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SUMMARY REPORT . 
EY ALUATING A NEW TECHNIQUE FOR IMPROVING EYEWITNESS 

IDENTIFICATION 

Victor S. Johnston. 
Department of Psychology. 

New Mexico State University. 
Las Cruces, New Mexico 88003 

The primary goal of this study was to evaluate a facial 
recognition system in which facial composites were constructed by 
witnesses using a computer. The computer system contained facial 
features that permitted over 34 billion composites to be generated. 
The system initially generated 29 possible faces that were rated by a 
witness for their general resemblance to a culprit. These ratings were 
then used to guide a genetic algorithm (GA) search process which 
generated a new set of 20 faces (second. generation) based upon the 
most highly rated composites of the first generation. The new faces 
were again rated for resemblance to the culprit. this process 
continued until the culprit's face was evolved. 

A second goal was to determine the best settings for variables 
which influence the efficiency of the GA search. These variables 
included: (a) the genetic coding system (e.g binary or Gray code), (b) 
the GA parameters (e.g. mutation and crossover rate), (c) the number 
of generations needed, and (d) the user interface. 

Of the different coding systems, binary was found to have the 
best characteristics for rapid evolution. The optimal parameters 
(mutation and crossover rate) were evolved using a meta-level 
simulation program. Simulations also demonstrated that a close 
resemblance to a culprit's face could be evolved in ten generations 
when accurate fitness feedback was provided and the user interface 
provided a means for "freezing" highly desirable facial features. 

The GA process was evaluated experimentally by requiring 
subjects to evolve the facial composite of different culprits at varying 
delays after exposure to a simulated crime. The quality of these 
composites were evaluated by the ability of independent judges to 
correctly identify the culprit from an array of faces, using only the 
evolved composites. These studies revealed that a subject'S ability to 
recognize a culprit varied with the facial characteristics of the culprit. 
Prototypical faces were poorly recognized, but faces with distinctive 
features were well remembered up to one week after exposure. 
When recognition was good, the GA procedure evolved composites 
which were identified by judges on more than 50% of cases. 
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EVALUATING A NEW TECHNIQUE FOR Th1PROVING EYEWITNESS 
IDENTIFICATION. 

(A) INTRODUCTION: 

Victor S. Johnston 
Department of Psychology 

New Mexico State University. 
Las Cruces, New Mexico 88003 

Often the single most important piece of evidence available to law 
enforcement officers is the description of a suspect by an eyewitness. 
Although humans have excellent facial recognition ability, they often have 
great difficulty recalling facial characteristics in sufficient detail. to 
generate an accurate composite of the suspect. As a consequence, current 
identification procedures, which depend heavily on recall, are not always 
adequate. 

Unlike current procedures, a genetic algorithm (O'A) is capable of 
efficiently searching a large sample space of alternative faces and of 
finding a "satisficing" solution in a relatively short period of time. Since 
such a GA procedure can b.e based on recognition rather than recall, and 
makes no assumptions concerning the attributes of witnesses or the 
cognitive strategy they employ, it should be able to find an adequate 
solution irrespective of these variables. This report is an initial evaluation 
of such a GA based computer program: FacePrints. 

(B) GOALS: 
The primary goal of this study is to explore the use of a genetic 

algorithm as an. alternative method for evolving an accurate facial 
composite. This goal will be evaluated experimentally by requiring 
subjects to evolve the facial composite of different culprits at varying 
delays after exposure to a simulated crime. The quality of these 
composites will be evaluated by the ability of independent judges to 
correctly identify the culprit from an array of faces, using only the evolved 
composites. 

A second goal of the current study is make an initial determination 
of the best settings for variables which influence the efficiency of the GA 
search. These variable include: (a) the genetic coding system (e.g binary 
or Gray code), (b) the GA parameters (e.g. mutation and crossover rate), (c) 
the number of generations used, and (d) the user interface. These settings 
will then be used to achieve the primary goal. 

1 
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(C) REVJEW OF THE LITERATURE: 
(1) Current Identification Procedures: 
The human face can convey an incredible quantity of information. 

As Davidoff (1986) has noted, age, sex, race, intention, mood and well­
being may be determined from the perception of a face. Additionally, 
humans can recognize and discriminate between an "infinity" of faces seen 
. over a lifetime, while recognizing large numbers of unfamiliar faces after 
only a short exposure (Ellis, Davies and Shepherd, 1986). 

When the nature of the perceiver is fixed, such as when a witness IS 

required to identify a criminal suspect, only the configuration and 
presentation of the stimulus face may be varied to facilitate recognition. To 
ensure success under these circumstances, the facial stimuli must provide 
adequate information, without including unnecessary details that can 
interfere with accurate identification. A body of research has attempted 
to uncover the important factors governing facial stimuli and methods of 
presentation that are most compatible with the recognition process. 

The most systematic studies of facial recognition have been 
conducted in the field of criminology. Beyond the use of sketch artists, 
more empirical approaches have been developed to aid in suspect 
identification. The first practical aid was developed by Penry (1974), in 
Britain, between 1968 and 1974. Termed 'PhotoFit, this technique uses 
over 600 interchangeable photographs of facial parts, picturing five basic 
features: forehead and hair, eyes and eyebrows, mouth and lips, nose, and 
chin and cheeks. With additional accessories, such as beards and 
eyeglasses, combinations can produce approximately fifteen billion 
different faces. Initially, a kit was developed for full-face views of 
Caucasian males. Other kits for Afro-Asian males, Caucasian females and 
for Caucasian male profiles soon followed (Kitson, Darnbrough and Shields, 
1978). Alternatives to PhotoFit have since been developed. They include 
the Multiple Image-Maker and Identification Compositor (MIMIC), which 
uses film strip projections; Identikit, which uses plastic overlays of drawn 
features to produce a composite resembling a sketch, and Compusketch, a 
computerized version of the Identikit process. The Compusketch software 
is capable of generating over 85,000 types of eyes alone (Visitex 
Corporation, 1988). With no artistic ability, a trained operator can 
assemble a likeness in 45 to 60 minutes. Because of such multiple 
advantages, computer aided sketching is becoming the method of choice 
for law enforcement agencies. As of May 1st, 1988, fifty Compusketch 
programs were in use in eighteen states in the USA. 

Because of its wide distribution, the PhotoFit system has generated 
the largest body of research on recognition of composite facial images. 
Ellis, Davies and Shepherd (1978) have compared memory for photographs 
of real faces with memory for PhotoFit faces which have noticeable lines 
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around the five component feature groups. They have repotted that 
subjects recognize the unlined photographs more easily. The presence of 
lines appears to impair memory, and random lines have the same effect as 
the systematic PhotoFit lines. In a second paper, they also note that 
individuals display a high degree of recognition of photographs, but 
describe a human face poorly (Davies, Shepher9 and Ellis, 1978). They 
contend that at least three sources of distortion arise between viewing a 
suspect and a PhotoFit construction: 'selective encoding of features', 
'assignment to physiognomic type', and 'subjective overlay due to context'. 
These distortions contribute to the production of caricatures of a suspect 
rather than accurate representations. Hagen and Perkins (1983) have 
compared true line-drawn caricatures with profile-view and three-
quarter-view photographs. Their research indicates that facial recognition 
is good within a medium, but is seriously disrupted when changing to 
another medium, especially those involving caricatures. These results 
suggest that unadulterated photographs are superior to caricatures for the 
identification of real faces. 

