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COMPUTER AS~ISTED VOICE IDENTIFICATION SYSTEM 
(C.A.V.I.S.) 

FINAL -REPORT 

GRANT NO. 85-IJ-CX-0024 

LOS ANGELES COUNTY SHERIFF'S DEPARTMENT 

OCTOBER 1989 

ABSTRACT 

Project C.A.V.I.S'. is a scientific research effort to 
develop a computer based system to assist forensic voice 
examiners in their task to identify or eliminate suspected voices 
associated with criminal activity. September 30, 1989 marks the 
cUlmination of the four year research effort in which a forensic 
audio work station was developed with capabilities to analyze 
voices and other recorded forensic audio events. 

The major goal of this project is to develop a system that 
is capable of dealing with transmission-independent, 
text-independent voice data, and rendering objective decisions. _ 
Throughout this project, our main target has been to develop a 
oman-machine' interactive system of voice identification, as an 
investigative tool, and eventually as a court room tool. 
Numerous speech parameters were extracted and tried - some of 
them kept evolving for improvement. The research revealed that 
high identification performance rates can be accomplished by 
using a combined set of speaker specific parameters. 

This report describes our work on voice data processing 
techniques, procedures of parameter extraction, strategies used 
in the speaker specific parameter selection, performance rates in 
voice identification and verification proc~sses, and implications 
for future application • 
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1 INTRODUCTION 

1.1 Introduction 

1 

This is the final report on Project C.A.V.I.S., Computer 

Assisted Voice Identification System, a research effort funded 

primarily by the National Institute of Justice under grant No. 

85-IJ-CX-0024. The report presents the original project goals, 

scope, experimental procedures in speech signal processing, 

speech parameter extraction, voice identification and 

verification operations, and implications for future applications 

as a forensic investigative tool. 

The voice has long been used as a means to identify 

criminals. CUrrently, the Los Angeles county Sheriff's 

Department uses the combined method of aural and spectrographic 

analysis for voice identification. The need and importance of 

developing an objective, expedient and reliable technique of 

speaker identification is increasing. 

In addition to the Los Angeles county Sheriff's Department 

ar;,,:: '9 few other local law enforcement agencies, The Federal 

Bureau of Investigations (Koenig, 1986) has been providing 

speaker identification services but limiting its use as an 

investigative tool. Speaker or voice identification, by the 

aural and spectrographic method, continues to be controversial 

regarding its reliability and acceptability as a court room 

tool. The main source of the controversy is related to the 

subjectivity in the decisions rendered by a human examiner. 

Another inherent problem associated with the spectrographic 

method is that it is very time consuming and cumbersome • 
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Unlike the rigorous research effort in the area of speech 

recognition, there seems to be only a handful of research groups 

that are engaged in speaker recognition in general fields. 

Speaker recognition in commercial applications, such as security 

access control, has shown to provide a high verification 

performance as high as 99.9% (Naik and Doddington, 1987). In 

2 

these cases the speaker is considered to be cooperative as he or 

she utters prescribed phrases and the system commonly uses a 

fixed type of transmission system for all voice entries. 

In contrast, various difficulties are associated with 

speaker recognition in forensic environments. criminals are 

inherently uncooperative. They do not read prescribed phrases, 

unknown paths and transmission channels are employed in the 

course of committing the crime, and mUltiple speakers involved in 

conversation is common. Under such circumstances, full 

automation of speaker identification appears inhibitory. 

Extra cautions are always inevitable in the variety of real 

cases in screening, editing, and segmenting the right voice 

sources. Text-independency is a feature that is of great 

attraction to forensic use. A drawback of the currently 

practiced method (aural and spectrographic comparison) is that it 

requires verbatim texts from all speakers involved. The need for 

verbatim voice samples generates some constraints, such as 

painstaking manual word matching. Further, it usually involves 

lengthy legal procedures to obtain the verbatim voice samples 

from the suspects and alerts the suspect that he is being 
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3 

investigated. 

In implementing a computer based voice identification system 

to overcome the above mentioned problem, we are interested in 

achieving two types of voice identification procedures: speaker 

identification and speaker verification. 

Speaker identification is typically defined as a process in 

which a voice sample of an unknown speaker is compared with two 

or more voice samples collected from multiple known speakers, and 

the one from the known group is chosen whose voice is the closest 

to that of the unknown1 • On the other hand, speaker verification 

is a process in which two voice sources are provided for 

comparison, and the task is to determine, according to a 

prescribed criterion value, whether the two voices belong to the 

same speaker (case of verification), or to different speakers 

(case of rejection). 

1.2 Background and Motivation 

The concept of being able to determine whether two recorded 

voices were uttered by the same speaker is based on the 

combination of two basic premises. The first being the 

unlikelihood that the physiology and anatomy of the voice 

1 The term 'voice identification' is a generic name which 
encompasses various aspects in the process of determining the 
identity of an unknown speaker, given a person's voice samples 
and voice exemplars collected from one or more known speakers . 
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production mechanism1 for any two people would be exactly the 

same. secondly, that the manner in which a person has learned to 

speak is going to DG characterized by a multitude of differing 

external influences2 • When we combine these two variables of 

biological and learned speech characteristics, the statistical 

basis is derived that no two people will exhibit that exact same 

speech characteristics. 

The Los Angeles County Sheriff's Department has been active 

in the forensic analysis of recorded audio evidence since the 

early 1970·s. Initially, the audio laboratory concentrated its 

efforts on the intelligibility enhancement of recorded 

conversations. The sources and quantity of the recordings 

increased as modern technology provided society with a variety of 

communication and recording media.. Inherently, the laboratory 

began to provide additional forensic support in the areas of 

transcript verification, tape authentication and analysis of 

recorded acoustic events such as explosions, gunshots, aircraft 

performance and voice identification. 

As mentioned, the method of voice identification currently 

being used by the laboratory at LASD is the combination of 

critical aural listening and the comparison of audio 

spectrograms. This procedure is encumbered by the requirement to 

1 The voice mechanism consists of the physiological and 
anatomical parts, beginning with the vocal cords, the resonance 
system (pharynx, vocal cavity, nasal cavity), and articulators 
~teeth, lips, tongue, and jaw). 

The manner in which a person learns to speak is influenced by 
his environment, which consists of his parents' way of speaking, 
his peers that he grew up with, and differing locales where he 
may have lived. 
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have the exact phrases available to compare and the lengthy and 

tedious procedures to compare and analyze the spectrograms. 

The realization soon came that a system was needed which 

could aid the voice examiner in arriving at his decision. 

Ideally, the system would be able to do this without having to 

have the same text spoken, be able to work with varying 

transmission media, provide objective probabilities and still be 

a time saving procedure. Although private industry is making 

great advancements in the application of speech and automation, 

they have not focused on the unique application of voice 

identification to the forensic environment. Thus, the Los 

Angeles County Sheriff's Department assumed the leadership role 

by establishing its own research effort • 

1.3 Need For Computerization 

The development and technique of using an audio spectrograph 

to identify voices arose during the second world war. In the 

early 1970's these procedures were tested and refined. In an 

attempt to automate the process, the obvious transition to make 

was to incorporate the fast processing and analysis capabilities 

of computers. The research staff chose to use microcomputers in 

the development and final configuration of the C.A.V.I.S. System. 

This approach allowed for tremendous costs savings over mini or 

main frame computers and provided ease in making the workstation 

multi-tasking • 
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1.4 Comparison Of Voice Identification Techniques 

To familiarize the reader with the currently used method of 

spectrographic analysis (commonly known as voice print), a brief 

summary follows: 

6 

As previously mentioned, in order to utilize the technique 

of voice print analysis, it is essential that the two recorded 

voices to be compared contain similar texts, which enables 

verbatim pattern matching comparisons. An instrument called a 

sound audio spectrograph is used to produce the voice prints (See 

Figure 1.1). 

Each print reveals an individual speaker's speech 

characteristics of a word or phrase in the frequency, intensity, 

and time domains (See Figure 1.2). A voice examiner will analyze 

the prints paying attention to timing and frequency 

relationships. He will also perform a critical listening 

c.omparison of the two voices paying attention to tonal quality, 

pitch rates, articulation, and any signs of pathologies. The 

examiner, relying on his expertise, then forms his opinion as to 

whether the voicE3 belong to the same speaker. This opinion is 

based primarily on the examiner's subjective expert judgment. An 

excellent summary of the theories, methodology and historical 

reviews on forensic voice identification is found in a book by 

Tosi(1979) • 
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Usually, an examiner will offer an opinion in one of the 

following manners: 

Identification 

No Decision 

Elimination 

The examiner then follows his opinion by giving an 

indication as to how confident he is regarding his decision. 

This confidence level may be assigned as one of the following: 

ww 
Moderate 

High 

Very High 

7 

It would be difficult for an examiner to offer greater 

degrees of diversity in his decision. Examiners in the past have 

been asked during testimony to assign a percentage level to their 

confidence. Indeed, how would an examiner be able to distinguish 

between a psychological confidence of 81% versus an 84%, 

specially, if he were asked to do the same exam again a year 

later? The methodology applied in Project C.A.V.IoS. will be 

discussed in great detail in Chapter 3 and 4, but a brief 

overview is offered here. 

Unlike the spectrographic method, the C.A.V.I.S. approach 

will be able to analyze and compare voices with different 

recorded text, hence, text-independence. C.A.V.I.S. focuses more 

on the tonal activity of the speaker and microscopically 

characterizes the manner in which he controls his glottal 

wavelets. As an example, with C.A.V.I.S., an individuals pitch 
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8 

is not characterized by simply the mean of his pitch~ but rather 

the total distribution of his pitch production is characterized 

and reduced to three statistical parameters. Once the speech 

characteristics for the two comparison samples have been 

extracted, an assignment of a "Proximity Index" is made which 

indicates the degree of similarity between the two samples. 

C.A.V.I.S. dynamically determines which speech features are best 

to use for a given comparison. The "proximity Index" is derived 

from the distributi'on of the general population obtained to date 

during the research project • 
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~.( _____________ Time about 2.4 seconds -------------~)o 

"lhere'.s a bomb in the plant. Get out." Speaker SL #2 Sep-1987 
I , I I r I I I I I 

There's a bo m bin the pIa n t Get Oll t 

~peaker S1. #1 Sep-1987 

There's a bo m bin the pIa 11 t Get 0 U t 

Figure 1.2 Sound spectrograms prepared from the same speaker • 
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1.5 Comparison To Other Systems 

The uniqueness of the C.A.V.I.S. methodology is that it 

focuses on the inherent problems and nature of a forensic voice 

comparison. Other systems currently in place or being developed 

by private industry do not lend themselves to the police 

environment. Voice based security systems used for building 

entry, for example, rely on previously obtained voice samples 

from a cooperative subject. This type of task lends itself to 

pattern matching techniques when similar text is available. 

Additional advantages these systems have is that usually they are 

performed in controlled environments and again, the subject is 

cooperative. Police type voice comparisons generally will not 

have a cooperative subject and the samples could come from a 

variety of transmission media. In order to obtain an exact 

exemplar of the question call the investigator would be required 

to reveal to the suspect that he is being investigated. 

Attempts at making a fully automated system for forensic 

purposes have failed in the past. Voice production is a very 

complex phenomenon. Unlike fingerprints which are static in 

nature, voice articulation is very dynamic. All speakers have 

their own intra-speaker variability which must be considered from 

a statistical point of view. The development of forensic black 

box systems attempting to analyze voices without any intervention 

of an operator is still far in the future. The difficulty stems 

from this type of system attempting to analyze a targeted voice 

which has not been screened for environmental or system 

contamination. The old adage applies, "Garbage in, garbage 
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out. II If the voice samples are not representative of the speaker 

then analysis should cease. 

C.A.V.I.S. is not a real time system. Post processing of 

the data is its lUXUry. The examiner/operator monitors and 

screens the data throughout the entire analysis process and is 

aware that some forensic cases will not lend themselves to 

analysis. It will become apparent to the police community that 

if a suspect makes an obvious attempt to disguise his voice or 

provides an inadequate amount of sample, that this is no 

different than the fingerprint examiner having no case to work 

because the suspect wore gloves or if the prints that were 

obtained were only partial or smudged. 
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2 OVERVIEW OF C.A.V.I.S. 

2.1 Interactive Design 

13 

Recognizing that the C.A.V.I.S. System is a tool to be used 

by an examiner establishes the premise that the examiner and not 

the machine is in charge. 

It has been proven through our experience as well as other 

reported studies on automatic speaker recognitions that some 

amount of human intervention should be retained to ensure 

adequate performance (Federicao et aI, 1987; Chen and Lin, 1987). 

with C.A.V.I.S. the interaction of the examiner begins with 

an aural assessment of the data available. Each of the following 

interactive steps are controlled and activated from a C.A.V.I.S. 

menu screen. Using an optical mouse, the examiner places a 

cursor over the desired function and presses a button on the 

mouse to begin that process. 

The examiner must first determine if their is sufficient 

quality and quantity of speech available from each sample. 

Basically, the sample must be representative of the speaker and 

be within an acceptable signal to Iloise ratio. Comparison 

samples with dramatically different speaking modes should be 

avoided. 

At present, disguised voice can be detected by the trained 

voice examiner whereas we do not have sufficient information to 

implement his knowledge into a computer algorithm. At the front 

end (before the computer process even begins), the operator must 

decide the degree of disguise. If it was determined to be 

excessive, then further analysis will be abandoned or at least he 
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will adjust the identification criterion properly to avoid 

erroneous results. 

14 

C.A.V.I.S. requires a minimum speech sample to consist of 10 

seconds of voiced utterances. Presumably, this length will 

approach a phonetic balance. The examiner is provided with 

C.A.V.I.S. editing software to create a compressed speech 

sample. (This and other software will be detailed later.) 

examiner calibrates the system and confirms whether proper 

digitizing of the sample has been performed. 

The 

We are aware of the popular and precisely defined cepstrum 

technique, originally invented by Noll(1967), and applied 

successfully for speaker verification research for commercial 

applicatic:m by Furui(1981a,1981b), which is designed to provide 

estimates of the pitch period. This algorithm could have been a 

convenient tool to make our system more automated. But due to 

the wide 'windowing of this algorithm, the pitch detected are 

gross estimates, and does not capture the fine dynamic variations 

of acoustic events of each wavelet. 

We c:oncluded that the cepstral technique may not be applied 

to an on-·going contextually unbounded speech process but, only to 

a short phrase unit, or a steady state phenomena, such as during 

a sustained vowel. 

We did not want to stake our conviction that 

speaker-dependent characteristics information is entrapped within 

a single wavelet. Hence, we devised an "interactive-technique" 

to detec·t and define pitches. The pitch detection task was 

performed by an operatior maki.ng use of an optical mouse, acting 

C.A.V.I.S. - LASD 



• 

• 

• 

on the graphically displayed signal and assisted by immediate 

audio playback, when needed. Therefore, this teclmique is 

tedious, but ensures the highest possible accuracy_ 

15 

C.A.V.I.S. speech parameters are derived from both time and 

frequency domain analysis techniques. In the time domain the 

examiner plays another role in confirming whether suspected 

samples have been automatically discarded by the software. 

