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FORWORD

The research project, "Innovative Resource Planning in
Urban Public Safety Systems," is a multidisciplinary activity,
supported by the National Science Foundation, and involving

-faculty and students from the M.I.T. Schools of Engineering

Science, Architecture and Urban Planning, and Management. The
administrative home for the project is the M.I.T. Operations
Research Center. The research focuses on three areas:

1) evaluation criteria, 2) analytical tools, and 3) impacts
upon traditional methods, standards, roles, and operating pro-
cedures. The work reported in this document is associated
primarily- with category 2, in which a set of analytical and
simulation models are developed that should be useful as
planning, research, and management tools for planners and
decision-makers in many agencies.

In this report Professor Morse provides a thorough tour

,0f search theory for the planner who wishes to use and imple-

ment the results. The material covers approximately thirty
years of development of the field, stemming from the original
U.S. Navy Operations Research Group (1943), which was headed by
Professor Morse. Although the vast majority of applications

to date have been in.the area of military operations, it is
expected that more applications of search theory concepts

will appear in an urban public safety setting. These could

include, for instance, allocation of police preventive patrol
or fire inspectors.

"Richard C. Larson
Principal Investigator
Innovative Resource Planning
In Urban Public Safety Systems
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6.0 Introduction

Being a part of a Handbook of Operations Reseafch, this
Chapter is addressed to the average worker iﬁ the field, not to
thg'specialist in search theory. Results and conclusions .are
emphasize&, rather thén,niceties of derivations (these can be
found by going to the references). Procedural outlines and
graphical aids are brovided, so that use can be made of the
theory in planning actual scarches. The aim has been to foster

such usec, and the hope is that interest will be aroused in

- developing more usable solutions for real search problems.

Search is an example of an operations research subject
wherein theory and practice have diverged as they have developed.

Search theory, as a distinct subject of study, was begun in

%
World War II in response to a very practical need for the

efficient use of planes and ships to find enemy submarines.

The theory thcn worked out; rudimentary as it wés, turned out
to Be of considerable help to the Navy in preparing scarch
plans and procédurcs that were more cffective than the carlier,
more iutuitive tactics. Since that time the mathematical logic

underlying the theory has been appreciapniy strengthened (see,

A _ :
"Preliminary Report on the Submarine Search Problem,' by
P. M. Morse, R. F. Rinehart and others, issued in May 1942, was
the first Technical Report of the newly formed Anti-Submarine
Warfare Operations Research Group, financed by the National

Defense Research Committee and assigned to the Office of the

Chief of Naval Operations, Admiral King. It covered parts of
the material in subsections 6.23, 6.32, and .6.52 below. The
contents of this and of many other studies by various members of
the Group are reported in consolidated form in Koopman (1946).
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_ | ‘ Part of tﬁe reason for the lack of advance in appli-
for example, Dobbie, 1068, and Pollock, 1971) and the range - “‘cations is the wide variety of situations impiiéd in the word
of suggested applicatiopns has been Conjecturaily extendea, o géarch, Aside from the basic probabilistic principles, there
but it is questionable whether many of the later, more elegant, v ; is little in cd@mon between the‘computational search for the
extensions are in a form to be of much help to an operator maxima of a complex fugctiqn'of many variables and the Beérch
carrying out an actual search, with its attendant urgencies and ' : for a lost child on the slope of a mountein or the search by
CrToTSs. ' : . " the police for a fugitive who is continuallj changing his hiding
| 'place..‘If~aearch theory is to extend its range of applicabilit&,
many éﬁecific practical cases will-have %o be‘analyzed in detail,
'and usable ﬂolutionm (even though they be approximat@ and inelegaut)
~must be found for each cass.
As pointed out by Pollock (1971)(868 also Danskin, 1962)
the term grarch has at tlmes come to encompass, not only the ‘
| strategy of Lthe operation of looking for a "lost" object or
pérson (the target), but alsc the design and use>of the detection
equipment and the question of what to do after the object has
béen found. ‘In thié Chapter the less inflated definition will
be accepted: search is the planning and carrying out of the
. process of looking for the target. We assume that the char-
acteristics of the detection eqﬁipment have been ebtained,
either directly from coperational experiments (as described in
subsection 6.2%) or else indiiectly from the combined use of
the statistical theory of signal detection and decision ﬁheory;
and‘proceed to discuss bhow the equipment can be used in devising
the strategy 5f actual search. A discussidp of these excluded
® problems, and a partial list of related papera, is given in
Pollock (1971). |

This concentration on the actual search process allows

.‘“g"“

L ) ' us to shorten the list of appropriate measures of effectiveness.
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In general we sssume that the desideratum is to maximize the

probability of finding the target, for a given expenditure of

- search effort, ‘Occasionally we agsume that the criterion is

‘o minimize the expectéd tims required to find the target;

t

indeed in many cases these two criteria require the same atrét4
egles. We do not consider other criteria, such a8 meximizing
the amount of information gathered, discussed by Mela (1961)
and Dobbie (1968).

Even with thié delimitetion, the present Chapter, for
reasons of’apace, can only include a review of basic principles,
plus some scattergd remarks regerding recent developments.

Details of these recent developments may be obtained from the
papers given in the bibliographies of Enslow (}1966), Dobbie
(1968) and Pollock (1971). Our discussion of basic principles
will be giveh'in terms of'particular examples, to ensure thag
a modicum of realism be retesined. o

Wé will treat first the case of continuous search, becaugé
it has been studied in more detail. Here the militgry applications
are more numerous, though other search situations have been dealt
with. Some space is given to consideration of the effect, on the
structure of an optimal search, of false targets that often dilute
an sctual search., Later sections desal with the'prableﬁ of the
gsearch of discrete sites, with potential‘apﬁlicationa to the
prospecting for ore or oil, or the police search for evidence.
Finally the problem of the search for an active evader is touched
on; here the theoretical development is just beginning and the -

application to practice is yet to come.

(4. pop 240

. 58.»-.

6.1 PFundamental Concepts.

We start with the operation basic to nearly all physical
seafch: that'of & person searching with his eyes over an area;
to see whether he can recognize some object or symbol or pattern
(that we shall call the target) which he believes (or hopes) to
be present somewhere in the area. Visual search diéplays nearly
all the characteristics of more complicated search operations:
the phenomenon of diminishing returns and the degree of improve-
ment resﬁlting from more orderly search pstterns, for example.
In addition, visual search is usually a compohent of more o |
instrumented searches, in that the instrumepté ~- the radar or

gonar screen, for instance -- must be scanned visually.
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6,11 Visual Search of an Area.

Tae pertinent properties of the eyes in ecanning an area
and the nature 6f the péychophysiological regponse are reviewed
in Chapter 4 of Koopman (1946). They form the basis of the
following discﬁssion,

The hﬁman eyes scan an area in a sequénce of fixations in
various directions (for about 1/2 to 1l/4 second apiece) separated
by rapid changes of eye direction; the éye does not “see“ while
the line of sight is moving. The detaii seen per fixation drops
off rapidly with angle away from the line of sighta Fine detail
is perceived only by the fovea, the small central portion of the
retina, subtvending only a few degfeea. Large objects, with a
strong contrast, may be detected when 20° or more from'the line
of sight, but the central 2° to 5C are needed for fine detail.b

These effects may be expressed in terms of a prcbabiiity
p(B) that the searched-for target is recognized during & given
fixation of the eyes in a direction at angle § %o the line ﬁo

the target, Probability p of course depends on B, but also on the

('{c \M«}é 4'&)

& sharp maximum at B = 0, dropping rapidly to zero beyond § ¥ 5%

~ within D).
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illumination, the angular size and visual contrast of the target
and of course on the state of the viewer's eyes. A8 noted, p has
o
The effective solid sngle scanned for the garget, per fixation,
would then be the integral of p over solid angle dfL = da sinB dp,

T = [[u(p)acr

The value of 1" alsoc depends on the nature of the target snd on
the conditions of illumination; it is a messure of the utility of
a single glimpse in finding the target. In many cases this effec-
tive solid angle is small, of the order of iOIQQuare degrees.

The magnitude of the search tesk also depends on the total
gsolid angle §1B subtended, at the searcher's eyes, by the total

area to be saérched over. If initially the searcher has no idea

of the position of the target in the solid angle {1 _, and if the

plane is oriented and illuminsted s0 that T° is independent of the
direction to which the line of sight is painted; then the chance
of deteciing the btarget in e single fizatlon, directed at random
gs Will Dbe consbent, indepesndent of direction (other
cases will be'¢onsidered later). This chance, called the a priori
glimpse probability, the ratio between the effective solld angle
scanned per fixation and the total solid angle to be scanned,
g =1 /0, 18 the probability that the target will Dbe recognized
in a single, faudomly pointed fixation.

When, as 18 usual in such visual searchés,.successive fux-
ations are randomly directed, the probability that the object

)n'lg, the prob-

will be recognized in the n'th fixation is (1l-g
ability ghat it will still be undetected after the ﬁ'th glinmpse

is (1«g)n and the probability that it will be located by or before

}
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the n'th fixation is
P =1 - (1-g)" . | (L

Since g is usually considerably smaller than unity and since
searches of any importance involve hundreds of fixations (i.@,,‘
times of half @ minute or more) this formula may be replaced by
its asymptotic form

P, =1- P (2)

It 18 often useful to express this formula in terms of
time ¢ spent and total so0lid angleJﬁb to be searched. If ¥ is
the frequency of eye fixations during the search, so that n= vt,

we can write -7
P(B) =1 -e " ; @ =E/;; E = ot (3)
as the probsbility that the target will be detected in time %

or sooner; where w = VY[ is the gearch rate, in solid angle per

unit time, E is the total search effort, in effective solid angle

scanned in time © and @ is the specific gearch effort or sighting

potential of the aéarch°

We note the impbrtant property of diminishing returns, para-
mounf in all search procedures. Doubling the search effort E
does not deuble the probability of finding the targetv. Other
search operations, discussed later, correspond %o less simple
relations between P(E) and &, but for all well-orgenized searchés
the probability P(#) is related to the specific search effort &
by the followiné general properties (see discussion of Eg. 21)

P(%) is a monotonically increasing function of &, and
P(O) = 0 ; P(B)~»U < 1 @8 -s ; furthermore

P'(%) v (AP/4B) is a monotonically decreasing function
of ® and P'(B)—0 as T —w

()
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The adjective "well-organized" implies that the prcperties
of P(&), eipresﬁad in (4), are in effect a definition of what we
mean by "well-orgenized" search. At any time during the expen- i

diture of search effort we should, if possible, direct our next

" quanbtum of effort in that direction that promises the grsatest

results; that is, fdr which P' is greatest then. If we can do
this ét every instant of the search, we will have picked first
the action for which P' is the largest (or at least not smaller
than for any_cfher action), snd 80 on; and P' will as é result
be a monotdnically decreasing functvtion of ¥. For further dis-
cussion see Kéopman 1956b, de Guenin 1961 and Section 6.33 of
fhis Chapter).  These properties of PYQ), summed up in the
phrase "diminishing returns", usually imply that the most effi-
cient search involves a very non-linear distribution of search

effort, as will be seen in Section 6.35.

6.12 False Alarms, Non-random Scanning.

Just now, however, we must return to an actual exémple of
visual search; %o see,whether-ouﬁ agssumption, inherent in 8q.(1),
of the statistical independande of successive glimpse probabilivies
is (or can be made) valid, ané'whether the actual gearch rate w
is in practéca‘equal to ¥I . For example, suppose a person is
sténding front of a large bookcase, trying to find a particular
book that he believes is soméwhere on the shelves. He first
scaus ét random; then out of thg corner of his eye he may

glimpse what seems to be the right title and he directs his
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next fixations there to check. Perhaps the follow-up shows he
was in error, so0 he returns to random scanning. Next time his
attenfion is caught he may have to come close, or even to take
the book off the shelf, before he realizes this also is not the
book he is looking for., UKventually a glimpse, follo&ed by a
closer look, discovers the wanted book (if it ie truly there).

Thus the actual process of visual search involves both
random and correlated fixations. 1In addition, some of the
"detections" prove to be false alarms, that tend to dilute the
rate of search and thus delay the eventual discovery. In the
latter part of subsection 6.41 we will discuss the effects of
the presence of false targets on the structure of another‘kind
of search, and in the latter part of subsection 6.42 we report
the solution for a.very simple false target aiﬁuation.(see Stohe
1972 and Dobbie 1973 for further detaile), At preseﬁt, howéver9
the effect of false alarms on the visual search operation just
described, has not been analyzed in detail, so the best we can
do is to assume tnat it will not change the form of Eq.(3) but
will reduce the magnitude of the search‘rate we In view of the
number of approximations alreadg imbedded in our assumptions, it
igs doubtful whether any more detail. % analysis will producé‘a
solution that is enough closer to what actually happens to
warrant discarding the simplicity of Eq.(3).

In fact one can verify experimentally that the probabi;ity
of finding a wanted book in a bookcase containing N .books
(N large) in time t is approximately given by the formula

o]

P(E) = 1 - e 3 @ = pt/N | C(5)

tlan,

oau

where p, the effective search rate in books per unit time,
depends om the searcper, the degree of illuminaetion and the
physical characterisfica of the book, and includes the effects
of false alarms. In pracfice this rate turns out to lis

(see Movse 1970)
between 100 and 200 books per minuteA if the books are arranged
at random on the shelves, so the g priori probability of the
book's location is uniform throughout the bookcase. In this
case the deviations to follow up false alarms slow the search
but do not seem‘to alter its generally random nature.

The formula of Eq.(5)';3 an exemplar of the relationship
between the probability P(QS of éiscovery and the specific
search coverage & = E/4, the ratio between search effort ¥ and
the area A to be covered. We note again the property of |
diminishing returns characteristic of all P's satisfying (4);
if effort B is doubled, ¥ is doubled but P is not doubled
(unleas‘E is small). Probebility P is not additive, but search
coverage is additive. For this reason ¥ is often called the
sighting potential (mee Koopman, 195601).

