
D

~
'(r

.. ~

lr)
SEARCH Group, Inc. C)r ::*,,~J The National consort/~r'for Justice Infonnatlon and Statlst/es

,,'" ---~-----:'------.I

If you have issues viewing or accessing this file contact us at NCJRS.gov.

,------------- -

Structured
System $

Development
Guidelines

June 1990
U.S. Department of Justl~e
National Institute of Justice

125624

d d exactly as receIVed from the
ThIs document .ha~ bee~ rep~o ~cepoints of view or opinions staled
person or orgam:zatlon ~Iginatltrhl~ authors and do nol necessarily
in this documenffit ~rel t o'~'~nc or policies of the National Institute 01
represent the 0 ICla pOSI I
Justlce.

Permission to reproduce this r d material has been

granted by
public DOIPain/0JJ2;;:.IBJA~!n.....----
~_ Dept. of Jnstj ce
to the National Criminal Justice Reference Service (NCJRS).

Further reproduction outside of the NCJRS system requires permis­
sion of the owner.

SEARCH Group, Inc.
The National Consortium far Justice Infannatlan and Statistics
7311 Greenhaven Drive, Suite 145 • Sacramento, CA 95831
(916) 392-2550 • FAX (916) 392-8440

aJiia

I,,,)

U.S. Department of Justice
Office of Justice Programs

Bureau of Justice Assistance

U.S. Department of Justice
Dick Thornburgh

Office of Justice Programs
Richard B. Abell

'Bureau of Justice Assistance
Gerald (Jerry) P. Regier

James C. Swain

Curtis H. Straub IT

Eugene H. Dzikiewicz

William F. Powers

Attorney General

Assistant Attorney General

Acting Director

Director, Policy Development
and Management Division

Director, State and Local
Assistance Division

Director, Discretionary
Grant Programs Division

Director, Special Programs Division

This document was prepared by SEARCH Group, Inc. under Cooperative Agreement No. 87-SA-CX­
K086, provided by the Bureau of Justice Assistance, U.S. Department of Justice. The points of view
or opinions stated in this document are those of SEARCH Group, Inc. and do not necessarily
represent the official position or policies of the U.S. Department of Justice.

BUl'eau of Justice Ac;sistance
633 IndianaAvenue,N.W., Washington D.C. 20531

(202) 272-6838

The Assistant Attorney General, Office of Justice Programs, coordinates the activities of the following program Offices
and Bureaus: National Institute of Justice, Bureau of Justice fjtatistics, Bureau of Justice Assistance, Office of Juvenile
Justice and Delinquency Prevention and Office for Victims of Crime.

Acknowledgmenfs

Structured Systems Development Guidelines was completed under the
auspices of SEARCH Group, Inc., the National Consortium for Justice
Information and Statistics. Gary L. Bush is the Chairman and Gary R. Cooper
is the Executive Director of this nonprofit consortium of the states which is
dedicated to improving the criminal justice system through information
technology.

Work on Structured Systems Development Guidelines was supervised by
David J. Roberts, SEARCH Deputy Director, Programs. Structured Systems
Development Guidelines was written by Thomas Wilson, Senior Writer, and
Noel Morgan, Manager, Technical Services, formerly of SEARCH Group, Inc.
Editorial and formatting assistance was provided by Judith A. Ryder, Director,
Corporate Communications and Jane L. Bassett, Publishing Assistant. The
project was conducted under the direction of R. John Gregrich, Chief,
Corrections Branch, Bureau of Justice Assistance, U.S. Department of Justice.

--------------------"------

TABLE OF CONTENTS

~ODUCTION•... 1

PLAN'N'ING PHASE.! " .. 6
End User Requirements Analysis ... 6
End User Requirements Document Format .. 7
System Specifications , .. ~ .. 9
System Specifications Document Format .. 10
Preliminary Project Plan , .. 15
Preliminary Project Plan Document Format ... 18
Project Plan ~ ... 19
Project Plan Document Format ... 20
Change Control. ... , ... 25

Change Control Board (CCB) .. 26
Problem Information Forms and Change Request Forms. 27
Source Control Library ... 32
Source Control Librarian , ... 33

DESIGN PHASE * ••••••••••••••••••• , " ... 35
Preliminary Design ... 35
Preliminary Design Document Format .. 36
Preliminary Design W aIkthrough ... 39
Detailed Design ... 41
Detailed Design Document Format : ... 43
Test Specification Document Format ... 45
Detailed Design W aIkthrough ... 49

CODWG AND TESTWG PHASE. ... 51
Coding ... 51
Coding Walkthrough .. 51
Alpha Testing ... 52

Unit Testing .. 52
Integration Testing .. 52
Validation Testing ... 54

Site TestL:.'\:g (Beta Testing) .. 55

OPERATION AND MAINTENANCE PHASE. ... 56
Operational Management of the Software .. 56
Maintenance ... 56

ApPENDIX

Recommended Reading List. ... 58

Introduction
Successful software development projects invariably share a common element
- they are carefully planned and controlled by structured guidelines. The
development of software is an extremely complex process, one that must
integrate technical, managerial and administrative functions into a coordi­
nated, systematic approach.

Structured Systems Development Guidelines provides an overview of the
process for developing computer software, including practical ma..'lagement
and technical guidelines for planning, managing and developing software. The
Guidelines define the work to be done, a methodology for accomplishing it,
the project deliverables, and the documents to be produced. It is directed at
both administrators and managers who are responsible for oversight and
control of the development effort, as well as technical personnel responsible for
the actual development of the software program.

The text of the Guidelines is organized by the four phases of the software
development process: planning; design; coding and testing; and operation and
maintenance. Within each phase, there is a narrative overview of the develop­
trient process, followed by detailed formats for the documentation that must be
produced in each phase. The narrative overviews are designed to provide
managers with an understanding of the development process, as well as
practical advice on critical elements necessary to ensure the success of the
project. The document formats are included in the Guidelines to suggest to
managerial and technical personnel sample layouts and the typical content of
key documents.

The Guidelines are designed to impose order on the project and to make all
activities in the development process visible to administrative, managerial and
technical project personnel. It is crucial that all phases of the project be clearly
defined and documented. Each phase can then be assessed for quality and
validated through testing and formal reviews to ensure compliance wiLh
development objectives. Accordingly,StructuredSystemsDevelopmentGuide­
lines stresses three elements that must be present in software development if
the project is to be successful:

1. The process must be a disciplined one, evolving through systematic
phases. Technical guidelines and methods must be strictly followed
through software project planning, requirements specifications, de­
signing, coding, testing, and operation and maintenance of the system.

2. The process must be visible to both management and technical person­
nel at all times to ensure that all phases of the process are executed
according to a disciplined method and that the requirements specified;
by the end user are completely met. Therefore, a set of formal
documents delineating the entire process and methodology - from
planning through implementation - must be created.

1

2

----,----------""!'----------------------.

Software development
has four stages:

planning, design,
coding and testing,

and system operation
and maintenance.

3. The process must provide quality control. Each phase of the
process must be guided by a methodology that tracks, reviews, ac­
commodates cbanges and validates the development of the system.
The process is not disciplined, visible and quality controlled if it is
not in writing. Documentation is essential. Without it, the process
is invisible and, almost surely, there will be errors, cost overruns,
and client dissatisfaction. The project, therefor~, must be articu­
lated in a project plan that incorporates all methods, procedures,
schedules, milestones, reviews, costs and resources. Each phase of
the project must be documented comprehensively. Most impor­
tant, the design of the software must be complete, down to the level
of the smallest subroutine of its programs. Structming and docu­
menting the process and the design, in essence, allows the project
to be managed. Management is the key to control and, ultimately,
to the successful operation of the system and to user satisfaction.

The techniques contained in Structured Systems Development Guidelines
will enable project personnel to:

• Understand and control the development process;

• Define, document and implement a project plan;

• Establish organizational roles and responsibilities;

• Establish formal lines of communication among the administra­
tors, managers, technicians and the end users;

• Identify and allocate technical resources;

• Develop realistic and accurate costs and schedules and control
them throughout the development process; and

• Design, validate and deliver a quality system that is responsive to
the end user's needs and requirements.

Project Phases

The software development process has four sequential stages: planning,
design, coding and testing, and system operation and maintenance. Changes
are an inevitable part of the software development process. Despite the
most rigorous planning efforts, refinements and better development tech­
niques may nevertheless be identified once the actual development is in
progress. A change in one small part of the system, however, may
significantly affect other parts of the system. Accordingly, the develop­
ment cannot be a single linear process; it must also be iterative. repeating
and refining steps to ensure the integrity of the system.

Planning

In the Planning Phase, the development team defmes what the end user
wants and how the development team will accomplish it. The functional

requirements of the end user are identified and translated into a compt\ter
software environment. The goals of the planning stage are to ensure that Ithe
end user's requirements for the proposed system are clearly understood by the
development team. and that the system's capabilities and limitations are cleal'1y
understood by both the developers and the end user.

The purpose of the Planning Phase is to identify the user's needs and to create
a blueprint for a computer solution. This phase is executed in five parts.

1. The Re'\fuirements Analysis identifies the needs of the user, which are
then defined and documented in the End User Requirements.

2. The Syshem Specifications provide a global design of the proposed
computer software solution, and include nece~~ary information on the
hardware upon which the softwlare will run.

3. The Preliminary Project Plan is an initial assessment of the nature,
scope, resoulIces and costs necessary to complete the project and is
intended to give management the information it needs to determine if
the project is feasible and to make the commitment to go forward.

4. The Project Plan is the formal strategy for accomplishing all work
necessary to develop the system, including personnel resources, tech­
nical resources, schedules, budgets, managerial and administrative
responsibilitie:, and all other policies, procedures or techniques de­
signed to ~eep the project on track and under control.

5. The establishment of Change Control provides a formal mechanism
and protocol for requesting changes in the design of the proposed
system, which not only allows project management and the technical
development team to keep all development activity visible, but also
ensures the intebrrity of the system design.

Design

In the Design Phase, the general concept of what the system must do, as
specified in the Planning Phase, is formulated into a specific computer
solution. The design team breaks the system down into discrete modules and
group~ of modules and determines how each module will perform its task.

The Design Phase has four parts.

1. The Preliminary 1[)esign is the "first cut" at the design of the system.
As such, it provides the architecture, or model, of the software design
as well as a description of the behavioral characteristics of each
function of the softw'are-that is, how the functional requirements will
be realized in a computer environment.

2. The Preliminary Design Walkthrough va.lidates the soundness of the
Preliminary Design by having a review team of technical experts
analyze it.

3

4

3. If the Preliminary Design is approved, the Detailed Design moves
the process of the software design to the level of specifying the
algorithms for each program and subroutine of the proposed
software.

4. The final part of the Design Phase, the Detailed Design
Waikthrough, validates the Detailed Design by having technical
experts analyze the design.

Coding and Testing

In the Coding Phase, the programmers translate the software design into
executable code for each module, groups of modules, and finally into a
fully integrated system. During the coding process, continuous testing
takes place in an iterative manner until each module, group of modules and
the integrated system functions according to specifications. Once the
system is integrated, its functionality and conformance to the user's
requirements must be officially validated.

Coding and testing have six major parts. 1) Individual modules are coded
in parallel by several programmers using standard development tech­
niques. 2) Each module is then validated during a Coding Walkt.hrough.
3) Unit Testing follows in which each module is tested individually. 4)
Integration Testing tests the modules as functional groups. 5) Validation
Testing confirms that all modules assembled into a unified system perform
according to design specifications and comply with all user requirements.
6) In Beta Testing, the system is installed at a test site to allow the
development team to identify errors in an operational environment.

Operation and Maintenance

The Operation and Maintenance Phase installs the system in the end user's
environment and provides support for the system, including correcting
problems found only in operational use, enhancing the system at the
request of the end user, and modifying the system as qew versions of the
software become available.

In Summary

The process and techniques presented in Structured Systems Development
Guidelines are intended to establish a formal methodology for systems
development. Itis the methodology employed by the management staff and
development teams at SEARCH Group, Inc., the National Consortium for
Justice Information and Statistics, in the development of public domain
criminal justice software systems. Regardless of the size and duration of
the effort, it is most important that the process be implemented. Finally,
there may be instances where parts of the process as delineated in the
Guidelines do not fit a specific development project. In such cases,
deviation from the process should occur only after an alternative has been

deemed necessary and reasonable and after careful consideration of the
possible effects. By utilizing the Structured Systems Devel'opment Guidelines
methodology, an agency can develop realistic cost and schedule estimates,
limit design flaws and programming errors and establish realistic testing
procedures - all of which result in effective, high quality systems produced
in a controlled and efficient manner.

I

5

6

, .
. Planning
r ..

Phase

Design
Phase

Codln~, and
Testing Phase

"

Operation and
Maintenance Phase

Planning Phase

Requirements Analysis

A. Note Before You Start: A software development effort begins after a
aecision has been made to develop a new system for a known end user or
for a market where the need and applicability of the software is known. At
this point, the end user usually has only a general concept of a desired
system. The end user is responsible for performing (or having systems
consultants perform) a needs assessment and systems analysis. These
activities must precede the systems development t;,ffort because they verify
the actual needfor a software solution and identify in a preliminary manner
the purpose andfunction of the development effort. Taken together, the
needs assessment and systems analysis provide a preliminary concept of
the intended system. In the actual development process, the development
team will work with the end user to refine the system concept.