A detailed study by Laughery, Fowler and Rhodes (1976) has shown 
that beards and hair styles contribute significantly to errors, but the 
presence or absence of glasses has little effect on recognition. Additionally, 
they note that helping an artist sketch a picture of a suspect, or using an 
identification kit, can assist recognition even after periods of six months to 
one year. The effects of delay on recognition and PhotoFit construction of 
faces has also been e~arnined by Davies, Ellis and Shepherd (1978). After 
three weeks of elapsed time, they found no detectable decrease in 
reconstruction accuracy. Hall (1976) has demonstrated that memory for 
faces is very good if no external sources of bias are introduced. However, 
biasing instructions, intensive rehearsal of the suspect's appearance with 
verbal feedback, or too intense concentration on minor facial details can 
impair performance. Loftus and Greene (1980) have also demonstrated 
this susceptibility to interference by successfully misleading subjects with 
questions or oral descriptions of the face from another source. Ideally, to 
avoid such bias, an unskilled witness should be able to generate a 
composite facial stimulus unaided and uninfluenced. 

(2) Cognitive Processes: 
The concept of a schema is central to almost all theories concerned 

with the encoding, storage or retrieval of facial information. This idea can 
be traced back to Bartlett (1932), who defined a schema as "an active 
organization of past reactions, or of past experience ... " (p. 201). For 
Bartlett, information processing occurred when new information interacted 
with old information, contained in a schema, and this integration accounted 
for memory distortion (Brewer and Nakamura, 1984). It is a consequence 
of Bartlett's "reconstructive" model that no episodic representation of an 
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original event is left intact, causing memory for faces to become more 
distorted over time as they come to resemble a stereotypical face. 

Posner's (1973) prototype theory is also a schema model, where the 
average mean value of feature information is included in a facial 
prototype. In this "averaging model", the prototype features depend on 
the central tendencies of the distributions of (eatures experienced. The 
most frequently seen features may not necessarily be the features 
contained in the prototype. Neumann's (1974) alternative "attribute 
frequency model" of prototype formation hypothesizes that the modal 
features will be extracted and included in the prototype. To find whether 
the "averaging model" or the "attribute frequency model" provides the best 
description for the data, Neumann (1977) used a bimodal distribution of 
features as stimuli. If averaging leads to prototype formation then the 
central tendency of the features should promote recognition accuracy; if 
attribute frequency is the important prototype determining factor, then 
faces possessing features from the extremes of the distribution should be 
recognized better. In fact, Neumann found support for both models, the 
results depending on whether or not subjects had information on which 
features varied in the study set. 

Solso and McCarthy (1981) have provided evidence supporting 
prototype formation from frequently shown features by demonstrating the 
predicted effects of such a prototype on recognition judgements. After 
exposure to a variety of Identikit faces, subjects were tested for 
recognition using the original faces, new faces, and a prototype composed 
of the most frequently seen features. With high confidence, subjects 
consistently misidentified the prototype face as previously having been 
seen. These results persisted over many weeks and provide strong 
evidence for the use of an hypothesized facial prototype. Light, Kayra­
Stewart? and Hollander (1979) have supported the influence of a general 
facial prototype by showing that faces rated as "typical" were recognized 
less accurately than faces rated as "unusual". They argue that the more 
similar a target face is to the prototype, the less likely it is that the target 
face will be accurately recognized. Valentine and Bruce (1986) have 
extended this research by comparing the recognition of distinctive familiar 
faces with typical familiar faces. They found that distinctive familiar faces 
were more easily recognized than typical familiar faces and concluded that 
" the effects of distinctiveness arise because faces are encoded by 
comparison to a single prototypical face." (p 525). Haig (1986a,1986b), has 
presented evidence supporting the use of a stored prototype during facial 
recognition. This research suggests that memorization of a particular face 
occurs by placing unusual features or combinations of features onto a 
"bland prototypical face". Subjects used the head outline, followed by the 
eye and eyebrow grouping, and then the mouth and nose, during the 
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recognition process. Based on this reseaf(~h Haig concluded that facial 
recognition is a two stage process. The first results from the use of a 
bland, almost featureless prototypical face structure while the second 
involves the mapping of specific features onto this prototype. 

Other studies of feature saliency appear to support Haig's findings. 
Cook (1978) investigated the eye movements ~d fixations of subjects 
while examining both familiar and unfamiliar faces. Following an initial 
encoding exposure, three or four fixations were found to be necessary for 
the recognition of unfamiliar faces; the modal time was 0.9 secs. With no 
prior exposure, familiar faces (e.g. 'Paul Newman or Gerald Ford) required 
approximately four fixations; the modal tim~ was 1.3 secs. For both 
conditions subjects used the eyes, nose, and mouth, respectively, in order 
to achieve recognition. Cook concluded that recognition is achieved by 
examining significant features and comparing those features to a stored 
prototypical face. 

In a study using a computer-implemented caricature generator, 
Rhodes, Brennan and Carey (1985) have found that caricatures of familiar 
faces are identified more quickly than either veridical-line drawings or 
anticaricatures (made from minimizing the distances which are 
exaggerated in caricatures). This again suggests that the distinctive 
aspects of a face may be represented in comparison with a generic norm . 

Although there is substantial evidence for facial prototypes, 
connectionist models offer an alternative viewpoint on prototype 
formation and its use during the recognition process. Based on theoretical 
arguments and empirical findings, McClelland and Rumelhart (1985) have 
concluded that prototypes are not always used to categorize or influence 
judgements. From the connectionist viewpoint, specific exemplars overlap 
to form a prototype, and, "when all the distortions are close to the 
prototype, or when there is a very large number of different distortions, 
the central tendency will produce the strongest response, but when the 
distortions are few, and farther from the prototype, the training exemplars 
themselves produce the strongest activation " (p. 182). Thus, McClelland 
and Rumelhart argue for circumstances when either the prototype or the 
stored exemplars can serve as the basis for recognition judgements. 

The complexity of the facial recognition process is further magnified 
by the involvement of gender and/or cerebral dominance factors. Going 
and Read (1974) have found that women subjects recognize both highly 
unique and non-unique female faces more frequently than male faces, 
while men recognize faces of both types and genders with equal facility. 
In addition, unique faces of both genders are correctly identified more 
often, with exceptional female faces recognized more frequently than 
unique male faces. Freeman and Ellis (1984) have related such gender 
based differences in performance to the cerebral asymmetry occurring 

5 



'. r 

r-

['" , ' 

" 

[ 

[ 

• 
I 
[ 

I 
I~· 

): 

I 
I 

~ 

during sexual development. They have found that males exhibit a left 
visual field (right hemisphere) superiority for rapidly viewed faces with 
low-detail. In fact, subjects of both sexes make fewer recognition errors 
and appear to extract more information from the left half of a face, even 
when both halves are mirror images (Kennedy, et al.,1985). Many studies 
have supported the conclusion that faces are more efficiently processed in 
the right cerebral hemisphere. However, Rhodes (1985) has found that 
the half-face of a famous person, when presented in the left visual field, IS 

not retained in memory. He believes that this may be due to 
asymmetrical scanning or attentional factors beyond laterality effects. 

Ross-Kossak and Turkewitz (1986) suggest that the direction of an 
individual's hemispheric advantage affects the type of information 
processing strategy used. They have found that omission of selected facial 
features degrades the performance of subjects with a left-hemisphere 
advantage, while inversion of faces impairs performance of subjects with a 
right-hemisphere advantage. Miller and Barg (1983) presented drawings 
of faces (assembled from Identikit transparencies) to a subject's right or 
left visual field. This technique revealed that discriminations along 
feature dimensions are more accurate for faces shown to the right visual 
field, while discriminations involving spatial relations among the e'yes, 
nose and mouth are more accurate for faces perceived in the left visual 
field. Significantly, these results do not extend to line drawings of houses. 
In addition, processing strategy may change with increasing 
familiarization. Ross-Kossak and Turkewitz (1986) have found that 
subjects who begin with a left-hemisphere advantage shift to a right­
hemisphere advantage across trials, while those beginning with a right­
hemisphere advantage decrease and then increase the magnitude of this 
advantage over trials. Thus, the methods witnesses employ during face 
recognition reveal processing dichotomies between the cerebral 
hemispheres that appear to vary between analytical, feature based, and 
holistic, organi~ational strategies. 

