

DIVISION OF NARCOTIC DRUGS Vienna

BULLETIN ON NARCOTICS

Volume XXXVI, No. 1 January—March 1984

Special issue on the role of narcotics laboratories in combating the illicit drug traffic

119790-119794

U.S. Department of Justice National Institute of Justice

This document has been reproduced exactly as received from the person or organization originating it. Points of view or opinions stated in this document are those of the authors and do not necessarily represent the official position or policies of the National Institute of Justice.

Permission to reproduce this copyrighted material has been granted by

Unite	eđ	Na	tions
 (New	Yc	ork)

to the National Criminal Justice Reference Service (NCJRS).

Further reproduction outside of the NCJRS system requires permission of the copyright owner.

UNITED NATIONS New York, 1984

CONTENTS

P_{i}	age
Editor's note	1
Role played by narcotics laboratories in the campaign against drug abuse and drug trafficking: a view from a developing country by Juan Carlos García Fernández	3
A review of laboratory methods for the analysis of opiates and diluents in illicit drug traffic by V. Navaratnam and Hoe Kek Fei	15
Commerce in drugs and chemicals and the detection of clandestine laboratories by G. R. Haislip	25
The work of the Drugs Intelligence Laboratory, Home Office Forensic Science Service by I. J. Humphreys	33
Leuckart-specific impurities in amphetamine and methamphetamine seized in Norway by M. Lambrechts and K. E. Rasmussen	47
Benzoyltropeine, an unusual substance in street heroin samples by F. Mari, E. Bertol and M. Tosti	59
The activities of the Narcotics Laboratory Section of the Division of Narcotic Drugs in supporting national laboratories by the United Nations Secretariat	69

vii

119792

Leuckart-specific impurities in amphetamine and methamphetamine seized in Norway

M. LAMBRECHTS and K. E. RASMUSSEN

Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Oslo, Oslo, Norway

ABSTRACT

Samples of 28 amphetamine and 7 methamphetamine seizures, taken in Norway from 1975 to 1982, were examined. The amphetamine and methamphetamine contents varied from 9 to 99 per cent and from 9 to 72 per cent respectively. Impurities originating from the synthesis of the illicit samples were identified by gas chromatography combined with mass spectrometry. Special attention was paid to "Leuckart-specific" impurities, which could indicate that the Leuckart method of amphetamine and methamphetamine synthesis had been used. N-formylmethamphetamine, a Leuckart-specific compound, was identified in all the investigated samples of methamphetamine seized in Norway. The Leuckart-specific impurities, 4-methyl-5-phenyl-pyrimidine and Nformyl-amphetamine, were identified in 79 per cent of the amphetamine samples.

Introduction

The popularity of amphetamine and methamphetamine on the illicit drug market in Norway has increased in recent years. An amount of 755 g of central-nervous-system stimulants, mainly amphetamines, was seized in 1980 and 5,175 g in 1982 [1]. These drugs were most probably illegally imported into the country; only one clandestine laboratory has been discovered in Norway. The seized material contained N-formylmethamphetamine, an intermediate in the Leuckart synthesis of methamphetamine.

Amphetamine and methamphetamine can be synthesized by a variety of methods [2, 3]. As incomplete reactions and side-reactions easily occur in the manufacturing process, the unrefined products usually contain a number of impurities. Detection and identification of these by-products may, therefore, provide information about the method of synthesis. In this way, analysis of impurities in illicit amphetamine and methamphetamine can supply law enforcement officials with information concerning clandestine production. With knowledge of the methods and materials used for the synthesis, law enforcement officials can monitor the sale of available precursors which might lead to the detection of clandestine laboratories.

The impurities found in illicit amphetamine and methamphetamine produced by different methods have been described by other authors [3, 4, 5]. In this report, attention is focused on the Leuckart method and the specific impurities found in amphetamine and methamphetamine synthesized by this method.

Names, structures, molecular weights and mass spectrometry data of the impurities found by the authors in amphetamine and methamphetamine synthesized by the Leuckart method are summarized in tables 1 and 2. Compound I (table 1) can be associated specifically with the Leuckart synthesis of methamphetamine [5] and compounds III, IV and V (table 2) are regarded as Leuckart-specific impurities in amphetamine [3]. The presence of these compounds in illicit seizures indicates that the Leuckart synthesis has been used.