The development process begins with a clear definition of the end user's
requirements. To accomplish this, the development team must first see the
problem from the user's point of view. This task is called the Requirements
Analysis. During the Requirements Analysis, the development team
works with the end user to identify the purpose of the system, problems in
the existing manual or automated system that the end user is trying to
overcome, and improvements the end user would like to make. In essence,
the Requirements Analysis attempts to understand exactly what the end
user really needs. A proposed system solution can be responsive only if the
user's problems and needs are clearly and completely understood.

In the Requirements Analysis, therefore, the development team must be
able to identify all of the functions that the user wants the proposed system
to perform. In conducting the Requirements Analysis, the development
team is attempting to defme only the end user'sfunctional requirements.
What the user wants - that is, the functional requirements of the system
- are delineated in a document called the Requirements Specifications.
This document represents a mutual understanding and formal agreement
between the user and the developer of the nature of the problem and the
functions that need to be performed by a software solution.

With a knowledge of what the user wants, the development team generally
determines how it could be accomplished as a computer solution. This
translation of what is needed into a computer solution is delineated in the
System Specifications document. At this stage, the development team
need only be concerned with a global or conceptual overview of the system
solution, rather than defining the actual architecture of the software, since
that is the task of the Design Phase. Taken together, the Requirements
Specifications and System Specifications fonn the conceptual understand­
ing of the proposed system. They are, in essence, the blueprint for the
design of the system.

End User
Raqulrements

The Requirements
Analysis Identifies the
end user's functional

requlremt::nts.

The Requirements Specifications produced in this phase must be reviewed by
both the end user and the development team to ensure all the requirements have
been identified and that both parties are in cpmplete agreement about the
functions that are desired in the proposed systero, as well as the feasibility ef
the development request. The development team needs to maintain close
contact with the end user duringt..~i.s phase of the process. Time and care spent
in this phase will ensure satisfaction with the fmal product.

Requirements Specifications Document Format

1.0 Overview

Previde an overview of the nature and scope of the end user's problem:
including the user's perceived needs and expectations for the development
project. Describe the current systems environment, whether it be manual er
autemated. Include historical information, such as the nature and kinds of work
the end user performs, the tasks and deliverables that are asseciated with the
existing systems, prior computer projects that may influence the current
systems develepment effort, and the current level of cemputer skills pessessed
by the end user's staff.

If there is an existing system - manual or automated - fully describe its
functiens. A clear understanding of the functiens, strengths, and weaknesses
ef the existing system is critical to. the design of a replacement system. Specify
the maximum limits for the time and budget of the development effort.

2.0 R~quirements of the Proposed System

Identify the functions the existing system dees net satisfy, and describe hew
the pro.pesed system will address those deficiencies.

2.1 Performance Requirements

Specify the perfermance requirements of the proposed system. Perfermance
requirements should be stated as specifically as pes sible, but in nentechnical
terms, such as "to sort and create 1000 mailing labels per hour,n er "to. store
50,000 names in a database and to. retrieve any given name frem the database
in less than 3 secends." If properly identified and documented, the
perfermance requirements beceme the baseline for testing and evaluatien
during the coding and testing phase.

2.2 Operational Requirements

Discuss the effect the eperatien, maintenance or support requirements may­
have upon the design of the proposed system. Include a discussion of training,
hardware and seftware maintenance and technical suppert.

7

Planhing .
" Phase

. .

8

2.3 Compatibility:.

Discuss compatibility requirements between the proposed and existing
system, and any limitations that will be imposed on the new system as the
result of incompatibility. If applicable, discuss how the use of standard
hardware and software may affect or minimize compatibillty problems.

2.4 External Interfaces

Discuss interface requil'ements between the planned system and other
systems. For example, there may be a requirement to format output so that
it can be transmitted and used by another system. Detine the interface
required between the user and the proposed system. For example, the end
user might require that system interaction use mouse-driven, color pull­
down menus, or the layout of the user interface screens might be required
to have the same formats as the existing system.

2.5 Internal Interfaces

Discuss all of the major functions required of the system and how each of
these functions will interface.

2.6 Design Constraints

Discuss any constraints placed upon the design of the system because of
performance or use requirements.

2.7 Existing Environment

Identify any existing equipment. programs or operating procedures that
must be used in the new system. Identify the type, model and manufacturer
of the computer system upon which the system must operate. Specify the
number, size and type of peripherdl devices required for the new system.
Include items such as additional printers, pes, terminals, hard disk drives,
network adapters or other devices.

2.8 Growth Requirements

Specify the projected minimum and maximum yearly growth of the system
for a five year period. Identify additional storage, processing, peripheral
and additional user capacity which may be required during the five years.
Describe how the proposed system will address these needs.

2.9 Audit Traill{equirements

Identify the end user' s requir~ments for an audit trail of the system. Include
user logs, transaction logs~and th~~ operation of the audit features of the
proJ?osed system.

The Systems
Specifications define

what the development
team has contracted

to produce.

2.10 Documentation Requirements

Discuss the end user's requirements for system documentation.' Include a
User's Manual, an Administrator's Manual, Technical Specifications, Func­
tional Specifications and a Test Plan. Taken together, these documents 'should
enable the user to review the functions and operations of the system, install and
maintain the system, understand in detail the technical and functional specifi­
cations of the system, and perform an operational test of the system to confirm
that it functions as designed.

2.11 Documentation Prototypes

Idcmtify the required type, content and format of any new forms or reports
which are to be used as input or generated as output from the system. Examples
of prototype forms will give the end user and designers a better understanding
of the content of the forms.

2.12 New Bounds

Specify the required bounds to be placed on the new system. Includemaximum
capacities such as file sizes or number and type of records, maximum execution
times or other convenient and verifiable limits.

System Specifications

Once the end user has defined the purpose and desired functions of the system,
it is the task of the design team to translate this user defmition into a system
solution - that is, into hardware and software that will meet the user's needs.
The user defines the need; the development team defines the solution in terms
of computer capability. The translation from user need to computer solution
involves limitations inherent in digital computers. That is, computers process
information or perform functions within the parameters of digital processing.
There are functions a computer can perform and functions it cannot. It is
critical, therefore, that the development team work closely with the end user to
achieve an understanding of the manner in which needs can be accommodated
by a computer solution, including inherent limitations, and to come to complete
agreement that such a solution is satisfactory. The System Specifications­
the hardware and software specifications - define what the development team
has contracted to produce.

At this point in the process, the purpose of the System Specifications is to
specify the global system architecture. For exarilple, if the Requirements
Analysis has ascertained that the user needs a system to store, index, link and
retrieve large and diverse quantities of information in the form of flexible
report formats, then the development team has the initial information it needs
to design the database wanagement system software. Given the volume of
infClnnation to reside in:fhe system, the number of users and the frequency of
inl~uts and outputs, the development team can create a data flow diagram of the
information flow, specify the modules that will have to be developed, specify

9

10

Plannir:lg .'
. Phase •

System
Specifications

the interaction of the modules, and generally provide a conceptual design
of the system. The distinction between this phase and the design phase is
that the System Specifications defmes the modules and their functions,
whereas in the Design Phase the designers specify how each of the modules
will work in a specific computer environment.

The System Specifications also describes the architecture upon which the
software will run an.d the end user's current systems environment and
operations, including the use, physical location, hardware and software
interfaces, and other organizations or systems that will communicate with
the proposed system. The hardware description is critical to the develop­
ment of testing and performance verification procedures in later phases of
the development process. As such, the preparation of this document should
be detailed and complete.

If the proposed system is to replace an existing system, then an understand­
ing of the flow of information through the proposed system is based in part
upon a knowledge of the structure of the existing system. All existing
computer~based systems, hardware subsystems, procedures and tools in
existence must be carefully examined and evaluated to determine their
influence on the development of the new system. The development team
needs to identify where the new system will be located and any potential
constraints which will be placed upon it due to its location or environment.
There may be existing systems or subsystems which will call for specific
interfaces or data organizations. There also may be related procedures a..'1d
requirements, as well as other organizations that will use the new system,
that will impose bounds or limits on the System Specifications.

After careful evaluation by thl} development team to ensure that all user
required functions have been translated into a workable computer solution,
the System Specifications document is approved and becomes the baseline
for the software design.

System Specifications Document Fonnat

1.0 Overview of System Specifications

Provide a brief overview of the System Specifications, describing the
proposed hardware and software requirements.

2.0 Reference Documentation

List pertinent documents related to the system specifications. List all of the
documentation and manuals for both the software and hardware. They will
be used as references by the development team during the remainder of the
project. Documentation includes operating system manuals, user manuals,
technical manuals and reference materials, operation manuals and specifi­
cation. guides. In a Local Area Network (LAN) environment, include all
of the manuals and references to the cabling scheme, network servers,

C)

workstation adapters, and the network operating system. In a UNIX-based
environment, include the tenninalreference manuals, operating system manU­
als, and manuals on all peripheral devices.

3.0 Software

Describe the software that will be required to interface with other software
programs, utilities, or drivers, including:

• Operating system;

• Language(s) or database management development systems required
to create the new system; and

• Application software with which the proposed system may need to be
compatible (such as word processing or database software).

A diagram, sllch as the one in Figure 1,' Sample Interface Diagram (below)
should help identify relationships among the proposed software and any other
software elements or applications in the same environment.

ASCII Text Files
Delimited ASCII Files < >

Symbolic Data Fonnat File

Figure 1: Sample Interface Diagram

3.1 User Interface

Describe the user interface of the proposed software. Include descriptioils of
items such as the use of color, sound, graphics and light pens, as well as on-line
help, pull-down windows or computer aided training.

3.2 Overall System Diagram

Provide a diagram of the software modules and their relationship to each other
and to external system elements.

11

12

Plannin~

Phase •
'\

------------------~~--. -------

3.3 Internal Data Flow

Provide a diagram showing the data flow throughout the system. It should
depict the input and output of data, as well as sources of data which may
be outside the programs t<.tJ be designed. This type of chart is commonly
known as a "bubble chart." (See Figure 2: Sample Data Flow Diagram.)

Validated
Input

Database
File

Search
Results

Formulated
Output

Figure 2: Sample Data Flow Diagram

3.4 Description of Modules

Describe the attributes and requirements of each software module. The
requirements should define the function of the module in terms that can be
measured and tested, keeping in mind the need to design test data in the later
phases of development Explain how each module relates to the other
modules and functions of the system.

Describe the inputs. processing, and outputs of each module. For inputs,
include a description of the data, its type, source and bounds. Supply a chart
if needed for clarity. For processing requirements, include a discussion of
the techniques or algorithms used, as well as the parameters and bounds of
the processing. For outputs, include the format of any information or data
and its destination. Provide diagrams if required for clarity.

3.5 Design Limitations

Specify limitations imposed on the design by system architecture and
development tools. For ~xample, there may be a need to use a different
language in some modules or functions, such as a C routine in a Fourth
Generation Language Database Management System (4GL DBMS). The
methodology used in the design may affect the compatibility of the
modules and functions. Especially important is a discussion of the design
considerations for ease of maintenance or future modifications and en­
hancements. Discuss internal features that make testing of the software
easier (for example, trace features, temporary files, global memory vari-

Taken together, the
End User

Requ!rements and
Systems

Specifications form
the conceptual

understanding of the
proposed system.

They are, In essence,
the blueprint for the

design of the system.

ables, intermediate printouts, and internally commented code). Finally, if
security features are included, discuss their design parameters and reliability.

3.6 Data

Identify the system's data requirements. Files and databases created for or
accessed by the proposed software must be described in terms of the data
format and structure, content, number of data items, and types of access (for
example, single/multiuser or indexed/sequential). Capacity requirements
should be specified in terms of the maximum number of records, users and
workstations. Include global data items such as tables or site flles.

3.7 Design Validation Test Criteria

Provide an overview of the types (j'f system testing needed to validate compli­
ance of the fmal product with the System Specifications. This type of testing
is known as Validation Testing. More information on testing will be provided
in the Test Specifications.

4.D Hardware

Specify the computer system upon which the proposed software will operate.
Provide an overview of the system's performance standards, design criteria,
development requirements and test requirements. This information creates a
technical baseline for the development of tile system.

4.1 Hardware Components

Provide a brief overview of the components of the existing system, including
a description of basic functions and interfaces. A system diagram will help to
ensure that the development team has a comprehensive understanding of the
operation, flow of information and control in the system. Describe the
communications interfaces between the existing system and any other systems.
List every component of the system (hardware and software) by manufacturer,
model, I\omenclature and version. If the list is ex.tensive, put it in an appendix.

4.2 Hardware Specifications

Describe the architecture of the system, including the microprocessor model,
and performance specifications' (such as MIPS, Mhz, etc.), and reference all
other processor related information which might be of use to the development
team. Include the architecture and performance of the memory, system bus,
display adapter, disk and tape storage devices and their media fOlmats, power
supply, Input/Output ports, and keyboard/pointing devices. Also include the
operating system, network operating system, or programming language re­
quirements mandated by the system or network itself (such as a specific version
of DOS or BASIC). Specify reliability data, such as Mean Time Between
Failures and Mean Time Between Repair for each major component in the
system. Finally, identify any environmental conditions which may be enCOUfi-

13

14

I,'S;,,:

tered in the operation of the. equipment, such as noise, electrical interfer­
ence or temperature.