To meesure the degree of inefficiency caused by this
process of random fixation, we turn to the idealized situation
of complete'regulariﬁy of search. Suppose our eyes could be
made to swing smoothly across area A and suppose the target
would certainly be discovered if it ceme within a solid angle
subtending a circular region R of diameter W on A, and would
not be discovered if it were outside A (this asSumbtion.
eliminates the effects of false targets). - We could them try
to cover area A efficiently by moving the line of sight so
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that region R sweeps out & regular, non-overliapping path,A 6.2 Motion of the Searcher.

either in a spiral or a zigzag pattern, eventually covering - . .
: We turn now to a different operationasl situation, that of an

all of A but never covering any area more than once. - ' le ‘ »
alircraeft flying over the ocean, searching for a ship or surfaced

If the target is equally likely to be anywhere in A, ‘ 4
: submarine. The plane's altitude is h; it is flying a straight

the probability that it will have been discovered by the time .
- course at speed v, which is great enough so the ship may be con-

an area a of A had thus been searched over is ‘ e ,
. ~ : sidered to be at rest. Here again we must discuss the rate of
| (a/4) (ag &) . _
P(a) = , N (6) ‘ search, but in this case the rate is determined by the speed of
where aw A means that some of A has to be searched over again. f the plane, which sweeps out & "searched strip" as it flies along.
° |

To compare this with Eq.(5), for random search, we note that
6.21 . Visual Search.

the sighting potential in the present case is ¥ = a/A, Thus

the two curves for P start with the same initial value and slope First consider the case of a visual observer, looking for the

at T 0 and both approach each other as @ - . The greatest ® . target ship. The most noticeable feature of a small ship, such as

difference between the two curves is at ¥ = 1, where the prob- a submarine, is usually its wake, if it is moving. Thus, as he

 ability for uniform coverage is 1.00 and that for random coverage glances about, the observer's chance per glimpse of spotting it

'im 0.63, As we shall see later, the results for any intermediate o is roughly proportional to the solid angle the wake subtends at

degree of regularity in gearch coverage give results intermediate his eye, in addition to depending on the state of the sea and the

transparency of the atmosphere. As indicated in Fig. 1. this
between these two curves (see Fig. 8). D vy p 8o 1,

® s0lid angle is inversely proportional to‘(rz-phe) and proportional
1 . ) L
0 co80 = h/(r2-+n2)*° In other words his glimpse probability for
spotting the target when it is a horizontal distance r from the

. Y
e searching plane is . 2 L 2\T
g(r) = Ch/@r +1%) where the value of the

congtant C de?ends on the size of the ship plus wake, its contrast

to the surrounding sea (i.e., on the state of the sea) and on the

e :
range of atmospheric vieibility. For further dspgkils see Koopman, 1944
In a time dt, during which the plane wild have @woved & dis-
tance dy=v dt in the y direction, the observer will have had

" time to meke VYdt = (VA )dy eye fixations: Following the discussion
of the previous Sectlon, the probability of ngt spotting the ship
during time dt, when theAship is a8 horizontal distance r from the




f
=

Sighting of ship from a plane flying at altitude h,

with relative velocity w in the y direction.

1.

Fig.

uallw

plane is q(t) = exp{-tKH1dt/Th2-+r2)%] and the cumulative

probability of ﬁot.finding the ship, as the plane progresses on

its search coui'se9 is thé product of all the partial probabilities,

v°=q(tmdt)q(t)q(t+dt)q(t+2dt)°F' , for as long as the ship is

withiﬁ the solid angle searched over-b& the observer. Thus the

probability p' = 1 = [e+eq(t-dt)q(t)q(t+dt)+++] of finding the

ghip during the passage of the seércn plane is given by the equation
Cpel-eTE R0 - (va(e)a 7

where the integration is taken over the whole %time during which

-the target is within the s0lid angle covered by the observer. The

comments about visual search at the end of the previous Section

-indicate that the effective value of the constant'yc iz rather

less than laboratory measurements would predict; indeed, to be
safe, its vaiue must be measured under operational conditions, as
will De discuséed later. Neverthelessglthe general form of Eq.(7)
is valid.

The quantity F(x) is, as mentioned previously, & sighting
potential; ite additive property is evidenced by its being an
integral. if% later in the search, the plane's course brings it
again within sighting range of the ship, thé combined probabllity
of detection would be obtained by adding thevtwo values of Fy
p=1-exp(-F;~F,). The individual F of Eq.(7) is & sum of
all the inf}niteSimal sighting potentials accumulated as the plane

-passes by the target.

Returning to the formula for g(r) for visual sighting, we
can work out the visual sighting potential for a ship that is

a perp%gicular distance x (called the leteral range) from the

plane’s course. It is
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5.

| ko [ dy kh g Yo }
¥ = - ey s 1 - 8
&) M [(7:1‘?'4-:5:24-:'72);i v(h™+x™) 3h2+xz+y§ (8)

(43

where T is the rearward limit of the observer's scanned area,

as shown in ?ig; 2. If the observer scans the entire forward

half‘of thé pcean, yo=-0, the formula simplifies and the tesulting

probability of detection of a ship at lateral range x, from.a

pléne 2t altitude h, travelling on & straight course with speed v, is
p(x) = 1 - expt—kh/%(h2+x251€i 1~ e-k?/vxz (hewex) (9)

which 15 ylotled as corve o in Fiy 3,

In view of the discussion preceding Eq.(6), we see that the
parameter k is likely to be rather smaller than ¥C. Nevertheless
k is determined by the contrast and sizé of the sought object, ’
the atmospheric visibility and the observer's alertness, plus the
degree to which his position in the plane hinders clear vision in

(b way nleo Ackend on 7 i ¢ Hhe plane is Aotng ey Fast),
all directions, The details of the methods of visual search also
are important. For example, the use of binoculars may actually
reduce the value of k; because such use reduces the frequenéy 4
of fixations and also the size of the solid angle covered per
fixation, even though it increases the probability of destection
if the target is within the angle of view. Méthods of measuring

¥ under operétional conditions will be discussed later.

1

6,22 Lateral Range Probabilities for
Different Detection Devices.

The lateral range curve for visual search from a plane,

curve & of Fig. %, 1s one example of various curves corresponding
to various instruments used to detect the searched-for target.

A 1aterallranga curve embodies the details of the search effect-
iveness of the detection équipﬁent that is carried at uni.form

r ; .
velucityﬂunalcng a straight path that happens to pess a distance x
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from ﬁﬁa targét. 'The shape of the curve is dependent on the

~nature of the targst and the type of detection equipment involved.
In the idealized case where the object is not detected if it never
comes within a definite range R of the observer, is certainly seen

if it comes ﬁiﬁhin range R, the curve is the definlte range curve

marked 4 in Fig.3%,

In actual practice the lateral range curve seldom approaches
 the definite range curve d; nearly always there is a range of
uncerteinty near the limit of detection. For example, a search
radar sends out a succession of pulses, as 1t swings its direc-
tional antenna around, and reflections from the target are received
end displayed, as a"blip" on the scope, at a point corresponding
to the position of the target with respect to the radsr. If the
terget 18 too small or ‘Yoo far away the received signal will be
too small to produce a blip on the scope. If the signsl is near
tne limit of detection & blip may occur only occssionally, instead
of every time the antenna scans in the direction of the target.

In addition, other objects, such as waves, produce blips that may

intermittently show up on the screen. Only when the blip appears

nearly every scan, i.e., only when the blip-scen ratio approaches
unity, can the observer be sure that an object is really detected.

(For further details, see Koopman, 1946, Chaptef 5)  Baaically,
radar search is a two-level search: the radar producing blips on
the screen, %the observer searching the screen for persiétent blips.

There are apalytic methods (see, for example, Pollock, 1971)

to balance between the chance of falase alarm and the chance of
overlooking the tﬁrget, in terms of the blip-scan ratio. Uaualiy
the exigencles of the search, and the stress on the searcher,

preclude the application of such niceties in actual practice.

- 14 -

The degree of fatigue of the observsr, for example, has been found
have & much larger eifect on the results thapn sny prescribed rule
for blip-scan ratio; observer fatigue can at times reduce the

effective rangs of detection to helf the optimal range.Alss if plantspeed

\$ %md cv\ouﬂk, The 05('(“"\*&5 ot haye time to san the seabe ‘\"ﬂowdgh\g‘,?h«m wall &exgv\dan v, as it daes fov yisua) t;sa.«‘;l,\,

In sny casse, undsr reasonably good conditions, the lateral
rangs curve for radar search would have the general shape shown
in curve b of Fig.3. HNo detection occurs when the lateral range '
x i8 some factor (507 in the curve shown) greatef then the effective
range R; perfect detection occura iﬁvx ié less then R by about the
same factor. Under poor conditions the curve may be more like
curve ¢ of Fig.3. For example the search plane may be flying over
& rough sea, or cver heavily wooded terrain, with a great number
of false blips (sea or ground clutter) thaet temnd tovhide the true
biip. In some cases the clutter is greatest in the forward direc-
tion, so the chance of detection is greatest for some intermediate
value of x, aé illustrated in curve ¢ of Fig.}.}For further details
see Koopman, 1946, Chapter 5.

Most of the remarks made for radar search apply to the case
of the use of sonar by a surface vessesl searching for a submerged
submarine (see Koopman, 1946, Chapter 6). Instead of ground
cluvver, the so-called reverbsration tends to hide the true blip;
also the signal tends %to be losf when the vessel is nearly over.
the submarine. ' Therefors, except for the differences in distence
scal@,lateral range ¢urves for sonar resemble curves b and c of
Fig. 2,

Many other search situations correspond to the model diacussed
here. For exemple, the visual search, from a helicopter, for a
lost child would probably conform :nghly to curve & of Fig. 3,
and thus to Bq.(9). If the peraén were loet in wooded territory,
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and the search has to be conducted on foot, the lateral range

curve would more nearly correspond to b of Fig.3, the visibility

being sharply limited by the trees. On the other hand, if shouts

were used t¢ alert the lost one, the shape may be nearer curve a&.
When dogs are used, still another curve may be appropriate. For
further discussion of these problems, see Kelley, 1973.

The sighting potentials F(x), for the four curves of probab-
ility p(x), shown in Fig.3, are displayed in Fig.4. As mentioned
before, these potentials are additive; if several observers.are
involved, either following along the same path dr travelling in
parallel paths, their potentials are to be added, to obtain the
resultant probability of detection, |

p(x) = 1~ exp[-F (x) ~Fy(x) = +-) (10)

For example, if the search plane has n viaual obsefvers, or if

n planes follow the same path, the k of Eqs.(8) and (9 is to be’
replaced oy nk. Because the probabilities follow the law of
diminishing returns, such duplication of effort is inefficient
unless F(x) for a single observer is less than about 0.7, or p(x)
less than about 0.5. Thus additional sighting potential would

be useful, in the visual case (curve a) for x| » 0.3W,
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6.2% Search Width 2nd Its Msasurement.

The effective width of the path swept out by the sesarcher
in his course iz found by integréting the probability of detection

over the lateral range x,

W o= fp(x) dx = ?{1 - exp[-F(x)'S} dx (11)

where F(x) is the sighting potential. The search width W is the
mnost uséfuL,single measure of the effectiveness of a detection
instrument, carried by an o¢bserver moving in a contlnuous path
over the area to be searched. As he moves, he can be reasonably
certain to find ¢he S@archedvar target if i¢ domea within the
aﬁept path of width W, centered on his track. A3 one can see
from Fig.3, most search will not certaiﬁly devenrty the target if
it lies betweeﬁi“l and -§W of the path; but there is a compen-

sating chance of finding it if it lies beyond * 3 W, so the effec-

tive width is W.

Theveffecﬁivé search width for visuel search frum low

altitude is, tccording to Eq.(9),
w2 (1 - exp(oin/vx®)] ax
R e 2§(2kh/vx2)eakh/vx2 ax
& )
= 2.’9@};11/&7'

(Note the difference with Eq.29 of Koopman, 1956,2; we assume

(for h < W/10) | (12)

the observer Igokz in the forward half circls, instead of all
around). For higher altitudes, an approximate formula is

| W S—’ kb /7 exp(~hv/4k) | (13)
We note that the width increases with altitudé uwp to h&(2k/v),

above which visibility begins to reduce the chance of spotting

the target, even when below the plane. We note also that increasing

-17 -

the speed of tﬁe‘sea:ch plane reduces the search width, which is
not surprising, since increasing the speed of the plane shortens
the time during whicyény‘given area is scanned. As was noted
before, if n independent observers traverse the same track, the
k}in the square root is replaced by nk.

Each of the curves of Fig.? and Fig.4 have the absciséa

scaled to the effective search width. The curve for the usual

radar and sonar search (b in Figs.3 and 4) is much closer %o the

idealized definite range curve d, than is the visual search curve a;

the fringe of lew probability for curve b does not extend very far

Beyond x = W/2 and over the range O< x< W/2 the chance of detecting

the target is nearly unity. In this case it would be a hearly

complete wastelbf effort for another radar or sonar vehicle to

repeat the samé path (unless the'§§ing is poor, as with curve c).
We havefnoted earlier that the ability of an observer, with

his vehicle and equipment, to detect some target, depends on so

many variablés that in practice it is wellnigh impossible to

predict this ability from laboratory measurements, - Thus, if it

is important to conserve search effort( and;for this, one needs

to know the value of W)vthe only safe procedure is %o measure W

under conditions closely approximating thbse in actual search.

It was found, in World War II, that the usual search width W for

radar planes séarchin@ for German submarines, was one half to

one third the value claimed by the radar manufacturer, based on

laboratory measurements. This is not surprising when one com-

pares the results of tests on an optimally tuned radar, operated

by an expert, with the results usiﬁg a radar that had seen heavy

gservice, operated by a tired G.I. If the manufacturer's clains

had been used in planning, there would have been- larue "holes"
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in the sesrch plans. In addition to these differences between
laboratory and practice, there is the effect of "false alarms"
and the pﬁ?ﬁfa to verify questionable detections (discussed in 1@
Seﬁtion:6.%? which serve to dilute the search effort by smounts

that cen usually only be determined experimentally.

If a target simulating the real target is easy to construct, X ) _

the measurement can be carried out as follews., Lay out a band
of width D, at least % times the best estimate of the search
width W end of length L at least 10 times D, with & well-marked, ' @
straight search course down its middle. Now place T simulated

targets, more or less uniformly distributed over the whole area

LD, but not so regularly spaced that it would be possible to @
deduce the regularity. If one wishes to measure p(x) as well as |
W, the distance from the search path of each target should be

measured, and recorded. An observer is thén sent along the-search @
path and required to notethe position of each target he observes “
during his passgsage. After checkinglis records and removing the

"false alarms", if it turns out he has spotted n of the T targets @
then an estimate of the search width is nD/T. If n is larger
than +T, the band width D was chosen too small, D should be

doubled, the targets redistributed uniformly over the new band, '@
and the experimen%&un over again.

If the number n of true targets spotted is less than about |

20, statistical fluctuations will preclude accuracy in the result. o

of v
In this cese a nunber uAindependent observers should be run through |
the courss, making sure that each is ignorant of the location of ‘

the targets or of the findings of other observers. When the ‘e

total number N u'jln of targets spotted by all m observers reaches j

@ value of 100 or more, the resulting ratio (ND/mT) will be a

- 19 -

reasonably accurate estimate of the search width W.
If one can persist iong enough for N %o reach values of 500

to 1000, and if the lateral range of sach target has been measured,

~ then a rough estimate of the lateral range curve of Fig.?3 can be

constructed. One divides the N spotted targets (counting each
target ifﬁﬁffg&fimes as it haavbeen spotted, a8 before) into those
within W/6,0f the search path (suppqse there are N; of these), those
with lateral range between (W/6) andi(W/E) (N, of those), those
with lateral range betweent(W/3) and ¥(W/2) (N3 of these) and so on
until all the N have been counted. One can then construct a block
diagram9 as shown in Fig.5, with the height of the i'th block

equal to (3N, /N), which will be a rough estimate of the lateral
range curve, as shown in Fig.5 by the solié line. The accuracy

of the result dependsg'in part, on the uniform distribution of the

initial placing of targets; there should be a roughly equal number
in each of the strips parallel to the path.
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6.3 Search of an Arsa.

The usual search operation involves the covering of an area
%o find some terget presumed present. In this Section we assume
thet there is no initial guess as to the object’'s whereabouts, so
one has to assume it is equally likely to be anywhere in the ares.
In accord with the discussion following Eq.(5), and dealt with
further in Section 6.3%3, the best way of applying our search
effort, in this case, is to distribute it as evenly over the whole
area &8 ls operationally possible. Detalils of the derivation of

many of the eguations given in this Section may be found in

Koopman, l95€,b .