Structure	Compound	Molecular weight	Mass spectrometry fragmentation ^{a, b}
СН₂-СН₂-СН-Ņ-СНО	N-formyl-methamphet- amine	177	B 86-58-91-56-65-42 177
CH ₃ CH ₃	(I)		
-CH ₂ -CH N-CH ₃	Di(β-phenylisopropyl) methylamine	267	B 176-91-58-252-119-266
CH ₂ -CH ₂ -CH	(II)		

 Table 1

 Impurities in methamphetamine synthesized by the Leuckart method

^a The m/e values of the most intense fragments in decreasing order of intensity.

 b B = base peak.

An investigation of these impurities in amphetamine and methamphetamine produced by different experimental conditions of the Leuckart method has recently been carried out [6]. Gas chromatography combined with mass spectrometry was the method of choice for the identification of these impurities and this method has also been used in this study.

Structure	Compound	Molecular weight	Mass spectrography fragmentation ^{a,b}	
	4-methyl-5-phenyl- pyrimidine	170	B 170-169-102-115-116-171-51	
	(III)			
	N-formyl-amphetamine	163	В 72-44-118-91-65-	
CH ₂ -CH ₂ -CH-NH-CHO CH ₃	(IV)			
	4-benzylpyrimidine	170	B 169-170-91-115-142-65-116-	
	(V)			
CH2-CH-CH3	Di(β-phenylisopropyl) amine	253	B 91-44-162-119-65-41-	
NH CH ₂ -CH-CH ₃	(VI)			
CH2-CH-CH3	N,N-di(β-phenyliso- propyl)formamide	281	B 91-190-119-72-	
N-CHO CH ₂ -CH-CH ₃	(VII)			

 Table 2

 Impurities in amphetamine synthesized by the Leuckart method

^a The m/e values of the most intense fragments in decreasing order of intensity. ${}^{b}B = base peak.$

Experimental conditions

Chemicals

Chemicals used were of analytical grade. Samples of amphetamine and methamphetamine seized in Norway from 1975 to 1982 were obtained from the Forensic Laboratory Department, National Bureau of Crime Investigation, Oslo, Norway and randomly selected for analysis.

Quantitative determination of amphetamine and methamphetamine

The amphetamine and methamphetamine contents were determined by high-pressure liquid chromatography (HPLC) [7]. The column was a 25 cm × 4.6 mm ID stainless-steel tube, slurry-packed with small-particle silica (6 μ m Partisil-5). The solvent systems were methanol/2 <u>N</u> ammonia/1 <u>N</u> ammonium nitrate/water (270/10/5/15), pH 10, for the amphetamine determination and methanol/2 <u>N</u> ammonia/1 <u>N</u> ammonium nitrate (270/20/10), pH 10, for the methamphetamine determination.

A Glenco NSI 33R-pump was used to deliver solvent at a flow rate of 1 ml/min and a Spectra Physics UV-detector (Model SP 8200) was used to monitor the eluent at 254 nm. Samples were introduced through a Rheodyne (Model 7120) injector equipped with an external 10 µl sample loop. Sample solutions were prepared at a concentration of 1 mg/ml in methanol/water solution (270/30). Peak height measurements were used to quantify the components.

Detection and identification of Leuckart-specific impurities

Sample preparation

An amount of 300-500 mg amphetamine or methamphetamine was dissolved in 5 ml of distilled water, and 2 ml redistilled benzene was added. The pH of the aqueous phase was checked and made weakly acidic with 0.1 <u>M</u> hydrochloric acid. Trace components were extracted into the benzene solvent by vigorous shaking for 4 min. After separation, most of the benzene layer was transferred into a glass tube and reduced in volume to $5-50 \,\mu$ l, depending on the purity of the sample [6].