4.3 Hardware Interfaces

Describe hardware interfaces that affect the proposed software, including:

• Manufacturer, model, and speed of the processor;

• System memory size in Kb or Mb, and memory speed in nano-
seconds;

• Seek and access times for disk storage devices;

• Format and capacity of storage media, such as tape or diskettes;

• Display attributes such as medium or high resolution color graph­
ics; and

• Special hardware designed to test the software or required as a part
of a prototype module (such as a LAN adapter).

4.4. Hard~are Operational Procedures

Identify collection and recording procedures necessary to maintain the
reliability specifications (for example, the format and procedures for usage
and problem logs). Defme the minimum operational standards of the
system in terms.of daily operation, backup procedures, and consumable
supplies, along with references to the applicable documentation. Note
areas in which an operator could, through error or negligence, cause
damage to the system or loss of data.

4.5 Hardware Technical Support

Identify available hardware performance testing procedures or media and
memory checking programs which may be used to confrrm that the system
is operating according to specifications. Identify p~ocedures for mainte­
nance and support of the system, including contact names, phone numbers,
hours of available maintenance, location of parts or service facilities and
maintenance functions provided by staff.

4.6 Personnel and Training

Specify additional personnel or skills the development team needs to use
the hardware. If additional training is required, specify the location, cost
and schedule of the required classes.

5.0 Interface Limitations

The components required by the total system environment, such as the
choice of hardware, programming languages and the system and user
interfaces, force limits on the design. List any design restrictions and
describe how they may affect the entire system. For example, if the system
must be capable of using a light pen as a primary input device, then the

c'

The Preliminary
Project Plan estimates

the scope of the
project and the

resources needed to
fully execute aI/

necessary tasks.

"J'

software must create the signals that the pen can interpret and the user interface
(the computer screen) must be designed to interact with the pen, using, for
example, check-off boxes.

6.0 Appendix

Include such things as flowcharts, tables and diagrams.

Prelinctinary Project Plan

The Preliminary Project Plan defines the nature and extent of the software
development effort, based on the information in the End User Requirements
and the System Specifications. The Preliminary Project PI~n provides an
estimate of personnel and technical resources, schedules and costs necessary
to accomplish the work. The critical function of the Preliminary Project Plan
is' to make an early assessment of the feasibility of the project. It essentially
determines whether the project should and can go forward, or whether the
nature and scope of the effort, available resources or costs are prohibitive.

Since the Preliminary Project Plan' s purpose is primarily to estimate the scope
of the project and the resources needed to fully execute all necessary tasks, and
is intended to allow management to determine whether the project is to go
ahead, it makes preliminary assessments with limited objectives. If project
management determines that the project will go forward, then a more detailed
Project Plan will be created, incorporating essential information from the
Preliminary Project Plan.

The objectives of the Preliminary Project Plan are to:

• define the scope of Li.e project;

• identify tasks and detv'erables;

• identify available resources;

• establish schedules; and

• estimate costs.

Define Scope. The general scope of the project is contained in the End User
Requirements and the System Specifications. Based on the functions the end
user needs and the preliminary specifications of the syste~ll, the development
team is able to make preliminary assessments of what level of effort will be
necessary to develop a computer solution.

Identify Tasks and Deliverables. For each phase of the development project,
tasks and deliverables need to be identified to develop an estimate of the work
to be done in the project. Descriptions ;t:lf tasks and deliverables can be in
general terms (such as the need for a data entry module and a report module
rather than the shape, content and format of the display screens). See Table 1 :
Systems Development Tasks and Deliverables, page 16.

15

a!'

,- , .-.-

op H A S 'OE '. T A S· K J) E·L~fv."E R A-.'B';l;e '~" ~;:! _. 1 . . ,

Requirements Analysis Requirements Specifications

Systems Specifications Systems Specifications Document

Planning Preliminary Project Plan Preliminary Project Plan Document

Project Plan Project Plan Document

Change Control Problem Identification Form
Change Request Form

Preliminary Design Preliminary Design Document
Preliminary User's Manual

Design
Preliminary Design Walkthrough System Prototype Program

Detailed Design Test Specifications Document

Detailed Design Walkthrough Detailed Design Document

Coding

Coding Walkthrough

Coding and Testing
Unit Testing Individual Module Code

Integration Testing Integrated Module Code

Validation Testing Validated System Code

Site Testing (Beta Testing)
Completed Design Document
User's Manual

Operation Operations Management

and Maintenance
Maintenance

Table 1: Systems Development Tasks and Deliverables

16

Identify Available Resources. There are three basic resources to allocate:

• Human Resources: analysts, programmers, and administrative help;

.. Hardware Resources: the computer system and peripheral devices
upon which the software operates; and

.. Software Resources: the operating system and programming lan-
guages.

What may appear to be a simple software program requiring few resources can
grow into a complex application, consuming large amounts of hardware,
software and personnel resources. Projection of resources is one of the most
difficult tasks, because knowledge of all the ffeets of the design process are
usually only learned from experience. Careful monitoring must be conducted
and documentation should be kept on all development work to provide a
historical record of the development effort. This record will fonn the basis for
estimating resource utilization in subsequent system design projects.

Establish Schedules. A realistic estimate of the time necessary to complete the
project must be established. In addition, a proposed schedule which assigns all
of the resources to be used in the project must be created.

Project scheduling specifies realistic milestones, or the completion of a task or
a sequence of tasks. For example, completion of the Project Plan is amilestone.
Each milestone should include a deliverable, which is something tangible that
may be examined, reviewed, tested or demonstrated, such as a document, a
schedule or a software program.

The two most common errors made in project scheduling are assigning
timelines without considering resource requirements for the specific task (such
as the number of required personnel or tools) ~d setting unrealistic completion
dates. Understanding the nature and scope of the tasks, and knowing the
capabjl1ties of the personnel who will be performing the tasks, greatly assists
estiJ.nating schedules.

Estimate Costs. A number of cost-pf(~jection teclmiques exist for assigning
accurate costs for a software development project. The most eommon are the
Lines-of-Code and the Task-Costing techniques. Both methods depend on
some familiarity with the development process and base their estimates on the
historical records of previous development projects. Barry W. Boehm's Soft­
ware Engineering Economics is a highly regarded work on cost estimation in
software development.1 (See the RecommendedReading Listin the Appendix~
page 58.)

If cost estimates for the project are higher than the amount anticipated, consider
"off-the-shelf" routines, modules or development suppm1 programs to reduce
the development effort. When purchasing "off-tbe-shel~\' software, consider

/:

lB. Boehm, Software Engineering Economics (Englewood Cliffs: t!rentice Hall, 1981).

