SEF IR I I SN S WA SR R SRR IR RN RE SRR E S G R R DR RHEFRERS

amis{xtitle,ytitle, =min,=max, ymin, vmax, ®x0, vo,xm, ym,call
Fioatl =min,@masx.,vmin, ymas:

RN MO, YD Em, VI, COL s
char =titlell.vtitlel
r

int i.=oel, vdels
Fioat =inc,vim:z
char clifl,stringlScly

wey o= owo # X PIXEL S07E:
wm = owm ¥ X_FIXEL_BIZE.
ymo= yo % Y FIAEL. 8SIZE;
yim = vim % Y_FIXEL_ SI7ZE:

CF Thatun GLOBAL variables */

KO = wo+(Y_AXTE TITLE_BLOCK SIZE#X_FIXEl._ SIZE)+3: s leaw
cospace For one chakrachter + 2 #/
YO = you

M o= wemy
Yot = ym~(X_AXIS TITLE_LLOCH SIZIE#*Y_FIXEL SIZE)-2: /% Jeave snace for Ltwo
hraracters +3 %/

/¥ Print the X and Y titles i/

sipiuet(etring.wtitle, ” ©, (XM/X_FIXEL_SIZE-XO/X_FIXEL_SIZE) . JUST_CENTER}
' cprintF((ym/Y_ FPIXEL_SIZE-X_AXIS_TITLE BLOCK_SIZ2E)-1,X0/X_FIXEL SI7E+1,ce
P,1,0,string): /% XTITLE PRINTED #/

stpjuslt (string,vtitle, <, ({YM/Y_FPIXEL_SIZE-Z)-(YO/Y_FIXEL_SIZE+2)),JUm1
LITINTER) 5
cLil = 0 /% YTITLE PRINTED #/
For{i=0s (i<(((YM/Y_PIXEL SIZE-1)-(YO/Y_FIXEL_SIZE+Z))) &% (stringlid !
=0))gid+) o
cl0] = stringlils
cprintf({vo/Y FIXEL_ BIZE+i+l).,uwn/X_PIXEL_SIZE+2,col,1,0.c):

L

/% Print the X and Y max/min values #/

cprintF{{ym/Y FIXEL _SIZE-X_AXIE TITLE _BLOCK _BIZE)~1,XO0/X_FIXEL_SIZE. col,
sl VIDED PAGE, "ZAé. 2", =mins

cprintf{(ym/Y_FIXEL_SIZF-X_AXIS_TITLE_ELGCHE _SIZE)-1i, (XM/X_PIXEL_BIZE-&),
zul, 0ol VIDEG _FAGE, "%4.2F" , mmax) s)

cprintf((vo/Y_FIXEL_SIZE)-1 =o/X_FIXEL_SIZE+i,col,cel,VIDED_PAGE.,"#A2.if"
y AN) s

cprintf ((YM/Y_FIXEL SIZE)~1,wo/X_FIXEL_SIZE+',col,col,VIDEG_FABE, "%&.if"
yymind sy

/% Traw BOXES =/

grling{Xid, YO, XrF. Y0, col i /% BOX FOR GRAPH... #/
grline(XxM, Y0, XM, YM,col)s
agrline(XM, Y, X0, YM. cold:s
arlims (X0, YM, XD, Y0, mn1) s

arline{xo-2,vo, X0-1.vo,coll: /% BOX LEFT OF GRA&PH %
Qrline(X0-1,ye. X0~1_YM,coll;
arline(Xg-1,YM, =o~2, YM,col);
rline(xo-2, MM, =o0-2,vo,coll;

grline(xo-2,YM+l, XM, YM+1 coll: /# EBOX ON EBOTTOM OF GRAFH

arline (XM, YM+1, XM, ym+l,coldy
girling (XM, v+l , mo-2, ym+i, col);
ariinse{so-2,ym+l, wo-2,Yr+l, col)s