The remaining speech parameters can be automatically 

extra.cted and a master data file created for the sample, but 

again, the operator has the option to monitor the progress at 

every stage and halt the process if a malady should occur. 

For his review, the examiner is presented with a graphical 

representation of the speech parameters derived from the 

speaker's available samples. 

The examiner then submits the parameters representing the 

speech samples to an identification program. The C.A.V.I.S. 

"Proximity Index" finally establishes a rating of the similarity 

between the samples based upon the distribution of the stored 

general population. 

2 • ~~ Hardware Integration 

Figure 2.2-1 is a photograph of the present state of 

hardware which makes up the C.A.V.I.S. work station. The 

evolution of the C.A.V.I.S. workstation was in three phases. At 

the beginning of the effort the research staff relied upon the 

three IBM AT microcomputers loaned by the U.S. Secret Service to 

become proficient in the C language programming environment. Due 
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to administrative complexities, it was not until well into the 

first year of the grant that equipment was in place to begin the 

recording and computer entry of the voice samples. 

The second stage began when the recording and initial 

research hardware was in placee Figure 2.2-2 is a diagram 

showing the equipment configuration used to record the voice 

samples. For the project's first recording session the subjects 

entered the sound booth where they were recorded reading prepared 

texts and spontaneously describing projected slides. 
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A 1/4 inch Fostex model 80 eight track tape recorder was 

used to archive the hundreds of voice samples acquired. The 

recorder's time code based autolocating system was used 

extensively to automate the procedure. Each speaker was assigned 

ala Ampex Grand Master 457 audio tape. A reference time code was 

plLerecorded on channel eight and each sample for a given speaker 

s1:arted at a specific time on the tape. The researchers 

fabricated a dual tone pulse generating system. Once the 

re:corder went into automatic record mode, the operator would 

press a button and a pulse was placed on track seven. A delayed 

pulse was then heard by the speaker to signal him to begin. The 

pulse on track seven was later used to automatically start the 

digitizing process for each sample. Track five contained a 

narration channel for tile operator's use. 
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In phase 1~ each speak8r was simultaneously recorded over 

three transmission media. The goal was to acquire data which 

could later be used to verify the effectiveness of the 

transmission line cancellation algorithm. Track one recorded the 

output of a Bruel & Kjaer type 2230 sound level meter equipped 

with a 4155 type 1/2 inch microphone. Track two recorded the 

intercepted outside phone line transmission and track three 

recorded a police body wire transmission of the sample. 

Subsequent recording sessions in phase 2 deleted the use of 

the sound level meter and body wire and the subjects telephoned 

the laboratory from varying remote locations. The resulting 

analog tapes of each session were cataloged and color coded 

throughout each phase of the procedure. 

Once the analog tapes were acquired, the next step was to 

enter the voice samples into the computer data base. A Compaq 

286 microcomputer equipped with a 70 megabyte hard disk became 

the heart of the digitizing system. To archive the massive 

amount of digital data, an Optimum 12 inch optical laser storage 

device was interfaced to the system. The laser has two Giga 

bytes of storage capacity per platter. The computer is also 

equipped with a Tecmar 60 megabyte tape backup system which was 

used to backup the digital data. 

The acquisition system utilizes a Data Translation model 

2801A 12 bit digitizing board to input and playback the audio 

samples. The researchers designed and fabricated an interfacing 

panel which allowed for the control of data levels, channel 

selection and auto starting of the digitizer. Anti-aliasing 
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filters were also incorporated into the interface. Additional 

equipment making up the data acquisition station includes a 

Spectral Dynamics model 375 narrow band analyzer with a model 348 

waterfall display, a Digital Audio Corporation model PDF2048 

programmable digital filter, a Hitachi 40 MHz oscilloscope, a BGW 

Systems model 85 audio amplifier, and monitor speakers. 

A National Instruments GPIB controller board was used to 

computer interface the narrow band analyzer and the programmable 

digital filter. The usage of these items will be detailed in 

chapter 3. The above equipment is housed in three 19 inch 

stantron equipment racks. 

When the grant was extended for an additional two years in 

October of 1987, additional equipment was acquired to configure 

the C.A.V.I.S. workstation to its present state. Three computers 

can now access the archival data stored on either the laser or a 

Spark removable and fixed hard disk system. united Systems 

Company of Tustin, California fabricated and interfaced the 

computers through a custom hardware switch. 

A Compaq 386 microcomputer performs the speech parameter 

extraction and a Compaq 386/20 concentrates on the voice 

identification and verification tasks. 

A portion of the C.A.V.I.S. methodology makes use of FFT 

analysis. The calculation of the spectra has evolved through 

three stages; software calculation, interfacing to the SD375 Real 

time Analyzer, and finally the use of an Ariel DSP16 digital 

signal processing board. The speed enhancement using the 
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processing board greatly aided the research effort. 

A conveniently located Kay Elemetrics Sonagraph model 5500-1 

enables the real time spectrographic review of the voice 

samples. While editing a sample the voice examiner now has a 

familiar display to verify its quality and duration. 

The final component of the workstation is a high-resolution 

color graphics display system. A Chorus 16 bit Frame Grabber 

board is housed in the Compaq 386/20 to drive the monitor. In 

addition to its high pixel resolution and continuous color data 

display capabilities, it can be used to capture and archive 

suspect photographs through an outboard video camera. This 

capability also allows for its use in tape authentication and 

image enhancement work. The work station now incorporates 7 full 

equipment racks. 

2.3 Software 

As a part of our "man-machine" interactive system of voice 

identification, we recognized, among other sophisticated 

mathematical computation requirements, two essential capabilities 

which must be realized into the system: The first is related to 

the interfacing of computers, internal/external peripherals and 

the various types of memory storage media. The second is related 

to the interfacing of analytical computation, graphic display, 

and the digital to analog conversion process. 

In order to attain the above capabilities, the researchers 

at the onset of the project chose to program the CeA.V.I.S. 

system using the "e" programming language. A review of popular 
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signal analysis menu type programs did not lend themselves to the 

requirements of C.A.V.I.S. This decision prompted the team to 

become proficient in all aspects of nC". The learning curve at 

first was a barrier, but the resultant flexibility, control and 

customizing ability attained proved that the right decision had 

been made. 

After working with other products, the Microsoft C 

optimizing compiler was chosen as the C.A.V.I.S. standard. 

Additional software library routines are used and include Media 

CYbernetics "Halo 88" graphics, Greenleaf Functions, and specific 

driver software supplied with peripheral interfacing boards. 

Hundreds of programs were written by the researchers for 

interfacing hardware, for acquisition and analysis of data, and 

for development of meaningful graphic displays on the monitor 

during the identification process. A list of major program names 

and the brief functional descriptions is provided in Appendix B. 

2.4 Networking 

The C.A.V.I.S. system has two levels of networking 

capabilities. Within the workstation environment the computer 

systems are capable of sharing databases and programs through a 

LAN (Local Area Network) card. On a broader range, the 

researchers tested the feasibility to network the system to other 

police agencies across the country. Lt. Lonnie Smrkovski of the 

Michigan state Police Department established an abbreviated 

workstation at his audio laboratory. Lt. Smrkovski has been a 

noted voice identification examiner for many years and has a deep 
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appreciation for our effort. 

Using a nCloseupn communication software package, the two 

laboratories were able to link and share data as well as control 

analysis hardware. With this capability an agency equipped with 

an upgraded IBM PC compatible computer could send data to our 

laboratory via phone lines and analysis results could be returned 

the same day. Or, a C.A.V.I.S. examiner could travel to a 

location, assist in getting voice samples, and remotely access 

the C.A.V.I.S. system using a portable computer. 

2.5 Scope 

The remainder of this report will concentrate on the 

procedural details and description of the parameters employed by 

C.A.V.I.S •• The intention of this report is to offer to the 

reader a description of the research effort and a summary of its 

accomplishments. It is not intended to be used as a procedural 

manual. 
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3 METHODOLOGY 

3.1 Data Acquisition Procedures 

3.1.1 Database Size And Type Of Speech 

Our experimental voice data used in the first two years of 

the project was collected from 50 white male speakers recorded 

tllrough several different transmission systems (telephone, 

microphone, and RF body transmitter). Due to time restraints in 

the first period of the grant, only 21 of these speakers were 

fully processed. A forensic telephone path was created utilizing 

outside local lines. For each speaker a new telephone connection 

was established by re-dialing. While in the laboratory's sound 

booth, each speaker produced two sets of ten speech samples, each 

30 seconds long and of different text. This was done by reading 

randomly selected text material, and also by speaking 

spontaneously while viewing projected slide pictures. 

During phase II, new elements were added. The speaker 

l)opulation was increased to 150 males. The type of voice data 

~Ias changed from read text to spontaneously produced text. The 

recording interval was changed from one session only to two 

sessions separated by a minimum of two months. Every speaker was 

Jrecorded through an outside telephone line from his work or home 

ito our laboratory telephone set. No restrictions were imposed as 

·,to which telephone line each speaker used. The speaker offered 

spontaneous text while looking at prepared pictures for the first 

session, and entirely unsolicited text for the second session. 

:For the second session, it was left to each speaker to choose his 

own topics (five different topics each lasting 30 seconds). 
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These new elements were added to make our experimental voice data 

approach a realistic forensic situation. It naturally yielded a 

more complex and an unstable type of voice data and resulted in 

the overall lowering of the system performance. 

Some phenomena observed can be described as follows. A 

certain group of speakers were always stable. This was indicated 

by the small intra-speaker variation measured by parameters from 

both the frequency and time domains from several samples within 

and across the two recording sessions. Another group of speakers 

were shown stable, but only within a single recording session. 

The smaller group of speakers did not exhibit stability within 

either session. 

The approach taken to handle these variations will be 

discussed in a later section. 

3.1.2 Duration Of Samples 

In the initial project proposal it was estimated that a 

minimum length of ten seconds of compressed speech would be 

required to constitute a sufficient sample. This minimum length 

would help insure that the voiced sample would approach a 

phonetic balance. The recording length of each sample throughout 

the project was thirty seconds. In the first phase of the 

project the samples analyzed came from subjects who were reading 

prepared text. 

Once the pauses were removed from these samples, the 

remaining voiced speech did provide the research staff with 

compressed samples exceeding the ten second minimum. The samples 

e.A.V.l.S. - LASD 



• 

• 

• 

27 

from the second phase, however, are samples obtained from thirty 

seconds of spontaneous speech. As a consequence, the percentage 

of voiced speech in these thirty second samples as compared to 

the samples obtained from reading prepared text is appreciably 

reduced. This reduction is likely due to the subject's thought 

process inherent to spontaneous speech. 

3.1.3 Calibration 

The main goal of the calibration procedure is to insure that 

the signal level of the sample attains sufficient intensity to 

allow parameters to be extracted, yet safeguard it against 'over 

driving' the digitizing process. Absolute level calibration in 

dB was not required because in the forensic environment there are 

no references, only relative levels. In the first recording 

session a 94 dB pistonphone calibration was used on the sound 

level meter for system checking. 

In the actual use of C.A.V.I.S. a typical scenario would be 

to have a questioned call presented on a standard cassette tape. 

This call is transferred to track one of the Fostex recorder. 

The Fostex tape would have already been pre-recorded with a time 

code on track eight. During the transfer, the operator monitors 

the playback of the original while being attentive to signal 

quality. The signal level going onto the Fostex should not 

exceed "0" VUe We took extreme care to obtain optimum audio 

input levels during the digitization process. A calibration tape 

of 1000 Hz at "0" VU is played back from the Fostex into the 
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interface panel of the acquisition system. A program called 

"Cklevel" is then called and three seconds of this signal is 

digitized and displayed on the computer monitor in EGA color 

graphics. The examiner adjusts the input level until it reads 

full scale on the computer monitor. The oscilloscope level is 

adjusted to match the computer screen. Once this is completed 

the real time oscilloscope display represents the level at which 

the digitizer will see the signal. The examiner while monitoring 

the oscilloscope then maximizes the level of the sample taking 

care not to over drive it. 

3.1.4 Digitization 

The digitizing board used by C.A.V.I.S. allows for 12 bit 

quantization. This provides sufficient signal to noise ratios 

when input levels are properly adjusted. The rate of digitizing 

is 10,240 samples per second. Several factors motivated the use 

of this sampling rate. The voice frequency range in the forensic 

situation is limited generally by the response of the telephone 

line. Dramatic roll off of the signal occurs at approximately 

300 and again at 3,000 Hz •• For this reason when using the SD375 

analyzer the frequency range chosen was 0 - 4,000 Hz. We matched 

its sampling rate of 10,240 Hz to maintain system compatibility. 

Uniquely, this also mathematically sets the FFT analysis bands at 

an even 10 Hz bandwidth yielding 400 bands within the 4,000 Hz 

range. A crystal controlled external clock was fabricated to 

generate this sampling rate which drives the digitizing board. 

• An alternate sampling rate of 20,480 Hz. is also available to the 
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operator. The maximum rate of the board is 27,000 Hz. For 

transient analysis work, the SD375 can be set for faster rates. 

The researchers have also developed a selectable overlapping FFT 

analysis routine for the DSP board which greatly expands the 

detail of time varying events. 

The maximum duration of a sample is only limited by the 

amount of available memory on the storage device. customized 

software was developed to allow continuous storage of the signal 

to the capacity of the hard disk. 

This capability is also extended to the full capacity of the 

laser platter. Archived sound files can be played back directly 

from the laser • 

3.2 Voice Data Pre-processings 

3.2.1 Determination Of Pre-emphasis Filter Shape 

As mentioned, the analysis of a forensic recording which 

stems from a voice sample made over a transmitter or telephone 

transmission is plagued with an unknown response curve associated 

with the media. 

The application of a pre-emphasis filter shape was 

improvised primarily because of the above mentioned adverse 

effects of the transmission system. As it will be discussed in 

3.3.4.3 we use a special type of spectra to represent a speaker 

in the frequency domain, namely, an intensity deviation spectrum 

(IDS) for the purpose of neutralizing this influence of the 

transmission and recording media. An algorithm developed to 

compute the IDS has been proven to work excellently if energy 
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associated with the bandwidth is sufficient to generate a 

measurable amount of deviation or variation around a central 

value across a set of FFT short-term spectra. When there is not 

sufficient energy, we experienced l~npredictable results. A 

pre-emphasis procedure which we dp"r.Jeloped alleviates this 

situation. 