6.%51 Parallel Sweeps,

If the area to be seaiched is cbnsiderably larger than can
be covered by a stationary inspection or by a single sweep through
it, the best wéy of insuring uniformlcoverage i8 by a sequence of.
parallel aéeepa, spaced a distance S aparte‘ This may be accom-

a sgival path ov by , '
plished byAthe zigzag course of a single observer, as shown in
Fig.6, or else by a number of observers following parallel courses
interspaced a distance S. Depending on the time and degree of
effort available, n parallel courses can be afforded, each of
length D; spaced S = C/n apart, thus amounting to & total path
length L = nD. From the previous Section we have measured an

effective search width W, so that WL = nDW = A(W/S) is the area
effectively searched (or the total search effort) A = CD being

the area to be searched and WL/A = W/S being the fractional

seaxch coverage (or gpecific search effort, or total sighting

Qotential)o' If the dimensions C and D of the area are consid-

:‘erably larger than W,'n and thus L can be consldered toc be
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continuous variables. Also, if the sarea A is not rectangula.,

as shown in Fig. 6, but is sufficiently large and compact in shape.
gi;;tterﬁ:gg parallel sweeps can belaid out that produce essen-
tially the same uniform coverage and the same fractional coverage
for the same total search effort WL. '

To predict the probability of finding the target during such

a coverage, we must add the sighting potventialas F of Fig.4, for

the parallel sweeps as shown in Fig.7. We nave (if A is large

snough) pp(x) e 1 = exp&pr(le

N ol
Fp(x) = 2

: . fr =¥y
for the probability of detection if the targel has a lateral

(14)

P(|x=-n8|) ; see Fig.7?

range x from one of the paths. The formulas represent the fact

that each parallel sweep contributés its share to the total sighting

potential Fpo The limiting value n  is the integer gsuch that F(x)

becomes hegligible for }xl between n S and (no+l)S; usually F is

such that n, is smell. Thus in prectice we need not caasider
"edge effects"” for the sweeps next to the edges of the area. If
these edge eﬁfecta are n§g1ected, both Fp and pp are periodic
functions of x with period S,

Let the distance of the searched-~for target from edge D be z.

of the target is equally likely to be anywhere in A, it is equally

likely for z to have any value between O and nS=C. Thue the

probability that the object will be found by the end of the n

sweeps is an integral of the periodic function pp over the whole

width C, divided by C,,
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~search case of Eg.(8).
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ns tn-1)5
P(g) ™ % pr(Z— ?;"'.S) Az = -ﬁaﬁ Pp(x) dx = é ?pp(x) dx
. o -+ ® (15)
N é”g {1 - exp[“Fp(xﬂ} dx ; 2 = % - %I.e |
]

The integraticn cam be carried out analytically for the visual
The result (when h is small enough so
that P& kh/vx®) is

P(#) = erf(%f%—h) = erf(L¥7 B) (16)

where erf(u) = (2/WE)§;"t2<Ib is the well-known error function.
Details of the‘calculgtion may be found in Koopman, 1956,b

(noté the misprint in his kq.45). Other cases may be calculated
numerically, once the appropriate sighting potential F(x) has
been determined by measuring p(x) operationally and computing
F(x) = ln£1~op(x)], then calculating Fp and P, and finally inte-
grating pp/S numerically from x=0 to xs S,

The curves for P(#), as functions of the fractional search
coverage @ = WL/A, are shown in Fig.8, for parallel sweeps of
equipment exhibiting the different detection capebilities dis-
played in the lateral range curves of Fig.3. All of them show
& declded dimunition of value when ¥ = W/S = WL/A becomes smaller
than unity, but a substantial diminishment of additional returns
when ¥ becomes larger than unity. Also the curves a, b and ¢
are not greatly different from the limiting ¢urve 4, for the
definite range law., The implications of these properties, when
the a priori probability of presence of the target is 10t uniform
throughout A, will be discussed in the next section.

Curve b, for radar search gnder gocd conditions, is nearly
identical with the definite range curve d. In both cases an
increase of specific search effort ¥ greater than unity produces

practically no additional sightings. (If, however, too optimistic
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g value of W is used, one may think W/S » 1 and no further effort
is needed, whereas in actuality W/8< 1 and more search could
profitably be applied).

Curve ¢, for radar under difficult conditions of ses or
ground return is an‘interasting cases hecause of the peaks in
P(x) and p(x) forixi> O (see Figs(} and 4). This results in a
curve for P(@) that nearly flattens out when thn peaks of F(x)
&nd P(8-x) coincide, and then rises again slowly as S is further
decreased (or & « W/S8 is further iﬁcreased). Thus P'(8) = 4P/48
has a minimum value and then rises again to a'aubsidiary maximum
a8 @ is incresased further, before dropping asymptotically to zero.
Thus this curve does not meet the requirements of (4) for a well-
orgenized search. As will be indicated later, this makes it
difficult to optimize the search effort. ILuckily the conditions

glving rise to curve ¢ do not arise in practice very often.

64352 Randomly Distributed Sweeps.

In actual searches it often is quite difficult vo traverse
the precisely parallsel, equally-spaced tracks asgssumed in the
previous subsection. In fact; unless all the tracks are laid out

and chacked during execution by accurate visﬁal or radar triangu-

lation, it 18 unlikely that the optimistic caléulatibns of det-
sction probability, indicated in curves a to d of Fig.8, can be
schieved., It is much more likely that the results will correspond
more nearly to an aéeumption that the path or paths cover area A
mors or less uniformly but are randomly oriented. To be more
precliss the likelier model is that of search paths made up of a
number of straight segments (as sketched in Fig.9a) of total
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length L within A witk, the position and orientation of one segment
¥iﬂgindependent of the position and orientation of any other éeg-
ment that is separated from the first by séveral intermediate pieces.
To anelyzé¢ thie case we examine the length AL of search track,
28 shown in Fig. 9b. If the target iz equally likely %o be any-
where in A, and if the search track is randomly located, in the
sense of the previous paragreph, then the target is equally likely
to be anywhere in relation to the elemént of track AL. If the |
detection equipment has a definite range -';W, as indicated by
curve 4 of Fig. 3, the chance of detection, while traversing AL
is the area of the shaded rectangle of Fig. 9b, WAL, divided by 4.
The result is the same for any lateral range curve, for the prob-
ability the target is in the elementary area dxAL, a distance x
from the track, is dxAL/A and thus the chance of detection
during AL by equipment having the lateral rahge probability p(x)
is P = (AL/A) Tp(x) dx = (WAL/A) V)
according to the defigltion of search width W, given in Eq.(ll),"
The argumént now proceeds as did that of Section 6.1, and
reaches a similar resﬁlt. The chance of nov finding the target
while traversing the element AL is [1 - (WAL/A)] and the chance
of not finding it in a ssquence of n elementé is [1- -.(WAL/{A)] n,
Since there are n = L/AL such elements in the total track traversed
in the saarch, the chance of finding‘tha target during the search

is

P(E) =1 - [1 - 1 - o°F (18) -

where & « (WL/4) is (a8 previously) the effective search pdﬁnﬁd\
or specific search effort. The curve for this probability is
shown in Fig.8, along with the curves for the parallel sweeps

of the previous subsection.
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Thus, as soon &8 randén deflections disorganize to any extent
& parallel search pattvern, no matter what the detection equipment,
the probablility of success reduces to the same exponential depen-
dence on search effort as was found in Section 6??f¥or the simplest
sort of visual search. Of course the constants involved, expressed
in terms of W end L, differ in value from the w and t of Eq.(3),
depending on the nature of the detection equipment and its carrier.
Nevertheless the similarity in form of the resulting sguation for
P(%) means that we can develop procedures for‘opt;mal allocation
of search effort that are almost completely independent of the
nature of the éearch,ﬁas long as it involves covering an area.

The preé@dimg diScuEaion,'however, should not be used as an
excuse to be careless in laying out and following a search track.
A glance at Fig.8 shows that the detection probability for random
sweeps is less than any of the probabilities‘for parallel sweeps,
for the same amount of effort. ‘Parallel sweeps
should be used whenever possible, but one should be sure that thev
paths are accuratély parallel and equally spaced, or one runs the‘
danger of overestimating the search @ffectiveneas. Finélly, it
should be reaslized that to cover an srea uniformly, éven with

randomly oriented sweeps, requires & fair amount of planning

and path control.
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6.%% Miscellaseous Examples.

Isbell (1957) and Glues (1961) have discussed a very
different "search" problem, where the target is very large, the
searcher ig blind and must find the target by moving around
until he bumpe into i1t. Tor example the "lost at sea" prohlem
aggumnes that one is in a dense fog, that he knows exactly how
far from shore¢ he is but has no idea in what direction it is.

The problem is to devise a path that either minimizes the maximum
distance travelled (Isbell,1957), or minimizes the statiatidal‘
expectation of the distance to be travelled Gluss,196l1).

Bearch for other large obJjects have alsoc received attention.
For example Quss (1961b) has worked out the optimal path for
finding (by touching) a circle of known radius and distance away,
but unknown direction. The result could also be useful in trying
to find a point terget a known diatancélaway, direction unknown,
by use of detectlion equipment with known definite range?for the
targé%;RlHowever these exercises are of iimited utility in practice
becauge of the assumption of precise knowledge of target distanbé;ﬂ
and the solutions are quite sensitive to these assumpﬁions.

Other problems, discussed by Bellman (1962) and, for exaumple,
Heyman (1968), involve the"search" for maxima (ér zéros) of a
function of many variables‘by means of dynamic (or linear)

programming. A survey of this work would lead us too far afield

from the practical problems surveyed in this Chapter.

R
vl

aikn, ,

-27 -

6.4 Optimsl Allocation of Search Effort.

If nothing is known as to the position of the target, except
that it is inside area A, the optimal procedﬁre is ?o distribute
the available search effort uniforamly over A. Thisﬁ%asily verified
if one considers the search coverage Ej = WLj to beifunction of
each subarea Aj in A. The probability of finding the target in
Aj is the pro&uct.of the probabllity AJ/A that the target is in
Aj’ times the probability P(ﬁj), (éﬁ ® EJ/A3>9 that it would be
found if it were in Aj, s0 the total probability of succsess is
P(g) = ZZ(AJ/A)P(gj)E If the coverage is made non-uniform by
making ¢J somewhat greater (by an amaunt:&ﬁ, say) than the
average potential ¢ = WL/A end, in consegquence, making ﬁi/Ai for

another equal subarea AisnAJ less by the same amount A§ then,

. because P(g) is subject to the law of diminishing returns, the

total provability P(4) will be reduced for all the cases so far
discussed. Since P(g+A#) - P(F) < P(¥) - P(f~Ag), the total
probability will be diminished by the negative amount

(4, /MY [B(H +2d) + B(d-ag) - 2P,

b.41 The Effect of Some Knowledge of
the Target's Whereabouts.

Now suppose something is known about the target's location,
so that its a priori probability of presence varies from region
to region within A. We first deal with the rather impractical
general case, when the & priori probability density g(r), of ité

15 Rnown

being at the point indicated by the vector r, to vary from point

to point within A. Since g(r) is & probability density | (

(Afg(r)dm = 1 | (19) |
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If the density of search coverage g(r) -A;:;_:&,n&(WLJ/Aj) = 4B/dA
at point r also may differ from point to point in A, the prob-
sbility P(B) of detecting the terget,during the expenditure of a
given search effort

T S;fé(r)cu. = WL (20)
throughout A, is the integral of the product of the probebility
g(r)ds of terget presence in dA and the probabilisy P[é(rﬂ that
the target is found if 1t is in 44,

f(® = [(e(x) Pig(x)] ar (21)
A

Bupgem two distridbutions of search density (each ‘addin,g
up tp ‘Gha same total coverage %) are compared; one deing #(r)

and the other #(r) « §6(r), differing from # by the relativel

20 it WW@
pmall smount 5¢ (such that {(Sgdi = 5@’5 The differsence im tokal

probaabil.ﬁ,.t;y of detection ® will be

28 « ([ &R + 8t (4) - 2] ar

. (}\{&ég(r)P'[fﬁ(r)]dA (22)
where P'(g) = dP/d¢. The distribution of search effort #(z)
will yiem thé maximum probability of detection P (¥) when AY = Qra:
And the only way A( can be zero, for any choice of §# (as long
88 5 L5 small and {[S§dA = 0) is for the pfoduct g(r)P'[ﬁ(rﬂ
to Ywicm agiidat, G, independent of r.
Of gegree this optimal distribution ¢ must satiefy Eq.(20),

that the integral of ¢ over A must equal the specified total

search affort Wh« BA. The requirement, arrived at in the last
paragraph, theé® '(r) = G/@,{(r:) it ¥ is to be maximum, may

{nvolve aﬁ‘in¢cnsigtenoy; for the curves of Fig.8 show %hat tha‘
maximun valus of P'(g) is unity (when d-so),’no matter’which

curve ls uwsed. Now if, for anj.value of »r, tho.g priori probabiligy
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density of presence of The terget is less than the value of the
constant G, the requirement that P' = G/g cannot be satisfied, so
this fegion must have zero coverage. No region in A, for which
G/g > 1 éan be covered by the search, if it is to be optimal; any )
affort would more effectively be used in an area where G/g £ 1.
Thus the proiarties of the search operation outlimed in ¢5),
pfeacriba a highly discriminetory search plan, if search effort
is not limitless. Details of the derivation of this formulas,
and proof that the resulting § is a maximum, not minimum, are
given in de Guenin, 1961 and Dobbie, 1963,

More explicitly, the procedure for computing the seerch
coverage g(r) that maximizes the probability & (B) of detection
of the target‘for a:specified total search effort ¥4 = WL, is a
two-phass one: |

1. The appropriate value of the constant G = g(r)P'{4(r)]
may exclude some portions of area A, those for which G/g(r);> 1.
In this excluded area A® the search density is to be zero. In
the gearched area Ay = A=~A, the density of search g(r) muﬁ% be
such that P'[g(r)] = G/g(r), which, in A, is everywhere léaa than
or squal bo unityo ;

2, In addition, G must savisfy the requirement tha{ the
integral of the ssarch density #, as specified in 1,.ovarﬁthe
searched area A, ve equal to the specified séarch sffort
A = WL,

These requirements can be mers compactly stated in Yerms

~of the inverse fumction of 1/P'(g) = g/G. Call it £(g/G) = §,

so that l/?'[f(g/Gﬂ - g/G, and f{L/P'(d)] = §. Then, to maxi-
mizge the probability of detection in an area A, within which the




.-i()-

& priori probablility densitvy of presence of the target at r is g(r),
for a given total search effort,defined as WL s HA, we find a value
of G such that |
((z[g(r)/a}as = B4, with the integration over the
;grtian of erea A, within which g(r)/G 2 1. Then the
optimal search density at r is K{g(r)/d] in A and
gero in A, =4-A,, dhere g/G < 1. The resulting

e
maximal ﬁﬁobabiliﬁy of detection is then

£ (5) - ﬁ'g(r) P{t{e(r)/al} an

Curves of f(l/P ), for the cases shown in Pig.8, are plotted in

(23)

Fig.10.

One limitation of this procedure comes from the sssumption
- that P'(4) has & single-valued inverse function £. This is the
case for curves a, bsand & and the ramdom coverage curve of Fig.8.
However curve ¢ does2 not have a single valued inverse b@gggg@VQté
P! is not a mopotvonically decreasing funection of 4. As loné as
g/G does not rise above sbout 15 over the whole of A, ws can
ignore the camplicatiom, but if the avallable aearch effort is
large enough so that g/@ > 20 over some portion of the sarea
then a part of the effort must be dense enough Go make up for the
"valley"” at x = 0 in the lateral range curve. Beceuse this type
of curve is rarely encountered in practice, we shall devote no
further space %Yo its idiosyncrasies.