17

18

· ,

plBnning '.;
, ~

Phase ~

~~~ '~'I : • .' • A • 

Preliminary 
Project Plan 

issues such as interfaces, installed user base, maintenance and enhance­
ment policies, source code availabi1ity~ benchmarks, training and evalu­
ation of potential v~ndors. 

Once the Preliminary Project Plan has been prepared, management person­
nel and the end user should review it for feasibility, scheduling, costs and 
resource requirements. These requirements, resources and costs will be 
reevaluated and refined as other planning documents are produced. At the 
conclusion of the planning process, the Preliminary Project Plan will 
become the Project Plan. 

The information contained within the System Specifications, along with 
the resources defined in the Project Plan, will form the basis for all of the 
oost and schedule estimates made in the next phase. 

Preliminary Project Plan Document Fonnat 

1.0 Project Overview 

The Preliminary Project Plan begins with an overview of ine project, iden­
tifying the end user of the software, the background of the request and the 
intended purpose of the software. Includes major assumptions or restric­
tions identified in the Requirements Analysis. 

2.0 Functional Overview 

Describe the major functions of the proposed software in a few short para­
graphs. Comment on unique functions of a proposed module. A diagram 
showing the interaction of the various software modules is recommended. 

3.0 Tasks and Deliverables Overview 

Summarize the software development tasks and the deliverables required 
by the project. Define each task in sufficient detail to provide for a baseline 
concept of the proposed system and to allow for accurate cost and time 
scheduling estimates. Later in the project all basic tasks will be refined, 
specifying subtasks for each major task. 

Pro:vide an outline of the procedures necessary to prepare the required 
project documents. Provide an outline of the training requirements, 
including additional training that the development team may need and 
training that the end users will need upon completion of the project. 

4.0 Resource and Resource Costs Overview 

To estimate costs, identify the available resources allocated to each task. A 
resource is anything that can be used to accomplish the planning, develop­
ment, testing or maintenance tasks, such as personnel, hardware and 
software. For personnel resources, include the number of people required 
for each task, the skills required, and the percentage of effort required by 
each person (for example, 50 percent use ofp:rogrammer#1 for 15 days). 



Identify each piece of hardware to be used in the planning and development 
phases, along with the required duration of use and associated costs. Finally. 
identify support or utility software required for use in the administration, 
management or development and include cost estimates. The estimate of the 
project costs must be made known to the user. 

5.0 Scheduling Overview 

A chart or table (such as the Systems Development Tasks and Deliverables 
table on page 16) can be used as the basis of scheduling tasks, deliverables and 
resources. Include dates of activities which might affect the time schedule. 
Include hardware or software delivery dates, limitations on the availability of 
the development staff (such as holidays or maternity leave), and the projected 
end date of the development project. 

6.0 Personnel Overview 

Provide a diagram of the proposed positions and hierarchy of personnel a v ail­
able for the project. Show reporting structure, considering job assignments and 
responsibilities. (See Figure 3: Sample Personnel Structure Overview.) 

Project 
Manager 

Source Control 
Librarian 

I I 
DeSign Testing Maintenance 
Team Team Team 

Coding Documentation 
Team Team 

Figure 3: Sample Personnel Structure Overview 

Project Plan 

The Project Plan is the strategy document for the project, describing how the 
project manager will control and execute ,all work necessary to produce the 
proposed system. As such, the Project Plan must integrate all phases of the 
project, assign realistic schedules, estimate all technical and personnel re­
sources, and estimate all costs. Clear definitions must be provided for what is 
to be done, when it is to be done, by whom and at what cost. Most important, 

19 



, 
Planning 

Phase • ,r 

~ ,·····:1 

20 

however, is how it will be done - the methods for ensuring that all work 
is executed in a structured and controlled manner. A successful Project 
Plan, then, accompli,shes at least the following objectives: 

• Provides management, technical personnel and the end user with an 
overview of the nature and scope of the project; 

• Provides management with a methodology for keeping all project 
activities visible and under control at all times; 

• Defines a baseline system configuration, which is understood and 
approved by management, the technical development team and the 
end user for whom the system is being created; 

• Contains the tasks and deliverables that must be accomplished, 
with associated milestones to monitor progress; 

• Clearly defines acceptance criteria for all deliverables to the end 
user during and at the completion of the project, including software, 
documentation and essential services; 

• Lists key personnel in administration, management and technical 
development and carefully defines their roles and responsibilities; 

.. Contains detailed budgets and schedules by task and by person; and 

• Establishes all critical documents that must be produced to define 
work to be done, record progress, and account for necessary 
changes in the design of the system. 

The Project Plan need not be a lengthy document. Its importance resides 
in the fact that it precisely defines the work to be done and establishes a 
methodology that ensures that the work will be successful. Moreover, the 
Project Plan functions as an agreed-upon blueprint for ail parties involved. 
Management, technical personnel and the end user agree that the capabili­
ties of the system defined in the plan can be referenced in the End User 
Requirements and the Systems Specifications, and that all deliverables 
meet all End User Requirements. It is crucial to incorporate acceptance 
criteria in the plan to assure complete agreement on whatis to be delivered 
to the customer at the conclusion of the project. The Project Plan, 
ultimately, functions as both an enabling document Rnd an agreement of the 
defmition of the product. 

Project Plan Document Format 

1.0 Project Overview 

A detailed overview of the project includes the identity of the software end 
user, the background of the request, the intended purpose of the software:, 
and major assumptions or restrictions used to develop the project plan. 



The Project Plan 
defines the strategy 

for the project. It must 
Integrate all phases of 

the project, assIgn 
realistIc schedules, 

estimate all technical 
and personnel 
resources, and 

estimate all costs. 

2.0 Major Functions and Bounds 

Briefly describe the major functions of the proposed software. This will place 
bounds on tht;'project during the development process. The use of a diagram 
showing the interaction of the various modules and submodules is recom­
mended. Briefly describe unique subfunctions of the modules. 

Identify the computer and operating system to provide a hardware and 
operating system baseline for the project. Include a system-level block 
diagram of the system hardware and software functions. List performance 
requirements and characteristics, including memory requirements and limits, 
minimum hardware requirements, and any special requirements (such as a 
mouse, or optical scanner). Note any features or functions required in the 
software or system design to ensure the reliability of the system and software 
(such as full hardware redundancy, fault tolerance, or a software roll-back 
function). Include software interfaces to other devices (such as the utility 
software to operate a tape drive) and the method of interface. 

3.0 Tasks and Delivelrables 

Summarize the tasks and lthe deliverables required by the project. Define each 
task in sufficient detail to allow for accurate cost and time scheduling 
estimates. Later in the project these basic tasks will be refined, specifying 
subtasks for each major step. After the major tasks are defined, list the 
deliverables associated. with each task. (See Table 1: Systems Development 
Tasks and Deliverables, page 16). 

Provide an outline of the procedures and personnel responsibilities involved in 
the preparation and distribution of the project documents. Include the person­
nel responsible for creating the documentation required in each phase of the 
project, including typing support, editing, document reproduction and distri-
bution. . 

Provide an outline of training requirements and personnel responsibilities. 
Include additional training for the development team in the applicable pro­
gramming language, use of the development hardware and operating system, 
documentation procedures., project management or other related skills. Define 
the training requirements tiDr the end users upon project completion, such as in­
stallation, operation and maintenance of the system. 

Provide an outline of the system's installation requirements. Include the 
schedule for installation an.d responsibilities of the end user, management and 
technical teams. Other requirements include the equipment and power 
required, personnel schedules and system security. Defme procedures to be 
used during the transition, or "cut-over," from the existing system to the new 
system. Consider issues such as parallel operation, conversion criteria, 
responsibilities for the deci.sion to make the conversion and a fall back position 
should the new system not work according to plan. Specify the time-frame in 
which the end user can expect operational support and enhancements. 

21 



· ( . 

22 

4.0 Resources and Resource Costs 

To estimate costs or schedules, identify the available resources for each 
task. (A resource is anything that can be used to accomplish the planning, 
development, testing, or maintenance tasks, such as personnel, hardware 
and software.) 

Estimate personnel required and associated costs. Identify the number of 
people required for each task, the skills required, and the amount of time 
required for each person. Project management tools such as Gantt charts 
are helpful in detennining personnel costs over the duration of the project. 
(See Figure 4: Sample Gantt Chart.) Personnel costs include pmgTam­
mers, analysts, technicians, and management personnel, as well as non­
technical staff such as secretarial, editorial, and administrative personnel. 
Labor costs for each task by person should be accounted for in a tabular 
format, prepared in conjunction with the personnel requirements. Identify 
costs applicable to personnel, sllch as training, travel, per diem and 
vacations. 

Requirements 
Analysis 

Systems 
Specifications 

Preliminary 
Projc,r;t Plan 

Project Plan 

Change 
Control 

January 
1 8 15 

Figure 4: Sample Gantt Chart 

29 
February 

5 

Estimate hardware costs. Each piece of hardware should be identified by 
type, quantity, and duration of use. Estimate project support cost, such as 
photocopying, word processing, administrath: e use of computers, and the 
hourly cost for computer time by the development and coding staff. A 
Gantt chart can show the hardware utilization and associated costs on a 
monthly basis over the duration of the project. 

Estimate software costs, such as operating systems, development lan­
guages, test programs and utilities, and application packages for adminis­
trative tasks or document preparation. 



------,--------------------------

5.0 Scheduling 

Provide a table or chart depicting the schedule for all tasks, deliverables, and 
resources. Include dates of activities that might affect the scheduie, such as 
hardware delivery, availability dates, limitations on the availability of the 
4evelopment staff (such as holidays or maternity leave), and limits on software 
resources. 

Project management analysis techniques, such as the Program Evaluation 
Review T~hnique (PERT) or Critical Path Management (available on micro­
computer software packages), are valuable assets to the scheduling effort. 
Such automated programs allow for the integration of all resources, tasks, and 
deliverables, along with their respective timelines, critical paths and mile­
stones. (See Figure 5: Sample PERT Chart.) 

Project management software also facilitates revisions, allows the operator to 
assign costs and availabilities to each resource, and maintains ongoing cost 
analysis. 

10/20 

1/24 a.aa 
1.66\ 

9115 6.00 
o 

Earliest Start 

Latest Finish 

10/20 

Duration 
Slack 

.s. 

\ 
11/24 ~ 

o 

Figure 5: Sample PERT Chart 

6.0 Personnel Structure 

11/24 

Provide a graphic presentation of the positions and hierarchy of personnel 
available for the project. This should be a more detailed version of the diagram 
constructed in the Preliminary Project Plan. (See Figure 6: Expanded P erson­
nel Structure.) 

While there is no single approach to organizing personnel in a development 
effort, a team-oriented approach is commonly employed. This approach 

23 



\ ' 
( 1 

24 

Planning 
Phase " 

I 
Design 
Team 

Team I Leader 
Analyst(s) 

Coding 
Team 

Project 
Manager 

Testing 
Team 

Team I Leader 
Analyst(s) 

TeamlLeader 
Coder/Program mer( s) 

Source Control 
Librarian 

Documentation 
Team 

Editor 
Writer/ Analyst(s) 

I 
Maintenance 

Team 

Team I Leader 
Analyst(s) 

Figure 6: Expanded Personnel Structure 

allows the project activities to be split among the teams and performed in 
parallel. Project management is easier under a team approach and there is 
less reliance on a single staff member. 

Typically, development teams are organized with a Team Leader, an 
assistant, and other technical personnel. The Team Leader is usually an 
experienced software professional who has final responsibility for the 
efforts of the team. A Team Leader performs the top-level design and 
programming activities with the other team members, participates in all 
reviews, and acts as liaison with the project. manager and other teams. 

In development efforts with limited personnel, the same individuals may 
have to staff multiple positions. There is, however, a rule of thumb that 
"designers should not code and coders should not test." It is an admonition 
both against spreading skills too thin and not having personnel test and 
evaluate their own work. Personnel resources and skills should be critically 
evaluated in the planning phase of the project. COllsultS may be required 
if there is not a sufficient base of skills in-house. 

A Documentation Team composed of an experienced editor and other 
writers/analysts are needed to assist the development team in preparing the 
User's Manual and associated documentation. It is important that the 
Documentation Team be involved from the outset in the planning and 
writing of all documentation. 

The Project Manager directs the activities of each of the Team Leaders. 
The Source Control Librarian is usually a systems analyst who reports 

------1 



Change control Is a 
formal mechanism for 

the Identification, 
evaluation and 
approval of all 

changes In the design 
of the system. 

------------------------'1' 

directly to the Project Manager arid is responsible for all the project documen­
tation. 

The Team Leaders and other key personnel will be required to assume 
additional responsibilities by serving on the following committees: Problem 
Information Forms Review, Change Control Board, Preliminary Design Review 
and Detailed Design Review. Additional personnel will also sit on these 
committees. (See Figure 7: Sample Committee Assignments.) 

Design changes requested after the design documents have been approved are 
an inevitable part of the software development process. Changes are requested 
for a variety of reasons. End users learn more about computers and the 
proposed system as the process evolves and inevitably desire modifications of 
the original design. The system coders request changes to accommodate 
problems that surface only during the actual development process. Changes 
are also inevitable as a result of testing, when errors are encountered in trying 
to integrate all of the modules into a functioning system. Other reasons for 
change are design deficiencies, test procedure errors, incompatible interfaces, 
errors in connectivity to support software such as test chivers or compilers, and 
operating system problems. It is simply a fact that even in the best planned and 
designed system, neither the end user nor the development team can foresee all 
problems that will arise. 

The issue is not that changes should be avoided or disallowed, but that changes 
should be controlled. Accordingly, change control is a formal mechanism for 
the identification, evaluation and approval of all changes in the design of the 

25 



Planning 

Phase 
. . 

The establishment of a 
Change Control Board 

ensures that al/ changes 
will be made In a 

controlled manner. 

26 

system. As a critical function of the overall management of the software 
development process, rigorous change control ensures that all modifica­
tions to the system are visible to management, technicians and the end user. 
Management must be aware of all substantive changes to control the devel­
opment effort. Changes can have a significant impact on budgets, sched­
ules and resources. Most important, however, is that if changes are 
unauthorized and undetected, then ultimately there is a danger that the 
system may not meet the requirements of the end user. 

When change is necessary, it is imperative that it be handled in a controlled 
manner and that the development team and the end user are in complete 
agreement about the change. For example, in the coding process, the coder 
finds a functional problem with the configuration. He therefore recom­