There is a secondary effect of this pre-emphasis technique, 

which is rather significant in the overall aspect of the project 

for voice identification. At the perceptual level, i.e., when we 

listened to the unprocessed speech signals, it was evident that 

the quality of voice commonly associated with a high fidelity 

microphone differed from that of the voice usually associated 

with a typical commercial telephone transmission. This 

difference was to the degree that the voice recorded through the 

telephone sounded different from the one recorded through the 

microphone. 

By applying the above pre-emphasis filtering technique, 

however, the difference of the voice quality due to the 

transmission systems is diminished. This aspect is extremely 

important relative to the listening process during the forensic 

voice identification process. 

Figure 3.2-1 illustrates the extreme effect of different 

transmission response characteristics where the long term 

spectrum of the same utterance was computed from a telephone 

sample versus a microphone sample. 

Figure 3.2-2 illustrates the effect of the pre-emphasis 

filtering combined with the effect of the IDS algorithm. Note 
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Figure 3.3-1 is a schematic diagram of the procedures to 

determine the individualized filter shape for each text sample of 

a speaker. A linear phase filter (Digital Audio Corporation, 

Model PDF 2048) is incorporated into the process to help overcome 

the attenuation present in the recorded sample. The shape of 

the filter applied to the data is unique to each sample and 

determined by an inverted long-term spectrum of the data which is 

computed by the examiner's operation of the SD375. The long term 

spectra of the sample is extracted from the SD375 over a GPIB 

bus. The program "SD_PDF" inverts, normalizes and smooths the 

spectral shape. The program continues on to compute, from the 

long-term averaged spectrum, 512 filter convolution coefficients 

which are sent over the same bus to program the filter. The 

effect of attenuation balancing is limited to 30 dB. 

The benefit of utilizing a filter is demonstrated in Figure 

3.4 (a-b) • It shows a "waterfall 'u frequency display of 

successive spectra from a single sample. When viewing the 

display's upper half, where filtering was used, one can see the 

improved condition of the spectral information . 

C.A.V.I.S.- LASD 



n 
~ • <: • 
\-a.j 

• 
Ul · 
~ 
t:1 

• 
MICROPHONE -_._. __ .. _._ .. _._-_._] 

4 Sl ..ES 
( 4 

~---.-.. -.. -.. ---.-.---.. -.)-

.... 

TELEPHONE I 
4 SPEECH SAMPLES 

( 4 X 30 SEC.) 

1 MICROPHONE 
SPEECH SAMPLE -----.. -.-----.-.. -.. --.---.-.-.. --.--.~ 

(30-S) 

I ... 
1 TELEPHONE , 

SPEECH SAMPLE 
... ,. 

(30-S) 

.1 .'. 

COMPUTE COMPUTE 
.AVG 

LONG - TERM 
_._._-_ .. _._._ .. --_._ .. -.. -._) 2 SETS OF 

AVERAGED SPECTRUM "- 512 CONVOLUTION 
.- COEFFICIENTS FOR PDF 

.PDF J 
r--'--'---'-"---"-"-'---'-"-""'-'----'-'--"-"-'---.---.. -,--.----.... ------

I 
COMPUTED FILTER SHAPE 

TAPE 
i 

.~ BACKUP 

DIGITAL FILTER -.-.-- .. _ .. _ .. _ .. _-_._ .. _._.)0 STORE 
PDF 2048 (1) DIGITIZED SPEECH 

.SND 
DIGITAL FILTER ... STORE 
PDF 2048 (2) 

, 
DIGITIZED SPEECH 

--

i-

-I 
I 
; 

I 
I 
i 

,- --- .. ._ ..... _- ._---...... - .. _---_ .. _._._--_._. __ .. _----_._..- .. _._._._-_._ .. _ .. -.--_.-... _ .. _ .... _-_._----.. __ .. -._--._-_._-_._--._-------_._._ ..... _-_._--...... _-_._-_ .. _ .. _-_. __ ._--_.-_._.-.. --_._--_._._-_.----_. __ ._--J 
I· 

I TAPE RESTORED COMPUTE 
1 

I STORED AUTOMATIC / MANUAL 1 
I 

DIGITIZED SPEECH L-) --_._-_ .. _ .. _ .. _._-_. __ ._ .. __ .. _-_. __ .. _._--) PA USE DETECTION 
30 SEC = 0.6 Mbytes AND ELIMINATION 

------·· .. ··-'1 
1 L.. ____ . __ ) COMPRESSED SPEECH SAMPLE 

... 13 ~ LENGTH < 18 SEC 
STORED AUTOMATIC / MANUAL I 

, 

~ DIGITIZED SPEECH ..... PAUSE DETECTION 
30 SEC = 0.6 Mbytes AND ELIMINATION 

"--.-

C.A.V.I.S. L.A.S.D. 

Figure 3.3-1 A schematic diagram of procedures to determine the individualized pre-emphasis filter shape for each sample. w 
U1 



• 

• 

• 

C.A.U.I.S. 
FILE 241:raw.aFt 

PEAl< SPECTRA IJALUE 

-6clh 

-12clh 
-18clh 

9.5 1 1.5 
k hfroh 

2 

36 

f1 = )gain F2 = (gain f3 = so~t F4 = raw 
f6 = wi F7 = 51ngle '8 = delet FIe: olea!' 
8'19 dynaMic 0 = DctAve 8 = scew ESC = exit 

ME(135) 

2.5 3.9 9 1 2 3 4 5 6 7 
tl'AMe It )(19 

8 9 

Figure 3.4(a) Waterfall display of successive FFT frames 
before the application of the individualized filter shape • 

C.A.V.I.S. - LASD 



• 

• ' 

C.A.U.I.S. 

FILE 241til.aft 

37 

rl = )gain F2,: <gain r3 = sort F4 = raw 
r6 = If F7 : single r8 = delet FIg: clea~ 
&r19 dynaMic 0 = octave & = scew ESC: exit 

L---------·FRP.!ME(44) 
PEAK SPECTRA UALUE 

-6dh 

-12dh 
-ladh 

Q.5 1 1.5 
Ie hf:rtz 

2 2.5 3.1 9 1 
! 
! 

234 5 6 1 
tX'aMe It )(19 

Figure 3.4(b) Waterfall display of successive FFT frames 
after the application of the individualized filter shape • 

8 9 

C.A.V.I.S. - LASD 



• 

• 

38 

3.2.2 Sound File creation And storage 

The analysis of each voice sample will result in the 

creation of a number of associated files that begin to reduce the 

sample to a single parameter file which characterizes the 

sample. The labeling of each file is found in the file's 

extension name. The first file in the process is the raw 

digitized sound file that bears the extension ".snd". 

The name of the file is restricted to five characters 

followed by a 01, 02, 03, 04, 05 depending upon which sample of 

the event is being processed (example IKNOWN01.SND"). The 

C.A.V.I.S. mouse driven menu screen is capable of handling two 

speakers (unknown, known) each having sufficient data to create 

five samples. The available samples will be used to determine 

the degree of intra-speaker variability. 

Using the time code of the Fostex recorder, the examiner 

estimates the areas of the recording for each sample that will 

yield a minimum of ten seconds of voiced speech for the targeted 

voice. Whatever duration of the recording is necessary to 

achieve this length will be digitized as one sample. 

The analog signal is passed through the pre-emphasis filter, 

input levels are adjusted and the operator arms the digitizer for 

manual start. The file is played back through monitor speakers 

and verified for duration and quality once the digitizing process 

is completed. 

The next step is to remove the areas of the file that do not 

contain speech. During the research phase of the project where 
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written that scanned and automatically removed the pauses. 

39 

Figure 3.5(a-b) illustrate the effectiveness of this program. 

Generally, a subject's conversational speech will contain 

approximately 40% pause. Our program called "OELPAUSEIf uses 

several levels of pause detection. An initial scanning of the 

file determines a threshold to be used for detecting the noise 

floor. The duration of what constitutes a voiced segment as well 

as a minimum pause is selectable. The uniqueness of the program 

is in the joining of the segments. A smooth zero crossing is 

automatically determined. A compressed sound file can be 

generated at any time from the raw sound file using the output of 

the program that lists the beginning and ending points of each 

voiced segment • 
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The "EDIT1024" interactive editing program was written to 

allow the examiner to verify every segment of the sample. Figure 

3.6 depicts a typical screen ready for editing. Using the 

optical mouse the segment to be verified is surrounding by a 

cursor which expands in even 1024 data sample increments. The 

selected area can be aurally reviewed by pressing a mouse 

button. If the segment is desired, a function key is pressed and 

the beginning and ending points of the segment are stored. The 

1024 point multiple segment size allows for ideal fitting of the 

1024 point FFT routine used later in the analysis process. 

The program "MAKEMCPII uses the stored information from the 

"EDIT1024 11 program to generate a compressed sound file bearing 

the extension lI.mcpli. It is this file that contains the verified 

and compressed speech data of the targeted voice • 
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Figure 3.6 Graphic display of computer screen during interactive 
editing of a sound file. 
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3.3 Voice Parameter Extractions 

3.3.1 Voice Parameters 

44 

Ideally, a parameter would vary only a small amount when 

measured from a single speaker (case where the intra-speaker 

variability is small), and greater variance would be expected 

when measured between or among different speakers (case where 

the inter-speaker variability is large). It has been commonly 

recognized by many researchers, that one of the crucial keys to 

successful speaker identification is to search the speech 

parameters that provide smaller intra-speaker variability, but 

greater inter-speaker variability. Our original enthusiasm 

indeed, was centered around the search of such parameters with 

high inter-speaker variability. During the earlier phase of this 

project, the original parameter set was "found sufficient to 

achieve high identification rates (reported in 1988 IEEE-ICASSP 

Proceedings, and also in the previous quarterly reports), but 

during the later phase when we increased the speaker size and 

recording sessions, the identification rate was degraded. Such 

degradation led us to implement further refined schemes in the 

process of defining parameters. 

3.3.2 Time Domain Parameters 

3.3.2.1 Parameter Extraction Procedures 

Many studies on speaker identification focused predominantly 

on the extraction of spectral information from the frequency 

domain by the use of Fourier spectral analysis (Paul et al., 

Bunge, Markel et al., Federico et al~, and Warkentyne et al.) • 
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This type of information is more effective than that extracted 

from the time domain such as the average pitch and other 

varieties extracted therefrom. We are in total agreement with 

the understanding that spectral information is a good speaker 

discriminator. However, we believe that a computer-based voice 

identification system based solely on spectral information would 

fall short in accuracy in the forensic environment. 

In an ongoing speech there are many acoustic events that can 

be resolved only in the time domain: characteristics such as 

intonation, inflection of pitch, stress, fluctuation of tonal 

quality, etc. We designed our system to study the detailed 

microscopic events at the level of single glottal waves and the 

dynamic phenomena of these events . 

Extraction of speech parameters from the time domain begins 

with the interactive targeting of each glottal wavelet in the 

sample. In normal speech production, vocal folds are used to 

modulate an air stream. Such modulation is called one cycle of 

vocal fold vibration. For an average male adult, that vibration 

occurs somewhere around 125 times per second. In this report, 

the -term 'wavelet' refers to the waveform that occurs in one of 

these cycles. 

It was found through experimentation that speaker's wavelets 

have characteristic attributes. Beyond the expected variance due 

to phoneme production, some speakers consistently generate nicely 

formed peaks and decay characteristics. Others, perhaps those 

with raspy or hoarse voices, have poorly defined peaks or second 

harmonic peaks rising higher than the fundamental (See Figure 
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3.7-1). This particular behavior discouraged our own efforts to 

develop an automatic peak (pitch) detection algorithm and we 

believe also plagues the efforts of other approaches. 

The next program, called "SMORECT" is run on the compressed 

sound file to help overcome the difficulty in targeting the 

glottal peaks. The compressed sound file is rect.ified and the 

intensities are squared to accentuate the peaks. This program 

generates a file with the extension name ".srt". 

Using the mouse controlled cursor of the "PICKSRT" program, 

the examiner is now ready to target the peaks. The program loads 

the smoothed ".srt" file and the ".sts" file from "EDIT1024 n and 

places markers over the data on the screen indicating to the 

examiner where pauses in the original file were removed. Using 

the mouse, the trained examiner then draws a threshold line just 

below the peaks of adjacent wavelets while taking care not to 

cross over a pause marker (See Figure 3&7-1). The location of 

each peak becomes part of a stored token .~_n the ".jit" file. 

A glottal wavelet is a pulse phenomenon with a fast rise 

time and slower decay time. Using the established peak of each 

wavelet, the researchers tried various schemes to automatically 

locate the beginning and ending point of each pulse. The varying 

noise floor conditions between samples made these efforts fail 

because exactness and \L~iformity could not be maintained. It was 

therefore decided to define a wavelet as an event beginning at 

one peak and ending one data point prior to the next successive 

peak • 
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The application of this newly defined wavelet added greatly 

to the performance of the speech parameters. The program 

"WAVELET" is applied next and generates several files containing 

computed measurements of each wavelet which ultimately yield the 

time domain parameters. 

At this point, a discussion on how these parameters are 

treated and how the wavelets are normalized will aid the reader 

in understanding the parameters • 
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Figure 3.7-1 Graphic display showin9 the interactive 
peak detection. Ca) is done at the maX1mum resolution 
possible which displays every data point sample at 10240 Hz 
sampling rate. (b) i.s done at ten time compression, yet 
maintairling the maximum data J?oint out of'\a group of ten 
data points at the samE; salIlp11ng rate. 
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Figure 3.7-2 exemplifies an output of "WAVELET" which was 

mentioned earlier. Figure 3.7-3 is a graphic display showing the 

intermediate time domain data extracted from a set of wavelets. 

The vertical bars on the display indicate the boundaries of 

individual tokens targeted by the examiner. Plotted are the 

computed pitch contours with corresponding plots of peak 

intensity, total wavelet intensity and auto-correlation values of 

successive wavelets. These parameters are defined below. 

Total Wavelet Intensity 

From each speech sample, we segment a series of wavelets. 

And from each wavelet, its sum of energy is computed. Eventually 

we have a set of data, each datum being expressed as a total sum 

of energy of the wavelet intensity. Then, the statistical 

distribution of this set of data is computed by using the extreme 

value statistics, which will be described in section 3.3.3. 

variation of Total Wavelet Intensity 

The averaged variation of the total wavelet intensity is 

computed from the same data set mentioned in the previous 

section, and it is constructed to reflect the fluctuation seen in 

wavelet to wavelet, or cycle to cycle phenomena of continuous 

speech production. It's computational expression is given below. 

where, Ai+l denotes the total intensity value of the i+l th 

wavelet, and Ai' of the i th wavelet. 
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pitch 

Pitch is the reciprocal of period usually expressed in 

seconds, and used synonymously with fundamental frequency (fo> in 

Hz. An fo in our process is specifically defined: 

1 1 
/0=-= '---

LlT Ti+1-T 1 

where. 