Evér with "normel” inverse functions ¢ = £(1/P'), which are
single-valued functions of l/P“, the featmraw of procedure (23)
do not correspond to im@uitive all@catieaﬁ of search effori.

The fact that regioms of low a priori probability of presence
should be avoided entirely is due to the fact that the maximum
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- 3] - . o ci e ewae.vidual conbact to a timejlonger than the average time

. ais
» ‘ v o . LeICEL DY varify that the contact is reallyﬂ':i %sww conbtact.
value of P' is unity, which occura for g = O, As long as the : N
~R opLamel search plarn hes been worked out by Stone, Stanshine
value of target density g(r) in some region is larger than the '
| | «nd Persinger (1972) for a specialized case of this kind of
value of g elsewhere, it is best to concentrate on the high=g o - /f
§ seereh garategy. The results show the greatly jAcreased complexity
region until the search there has reduced the Baysian, a post- : v - 4
- ot calouilsiions required to reduce the theory to practice. One
eriori target probability density to a value squal %o the g for ' , e '
’ . ‘ : - is btempiid vo assume that the effect of gdch ghoats is to dilute
the next most likely region. And, if the search effort is . : -
- 3he searsh effort required, withoutb the ghoats, by & factor
. limited, some low-g areas will have to be left out entirely. /.
. : ,*onv_vmmhaa to the estimaved ghoac density.
«In fact, the process of optimal search may be restated in terms |
) ‘ . an the ghosts are actual targets, thougb false onaes, the
of a sequence of decisions as to where the next quantum of search o
. o searcher may be forced %o f@llow up each new contact for as long
effort can be most productively used (see Charnes apnd Cooper 1958
. : as 1t vakes to determin% whether it is true or false. Here also
and Dobbie 1968, for example).
, the resultlng formulas (see Stone, et al., 1972 again) are quite
When false targets (call them ghosts) are present as well o
' . difficult to appiy. In the cases where the ghosts are stationary
as the single target looked for, the analysis becomesz much more L | |
, . " and meppable, a sequential procedure has been worked out by
complicated, and only a few cases have been worked out in detail. N \
: ‘ Dobbie (1973). An example of this procedure, for the simplest
- The results depend strongly on the number and nature of the . | . '
R ' ' possible situation, will be given in the next subsection.
ghosts snd on the search strategy regarding them. The ghosts
. Tt should be noted that in many of the cases involving
may be caused by sporadic malfunctioning of the detection equip- '
, false targets the more feasible criterion for optimal search
ment (among which may be included some of the radar ground and ' ¢ : ‘
strategy appears to be the minimization of total effort (ncluding
ses clutter and the reverberation in sonar equipment), in which :
: that used to verify that a contact is a ghost) expected to be
the delay required to establish the contact as false may be quite : .
. , ' ® ‘ used to find the target, rather than the maximization of the
short. Or the ghost may be a definite object (such as a sunken
‘ : ‘detection probability for a given search efforst. Indeed, in
wreck or & "second-time-round" echo from an islet) that would V (see Dobbie, 1973)
some casas, the two criteria may lead to different strategies.
take some time to verify as a ghost but, once verified, could be ’
. ' ® ' b.42 Applying the Formula.
mapped so reverification would not be needed. Or the ghost
could b bile ( ) , Using procedures (2%) in all their generality has disad-
d be mo ¢ (as with & friemdly ship or a whale) that would vantages. First, it is seldom that one's a priori knowledge of
raquire reverification easch time & contact was madse. ’ o the whereabouts of the target is good enough to enable one to
Many strategles could be devised for dealing with these * specify target density g(r) in detail over all of A. Often we
Yo . xnow only that it is within A; then the search coverage should be
false targets. In regions where the ghosts are chiefly of the
reverberation type, one might decide to limit the effort spent
‘ o
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®
uniform o A, \ : , ; : ' ‘; ' ?
rm over In some cases we can divide A into two subareas, Pgrallel Swpeps, Vieupl Search. Determination of A,
with the terget being rather more likely 4in one than in the other; | A, ’ i Ay
P ! .
in only s few cases is our & priori knowledge more detailpd than LA % % %’ %
this, It 48 thus useful %o work out simple procedurses to sclve _ f :&’ﬁ_lﬁa :{}i' @l; 3’% B, :%_ ©,
(2%) for the two-subarea cass. Tg ﬁm? | Ay
I N A .| A
! ) i i ' . , ,?- 4 ; - ) ‘45—':5
Here the probability density g(r) is uniform within each of ;‘ iré; 5— 2 A ? A o
the subareas Al end A, (80 the search density g is uniform within j - -3\\: o 0L & 1,_..’”.8
; ‘ . i . JETON. S - fennclh L . "
each subarea) but gy differs from 8o (80 ;61 will differ from 4.). . Lhs WY *r‘-"% o ‘ ' full
. - . : ‘ 17“'_ __ ! J ] !
We can then reduce (23) to dimensionless terms by using as para- o ; T 5 \"\‘“:‘3 ‘ PR
: ) = e N L e 1
meters and unknowns the following: ~5 f 7‘: T o
h 3 L 8 o \\ [
- . i -1 4 ot-8
H . ™ » = u\ - — ! J‘ s - I A%
atios of areas; ay AJ/A yo@ptay = 1 ! | :P | I a4 PR
Probability that the target is in a subares; ‘ e P S AT IR S Sbg
YymAygy=Aoygy 3 Y)Yy w1 ‘ | S e T 1 4
» 4 ) W B . . i
Minimum searchworthy probability of presence;A = AG (24) S S o (. | : : e
' oo . i
. .. s .1 b ) SR . o
Optimal specific search coverage of a Bubarea; ) S JNay e Bt s Sl s R »-:1—:_— R
{ | ) S I I et i
Ty m Py = VEy/A = ay28y/6) = ayt(yy/aph) L 1 4 I Y
| } 4 . 1‘__‘.—4-' A «
Ql 4‘ ma £ m w WL/A . 3 o q.. : j %w |
4 ¥ X —‘h- ; 1 - ]
Optimal probmbility of finding terget in a subarea; ® - 3o L » Ted pad ugmm,
w . 4"-‘,.._ 3 2--"' , b "
i Sk 1 - 1
The values of !EJ and (@3/2\), a8 functions of Yd/k are o SRR ; ‘ 4,. i 2 g;:Q\.a
displayed in nomogram form in Figs. 11 to.1l4. for the cases of o b 1 4= 3 ;9'“‘
o ' X s SR AR + =4 58_:» R A é;:j
visual search in parallel 8weeps and for random coverage, any =4 4 ’ P4 T e SR I 9']-5 ‘3' !
, B g.bi_.x_._.g_.._;. - - 94— T et S L S 1 o ey TR =g
detection means. The specific formulas for the two cases shown b I 4 - A 3 4 " e | '
; C I kb ! . L : - o I L B
sre obtained by referring to Eqsz.(16) and (18): ® T f 1 T T S N Y T B
. ) ( ')’ L T Lo QUER S S S ___—_;.:,,___,__5_“._..,*. e ] Y, W B .;J~ I ,:.__H;J,g,._ .
ual s B J D ‘ - ¢
or parallel Jweeps, visual sighting - | n:__‘_“?. g f@f ; ;»ﬁ y W u-“"T R Y} _w-;r { 115
?(ﬁ) ™ Brf(‘{ﬁ ﬁ) ; P'(ﬁ) - exp(%% 42) ’ - ‘ ....A.....‘.@._.,‘ . i ‘....;,;" . -f -, 5‘4 . o o ” ‘lg._-..._. PR : \m ix O Y
v , 1 . ! ‘-_ Py N u ]L L - Co
£(1/P') = (CARWIE(/FT) = 4 i ] L5, 2 3 "% o fe =t ;._Bm__?;m 33
For uniform coverage of random sweeps per subares ) (29 f ’ | f | , IR S
- ‘ P ? : I
P(F) = 1 - 7P i PU(g) = e~ : Fig.11. 'Nomogram fot ca'{cu_latiqr{ of .optfindl lalTgcation of o
' f ; ; ‘betweean two lareas, for curve & of Figs.8 and 10.!
f(lfP')aln(l/P'),d : o : L e N ' l } e
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; Par?llel;kSweePa, Vg.su.al Search. ;Detemina'?ion zf €. “hese are the functions used to compute the scales of Figs.ll to 14,
! Ay : « : ' : : 2 ' ~
ﬂ"; 2 % % : g 4 4 - The left-hand half of each chart corresponds to the smaller
L = . °
2 ? H ‘ subarea, which we call A;; the right-hand half goes with Ar. The
';f’@' “‘{""6)%,% ¢ E 2E ( 1 or 13) S0 A
A ; ; . £irst cherts (Figs. 1l or serve to determine iven the
g}_za 3&% iy 8] .ﬁj‘, : :’83,_.@ ‘ﬁ - ' g 3 y B
g - 1? L L R 323 total search effort WL = AR that can be expended. Suppose we have
4 3 6-—1"‘ { ‘4Mv-‘2 s-h-. 1T /i 1 5 o
1:% B SN £ 9=t B ...J:'~5' J’ guessed that the target has a chance Y of being in subarsa
a_j_g -“‘“Hz? ’,5‘"‘“'".‘5 T ETER, ' - “i“' '*‘;F R o Al‘ = a4 of the aream A to be searched, and that it has a corres-
A~ '7':“}5\ = o - !’1_]' 5 1 ° ronding chance Yo ® 1-Yl of being in the subarea making up the
" [/~ N ! s TR N . ‘-—- tL, Y ‘
‘ - S M I 5 5 o 1 H"j‘ 47 S rest of A, A, = a,A. We first choose the pair of columns corres-
4 9__}-— i i o N % . : -+ 1» ’ 2 2
1 q_j— : ;”MF_ 1 ; :h Coa ko ~ ponding to the rdative sizes of the subareas, given by the values
] F o, 94 | ! ; 9wt S ' |
+ . Lo i : 1, ; T R - ; v of a., and 2 1 =@,
15 o T < A ey L, 2 e CtTmemdog-el-g
T * P 11 | ' 7= S T ‘ o o Next we determine the ratio y,/y; of the probabilities of
1_:: ,“‘5"1-‘;” i 1 | presence in the two subareas. The 's('j/?\ scales are logarithmic, so
:'7? . F ST S ATV moving a line-wbetwwen the columns parallel to itself preserves the
k. 9" IOTEE S U [ - ratio of the y's. For each value of vy/A on the scale to the left
oo [ ; - ' : '
5T ) J i Vign 1’5’: N ‘*ﬂut, of each column there is a corresponding value of ZEJ on the scale
e " ' - ] ] {! ek ) ‘ )
N S A, 5‘} ‘ to the right. We slide the line parallel to itself until the two
- . b B N O - G | |
4 f"sg o1 ?"".._z } D e | values, ®, and B,, picked out at the two ends of the lins, add to
k f 7 e ! o ; - IR N B o '
1 ! 3 T { . S ‘equal @ = WL/A, the prescribed specific ssarch effort.
T e LY YR SR R el B = Wh/E the 3 ?
. - g ! , 1 P B DR Two examples are shown in Fig.ll. In case a we have
"“L.& 5‘-—-4- Yy 3 - é--__‘ I .8_:..5 : | )
3 J’"g . r 3 1 t3.d"8 gt guessed that the target has a probability Yy = 0.4 of being in the
7“ - ‘ ; i 1 T.d ‘ wcpe -"'9
"7 { nd '-7 he AN, .
+ ‘—u i Py, N . %.... P S S P - B . -
sg .J_""" 5 me g ~3 8]:8 13“1‘:?9 N J.T_W sma;l subarea A, = 0.2A and therefore that the chance of its being
9-::.9 7‘;#—% b i o 9-lo ..”40;;‘;’ -:: P in the remaining A, =0.8A i8 Y, =0.6. We also have decided that
<+ . L o Fre B ' : .
0—f-10 %38 41 075 e B et (Ml T iR we can only spend a total effort WL = Q.54 on the search. The
T e N T x + T I | s | | - |
le SE 1 \0*‘::&%?0 B Ny W 5_4“_5 - Bt e e - %+ ratio of the v's is 1 to 1.5, 80 we set & ruler on 'yl/h = 1 on The
1 1.5 2 ) 4 nali/a,‘ -l 1.5 | é.‘. ay = 1/5 column and on 72/7\ = 1.5 on the o, =4/5 column and move
i : ' b i ; 1 it parallel to itself until the sum of the corresponding %'s
sy . : PRI UL - ‘ : :
: Fig.12. _N%?gfam to be useg th F1g.~13:_’ S S O S S e equals 0.5. This occurs at the two ends of the line a, for
C o . o L e ¥p/A = 0,58, & = 0.235 and Yo/A = 0.87, @, = 0.265. Thus we
. i . T . R TR . o :




—55.:

nust spend nearly half (0,47) of our search effort in the smaller
area Aj. Note that if the available search effort were less than
0.26A the right-hend end of the parallel line would come above the
top of the right-hand column, indicating that 32 muet be zero and
that Al gets all the search effort, even though the chance of

finding the %terget in 4, 18 1.5 times the chance of finding it in e

Al' With such & small available effort, it is better %o spend it
all in the smeller area, where the probability density is greater.

Simce we assumed Yy %o be 6,4, A must then be (0.4/0.58) ®

= 0.69. To check we divide Yo = 0s6 by 0.87 and sgain get 0.69.
To find the predicted probability of detection we turn %o Fig.12

and draw the same line, between Y,/h = 0.58 and Yo/h = 0.87, ®

between the sgame two columns. The'probability scales on these -

columns show tha€$§l/k = 0,5 and &%/A = 0.3, Having already

found that A = 0.69, we determine that the chance & of finding &

the target in A, is 6.34 and that of finding it in 4, is f, = 0.21,
with a totel chance of finding the target ag 0,55,
Example b is for two equal subareas (mln.aauxo,s) with the s‘
target guessed to be 4 times as likely to be in‘A2 as in Al (Yl=;0.2
and ann0¢8). We have available this time 8 total search effort
WL = A (®=~1). Setting our ruler on Yy/A =1 and v,/A =4 and o
moving it parallel we find that &14-ﬁ2m 1 8t the ends of line b,
for yl/x = 0,625, Ql =« 0.28 and Yg/k-2,5, anu0.72. Here we héd

better devote 3/4 of our search effort to the more likely area. : ®.

Since vy = 0.2 and v;/A = 0.625, we have A=0.32, which can be |
checlced, for 0.8/2.5 = 0.32, We note that if the total search
effort is less than O.66A;th3n #, would be zero. In this case ,.
if WL is less than about @/3)A, it is best to spend all of it in
the more likely half of A. Turning to Fig. 12, the line points

between two areas, for un
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Rlami‘om:ly Oriented Sweeps.  Determi dation ofL'P

st } | ; R | o 0¥ /A 2 0,31 and Po/h = 2.32. Since A = 0.32, the probabilities
ro L i i % g % % | 4 - are @ = 6.10.and ©, = 0.74, with total probebility @ = 0.84,
% ;(Z*' ?;-a., %™ 2 1' i » ‘Q’J 'Y 5 BG) . . 'l‘hese examples are for parallel sweeps, visual sesrch.