A major conclusion from the cognitive research is that the mechanics 
of Compusketch and its predecessors, PhotoFit, MIMIC, and Identikit, may 
actually inhibit recognition, by forcing witnesses to employ a specific 
cognitive strategy; namely, constructing faces from isolated feature recall. 
Since facial recognition appears to also involve holistic processes" the single 
feature methodology may be inappropriate. Indeed, Davies and Christie 
(1982) have suggested that the single feature approach may be a more 
serious source of recognition distortion than interference from an outside 
source. 

Many of the . problems and limitations of the existing identification 
systems may be eliminated by adopting a strategy for generating faces 
that exploits the well developed skill for facial recognition, rather than 
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individual feature recall. Moreover, the approach may be designed so that 
it accommodates a wide variety of individual styles of cognitive processing. 
The proposed method is to use the genetic algorithm (GA) to generate 
composite faces, evolving a suspect's face over generations, and using 
recognition as the single criterion for directing the evolutionary process. 

(3) The GA Strategy: 
The simple GA, first described by Holland (1978),. is a robust search 

algorithm based upon the principles of biological evolution. In essence, 
the GA is a simulation of the evolutionary process, and makes use of the 
powerful operators of "natural" selection, mutation and crossover to evolve 
a solution to any complex design problem. It is capable of searching a very 
large sample space and finding a "satisficing" (often opltimal) solution in a 
relatively small number of generations. The following section describes 
the first attempt to use a GA in order to evolve a composite face. We call 
this facial composite process "FacePrints" . 

(D) WORK COMPLE1ED: 
In the current design of FacePrints, a series of twenty faces 

(phenotypes) are generated from a random series of binary number 
strings (genotypes) according to a standard developmental program. 
During decoding, the first seven bits of the genotype specify the type and 
position of one of 32 foreheads, the next seven bits specify the eyes and 
their separation, and the remaining three sets of seven designate the ~he 

shape and position of nose, mouth and chin, respectively. Combinations of 
these parts and positions allow over 34 billion composite faces to be 
generated. 

The position of all features are referenced to a standard eye-line, 
defined as an imaginary horizontal line through center of the pupils. Four 
positions (2 bits) are used to specify the vertical location of each feature 
(eyes, mouth, nose and chin) with reference to this standard, and two bits 
to specify pupil separation. These positions cover the range of variability 
found in a sample population. 

The initial twenty random faces can be viewed as single points 
spread throughout the 34 billion point multi-dimensional "face-space". 
The function of the GA is to search this hyperspace and find the best 
possible composite in the shortest possible time. The first step in the GA is 
the "selection of the fittest" from the first generation of faces. This is 
achieved by having the witness view all twenty faces, one at a time, and 
rate each face on a nine point scale, according to any resemblance, 
whatsoever, to the culprit (a high rating signifies a good resemblance to 
the CUlprit). 
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~--------------~~~--------------------------------------Rating Scale for Composite Best Face from Previous Generation 

Figure 1. Example of composite generated by FacePrints (v3.0). 

Figure 1 shows the display presented to the witness and the rating 
scale for entering the measure of relative fitness. This measure does not 
depend upon the identification of any specific features shared by the 
culprit and the composite face; the witness need not be aware of why any 
perceived resemblance exists. After ratings of fitness are made by the 
witness, a selection operator assigns genotype strings for breeding the next 
generation, in proportion to these measures. Selection according to 
phenotypic fitness is achieved using a "spinning wheel" algorithm. The 
fitness ratings of all twenty faces are added together (TotalFit) and this 
number specifies the circumference of an imaginary spinning wheel, with 
each face spanning a segment of the circumference, proportional to its 
fitness. Spinni.ng a random pointer (i.e. selecting a random number 
between one and TotalFit) identifies a location on the wheel corresponding 
to one of the twenty faces. Thus, twenty random spins of the pointer 
select twenty breeders in proportion to their fitness. 

Sexual reproduction between random pairs of these selected 
breeders is the next step in the GA. Since each breeding pair produces 
two offspring, the population size remains constant. Random breeding 
between the selected breeders employs two additional operators: 
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Crossover and Mutation. When any two genotypes mate, they exchange 
portions of their bit strings according to a user specified crossover rate 
(Xrate = number of crosses per 1000), and mutate (1 to 0, or ° to 1) 
according to a user specified mutation rate (Mrate = number of mutations 
per 1000). Two selected genotypes (A and B) can be represented as 
shown below. 

A 
B 

1,0,0,0,1,1,0,0,1,0,1,0,1,1,1, .......... 1 
0,1,1,0,0,0,1,0,1,1,1,0,0,0,0, .......... 0 

During breeding the first bit of A is read into new A and the first bit 
of B into new B. At this point a check is made, to see if a crossover should 
occur. A random number between 1 and 1000 is generated. If the 
number is larger than the crossover rate then reading continues with the 
second bit of A being entered into new A, and the second bit of B into new B 
and again checking for a random number less than the crossover rate. If a 
random number less than the selected crossover rate is encountered (after 
bit 5 for example), then the contents of newA and newB are switched at 
this point, and filling newA from A and newB from B continues as before. 
If this is the only crossover detected then the new A and new B will now be: 

newA 
newB 

0,1,1,0,0,1,0,0,1,0,1,0,1,1,1, .......... 1 
1,0,0,0,1,0,1,0,1,1,1,0,0,0,0, .......... 0 

Exchanging string segments in this manner breeds new designs using 
the best partial solutions from the previous generation. 

When a bit mutates, it changes (1 to 0) or (0 to 1). To accelerate the 
GA process the mutation operator is combined with the crossover operator 
into a single breed function. As each bit of strings A and B are examined, 
a mutation is implemented if a second random number (between 1 and 
1000) is less than the mutation rate. Mutations provide a means for 
exploring local regions of the gene hyperspace in the vicinity of the fittest 
faces. Following selection, crossover and mutation, the new generation of 
faces is developed from the new genotypes and rated by the witness as 
before. This procedure continues until a satisfactory composite of the 
culprit has been evolved. 

The genetic algorithm provides a unique search strategy that 
quickly finds the most "fit" outcome from a choice of evolutionary paths 
through the "face space". The strength of the algorithm lies in (a) the 
implicit parallelism" of the search along all relevant dimensions of the 
problem (b) the exponential increase in any partial solution which is above 
average fitness, over generations, and (c) the exploration of small 
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variations around partial solutions (Goldberg, 1989). Beginning with a set 
of points that are randomly distributed throughout the hyperspace, the 
selection procedure causes the points to migrate through the space, over 
generations. The efficiency of the migration is greatly enhanced by the 
sharing of partial solutions (Le., best points along a particular dimensions) 
through crossover, and the continual exploration of small variations of 
these partial solutions, using mutations. The result is not a "random walk" 
but rather, it is a highly directed, efficient, and effective search algorithm 
whose success is attested to by its unrivaled role in biological adaptation 
(Dawkins, 1988). 

(E) RESEARCH PLAN: 
The proposed research program can be divided into (1) a design 

phase and (2) a testing phase. The goals of each phase are described 
below. 

(1) Design Phase: 
During the design phase, the current FacePrints program will be 

improved and modified in order to meet the requirements necessary for 
the testing phase. There are several proposed modifications expected to 
enhance the performance of the current algorithm. 

(i) First, the spinning wheel selection operator, described above, win 
be replaced by a Stochastic Universal Sampling (SUS) procedure (Baker, 
1987). The latter process involves a single spin using a number of 
equally spaced pointers corresponding to the generation size. S US has 
been shown to reduce bias in the sample, thus selecting breeders more 
exactly in proportion to relative fitness. 

(ii) A second modification to the GA involves the use of Gray code 
rather than binary. 