Number of data points between ith and i+ 1 th peaks 
LlT'"' Digitizing Sampling Rate (10240 Hz) 

Average Energy Distribution 

This parameter is ~elated to the average waveform of 

successive wavelets. We arbitrarily chose a waveform length to 

be 256 data long. Each wavelet excised was then adjusted in 

length by filling' in the number of data where prefixed data 

length was greater than that of a given wavelet. Intensities 

were also normalized so that all the peaks would start at the 

same level. These adjusted (warped) data were superimposed and 

the average values of the data across a set of wavelets were 

computed, which provided a final form of the averaged wavelet. 

AutO-Correlation of Wavelets 

Each wavelet excised successively from an ongoing token 

contains varying wave shapes and also varying numbers of data. 

The amount of such variations was measured by the use of product 

moment correlation coefficients. Such a measurement can be 

considered as a 'jitter' value which is an index of deviation of 
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one particular phenomenon, or as 'stability' if we are interested 

in knowing how stable a person's glottal activity is. This 

parameter, a set of successive correlation coefficients, is 

computed by 

Sample Covariance 
r. -c= ---"--------

I SxjSYi 

where the 'x, contains a set of n data taken from proceeding 

wavelet (i-I), and the 'y' contains a set of n data taken from 

the following wavelet (i). 

The measurement appears to be affected primarily by pitch 

change and is therefore, a good representation of jitter which is 

the deviation in pitch between successive wavelets. 

Average Smoothed Wavelet Shape 

The averaged wavelet shape revealed significant speaker 

distinctive information when measured between data point 30 and 

120 within a total of 256 points. By using an eyeball method, we 

decided to partition the segment into three parts, each part 

being composed of 30 data points that formed a smoothed decay 

shape of a wavelet. This program also generates two 

additional data files which allow the examiner to view each 

isolated wavelet in its smoothed form as well as having its 
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energy distribution sorted in descending order. The sorted 

energy distribution has shown to have speaker dependent 

properties. After working with the data it was found that 

speakers that were easily targeted with the PICKSRT program had 

steep energy distribution curves. Or basically, when they 

produced their wavelets they exerted most of the energy at the 

beginning of the pulse. Others generated wavelets that 

distributed energy throughout the wavelet and had poorly defined 

peaks. 

The program "AVGWAVE" inputs all of the smoothed and sorted 

wavelets of a sample and gives a graphical display showing their 

distribution. It also computes the average smoothed and sorted 

wavelet shape. As mentioned, each wavelet is expanded and 

represented by 256 points. The program also computes the 

standard deviation for each of the 256 bands along the horizontal 

axis which reveals a stability measure for each area of the 

wavelet. 

To summarize for the reader, C.A.V.I.S. uses the following 

attributes (parameters) from the time domain. Listed on the 

right side column are abbreviated codes for the parameters. 

1. Total Wavelet Intensity 3wl 

2. pitch (Fundamental Frequency, fO) 3w2 

3. Auto-Correlation of Successive Wavelets 3w4 

4. Variation of Total Wavelet Intensity 3w5 

5. Average Energy Distribution CUrve 3w8 
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• 6. Average Smoothed Wavelet Shape wav 

Some samples of the out put data are provided in Appendix c . 

• 
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Figure 3.7-2 Graphic display showing a successive series of 
"wavelets".. Ca) shows unsorted, and (b) shows sorted "wavelets" 
by the intensity of each data point. Note that the wavelets are 
deliberately separated by the inserted negative threshold pulse 
for later detection. 
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Figure 3.7-3 Graphic display showing the intermediate 
time domain data extracted from a set of wavelets. 
Upper window shows a normalized intensity contour, 
middle window shows a pitch contour (smooth solid curve) 
and a total intensity contour (light curve), and the 
bottom window shows a correlation coefficients contour 
of successive wavelets • 
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3.3.3 Extreme Value Statistics 

3.3.3.1 Extreme Value statistics 
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Suggestions of the usage of "extreme value statistics" were 

made by Drc Glenn Bowie who has been working as a project 

technical consultant since the onset of the project in 1985. The 

intent of this particular statistical approach, as a mathematical 

tool, was to analyze the dynamics of glottal behaviors during 

speech utterances, such as the variation of successive cycle to 

cycle fundamental frequency (fo)' and changing of amplitudes 

associated with successive cycle to cycle foe 

Model algorithms were developed by Dr. Bowie to compute, 

from the above mentioned speech phenomena, three-parameter, and 

also as an alternative, two-parameter weibull functions. In the 

literature on extreme values statistics (Gumbel, 1955; Kinnison, 

1985), calculation of two or three parameters of a double 

exponential function is referred to as the Weibull function. The 

experimental application of the three-parameter Weibull function 

to the above data revealed it would reliably represent the data. 

We, therefore, expanded the application to the data base and 

confirmed it's utility. 

3.3.3.2 Weibull Functions and Time Domain Parameters 

Figure 3.8-1 is a sample plot of a three-parameter Weibull 

distribution function prepared from test fO data •. The y-axis 

represents the probability of ordered fO 's. The estimated 

probability is shown by a solid line. The x-axis represents fo 

values in Hz after they have been rank ordered in ascending 
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order. Fitness of the estimated probability and ordered fo 

values is indicated by the correlation coefficient of 0.99 (most 

of our actual data yielded coefficients> 0.98). Please note the 

lower part of this figure where EO (threshold parameter), Vo 

(characteristics value), and KO (shape parameter) values are 

listed. These are the three parameters computed by the Weibull 

method, which as a set eventually wil1 be used as one speech 

parameter in the subsequent speaker identification and 

verification operations. 

Due to voluminous amount of data to process, and also 

boundary constraints imposed by this function to work, we have 

added sophisticated iterative algorithms to the prototype. Two 

mathematically imposed constrains are: 

(1) EO < MINIMUM {XO' Xl' X2 ' ••• , xn }, and 

(2) KO > 1. 

The third constraint is related to the correlation 

coefficient which measures the fitness of the data (xo Xl •.. ,xn ) , , 
relative to the estimated probability. We chose that to be, 

(3) r > 0.98. 

Each set of three parameters was computed in a loop using up 

to four iterations until all three conditions (constraints) 

listed above were met by trimming outlying data by one standard 

deviation per iteration at both the low and high extremes. When 
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one or more of these conditions was not satisfied, the data set 

was considered bad, prompting us to investigate possible 

anomalies in the data. 

Figure 3.8-2 is a sample plot of a three-parameter Weibull 

distribution function prepared from a 'Total wavelet Intensity' 

feature. Computational aspects and algorithms are similar to 

what has been described for the fO feature. 

Figure 3.8-3 is a sample plot of a three-parameter Weibull 

function prepared from successive wavelet correlation 

coefficients. Since correlation coefficients range in values 

between -1 and +1, and Weibull statistics rejects negative 

values, we normalized the coefficients by the following 

expression: 

rnormalized = ( 1 - rcomputed) x scale. 

58 

Figure 3.8-4 is a sample plot of the three-parameter Weibull 

function prepared from normalized variation of the wavelet 

intensity. Figure 3.8-5 is a sample plot of a three-parameter 

Weibull function prepared from the succession of the average 

energy of the wavelet. 
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Figure 3.8-4 Plotting of a three-parameter Weibull distribution 
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function prepared from a normalized wavelet (glottal) intensity • 
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3.3.3.3 Estimate of Population Distributions 

So far we have described how extreme value statistics 

characterized features extracted from a single speech sample 

(minimum of about 10 second long) spoken by the individual 

speaker. We expanded the utility of this statistic to 

investigate distributions of central tendency (mean value 

estimated) of features taken from the entire speakers voice data 

base. Figure 3.8-6 (a-e) illustrate the estimated population 

probability density functions of the five time domain parameters 

computed by the Weibull method . 
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(a) Normalized wavelet intensity 
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I 

Figure 3.8-6 (a-e) Plottings of the estimated population 
Weibull probability density functions of (a) normalized 
wavelet intensity, (b) fundamental frequency, f (c) cor­
relations of successive wavelets, (d) normalizeS'glottal 
shimmer, and (e) successive averaged wavelet intensity . 
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(c) Correlations of successive wavelets 
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(d) Normalized glottal shimmer 
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(e) Successive averaged wavelet intensity 
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3.3.4 

3.3.4.1 

Frequency Domain Parameters 

Spectral Information 
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It has been well recognized that vocal tract configuration 

such as length, shape, and cross-sectional area, differs from 

speaker to speaker. Spectral information extracted during speech 

production from these varying sound resonators thus carries 

distinctive characteristics of the individual speakers. Of 

course, such spectra also convey information regarding 

distinctive phonemes, or sound units spoken. In a 

text-independent system of voice identification, we are 

interested in the source (speaker) of sound, but not in what 

particular sounds were uttered. The key to achieve this goal is 

found in gathering sufficiently long speech samples so that they 

will be phonetically balanced and ultimately more representative 

of the speaker. 

There are many 1:echniques practically used in general speech 

research, or in commE~rcial applications to extract frequency 

information. A few e)f these are known as FFT (Fast Fourier 

Transform), LPC (Lin.~ar Predictive Coding), Cepstrum (Inverse of 

FFT) and so forth. These have been popular technics due to their 

well defined mathematical design and high performance in 

discriminating speakers under well controlled recording 

environments. However, under lesser controlled situations, 

particularly when two voices are recorded through entirely 

different transmission and/or recording media, spectral frequency 

information of voices tends to be altered due to the overpowering 

response characteristics of two different systems . 
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If we desire to apply the voice identification system to a 

forensic environment where the voice from the questioned 

individual and the one from the suspect are commonly recorded 

through different transmission systems, some methods of 

compensation for the adverse influence must be incorporated. 
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In C.A.V.I.S. we attempted to accomplish a method of such 

compensation by the use of a 'whitening technique' and intensity 

deviation spectra (IDS). The whitening technique has been 

discussed in the previous section (Voice Data Pre-Processing). 

The computational algorithm of an IDS will be detailed in the 

section to follow. 

3.3.4.2 Spectra Matching 

Given two spectra, there are many possible ways to compare 

th.e closeness of these spectra. We have tested three methods. 

In the first metllod we computed a Euclidian distance of 9 

dimensions, each dimension having the value associated with the 

centroid frequency of each band. In the second method we 

computed a Euclidian distance of 9 dimensions, each dimension 

having the total sum of energy from each band. In the third 

method we compared the shape, or envelopes of given spectra by 

using the use of product moment correlation. It was found that 

the last method, i.e., shape matching by correlation, is more 

effective than the measure of the remaining two, and this method 

is applied in our spectral matching of a pair of IDS spectra . 
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3.3.4.3 Intensity Deviation Spectrum (IDS) 

Every speaker produced five 30 second long speech samples 

and each IDS was computed from these samples after the pauses are 

deleted and the set of short-term spectra are generated by the 

FFT routine. A 1024-point FFT is performed by the use of a 

Digital Signal Processor Board on the previously prepared time 

data. From each compressed voice data this FFT operation yielded 

a set of n short term FFT frames en = total length / 1024), 

where an n usually ranges from 100 to 400 frames. The set is 

referred to as STn for n=1,2, ••• ,N. 

An intensity deviation spectrum (IDS) is computed from the 

STn discussed above by the following formula. 

i·/ 

I I STi,j-mj Ilmj 
S j = 1_'-_1 __ . _____ _ 

nj 

Where ST· . is the value of the J.th band of the ith FFT 1.,J 

frame that meets STi,j > T (threshold) condition. 'T' is a value 

30 dB below the maximum value measured from a set of the entire 

set STi,j. tnj' is the number of STi,j values which satisfy 

STi,j > T condition, and 'mj' is the median value of ST.'j 

within the jth band. 

The IDS spectrum computed is then subjected to the 

normalization process across the discrete frequency range from 

200 to 2500 Hz. 
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IDS i = j-24S

1 

)' S· ...... J 
j-20 

for i = 0 to 225. 

Consequently, the normalized IDS values are made to range 

between 0 and 1. This normalization is a required procedure to 

enable subsequent computations. 
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Figure 3.8-7 shows 10 IDS's from one speaker, 5 from session 

1 (TS222x), and 5 from session 2 (TS222Y)e Figure 3.8-8 shows 5 

IDS's of the speaker from session 2 (TS222y) and 5 IDS's of the 

speaker from session 2(TS233y). 

It will be shown later that each vector contained parameters 

accompanied by corresponding weighting factors tha·t are speaker 

specific. The necessity of assigning the weightin9 factor for 

each parameter has been confirmed through our tedious laboratory 

observations, and it's implementation has been carried out during 

this experiment. 
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Figure 3.8~7 Plottings of the IDS generated from the same 
speaker. Of 10 IDS spectra, 5 were made from speaker ts222x 
recorded in session 1 (in color cyan, or lighter shade), and 
5 were made from the same speaker ts222y, but recorded in 
session 2 (in color red, or darker shade). 
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Figure 3.8-8 Plotting of the IDS generated from two different 
speakers. 5 IDS spectra were wade from speaker ts222y, and 
5 other IDS spectra were made from the different speaker 
ts233y, both recorded in session 2. 
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3.3.5 Combining Time And Frequency Domains 

Each sample of a speaker was represented by a vector of m+n 

dimensions (parameters or features), where m refers to the number 

of parameters derived from the time domain, and n, to the number 

derived from the frequency domain. Presently m=5 and n=9 are 

selected as the optimum parameters. 

Although it has been reported by many researchers that 

spectral information (vocal tract parameters) is more effective 

for distinguishing speakers than that derived from vocal cord 

behaviors (time domain parameters), there were cases where 

spectral information alone would not discriminate speakers. 

Through our laboratory observation, those who were likely to be 

misidentified became distinguishable when at least one of the 

time domain parameters was employed. 

Nevertheless, spectral information appears to remain far 

more powerful in discriminating individuals than any single 

parameter from the time domain. For this reason, we believe that 

parameter sets from the frequency domain and from the time domain 

must be combined to achieve a high performance voice 

identification system. Prior to actual devising of refinements, 

we made the following observations. 

Parameters From Time Domain: 

(1) Some speakers maintained a high degree of stability in 

their average pitch across the samples in the first recording 

session, and also in the second session. 

(2) Some speakers remain stable in their average pitch, but 

only within a single recording session. Some of this group 
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revealed differences in the average pi"tch as much as J_5 to 20 

Hz. Usually, the pitch tended to be highe:r when measured from 

voice data recorded in the second session than in the first 

session1 • 

(3) Other groups of speakers manifested a high level of 
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variations in their l'itch across two sessions, as well as within 

a single session. 

(4) These parameters indicated very interesting behaviors. 

Taking "variation of total sum of wavelet en.ergy", for example, 

the parameter distinguishes clearly a certain group of speakers, 

but does not do well with other groups. In other words, this 

type of parameter seems capable of separating different specific 

groups of speakers 8 but does not seem to give any hint as to 

identifying or separa"ting other groups of speakers. 