L

A% Ilraw tne TICHE MARES on all axises »/

vine = (YM-YD)/(TICG#1.0)y /% LEFT TICK MARKE =
Forvrely 1=TICS i++)
vdel = i#vinc 4 YOs
arline(X0, del, XO0+7TIC LENGTH, vdel.,colls

winc = (KM-XO)/(TICS#1.0Q)y /% T0F TICKE MARES */
For{i=1;i<=TICS 1++) {
welel = i¥mine + X0 .
grline(xdel, YM,xdel, YM-TIC_LEMGTH,coll:
vinc = (YM-YO)/(TICS%1.0)s /% RIGHT TICK MARES #/

For(i=1i<=TICSs i++) {
vdel = i#yinc + YO
arline (XM, ydel, XM-TIC_LENGTH, vdel,col);

*

#ine = (XM-X0)/(TICS#1.0); /% BOTTOM TICK MAREKS */
for(i=1;i=TICS;i++) ¢

wdel = i%mxinc -+ XO:

arline(=del, YO, xdel, YO+TIC_LENGTH,col):

return{0):

L

[R S R R RS N H N N B SR A I S R R AR A S A I 3R M S RN H R EEH R EH
/
g 22 2 a2 e L R e E E R BT T St e e R I R R R R S e P T
/

float maxed(data,pstart,.pstop) :
Flnat datalls
int pstart,pstop:
£
int i
float temp;
temp = datalpstartl:

Fo{i=pstart: i<=pshtons i++) £
iF(ltemn < datalilitenp = datalil:

¥

vreelu-n(lemp)s

(e

float mined(daia,.pstari.pnston)
Float datall:

int pstarti,p=stoons

<

int 1is

Floalt iemp:

temp = datalpstaril:s
Fur{i=pstartyiv=ostop:i++r {
1F(lemp > dalaliidtemnn = datalil:

renun (lemn .

P e R e T L Rt L T R D e R SR DR ¥

/
AR R R R R AR I

a”

R

*

D R R T Xy
CLOTORATA, XSTHRT, XSTOF . STYLE, COLOR, MODE, YSTART, YSTOF)

¥ RETURNE 2 1 if successful
0 ifF unsuceessFul

Flot will plot the deta in the array DATA starting from the XSTART point and
wivdimg ran the XBTOF that were passed. The Style variable selects ons of the
following stvles:

slype = O s Normal lines with out zero cross lines
style = 1 :Normal lines with zero cross lines
styvle = 2 sPoints only

zhyle = 3 sDashad lines

style = 4 :Small boxes 2 pixels wide

shyle - s Megimun boxes

mivle = 4 slarue boxes

The YETART

in

COLOR pass

selec

mode

I

mode

and
MODE 2 case
8 &

not the same

int
floal v,
Sliran
int

‘o
PR

niz Fun
a

(data. wsta

N

i.a,temos

a1 P T
MMLE, VI
AV T

GUALE THE W

Lor. color, mode,

2 is the coitor th
oiF =

te ane piot mooss:

1 sNitko scale data to Fif

v ois us2d to plet the data.

Tha HJDF

the graph.

znd ignor the passed vstart, and
ysitop variables.
z vUse the ystop and vstart variablss to

cetermin plotting scale.

YETOM variables are used only whon
they raoresont the MIN/MAX of the
the AXIZ variable.

T

ction can bz in MODE § wilh oul passing the

L welop, etyvie,cnlor.mode, vetart, vston)

FUAFC, YELOD:
style:s

intw,® nbm poinls:

VI

Lor st arty

worun, pointos:

ir{mods w= 1} < %/
vmase = mamsd{data, s
Vilin = mined(data, =
:;.
iF(mode ==). /% Ansolute Scale =/ :
yomm points s yma-—vm1n*
TING = YRANGE/y_run_pointss
YHMAX = vmas:
YMIN = vining <

YOFFSET = -

print Ene c

Vi ({shyla ==
Fumg =
triime AL

orss hairzs forr the zere lines #/
1 9
M - YIOFFSE

-ému colord:

U, lemp, XM,

in MODE 2 of the ploiting.
Y plotting axis.