Integer 
o 
1 
2 
3 
4" 
5 
6 
7 

Binary 
000 
001 
010 
011 
100 
101 
110 
111 

Gray 
000 
001 
011 
010 
110 
111 
101 
100 

The purpose of this is to allow single mutations to explore regIons of 
the sample space adjacent to a fit phenotype. In biological systems, where 
genes are codes for proteins (e.g. enzymes), most mutations have minimal 
effects on the efficiency of the protein. Only the active sites, a small 
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fraction of an enzyme's structure, is essential for activity. As a 
consequence, mutations which affect non-critical portions of the molecule 
often have little or no effect on enzyme performance. This mechanism 
allows mutations to "fine-tune" their phenotypic effects, rather than 
always producing radical changes. fu Gray code, unlike binary, a single 
mutation is all that is required to move frem ~y integer value to the next 
higher or lower decimal equivalent. This ability to "fine-tune" the 
phenotype by single mutations is particularly important when an "almost 
correct phenotype" has been evolved. For this reason, is expected that 
Gray code will be superior to binary. 

(iii) A third improvement to the current GA, involves determining 
the optimal mutation and cross-over rates in order to speed up the search 
process. A meta-level GA will be used to evolve optimal values for these 
parameters. 

(iv) The final goal of the test phase will involve an evaluation of the 
user interface during a pilot study. This pilot study will enable the 
experimenters to examine a number of design options which may 
contribute to the speed or ease of use of the FacePrints process. 

(2) Testing Phase: 
The testing phase is designed to evaluate the FacePrints process 

enhanced by all of the improvements introduced as a result of the design 
phase. "Witnesses" will be exposed to a simulated crime (on videotape) 
and then be required to make a composite of the culprit using the 
FacePrints program. The quality of the final composite will be determined 
by measuring the ability of judges to select the culprit from an array of 
faces, using the composite generated by the witnesses. Two variables will 
be examined for their eff~ct on the performance of the program: the 
distinctiveness of the culprit and the delay between exposure to the 
videotape and generating the composite using FacePrints. 

(F) RESULTS: 
(1) Design Phase: 
A simulated witness program (SAM) was developed to facilitate the 

development and testing of the proposed modifications. SAM was 
designed to simulate a "perfect" witness who could accurately rate each 
generated facial composite according to its phenotypic distance 
(resemblanc~) from the culprit. . SAM made it possible to evaluate each 
design modification of Faceprints over hundreds of experimental runs. 
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Figure 2: Increase in the fitness of a composite over 
generations, for a "perfect" witness (SAM). 

50 

(a) Stochastic Universal Sampling. The SUS procedure was 
incorporated into the GA. Figure 2 shows the improvement of a facial 
composite (fitness) over 50 generations, using SUS and the simulated 
witness. Both the average fitness of the population (mean fitness) and 
the fitness of the best composite (max. fitness) are shown. There were 20 
composites per generation. SAM had evaluated only 400 composites out of 
34,359,738,368 possible composites (.0001%), by generation 20. A real 
witness would require about 1 hour to make these evaluations. Since one 
hour and 400 evaluations are about the maximum values we could 
reasonably expect from a real witness, the performance after 20 
generations (G20 performance) has been used as a benchmark. In Figure 
2, the maximum possible fitness (perfect composite) is 635. The mean 
G20 performance is therefore 560/635 ; 88% of the maximum possible 
fitness: the best 020 performance is 610/635; 96% of maximum 
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BINARV 

o 000 000 
1 000 001 
2 000 010 
3 000011 
4 000 100 
5 000 101 
6 000 110 
7 000 111 
8 001 000 
9 001 001 
10 001 010 
11 001 011 
12 001 100 
13 001 101 
14 001 1 10 
15 001 1 1 1 
16 010 000 
17 0100)1 
18 010010 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

GRAV 

000 000 
000 00 t 
000 011 
000 010 
000 110 
000 111 
000 101 
000 100 
001 100 
001 10 f 
001 111 
001 110 
001 010 
001 011 
001 001 
001 000 
011 0 0 
011 0 1 
011011 
011010 
011110 
011111 
011 1 1 
011 1 0 
010 1 0 
010 1 1 
010111 
010110 
010010 
010011 
010 0 1 
0100 0 

"BIN/GRAV" 

000 000 
000 001 
000011 
000 010 
000 110 
000 111 
000 101 
000 100 
001 000 
001 001 
001 011 
001 010 
001 110 
001 111 
001 101 
001 100 
010 000 
010 001 
010011 
010010 
010 110 
010111 
010 101 
010 100 
011 000 
011 001 
011 010 
011110 
011111 
011101 
011 100 
011 000 

Figure 3: Binary, Gray and "BinGray" codes. 

(b) Gray Code and Binary Code Evaluation (Figure 3). A potential 
problem with binary code can be seen when moving from decimal 3 
(binary 011) to decimal 4 (binary 100). If decimal 4 is a fit phenotype 
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then decimal 3 also has high fitness. However, at the level of the genotype 
(binary) it requires three simultaneous bit mutations to move from 011 to 
100. This "hanging cliff" can be avoided by using Gray code, where a 
single mutation is all that is required to move from any integer value to 
the next higher or lower decimal equivalent. 

Figure 4, shows the effects of Binary and. Gray code on GA 
performance using SAM. Over multiple simulations, the G20 performance 
of binary (88.6%) was always superior to Gray (81.1 %). The problem with 
Gray appears to be the inconsistent interpretation of the most significant 
bits. A new code (BinGray in Fig 3) was tested, which uses binary for the 
most significant bits and Gray for the least significant bits. The average 
G20 performance of BinGray was 87.1%. We have therefore returned to 
binary coded genotypes. (We believe that further studies of other 
possible codes, and how they interact with the mutation and crossover 
operators, would be valuable for improving the performance of the GA). 

Effects of Genotype Code on GA Performance 

700 

600 

en SOO CIt • C -ii: 
c 
III 400 • 

== 
0 Binary Code 

• Gray Code 
300 • BinGray Code 

o 20 40 60 80 

Generations 

Figure 4: The effects of Binary, Gray and BinGray on the performance 
of the GA. 
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(c) Optimizing the GA parameters. The most significant advance In 

this phase of the experiment was the development of a method for 
determining the optimal crossover and mutation rates for use with 
Faceprints. This procedure involved the use of a second GA (meta-level 
GA), where binary, meta-level strings, coded for the crossover and 
mutation rates. Each string was then eval.uated by determining how 
well the simulated operator (SAM) evolved a composite face using the 
crossover and mutation rates specified by this string; the G20 performance 
was used to measure the fitness of the meta level string. The meta-level 
population was then evolved, over a series of generations, to breed the 
optimal rates. This meta-level GA has been used in sequentially improved 
versions of Faceprints. 

(d) Evaluating the user interface: The aims of this phase were to 
evaluate the user interface of the FacePrints program, determine if the 
current implementation of FacePrints was sufficiently fast for practical use, 
and examine the effects of presenting the best facial composite from the 
previous generation to a witness rating the current generation. 

Subjects. The subjects were 40 undergraduate student volunteers 
(20 male and 20 female) who were randomly assigned to the two 
experimental groups. Subjects in Group N (10 males and 10 females) did 
not have the best composite from the previous generation available when 
rating the current generation. Group C (10 males and 10 females) subjects 
were provided with their best prior composite (displayed on the right side 
of the computer screen) while rating the current generation of faces. 

Apparatus. FacePrints (version 1.0 - HyperTalk version) was used 
in this experiment. This version generated an initial set of twenty random 
bit strings (genotypes), each string being 35 bits long. The 20 strings 
were decoded into facial composites (phenotypes) using seven bits to 
specify each facial feature (hair, eyes, nose, mouth and chin) and its 
position relative to a fixed eye line. (The eye position bits specified the 
distance between the eyes). The 35 bit code had the potential to generate 
over 34 billion unique composites. 