Gas liquid chromatography (GLC)

A Carlo Erba (Model 2101) gas chromatograph equipped with a flame ionization detector was used. A glass column ($1.8 \text{ m} \times 1.2 \text{ mm}$ ID) packed with 3 per cent SE-30 on Supelcoport 80 - 100 mesh was used. The nitrogen flow rate was 30 ml/min. The injector and detector temperatures were 280° C and 310° C respectively. Oven temperature was programmed from 130° to 280° C at 10° C/min. A sample of volume $1-2\mu l$ was injected into the chromatograph.

Capillary gas chromatography (CGC)

A Carlo Erba (Model 2900) gas chromatograph equipped with a flame ionization detector and a fused-silica capillary column ($25 \text{ m} \times 0.33 \text{ mm}$ ID), wall-coated with SE-30, was used. The injector and detector temperatures

were both 275° C. The oven temperature was programmed from 130° to 145° C at 4° C/min, then isothermal 145° C for five minutes and from 145° C to 250° C at 4° C/min. Helium was used as a carrier gas and the flow rate was adjusted to 3.0 ml/min through the capillary column, 20 ml/min at the outlet of the splitter and 5 ml/min as septum flush. Samples of volume $2 \mu l$ were injected into the gas chromatograph.

Gas chromatography/mass spectrometry (GC/MS)

GC/MS was carried out using a VG Micromass MM 7070F. The electron energy was 70 eV. The mass spectrometer was connected to a Carlo Erba (Model 4200) gas chromatograph.

Synthesis

N-formylamphetamine and N-formylmethamphetamine were prepared for comparative purposes by formylation of amphetamine and methamphetamine [8].

The identity of the products was checked by mass spectrometry and infrared spectrometry (Beckman Acculab 2 Spectrometer).

Results and discussion

Samples of 7 methamphetamine and 28 amphetamine seizures were investigated. The characteristics of the methamphetamine seizures are summarized in table 3. The methamphetamine content varied considerably – from 9 per cent to 72 per cent. The kind of diluents also varied greatly.

			Meth- amphetamin
Seizure number	Year of seizure	Features	content Diluents ^a (%)
1	1977	White-brown crystalline powder	Caffeine, glucose 9
2	1978	White crystalline powder	Procainchloride, glucose 22
3	1978	White-brown powder	Caffeine, glucose 49
4	1978	Brown powder	Caffeine, procaine 63
5	1978	A mixture of white and brown corns	Caffeine, procaine 9
6	1979	White crystalline powder	Procaine 36
7	1979	White powder	Glucose 72

Table 3

Characteristics of methamphetamines seized in Norway, 1977-1979

^{*a*} Information about diluents was provided by the Forensic Laboratory Department, National Bureau of Crime Investigation, Oslo, Norway.

The characteristics of the amphetamine seizures are summarized in table 4. Of the total of 28 seizures, 17 contained 20 to 70 per cent amphetamine, 9 more than 70 per cent, and 2 less than 20 per cent amphetamine. Sugar and glucose were often used as diluents.

Seizure number	Year of seizure	Features	Diluents ^a	Amphetamine content (%)
1	1975	White powder	Sugar	49
2	1975	White powder	Sugar	38
2 3	1976	White powder	0	62
4	1977	Light-brown powder	Glucose, procainchloride	35
5	1978	Yellow powder	Phenazon	65
6	1980	Light-brown powder	Inorganic salt	52
7	1980	White-yellow powder	2	37
8	1980	White-yellow powder		53
9	1980	Light-yellow powder	Glucose	28
10	1980	White powder mixed with some black corns		71
-11	1980	White powder		73
12	1980	White powder		89
13	1980	White powder mixed with some black corns		70
14	1980	Yellow powder, some white crystals	Glucose	17
15	1980	White powder		74
16	1981	White powder		9
17	1981	Orange powder		38
18	1981	Beige powder		21
19	1981	Yellow-white powder	Sugar	22
20	1981	White powder	Glucose	35
21	1981	Brown powder	Mannitol	42
22	1981	Light-yellow powder		97
23	1981	Yellow powder mixed with brown-yellow clumps	Sugar	24
24	1982	White powder		99
25	1982	White-yellow powder		99
26	1982	Light-brown powder		79
27	1982	White powder	Glucose	33
28	1982	Light-yellow powder		

 Table 4

 Characteristics of amphetamines seized in Norway, 1975–1982

^a Information about diluents was provided by the Forensic Laboratory Department, National Bureau of Crime Investigation, Oslo, Norway.