Parameters From Frequency Domain: 

(5) Particular individuals maintained st:able IDS envelopes, 

throughout all bands (200 to 2450 Hz), or at least within 4 - 6 

bands. These speakers were not necessarily the same group of 

speakers as described in (1). 

(6) Only a few speakers exhibited a .complete match of IDS 

envelopes throughout nine bands, either within a session, or 

lIn the first session, the speakers produced speech samples 
spontaneously, but while looking at a picture set provided to 
them. However, in the second r;ession r they produced speech 
samples without a picture set. In general, data from the first 
session showed more stability in terms of rate and pitch change, 
whereas data from the second session exhibited less stability in 
rate and pitch . 
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across two recording sessions. 

(7) Scrutinization of 16 test speakers through visual 

pattern matching of their IDS envelopes revealed that each 

individual speaker has unique areas of stability. For example, 

speaker A may have stable bands, between 450 to 700 Hz, 950 to 

1200 Hz, and 1200 to 1450 Hz, but unstable bands, between 200 to 

450 Hz, 700 to 950 HZ, etc., while speaker B reveals stable bands 

between 200 to 450 HZ, 450 to 700 Hz, 700 to 950 Hz, but totally 

random in the remaining bands. 

Taking the above observations into consideration, we 

incorporated refinements in the final stage of the voice vector 

definition within the experimental design. The first refinement 

is related to frequency domain parameters, or IDS bands. By the 

use of a correlation method, the stability measure is calculated 

for each IDS band. The second refinement is related to the ti~e 

domain parameters. This refinement involves testing the fitness 

of a given parameter for a given pair of speakers under 

comparison. Algurithmic aspects are discussed in sections 4.2 

and 403. 
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4 EXPERIMENTAL PROCEDURES 

4.1 General Views 
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Figure 4.1-1 shows the general flow of the experiment used 

in the voice identification/verification processes. 

Identification and verification processes were conducted in 

tandem. The entire process goes automatically by beginning 

with the speech parameters that have been prepared already in the 

previous pre-processing stages. 

The input database included 49 speakers, yielding 5 

tE'~xt-·independent samples per speaker for each of the two 

recording sessions. Each session was separated by a minimum two 

month period, and each sample was represented by a vector of 5 

time and 9 frequency domain parameters. There are 245 (known 

speaker samples) x 245 (unknown speaker samples) = 60,025 

comparisons to be performed, and the total possible number of 

trials are 245 per experimental conditions. 

Figure 4.1-2, -3, and -4 illustrate examples of the 

processed input voice data including 5 time domain and 9 

frequency domain parametersw Figure 4.1-2 illustra'ces a sample 

case where the two given speakers (actually the same speaker, but 

one was recorded in session 1, and the other recorded in session 

2) are displayed concurrently and considered to be a good match. 

Figure 4.1-3 i.llustrates a contrary sample case where the two 

given speakers displayed are considered to be no match. Figure 

4 .. 1-4 shows an example case when a "no decision" decision is 

likely to occur because of the low stability seen in the IDS 
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Figure 4.1-1 A chart showing the general ilow ofthe C.A.V.I.S. 
experiments on the Voice Identification and Verification processes. 
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spectra of the kn~wn speaker samples. 

For experimental purpose, we treated the voice data recorped 

in the first session as unknOWll speakers, and the data recorded 

in the second session, as known ~peakers. The rationale for 

choosing voice data recorded during the second session as the 

nknown speakern is as follows. In most real forensic situations, 

a questioned call recorded earlier in time would belong to a 

criminal whose identity is unknown, whereas voice exemplars 

recorded later would belong to a suspect(s) whose identity is 

usually known. Such an arrangement of known and unknown voices 

provide advantage in the real forensic world: Generally we do 

have the liberty of collecting as many voice samples from the 

known suspects with reasonable variations in speaking rate and 

mode. It then becomes convenient to investigate the variations 

of speech samples taken from the known individuals to determine 

what particular speech parameters best fit to represent that 

individual. In contrast, we have very little control over the 

duration, mode, and content of speech, environmental noise, and 

so forth of the questioned call once the recording has been made. 

Next, we will discuss the algorithms developed to determine such 

best fit parameterso 
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Figure 4.1-2 Graphic display showing the processed 
parameters: a case of the matching speakers. In each 
window, the unknown speaker's 5 samples are drawn in color 
of cyan, and the known's, in color of red. Far right side 
window contains the corresponding IDS spectra which are 
partitioned (not visible in the graph) into 9 bands of 250 
Hz width . 
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Figure 4.1-3 Graphic display showing the processed 
parameters: a case of non matching speakers. In each 
window, the unknown speaker's 5 samples are drawn in color 
of cyan, and the known's, in color of red. Far right side 
window contains the corresponding IDS spectra which are 
partitioned (not visible in the graph) into 9 bands of 250 
Hz width. Note the compactness (high stability) of 5 IDS's 
of each speaker, and clear separation into two groups of the 
IDS spectra. 
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Figure 4.1-4 Graphic display showinbg the processed 
parameters: a case which the system is likely to deliver a 
Uno decision". Note the unknown speaker ts299y's IDS 
spectra (drawn in color red) which show only a small amount 
of the stability throughout the entire band. Because of 
this instability, despite the fairly good matching results 
from time domains, the final decision by the system is 
predicted "no decision"o 
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4.2 IDS Spectra And Weighting Factor 

Each IDS ranging from 200 to 3000 Hz were partitioned into 

11 equal bands of 250 Hz, each band having 25 discrete 

frequencies of 10 Hz width. Data above 2450 Hz was discarded, 

thus retaining 9 bands. From each band we computed Wj (for j=1 

to 9) to be applied as the relative strength (weighting) of the j 

th band of IDS for a specific individual speaker. 

equation was used to compute the weighting. 

i-J-I k-l 

I I rj.i.k 
i- I k-i+ I 

w·=l+------
J N 

where, 

I = 5 (number of samples I speaker) 

N = I x (I-1) I 2; or, ( 5C2) 

The following 

r J" i k = correlation coefficients measured, along the j th , , 
IDS band, between the i th and the k th samples from a 

known speaker. 

Any Wj values less than 1 are assigned a value of 1 to 

maintain the weighting factors for positive direction only. In 

effect, the greater the value of Wjl the more stable and reliable 

the j th IDS band would be to characterize a known speaker. In 

other words, Wj can be considered as the measure of the 

intra.-speaker variability, or the average variability 

(correlation) within an individual. The number of valid WjlS 

may varJ depending on each individual's variability, and in a 
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case where there are only two or less number of Wj'S determined 

valid, this particular known speaker is to be labeled as 

unreliable, which will lead to a "no decision" case in the 

subsequent sections. In essence, C.A.V.I.S. is designed to 

deliver a "no decision" decision when the given speaker's 

stability within himself is too low. 
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At this point after the known's weighting factors, or 

variability measurements of the frequency parameters have been 

determined, the unknown's voice samples are read one at a time 

for comparison. From the experimental unknown speaker's voice 

sample we assumed no liberty of computing speaker specific 

weighting factors for the parameters despite the availability of 

the five samples. 

4.3 Tests of Time Domain Parameters 

We noted through obse~ation that most time domain 

parameters discriminate some speakers, but not all of them. In 

order to determine whether each of the time domain parameters 

should be included in computation of the probability of match 

between two items, we devi~ed a procedure as expressed below. 

SUi SUi 
A = M Uj:l: 2 Ii M uEj:l: 2 

where, 

MkEj = Known's mean value of the j th time domain 

parameter, MuEj = Unknown's mean value of the j th time 

domain parameter, 
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SkEj = Standard deviation of the j th time domain parameter 

that is based upon the all known voice samples, and 

A = Area of intersection. 

If the resulting value of A is greater than 0, this test 

fails and the probability of match between the known and unknown 

is not computed. In case the value of A is equal to 0, i.e., no 

intersect occurs, then, the given time parameter, Ej, 

participates in the computation of the probabilityl. 

The P(k,u) is the probability of a match between the two 

voices based solely on the j th time domain and is expressed as 

the total area formed by the cross overs of the two probability 

density functions. A probability of match that is expressed as 

the intersect of two density curves is computed by the use of two 

sets of eO, vO, and kO values, where one comes from the known and 

the other, comes from the unknown. Expressed simply in a 'e' 

language function calling convention: 

where, 

eOk and eOu are Weibull threshold parameters 

vOk and vOu are Weibull characteristic values, and 

lThe actual computation is based on the theory of extreme value 
statistics and the prototype algorithm was provided by Dr. Glenn 
Bowie. The detail is found in APPENDIX A. 
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kOk and kOu are Weibull shape characteristic values. 

The above procedures are performed on each of the five time 

domain parameters and the final single figure, Ek,u generated by 

these five probabilities is derived by: 

where PEi is the probability of match, or intersect area 

computed by the three parameter Weibull function of the ith time 

domain parameter, and I is the number of valid parameters which 

satisfied the test. 

The mathematical procedures for the computation of p(Ei) 

above are provided in Appendix A, and interested readers for 

further theoretical principles are referred to Kinnison (1985) 

and Gumbell (1955). 

4.4 Euclidian Distance of Wavelets 

The averaged wavelet shape was partitioned into three 

segments, each segment being composed of 30 data points that 

formed a smoothed decay shape of a wavelet. First, each 

data was scaled by dividing it by the maximum value of 2048 

so that all the resulting data would range from 0 to 1. 

The purpose of this scaling was to normalize the range of 

distance so that it would be suitable as a homogeneous element 

C.A.V.I.S. - LASD 



• 

• 

• 

88 

withiu the speaker vector that is comprised of combined 

parameters from time and frequency domains. Then, the euclidian 

distance, dk u' was computed between the wavelet shapes (of an , 
unknown and a known speakers) by: 

The adjustments (factors 1/3 outside the square root, and 

1/30 inside the square root) were to normalize the range of 

distance so that it would be suitable as a homogeneous element 

within the speaker vector. 

4 • 5 . Computing Correlational Distance 

The correlational distance measure of a pair of IDS's for an 

unknown and a known is computed by: 

where ~ u is adjusted distance based upon r J' the , , 
correlation coefficients, between known and unknown measured on 

the IDS bands. The weighting factor, Wj, indicates the relative 

stability (or inversely related to the intra-speaker variability) 
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of the j th IDS band for the individual speaker used as the 

known. The value of these variables range: 

-1 <= rj <= +1, 

1 <= Wj <= 2, and 

o <= n._ <= 2. -K,U 

The above expression is designed so that the maximum 

separation between the two items occurs when ~,u = 2, and the 

minimum separation (match) occurs when ~,u = o. 

4.6 Proximity Index 

89 

The term 'proximity index' is our preferred term over the 

use of the term 'probability of match' to represent a measure of 

the similarity between the two voices being compared. In order 

to avoid possible confusion that the term may cause, a brief 

explanation is in order. 

The probability of match is computed for the time domain 

parameters on a solid mathematical foundation as mentioned 

earlier in section 4.2, however, because of the inclusion of the 

heuristic testing procedures whether probability should be 

computed or not, and a hybrid application of correlational 

distance measured from the IDS spectra, we concluded that the 

term 'proximity index' better fits the design of our system. 

The proximity index, Pk,u' is expressed by: 

P = n._ .. d • E k,u -K,U k,u k,u 
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where ~,u is currelational distance computed between a 

known an unknown IDS vectors, dk,u is the Euclidian distance 

computed from the wavelet shapes, and the Ek u is the summation , 

90 

of the squared errors computed from the time domain parameters. 

The proximity index, Pk,u ranges from 0 (for ~,u=O, and for any 

value of dk u and/or PEi) to 4 (for ~ u=2, dk u=l, and for 
I -J{" 

PEi=2). 

The maximum match occurs when Pk u = 0, and the minimum , 
match occurs when Pk u = 4. If none of the time domain , 
parameters meets the test 'A' condition, the proximity index 

reflects only the value of ~ u' i.e., only the spectral , 
information carried in the IDS plays a part in the voice 

identification decision process. 

When too much variation (or low stability) as illustrated in 

Figure 4.1-4, is found throughout the entire IDS bands within a 

known speaker, Pk,u is not computed and a "no decision" is 

rendered. In other words, this speaker's voice exemplars are 

deemed unstable~ In fact, they may, or may not be poor samples 

in terms of the adequacy of the recording. In any rate, the 

samples are not allowed to take part in further comparisons as 

the known speaker. In this case, the minimum required number of 

valid IDS bands is set to 2. 

A vector used to represent a validated known and also an 

unknown speaker is composed of 14 parameters, and in the process 

of computing the proximity index each parameter is appropriately 

weighted, included or excluded, and at the end the simil.arity 
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measure will be summarized into a single index. 

4.7 Rank Ordering of Proximity Indices 

The proximity indices, Pk,ui' computed between the given 

known speaker samples and to all unknown speaker samples are rank 

ordered in ascending order: 

where Pk ,U1 is the smallest proximity index value (the 

closest distance), Pk,uN is the largest proximity index value 

(the farthest distance), measured between a given known speaker's 

sample and any of the samples of N unknown speakers. This 

ordered set of proximity indices are subsequently used to 

evaluate whether the given known speaker is correctly identified, 

or incorrectly identified in the voice identification experiment 

in the section to follow. 

4.8 Voice Identification 

Let us denote a known speaker i and his 5 samples by Ki,j' 

an unknown speaker i and his 5 samples by Ui,j, and the rank 

ordered proximity indices of Ki,j to all the unknown speaker 

samples by R(Kij,Uij). The identification result is evaluated 

each time a given known speaker sample is compared with all 

unknown speaker samples. The result is either a correct or an 

incorrect identification and is defined by: 
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An 'N' that appears in the above expression means the N th 

ordered (ascending) proximity index between the Xnown sample and 

the unknown. Identification performance is tested for 15 

different levels of N: N=O, 1, 2, •• ,10, 15, 20, 25, and 30. 

When N=O, we have the most stringent test. In this case a 

correct identification occurs only when one of the given 

unknown's sample yields the smallest proximity index value to 

that of a known under process, i.e., no other unknown speaker's 

sample should be closer to that known speaker's sample. When 

N=1, test becomes less stringent, i.e., a correct identification 

occurs if the ranking of proximity index of one (or more) of the 

unknown's sample falls within ranking of 2, and so forth. 

Tabulated performance results under each value of N will be 

presented in the next Chapter. 

4.9 Voice Verification 

In the process of voice verification, the magnitude of the 

proximity index, Pk,u' instead of rank ordering, is applied to 

determine whether the known speaker is identified (verified) or 

not identified (rejected). Under this verification process, we 

set the verification criterion, VC ' which takes a selected 

proximity index value. The verification decisions are made by 
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the following simple rule. 