Each new generation of faces was produced by breeding together the 
highest rated faces from the previous generation, using Stochastic 
Universal Sampling and the optimal crossover and :mutation parameters 
derived from the meta-level analysis. 

Procedure. Each subject was exposed to a ten second display of a 
standard culprit's face. Immediately following this display they used the 
FacePrints program to evolve a facial composite of the culprit. The 
subjects were told to (a) rate each of the first generation of faces, on a 9 
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point scale (fitness), according to its perceived resemblance to the culprit, 
(b) wait until a new generation of faces was generated by the computer 
program, (c) rate each of the new generation of faces, and (d) repeat steps 
(b) and (c) until a one hour experimental session was completed. The 
subjects in Group C were informed that after the first generation the most 
highly rated composite from the previous gen.eration would be displayed 
as a reference, while they viewed the new generation of faces. They were 
instructed to consider this composite as having a value of 5 on the 9 point 
rating scale, and to rate a current composite as higher than a 5 only if it 
had a closer resemblance to the culprit than this reference face. 

Results. There was a wide variation in performance between 
subjects. The number of generations completed within the one hour 
session varied from 7 to 12. For the purpose of data analysis, the 
generation 7 composite (G7) was examined for all 40 subjects. Two 
measures of the quality of G7 were used; a "subjective" and an "objective" 
measure. 

The "subjective" measure was obtained by having 12 naive raters (6 
male and 6 female) examine the G7 composites of all 40 subjects and rank 
them for degree of resemblance to the culprit. An analysis of G7 
composites revealed no significant difference in quality between the two 
treatment groups. 

The "objective" measure of quality was computed as the phenotypic 
distance, in the data base, of the G7 composite from the culprit. That is, 
(hair distance + eye distance + nose distance + mouth distance + chin 
distance) divided by 5. If the G7 hair was correct, then the hair distance 
would be zero; if the G7 hair was one above or below the culprit's hair in 
the data base order, then the hair distance would be 1. (This phenotypic 
distance is the same measure used by the simulated witness as discussed 
in the previous report). 

Figure 5a shows the change in phenotypic distance, over generations, 
for the two experimental groups. Although the rate of improvement over 
generations appears greater for the subjects in Group C, there was no 
significant difference between the treatment groups in terms of G7 
performance. Figures 5b, 5c, 5d, 5e and 5f show the change in the 
phenotypic distance from the culprit for Hair, Eyes, Nose, Mouth and Chin 
respectively, over the 7 generations, for both groups of subjects. 

Discussion. The purpose of the pilot study was (a) to evaluate the 
gains or losses associated with presenting the prior generation best 
composite during the rating of the current generation and (b) to test the 
user interface of the FacePrints program. 
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No significant differences in the quality of the final 07 composite 
were obtained using the two experimental procedures. However, Figures 
5b to 5f reveal that subjects using a reference composite did show a more 
systematic improvement in all features over generations; all regression 
line slopes are negative in value. This parallel improvement in all 
features is the major strength of the FacePrints procedure. It is also clear 
from the slope of the regression lines that some features (e.g. chin-slope = 
- 1.39) were being selected more than other features (e.g. nose-slope = .. 
0.67). This suggests that some facial features may be generally more 
important than others in detennining the degree of similarity between two 
faces. Haig (1986a) has also noted that the head shape (hair + chin) is the 
dominant feature used for recognition, and that the nose is the least 
significant feature. It is clear that an expanded study using the FacePrints 
program could provide quantitative data on the relative importance of 
facial features and cephalometric measurements for recognition. This 
data would be of great value in aiding the design of any facial composite 
system since it provides insights into the size of the data base needed for 
each feature. 

The user interface was satisfactory, with the following exceptions. 
Some subjec~s found it difficulty to use the computer mouse to click on the 
rating scale Consequently, keyboard function keys (FI to F9) were 
implemented as an alternative way to input ratings. In addition, subjects 
were frustrated by the delay between generations (almost 3 minutes) and 
the inability to "keep" what they perceived to be a good composite. They 
often complained that good features were lost between generations! 
The next section outlines the modifications to the FacePrints program in 
order to overcome these difficulties. 

(e) Program Modifications: FacePrints (version 2.0) was 
subsequentiy rewritten in SuperTalk, a commercial application program 
designed as an improvement to HyperTalk. Implementation in SuperTalk 
reduced the inter-generation time from 3 minutes to 18 seconds. At the 
same time, the computer interface was redesigned to permit keyboard 
inputs for all operator controls. Audio signals and flashing buttons were 
added to prompt the user in the event of a long delay in any input 
response. 

Based on the pilot study findings, the best composite from the pdor 
generation was concurrently displayed while subjects rated the composites 
of each successive generation. Comments from the subjects on the use of 
the prior composite suggested additional options which could enhance the 
effectiveness of the FacePrints process and, at the same time, overcome the 
subjects' "frustration" in the loss of good features between generations. 
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Flood Option: When subjects rated any generation of (20) composites, 
the highest rated composite from that generation was displayed in a 
window of the computer screen. Before breeding the next generation, 
subjects were now pennitted to lock one or more features of this 
composite (hair, eyes, nose, mouth or chin). That section of the 35 bit 
string corresponding to the locked feature was. then inserted into all the 
genotypes of that generation, before breeding. Since all genotypes were 
then identical at the location of the locked feature, the cross-over operator 
could not modify that feature in the next generation of faces. (There is 
still a small probability of modification by mutation.) 

Freeze Option: A variation of the above procedure, the Freeze 
option, was implemented in a similar manner, but now the locked feature 
was also protected from mutations. 

Effects of "Flood" and "Freeze" on GA Performance 

700 

Perfect Composite (Fitness. 635) 

600 

III 
CIt • C -ii: 500 

c 
co • :E 

iii Standard 

400 • Mean Rood 

• Mean Freeze 

3004---~--~----~----~----~-----r--~-----r----~----~ 

o 5 10 15 20 25 

Generations 

Figure 6: Improvement in fitness over generations when "perfect 
witness" (SAM) uses Freeze or Flood option. 

(t) Evaluating Flood and Freeze Options: In order to evaluate both of 
these locking procedures, it was first necessary to evolve the optimal 
cross-over and mutation parameters for each technique. Results obtained 
from running the meta-level program (see above) revealed that the 
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optimal probability of a crossover was 0.24 for both options, but the 
optimal mutation probability was 0.03 for the Flood option and 0.05 for 
'~he Freeze option. The simulated operator program (SAM) was used to 
compare the expected performance of FacePrints with and without these 
two options. Figure 6 shows the results of this analysis. The 020 
performance (refer to prior report) revealed tbat both the Freeze and 
Flood options produced a marked improvement in the performance of the 
algorithm (Standard 020 = 88.6%, Flood 020 = 93,1%, Freeze 020 = 96.4%). 
The superior performance of Freezing over Flooding probably resulted 
from the harmful effects of mutations as composites began to converge to 
the likeness of the culprit. Mutations in early generations may have 
enhanced perfomlance, (by exploring more areas of the data base) but in 
later generations these mutations have a higher probability of being 
destructive. 

Mean and Maximum fitness using "Freeze" • 
• 
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Figure 7: Improvement in the fitness, over generations, for a 
"perfect" witness (SAM) who can freeze features. 
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Figure 7 shows the mean fitness of the population and the fittest 
composite within each generation (maximum), using the Freeze option. 
The mean and maximum performance at generation 10 and 20 were: GI0 = 
83.3, 94.3; G20 = 96.4, 98.6, respectively. These results suggest that a 
substantial likeness to the culprit can be achieved after only 10 ' 
generations, if the behavior of a real witness _ approximates the behavior of 
the simulated witness. This is a very encouraging result since it 
establishes that in theory it is possible to find a single almost perfect 
composite (out of 34 billion) by rating only 200 composites (less than 
0.000,000,6%). For this reason, the Freeze option has been included in 
FacePrints (v 3.0) for use in the major experiment. 