:;i" %, ?75' %J:L’ :%w % %% yf’__% ‘f‘f ;%"""O “‘f:r:g | | Figg. 13 and 14 are for the more usual case of uniform coverage
’(,.""O iﬁ:‘a 0 ::E"O .:.w; ;:l; ,G | ; zj”‘ ;_J . of each subarea by randomly odented sweeps, ang gwe\‘;jc tion equipment
’:__J | | + 1 B‘M: | 7::1 “""‘*:z ]“‘:_’_: : ‘ (the only effect the equipment has on the results is in its deter-

.5”:1 é‘&:—' Bk .g;p ,,::z’ }"':-:;"; :% 235 nination of the sweep width W). A4s indicated in’ Figs. 8 and 10,

/o—:L 1, . NS 1 “_5; ,_-5 1 u: 1 o the probability‘of detection is not as great as with Parallel
’7,’:'_:. %,.:3: A1, ?«::-’5 | T ’;iww i +&-* - if__} - . sweeps with the same detection equipment and same search effort.
-‘é"::_,g l.—-'“, 51, }_ v;._:, ! J:’Jr : ::""]2__1 f - But unless one is precise in traversing the parallel sweeps, the
.9-;_; n.:"*i 4 : d:: ; :”'4': o ;2‘7*__3 1 actual results are likely to be nearer the rardom sweep results

j,.,::,, %:..‘g ﬁdt‘% w~:--—'52:: ' %—: r -—:~ 1 ° ~ than any of the parallel sWweep curves.

JE: o Z?’-jj:‘f" ;J“"gf E; d‘j “ ;; 3;:'2: %::-2 | One can fairly quickly work up curves for any particulaw
"P'{*} 4”‘—‘,.'.,5- a;: 2—-:* 1 ;:Zl ~§-—r M :J __: _ ___3 o case, from these nomogreme. As examples Fig., 15 show_s two pairs,
,j:‘, “ f 5,_-::;9 R R :%r w-'ﬂ:%:-*-" ‘;;“'? i ““} 3 ~ to compare parallel, visual sweeps with random sweeps, for two
1__;;” ’w,;: 1 ﬂ;'._,‘ S I | L 5t different sets of a‘'s and Y's, In the first case, the two to the
:_..2 vu‘g H;_::‘ o f“s _ ;4‘:_;,_4’_‘ 51..__” 5:‘;5 ,‘_‘__——-5 ‘ ‘ lefs, we have a large difference in areas, a; = 0.2 and ¢ » = 0.8,

“, ;l::; i t. 4-d 5._: . ;5 é—: e ;‘ and e lesser difference in probabilities of presenca, Yl = 0.4
Y- --2 I ¢ -;...% ‘j ; 1“-.(’--.-@.}7, ’ and ¥, = 0.6 (so the probability density of presence g, = vl/al =2
3 ;SRR = o s B e o i S = ] ;
] b o T ) B e 1+ 1, 9_jr-e .,. in A; ie larger than 8> =0.75). Thus the aearch starts in Ay,
‘WM %3“4} . . ":'_‘-&- %8:w = 'j_:,‘ ‘Oj_:..g ﬁe“ji’D though not much effort is needed there before i't; begins to be
v §f~ ) i _~ % s;»«: o ;L: - T‘A}{E:” %w:{[} : —~:Mm-—~ | worth while %o begin searching in the larger A2. The rj.g;ht-hand

. “j“b r ~-—+§ | ,3 . 9_:“‘3 l@'i...q;g .j~ - ;ﬂ:f T ° pair of curves are for somewhat more equal subareas, but a 2 to 1

%’:"’ ?;m»ﬂ 4—-1:“4 ?{)——:zm i:'— % . :E“ a— %"“‘;lw“‘b ‘?::;"'7 ) ' ratio of probability of presence (al = 0.4, Yy = O'.67; a, = 0.6
R ! 1 R S By IO i 1T Yo = 0.33), |

B R o I Rl s 5,7 ET SR N S S o 2 | B

3 ‘ 5 A u.a._,_/fa - ::5 ,‘? ~~“_3 _ 4 ;.' Note that the lower set of curves, for random sweeps display
% I N :” . ‘ o ’ & quite simivlar pattern to the upper set, for parallel vigual

Figi;.l&}. 1J\!Otmog% bg“use;d.\&ﬁt'h Fig-‘]?::';w : o ! - 8weeps, but thdt the probability of success, for the game search

. - % R T [+ - . e %_jw Lo [ £ gf. effort is about 15 percent smaller for the random sweep cages.
U S SR ) - e P
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The right-hand pair of curvea, for the mors nearly equal éreas,
shows that the less likely area is not touched until WL equals
nearly A/Z2, but that by the time svailable effort has reached 3A/2
the search effort in the two areas is nearly equal{though the
probability of &etection in Ay is 8till considerably smaller thana
that in A4, further search in A, wouldvﬁot improve matters).

When the & priorl estimates of the target's presence are

detailed'enough to require the separation of A into more tham two

subareas, a computational procedure to0 use with a minicomputer or
& loglog slide rule can be developed for the case of random sweeps.
Referring to Eqs.(23), (24) and (25), proceed as follows:

l. Having divided area A into N suberess, with area fractions
aj:QAJ/A aud target presence probabilities vy assigned to

edch, one rankeorders the areas in descending order of
Yj/adszng, starting with the subarea having the largest

Y/a a3 Ay, and so on, 80 that Yy l/aj 12

»Z:a = 1 ZZY = 1

)1.\

We th@a cbmpuﬁe and tabulate the two sets of limits,
=ZE:aJln(Y3/aj) (nw1,2,3,20,N)
[g;agxln(7n+l/an+l)

Limits_Ln fbrmag~monotonically increasing function of n.

vj/a . 0f course

Jfamd

2. When the tobal amvailable specific search effort

¥ = WL/A is lesﬁ than Ly = alln(ylaz/v2al) gearch should
be concentrated solely in subarea Al. The probablility
of detection of the target (in the only searched A ) is

f@uvlw o 8/%1) u v (1~ o7H/A,

3. ¥hen L <: Q WL/A < L, the search is to be in the
subareas A19ﬁ29"’ 4, only, with the search effort in A

K
b Aaﬁji:ln(a’j). + (a 4.“20 . ud}a‘n)
This r}ﬁu*ﬁw from the equation & = K -(al+...+a Y1loA
80 thet k & gxp[(Kz - 8)/(a;+ < r4a X Therefore we have

J

Aﬂi (3 =1,2,++,n)
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?::Qjﬂxn*ﬁ-ﬁlnaﬁ
The probability thet the target will be discovered in Aj
during the search is then
@y =y - cxj?; =Yy - ajexp{af:i%\so that
§ = JZ:':‘(YJ - 0'37‘)
4, Wnen % is greater than Ly, the largest of the L's of
BEq.(26), then all subareas of A are to be gearched, with
ipdividual efforte given DY

4B, = WDy = hag{inCyy/og) + 8 - Ky ) (26)

which results from the equation A = exp(KN - &)
The probability that the target will be discovered in

@ w 1 o= QIP(K’N - ﬁ)
Note that Ky £ O and that Eg = 0 only when 8ll ratios Yj/aj"ng

equal and thus 2ll equal to 1,
e to be distributed uniformly (random orientation)

Aj is

are Note also that if the
gearch effort wer

over the entire area A, the probabillty of detection would be

Therefore, when Ky < O (i.e.,when the probability

l - exp(""ﬁ)a
densities of presance of the target, &y
v of success £ is increased if the search effort

= Yy/ay 8Te not all equal)

the probabllit

is mllocated according

It can be shown (see Dobbie, 1963) that this allocation

produces & § that is the largest achievable for & given ¥;

likewise that the &, distributed according to the formulas, i2

the smallast effort that can achieve the vesulting §.

One example of the presults is shown in Fig;16, for three

g neglected until the search

gubareas,., The least likely apes A§ i

1 becomes greater than (3/4)A. The dashed line shows

uwccess 1if the gearch effort had been gpread

covarage W

the probability of 8

avenly over A. One would have to increase g by 207 to geﬁ an equaléa,

to Egs. (26) . For unother \1'}\"A o{ ck\\\;co;’“an) sec Woysc (\9‘70),
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An example of the effect of false targets has been worked

out by Dobbie (1973), for the very simple case of two areas,
thus anelogous to the examples given in Pige.(1ll) to (15).
Expressed in the nomenclature of Eq.(24), the area A is divided
into two equsal parts, s¢ ay = Oy = 0.5, There is $o0 be only one
false target, which is stationary, so if i¢ is once located its
presence can thereafter be ignored. We are supposed to know
whether it ig}in Al or A2, but we do not know its whereabouts in

the éubarea, As before, we assume we know the probability Y1

that the true targ@t'is gsomewhere in Al, and thus the probability

Yo = l-¥l that i1t is somewhere in Aeo Also as before we asgsume
Al to be the subarea with the larger probability of presence of
the target, vl; Yoo Search effort is given in terms of the
gpecific effort QB = WLB/A.

In thia case Dobbie minimizes the expected specific sffortd
ﬁ8-+§e required to f£ind the true target, where ﬁs is the specific

effort spent in searcn and &8 18 that spent in determining whether

the contact is true or false (and we assume that the expected
time required for each determination, whether it be the %true or
false target investigated, is unity). Rendom-uniform search is
assumed, so the probability of making & contact, on either the
.falae or the true terget, by application of search density

ﬁj - WLéan in Ad ig 1 = e’ﬁd, as in Eq.(25). According to the
total specific effort & = WLm/A available, it is allocated
gequentially in searching over A, or A5, or in verifying a
contact, as long as there is available effort, in the order
given by the following acenario, whi;n is presented in a form

convertable to a flow chart.

- 40 =

There are three possibilities:
Ia) If the false target is somewhere in Ay and 1>'71;>O@6418,
search Ay until either A or B occurs, which ever comes sooner;
A) A contact is made. Then spend the requisite specific

effort ﬁc::l to determine whether it is the true or false target.

e) If it is the true target, go to 1 below.
b) If it is the false target, record its position and
resume the search of Al until either a or P occurs,
whichever comeg sooner: _
o) Another contact is made., Go %o 1 below.
B) A total of g, = + ln(Yl/vz) of search effort
has been expended in A,. Then go to 2 below.

B) An smount g = %K}n(vl/vz) - Oy585¥] of search effort has
been expended in Al without obtaining a contact. Then
go to 2 below. '

Ivb) If the false target is somewhere in A, and 0.6418> v > 0.5,
search A2 until either A or B occurs, whichever comes sooner;
A) A contact is made. Go to 1 below.
B) An smount ¥ = %[0.5851 - ln(vl/yéﬁ of search effort has
been expended in A, without contact. Then go %o 2 below,

II) If the false target is somewhers in 4, and 1> ¥1> 0.5,
search Al until el ther A or B occurs, whichever comes sooner;
A) A contact is made. Go to 1 below.
B) An amount ¥, =7 1n(Y;/Y,) of search effort has been
expended in A, without contact. Then go to 3 below.

1) This is the true target. Stop the search.

2) Search the whole area A=A, + A, uniformly until a contact is
made. If the contact is in Ay, go to 1, If the contact is in
Al expend the requisite effort ﬁexnl to determine whether it is
the ¢trus or the false target.
2.1) If it 48 the true target, go to 1.
2.2) If 1% is the false target, record its position and
resume the search in 4, only, until 2.2.1 or 2.2.2 occurs,
which ever comes soon@f;
2.,2.1) 4 contact is made. Go to 1.’
2.2.2) An additional amount @, = 0.2915 hes been
expended in Al without contact. Then go to 4 below.
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. %) Procede as in 2, but interchange 4, and A, in the instructions.
4y Resume the search uniformly over the whole area A=Ay + A,
until a contact has been made. Then go to 1.

Tne probability of detection of the true target, #3 a function
of the svailable specific effort ¥, expended in accordance with
this scenarioc, is‘ﬁot gliven explicitly by Dobbie, but the
procedure will ensure that, on the average, the effort expended
will be the least amount required to attain that probability.
Since this,’almost the simplest of search allocation problemss
involving false targets, gives rise to operating rules that
would be difficult té féllow in the heat of an ectusl search,
it may be questioned whether precise analysis of more complex
situastions would be more an admirable mathematical exercise
then a practical ald in actual searches. One can hope that

approximate solutions can be developed that will be simpler Yo

carry out in practice.

+
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6,5 Target Motion.

The previous sections have assumed that the target moves
slowly enough that it would have moved a negligible distance
during the whole search operation. If there is no a priori

knowledge of the whereabouts, in area A, of the varget, nor of

‘its direction of mobvion, this motion does noﬁ alter the fact

that it may be anywhere in A (assuming that it cannot leave A).
Thus the best procedure still is to provide uniform coverage of

A, 1f the target cen leave A, the aresa $o be searched will

_have %o be increased in size as the search proceeds. If thia

increase is a small fraction of A, it makes little difference in
the organizatlion of the gearch or in its outcome. On the other
Hand if the increase is equal to or greater than A by the time

A has been searched ove;:iif the taréet has not been found by
thenyit is unlikely that further search will be able %o keep up

with the expanding area of presence.

i

6.5l Target Position and Motlion Unknown.

To justify these statements, 1t is cgpvenient to use the
differentisl equation governing the probabiiity P of finding |
the target. The searcher, as in previous sections, is assumed
to move with velocity v and to have & sgearch width W. Referring
to Fig.9b, the increase in the probability P(L)‘of having found
the target,after a search path of length L,is egual to the
increase in the area of coverage da = Wvdg, divi@ed by the
aresl, within which the target is likely to be, =mnd multiplied
by ﬁhe probability 1 ~-P that the target is not yet found;
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4P = (1-P)(¥/q)dL = (1-P)(da/q) (27)

whére aaWL 18 tﬁé ares already'searcned‘over by the time the
path has reached’iength L. |

If the target is confined within the area A and if ini-
tially it can be anywhere inside A, then target motion will not
change its piobability density of presence, which will be (1l/q)
at any instant. If, in addition, the search is randomuuhiform,
then the area q iﬁiEq.(27) will be practically equel %o 4 (as
long as We is small compared to A); possible target motion within

a confined area A cannct change ;tskprobability density of presence.

The equation and;its gsolution are then

s o -Ban ; B(a) a1 - WAL

identical with Eq.(18).

e’a/A (28)

On the othe" hand, if the target can cross the perimeter
of the area A, -1 he area of possible presence, q in Eq.(27),
increases with time. In this subsection we suppose the target
is not aware of the searcher and that its motion is randomly
oriented., If it haﬁpened to be on the perimetgr of A, in only
half the cases would its motion teke it outside A, snd the

average distance it would penetrate beyond A in time d¢ would be

(u atlan)fsmede = (u/n)dt = (u/nv)dL = (u/nvW)da

where u is the estimated mean target speed of target motlon9

v is the speed of tﬁe searcher and W is his search width. Thié
"leakage" producaa a gradu&l enl&rgemenb of the area of presence‘
of the target9 ovar the initial wvalue A, as though the various

possible positions of5the target were molecules in & gas, with

st

mean speed u. .The gas expands with a mean velocity (u/x)

normel %o the'bbundary.' In fact the expected enlargement df

the area is: u us
dq = ,de.t = mda

where s ip the length of the perimeter of q. If the initial

_area A is circular or square, s i1s equal to the perimeter S of

A timés Va7m. ‘Even if the length of A 1s twice its width, the
formula s SYq/A is approximately correct as long as q is
less than twice A.