If Pk,u<Vc Verify the given known as the unknown ( 'same') 

If Pk,u>Vc Reject the given known as the unknown('different') 

By the use of la priori' information, then, these two 

responses by the system are checked whether it is 'true' or 

'false' • Consequently, there will be four possible outcomes, 

and these are: verifying the givAn known speaker as same as the 

unknown, and actually it it is true (correct identification), 

verifying the given known speaker as same as the unknown, but 

actually it is false (incorrect identification), rejecting the 

given known speaker as different from the unknown, and actually 

it is true (correct elimination), finally, rejecting the given 

known speaker as different from the unknown, but actually it is 

false (incorrect elimination). For the purpose of rating the 

system performance, these four outcomes were expressed in terms 

of the four kinds of probability: (1) p(Sls), the conditional 

probability of correct identification - system announcing 'Same' 

and actually two given voices are made by the 'same' speaker, (2) 

p(Sld), the conditional probability of incorrect identification -

system announcing • Same , although actually two given voices are 

made by 'different' speakers, (3) p(Dld), the conditional 

probability of correct rejection - system announcing 'Different' 

and actually two given voices are made by the 'Different' 

speakers, and (4) p(Dls), the conditional probability of 

incorrect rejection - system announcing 'Different' although 
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actually two given voices are made by the 'same' speaker. 

Further, in order to determine the general area of the 

optimum values of the verification criterion 'Vc ', it's value is 

varied in terms of the different proximity index value, Pk'u. 

The results of verification performance as a function of 

different Vc values are summarized in the next Chapter. 

C.A.V.I.S. - LASD 



• 

• 

• 

95 

5 RESULTS 

This chapter reports the results of the voice identification 

and verification experiments conducted by using IHproximity index" 

which is strategically computed between a pair of vectors, one 

from a known, and the other, from an unknown. Both experiments 

were conducted in a closed set trial. The Voice database con­

tained 49 randomly selected speakers, each speaker providing 5 

samples of 30 second long contextually unbounded (text­

independent) and spontaneous speech materials. These speakers 

were recorded in two sessions separated by a period of about two 

months. 

The speech samples recorded in the first session are 

designated as 'unknowns', and ones recorded in the second 

session, designated as Iknowns'. Each speaker was represented by 

a vector that is comprised of a set of 14 (5 from time and 9 from 

IDS) parameters. A proximity index is computed from a pair of 

these vectors. 

Voice Identification 

The voice identification process as defined in this project 

arranges all the unknown speakers on a continuous line after they 

are rank ordered according to the proximity index values which 

are computed between the given known and all the unknown 

speakers. The utility of the voice identification process may be 

viewed not so much to discriminate the given pair of speakers as 

to place them into a one dimensional space reflecting their 

statistical positions relative to others. This type of process 
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would provide us with an assurance tha-t the ~ystem can find the 

unknown speaker if he is included in the database. 

Table 5.1 shows the results of voice identification 
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experiments with 49 known and 49 unknown speakers by using the 

proximity index. The performance was tested under 15 rank 

allowances, and for each rank allowance condition, there was a 

total of 60,025 possible compari.sons of the nproximity indices". 

As shown in the table, the correct identification performance 

progressively increases as the number of rank allowance 

increases: 80 % for rank allowance of 0, 85% for rank allowance 

of 1, 91% for rank allowance of 2, 95% for rank allowance of 7, 

and reaches 99% range for rank allowance of 15. 

It was evident that even if a false identification occurred 

under the most stringent rank allowance of 01 , although the table 

does not show it directly; a correct unknown (or more than one in 

most cases) was always found very close in line. 

It can be equivalently expressed that the system, within the 

limitation of our present database (49X5=245 unknowns), needs to 

draw 0.82% of the database (2/245) to achieve 85% correct 

identification rate, 1.22% of the database (3/245) to achieve 

91%, 3.26% of the database (8/245) to achieve 95%, and 6.12% of 

the database (16/245) to reach 99% correct identification rate. 

1Under this condition, for the unknown to be correctly 
identified, the proximity index measured between himself and a 
given known (actually the same as the unknown) must be the 
smallest value among other proximity indices measured between the 
unknown and the remaining known speakers. 
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In short, based on our current database, the system must draw a 

pool of seven unknown (referen.ce) speakers from the database to 

be 99% certain that this pool will include the questioned voice 

who is being sought as the same speaker as the known. 
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The results indicate that "proximity index" computed from a 

set of parameters (five from time domain and nine from frequency 

domain) can distinguish the known and unknown speakers with a 

high success rate. 

Rank Voice Identification Rate 
Allowance Hit Miss No Dec. Rate(%) 

0 170 46 20 79.5556 
1 192 33 20 85.3333 
2 200 25 20 88.8889 
3 205 20 20 91.1111 
4 208 17 20 92.4444 
5 209 16 20 92.8889 
6 210 15 20 93.3333 
7 213 12 20 94.6667 
8 216 9 20 96.0000 
9 218 7 20 96.8889 

10 220 5 20 97.7778 
15 223 2 20 99.1111 
20 224 1 20 99.5556 
25 224 1 20 99.5556 
30 224 1 20 99.5556 

Table 5.1 Results of Voice Identification Experiments. 

Next, we will discuss the results of the voice verification 

experiments in which the various threshold values along the 

continuum of the proximity index are applied to test the 

performance of our voice verification procedures. 
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Voice verificatlO'i.on 

Unlike the voice identification process in which the 

relative magnitude of the proximity index is the key to arrange 

speakers ill to a one dimensional similarity line, the voice 

verification process requires the absolute magnitude of some sort 

of similarity measurements. In specific, we need to have a 

'threshold', or 'cut off' value to determine whether a given pair 

of speakers are verified (accepted as same or match), or not 

verified (rejected as different, or no match). 

The results of the C.A.V.loSe voice verification experiments 

are presented by using a classical technique commonly known as 

~ the receiver operating characteristic (ROC). The ROC is a graph 

of the two kinds of probabilities; (1) probability of' 'match' 

decisions when actually it is true, and (2) probability of 

'match' when it is false, plotted on a unit square coordinates. 

The ROC has been a suggested procedure in the field of voice 

identification (the National Academy of Sciences, 1979; Tosi, 

1979) to evaluate the discriminating ability of the human voice 

examiner, or any other system used for voice identification. 

Here, we adopt the technique to evaluate the discriminating 

cap~ility of proximity index applied in the C.A.V.I.S. voice 

verification procedures with 49 known and 49 unknown speakers. 

• 
Table 5.2 shows the results of the voice verification 

operations expressed in terms of p(Sls), p(Sld), p(Dld), and 

p(Dls), each computed by the different proximity index values . 

As it can be seen that p(Sls), the probability 'match' decisions 
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when it is true, or correct verification, begins to show positive 

effects (0.0851) at the proximity index value of 0.8, and 

gradually reaches p(Sls) = 0.9821 at the proximity index value of 

0.38, and p(Sls) tapers off as the proximity index value gets 

smaller than 0.38. 
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Prox. True False True False Total Attempts 
run Index Ident. Ident. Elm. Elim. 

i vc p(Sls) pes I d) p(Dld) p(dls) Ident. Elim. 

1 0.8000 0.0851 0 .. 0006 0.9994 0.9149 12945 - 42180 
2 0.7500 0.1041 0.0010 0.9990 0.8959 10367 - 44758 
3 0.7000 0.1292 0.0017 0.9983 0.8708 8094 - 47031 
4 0.6500 0.1638 0.0028 0.9972 0.8362 6044 - 49081 
5 0.6000 0.2173 0.0042 0.9958 0.7827 4192 - 50933 
6 0.5800 0.2494 0.0049 0.9951 0.7506 3492 - 51633 
7 0.5600 0.2833 0.0059 0.9941 0.7167 2880 - 52245 
8 0.5400 0.3277 0.0069 0.9931 0.6723 2319 - 52806 
9 0.5200 0.3838 0.0082 0.9918 0.6162 1795 - 53330 

10 0.5000 0.4428 0.0098 0.9902 0.5572 1346 - 53779 
11 0.4800 0.5045 0.0114 0.9886 0.4955 1007 - 54118 
12 0.4700 0.5586 0.0121 0.9879 0.4414 836 - 54289 
13 0.4600 0.6127 0.0127 0.9873 0.3873 710 - 54415 
14 0.4500 0.6718 0.0134 0.9866 0.3282 585 - 54540 
15 0.4400 0.7340 0.0143 0.9857 0.2660 470 - 54655 
16 0.4300 0.7816 0.0151 0.9849 0.2184 380 - 54745 
17 0.4200 0.8136 0.0161 0.9839 0.1864 295 - 54830 
18 0.4100 0.8318 0.0172 0.9828 0.1682 214 - 54911 
19 0.4000 0.8652 0.0182 0.9818 0.1348 141 - 54984 
20 0.3900 0.9545 0.0189 0.9811 0.0455 88 - 55037 
21 0.3800 0.9821 0.0194 0.9806 0.0179 56 - 55069 

Table 5.2 Results of voice verification experiments. 
The probabilities are expressed in terms of p(Sls) - the 
probability of true identification, p(Sld), the probability 
of false identification, p(Dld), the probability of true 
elimination, and p(Dls), the probability of false 
elimination, based on the various proximity index values, 
VC I used as v~rification thresholds • 
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Figure 5.1 is the ROC curve illustrating the relationship 

between the two types of probability, one being p(Sls), the 

probability of the system calling a 'match' when it is actually 

true, and the other p(Sld), the probability of the system calling 

a 'match' when it is actually false. The solid curve was 

prepared from the experiment in which the system was allowed to 

exercise "no decision" when the IDS bands yielded poor 

stability. The broken line curve was prepared from the same 

experiment but with an exception: the system was not allowed to 

refrain from rendering the decision. 

The solid line curve rises sharply to approach 

p(SIS)=0.9821 which corresponds to p(Sld)= 0.0194, whereas the 

broken line curve slowly reach p(Sls)=0.9425 which corresponds to 

p(Sld)=0.0418. The difference shows clearly that the system with 

"no decision" option allowed performs better in terms of its 

verification rate than the system without the option of "no 

decision". Furthermore, Figure 5.1 also indicates that, in 

order to reduce p(Sld) to 0.0, which is the ideal condition where 

we have no costly 'false' verification, pCSls) must be shifted 

down to 0.0446. A simple way of interpreting these figures may 

be: In order for the system to maximize its ability (with no 

decision option given) to correctly verify the criminal's voice 

to p(Sls) = 0.98, there will be an accompanying stake of 

incorrectly verifying an innocent individual with p(Sld) = 

0.0194 • 
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Figure 5.2 is the ROC curve illustrating the relationship 

between the two types of probability, one being p(Dld), the 

probability of the system calling a 'Different' when it is 

actually true, and the other peDis), the probability of the 

system calling a 'Different' when it is actually false. 

We feel that it is safe to say that C.A.V.I.S. is as 

effective in verifying the speakers as in eliminating the 

innocent speakers • 
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Figure 5.1 Probabilities of correct verification 
and incorrect verification. The solid line is ROC 
curve made from the verification experiments with "no 
decision" allowed. A correct verification occurred 
when the system declared a known and an unknown 
speakers are "Same" when actually it is true. An 
incorrect verification occurred when the system 
declared a known and an unknown speakers are 
"Different" when actually they are "different" 
speakers. The broken line is ROC curve made from the 
verification experiments with no "no decision" allowed. 
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Figure 5.2 Probabilities of correct elimination 
and incorrect elimination. The solid line is ROC curve 
made from the verification experiments with "no 
decision" allowed. A correct elimination occurred when 
the system declared a known and an unknown speakers are 
"Different" when actually it is true. An incorrect 
elimination occurred when the system declared a known 
and an unknown speakers are "Different" when actually 
they are "same" speakers. The broken line is ROC curve 
made from the verification experiments with no "no 
decision" allowed. 
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6 CONCLUSIONS 

The main goals of this project were threefold: (1) to 

establish a system that is free from the influence of the 

transmission and/or recording media, (2) to develop a system that 

works with text-independent voice data, and (3) to construct a 

system which can deliver the voice identification decisions 

objectively. 

The problem of the adverse influence of the transmission 

and/or recording media due to the unknown response 

characteristics was intensively dealt with in the earlier stage 

of this project by the use of multiple transmission channels. 

This problem was approached from three angles. The first was 

related to the selection of a particular group of parameters that 

are not associated with a spectral output of speech which is 

subject to the response characteristics of the media. pitch or 

fundamental frequency and the variety of derivatives measurements 

were selected and found to be the ideal parameters. All the 

measurements from the time domain described in this report belong 

to this class of parameters. 

Intensity deviation spectrum (IDS) was investigated for its 

independence from the influence of the transmission medium and 

also the reliability in distinguishing the speakers. It was 

concluded that IDS can be made free from the influence and is 

reliable in distinguishing the speakers. It was found that 

contextually unbounded and spontaneously generated speech samples 
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lasting as long as 30 seconds can provide a sufficient amount of 

information for recognizing the individual's identity. 

Although the system, as it stands now, is characterized as 

being interactive, thus inescapable from inclusion of some amount 

of subjectivity, there are many objective components found at the 

various stages. 

The objective components in our system can be seen 

throughout the pre-processing stages, such as the determination 

of the individualized filter shape for each speech sample unit, 

analog to digital conversion, pause elimination, generation of 

spectra by FFT, computation of IDS and the estimates of the 

probability density functions of time domain parameters, and the 

process of computing the proximity index • 

On the other hand, the major subjectivity in the system 

exists in three areas: (1) during editing of speech signal to 

remove pauses, whenever software automatic pause deletion program 

fails, (2) during the manual targeting of wavelet peaks, which 

yields the basis for all the time domain parameters, and (3) 

during the process of estimating three Weibull parameters, eO, 

vO, and kO, when the automatic process fails, the operator's 

interactive maneuver is required to optimize the data by deleting 

the outliers. 

Nonetheless, it is important to note that the results are 

reproducible and procedures are repeatable for they are based on 

solid computer algorithms: the test re-test reliability is 

considered high, which is an essential aspect of the 

objectivity. We, therefore, believe that our third goal 

C.A.V.I.S. - LASD 



• 

!. 

• 

107 

'objective decision' has been fulfilled. 

The key factor that emerged during the project to challenge 

the above mentioned problems simultaneously is the implementation 

of the strategic optimization of the parameter set for each pair 

of speakers to be compared. This implies that one particular set 

of parameters may be the best fit for a particular pair of 

speakers under comparison, but the same set may not work at all 

for another pair of speakers. The automated selection process 

of the optimum set of parameters for each individual pair of the 

speakers was improvised as described fully in the previous 

Chapter. 

Th(~ results presented in the previous chapter clearly show 

the overall effectiveness of C.A.V.I.S. in distinguishing the 

speakers (in the voice identification process as well as in the 

voice verification process). The system in the voice 

identification process indicated a reasonably high success rate 

as long as it is allowed to pullout several voices that can be 

the candidates for the questioned voice. since there is only one 

voice we are interested in drawing from the voice database, this 

type of process may appear to be irrelevant in a real situation. 