(2) Testing Phase: 
Three male volunteers were selected to act as culprits in this 

experiment. Each culprit performed a simulated armed robbery which 
was recorded by a "surveillance" camera. In the final act of the robbery 
the culprit's face could be seen as he turned to shoot at the camera. This 
segment of the video was frozen, so that a witness viewing the tape could 
see a 10 second still-frame of the culprit's face. This method of 
presentation ensured that all witnesses receive an equal exposure to the 
same view of the culprit. (See enclosed videotapes). 

(a) Culprit Selection: The three culprits were selected to represent 
three levels of facial distinctiveness within the data base. Both MUG shots 
and "natural-with-expression" photographs were taken of each culprit, 
after the crime was staged. Culprit's features were scanned from the front 
face MUG shots and introduced into the data base. Figure 1 shows the 
MUG shots of each culprit. 

The first culprit (Figure 8, top) was selected because his features and 
cephalometric measurements were similar to the average face. It is 
difficult to provide a precise quantification of the degree of similarity, but 
three different measures support this claim. First, for each culprit, the 
distance of each feature from the center of the data base was determined. 
The sum of these distances can be viewed as an approximate measure of 
feature distinctiveness. Using this scale, the first culprit scored 28, with 
culprits 2 and 3 scoring 35 and 31 respectively. The problems with such 
measurements are:(1) they depend on the organization of the data base, 
which is only approximate sinCe each feature is multidimensional (e.g 
mouth width, thickness of top lip, thickness of bottom lip, etc.) (2) all 
features receive equal weight - an unjustified assumption, and (3) the size 
of the jumps between the elements in the data base is an arbitrary 
distance. . 

A second approach was to compare each culprit's face to the average 
face in the population. For this measurement, the average was considered 
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to be the average face shown in the PhotoFit Manual, and reproduced in 
Figure 8. The distance of each culprit's features (hair, nose, mouth, chin) 
from the average eye line, and the distance between the eyes compared 
with the average eye distance, could then be measured to provide a 
composite score which approximates each culprit's distinctiveness with 
respect to average cephalometric measures. On this scale, the three 
culprit's scored 3, 6, and 5 respectively, with culprit 1 measuring closest to 
the average face. Again, the feature distances are not weighted for 
importance, and it is impossible to justify equating a one millimeter change 
in eye distance with a one millimeter displacement of the chin. 

The third and perhaps most valid determination of distinctiveness 
was obtained by requiring a group of twenty judges to rank the culprits' 
faces with respect to their similarity to the average face. Twelve subjects 
(60%) rated culprit 1 as closest to the prototype, with culprits 2 and 3 
receiving 15% and 25% of the vote, respectively. 

All three measures suggest that culprit 1 has features which are 
closest to a' prototypical face, with culprit 2 possessing the most distinctive 
features and cephalometric measurements. 

Prior to the main experiment, two pilot studies was conducted in 
order to determine (1) the degree of difficulty in recognizing a culprit from 
a videotape exposure, and (2) the degree of difficulty in recognizing a 
culprit from a bit-mapped composite face of that culprit. 

(b) Pilot Study 2: In this study 45 student volunteers (15 
males, 30 females) were randomly assigned to 'three experimental groups, 
with 15 subjects in each group. Each subject viewed one of the videotapes 
of the simulated robbery; a different culprit was used for subjects 
belonging to each of the experimental groups. Subjects were immediately 
required to select the culprit from a display of 36 faces. These faces 
included the "natural-with-expression" photographs of the target subjects 
and a selection of "natural-with-expression" photographs taken from the 
general student population (Figs lOa to 10d). The degree of recognition 
was determined by requiring subjects to make 5 selections from the 36 
faces. Subjects were considered to have good recognition ability if they 
selected the target face on their first choice, and some recognition if the 
target was within their first five selections. 

Results: Figure 9 shows the recognition performance of subjects as 
a function of the target face. Recognition performance was influenced by 
the nature of the target (X22 = 9.26; P < .01), with recognition being worst 
for culprit 1, and best for culprit 3. The recognition of culprit 1 was 
significantly poorer than recognition of the other culprits (X21 = 13.26; P < 
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.001). For the three culprits, the probability of recognition following 
videotape exposure was 0.33, 0.66 and 0.87, respectively. 

An analysis of good recognition (selection of the target on first 
choice) also revealed a significant effect of the target (X22 = 6.34; p < .05). 
Again, the recognition of culprit 1 was poor compared with the other two 
culprits (X21= 5.46; p < .05). The sex of the subject had no effect on any 
measure of recognition ability. 

Immediate Recognition as a function of Culprit 
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Figure 9: Recognition ability as a function of Culprit. 

3 

Discussion: It is apparent from this pilot study that the recognition 
of the culprit from the videotape is a difficult task. Subjects received a 
single brief exposure to the culprit's face. During this exposure the 
culprit's facial expression was quite different from that portrayed in the 
"natural-with-expression" photograph, shown during the recognition task. 
Furthermore, the alternative faces presented in the recognition set were 
similar to the culprit in age, racial origin, etc., and lacked any obviously 
distinctive features (e.g beards, glasses, etc.) which might have been an aid 
to recognition. 
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Recognition ability varied with the culprit. When the most 
prototypical culprit (Culprit 1) was the target, recognition was poor. This 
result supports the general finding that the more similar a 'farget face is to 
the prototype, the less likely it is that the target face will be accurately 
recognized (Posner, 1973; Neumann, 1974; Solso and McCarthy, 1981; 
Light, Kayra-Stewart and Hollander, 1979; Valentine and Bruce, 1986; Haig, 
1986). It is possible that some qualitative attribute of the videotape or 
natural photograph of Culprit 1 could account for !he poor recognition, but 
no such quality differences are immediately apparent. 

In view of these findings, we can conclude that the videotaped 
crimes present subjects with a difficult recognition task and that the 
selected culprits provide facial characteristics which vary in distance from 
a prototypical face. These videotapes and culprits are therefore suitable 
for evaluating the the FacePrints process for generating facial composites. 

(c) Pilot Study 3: A second study was conducted in order to 
determine the probability of identifying the correct culprit in the 
recognition set when a subject was presented with a -"perfect" bit-mapped 
composite of the culprit. In this study twenty subjects were shown bit­
mapped composites (MUG shots) of all three culprits. Their task was to 
examine each composite and then identify that culprit from the 36 
"natural-with-expression" photographs which made up the recognition set 
(Figures lOa, lOb, 10c and 10d). Identification was assessed by requiring 
the judges to make 5 selections from the 36 faces, in their order of 
preference. Judges were considered to have made an identification if the 
target face was within their five selections. 

The probability of identifying the correct culprit from a bit-mapped 
composite varied with culprits. For culprit 1, the probability of correct 
identification was 0.45, whereas the other culprits were both identified 
with a probability of 0.7. These results indicate that the identification of a 
"natural-with-expression" photograph from a bit-mapped image is not a 
trivial task. As noted above, for recognition from videotape exposure, the 
alternative faces were similar to the culprits in age, racial origin etc., and 
they lacked any obviously distinctive features (e.g beards, glasses etc.) 
which might have been an aid to recognition. The observed failure to 
correctly identify the culprit from a "perfect" composite has importance for 
evaluating the FacePrints process (see later). 

(d) Evaluation of the FacePrints process: 
Subjects: One hundred and twenty one student volunteers (52 

males and 69 females) served as subjects. 
Apparatus: Three videotaped recordings of simulated crimes 

( described above) were used to expose subjects to a culprit's face. 
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Subjects were r~quired to generate a composite of the culprit's face using 
the FacePrints process together with the freeze feature option (see 
previous reports) and the optimal cross-over and mutation rates as 
determined by the simulation program (see previous reports). The cross-
over and mutation probabilities were 0.24 and 0.05 respectively. Each 
subject used the FacePrints process for ten generations, which required 
less than one hour of experimental time. 