Therefore the area of preéence of the target q, after

erea a has been searched over in a random-uniform menner, is

-approximately equal to the solution of the differential equation

)

3—%5 27%% or q = A(l+v%)2 where »Y-mg;;%
InSefting this into Eq.(27) we obtain the rrobability P(a) of
detgction of the tafget after random-uniform search effort |
WlL=a of an area initially of magnitude A; @hen the target is
initially anywhere within A and has an estimated, randomly
directed spsed u (and is not confined within A)

Pa) ¢ 1 - exp|p2fhyny] 5 &= WL (29)

This differs from Eq. (28) by the term in the denominator
of the exponential, resulting from the "leakage" of the moving

'target into the region outside A, It iz a valid approximation
as long as factor v = (u/2nv)(S/W) is small, which assumes that

ratio (u/v) of estimated average target speed to searcher speed

is no larger than the ratio (W/S) of search width to perimeter

of A, 1In fact if v« 1,P(a)§§eases %o increase soon after a

_becomes equél to A, after which area g expands faster than the

search can catch up. Howe#&r if (W/s)

'
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for a single searcher is smaller than u/v, v can be reduced in
value by employing more thah one searcher, For m independent
searchers; each following a uniform-random path, W in the
- formula is changed to mW and thus v is changed to (y/m).
To see what degradation is produced by this ﬁossible
"leakage® of the target oubtside initial area A, we tabulate
P(4), the probability df detection after a total area mWL = A

has been Be&rcﬁ;over, for different values of Y.

Table 1.
Y o 0.1 0.2 0.3 0.4 . 0.5
- P(A) 0.632° 0,597 0.565 0.537 0.510 0.48%7
a;/k 1,000 1,111 1.250 1.429 1,667 2,000

The third line measures the ar&a a, = mWL,that must be searched
over in order that the probability of detection P(al) équ&l the
%alue 0.,6%2 for Y=0 and a= A, Further increase of a beyond 8,
of course produces further increases of P(a),‘but these further
gains aré made at the c¢ost of disproportionetely large efforts.
The gein in P(A) by dividing the search efforts among m searchers
comes in the fact that ¥ becomes y/m, becsuse each searchef needs
to search only area A/m (provided the m patha‘,betwean then,
cover A uniformly) and the search is compléted in (1/m)'th the

tims, so the target‘has less time to "leak out".

An exact analysis of target motion on a regularly patterned

search (such as the parsllel sweeps of Fig.6) has not yet been
worked out. For comparison, a2 an opposite limit from the
randoméunifcrm case just presented, we can look at thé idealized
case of using definite-range equipment in parallel sweeﬁs

spaced 8 =W apart, 8o as to leave no unsearched area between

- U =

sweeps., 1f the tafget is at rest somewhere within A, the pro-
bability of detection by the time the path length has reached
L=a/W is given by Eq.(6) and by curve d, of Pig.8 (P=a/A).

First, we assume that the target is in motion, with a
randomly directed average speed u, but that iﬁ is confiped %o
motion within.the initial area A. In this case the only way
the target can “leak out" is into the area a, that was assumed
to have been‘cohpletely swept. Examination of Fig.l7 indicates
that when the area is completely swept, so that a® LW = A, the
regions where the target could have leaked back (the cross-hatched
areas) have an area

a(a) = 2832 . BB 4 gince n=§ snd A = CD
within which the target may still reside, unfound (we assume it
takes n parallel sweeps to completely cover A).
Thig leaked-back area is approximately proportional to
the swept area BO that, at the stage when area a has been swepte
(as shown in Fig.l7) the area within which the target may still

be (if it has.not yet been discovered) is

D
n{a) = A = (L~p)a where u = %W

Finally, inserting this into BEq.(27) results in
‘ : : , 1/(1-p)
5 = KT?T%%ETE or P(a) =1 - [1-'(l~u>%1

for the case where the target is comstralned to move inside A. -

(30)

The probability of detection when & = A (when the search

would have been complete if there were no target motion) is

n§t unity but P(A) = 1 - “l/(l"u)

This is tabulated for a few valiues of p;
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Table 2.
" _ 0 0.05 0.10 0.15 0.20 0.25
| P(A) 1,000 0.957 0,923 0,893 0.866 0,843

As with the random case, the analyeis is valid when constans

p = (u/nv)(D/W) is small, Better results can be achieved by

using m searchers, in which case each searcher needs to cover

only area A/m and constant p becomes (u/®v)(D/m¥). In sn actual

search the detection will not have the sharp cut-off of the

definite range curve 4 of Fig.3, nor will the sweeps be the

perfect pattern of Fig.l?7, Therefore the actual probabllity

of detection for WL =A will be somewhere between the P(A) of

Table 2 and the 1-et 0.632 of Eq.(28) for random coverage.

The difference between these limits is less whoen & 15l then or i gredler an A,
~ 1f the tvarget is not prevented from crossing the perimeter

of 4, the bottom side of A (as shoﬁn in Pig.1l7) will be penetrated

and the increase in searchable area, because of this side, when

ga=A, is8 D times the effective velocity u/m of leakagep times

This also increases

linearly as the search progresses, 80 thu addition to the area

alsd

of a, is (uD/mvW)a = pa. The leakage out of each of the sides C
of A is a stepwise approximation to & triangle with vertex at
the upper corner and base, down a disténce C(a/A) from the top,
of width (u/nvW)a, plus a rectangle of width (u/mvW)a beyond the
The added area on both sides, when (a/4) of the

(a/Ai%a, where " =

rest of side C.
search has been completed, is thus‘vi2~
(uQ/ivW), Therefore when the searched avea is a = WL, the
area within which the target may yet be is

q « A= a(l-2y) - (W/h)a®




- 48 -

where Y = W+Y = (u/va)(C-+D) = (u/2rv)(8/®W), 5 being the
perimeter of A, as in Eq.(29). | '

The probability of discovering the target after area a
has been searched over by the "ideal" coverage of Fig.l7, is
the solution of Eq.(27) with this new value of q inserted. It is

1= Af1l-2y+29(a/A) 1+ A(L=27)1P
Pla) ~ 1 - "{1 S ALL-2v+29(a/A) 1= A(1-2Y) (31

where A = 1/?3-—4p-»472. To measure the effect of this leakage
we tabulate P when A is a square (when ¥ =2u = 24) and when a = 4,

for different values of Yv;

Table 3.
Y 0 ‘O.I 0.2 0.3 0.4 0.5
P(A) 1.000 0.878 0.785 0.718 0.680 0.667

Compariaon‘with Table 2, for the'caaevwhen the target is kept.
inside A (for Y =2u) shows that leakage over the perimeter of
A produces a conaidgrable'reduction in the probability of det-
ection. Of course if m searchers are used, moving accurately
in line abreast, W becomes mW and Y becomeany/n° If one has
snough manpower, the search can be completed quickly enough so‘
the effect of térget motion can be minimized.

Of course Table 3 is for the perfect coverage of A implied
in Fig.17. If the lateral range curve differs from d of Fig.3
and/or the sweeps are not exact, the detection probability P(A)
‘will approach the lower liﬁit given in Table 1, for random
coverages,

Other patterns of parallel sweeps, with definlte range
equipment, will result in slightly different values of the
upper limit of P(A), but the difference will not be large.
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For example, the approximate analysis for alpath that covers
the perimeter first and then spirals in t¢to the center yields
results similar to those of Table 3, but with v (3uS/8xwW),
roughly three quarters of the Yy for lig.(31). Covering the

ﬂﬁfgngMefgﬁiof A first is some improvement, but the leakage into

the swept path still dcours. In any case these results are
for ﬁhe ideal case of definite range, perfectly aligned,parallel

swaepa. It is_safer to predict probablilities nearer those of

Tabie‘;,'for randoz~-uniforn sweeps.

6.52 Crossover Barrier,

:”_the target motion is not randomly oriented, the

séérch provlem differs again. Only two specific cases have

been gnélyzﬁd sufficiently to yield results of practical utility.

."caaa of this sort is when the direction and mag-
Ve;target 8 motion is known, dut ita position is not.
-an aerial search is to discover a ship that nust
2t a1 ocean strait, of navigable width D, as shown in
, If the ship is known to have & speed u as 1t peises
through-%he strait, we can analyze the search path most easily
by transforming to a coordinate system moving with the ship, as
shown in Fig.18b. In thene coordinates the most efficient search
path will be series of parallel sweeps that transform back to
coordinates at rest with respect to the ocean, 88 the angular
figuxp 8 shown in Fig l8a. Note that the short, end legs are
in a_ dLrection opposed to that of the harget.
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If this path 18 to close on itself, if the barrier psatrol
is to keep up with the motion of the target, the spacing S bebween
parallel sweeps in co-moving coordinates must be rslated to the
width of the straif, to the speed u of the target and to the
&pged v of the searéh plane. The time T =2D/v that it takes the
plane to go across and back (we assume u/v is small enough so the
length of the diagomal leg in Fig.lB@lis nearly squal to Dj; if
net, correction can be made) must equal the lemgth of time T = 28/u
for the co-moving coordirnates to mov; déwnward by two sweep spacinge.
Thus spacing S and the resulting sighting potential ¥ are given
bﬁ the formulas

8 = D(u/v) B - W/S = (Wv/Du) (32)

This path, translated back to stationary coordinates, as shown in

Fig.18a, is called a crossover barrier patrol.

If it is not known where, along the line D across the sﬁrait,
the target is to pass, nor is it known,within a time T = 2D/v,
when it is to pass, then the whereabouts of the targetv may be
anywhere within an srea 26D in co-moving coordinates. Thus, if
the barrier patrol is in operation when the targeﬁ passes through
the strait, ths probability of detectiom iz the probability P(&)
that hes been given in Eqe.(16) or (18) or shown in Fig.8, for
parallel sweeps. There is & more complete discussion of this
problem in Chapter‘7 of Koopman, 1946, |

If &, as giVemi}n Eg.(32), is less than 1/2, i.e., if the
ratio W/D is less than half the ratio u/v, between target mpeed
and search piahe syéeg, the probability P of detection will not
be satisfactorily lerge. Several search planeé ehould‘then be
ugsed if possible, either flying parsllel courses a distance S/n

apart (if n planes are used) or spaced in sequence slong the
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game course, spaced in time. For example, if two plames are %o

be flown in éguence, the second plane should be started at point

2 in Plg.18s when the first plane is at point 1L, halfway up the
opposite verticel leg; in this manner the sedond plane's sweeps
would come half way between those of the first plane, in co-moving
coordinmntes, If the multiple sweeps are carsfully flc:wn.‘p 80 %hht‘
the n parallel sweeps are equally sﬁlg:gm%%gtmggf@ctive sighting
potential would be un¥v/Du, and this value could be used as I o
deternine the probability P(#) of detection.

Barrier patrols are useful in many other military, police

and life maving operationa,

6052 Retiring Search Sweeps.

o Another gituation, not infrequénély.encountered, arises
when the target is located exactly, @% some instamt, but the
&e&réh is not sble to atart until a time T, later. One has to
ameumé that the target has moved during that ¢time anmd, if ¢he
target's maximum Velocitj u is known and if there is mo indication
of the direction of its motion, &t T, it could be anywhere within
& circle of radius uTO. As the search progresses, this circle

of presence continues to expand; so0 the search path, if possible,

should be an expanding spirel, trying to cover this increasing area.

If the gsearch effort is to be limited to the value E(T)
= Wyl, it must de wi%hin. that part of the circle, of radius
R(T) = u(To-+T), that the allocation rules of Eqgs.(23) say should
be searched., In momt cases, when it is npt known whether the
target's actual speed is its maximum speed u, or zero, or some-
thing im betwesn, the point of meximum probability of presence of
the target would be at the origin, where the target hed originally

= 52 -,

beeﬁ spotted. Therefore the gearch would begin at the center

and spiral outward'with spacing between the arms preécribed by

'the density 6 = W/S determined by Eqs.(23).

The analysis of this operation is still more "intrissic"
than that for a statiomary target. We shall go through it using
the formulas for random sweeps, partly because it is the only
case for whibh the enswers can be analytic end partly because it
is unlikely that careful interpath specing can be maintained in
a spiral search, so i% is éafer to assume the less optlmistic
formulas. We comsider the case at time T, when the allocated
search effort Wvl has been used up and the radius of the circle
of presence of the target is u(To-eT). Looking back on the
search, that started at‘the center at t = O and spiralled out, as
the spiral passed through the radius r <R(T) and effort E(t) = Wyt
has already been uéed Bnp, the 8 priori estimate of the probability
density of presencs of the target there would then have been g(r)9

awd T
which can be eatimated for each value of erut to the value atd

which the search erds.
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1% is more convenient , and leads to easier generalization
if the area of presence is not & circle, %0 change varisbles
from redius te area. The ares of presence A(%) at time t after
th§ start of the search and the area q(t) inside the circle of
rgdiue r (the ares already searched over by time ¢) are given
by the formulas (ote that this 4 is wot the same as theq of Eqs,27 % 31),

ACE) = xua(To4-t)2 s q(t) = Rre '

Time during search can be meassured in terms of search effort

B(t) = Wt 80 that these varisbles can be

expresped in terms of dimensionless quantities

M) = a4 m)®5 = om (6/T)) = B(5)/B 3 a(t) = ox 55

o = A(0) = MPTE ;B = Wy,
Thus o 1s the area of presence of the target at the start of the
search and B is the area that could have been searched with

density ¢ =1 during the time T, (which we can call the delay time).

The interrelation between these quintities must be given in
terms of the rules of search given in (23), only now they must
include the fact that the probability density of presence g(r)
refers tp the time t at which the plane was searching at the |
distance r from the origin.

Before we start the anelysis, however, someé salient points
should bs noted. When the search ends at time T the sesarch
effort Wvl has been expended. But by this time the area of
presence of the target has become xu?(T°-+T)2. Therefore, by
the end of the search the mesn eigh&ing_potential ® = E/A has
bacons EWVT/nuB(@0+%)2}. This quahtity increasee with T for &
while, but 1t reaches a maximum at T « T  and theafter declines.