However, the utility of this process lies in the fact that the 

system can be shown to be sensitive, thus being able to classify 

a certain group of speakers according to their voice 

characteristics. 

We took very cautious steps in every' aspect of the 

experimentation during this project so that the voice data we 

analyzed would be as close to a realistic situation as possible. 
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In that sense, we tend to believe that a certain level of 

subjective components provided by the knowledgeable operator 

should participate in the process to ensure that appropriate 

voice data are analyzed. More importantly, this type of 

subjectivity is not likely to be the target of psychological 

bias, on the part of a system user, in reporting the final 

decision of the voice identification phase. 
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Toward the end of this project, we grew to sustain a notion 

of possible existence of the "separator" parameters and the 

"connector" parameters. Any given param.eter from a specific 

person can be regarded as either "separator", or "connector", but 

not as both. We acknowledged that this notion is highly 

speculative, yet it appears to bear a significantly important 

future research topic in the field of forensic voice 

identification. 

For example, during the process of defining a set of 

parameters, for a specific speaker, first choose those that 

indicate a high stability within the individual and discard those 

which exhibit random measurements: This can be done by taking 

the statistical measurements of the variability of each parameter 

within a given speaker. Next, select a set of parameters, from 

the same speaker, those which separate the speaker from the 

rest: This is achieved by means of comparing each parameter 

taken from two speakers against the estimated population 

distribution of the parameter. Then conduct a test to see 

whether or not these two speakers fall into the same region 

bounded by one standard deviation. Within an informally 
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constructed experimental design, we noted that having two 

speakers fall in such a bounded region does not necessarily mean 

that they are matched, but simply implies that the speakers 

become indistinguishable by that parameter. On the other hand, 

when two speakers fall farther apart outside of this one standard 

deviation region < they are separated with a high degree of 

certainty. 

In our research project, the parameters measured from the 

time domain are treated under this very concept of 'separator' or 

'connector' for distinguishing the speakers. 
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7 FUTURE IMPLICATIONS 

Our intent is to contribute to ·the crime investigation 

process by using the methodologies and findings which have been 

integrated into C.A.V.I.S •• We feel strongly about the future 

contribution of our system for voice identification to the law 

enforcement community supported by the new techniques as 

described below. 

The schemes and ideas promoted in this project include: 

speech parameter extra.ction techniques, the use of 

speaker-dependent stability measures, the development of a 

technique for statistical processing of these stability measures, 

implementation of separator vs. connector concept, and a strategy 

to reduce the multidimensional vector sets into a single 

'proximity index', and finally, all of the above techniques have 

been systematically and conveniently integrated into a solid 

reliable computerized working system. 

This research project is considered to be unique in a sense 

that it has been conducted at the very site of the law 

enforcement environment where the product is most needed. In 

fact, during the four year long project, the research staff have 

been constantly exposed to a variety of real criminal voice 

cases, which have been handled by the conventional method, 

aural-spectrographic method, of voice identification. Under such 

circumstances, mainly because of the requirements by C.A.V.I.S., 

and partly because of the need for enhancement of some rudimental 

processing aspects in the conventional aural-spectrographic voice 

identification method, it was only a natural course that useful 
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by-products emerged. By-products of C.A.V.I.S., such as digital 

audio processing techniques for editing, filtering, searching for 

words, and real time frequency analysis, have been assimilated 

into the conventional process of voice identification. It has 

been confirmed that the same by-products can be applied 

effectively toward the analysis of general types of acoustic 

events generated and recorded during the course of real criminal 

actions a These events include gun shots, explosives, and sound 

generated by a tossed piece of galvanized pipe allegedly used at 

a murder scene, and so forth. 

In relation to the existing methodology, we are urged to 

make a followi.ng note. What has been accomplished by the 

sophisticated statistical computation is not going to be a 

replacement of the conventional method of voice identification 

when text-dependent samples are available, but, rather to be a 

reinforcement working in a complimentary fashion with the 

existing methodology and technology of voice identification. 

Human speech production is a complex and dynamic phenomenon 

requiring even more complex mechanisms of processing by the human 

brain. It is fair to say, for the system as it stands now, that 

C.A.V.I.S. is limited in its capability to capture the speaker 

dependent information embedded within the semantic and linguistic 

aspects of the voice. That type of discrimination still calls 

for the intervention by the experienced examiner through the 

critical listening and extraction of such information. 

We reported that CoA.V.I.S. yielded 98% correct 

identification, and 2% incorrect identification {false 
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identification) when performed thoroughly algorithmically with a 

minimum amount of operator intervention. At this performance 

rate we feel very strongly that our system is ready to provide 

services upon request and contribute in the investigative process 

in which the identity of recorded voices bear evidential 

relevancy. In order to reduce this 2% error of false 

identification, the system needs to be provided in the future 

with more analytical capability and information processing 

strategy that parallels with the brain of the experienced human 

voice expert. For this provision, there is a realistic optimism 

exemplified in the survey report by the Federal Bureau of 

Investigation (Koenig, 1986). Koenig reported that the 2000 

voice identification comparisons by the spectrographic technique 

conducted by the FBI examiners yielded a 0.31% false 

identification error rate and a 0.53% false elimination error 

rate. 

until a fully developed automatic computer system of voice 

identification is established for forensic use, this 

'man-machine' interactive system appears to be the best direction 

to pursue to fight against the crime. The tool developed in this 

project is ready to aid the voice examiner in analyzing the 

increasing numbers of voice identification cases. 
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APPENDIX A 

Mathematics for Computing the Area 
(probability of Match of Two Speakers) Formed 

By Two Probability Density Functions Derived From 
the C.A.V.I.S. Time Domain Parameters 

Let 

P (x) E probability 

p(x)" distribution function 

P (x) = exp( -((x - a)/b)c) 

Then, dP(x)= -c(x-a)C-l 
dx b b P (x) 

The distribution is 

P(.>:) = ~(x~ a Y- 1 

p(x) 

Integrate P (x) from x = a to x = 00 

f '" f'" (x a)C-l ((x a)C) 
a P (x)dx = a ~ -i- exp - -i- dx 

• "[ -exp[ -(x:arJI 

• 

"o+exp( _(a:a)}1 
Integrate P (x) from x = a to x = x_cross 

f x_cross [( ( X - a) C) ] x_cross 
P dx = - exp - --

a (x) b 
a 

I ( (
x_cross-a)C) 

= - exp -
a 

The above algorithm exemplifies an example when there is only 
one cross over (intersect, or probability of match) made by two 
probability density functions of one of our time domain 
parameters (one for a known and one for an unknown speaker). In 
the equations, a, b, and c represent three Weibull parameters, 
and throughout in this final report, they are denoted as. eO 
(threshold parameter), vO(characteristics value), and kO(shape 
parameter), respectively. (By courtesy of Dr. Glenn Bowie, 1989) 
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APPENDIX B 

List of Major Program Names Developed For C.A.V.I.S.1 

Program Names 

ADA10240.EXE 

ADM10240.EXE 

ADA20480.EXE 

ADM20480.EXE 

AVGWAVE.EXE 

CAV3D.EXE 

CAVEXP2P.EXE 

CAVIS.EXE 

Descriptions 

A 12-bit Analog to Digital Conversion 
program with a 10240 Hz sampling rate. 
Initiated by automatic (external) trigger. 

A 12-bit Analog to Digital Conversion 
program with a 10240 Hz sampling rate. 
Initiated by manual (internal) trigger. 

A 12-bit Analog to Digital Conversion with 
a 20480 Hz sampling rate. Initiated by 
automatic (external) trigger. 

A 12-bit Analog to Digital Conversion with 
a 20480 Hz sampling rate. Initiated by 
manual (internal) trigger . 

To compute the averaged smoothed and the 
sorted wavelets from each voice sample. 

To plot speakers dynamically onto three 
dimensional spaces based on the speaker 
specific parameter set. 

To perform voice identification and voice 
verificaton experiments. 

The main driver program which integrates 
the C.A.V.I.S. major programs used in 
analog to digital, digital to analog 
conversions, filtering, editing, parameter 
extractions, and other signal processings. 

1 All the main programs listed above are coded. in Microsoft "C", 
versions. 3.1 and 5.1. Function modules called by these main 
programs are not listed. A few functions are written in the 
Assembly language where the intensive computation is required, or 
where the speed of data transportation is critical during the ADC 
or DAC processes . 
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CHARTIT.EXE 

CKLEVEL.EXE 

COMPLEXT.EXE 

IDSPROT.EXE 

DELPAUSE.EXE 

DISP-AVG.EXE 

DISP2P10.EXE 

DISPAFT.EXE 

DISPJOIN.EXE 

DISPLET.EXE 

DISPPROT.EXE 

D0375.EXE 

DSPFFT.EXE 

EDIT1024.EXE 

FFTI024.EXE 

FRVID.EXE 

GENAVGFD.EXE 
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To produce a hardcopy of sound file. 

To calibrate the optimum input level of 
the analog signal before the ADC process. 

To synthesize complex tones used during 
the debugging stage of the system 
software development. 

To compute the IDS spectra. 

To remove pauses by the automatic method. 

To plot the long-term averaged spectrum 
generated from the individual speaker 
sample. 

To plot simultaneously all the frequency 
domain parameters of the known and the 
unknown speakers. 

To display in a water fall mode a set of 
1024 point FFT frames taken from a sample 
of a speaker. 

To display the ~ntire speech parameters 
both from the time and the frequency 
domain in the final graphic output format. 

To display graphically the each individual 
wavelets segmented. 

To display graphically the IDS spectra. 

To perform the numerical conversions from 
SD 375 data format to the DOS binary 
format. 

Perform a series of 1024 point FFT's by 
the use of a TMS ~20 based Digital Signal 
Processor Board installed in the system 
computer 

To perform editing of the sound file. 
Uses the convenient graphic display 
combined with the instant DAC feature. 

Perform a series of 1024 point FFT's by 
the "c" language written software. 

To compute the F-ratio statistics of the 
speech parameters. 

To compute the averaged IDS shape from 
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GEN-PDF.EXE 

GET-AVG.EXE 

IDSPROT.EXE 

LOOPIT.EXE 

MATCH.EXE 

• 
MATRIX3W.EXE 

PACKIT.~XE 

PICKIT.EXE 

PICKSRT.EXE 

• 

the entire speaker set. 

To generate the 512-tap convolution 
coefficient set that is used to set 
the PDF 2048 into the arbitrary 
shape such as a low or high pass 
for the evaluation of the system 
performance. 
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To retrieve the 1024 data from the SD-375 
for later use of computing the convolution 
coefficients. 

To plot the IDS spectra as many as 10 at a 
time, each IDS being displayed in its own 
color. 

To playback (DAC) the sound file for aural 
evaluation in a continuous mode. 

This program takes a table of speech 
files of the len~th between one second to 
any length that 1S limited by the maximum 
memory capacity of the storage medium in 
use. It conveniently facilitates the 
short-term memory aural analysis of the 
speech samples through a 12-bit DAC with a 
10240 Hz sampling rate. It is not included 
as the required element of the C.A.V.I.S. 
voice identification and verification 
experiments, but has been used as a daily 
laborator¥ tool for the analysis of the 
actual V01ce cases. 

To generate an N x N matrix of the 
probabilities of match computed between 
every possible combinations of the speaker 
samples along a given time domain 
parameter. 

To concatenate the signals that are 
automatically segmented by the program 
delpause into a sound file. 

To detect interactively (operator and 
software) the wavelets from the unsmoothed 
and unrectified sound file, and to store 
the addresses of the detected wavelets. 

To detect interactively (operator and 
software) the wavelets from the smoothed 
and rectified sound file, and to store the 
addresses of the detected wavelets. 
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PLAYIT.EXE 

POPEVK.EXE 

SCOPEIT.EXE 

SD-PDF.EXE 

SMOPROT.EXE 

STEREO.EXE 

W1.EXE 

W1AUTO.EXE 

W2.EXE 

W2AUTO.EXE 

W4.EXE 
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To playback a sound file. 

To estimate the population values of the 
three Weibull parameters. 

To display in a real time mode the input 
analog signal on the system computer 
monitor for the purpose of calibration. 

To generate the 512-tap convolution 
coefficient set that is used to set 
the PDF 2048 into the individualized 
shape for each speaker's sample. 

To smooth and normalize an IDS. 

To display graphically two sound files 
simultaneously, to playback the designated 
portion of either file, and to perform 
a 512 point FFT and display the results. 

To compute the three parameters of the 
Weibull function from the "wavelet 
intensity", (or the 3w1) C.A.V.I.S. 
speech parameter by the method of manual 
removal (with an optical mouse) of bad 
data from both the low and the high 
extreme ends. 

To compute the three parameters of the 
Weibull function from the "wavelet 
intensity", (or the 3w1) C.A.V.I.S. 
speech parameter by the method of 
automatic iterative removal of bad 
data from both the low and the high 
extreme ends. 

To compute the three parameters of the 
Weibull function from the "pitch", (or 
the 3w2) C.A.V.I.S. speech parameter 
by the method of manual removal 
(with an optical mouse) of bad data 
from both the low and the high 
extreme ends. 

To compute the three parameters of the 
Weibull function from the "pitch", (or 
the 3w2) C.A.V.I.S. speech parameter by 
the method of automatic iterative removal 
of bad data from both the low and the 
high extreme ends. 

To compute the three parameters of the 
Weibull function from the "auto corre-
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W4AUTO.EXE 

W5.EXE 

W5AUTO.EXE 

• 
WB.EXE 

WBAUTO.EXE 

WAVELETN.EXE 

WEIBPOP.EXE • 
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lation of successive wavelets", (or,3w4) 
C.A.V.I.S. speech parameter by the method 
of manual removal (with an optical mouse) 
of bad data from both the low and the high 
extreme ends. 

To compute the three parameters of the 
Weibull function from the "auto corre­
lation of successive wavelets", (or, 3w4) 
C.A.V.I.S. speech parameter by the method 
of automatic iterative removal of bad data 
from both the low and the high extreme 
ends. 

To compute the three parameters of the 
Weibull function from the "variation of 
total wavelet intensity", (or 3w5) 
C.A.V.I.S. speech parameter by the method 
of manual removal (with an optical mouse) 
of bad data from both the low and the high 
extreme ends. 

To compute the three parameters of the 
Weibull function from the "variation 
total wavelet intensity", (or, 3w5) 
C.A.V.I.S. speech parameter by the method 
of automatic iterative removal of bad data 
from both the low and the high extreme 
ends. 

To compute the three parameters of the 
Weibull funaction from the "average energy 
distribution curve", (or 3wB) C.A.V.I.S. 
speech parameter by the method of manual 
removal (with an optical mouse) of bad 
data from both the low and the high 
extreme ends. 

To compute the three parameters of the 
Weibull function from the "average energy 
distribution curve", (or, 3w8) C.A.V.loS. 
speech parameter by the method of 
automatic iterative removal of bad data 
from both the low and the high extreme 
ends. 