Recognition performance was assessed by requiring the subject to 
select the culprit's face' from a selection of 36 faces This recognition set 
included the three "natural-with-expression" photographs of the target 
subjects together with 33 other "natural-with-expression" photographs 
from the general student population (Figs lOa, lOb, 10c and 10d). 

Procedure: The 121 experimental subjects were randomly assigned 
to three delay groups. Subjects in group Delay 0 (19 males, 20 females) 
were individually exposed to one of the simulated crime videotapes and 
then required to immediately compose a facial composite of the culprit 
who appeared in that videotape. Each of the three culprits served as the 
target face for a randomly selected 13 subjects within' this delay group. 
Subjects belonging to group Delay 3 (17 males, 21 females) were treated in 
a similar manner, but a three day period was allowed to elapse between 
their exposure to the videotape and their production of the composite face . 
Within this group, the number of subjects using Culprit 1 as the target was 
14, with Culprits 2 and 3 being the target for 14 and 10 subjects, 
respectively. Subjects in group Delay 7 (15 males and 29 females) were 
required to wait 7 days between exposure and production of the composite 
face. Culprits 1, 2, and 3 served as the target for 15, 14, and 15 subjects, 
respectively. 

Immediately after generating a composite face, subjects in the Delay 
3 and Delay 7 conditions were tested for target recognition. In the 
recognition task the subjects were required to sele:ct their target from the 
array of 36 "natural-with-expression" faces. Each subject was required to 
make five selections in order of preference. (The importance of 
determining recognition ability was not apparent m~til all Delay 0 subjects 
had completed their experimental task. This data is therefore not 
available for the Delay 0 subjects, but the performance of the pilot subjects 
provides a good estimate of recognition ability in the absence of a delay). 
Subjects were considered to have some recognition ability if the target face 
was within their five selections, and good recognition if the target was 
their first choice. 
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Finally, in order to detennine the quality of the composites, a set of 
45 judges examined the final composites and then attempted to identify 
the culprit froql the recognition set. Each judge evaluated no more than 
three different composites, and no judge evaluated more than one 
composite resulting from exposure to a particular culprit. Identification 
was assessed by requiring the judges to make. 5 selections from the 36 
faces in their order of preference. Judges were considered to have made 
an identification if the target face was included in their five selections. 

Recognition of Culprits as a function of Delay. 
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Figure 11: Recognition ability as a function of target culprit and delay. 

Results: Figure 11 shows recognition perfonnance across days, for 
the three culprits. (The Delay 0 data are the immediate recognition 

-, 

results from the pilot study.) An analysis of each delay group revealed a 
significant effect of target at Delay 0 (X22 = 9.26; P < .01), Delay 3 (X22 = 
16.86; p < .001) and Delay 7 (X22 = 24.06; p < .001). The only change in 
recognition performance over days was a decrement in the recognition of 
Culprit 1 (X21 = 10.9; p < .01) over the three levels of delay. No such 
recognition decrement was observed for the other two culprits. 
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"Perfect composites" (left) and composites generated 
by witnesses (right) for culprit 2 (top) and culprit 1 
(bottom). Both composites were generated by 
witnesses after a delay of 7 days from exposure to the 
simulated crime. Note that when the cu]prit has 
distinctive features (culprit 2), the composite is good; 
when a culprit has prototypical features (culprit 1), 
the composite is not useful. 

The sex of the subject had no effect on recognition ability. In order 
to examine the relationship between the subject's recognition ability and 
subsequent identifiCation of composites by the judges, the Delay 3 and 
Delay 7 subjects were divided into those with or without good recognition 
ability. This analysis revealed that subjects with good recognition 
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produced composites which were correctly identified by judges at a 
significantly higher rates than chance (X21 = 18.98; P < .001), and 
significantly higher rates than those with less recognition ability (X21 = 
5.39; p < .05). These subjects produced composites which led to 
identification by' judges on 44% of their attempts. When Culprit 2 was the 
target, they produced composites which were identified on 45 % of 
occasions; the identification rate was 43% when the target was Culprit 3. 
Since there was 0% recognition of Culprit 1 after a 3 or 7 day delay, this 
target generated poor composites which were never correctly identified by 
the judges. Figure 12 shows examples of composites generated when the 
target was either Culprit 1 or Culprit 2. 

(0) DISCUSSION: 
The FacePrints program uses a Genetic Algorithm to evolve a culprit's 

face by searching a space containing over 34 billion possibilities. The 
current version of the program uses bit-mapped graphics, a FreezeFeature 
option and cross-over and mutation rates which have been optimized for 
such a search. Simulated searches, using these features and parameters, 
have shown that an excellent composite can be evolved within ten 
generations if the simulated witness can (a) accurately recognize the 
culprit and (b) accurately rate a set of twenty faces according to their 
resemblance to the culprit. 

It is useful to view the success or failure to generate a facial 
composite as being a consequence of a series of three major information 
losses, which occur between the time of witness exposure to the culprit 
and final identification of the culprit from a generated composite. The 
first loss can be attributed to witness recognition failure which may be a 
function of several variables; the conditions of the exposure, the 
distinctiveness of the target or the delay prior to generating the composite. 
A second loss occurs as a consequence of the process used for generating 
the composite. The process may lose information depending on whether it 
is based on recognition or recall, the completeness of the data base, the 
efficiency of the search or the adequacy of the user interface. A final 
loss occurs when a viewer attempts to identify the culprit on the basis of 
similarity to the generated composite. Even a "perfect" composite can fail 
to elicit identification (see pilot study 3). The task of recognizing the real 
culprit after having seen the composite, has much in common with the 
initial information loss experienced by the witness. As before, the nature 
of the exposure, the distinctiveness of the target and the delay between 
seeing the composite and seeing the target may all influence the 
recognition process. Since the purpose of the current study is to evaluate 
the FacePrints process (second loss) it is necessary to isolate these "process 
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failures" from witness recognition failures (first loss) and failures 
associated with identification failures (third loss). 

A major advantage of the FacePrints procedure over other methods 
for generating facial composites is its reliance on recognition rather than 
recall. If a witness is unable to recognize a culprit then accurate facial 
feature recall is not possible. However, a witness may recognize a culprit 
without possessing the ability to recall all, or even some, of the culprit's 
features. (We all recognize our mothers, or photographs of our mothers, 
but we may have difficulty describing her features). It is therefore 
important, when evaluating the FacePrints program, to assess the degree of 
each witness's recognition. If a witness is unable to recognize a culprit 
then the FacePrints process, (and almost certainly every other facial 
composite processes) will not adequately generate an accurate composite. 

The current study indicates that culprit recognition is a function of 
the nature of the culprit and the time which has elapsed since a witness 
sees the culprit. Our results suggest that culprits with distinctive features 
are always recognized better than targets with features that are close to a 
pr9totypical face. Recognition of prototypical face is poor, even after 
having immediately viewed such a culprit, and under these circumstances 
recognition ability decays rapidly over time. In contrast, faces of non-
prototypical culprits are well recognized, and there is no evidence for a 
decay in the recognition of such culprits over the seven day period 
examined in the current study. It should be noted that the recognition 
measurement employed in this experiment involved the recognition of a 
"natural-with-expression" photograph of the culprit resulting from a short 
videotaped exposure to the culprit's face. Thus, this decrement in 
perfomlance can not be attributed to either the FacePrints process or the 
quality of the computer generated graphics. Process failures can only be 
determined by examining the success or failure to generate a composite in 
subjects who exhibit good recognition ability. 

As noted above, the probability of generating an identifiable 
composite from a subject with good recognition ability is 0.44. (0.45 for 
Culprit 2 and 0.43 for Culprit 3). However, these probabilities include the 
identification losses, demonstrated in the third pilot study, as well as 
process failures. We can achieve a better estimate of the process 
effectiveness by removing such identification losses. 