mends a design change to rectify the problem. The proposed change, 
however, will result in a modification of the original design as approved by 
the developer and the end user. At this point, the end user must be made 
aware of the nature of the modification and his approval must be obtained. 
In similar fashion, the project manager must be made aware of any change 
requested by the end user, since it will affect budgets, schedules and 
resources. 

It is critical that responsibility be assumed by the party requesting changes 
in the design of the system. That is why all changes must be controlled, 
visible and traceable by everyone involved in the development effort and 
why all changes should be in writing and signed. Historical records should 
be kept on all changes. 

Change Control Board (CCB) 

Formality is brought to the process through the mechanism of a Change 
Control Board (CCB) and through the use of Problem Information Forms 
(PIPs) and Change Requests Forms (CRFs). The Change Control Board 
and the PIFs and CRFs also make the change process visible to manage~ 
ment, thereby ensuring management control of the project. The CCB is 
empowered. with the authority to accept or reject change. The composition 
and size of the CCB depends on the nature of the development project and 
the size of the organization undertaking the project. It is important that the 
end user as well as the developer has representation on the CCB. Respon­
sibilities of the CCB include: 

• Reviewing and approving all requests for design changes; 

• Assigning priorities to the requests; 

• Evaluating the technical, administrative and managerial effects of 
the changes requested; 

• Determining the most likely cause for the error; 

• Establishing an estimate of the time required to effect the correc­
tion/change; 



Any errors or change 
requests should be 

recorded on the 
approprIate form and 

forwarded to the 
Change Control 

Board. 

• Evaluating the effect implementing the proposed correction/change 
will have on the overall project schedule; 

• Establishing new validation criteria for the changes in the design; 

• Following up on each CRF to verify the CCB's estimates; and 

• Ensuring that all changes are documented and placed in the 
Source Control Library. 

Problem Information Forms and Change Requests Forms 

Problem Information Forms (PIPs) and Change Request Forms (CRFs) (see 
Figures 7-10) are the only means for reporting errors and requesting changes 
to the design. When a member of the development team identifies a problem 
or desires an enhancement, he prepares one of the forms and submits it to the 
Change Control Board (CCB). 

In completing a PIP, include all available information on the problem, a 
description of the hardware environment, the actions which preceded the 
problem, and the version and revision level of the software in question. The 
PIP is then forwarded to the Team Manager. 

The Team Manager completes the top section of the CRF based on the 
information in the PIF. A copy of the PIP is dated and placed in the Source 
Control Library (SCL) and the original PIF is attached to the CRF and 
forwarded to the CCB. A CRF is the only means of obtaining change approval 
from the CCB, which has sole authority to change the design of the program. 

A proposed change must flIst be assessed to determine the cost of implemen­
tation, scheduling repercussions, and performance effects upon the system. 
The CCB then assigns a priority and a "change classification" to the CRF. The 
change classification is used to identify whether the change is to correct a flaw, 
to create an enhancement, or perform a port (the process of converting the 
software to run on a different hardware environment). After classification, the 
CCB will estimate the required resources to peITOlID the change and, if 
necessary, will schedule the design or maintenance team to make the change. 
The CCB also assigns a subclass to the CRF to identify whether the error 
requires maintenance scheduling, has a "work-around" (a means to circumvent 
its occurrence), or whether a remedy for the error already exists. The CCB will 
then indicate on the CRF the action taken and return a copy of the (CRF) and 
(PIP) to the Team Manager who submitted them. 

In addition to providing a mechanism for authorizing and controlling requested 
changes in the development process, the benefit of using PIPs, CRFs and a 
CCB is that groups of related errors may be corrected at the same time. By 
performing changes in groups, small changes which might otherwise be 
ignored or delayed may be performed at the same time as larger changes. 

Changes and enhancements requested during the Operational and Mainte­
nanceJ?hase also should be controlled by the Change Control Process. 

27 



Problem Information Form 

Date and time of Initial report, action on the report and solution 
Date in: _,_/_ Response date: _/_/_ Solved date: _/_/_ 
Time in: Response time: Solved time: ____ _ 

Reporting Individual 
Name: __________________________ _ Agency: _________________ _ 
Address: ____________ -----, City: ___________ _ 
State: __________ Zip: ____ _ Phone number: __________ _ 

Program name/version/revision : ___________________________________ _ 
Module in which problsfTI occurred: ___________________ _ 
Serial number of master disk or tape: __________________ _ 

Problem discovered during: 

o Design o Unit testing o Integration testing 
o Validation testing o Beta testi ng o End use 

Problem Is with: 

o Module code 0 Display screen o Output/reports 
o Documentation 0 Installation o Files 
o Request for enhancement/change 

For testing errors: Test # or test data #: ____________ _ 
For document errors: Document(s) which contain error: ___________ _ 

For operational errors: File(s) in use (if known): _____________ _ 
Description of hardware in use: _____________ _ 

Description of problem/effect on system: (use other side if necessary) ________ _ 

. . 
, " F:or fJ1anag~m~nt use only , . 

Log number (in format ,DDMMVY##): _______________ _ 

Date Initials Problem Status 

o Known problem, correction tested and available 
o Enhancement request/low priority request/PIF remains open 
o Problem not reproducible/hold for reference/PIF remains open 
o Problem reproducible/problem still exists/PIF open/CRF submitted 
o CRF submitted and under review to determine appropriate action 
o CRF in queue for correction 
o CRF has been assigned to design team for correction 
o CRF has been assigned to coding team for correction 
o CRF closed/problem fixediPIF closed 
o CRF openlwork-aroulld exists/PIF closed 

Notes/problem solution: (use other side if necessary) ______________ __ 

28 Figure 7: Sample Problem Information Form 



I 

" 

Date and time of initial report, action on the report and solution: 
This section is used to record the date and time when the PIP was submitted; responded to; and finally 
solved. In some cases, the response date may not be the same date as the submittal date, and the solved date 
may be much later (in the case of an open PIF). 

Reporting individual: 
This section is used to record the pertinent infornation on the reporting individual in case the CCB needs 
to contact them for further infonnation. 

Program name/version/revision: 
Self explanatory. 

Module in which problem occu"ed: 
Self explanatory. 

Serial number of master disk or tape: 
Self explanatory. 

Problem discovered during: 
This section is used to designate at which step in the development process the problem was discovered. 
Generally this infonnation is saved for historical and statistical purposes, and to give the project 
management an indication of problem trends developing from any particular step in the development 
process. 

Problem is with: 
This section gives a quick reference to the type of problem discovered, which allows the CCB to generally 
categorize the PIP. Multiple selections are allowed. 

For testing e"ors: 
Test # or test data #: Self explanatory. 

For document e"ors: 
Document(s) which contain error(s): Self explanatory. 

For operational e"ors: 
File(s) in use (if known): 
Description of hardware in use: 

Self explanatory. 
Self explanatory. 

Description of problem/effect on system: 
This section is used to give a narrative description of the problem, and to provide as much specific detail 
as possible to help management detennine the nature of the problem. The problem description will also 
be used by the CCB to assign a priority to the CRF generated by the PIP. Additional space is available on 
the reverse side of the fonn. 

For management use only: 
This section of the fonn is completed by the project management personnel responsible for design and 
maintenance. 

Log number: 

Date: 

Initials: 

This is a unique identifier used for control and reference purposes. Usually composed of a numeric code 
such as: 15068803 where the structure DDMMYY## is used to represent a day-month-year-sequence. 
Thus:' 15 is the 15th day of the month, 06 is June, 88 is 1988, 03 means the 3rd PIP of the day. 

Date of activity. 

Initials of responsible manager. 

Problem status: 
This section provides a brief status of the PIP and any follow-up actions generated by the PIP. Blocks are 
checked as appropriate. Management is responsible for infonning the CCB of the status of each PIP. 
Closed PIPs designate the problem has been resolved in some fashion. Open PIPs mean that activity is still 
in progress on the problem. Managementmustensure that overall project scheduling is adjusted based upon 
these actions if necessary. 

Notes/problem solution: 

This section is used to record any notes about the problem, the actions of the CCB, or a short statement on 
the resolution of the problem. 

Figure 8: Explanation of Sample Problem Information Form 29 



Change Request Form 
Classification: 

o Error correction 0 Enhancement request o Environmental change 
Date in: __________ Originator: ____________ _ 

Program: Modification to: ------------

Enter log numbers of PIFs which will be totally/partially closed (append "P" to partial closures) 

Problem as stated on PIF: (use other side if necessary)-------------

. . 
For Change Control Board use only . 

Was PIF description accurate? DYes o No 

Apparent source of problem: 

o Hardware bug/conflict 0 Software bug/conflict 
o Coding flaw 0 Unit testing 
o Installation 0 Enhancement request 

Response requires rework to: 

o Preliminary design 0 Detailed design 
o Documentation 0 Unit testing 
o Integration testing 0 Validation testing 

Response requires enhancement to: 

o Preliminary design 0 Detailed design 
o Documentation 0 Unit testing 
o Integration testing 0 Validation testing 

NClme of module(s) requiring rework/enhancement: 

Type of code: 

o Input o Computational o Video output 

0 Design flaw 
0 External problem 
0 Port 

0 Coding 
0 Build testing 
0 Operational testing 

0 Coding 
0 Build testing 
0 Operational testing 

o Printed output 

Remarks: (use other side if necessary) _________________ _ 

Estimated resource requirements: 
Person-hours: ________ Computertime: ___________ _ 

Response: 

o Modification scheduled 0 Work-around exists 0 Under review 0 Denied 

Response to problem: (use other side if necessary) _____________ _ 

Approved by: ___________ Date: ____________ _ 

30 Figure 9: Sample Change Request Form 



Classification: 
This section is used by design/maintenance supervisor to designate the type of change requested. 

Date in: 
This is the date of submission of the CRF. 

Originator: 
This lists who submitted the CRF in order to allow the CCB to contact the originator in the eventmore detail 
is required 

Program/module: 
Name of program/module for which change is requested. 

Log numbers: 
This section is used to list the Log numbers of all the PIFs that will be closed or partially closed when the 
Change Request is completed. If a PIF will only be partially closed, a "P" is appended to the Log number 
(ex: 06158803P). 

Problem as stated on P IF: 
This section is used to provide a narrative of the problem/enhancement/ environmental change in sufficient 
detail so the CCB can gain a clear understanding of the request. 

Was PIF description accurate? 
Self explanatory. 

Apparent source of problem: 
This section is used to specify the type of problem or request. 

Response requires rework to: 
This section is used to specify all of the steps which will require revision in order to perform the requested 
modification to the program. All the applicable steps are checked as necessary. 

Response requires enhancement to: 
This section is used to specify all the steps which will require modification in order to perform the requested 
enhancement to the program. All the applicable steps are checked as necessary. 

Name ofmodule(s) requiring rework/enhancement: 
Self explanatory. 

Type of code: 
This section is used to indica~ the type of program code to be modified in order to assist in evaluating the 
time required for the modification(s). 

Remarks: 
This section is used if the change or enhancement can be satisfied with an explanation ( i.e. a notation that 
the problem is not a bug, but a feature), or to note that the problem was not reproducible by the CCB. 

Estimated resource requirements: 
This section is used to specify the estimated person and machine hours reqllired in order to effect the 
change(s) or enhancement(s). 

Response: 
This section is used to specify the response to the CRF as determined by the CCB. 

Response to problem: 
This section is used to provide a narrative of the response as determined by the CCB. 

Approved by/date: 
Signature of the senior member of the CCB who is responsible to the Project Manager. 

Figure 10: Explanation of Sample Change Request Fonn 31 



32 

Pla-nning 
Phase 

The Source Control 
Library contains all 

documentation 
associated with each 

software module. 

Source Control Library 

As the design process advances, the documentation associated with each 
software module seems to increase exponentially. Besides the End User 
Requirements? System Specifications, design notes, review notes and 
source listings, there are volumes of documentation created on a daily 
basis. To maintain control over the amount of documentation generated, 
a Source Control Library (SeL) is created. Normally initiated at the 
completion of the Preliminary Design Review, the SeL is the source for all 
of the development documentation for each of the software modules. 

The SCL is a group of file folders or binders, storecl in an easily accessible, 
central location. Each folder within the SCL documents a single module 
and has a cover sheet identifying the module's function and documenting 
the current status of the module. (See Figure 11: Sample SCL Folder 
Cover Sheet on page 34). The cover sheet also typically includes the name 
of the module, the name of the programmer responsible for the module, a 
reference to the paragraph in the Design documentthat defines the module, , 
as well as the start and completion dates (both scheduled and actual) for the 
Coding, Unit Testing and Integration Testing of a module. There is also a 
line reserved for the initials of the person responsible for each step in the 
coding and testing process through final approval of the module. The SCL 
folder cover sheet provides a. historical record of the amount of time spent 
on each module. 

A SCL folder has tabbed dividers separating; at a minimum, the following 
materials: 

• A copy of the Preliminary Design specifications of the module; 

• A copy of the Detailed Design description of the module; 

• A copy of the Test Specifications relating to the modu1e; 

• A chronological file of source code listings; output samples, pro­
grammers' notes, and all other documentation generated by the 
programmers and testers during the development of the module; 

• A copy of the first "clean" or error-free source listing; 

• An annotated copy of the test results from the Unit Testing; 

• A copy of the validated source listing of the module; 

• A copy of all Problem Information Forms submitted which refer­
ences the module; and 

• A copy of all Change Request Forms submitted which reference the 
module. 



Source Control Librarian 

A systems analyst on the team, known as the Source Control Librarian, is 
assigned the task of rnaintaining the Source Control Library , and is responsible 
for all documentation produced. This includes "failed" runs and "bad" or 
"buggy" source code. "Bad code" is important historical information about 
programming errors, design flaws, and lines of code. loe Source Control 
Librarian should develop and disseminate periodic reports on the complete 
contents of the library, including all new additions, deletions and changes 
approved by the Change Control Board. 

An essential part of the project control process, the Source Control Librarian 
assists management in keeping all documents accurate and visible, and all 
changes in the baseline configuration traceable. 

33 



Page_of_ 

Project: ________ . _____________________ _ 

Modulename: _______________________________ __ 

Date of most current source Iisting: ___________________ _ 

Design subsection describing this module: ________________ _ 

Start Date Completion Date 

Coding' . 

Scheduled 
Actual 
Initials of programmer* 

Start Date Co eticH,} Date 

Scheduled 
Actual 

Initials of coding team manager* 

Start Date Completion Date 

Initials of coding team manager* 

Start Date Com letion Date 
Integratfon Te'sting .' : ' ' . 

Scheduled 

Actual 
Initials of testing team manager* 

Actual 

Projected Actual 
l)nes of Source Code '. ", ' 

Size (bytes) of source code 

Total number of da s sent in desi n 

Total number of days spent in coding 

Total number of days spent in testing 

Average lines of code per day 
·upon completion 

34 Figure 11: Sample Source Control Library Folder Cover Sheet 



Planning 
Phase 

, Design . 
. Phase 

Coding and 
Testing Phase 

Operation and 
Maintenance Phase 

Design Phase 