Detection and identification of Leuckart-specific impurities

Methamphetamine

Detection and identification was by GC/MS. The results of the impurity investigation of methamphetamine seizures are recorded in table 5.

Seizure		Compound				
number			I	II		
1 2 3			+ + +		+ + -	
4 5 6 7			+ + +		+ - +	

 Table 5

 Impurities in seven methamphetamine samples

Note: + = detected and identified by GC/MS. - = not detected by GC/MS.

Compound I, which is a Leuckart specific impurity, was found in all of the seizures, direct evidence that the products were synthesized by the Leuckart method. Compound II, which can also be obtained as a by-product in the Leuckart synthesis of methamphetamine [4], was present in four samples. A reactant in the Leuckart synthesis, benzyl methyl ketone, appeared in four seizures.

The samples contained few impurities that proceeded from the synthesis and their concentrations were low. For this reason, the benzene extract had to be concentrated to about $5 \,\mu$ l. This observation suggests that the producers had used great skill in purifying the products. A quantitative estimate based on four samples indicated that the amount of impurity I was lower than 0.02 per cent.

Amphetamine

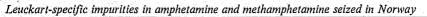
Samples 1 to 18 weré examined for compounds III and IV, which are the Leuckart-specific impurities [9]. Samples 19 to 28 were studied in more detail to get information about the main impurities present. The results are recorded in table 6.

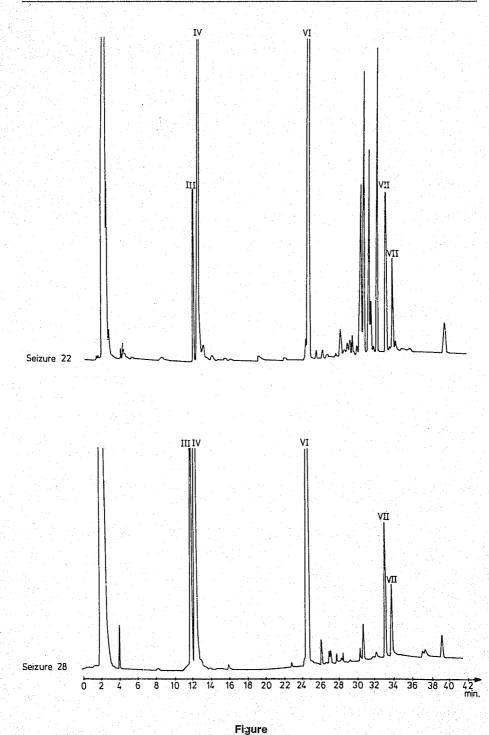
Table 6 shows that compound III was detected by GC/MS in 22 samples and compound IV in 17 of the same samples. These results confirmed that at least 22 seizures were synthesized by the Leuckart method. Samples 10, 11, 12, 13 and 15 contained small amounts of impurities. Compounds III and IV were not detected in these samples.

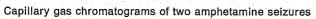
Investigation of samples 19 to 28 showed that compound VII, the presence of which also provides strong evidence of the use of the Leuckart synthesis [10], was present in high quantities in 8 of the 10 samples. Compound V was not detected in samples 19 to 28, while compound VI, which is not regarded as a Leuckart specific impurity, was found in nine seizures.

C .	Compound						
Seizure number	III	IV	V		VI	VII	II
1	+	+					
2		· - ·					
3	+	· +					
4	+	· · · + · · · ·					
5	+	· + ·					
6	+	+					
7	+	+					
8 9	+ +	+					
9	+	+			·	Not	
10	-	—			inve	estigated	
11	-	—					
12							
13		 					
14	+						
15		<u> </u>					
16	+	+					
17	+	+					
18	+	+					
19	+		· <u> </u>		+	+	+
20	+	. <u>–</u>			·		
21 22 23 24 25	+	+	· _		+	+	+
22	+	+			+	+	
23	+				+	+	+
24	+	_			+	4,	+
25	· · +	+	·		+		_
26 27	+	+	· · · · · ·		. + .	+	_
27 28	+	+			+ '	+	_
20	+	+			+	+	

 Table 6


 Impurities in 28 amphetamine samples


Note: + = detected and identified by GC/MS. - = not detected by GC/MS.