Let x = the probability of generating a good composite of a culprit 
using the Faceprints process. The probability of a poor composite = (I-x). 

Even for a "perfect" composite, the probability of identifying this 
composite correctly from the recognition set varies with the nature of the 
culprit (Pilot Study 3). The p(identification) of Culprit 2 = 0.7; 
p(identification) of Culprit 3 = 0.70. 
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Therefore the probability of generating a Culprit 2 composite that IS 

subsequently recognizeq is > ( (0.70 * x ) + the probability of a poor 
composite being identified correctly; (l-x)*5/36). Therefore:-

For Culprit 2 0.70(x) + 0.14(1-x) >= 0.45 (main experiment) 
x >= 0.55 

For Culprit 3 O. 70 (x) + 0.14 (I-x) >=: 0.43 (main experiment) 
x >= 0.52 

Based on the data obtained from the current sample of subjects and 
culprits under laboratory conditions, the best estimate of the effectiveness 
of the FacePrints process is that it is capable of generating a useful 
composite of a criminal in more than 50% of cases, when the witness has 
good recognition ability. 

(H) CONCLUSIONS: 
FacePrints is the first recognition based method for generation facial 

composites.' When a witness has good recognition ability then the current 
version of the program appears to be capable of generating a useful facial 
composite in more than 50% of cases. When a witness has poor 
recognition ability, then the FacePrints process (and probably every other 
facial composite system) is not a useful instrument. 

Recognition ability appears to depend upon the distinctiveness of the 
culprit and the delay from exposure. Distinctive culprits are well 
recognized with little degradation over time (up to one week) whereas 
recognition of culprits with "prototypical" faces degrades quickly. 

The sex of the witness does not appear to influence recognition 
ability or the effectivenes~ of the FacePrints process. 

Since the composite generated by an eyewitness is often the only 
evidence available,' it is important to develop methods which make 
maximum use of a witness's recognition ability. FacePrints is a step in this 
direction. This first series of studies have revealed several strengths and 
weaknesses of the process, which deserve more attention. 

Strengths: The simulation studies have demonstrated that the GA is 
capable of searching a large "face space" ( > 34 billion in the current 
experiments) and, with accurate feedback, can find a close resemblance to 
a culprit in a small number of generations. If necessary, this space could 
easily be expanded with little loss in efficiency. Enlarging the space, 
however, does not appear to be a critical variable since a small number of 
preliminary questions (e.g. the sex, color or approximate age of the culprit) 
can be used to specify which (34 billion) data base should be searched. A 
much more important factor is the construction of each data base (i.e 
which 512 hairs or' 64 noses should it contain, and how they should be 
ordered). This problem is discussed below. 
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It has been demonstrated that the GA search can be (i) implemented 
using current computer technology (ii) used by untrained subjects and (iii) 
completed in less than one hour. All of these attributes are open to 
further improvement. 

Weaknesses: An important weakness in FacePrints, and every other 
facial composite process, results from a lack of sufficient information 
concerning the relative values of the specific features and cephalometric 
measurements used in recognition. Haig (1984, 1986a) has provided some 
of this information, but much more is required in order to construct an 
adequate data base for practical use. When a feature is salient (e.g. chin 
shape, or nose-mouth distance), then a large number of alternatives must 
exist in the data base. Unimportant features (e.g. noses) require many 
fewer alternatives. Features also require organization along the relevant 
dimension(s) and separation by appropriate j.n.d. One approach to 
obtaining this data would be to expand the methodology used in the first 
pilot study (Figure 5). Determining the relative rates at which different 
features (and distances) are selected by subjects as they build a composite 
over generations, provides estimates of the relative importance that they 
place on these features. More systematic studies using different subjects 
and culprits could be used to generate the required information. Such 
datum would not only be important for generating better composites, it 
would also provide feature weights thus enabling the simulate witness 
program (SAM) to better represent the behavior of a real witness. 
Improvements to SAM would then permit more rapid progress in 
determining the best coding system and parameters for the GA search. 

The current version of FacePrints uses bit-mapped images. Grey 
scale images would undoubtedly be better, but they would require much 
faster computing, more storage capacity, and present difficulties in image 
fusion when generating composites. An alternative would be to use an 
"air-diffusion" algorithm to compress grey scale images. Such "air-
diffused" images maintain all of the quality of grey scaled images, without 
the undesirable characteristics noted above. Such "air-diffusion" 
algorithms are now readily available. 

(1) EXPEcrnD BENEFITS: 
Since the FacePrints program can be used like any other recall based 

process (e.g. Compusketch), it has all the advantages of other computerized 
methods. It has some unique advantages, however, which are listed 
below. 

(1) Unlike all current facial recognition procedures, FacePrints 
depends upon recognition rather than recall. Since recognition is a highly 
developed skill in humans (Davies, Shepherd and Ellis, 1978), FacePrints 
should provide a more reliable means for generating composite pictures. 
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(2) The GA procedure is independent of the cognitive strategy 
employed by the witness. Both perceiver attributes, such as age, sex, 
hemispheric advantage and conceptual context, and processing strategies 
have been shown to influence facial recognition (Yarmey and Kent, 1980; 
Going and Reed, 1974; Hines, Jordan-Brown & Juzwin, 1987; Leehey, Carey, 
Diamond & Cahn, 1978; Goldstein and Chance, 1981; Wells, G.L. & Hryciw, 
1984). However, since the GA does not enforce any particular strategy or 
rely upon any specific attribute, it allows a subject to pursue an individual 
approach. Because of the lack of constraints on the subject's processing 
method, the composites should be generated more efficiently and more 
accurately by the GA than by either the Compusketch method or from the 
assembly of composite parts. These advantages should be independent of 
the age, gender, hemispheric advantage or cognitive style of the subject. 

(3) In addition to the selection and arrangement of facial elements, 
FacePrints provides a sensitive technique for examining the criteria which 
subjects use to generate and refine facial composites. Measuring the 
history of choices made by subjects as they search the multi-dimensional 
space of facial features, can provide specific informatio~l on the salient 
features and search strategies employed in facial recognition tasks. Such 
information is valuable for further refining the search procedure. 

(4) The self-directed development of a suspect's face eliminates any 
biasing influences introduced through a human interview. Unlike other 
facial composite techniques, FacePrints does not require the use of an 
extensive set of questions about the suspect prior to generating the 
composite. This reduces the possibility that other information, 
unintentionally provided by the questioner, may bias witnesses in their 
selection of facial features. Because of this, the GA approach promises to 
be a more valid instrument. 

(5) Interactions between features and their positions may be a 
major source of error when features are selected and then position-
adjusted in two separate operations. This is the common strategy in 
current computerized systems. By representing facial variables as genes, 
both cephalometric measurements and specific feature elements of the 
composite may be coded in the same genotype. Witnesses using the GA 
can therefore evolve both the facial features and their relative positions at 
the same time, and in context. 

(6) The use of a common gene code allows additional attributes, such 
as color, to be added easily in any future development of the FacePrints 
process. 

(7) When used to implement a selection routine for facial 
identification, FacePrints provides a selection strategy that performs the 
double function of generating a composite and a genotype for that 
composite. This genotype can serve as a code for that individual face, not 
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unlike a fingerprint. These genotypes are potentially useful codes for 
comparing composite faces with stored records. 

(8) Genotypes generated by a number of witnesses may be 
combined and used to generate a new composite face. These may prove to 
be more reHable than single source composites. 

(9) FacePrints, as currently implemented, is designed so that 
minimal training is required by either the law enforcement officer or the 
witness. No artistic ability or computer expertise in necessary to 
generate a composite. 

(10) The final version of FacePrints is expected to run on a 
Macintosh SEj30 computer. This should provide a facial composite 
process within the budget of most local law enforcement agencies. 
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