Tts maximum velue at © « T is ¥ = (W/#quo)(v/u), inversely

v mstnte 4..;, P

....,‘. e St e il Y

- %-
proportional to'@@, & product of a ratio of Jareas amd a ratio of
velocities @fvﬁarg@tﬂand searcher. Thies has two comssquences:
firét, the sooner 6gp can start the search tho more efficient is
the search co%ﬁrage end, second, the firat part of the search,
during a time eqﬁal to the delay time me, is by far the most
offective part of the semrch. Further seacch, beyond T » T, is
chasing a widening circle of presence thet hasz already gone too
far o cateh up with,

Returning t¢ procedure (23), we first have to decide on a
reasonable form for the probability of presence g(r), at the
instant of time t when the ¥earch has reached » and the area of
presence has reached A(t). Since we do not know the actual speed
or course of the target, beyond its maximum speed u, we might
assume an avérage distridbution and let

g(r) = (2/Bf1 - (=?/0)] = (2/m)[1 - (a/a)]
with its maximum at r= 0, tapering off to zero at q=fA. Hiawe
A 15 a function of & and therefore of %, g is a function UL Be
But since g = ax aleo is a function of search effort zf, we can
gay that A, g, and 2 are sll functions of x. Their interrelations
are given by (23).7 We require that the demsity 8, times P'(¢),
the defivatﬁva of the probability demsity of aslghting, a funetion
of the denaity of search ¢ there, must equal a constsnt @ or,

if it cannot, # muat be rero. In the case of random sweeps, thie

o

But ¢, the density of search, is the derivative,of E with respect

leads to the equation
§ = 1n(g/6) = 1n(2/4G) + 1a[1- (a/A)}
if § is pagitive, otherwise ¢ = O

to g, and the whole equation can be written as a differential
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T!;is equgtion may be integrated namerically, for different ‘ : I ! . | } -
values of k and €, out to x»x , where z' goes to ‘zero. ';‘he: ; o 4»4[1:_ !:~1 1 mm: l%
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total search effort E(T) expended; the value of xm, times 1tu2‘1‘2 o, ‘ij g | ’ g 1 0 ' L~ t i e
is equal to the total 7area searched, Q = x(rm) , and the value 3 ’ 3 Elr’ | f Ff 1 ;///;/
of z'(x) times 1/k is equal %o the de@nsity of searéh ¢ at the :l o : ' ! { ‘ , A E | .
radius r = Nax/x. In other words - | | ° : ' g ‘ } : . , ;
z' (x) goes to zero at X =x,, where 2 a2y ;5 R :f ! _ __% ‘*I
Total search effort E; = Pz f‘vaTozm ‘n o , i - : ] ’
- Total aeea searched Q = 1:1‘2 = éxm ’;“?Tgxn, (36) _ . *z -~ ! }—;92 : % ‘ b
, Search density at r-m< e 18 LY \zwi '"__'~
A W/E = (1) (x) = (Wl /miT5)(dz/ax) o i
Probabhlity density of presence of target at time %f‘ %f | j%ﬁ ;r ' 4,
and place of. search 2/a. I T iy -
B S 2) [ (l+z)2] *"” "‘65; O J]
The probgbility of success ;Ln the wholse searc% 18 then ‘ é : i ' % - , |
e - g(luo 5)gdq-aG$(e -1)dx = 207 f(ez E_vyax  (37) i j _ '61‘-'! ‘ Lol
which al?so can be evaluatedo numerically. ° | | | f ) . ; f i : !
A few examplés of the results are shown in Figs.19 and 20. Q ) (p . : - J 1 .
Two valusg of the parameter X = a/f = (WuTO/W”’“l/v) wers used, | | ; e | : - t- - J,
1 end 2. Since a is the area of presence of the target at the Q B ) ‘ | L '
instant the search starts and B is the area that could have been @ : R } p bl ‘
- searched effectively (g =1) in the delay time T,y k=1 represents é f‘ ”~, - .o’* - by N
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Fig.20. gu :;,:;ag;rcgsgggg df’giqzaogv:?u:gngggnag: irea far away from the origin., Case ks 2 represents searches where
» 'l .

Dashed 1ine 1s proportional Tgo_ depsity of presence,

g.(q;’ at time °f search. ° s the target got more of a start, and the searcher had leas c‘hance
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bod et ! . C R : : . ‘
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faster, as the quadratically increasing area of bresence incregges

faster than the search can keep up. More area has to be covered
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~ e . ' ; é& Lo ' ' ] ) ' ’ (the same two wvalue
, ; et e o b- N SR ' - Pigure 20 shows typical curves of search density & foryof k, but
5 Vo ' o o ] for specific values of C and thus A
| ! e ' ' ' L i ° AGf z,+ A8 expected, 4 is greatest at the beginning of the search,
| I ' L ‘ ;' :
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| : ; ° intuition would have advised cutting off as early as t = To or
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close to the origin as is evidenced by Fig. 20,
i ! e Another approach to a related problem, using game- theory,

has been discussed by Danskin (1968),
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6.6 BSearch of Discrete Sites.

There @res opsratiomal situations that can be more easily
modelled im terms of the search of discrete sites (boxes, in more
mathamaticél Jargon). The individual sites mey themselves be
separated areau,.@r have more'c¢npli¢ated structure, All we
#eed %o know.ig the reletionship between the effort expended in
pearch at & site anﬁvthe probability ofvdiscovery of the searched-
for object. Here the"target'"may not be a unique object +that may
ve in one site or smother but not in both; it may be im sevefal
slites 3imultana6nsly. 80 the probabiﬂties ¢f presence Yy nay not
have to add up %o umity. For example; the sedrch may be to locate
the failure in a complex piece of equipment; more than one falillre
uay be premsent. An inherebtins example of this sort of sesarch
problem is the stratexzy ol ssarch for ores Qr:oil. Other exsmples
of eqal coumplication are those connected with police search.

ALl we cam do in this Bection is to report a few simple models,
in the hop® that they may be of more use than no model at all,
put% vmc\\ca.\ use.,

-t P A

or than a model too complex to
From one point of view these discrete site-ssarch problems

are simpler then the area search problems we have been discussing

earlier. We did not treat them first because the area-search

problem is the classical search problem, dealt with first and,

%o date; of more practical utility.

~ 6.61 An Analogue of Ares Search.
The discrete analogue of the classical allocation of
search effort, given in Eqe.(23) to (31) for the area case, is
the followirs one: ' '

~

“are the y's, instead of the Y's and a's of Eq.(24).
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There are N sites, %he pvobability of presencs of the
target in the j'th sibe is Yy where 0‘57351 §ut ZYJ is not
necessarily unity. Ve rank-ordar the sites in a decreasing
order of probability, 80 that Yd Yd+lo The probabllity that a
target is discovered in site J, 1f it is present, is related to
& quantity we shall call the search effort dd in J by a function
P(g), that satisfies the specifications given in (5) and is the
same function for every site. We wish to distribute the search
effbrt E = 2553 over the N sites 20 as to maximize the sum of the
probabilities YjP(dj) See Charnes and Cooper (1958) for details,

This is actually a simpler problem than that of Egs.(23)
to (26) since in the present case the only parameters to evaluate
' The added
6omplication way be achieved by assuming the search effort hase
different powers in different sites, so that the probab;lity of
detection in site J is P(ay6y) instead of P(44). In this case the
problem is completely parallel to that of Section 6.4. Because of

the simplicity of the results and the wide renge of applicability

' of the formulas, we will go into details only for the case of the

exponential formulsa
P(u) = 1 = e ¥

Assuming equal searchability of esch site (i.e., that ajmil

for each site) our problem is to -

Maximize & (E) = i‘fj(l*@ dd).

R
subaect to the requiremont

o minimize
J(E) " % {‘Y

‘éidd = E. The standard procedure is

LT

85 + M:.{i (38)

'with parameter A to be adjusted so that the sum of the g's equals E.

The process of solution is as follows:
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1. Compute the sequence ln(l/*rj), incrasasing with j. Also

compute the partial sums K = 2 ln-(l/'rj) snd the sequence

-~ o Ly = (l/n)Kn-ln(l/Yn), that aldo increases with n.
2. The minimization is accomplished by setting the derivative
of J(E) with respect to £, equal to zero. Thus A = Yje'dj.
The requirement that Z:ﬁd = E leads to the formula
1ok = ~(l/n)(Kn+E)~and thus to the eliminetion of A from
the formulas,for ﬁd and @J°
5. When Ly =0< E< L, site 1 only is searched (the site with
the largest value of probability of presemce ¥). Then
ﬁj = E for j=1 and O for j>1 and & = Yl(l—a"E)
¥hen Lng Es;Ln+1 only the most probable n sites are
searched, and
”d = (1/n)(E, +E) - 1n(1/v3) if j<€n, =0 if j>n (39)
n
& 'Z@J ; G)j =Yy - exp[-(l/n)(Kn+E)] if jan
P
When LN<ZE all N sites are searched and
_ 6y = W/M(EpE) - 1aQ1/7p) 3@y = vy = e [-(L/M) Ggem)]

Ec?% ;»@-%ﬁ
(“‘1“" e ~—En example 6f this solution is shown in Fig.2l for four sites.
6}:‘ four or fewer sites the calculations can be made by nemogram
if very approximate solutions are good enough. The nomogram is
shown in Fig.22, To use it a line is drawn from Yy (column 1)
to v, (column 2) on the right-hand side, to locate point u on the
B vertical; lines from u to Y3 to locate v on the ¢ vertical and

from v to Y, %o locate w on the D column. To see how many sites

are to be searched we locate, on the central column, the inter-

sections of lines drewn from Y, on the right to E on the left
column marked 1, from u to E on the left side column marked B,
. from v to E on column C snd from w to E on column 5. From the

w to E of D intersection on the central scale we draw a line to

orsmm—"

_.i,f* after expending effort E, the target is not yet found
and it is decided to spend an extra AE = E'-E, rscompute (393

using E' instead of E and add search efforte g'-g. %o each
‘site J. J 73
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Y, on the left-most column marked Yn° Ir this line intersects the
ldwer, éalibratedAhalf of the scalé marked ¢ then ali sites are to r
be searched. If it cuta above the =0 on this scale then site &4
is not to be séarched. Then take the v.to B of C imtersestion
with the centrel scale and see whethbr & line from this inter-
section to Y5 on the Ya column comes below the O mark on the ¢
column, and so on until an intersection below the O is obtained.
The example illustrated is the case of E=1 of Fig, 21, for

y, = 0.4, Y5=0.3, ¥;=0.2 and v, = 0.1, At E=1 only the first
two sites have intersections below the zero of the 4 scale, 80 we
use the intersection of the u to B of B line on the central scale,
corresponding to‘yj-e§3 = 0.22. The line from this point %o
¥, = 0.4 on the leftmost pcale intersects the ¢ scale at #1=-@.6
‘and the line from ﬁhis point to v, =0.3 gives 52 = O.4; these are
the two search efforts in the sites searched. The probabilities
of success are obtaiﬁed from the value of vd-ﬁ% = 6.22;'
¢ =0.4-0.22 = 0,18, ,20.3-0.2220.08 end thus &= 0.26.
Once learned, the proéédure is atraightforward and fairlj jrapi.d9
thdugh the results heve barely 2-gignificant-figure accuraéy,

| Solutions for other kinds of discrete search problems have
been developed by Gluss (1959) for tha a%location of effort in
testing for fallures in a complex electronic system. In this
case, instead of a‘probability of detection depanding'on &
continuous.effort function, times are assumed for checking out
sach site and probabilities are given that the specified times
will £irnd the error. A4 dynamic progrsmming technigue is devel-
oped to detgrmine the order in which the sites are to be

searched so that expected total time is mindimized.
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6.62 Detection Errora.

| We have noted, at Beveral points during our discussion
of continuous search coverage, the complexities that arize
when false targets are present. Indeed, in most casee when
laying out search strategy in practice, we are forced, at
presgent, tc assume that the presence of false tergets will
not not alter the structure of the theoretical modela, aside
from reducing the magnitude of some of the parameters. As we have said,
thié-is one of the reasons that these parameters (sweep width,
obgeérver's mean velocity, etc.) should be measured under oper-
étional conditions, rather than taking values from laboratory
neasurements. .

In the case of the search of discrete sites the inclusion

of false targets (of detection errors) again adds complexity
to the analysis. In many of these cases the complexities are
88 great a hindrance to the practical use of the theoretical
résults a8 they eare with the continuous search results. In &
-few cases, however, cne can simplify the assumptions sufficiently
to produce usable solutions. These solutions may at least
indicate the atructure of yet another search operation, that
-of searching for oil or for ore. Here the employment of a
certain samount of search effort at a site may produce a
positivevor 8 négative indication. If the indication is
poai‘ﬁiveQ it igigomaible that the desired oil or ore is

- B2 -

nevertheless sbsent from the éiﬁe. Likewise there is a non-
Zero chance‘that a negative'indiaation may bs srroaeous,
A deteiled study of the.observér\s process of deciding %ﬁether
he hgs found the target, and how this @ffects the cost of
both kinds of error, has been discussed by Pollock (1964 )
and others (see Pollock, 1971, for a'bibliography). We need
o@ly take the results here, to show how they modify the allo-
cation of search effort. The example we use to illustrate our
formulas is a simplified model of prospecting for oil or ore.

In looking for new sources of minerals one first looks
for possible sites for more detailed study, by searching for
particular geological formations or other characteristics that
have been present in previous successful strikes -~ including
simple pfoximity to known sources. This preliminary exploration,
partly in the field aﬁd partly from meps, yields estimates of the
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likelihood of striking'pay dirt" at a number of possible sites.
FProm this 1list of a priori probabilities of presence of ore, one
mue£7lay out a strategy for the more expensive part of the pros-
pecting operation., Of course one could blindly sink all further
effort into the single highest rated site, but it might be better
in the long run to utilize these a priori probabilities as fully
as possible in deciding whether and how to go ahsgd.Fhése estimates
of the probaebility of presence of the mineral (which we can again
call Yd) at each possible site J will be changed &8s the operation
progresses, but at the beginning, when the firast plans are made,
they are the only measures available, |

At each likely sits a survey must be made, using sonic or
gravitational‘or nagnetic or electrical eéquipment, to sharpen our
estimate of the probability of presence of the mineral. The pre-
liminary plan must decide how extensive such a 2urvey shkeid be.
Agaix, the preliminary estimates of survey effort may be modified
later, but the initial allocation of effort mus% be made on the
basis of the a priorl probabilities y, By the end of the survey a
decision must be mede, whether to abandon further effort at that
site or to commence excavation (or drilling), hopefully to¢ obtain
sctual samples of the desired mineral.

The excavation or drilling is usuaily much mnore ¢xpensive
than the instrumental survey, wnd one hopes that the survey has
reduced the chance of an erroneous decision to excavate, with no
ore to show for the digging. (An alternative analysis of this
decision process is given by MacQueen and Miller, 13960).

It may be that the result of the survey measurements is to
increase the chahce of deciding té excavate. With no survey we

‘mey be disinclined to dig or drill; with a very extensive survey
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| |
we would have reached a fairly precise estimate of the worth of

excavation., At the time of the preliminary plans our best gheew
guess as to the likelihood of a decision to excavate at site j
would be the a_priori probability Yj’ Thus one possible forecast
of the results of the instrumental survey is that, as the survey
effort i1s incressed from zero to some large value, the chance of'
our deciding to investigate would start from zero and approach
‘the value Yj aéymptotically. In other words this chance would
depend on the sffort ¢J ‘expended on the survey something .like the
function'f'j(l-o %),with 63 being proportional to the expenditure
involved in mpaking the survey at site J.

Unless the instruments used in the survey are perfect, a
certain fraction of times the decision is made to excavate, it
will have been a wrong deciglon and a lot more money would have
been needlessly spent}~ The crucial question’is; how does the
frastion of "dry holes" to "strikes" depend on the amount of
effort spent on the instrumental survey? Decision theory does
not give us an unequivocal answer to ohia question. Indeed the
answer dg¢pends on the nature of the equipment used in the survey
and on how it is used. All we can do here is to make a few not¥
unreasonable guesses as to possibilities and work out models to
correspond. In the end the choice of medel and the values of its
parameters will have to be decided on the basis of operational

experiments, Just as was done for the model of search for a

aubnarine by & plane. In view of thHe costs of mineral prospecting

and the value of a "atr@;ke“. such a series of measurements would
seem to be a worth while investment.

At one end of the pequence of posaibilities is to assume that

the amount of effort expended on the instrumental survey changes

P

Y 65m

the probability of reaching a decision to'excévate but does not
alter the ratio between success and failure, if excavation is

carried out. Put in terms of expected monetary costs and returns,
this limlting model is:

A priori probability of presence of ore at site j, reached
from the preliminary exploration, is Yj’ the only quanti-
tative estimete available at the time of the initial planning.