The purpose of the Design Phase is to create a detailed software design, using 
the requirements and specifications established in the Planning Phase. The 
Design Phase is divided into two stages: the Preliminary Design and the 
Detailed Design. In the Preliminary Design stage the designers specify the 
overall function and modular structure of the design and create a prototype of 
the program. A Preliminary Design. Walkthrough evaluates the feasibility of 
the proposed design approach and produces the System Prototype. In the 
Detailed Design Phase, a design is created that defines the functions and 
internal procedures of each module in the system. 

It is important to note that the testing procedures specific to each module must 
be established while the module is being designed, even though the procedures 
will not be applied until after the module is coded in the Coding and Testing 
Phase. Thus, the Test Specifications Document, which determines the testing 
specifications for each module, is created during the Detailed Design stage. 
This document directs the order, schedule and testing methodology which will 
occur in the Coding and TestingPhase. Finally, theDetailedDesign Walkthrough 
reviews the logic, structure and interfaces of a module prior to coding. 

Preliminary Design 

The Preliminary Design provides management with information needed to 
determine whether the design is responsive to the end user's requirements and 
whether the design can be implemented, given the resource and cost estimates 
in the Project Plan. 

The Preliminary Design is not the actual software program, but a blueprint for 
the coders to follow in the next phase of the project. It is a "first cut" at the 
design. Building upon the global concept described in the System Specifica­
tions, the designer creates an architecture for the proposed system which 
contains detailed solutions to the critical requirements of the system functions. 
The Preliminary Design describes the overall struCO.lre of. the system but does 
not provide details of the internal workings of the modules. The Preliminary 
Design also describes the flow of the data and control of that flow through the 
structure. It defines the data elements and file access methodology. 

The Preliminary Design should include a diagram of the overall system 
structure, the flow of the data within the structure 3.1..:.. ~lU control of the data 
flow. 

For each module that defines a function, the design provides the bounds on the 
module's input, processing, output, and intermodule data flow. The designer 
is not concerned with programming details, but with design characteristics that 
will allow the final coded product to perform correctly and efficiently. 
Hallmarks of a well designed system are ease of use, reliability and low 
maintenance. 

35 



36 

· , 

II 
)i 

Preliminary 
Design 

At this stage, it is important to realize that the design is an idea in the mind 
of the designer and, as such, represents only one possible solution. 
Moreover, the designer must make choices among various design methods 
and hardware and software tools to create a computer solution. The 
Preliminary Design, therefore, must be subjected to a series of reviews that 
will compare the proposed design to other alternatives and will attempt to 
detect conceptual flaws in the design before coding begins. This review 
process is called the Preliminary Design Walktbrough. 

A structured approach to software development generally requires that 
more time be spent on designing the software than on the coding process. 
Time spentr,>n design can reduce costs in the actual production of the soft­
ware program. Careful planning lessens the number of problems caused by 
design changes during coding and testing. It also controls cascading errors 
(errors caused by the correction of another error in another part the 
program) and greatly reduces the number of procedural errors and opera­
tional defects, both of which require additional redesign and recoding. 

The Preliminary Design generates the Preliminary Design Document. This 
contains the blueprint for the proposed system and defines the procedures 
for coding, reviewing and testing the software. Mter the Preliminary 
Design Document is approved, it becomes the Design Document, specify­
ing the internal structure of the individual modules and the programming 
logic needed to allow the coders to write the programs. 

Preliminary Design Document Format 

'l.0 System Overview 

Provide an overview of the software design. Identify the major functions 
of the software and their internal processing requirements. Specify any 
external mes or databases to which design software must have access. 
Include design limitations or bounds specified in the System Specifica­
tions. Define the style and standards of the system and user documentation, 
and provide an outline for a user's manual. 

2.0 Documentation 

List relevant documents, reference material, specifications and manuals 
that apply to, or are referenced by, the Preliminary Design. 

3.0 Design Overview 

Provide a top-level, or global, definition of the software structure, data 
flow, and logical hierarchy. Include a discussion of the control and 
processing relationships among the major functions of the software. 

Two types of diagrams should be included. The ftrst'sllOuld show the 
structure of the software. The diagram should be accompanied by a 
detailed discussion of the logical and hierarchical organization arid the 



The Preliminary 
Design describes the 

overall structure of 
the system, Including 

the flow of the data 
and cont"otof that 

flow through the 
structure. 

--------- I 

structure of the data.mes (for example, any tables, stacks, queues or lists). See 
Figure 12: Hierarchical Program Structure. 

Program 

Figme 12: Hierarchical Program Structure 

The second type of diagram depicts critical data flow paths. (See Figure 13: 
Sample Data Flow Diagram.) The diagram should be accompanied by a 
detailed discussion of the entry, transformation and exit of the data as it flows 
through the system. Refer to the hierarchical program structure diagram 
(Figure 12) as appropriate. 

4.0 Description of Modules 

Provide a detailed description of each module in the system. (Some parts may 
have to be completed during the Detailed Design.) When complete, these 
procedural descriptions of the modules can be translated into code during the 
coding phase. 

4.1 Overview 

Provide a summary description of the module, represented by a flow chart, 
Pseudo Code or Structured English, or box diagrams. Include a description of 
the inputs, outputs and processing for the module. Algorithms or equations 
should be placed in an appendix. Discuss interfaces between this module and 
other modules in the system. Identify any other modules called by this module. 

4.2 Additional Information 

Provide additional commentary to assist the coding personnel, such as infor­
mation on bounds and limits, error-handing guidelines and perfonnance 
characteristics. 

37 



38 

Design • 

Phase 

Input 
Document 

Main 
Database File 

\ 

Temporary 
File 

Manpower 
Report 

Personnel 
Report 

Figure 13: Sample Data Flow Diagram 

5.0 File Structure and Global Data 

Describe files that are pennanent such as a master name fue, and those files 
which exist prior to or after the execution of the software, such as input files 
and output files. Include the file name, allocated size in bytes, access 
method, relationship to other files, and whether the file is modifiable or 
static. 

Describe files that a...~ temporary in nature or which exist only during the 
execution of the software (for example, sort files, print files or queues). 
Describe global data elements and global memory variables. It is helpful 
to use a naming convention when defining global and local data files and 
memory variables. For example, memory variables might be expressed in 
capital letters with names starting with "M" ("M_NAME" or 
"M_ADDRESS"). Local data flIes might be defined in lower-case letters 
(for example, "m_name" or "m_address"). 

Much of this infonnation may be provided by supplying two cross 
reference matrices. The first matrix references the names of the files with 
the names of the modules, showing which flIes are accessed by each 
module. The second matrix depicts data or memory variables accessed by 
each module (both locally and globally). 

6.0 Compliance with End User Requirements 

Provide a cross reference matrix of the module names and the correspond­
ing requirements as stated in the End User Requirements document. The 
intent is to assure compliance of the module function with the end user's 
requirements. 



The Preliminary 
Design Walkthrough 

Is an exercise used to 
clarify critical paths, 

functions and 
relationships among 

modules, and 
Interface compatibility 

with other systems. 

7.0 Testing Guidelines 

Provide general guidelines for Unit Testing, the overall strategy for software 
integration, and special capabilities required for validation testing. Detailed 
procedures will be provided in the Test Specifications Document, which is 
developed in the Detailed Design stage. 

For each module, present an overview of the Unit Testing procedures, which 
will be used to verify compliance with the bounds specified for the module and 
to verify the proper functioning of the processing within the module. Identify 
the types of error testing to be applied to data entry. Include a reference to any 
specialized software required. 

8~O Integration Strategy 

Discuss the integration strategy (either Top-down, Bottom-up, or combined) 
for integrating the individual modules into the completed system. Identify 
clusters of modules to be integrated as a functional group. 

9.0 Special Tools 

Identify special tools, so:etware or other capabilities required for the testing. 

10.0 Media and Installation Instructions 

Identify the type and format of storage media upon which the software will be 
distributed to the end user. Describe the installation instructions required for 
transferring the software from the media to the end user's system. 

11.0 Appendices 

The Preliminary Design appendix should include a PreliIrJnary User's Manual 
which is usually bound separately. It functions as a guide for the format, tone 
and required content of the final User's Manual. It also provides a graphic 
depiction of the required user interfaces for the design and coding phases of 
the project. Documentation requirements often change when the actual 
physical document is seen by the end user. Allowing the end user the 
opportunity to see and make changes to the Preliminary User's Manual reduces 
the amount of time lost to modifications of the system and documentation in 
the later phases of the project 

The appendices also should contain any supplemental information, such as 
tables or code listings. 

Preliminary Design Walkthrough 

The Preliminary Design Walkthrough evaluates the feasibility and practicality 
of the proposed design approach prior to proc~eding to the Detailed Design. 
The Walkthrough traces critical paths through the design, and the members of 
the review team are responsible for tracking specific operations that the module 

39 



40 

" D.esign 

Phase 

should petionn. If successful, the Walkthrough will clarify critical paths, 
functions and relationships among modules, and interface compatibility 
with other systems. It should also identify problems and omissions. The 
primary objective of the Preliminary Design Walkthrough is to ensure that 
the system design accurately and comprehensively meets the end user's 
requirements. All elements of the design model must be traceable to the 
End User Requirements developed in the Planning Phase. 

At a minimum, the Preliminary Design Walkthrough should evaluate: 

• System intelf'aces; 

.. Software structure; 

• Software environment; 

• Module functionality; 

• Module interaction and control; 

• Data flow; 

• Data structure; 

• Data access; and 

• Conformity of the system to the end user requirements. 

The Preliminary Design Walkthrough is conducted by the design team and 
supervised by the Project Manager. It should be attended by representa­
tives of each project team (usually the team leader), the end user and 
management personnel. Prior to the Walktbrough (preferably a week), all 
preliminary documentation and the agenda for the Walkthrough should be 
distributed to the participants for review and comment. The designers 
should prepare a fonnal agenda, including the following items: 

• System objectives; 

• Summary of the System Specifications; 

• Alternatives considered but rejected (and why); 

• Proposed structure; 

• Data flow through the proposed structure; 

• Proposed modules; 

• Verification of the functional requirements of the proposed mod­
ules; 

• Bounds and limits on the proposed. design; and 

• Additional considerations. 

Careful adherence to the agend~ keeps the Preliminary Design Walkthrough 
orderly and efficient. A walkthrough is not a complaint session. Accord­
ingly, the tone should remain positive, constructive and directed toward the 



The primary objective 
of the Preliminary 

Design Walkthrough 
Is to ensure that the 

system design 
accurately and 

comprohenslvely 
meets the end user's 

requirements. 

software design. Minutes of the meeting should reflect all important comments 
and action items. If properly conducted, the Preliminary Design Walkthrough 
will ensure that the design has technical merit and that management should 
approve further development. 

If major problems are encountered with the design, the design team must at a 
later, s~parate meeting decide upon the proper corrective action and revise the 
design. In such event, another Preliminary Design Walkthrough must be 
scheduled. 

Upon successful completion of the Preliminary Design Walkthrough, the 
System Prototype is produced. It is a working program that uses the approved 
design of the structure of the system and contains the "empty shell" of all of the 
modules, but has "stubs" or "dummies" of the actual functions within the 
modules. The "stub" does nothing more than announce its execution and 
acknowledge the receipt of any transferred data from the calling module. This 
operating, albeit stripped-down, version of the proposed software system is 
known as a shell (or skeleton) and verifies the logical structure, user interface, 
overall concept and logical flow of the proposed system. The System 
Prototype: 

• Reinforces the development team's confidence in the selected design; 

• Reinforces management's confidence in scheduling commitments; 

• Reinforces the end user's confidence in the human interface; 

• Demonstrates the functionality of the intermodule interfaces; and 

• Provides a test bed for the integration of completed modules. 

Detailed Design 

The major objective of the Detailed Design Phase is to create a design of the 
entire program which precisely defines the function and internal procedures of 
each module in the system. The entire program must be completely described 
in sufficient detail that the programming task is simply a matter of converting 
the Detailed Design description into code. 

The Detailed Design represents the complete system "on the drawing board." 
For this reason, the comprehensiveness of the documentation is crucial: what 
is documented is the design itself. If the documentation is incomplete, there 
is no design. Before allowing the process to proceed to coding, management 
must be satisfied that the design process has resulted in a complete operational 
specification for each computer program and sub-program and that the design 
has been tested and approved. The Detailed Design Document is the master 
blueprint for the proposed system, and its completeness and integrity are the 
keys to the success of the project. 

The Detailed Design builds on the structure of the Preliminary Design, refming 
and elaborating the overall design to establish the design of each individual 

41 



· Design 

Phase 

During the Detailed 
Design Phase, each 
Individual module's 

alogrlthms, structure, 
Internal processing, data 

flow, Intermodule 
Interfaces and test 

specifications 
are defined. 

42 

system module. This is the stage in which the detailed algorithms for each 
of the modules are written. During this phase (which precedes the creation 
of programming code) each individual module's algorithms, structure, 
internal processing, data flow. intermodule interfaces and test specifica­
tions will be defined. The problem defined by the user has now been 
completely translated into a detailed computer solution. 

To preserve the integrity of the project documentation, it is important that 
the internal design of each module be represented using a single, standard 
technique acceptable to all members of the design team. This internal 
definition of the modules is accomplished by one of a variety of accepted 
methods, such as Flowcharts, Pseudo Code, Structured English or Decision 
Tables. 

Each module in the Detailed Design may be defmed simultaneously by one 
or more of several analysts working independently. In fact, it is possible 
that a given module may even advance through Coding and Unit Testing 
while other modules are still in the Detailed Design stage. The steps of 
Detailed Design, Detailed Design Walkthrough, Coding, Coding 
Walkthrough and Unit Testing may take place at different rates for each 
module in the overall system. This parallel activity can allow for the 
integration of the modules in an ordered sequence, if emphasis is placed on 
completing groups of modules which must be integrated together. 

Thoroughly reviewing the documented design and testing the design by 
analytical methodologies are critical to ensuring that the Detailed Design 
is workable. These activities are executed during the Detailed Design 
Walkthrough. Accordingly, during the Detailed Design Phase a detailed 
test plan (to become part of the Test Specifications Document) must be de­