Compound II, usually found in Leuckart-synthesized methamphetamine, was identified in four samples. The high boiling pyridines¹ (according to van der Ark and others [11]) were found in six samples. However, low concentrations, incomplete separation and rather similar mass spectra made it difficult to obtain exact data for these compounds and they were therefore excluded from table 6.

With the exception of sample 20, the Leuckart synthesized samples showed similar chemical signatures (impurity chromatograms) [12]. Gas chromatographic runs of samples 22 and 28 are given in the figure.

¹ 4-methyl-5-phenyl-2-benzylpyridine; 2,4-dimethyl-3,5-diphenylpyridine; 2,4-dimethyl² 3-phenyl-6-benzylpyridine; 2-methyl-3-phenyl-6-benzylpyridine; 2,6-dimethyl-3,5-diphenylpyridine.

Typical Leuckart signatures were encountered in both samples. The GLC doublet of compound VII is probably caused by steroisomerism [10].

Compound IV was present in concentrations lower than 1 per cent in samples 1 to 19.

Conclusion

By analysing for Leuckart-specific impurities, it is possible to determine whether illicit amphetamine and methamphetamine have been synthesized by the Leuckart method. Such an investigation by GC/MS showed that the amphetamine and methamphetamine seized in Norway from 1975 to 1982 were most frequently synthesized by this method.

Acknowledgement

The samples of amphetamine and methamphetamine were provided by the Forensic Laboratory Department, National Bureau of Crime Investigation, Oslo, Norway.

References

- 1. T. Kjeldsen, National Bureau of Crime Investigation, Oslo, Norway. Personal communication, 1983.
- 2. R. S. Frank, "The clandestine drug laboratory situation in the United States", Journal of Forensic Sciences, vol. 28, No. 1, 1983, p. 18.
- A. Sinnema and A. M. A. Verweij, "Impurities in illicit amphetamine: a review", Bulletin on Narcotics (United Nations publication), vol. 33, No. 3, 1981, pp. 37-54.
- 4. R. P. Barron and others, "Identification of impurities in illicit methamphetamine samples", Journal of the Association of Official Analytical Chemists, vol. 57, No. 5, 1974, p. 1147.
- 5. T. C. Kram and A. V. Kreugel, "The identification of impurities in illicit methamphetamine exhibits by gas chromatography/mass spectrometry and nuclear magnetic resonance spectroscopy", *Journal of Forensic Sciences*, vol. 22, No. 1, 1977, p. 40.
- 6. M. Lambrechts and others, "Analysis of Leuckart-specific impurities in amphetamine and methamphetamine", *Journal of Chromatography*, vol. 284, 1984, p. 499.
- 7. I. Jane, "The separation of a wide range of drugs of abuse by high pressure liquid chromatography", *Journal of Chromatography*, vol. 111, 1975, p. 227.
- 8. M. LeBelle and others, "Identification of a major impurity in methamphetamine", Journal of Pharmaceutical Sciences, vol. 62, 1973, p. 862.

- 9. T. Klemetsrud, M. Sc. Thesis, Oslo, Norway, 1981.
- 10. T. C. Kram, "Re-identification of a major impurity in illicit amphetamine", *Journal of Forensic Sciences*, vol. 24, No. 3, 1979, p. 596.
- 11. A. M. van der Ark, A. M. A. Verveij and A. Sinnema, "Weakly basic impurities in illicit amphetamine", *Journal of Forensic Sciences*, vol. 23, No. 4, 1978, p. 693.
- 12. L. Strømberg, "Comparative gas chromatographic analysis of narcotics. II Amphetamine sulphate", *Journal of Chromatography*, vol. 106, 1975, p. 335.