Estimated returns from site j, if ore is present and
discovered by excavation, is Rj

Expected cost of excavation to "prove out" éite’d is DJ
Expected cost of instrumental survey ‘at J to help decide

whether to excavate is C;j

A grior probability that a decision will be made to excavate
at j is Yj(l-e BCYy,

A priori probability that this decision will be correct, if
mede, is assumed in this model to be equal to Yy the a priori
probability of presence of the ore. Until the instrumental
survey is made, we have no other information beside v, and

the estimated costs; we must use them in laying out our
preliminary strategy.

Thus the expected return from site Jy if survey effort costing Cj

were to be expended there, is
a4y = Yy(v4R- Da)(l - ¢ FCy)
In other words the expected net return from site J, if
excavation is decided, is S'j = YJRJ"D33 there is a chance Yj

that the excavation succeeds, returning RJ, but a. certainty that

the excavation will cost an expected D'j Thue the varistional

. 'problem repreaenting this cese is:

Maximize Q = zi[yjsj(l-e‘acd) - cdl
j (40)
Subject to the requirement that Z:CJ = C
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"his is quite similar to the Egs. (58)'for simple search of N
sites, with BC!j substituted for ¢J and SJYJ for vy The solution

also is8 quite similar;
Rank the sites in decreasing order of maguivude of YJ 3
then calculate the sequences K ln(BYJ J) and

s, Jl
L, =K, - nln(ﬁ'rnsn).

When Ly = 0<C< L, only site 1 (with the largest Y8) is to be
considered. The survey at site 1 is planned to cost C and
the expected return is

Q(C) = ¥18,(1-e7F%)
When L < C<LIL el (assume that I‘N+l" @) then only the n most
promiaing gites are surveyed, the survey cost allocation for

site J being
3(ancprysp) - 3, 1+ (3<n)

and the expected return is (41)
0 = ZYJ - B exn|L(x, - Bc)] ‘

" We can now adjust the survey cost C to produce the greatest
return (C), by setting the differential of § with respect to C
equal to zerc. We find the value of n for which

Qpay(B) = ZJYJ j - (K +n) 1is greateat
The corresponding optimal survey cost allocation is then (42)

ChaxD) - K /p and Cy = (l/B)ln(BYJSJ) (1€ 3<n)

The optimal value of C is for n=N (all sites surveyed) unless
BYJSJ is less than unity for some. site; in which case n is the
largest value of j for which ﬁYdSJ> 1.

To assume, as this model does, that the effect of the
instrumental survey will have no effect on the ratio between
success or failurelof'the excavation, but only on the chance of
of deciding ﬁo'excavﬁté, is perhaps the most peésimietic assump-
tion to make. We see that it results in the rule that the sites
with the largest values of YJSJ should be surveyed first,

- 67 =

At an opposite extreme is the assumption that the probability
of makimg a decision to excavaﬁe at site J is independent of the
amount of survey effort put in at site J (i.e., it has the valu=
Yj for all values of C ) but the probability that the excavation
is successful 1ncreaees, from Yj for CJ-BO asymptotically to
unity as Cj.—+c0. In other words the expected probability of
deciding to excgvate slite J is YJ and the expected cost of such
excavation is YJDJ’ but the expected return from a poesaibdle
successful exéavation is Yj[l"(l"73)0~a03]Rd’ increasing as Cj
is increased. ILach of the N sites chosen may be excavated; the
detailed instrumental survey is uséd to improve the chance that
the excavation is successful. This effect would be‘greater when
Yj is near l/? than wpen Yj is near unity (when a detailed survéy
may not be needed).

To‘be realistic, this model must represent a‘seﬁaration‘of
theldecision process into three steps instead of two (see Engel,

1957, for another such model):
J 1. On the basis of map ard field exploration a list of sites

.(15 chosen that have a good chance of containing the searched-for

)

Qmineral.
2. Then an initial survey, using simple equipment, costing

Co’ is run on all chosen sites. On the basis of thia survey
probabilities Yj are assigned. It may be that some y's

are near enough unity to Jjustify going shead With the
excavation. Also those sites turning out to have v's

less than some lower limit (presumably 1/2 or even greater)
will be discarded from the list.

3, On the basis of the solution of the variational problem,
given below, some or all of the sites remaining may have
further, more intensive surveys applied before the decision
to excavate is maée.‘
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The variational problem is thus:

Maximize Q = :Z:vji;-(l-yj)a“QQJ]Rj - 04 = ¥4D,
subject to the requirement that zicd s C (43)

’

and the procedure for solution is;

Rank the sites in descending order of y(l-7y)R, with
Yl(l—vl)Rl‘being.the largest (if the R's are equal apd if
all the ¥'s are greater than 1/2, the sites will be in
increasing order of the y's, the smallest ¥ being first).

Calculate the ascending sequences ZﬁlnI?Yj(l“YJ)RJ]
and L, = K, ~nln }:aYn(l-Yn)Rn’S., an

Vhen I‘l = 0< C< L2, make the intensive survey only .in site
1, that has the greatest uncertainty Yl(l-vl)Rl in expected
return; de-ide on excavating the other sites on the basis
of the Y's obtained from the initial survey (using some
decision procedure that results in a probability YJ of
deciding to excavate site jJ). -

‘The expected payoff is then

Q(C) = Q(O)‘+ 71(1—71>Rl(1~e‘“°)
When L < C< L, 4 ' (assume that LN-atn) only the firﬂt n sites
are given a more detailed survey, the j'th costing Cj the
rest are decided on the basis of the initial survey. The
recommended costs CJ of the further survey, and the expected
payoff of the plan are then

1 1 1 .
C;j - a{ln[ayj(leJ)le - ‘nKn + 2C lfor J€n
1 o :

Q(C) = Q(O) + ZYJ(l—YJ)RJ - EQXP{EKn--ﬁG)} - C (44)

AA
Q(0) = ;;Yj(vdﬁj-na) - C,
As before, we can now determine the cost of the detailed survey

allocation that will produce the greatest expected return. The
result is, for the largest value of n for which aYn(l~Yn)Rn is

greater than unity,

—69" ‘1

Cpax(R) = (K, /a) and Cy = 1n@w3<1-y3>331

max

Qax(®) = ijwj 4=Dy) - (K +n) -
3:\
An example of this solution is shown in PFig.23.

(45)

Thus the final results of these two alternative models are
similar in some respects and contrasting in others. They both
point-té the imﬁortance of determining the valﬁe of the parameter
g or a, measuring the effect of the cost® Cj of the instrumental
survey on the improvement of the probability that excavation will
be successful.  Once even a crude value of this parameter can be
@btained, one or the other of the models (or anbther, perhaps,
intermediate between the two) can be used to estimate, at the -
start, thg probable worth 0f the campaign and an initial estimate
of the allocation of efforé thet may be involved. These estimates

will be altered as the search goes on, but at the beginning, the

appropriate model, with the best estimates of the velues of the

v's, R's, D'2 and of a or B, is the only way it will be possible

'~ to estimate, quantitatively, the projected campaign.

o For example, both results show that & site J for which the
a priori estimate of BYJSJ or qutl*Yd)Rd is less than unity is
probably not worth including in the campaign. It is better %o
reduce the number of sites to those that cannall be covered by
some amount of lnstrumental survey. The particular mocdel that

has been shown to be appropriate will then indicate which sites

. dessrve more co@erage than others.

As a final comment, the models .discussed.here may be useful

in other than prospecting operations. For example, the procesa
of testing a few samples from each manufactured production lot
would be the preliminary exploration, determining y; the more
detailed "instrumental survey" might be the sampling of a larger
fraction of the output. "Excevation" would be the testing and
repairing or discarding each unit. Decision "not %o excavate"
would correspond to deciding to screp the bateh without further
testing. Analogues in police investigation also come to mind.
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6.7 Search for an Active Evadsr.

Heretbfofe'we have concentrated on the search for an object
that stays put, or moves without relation to the details of the
search path. A still more difficult tesk is the devising of
search strategies for a target that is aware of ﬁhe search and
tries. to evade. In fact there are very few such solutions that
are réalistic'enough to ba of practical use. All of them, to
date, utilize the Theory of Games (Bee Chaptar5' ), & theory not
tdo.productive of useful results as yet. Still, some of the
results may qualitatively indicate the desired strategy.

As seems to have been the usuﬁl case in search theory, &
continuous, rather thah a discrete exampie was first worked out.
The example (sée Morse and Kimball, 1946, page 105) is an over-
simplified model of an air patrol to prevent a submarine from

getting through a long strait of varying width, with the sub-

’marine able to submerge part but not all the time, and the

cross-over barrier pgtrol having varying degrees of coverage,

‘An alﬁernetive exampizzgg'a patrol to prevent infiltration across
a length L of the border of a country. | |

As with meny game theory solutions, %he strategies of both

sides, the infiltrators (I) and the repulsive patrol (R), must
vary their actions along the border; otherwise the opposition
will learn these actions and devise means of circumventing them.
Only by continuously varying actious, according to a prescribed
probability'distribution, can the opponent be kept guessing.
Suppose side I sends each infiltrator at random across the border

with a probability density ¥(x) that he cross at point x ( so that
L .

_ jpg(x)dx,.g, And suppose that side R places its patrol at random
[+




- 7l‘m

along x With a probability density #(x) that the patrol covers x
(here also 5¢Cx)dx:-l ). And, finally, suppose that if a patrol

happens to be covering x and an infiltratcr happens to try crossing

at x then, the probability tnat he will be prevented from crossing

is P(x). This probability will vary with x, depending on the
terrain; in heavily wooded or mountaincus country P would be small,
for example. The expected fraction of infiltrators that are

prevented from croseing the border will, in the lohg run, be
L
{ 82> ¥(x) P(x) ax e
]

The problem for side I is to adjust the likelihood of drosaing ¥

80 that J is as small as possible; that for side R is to adjust

the frequency_of patTols ¢ so that J is as large as possible.
To be safe, side I should srrenge ¥ so that no action by R can
make J larger, and side R should arrange 4 so that no action by
I can make J any smaller. '

Taking side R first, note that, in integral J, if the product
¢P is smaller, for some range of x, than it is elsewhere,then if
side I finds this out,more infiltrators will be sent through the

of x
"weak" range, and J will be reduced in value. Therefore the safe

strategy for R is to make ¢ inversely proportional to P(x) (heavy

patrolling where P is small, light patrolling where P is large).
To be more precise, side R Bhould‘mﬁye
$(x) = [1/N(LIB(x)] § ML) = ([1/P(x)) ax

Q
in which case the fraction of infiltrators
prevented from crosaing is

J(1) = {1/ f&f(x) dx = [1/1«(1.)1
ne matter what I does about the shape of ¥(x).

47)
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However unless side I does the seame thing with ¥, side R
could modify 4 so as to increase J. For example ¥(x) might be

Ch/_P(x)l 6ver a smaller range L, of L, for which P(x)< H and be

zero when P(x)> H, In this case

W(X) - {-[l/N(Lh)P(Xﬂ QV8Y Lh (48)

O over the rest of L
where N(L_) = ((1/P>dx. |
g of Bq.(47), the value of J would still be [1/R(L)], but if R

If side R stuck ¢o the patrol density

learned of the change %o ‘the ¥ of Eq.(48), he can change & to
increase J. Fbr'example he can make g equal to the ¥ of Eq.(48),
omitting any patrolling along L-Lh,.where there is no infiltretion.
In that case J(Lh) would equal [l/N(Lh)], which is larger than
{I/N(ij because L, is smaller then L. Of course, if R continued
to use this patrol density and side I learned of it, he could send

 infiltrators through the unpatrolled iength L - Lh without any loss.

Therefore the safe strategy for both sides is to have both
¥ and ¢ equal the #(x) of Eq.(47).

¥inally, there should be mentioned the discrete cases
involving a search for a conscious evader.  The problem of a
number of discrete sites, where the svader can hide and the
searcher may look, seems to be & very difficult ome to solve.
A start at a solution has been made by Norris (1962) for the very
simplified case where the search is conducted in a series of
d .orete "looks" into the different sites, with specified
probabilities q3 of discovering the evadgr if he is in site J
when that site is loocked into. As with other game theory solutions,

this requires a mixed strategy solution, with the evader moving

- from site to site, betﬁeen looke of the searcher, with specified
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chavge,
probabilities d hemakethe , plus specified probabilities for being

initially in the different sites. The searcher must also use a
mixtﬁré of strategies, each of which consists of a series of |
looks at a specified sequence of aiﬁeé.

The game is determined by alloting quanta of gains to the
evader every time the searcher looks but does not find him and
costs every time he changes sites. Norris solved the case for
two sites in some completeness. He found that if the cost of
changing sites is larger than some 1limit, the best strategy for
the evader is to choose a site initially, with a preobability P of
going to site 1 and 1-P of go;ng to site 2, and then staying put.
These probabilities aré defermined by the reiatifeAhégnitudes of
the probabilities a1 and aQy of being discovered (which are presumed
known ¢to both sides). If the searchgr assumes thet the evader
kas hidden according bo theée safest probabilities, he then
can look in one 6f the sitves, thus changing the a griori probab-
ility P into an a posteriori probability (if his look does not
find the evader). (See Pollock, 1960, for further discussion).
The desired sequences of looks are those which tend to keep these
a posteriori probsbilities oscillating withihAlimitB. The
gearcher must also use a mixture of these‘“gdo&" eeéuanceao

. The same considerations also enter int6 the game when the
evader can move from one site to anothef betﬁeen looks. When
mores than two sites are involved the problem is cbnaidef&bly
mnore complicaéed. Other aspects are treated by Neuts (1963%).

Indeed, this part of the theory is not yet in shape to be

as W saidin the beginning,
useful in_any real world situation. In factAsearch ?heory, in

regard to practical applications, is still in an embrionic state.

- U -

6.8 Applications.

As indicated several times in this Chapter, although much
of Ehe vasic structure of search strategy haeg been elucidated |
in the literature, the specific solutions appropriate to a
given application are, for the most part, yst to be worked out.
The search process enters into a surprisingly large number of
our individual, as well as group, actions. We look for a‘book
in the library or an item in.a catalogue. Searches are conducted
for a lost child, a fugitive, a buried city or pocket of oil,
an enemy submarine or infiltrating division, a faulty compénent
in an ailing piece of equipment or an error in a manufacturing
process. Eaéh‘of these searches hés its own physical, procedural
and econémic boundary conditions; each requires considerable
study and experimentation before a workable gearch strategy can
be devised for it. In only a few cases have they been studied,I
measured and analyzed in detail,

To date, most of the practice of search theory has been
in the military field (see, for exanple, Koopmany 1846, and the
bibliographies of Enslow, 1966, and Dobbie, 1968). Much of the
detail of these applications is, of course, buried in secrecy.
The nature of the search for a person lost in & wildernegs, and
a'few applications of the theory have been reported by Kelley
(197%3). Some applications in the search for flaws in equipment
have been réported (see Gluss, 1959, for example) and a few
reports in the field of prospecting (see Engzl, for example).

A small amount of work has been reported (Larson, 1972 ) on the
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police search problem, particularly im regard to the allocaticn
of patrol effort. Practical applications in many other fields
are s8till lacking.

As for the development of theory, some interesting progress
'has recently been mede in the analyeis of the effects of false
targets on search strategy (see Stone, 1972 and Dobbie, 1973)
and a little progreée has been,made into the immensely difficult
problem of the esearch for a conscious evader. 1In general,
however, one has the impression that the theory needs tc be

proved out by application in many more fields before w2 [orthae

mathematical superstructure is added. Twe sbb'Jz:* 15 already
{,‘a\\\mdu) Q‘MW}\\" ‘ ’
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