veloped. 

The Test Specifications Document provides an overview of the testing to 
be conducted for the duration of the development project. It provides the 
schedules of tests, the procedures to be used, and the content and format of 
the test data. During the Design Phase, it is important to plan the order of 
integration of the modules, the type of integration, the schedule of hard­
ware availability, and the schedule of completion dates. Once these factors 
have been evaluated and responded to satisfactorily, a resource schedule of 
all the modules can be created. The schedule contains, along with the 
module name, a reference to the scheduled Unit Test date, and references 
to the required test data. The list assures that resources required for the 
integration testing, such as hardware and software "drivers" are available 
or are created prior to the required test date. 

The distinctions between stages and phases can blur slightly as the individ­
ual modules advance through the design and testing phases. Unlike the 
Project Plan Document or Preliminary Design Document which must be 
completed as a unit before the project can advance, each module of the 
design may advance at its own pace until it becomes a part of the integrated 

---I 



system. Different modules of the system may be in varying stages of comple-, 
ti\}n at any given moment due to the complexities of designing, testing, and 
integrating each module. When the design is tested and approved, it passes to 
the Coding and Testing Phase. 

The Testing Team manager is responsible for maintaining and updating the 
Test Specifications Document. During the Detailed Design process, the Source 
Control Library must be monitored and continuously updated by the Source 
Control Librarian. 

Detailed Detailed Design Document Format Design 

This document updates and supersedes the Preliminary Design Document. 

1.0 System Overview 

Generallyrequires only minimal updating from the Preliminary Design speci­
fications. 

2.0 Relevant Documentation 

Update to reflect any additional documents, reference material, specifications 
and manuals added since the Preliminary Design. 

3.0 Design Overview 

The design overview should not have changed dramatically from the Prelimi­
nary Design. It should contain, however, details or clarifications added during 
the Detailed Design, including modifications to the structure, data flow, and 
hierarchy diagrams. 

4.0 Description of Modules 

Update the module descriptions, providing sufficient detail so that coding can 
commence when the Detailed Design Document is completed. 

4.1 Overview 

A complete narrative of the procedures within each module updates the 
Preliminary Design description. The narratives contain information on the 
inputs, outputs and processing for each module in the system. This is usually 
represented as a series of charts or matrices. In an appendix, place a detailed 
Structured English or Pseudo Code listing for each module. 

The Detailed Design additions shoul9 also include the definitions of the labels 
and variables in each module, as well as the global data which are accessed by 
each module. This information is also represented as a series of tables or 
matrices and jnclud1ed in an appendix. Design notes or comments on the 
procedures utilized in the design of each specific module also should be 
included in an appendix. 

43 

\ 



, , 
. Design .' 

_ Phase ' 

44 

,,4.2 Intermodule Interfacing 

Provide a narrative description of all of the intermodule interfaces. Include 
a,diagram and/or tabular description of the input and output performed by 
each module, including variables passed, file I/O, and printing. 

Include a diagram of the video displays that will be presented to the end user 
for input and output. Place hard-copy output or reports generated by the 
modules in an appendix. 

Present a table or matrix of the control or data variables passed to or from 
any subprograms within each modulf~. Create a single cross reference 
matrix which specifies all other modules called by each module. 

4.3 Data Dictionary 

Normally added during the Detailed Design, the Data Dictionary contains 
descriptions of all global items such as data, variables or buffers; items 
local to a module, such as data, variables or buffers; and the structure and 
organization of all flles accessed by the modules. 

4.4 Additional Information 

Provide additional comments which might assist the coding personnel, 
r,llch as bounds and limits, error-handing guidelines or performance 
characteristics. 

5.0 File Structure and Global Data 

This section should not have changed markedly from the Preliminary 
Design, and should normally require only updating to reflect additions 
mandated by the the detailed design of the modules. 

6.0 Requirements Cross Reference 

Completed during the Preliminary Design. 

7.0 Testing Guidelines 

Completed during the Preliminary Design, it should have changed very 
little. Include updates. 

8.0 Integration Strategy 

Completed during the Preliminary Design, it should have changed very 
little. Include updates. 

9.0 Special Tools 

Completed during the Preliminary Design, it should have changed very 
little. Include updates. 



Test 
Specifications 

The distinctions 
between stages and 

phases can blur 
slightly as the 

Individual modules 
advancethroughtne 

design and testing 
phase. 

10.0 Media and Installation Instructions 

Completed during the Preliminary Design, it should have changed very little. 
Include updates. 

11.0 Appendices 

The Preliminary User's Manual created in the Preliminary Design should be 
updated to reflect additional information. The appendices should now contain 
all of the Pseudo Code descriptions, tables, matlices, diagrams, and other 
supplemental information required to complete the Detailed Design. 

Test Specifications Document Format 

1.0 Overview of Testing 

Provide an overview of the testing to be conducted. Describe the goal of the 
testing, types of testing to be performed, overall testing procedures and 
expectedresults. Include testing schedules and identify system elements which 
will be necessary for the test (for example, specialized hardware components). 

2.0 Reference Documentation 

List all the documents pertinent to the testing specifications. 

3.0 Test Plans 

Provide a detailed narrative of the testing approach, the schedule, and required 
software for each phase of testing. 

3.1 Test Phases 

Describe the Unit Testing phase of the coding task. Include a discussion of the 
test procedures for each module during the coding and unit testing and any 
schedule limitations or other requirements which should be brought to the 
attention of the coding team. 

\ 

Describe the Integration Test phase. Include a discussion of the test and 
integlation procedurecS for each module, the interdependency of any test upon 
another test or phase, and any schedule limitations or other requirements. 

Provide a summary of the Validation Test phase. Describe the test procedures 
that will be used for the system and any schedule or personnel limitations. 

3.2 Test Schedules 

Provide a timeline for the software testing. Include a chart (for example, a 
Gantt chart) showing the scheduled date of the test, the order of the tests, the 
interdependency of each testing phase, and the availability of resources 
required for the testing. 

45 



Design 
Phase . 

46 

3.2.a Unit Testing Schedule 

Provide a chart showing the schedules for the unit testing. Unit testing for 
specific modules is d.iJ;ectly related to the coding of each module, and as 
such must be constantly revised to maintain timelines. 

3.2.b Integration Testing Schedule 

Provide a chart showing the schedule for the integration testing. The inte­
gration testing for specific modules should be scheduled to coincide with 
the completion of the Unit Testing of the code, making allowances for the 
availability of personnel and hardware. 

3.2.c Validation Testing Schedule 

Provide a chart showing the schedule and order for each of the validation 
tests. 

4.0 Unit Testing 

Unit Testing compares individual modules to the design specifications. 
Using input data, the processing and error-handling paths through the 
module are tested for unpredictable results. This process results in a 
completely tested module. This section discusses the tests applied to a 
module to ensure that it complies to the Detailed Design Specifications. 
This section may be repeated as often as necessary to describe the Unit 
Testing of each module. 

4.1 Satisfaction of System Specifications 

For the module being tested, prQvide a reference to the System Specifica­
tions or Detailed Design Specifications. 

4.2 Testing Procedures 

Discuss procedures and techniques used in the testing of module functions, 
the module interface, file access technique(s), and bounds. Identify 
sp~cialized variables or flags included in the code for testing purposes. 

4.3 Testing Tools and Software 

Describe special tools, software, resources, or specialized methods used to 
assure accuracy. Discuss any testing software or drivers created especially 
for testing purposes. List the sources of testing software in an appendix. 

4.4 Test Data 

Discuss the format and content of the test data to be used in the testing. 
Include data sets that will provide for specific test cases, such as range or 
bound checking, and input validation checking. Test data may be placed 
in an appendix. 



Testing Is done In 
three phases: 
Unit Testing, 

Integration Testing 
and Validation 

Testing. 

4.5 Expected Results 

Discuss the anticipated processing and output results of testing. 

5.0 Integration Testing 

Integration Testing procedures use the unit-tested individual modules and 
"builds" to assemble and test the entire software package. This section 
discusses the testing procedures to be followed when the unit-tested module is 
integrated into the System Prototype. 

Integration Testing procedures must be designed to carefully test and discover 
errors caused by: 

• Incorrect coding of the interface as specified in the design; 

• Improperly accessing or modifying file and data structures; 

• Cascading errors caused by improperly accessing global data; 

• Control or module execution sequence errors; and 

• Faulty error-handling. 

Repeat this section as often as necessary to describe the Integration Testing of 
each module or group of modules. 

5.1 Satisfaction of System Specifications 

For the module being tested, provide a reference to the System Specifications 
or Detailed Design Specifications. 

5.2 Testing Procedures 

Discuss the procedure and techniques used in the testing. Indicate whether 
Top-down or Bottom-up Integration is to be used. Specify procedures that will 
be used to identify and control cascading errors. Describe procedures designed 
to assure that the entire program structure will be adequately tested during the 
integration of each module. Specify specialized variables or flags included in 
the code for testing purposes. 

5.3 Testin.g Tools and Software 

Describe special tools, software, resources or specialized methods that will be 
used to assure accuracy. Discuss testing software or drivers created especially 
for testing purposes. List the sources of testing software in the appendices. 

5.4 Test Data 

Discuss the format and content of the test data to be used in the testing. Include 
data sets that will provide for specific test cases, such as range or bound 
checking, cascading errors and improper intermodule interfacing. Test data 
may be placed in an appendix. 

47 



I;>esign 

. . Phase 
. . . 

48 

-----------

5.5 Expected Results 

Discuss the expected results of the integration tests and the anticipated 
output of the tests. • 
6.0 Validation Test Procedure 

Validation testing confmns that the entire integrated software system 
complies with the system specifications. This section discusses the various 
tests that are applied to the system. 

6.1 Satisfaction of System Specifications 

Provide a reference to the System Specifications, Preliminary Design or 
Detailed Design Specifications that the Validation testing of the system 
satisfies. 

6.2 Testing Procedures 

Discuss the procedures and techniques used in the validation tests. Note 
what each test will demonstrate and how successful execution will validate 
compliance with the design. 

6.3 Testing Tools and Software 

Describe special tools, software, resources or specialized methods used to 
verify the successful execution of the design criteria. 

6.4 Test Data 

Discuss the rolmat and content of the test data to be used in the Validation 
Testing. Include data sets that will provide for an evaluation of all aspects 
of the design criteria. 

6.5 Expected Results 

Discuss the expected results of the validation tests and the anticipated 
output of the tests. 

6.6 Performance Bounds and Limits 

During the Planning and Design Phases, there were performance toler­
ances and bounds placed upon the system. Specify the allowable range of 
those tolerances and bounds for the validation tests prior to the executing 
the Validation Testing. 

7.0 Appendices 

Contains information grouped. separately from the body of the text, for 
example, the sources of testing software and test data. 



----------------------------------- -------

A Detailed Design 
Walkthrough Is an 

exercise done to 
review the logic, 

structure and 
interfaces of a module 

prior to coding. 

Detailed Design l¥alkthrough 

When the design of a module is complete, the designers notify the Design Team 
Manager that the module is ready for a, Detailed Design Walkthrough. A 
Detailed Design Walkthrough reviews the logic, structure and interfaces of a 
module prior to coding. The- Test Specifications Document is also reviewed 
and evaluated. 

The Walkthrough is usually informal, conducted by another design team 
member who has been designated ,a walkthrough reviewer, or by a small 
walkthrough review team. If the design team is small, the use of a peer 
committee for the walkthrough is necessary. 

The Walkthrough is not intended as ajudgmentofan analyst's technical skins. 
The intention, rather, is to ensure a team-oriented consensus on the overall 
design. All criticism-of the system should be constructive. 

Walkthroughs are usually performed by an experienced analyst familiar with 
the project and the module's specifications or by a small committee composed 
of the Design Team and selected representatives from the Coding and Testing 
Teams. In both cases, the Design Team Manager should act as an impartial 
moderator and observer of the process. During the Walkthrough, the designer 
of the module presents the design, provides a step-by-step explanation of the 
design functions, and answers reviewers' questions. The reviewers examine 
the documentation of the module and recommend changes to ensure compli­
ance with the Preliminary Design or to COlTect detected flaws. Typical items 
examined by the reviewers and discussed by the designer include: 

• Correspondence of the modulets design to its specifications; 

• Practicality of the design in the designated programming language; 

• Quality of the design; 

• Clarity of structure and adherence to programming conventions; 

• Degree of modularity in the design, or structured programming viola­
tions; 

• Violations of established design conventions; for example, vm1able 
name conventions 

• Design errors, such as logic flaws; 

• Compliance with documentation standards; 

• Ease of maintenance; and 

• Functionality. 

Violations or errors noted by the reviewers are documented and recorded as 
potential action items by the Design Team Manager. Disagreements between 
the designer and the reviewers must be arbitrated and decided by the Project 
Manager or Design Team Manager. When the presentation and review have 
been completed, the reviewers must document all recommendations. 

49 



50 

At this point, a single reviewer, after consulting with the Design Team 
Manager, either approves the design or suggests revisions. If a walkthrough 
committee reviewed the design, it votes whether to accept the design or 
send it back to the Design Team for revisions. In either case, a list of action 
items is prepared for the designer. Documentation of the walkthrough is 
placed in the Source Control Library (SCL) by the Design Team Manager. 

During the revision process, the Design Team Manager monitors the 
revisions and updates the design schedule. After the designer completes 
the required revisions, the Project Manager will schedule another 
walkthrough. When both the redesign and the walkthrough have been 
completed and approved, the Design Document is updated. The module 
can move into the Coding and Unit Testing phase. 



Planning 
Phase 

Design 
Phase 

• Coding· and . 

Testing Phase 

Operation and 
Maintenance Phase 

Coding and Testing Phase 

The Coding and Testing Phase translates the documented, validated Detailed 
Design into computer program code and validates the code through rigorous 
testing. The objective of the Coding and Testing Phase is to verify that the 
coded program meets all requirements delineated in the Planning Process -
that is, in the End User Requirements and the System Specifications. In short, 
the goal is to have the software program perform precisely the work that was 
desired by the user at the outset of the project. This phase is not complete until 
there has been a formal approval of the coded software program by the project 
management. Ultimately, there will be a final acceptance ofthe program by the 
end userin the Operation and Maintenance Phase. No documentation is created 
in this phase. 

Coding 

The actual process of coding entails converting the logic flows delineated in the 
Detailed Design Document into executable program code in a specified 
computer language. It is important to understand that coding of individual 
modules can be accomplished in parallel by several programmers working 