To compute the intermediate data sets for 
3w1, 3w2, 3w4, 3w5, and 3w8 parameters 
concurrently while graphic displays are in 
progress. The program generates the 
output data files in ASCII format. 

To compute and display the estimated 
population Weibull density functions. 
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WPROB10.EXE 
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To compute and display the intersect 
(probability of match) of two samples 

122 

(one taken from an unknown, and the other, 
from a known speaker) represented by the 
pair of Weibull density functions of one 
of the time domain parameters. 

To compute and display the intersect 
(probability of match) between all the 
possible combinations of Weibull density 
functions of 5 voice samples of each of 
the two given speakers. 
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• APPENDIX C 

Samples of five time domain parameters 

FILE 1 = ts311x 3w1 Parameter = Normalized_Glotal_Intensities 

01 02 03 04 05 
EO 22657.1719 20488.5059 20895.1172 22713.9785 22186.0039 
VO 29688.6680 29829.9219 29828.4961 29573.2813 29484.0586 
KO 5.5000 7.6875 7.7188 4.7813 5.8125 
lleibull 
l-fEAN 29148.6602 29268.5234 29'),93.3086 28995.6738 28944.6016 
VAR 1856818.0000 1828104.0000 1659948.8750 2246330.0000 1818408.25 
S.D. 1362.6511 1352.0740 1288.3900 1498.7761 1348.4836 
CVAR 0.0467 0.0462 0.0440 0.0517 0.0466 
SKEW -0.3181 -0.5137 -0.5158 -0.2225 -0.3534 
KURT 2.9559 3.2905 3.2949 2.8470 3.0050 
Descriptive 
MEAN 29149.4004 29270.0137 29295.3848 28995.6055 28945.6426 
VAR 1771618.3750 1741265.1250 1601123.8750 2144848.7500 1724990.00 
S.D. 1331. 0215 1319.5701 1265.3552 1464.5302 1313.3888 
CVAR 0.0457 0.0451 0.0432 0.0505 0.0454 
SKEW -0.3700 -0.5290 -0.5309 -0.2895 -0.4350 

• KURT 2.0501 2.2110 2.5441 1. 9662 2.1043 

FILE 2 = ts311y 3'1'11 Parameter = Normalized_Glotal_Intensities 

01 02 03 04 05 
EO 24249.5430 24511.9570 21270.5117 24108.7266 21826.0215 
VO 29249.9922 29137.9941 30035.4238 29429.1621 30146.3496 
KO 3.5234 3.1797 7.1250 3.8906 6.2500 
lleibull 
MEAN 28750.2793 28654.0098 29477.0566 28923.6211 29562.2891 
VAR 2004393.3750 2041696.0000 1839833.1250 1918412.7500 2084222.12 
S.D. 1415.7660 1428.8793 1356.4044 1385.0677 1443.6835 
CVAR 0.0492 0.0499 0.0460 0.0479 0.0488 
SKEW 0.0192 0.1123 -0.4731 -0.0647 -0.3980 
KURT 2.7133 2.7151 3.2086 2.7378 3.0741 
Descr:i·.pt i ve 
MEAN 28748.2500 28652.1152 29479.5137 28923.0879 29565.7402 
VAR 1941193.0000 1974012.8750 1769301.0000 1848970.6250 1947324.12 
S.D. 1393.2670 1404.9957 1330.1508 1359.7686 1395.4656 
CVAR 0.0485 0.0490 0.0451 0.0470 0.0472 

• SKEW -0.0671 0.0440 ·-0.4619 -0.1161 -0.4021 
KURT 2.1977 2.0387 2.4498 2.0835 2.0509 
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• APPENDIX C (Continued) 

Program E:\PRNWI0.EXE Friday I 29 Sep 1989 - 10:58:43.78 

FILE 1 = ts311x 3w2 Parameter = Fundamental_Frequency 

01 02 03 04 05 
EO 79.5969 63.6851 94.9284 83.7398 86.2383 
VO 159.8024 163.2805 1.38.3546 139.8305 134.3863 
KO 3.8906 2.7734 1. 9883 1. 6602 2.3203 
Weibull 
MEAN 152.1814 152.3382 133.4182 133.8727 128.8979 
VAR 435.9698 1195.0221 409.1013 962.0613 380.8488 
S.D. 20.8799 34.5691 20.2263 31. 0171 19.5153 
CVAR 0.1372 0.2269 0.1516 0.2317 0.1514 
SKEW -0.0647 0.2471 0.6390 0.9022 0.4444 
KURT 2.7378 2.7677 3.2601 3.8730 2.9527 
Descripti Ve 

NEAN 151.0349 150.9860 132.3643 132.5053 128.0031 
VAR 419.3026 1119.2240 386.3436 845.9623 363.8753 
S.D. 20.4769 33.4548 19.6556 29.0854 19.0755 
CVAR 0.1356 0.2216 0.1485 0.2195 0.1400 
SKEW -0.0203 0.1513 0.4988 0.6179 0.396<1 
KURT 3.1325 2.2197 2.9759 2.1504 2.7210 • 

FILE 2 = ts31ly 3'\012 Parameter = Fundamental_Frequency 

01 02 03 04 05 
EO 84.9856 94.5377 92.0400 95.6651 ge."lB71 
VO 148.2320 133.1453 145.3337 137.3328 137.6367 
KO 3.5703 2.1250 2.3086 1. 5039 1.6387 
Weibull 
MEAN 141.9519 128.7301 139.2557 133.2687 133.5462 
VAR 313.5562 286.4622 470.7950 648.7505 473.6034 
S.D. 17.7075 16.9252 21. 6978 25.4706 21.7624 
CVAR 0.1247 0.1315 0.1558 0.1911 0.1630 
SKEW 0.0077 0.5521 0.4504 1. 0674 0.9230 
KURT 2.7152 3.1076 2.9603 4.3752 3.9313 
Descriptive 
MEAN 140.9141 127.8341 137.9062 131.9510 132.4043 
VAR 298.2512 273.4631 420.819B 567.5229 433.7365 
S.D. 17.2700 16.5367 20.5139 23.8227 20.8263 
CVAR 0.1226 0.1294 0.1488 0.1805 0.1573 
SKEW 0.0541 0.5805 0.3014 0.9240 0.7537 • KURT 2.9785 3.5108 1.9641 3.5009 2.9760 
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• APPENDIX C (Continued) 

Program E:\PRNW10.EXE Friday, 29 Sep 1989 - 10:58:48.39 

FILE 1 = ts311x 3w4 Parameter = Corr_Succ_Wavelets 

01 02 03 04 05 
EO 995.8730 998.0584 999.4634 1000.0118 992.9894 
VO 1054.3058 1069.1749 1062.3230 1095.9496 1091. 0413 
KO 1. 2031 1. 3594 1.2578 1. 0391 1.1914 
\leibull 
HEAN 1050.8015 1063.1921 1057.9275 1094.4802 1085.3953 
VAR 2102.7480 2347.6687 2188. 98~(1 8269.3271 6063.4858 
S.D. 45.8557 48.4527 46. '7866 90.9358 77.8684 
CVAR 0.0436 0.0456 0.0442 0.0831 0.0717 
SKEW 1. 5151 1. 2555 1.4160 1.8884 1.5377 
KURT 6.2065 5.0597 5.7405 8.2797 6.3177 
Descriptive 
MEAN 1050.4858 1062.9525 1057.5776 1093.6901 1084.763"1 
VAR 1980.1344 2249.2109 2066.2898 7685.3330 5644.1934 
S.D. 44.4987 47.4258 45.456~) 87.6660 75.1278 
CVAR 0.0424 0.0446 0.0430 0.0802 0.0693 
SKEW 1. 2643 1.0921 1.1949 1.5569 1. 2648 
KURT 3.9924 3.5610 3.8"'85 5.1141 3.8528 • 

FILE 2 = ts311y 3w4 ParalTtc:ter = Corr_Sllct:_\lavi::lt:!ts 

01 02 03 04 05 
EO 993.2094 989.7971 1007.8661 1000.4515 996.4571 
VO 1066.7833 1140.9352 J088.2687 ]072.0464 1074.1483 
KO 1.2578 1.1367 1.0234 1.2070 1.3281 
Wei bull 
I·IEAN 1061.6387 1134.1312 1087.5076 1067.6971 1067.9124 
VAR 2998.8169 16193.1445 6056.5181 3132.0676 2951.2512 
S.D. 54.7615 127.2523 77.8236 55.9649 54.3254 
CVAR 0.0516 0.1122 0.0716 0.0524 0.0509 
SKEW 1.4160 1.6506 1. 9317 1.5077 1.3020 
KURT 5.7405 6.9000 8.5538 6.1704 5.2476 
Descriptive 
MEAN 1060.9895 1132.6504 1086.6530 1066.8909 1067.1355 
VAR 2743.9182 14742.5215 5508.9697 2834.8247 2615.0359 
S.D. 52.3824 121.4188 14.2224 53.2431 51.1314 
CVAR 0.0494 0.1072 0.0683 0.0499 0.0479 

• SKEW 1.1063 1. 3349 1.6432 1.1823 0.9899 
KURT 3.4460 4.0949 5.5306 3.7464 2.8148 

C.A.V.I.S.-LASD 
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• APPENDIX C (Continued) 
Program E:\PRNWI0.EXE Friday, 29 Sep 1989 - 10:58:53.28 

FILE 1 = ts311x 3w5 Parameter = Normalized_Glotal_Shimmer 

01 02 03 04 05 
EO 188.1446 173.0270 200.2955 155.4339 172.0871 
VO 795.1268 755.9966 775.0175 827.5623 758.7400 
KO 1.4199 1. 2773 1. 2988 1.3750 1. 4551 
Wei bull 
HEAN 740.1666 713.4104 731.1919 769.8192 703.7613 
VAR 155484.4375 181640.2969 169889.1250 204474.4844 137840.812 
S.D. 394.3152 426.1928 412.1761 452.1886 371.2692 
CVAR 0.5327 0.5974 0.5637 0.5874 0.5275 
SKEW 1.1717 1. 3829 1.3478 1. 2331 1.1265 
KURT 4.7399 5.5927 5.4402 4.9719 4.5773 
Descriptive 
MEAN 737.9327 710.8639 728.3773 766.8989 701.3884 
VAR 148999.0938 173552.7031 162551.9063 195759.8906 132423.156 
S.D. 386.0040 416.5966 403.1773 442.4476 363.8999 
CVAR 0.5231 0.5860 0.5535 0.5769 0.5188 
SKEW 1. 0170 1.1874 1.1564 1. 0381 0.9684 
KURT 3.2492 3.7495 3.9382 3.3973 3.2808 

• 
FILE 2 = ts311y 3w5 Parameter = Normalized_Glotal_Shimmer 

01 02 03 04 05 
EO 198.7635 258.3114 14\\.5535 168.7787 280.4189 
VO 873.7714 1066.9147 849.1837 838.5959 771.9771 
KO 1. 3809 1.0762 1.7188 1.3906 1.2363 
Weibull 
HEAN 815.3454 1044.3638 772.7999 779.9177 739.4171 
VAR 204312.5156 534299.3750 141838.5625 198102.7969 139406.890 
~.D. 452.0094 730.9579 376.6146 445.0874 373.3723 
CVAR 0.5544 0.6999 0.4873 0.5707 0.5050 
SKEW 1. 2249 1.7918 0.8481 1.2113 1.4537 
KURT 4.9400 7.6939 3.7281 4.8879 5.9139 
Descriptive 
MEAN 811.7903 1038.3081 770.4039 776.1975 734.9787 
VAR 194357.3594 502868.0938 136839.1875 187000.9063 129614.492 
S.D. 440.8598 709.1320 369.9178 432.4360 3£0.0201 
CVAR 0.5431 0.6830 0.4802 0.5571 0.4898 
SKEW 1. 0378 1. 6002 0.7111 1. 0171 1. 2.394 

• KURT 3.6058 6.0751 2.7310 3.2966 4.2145 

C.A.V.I.S.-LABD 
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• APPENDIX C (Continued) 

Program E:\PRNW10.EXE Friday, 29 Sep 1989 - 10:58:58.17 

FILE 1 = ts311x 3w8 Parameter = Energy_Distribution 

01 02 03 04 05 
EO 324.0961 361.5950 251. 9547 352.6517 312.7665 
VO 1116.5532 1155.4116 1102.8757 1123.3718 1117.1232 
KO 1. 6641 1. 7617 1.8125 1. 7344 1. 7539 
l1eibull 
MEAN 1032.2529 1068.3148 1008.4199 1039.4347 1029.0492 
VAR 191141.2969 171615.4688 186757.0000 166737.0938 177718.609 
S.D. 437.1971 414.2650 432.1539 408.3345 421.5669 
CVAR 0.4235 0.3878 0.4285 1i.3928 0.4097 
SKEW 0.8985 0.8107 0.7686 0.8343 0.8174 
KURT 3.8627 3.6336 3.5330 3.6927 3.6501 
Descriptive 
}IEAN 1029.0122 1065.4376 1006.2689 1036.54'76 1026.1066 
VAR 180086.5000 163098.6094 179005.4688 158756.3125 169110.7]8 
S.D. 424.3660 403.8547 4:l3.0904 19£L ·i424 411. 2307 
CVAR 0.4124 0.3791 0.4205 0.3844 0.4008 
SKEW 0.7202 0.6528 0.6434 0.6750 0.6534 
KURT 2.5568 2.5726 2.5619 2.6738 2.5886 

• 
FILE 2 = ts311y 3w8 Paraltlete:r :.: EhE::rrrl' __ Distdbutioll 

01 02 03 04 05 
EO 264.3383 308.5601 342.9292 269.4112 351.4659 
VO 1120.0905 1109.8516 1117.4316 1145.6213 1095.3193 
KO 1.7734 1. 7422 1.6797 1. 8672 1. 6387 
Weibull 
BEAN 1025.9232 1022.3918 1034.5601 1047.3958 1016.9997 
VAR 196914.1563 178665.3750 179245.7344 187195.8438 173626.828 
S.D. 443.7501 422.6883 423.3742 432.6613 416.6855 
CVAR 0.4325 0.4134 0.4092 0.4131 0.4097 
SKEW 0.8008 0.8275 0.8838 0.7258 0.9230 
KURT 3.6094 3.6754 3.8225 3.4367 3.9313 
Descriptive 
MEAN 1022.8646 1019.4186 1031.4552 1044.5837 1013.8563 
VAR 186499.4688 169834.1250 169467.0313 178119.1250 164381.062 
S.D. 431.8558 412.1094 411. 6637 422.0416 405.4394 
CVAR 0.4222 0.4043 0.3991 0.4040 0.3999 
SKEW 0.6176 0.6518 0.7055 0.5504 0.7438 

• KURT 2.,3919 2.5511 2.5702 2.3355 2.7131 

C.A. V. I.S.-LASD 