Theos ic

o T e e
|3 et S IEPC-E R DI IR RN
- Tk

%owe % e ax b s oh o sp

Vg

Wy Mo W0 ok N,

w

5

an

Foax oo Mo

n

B

oo M s

e

FLOT THE WAVE FORM #/

w1 = XO:)
yi = {(¥YM -~ YINMC * datalwmgtartd) - YOFFEET,
1 =) 3

temn =- YM-YOFFEET:

Fm"\1—dsLnP+-

pratarn {0y

Mame

Evnopsis

(V) D -+

1 stopsi+rs
A e X ING,

tcmu - TINC#dataliil:
Jwl,m2 yZ ocolori,

stpjust -- Justify & string within a field

presult = sipiustiptaraet,psowrces, Fil1l, fldzice,code):
char %Dr&aglt Mointer to the resulting target strino
char #nzargst Fointer to the target soring, which awe:d
b at lgast (fldsize + i) bvies lono.

rTRar #FRSoupess Ffolnter to Tthe source shtring
char Fill Character to be used for vpadding

int fldsizwe Size 0F Field to be Filled

int zopge Tvpe of ju&tification:

JUST, LEFT, JUST_CEMTER, or JUST _RIGHT.

This= function justifies or cznters a string witiiin a
fiewld oFf a specified size, nadding with a given
character if necessary. The resulting string is exaclly
fldsize charactars long.

-1

I¥ the source string has maore than fldsize characlers,
it is truncated to fit into the target. Characters from
the left, center, or right portion of the source are
used depending on whether left, center, o right
Juslificetion is specified. respectively.

If the source string is fewer than fldsize bvites long
(nok counting the trailing NUL (“\07)), th2 remaining
gspace is filled with the fill character. If left
Justification is specified, the filling takes place an
the righty if right justification, on the lefty if
centering, on both sides.

IT code has an urknown value, laft justification is
nerforianed.

.ﬁ‘

Returns oresult Fointer 12 the allered Larget strinog.
g *pharget The altered target string.

*

Version 2.0 (C)Copyrioht Blaise Computing Inc. 1ok

#

e/

stpjusti{ptarget.peource, Fill, fldeize,code)
cgister char #pbtarget, Spsouwrce:

char Fills
nh Fldsize imade.
<

regicter int diff, i

iRt mamieFi.
char *gavetaruet = ptaraost.
i (Fildsize < 07
Fldsize = O .
ifF ((diff = ({int) strlen(pzource)) - Fldsize) = 0)
i /4 Use only a portion of source WS
switch (code)
{ g L
case JUST_RIGHT: /# Bkip leftmost characters #*/
paourcs = gdiffs
breal: s
casne JUST CENTER: /% Use center characters w7

pEourme +e diff /S o2

brzak s
case JUST_ LEFT: /% Use leftmost charactera %/
default:

tireak s

5
wile (fldsize--)
iptaroolsr = #fpsouprcsd

¥

=loe

{ /% There's exitra space to fill w+/
diff = ~diff; /% aiff is number of spaces to fill %/
switch (code?
< /% numlefrt = number of spbaces on left =/

case JUST RIGHT:
numleft = dgiffy
break:

case JUST_CENTER:
numieft = diff / Z;
breai:

case JUST_LLEFT:

defaull:
numleft = O
breal-

for (i = numlests i« i--)

#ptarget+s+ = Fills /% Add the fill chars on the lefl «%/
whila (fpsource)

#ptarael++ = 4pgourcedts /% Copy the string itself %/
For- (i = diff - numlafts iy i--}

dptarael++ = F111ks /% fdd the Fill chars on the riahl =/

)
h

Aiptarget TN
return savetarget

]
3

)

clearline(row)
ink rows

<
corintfirow,1,0,0,0,"
u);

raeturni{o):

o
4