independently. Therefore, it is essential that all coding be performed according 
to the programming standards specified in the Project Plan. Highly recom­
mended are "structured programming" techniques. While a detailed descrip­
tion of the techniques of "structured programming" are beyond the scope of this 
Guide, the reader is encouraged to consult Kernighan and Plauger's The 
Elements of Programming Style for insight into coding techniques and ex­
amples of well-constructed control structures.2 

Coding Walkthrough 

The major deliverable for the coding effort is an internally documented, error 
free, source code listing. The source code listing for each completed module 
must undergo a walkthrough and be approved before it can advance to Unit 
Testing. 

The Coding Walkthrough is an informal review of the source code by the 
Coding Team Manager or the programmer with responsibility for the coding 
effort. Conducted in the same manner as the Detailed Design Walkthrough, the 
Coding Walkthrough assures compliance of the code with the Detailed Design 
specifications, including the use of internal documentation and structured 
programming standards. It is essential that the Detailed Design and the code 
correspond to each other. Ifno errors or flaws are found, the cOded module is 
approved and returned to the coder for Unit Testing. 

2 B. Kernighan and P. Planger, The Elements of Programming Style, 
(New York: McGraw-Hill, 1974). 

51 



• -A-

.. 

52 

When design flaws are discovered in the walkthrough, it is necessary to 
return the module design to the Detailed Design phase. A Problem 
Information Form must be created and a Change Request Form must be 
forwarded to the Change Control Board as quickly as possible. Documen­
tation of changes is required. 

Alpha Testing 

Unit Testing, Integration Testing and Validation Testing form what is 
called Alpha Testing, which confmns that the finished product conforms 
to the design specifications. Unit Testing focuses on individual modules, 
while Integration Testing focuses on the modules as a group. Validation 
Testing focuses on the assembled software to ensure that it meets all the 
System Specifications prior to end-user testing. Software testing in a struc­
tured environment verifies the accuracy of the coding and its conformance 
to design specifications. It also establishes quality control standards for 
future maintenance of the software. Responses to standardized inputs are 
tested to ensure that the software performs reliably. Defective software 
errors generally falls into three categories: it does not meet specifications, 
does not match the documentation, or gives unexpected or inconsistent 
results. 

Unit Testing 

The coderinitiates Unit Testing by specifying the types of tests, the test data 
and expected results for a given module. Test cases and data are then 
generated, based upon the requirements in the Test Specifications. Test 
data should include both "in-bounds" and "out-of-bounds" conditions -
that is, data that is both reasonable and unreasonable. Test results should 
be compared to the expected results. 

Unit testing should not begin until the intermodule interfaces have been 
correctly established and all modules demonstrate correct handling of all 
conditions. Programs known as "drivers" may need to be constructed by 
the Coding Team to feed the data to the module in an acceptable fonnat or 
to record the processing results. 

Source code listings generated for both the driver software and the source 
module should be dated and filed in the Source Control Library (SCL)~ 
Source code listings are continually updated during Unit Testing until all 
tests are successfully completed and a final listing, d..;ver test code, and test 
results are entered into the SCL. Test cases created during Unit Testing 
may be used again to form a subset of tests in Int~gration Testing. 

Integration Testing 

Integration Testing procedures use the unit-tested individual modules and 
"builds" to assemble and test the entire software package. Integration is 



Unit Testing compares 
Individual modules to 

the design 
specifications. Test 

cases are generated 
and may be used 

again to form a subset 
of tests In Integration 

Testing. 

accomplished by replacing the "stubs" in the System Prototype , s structure with 
the unit-tested modules. During Integration Testing, the Test Specifications 
Document is used to guide the order, schedule and the methodology of testing. 

Integration testing may be performed with either a "Top-down" or "Bottom­
up" technique, or a combination of the two. In Top-down testing, individual 
stubs are replaced so that modules highest in the hierarchy of the system are 
tested fIrst, followed by all subordinate stubs in the functional module. This 
approach is illustrated in Figure 14: Top-down Integration. The Top-down 
technique allows all of the modules that fonn a major function to be tested and 
demonstrated individually. A major data input module might be suitable for 
Top-down integration. 

1 

I I 
2 5 7 

I I 
j I J I 
3 4 6 8 9 

Figure 14: Top-down Integration 

The Bottom-up approach integrates one or more modules into a group of 
modules which is then treated as a single entity or build. The individual 
modules within a build are tested, and then the builds are tested. Individual 
modules and builds are then integrated into the overall structure. A build 
usually replaces a single stub on the system prototype. A posting or update 
routine might be suitable for Bottom-up integration. (See Figure 15: Bottom­
up Integration.) 

In complex applications or applications with a large number of modules, it is 
not always possible or desirable to complete the integration of all modules at 
the same time. An acceptable compromise is to test functional subsets 
independently and then integrate the subset with the overall structure of the 
program. The entire package should be tested each time a prog:r:;tm stub is 
replaced by a module. 

53 



54 

Coding and­

Te~ting Phase" 
. . - M 

I I 
1 2 3 

I I 
I I I I 
1 1 2 3 3 

Build #1 Build #2 Build #3 

FigtU'e 15: Botton'l.-up Integration 

Scheduling requirements and resources also may make complete integra­
tion testing of large numbers of modules impractical, in which case 
Bottom-up implementation may be required. Usually, scheduling require­
ments for personnel and equipment or parallel testing requirements force 
the use of both integration techniques. Moreover, the sequence of integra­
tion testing may also be influenced by the function of the modules. For 
example, all of the modules associated with a major program function may 
need to be integrated prior to the testing of subordinate modules. 

When a new module or build is added to the developing structure, tests 
pertaining to the new module are conducted, along with all of the old tests 
for the previously integrated modules. The purpose of this testing is to 
assure that the addition of the new module has not caused cascading errors. 

Integration testing is complete when all modules have been installed, tested 
and conform to specifications in the Test Plan. 

Validation Testing 

The purpose of Validation Testing is to test the compliance of the software 
with the System Specifications by demonstrating the execution of all 
System Specifications in a complete system. 

Ideally, the testing should be conducted by representatives of the end user 
and technical staff not involved in the design or software coding. Valida­
tion test results are then evaluated by the end user and the development . 
team. 

A Validation Test Plan, listing features and functions to be validated, is 
prepared and distributed to the validation testing personnel. The plan is 
based on the criteria in the System Specifications an.drelevant sections of 



Validation Testing 
confirms that the 
entire Integrated 
software system 

complies with the 
Systems 

Specifications. This 
testing should be 

conducted by 
representatives of the 

end user and 
technical staff not 

Involved In the design 
or software coding. 

the Test Specifications Documel1t. In most cases, the Int~gration Test plans 
and procedures fonn the basis for the Validation Test Plan and, in some cases, 
may be sufficient to establish the satisfactory Validation Testing. 

If Valida'don Testing is successful, the end user should fonnally sign a 
document accepting the validated software. Final acceptance and delivery of 
the completed system software and documentation, however, is usually de­
ferred until after the fmal phase of testing, known as Site Testing or Beta 
Testing. 

Site Testing (Beta Testing) 

Beta Testing is an operational test of the software at selected user sites, which 
allows the Testing and Design Teams to identify unexpected problems. Beta 
Testing requires the close cooperation of the end user and the Development 
Team. 

The test plan for the Beta Test must be defined in writing prior to the actual test. 
This will prevent confusion about what constitutes acceptable measurements 
of system perfonnance and what procedures will be used to report errors. 
Typically, a few of the technical members of the end user sti:l.ffmust be shown 
how to complete PIPs and maintain usage and error logs. A series of meetings 
should be held at the close of the test to allow the development staff to collect 
comments about the operation or documentation of the system. At the 
completion of the Beta Test, the Project Manager decides if the software is 
ready for general use. 

Upon completion of Beta Testing (or Validation Testing if there was no Beta 
Test), the final update to the Detailed Design is made. The document now 
represents the Completed Design and becomes the basis for future software 
maintenance. The Preliminary User's Manual (which was updated during the 
Detailed Design) is updated to reflect any changes or corrections in the Testing 
Phase and becomes the Final User's Manual. 

55 



56 

Planning 
Phase 

Design 
Phase 

Coding and 

TestIng Phase 

Operation and 

Maintenance Phase 

Operation and Maintenance Phase 

Operational Management of the Software 

The [mal phase of software development, the Operation and Maintenance 
Phase, begins when the software is installed and is operational at the end 
user's site. After release of the software to the end user, Operational 
Management is required. While primarily conducted by the Maintenance 
Team, Operational Management is the responsibility of both the develop­
ers and the end user. Essential management activities include protection 
of the source code and control of its dissemination, protection of all 
applications software and operational data from accidental loss, mainte­
nance of software documentation, and communication with the end user. 
Communication includes information about modifications, the use of 
alternate peripherals, minor flaws or useful additions and modifications. 

Protection of software programs and user data is best accomplished by es­
tablishing systematic software management procedures, including regular 
backups and the creation of an archive of all production programs at an off­
site location. The use of serialized and registered master diskettes or tapes, 
the registration of user sites, and continual revisions in both the software 
and documentation will discourage ummthorized copying of the software. 

Maintenance 

Maintenance in the form of required revisions and upgrades requested by 
end users can be accommodated by careful planning. Moreover, if the 
software has been developed according to structured guidelines, mainte­
nance can be performed efficiently and economically. 

Maintenance can be divided into three distinct activities: 

• Correcting program errors and faults after the program has been 
released to the end user; 

• Enhancing or modifying the features and functions requested by 
the end user; and 

• Modifying the program because of a change in the operating envi­
ronment, such as the installation of a revilJed operating system or 
the porting of the software to a new hardware environment. 

To perform cost-effective maintenance, the following documentation is es­
sential: 

• The System Specifications; 

• The Completed Design Document; 

• The User's Manual; 

• The final version of the internally documented source code; and 

• The test data and test results used during development. 



Protect/on of software 
programs and user 

data Is best 
accomplished by 

establishing good 
software management 
procedures, Including 

regular backups an'; 
the creation of an 

archive of aI/ 
production programs 
at an off site location. 

These documents should be in the Source Control Library and available on 
disk or tape. Personnel responsible for the maintenance of the software 
should review the documentation prior to releasing the software to the end 
user. This pre-rtt>lease review is essential because the SCL provides the only 
source for reference and supporting materials. 

Procedures for the end user to report software problems and to request 
changes or enha.r.cements should be established prior to release. Moreover, 
as in the Development and Testing Phases, the global effect of changes or 
modifications must be carefully reviewed by the CCB before any action is 
taken. 

Maintenance can be a very expensive part of a software project, often caused 
by the developer's inability to diagnose all of the potential problems which 
can develop during operational use of the software. Problems also may 
develop if the original programming and development personnel left the 
project during the life of the software. 

Performing corrections, enhan.cements and modifications on-site is very 
expensive and should be avoided if possible. O!l~site maintenance must be 
performed at the end user's convenience and upon the end user's system 
which normally lacks the tools and utilities of the development system, and 
may be a very different configuration than the one used by the development 
team. 

57 

I 



58 

Appendix 

Recommended Reading List 

Requirements Analysis 

DeMarco, T. Structured Analysis and System Specification. New York: 
Yourdon Press, 1978. 

Fairley, R. Software Engineering Concepts. New York: McGraw-Hill, 
1985. 

Orr, K. Structured Requirements Specification. Topeka: Ken Orr and As­
sociates, 1981. 

U.S. Department of Justice, Bureau of Justice Statistics. The Criminal 
Justice Microcomputer Guide and Software Catalogue, by SEARCH 
Group, Inc. \Vashington D.C.: U.S. Government Printing Office, 1988. 

Weinberg, G. An Introduction to General Systems Thinking. New York: 
Wiley-Interscience, 1975. 

Weinberg, G. and Weinberg, D. On the Design of Stable Systems. New 
York: Wiley-Interscience, 1979. 

Design 

Connor, D. Information System Specification and Design Road Map. 
Englewood Cliffs: Prentice-Hall, 1985. 

Gane, C. and Sarson,T. Structured Systems Analysis: Tools and Tech­
niques. Englewood Cliffs: Prentice-Hall, 1979. 

Higgins, D. Program Design and Construction. Englewood Cliffs: Pren­
tice-Hall, 1979. 

Jackson, M. System Design. Englewood Cliffs: Prentice-Hall, 1983. 

Martin, J. and McClure, C. Structured Techniques: The Basis of CASE. 
Englewood Cliffs: Prentice-Hall, 1988. 

Myers, G. Composite Structured Design. New York: Van Nostrand, 1978. 

Orr, K. Structured Systems Development. New York: Yourdon Press, 
1977. 

Page-Jones, M. The Practical Guide to Structures System Design. New 
York: Yourdon Press, 1983. 



Pressman, R. Software Engineering: A Practitioner's Approach. New York: 
McGraw-Hill, 1982. 

Stevens, W. Using Structured Design: How to Make Programs Simple, 
Changeable, Flexible, and Reusable. New York: Wiley-Interscience, 1981. 

Yournon, E. Techniques of Program Structure and Design. Englewood Cliffs: 
Prentice-Hall, 1975. 

Yourdon, E. and L. Constantine. Structured Design: Fundamentals of a 
Discipline of Computer Program and Systems Design. Englewood Cliffs: 
Prentice-Hall,1979. 

Yourdon, E. and Constantine, L. Structured Design. New York: Yourdon 
Press, 1978. 

Page-Jones,M.LogicaIConstructionofPrograms.NewYork:VanNostrand,· 
Reinhold, 1974. 

Costing 

Boehm, B. Software Engineering Economics. Englewood Cliffs: Prentice­
Hall,1981. 

Coding 

Dijkstra, E. A Discipline of Programming. Englewood Cliffs: Prentice-Hall, 
1976. 

Kernighan, B. and Plauger, P. Software Tools. Reading, Massachusetts: Ad­
dison-Wesley, 1976. 

. Kernighan, B. andPlauger, P. The Elements of Programming Style. New York: 
McGraw-Hill, 1974. 

Shooman,M. Software Engineering. New York: McGraw-Hill, 1983. 

Project Management 

Brooks, F.P. The Mythical Man-Month. Reading, Massachusetts: Addison­
Wesley, 1975. 

Gunther, R. Management Methodology for Software Product Engineering. 
Reading, Massachusetts: Addison-Wesley, 1978. 

Yourdon, E. Managing the Structured Techniques. Second Edition. Engle­
wood Cliffs: Prentice-Hall, 1979. 

Yourdon, E. Structured Walkthroughs. 2nd ed. New York: Yourdon Press, 
1978. 

Wiest, J. and Levy, F. A Management Guide to PERTICPM. Second Edition. 
Englewood Cliffs: Prentice-Hall, 1977. 

59 



60 

Systems Analysis 

DeMarco, T. Structured Analysis and System Specification. Englewood 
Cliffs: Prentice-Hall; 1979. 

Orr, K. Structured Systems Development. New York: Yourdon Press, 
1977. 

Testing 

Anderson, R. Proving Programs Correct. New York: Wiley Interscience, 
1974 . 

. Meyers, G. The Art 0/ Software Testing. New York: Wiley Interscience, 
1979. 

Shooman, M. Software Engineering Design, Reliability, and Manage­
ment. New York: McGraw-Hill, 1983. 

Yourdon, E. Techniques of Program Structure and Design. Englewood 
Cliffs: Prentice-Hall, 1975. 

Maintenance 

Glass, R. and Noiseux, R. Software Maintenance Guidebook. Englewood 
Cliffs: Prentice-Hall, 1981. 

Halstead, M. Elements o/Software Science. New York: Elsevire, 1977. 

Lientz, B. and Swanson, E. Software Maintenance Management: A Study 
o/the Maintenance o/Computer Software in487 Data Processing Organi­
zations. Reading, Massachusetts:Addison-Wesley, 1980. 




