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The TWGDAM Consensus Approach for Applying the 
uCeiling Principle" to Derive Conservative Estimates 
of DNA Profile Frequencies 

An alternative method, termed the "ceiling principle," 
has been devised by the National Research Council (NRC) of 
the National Academy of Sciences (NRC 1992) for calculating 
DNA profile frequency estimates. This method provides an 
even more conservative estimate of the likelihood of occur
rence of a DNA profile than the fixed bin or floating bin 
methods currently employed by the forensic community. The 
need for the ceiling principle approach was based on a "for the 
sake of discussion" (NRC Report 1992, p. 80) premise that 
population substructure might affect the ability to obtain valid 
estimates of the likelihood of occurrence of a DNA profile 
when using general population databases. 

The "interim" ceiling principle method for deriving very 
conservative DNA profile frequency estimates is the current 
approach described in the NRC Report (1992). In the interim 
ceiling principle, the 95% upper confidence limits of allele 
frequencies in at least three major US population groups are 
tabulated. In other countries, the three databases could differ 
from that required in the United States. The ceiling frequency 
for each band in a DNA profile is defined as the maximum of 
the 95% upper confidence limits of the fixed or floa ting bin 
frequencies in each general database, or a minimum of 0.100. 
The frequency of a single locus and/or multiple locus profile 
is obtained by the product of these interim ceiling frequencies. 
At such time when data from 15 to 20 "genetically homoge
neous" population subgroups become available, the mini
mum frequency will become 0.050. 

The Technical Working Group on DNA Analysis Meth
ods (TWGDAM) cannot recommend the application of the 
ceiling principle. The basis for the need for a ceiling principle 
approach is flawed (Budowle and Monson 1993; Budowle et 
al. 1994a, 1994b; Devlin and Risch 1992b; Devlin et al. 1993; 
Latter 1980; Mitton 1978, 1977; Morton 1992; Morton et al. 
1993; Nei and Roychoudhury 1982; Smouse et al. 1982; Weir 
1993, 1992b). The need for the ceiling principle is based upon 
the faulty premise that there is more genetic variation among 
subgroups within a major population group than between 
major population groups (Lander 1991; Lewontin and Hartl 
1991; NRC Report 1992); the extant data demonstrate the 
opposite and that the application of the ceiling principle is 
unnecessary. The current methods employed by forensic 
scientists have been demonstrated to be robust scientifically 
(Budowle et al. 1994a, 1994b; Chakraborty 1991; Chakraborty 
and Jin 1992; Chakraborty and Kidd 1991; Chakraborty et aI. 
1993a; Chakraborty et al. 1992a, 1992b; Devlin and Risch 
1992a, 1992b; Devlin et al. 1992; Evett and Gill 1991; Risch and 
Devlin 1992; Weir 1992a). 

While the ceiling principle approach has been criticized 
severely (Budowle and Monson 1993,1992; Chakraborty et aI. 
1992b; Devlin et al. 1994,1993; Morton 1992; Weir 1993), it is 

generally accepted that the interim ceiling principle approach 
for estimating DNA profile frequency estimates produces 
conservative results (Budowle and Monson 1993, 1992; Hartl 
and Lewontin 1993; Krane et aI. 1992; Lander 1993; NRC 
Report 1992). This is supported by the observation tha t ceiling 
principle estimates of DNA profile frequencies generally are 
more common estimates than those derived by the already 
conservative fixed bin approach (Budowle and Monson 1993; 
Budowleet al. 1991; Chakrabortyet al. 1993b; Devlinet al. 1992; 
Monson and Budowle 1993). For those few situations where 
the ceiling principle estimate is less common than a fixed bin 
estimate, the differences in the frequencies are so small as to 
have no consequence on the inference of the rarity of the DNA 
profile (Budowle and Monson 1993). 

However, for those courts that still prefer DNA profile 
frequency estimates to be derived using the very conservative 
interim ceiling principle approach, TWGDAM has developed 
a consensus approach for the ceiling principle. The attempt is 
to interpret the intent of the NRC Report (1992) for the use of 
the interim ceiling principle and to eliminate confusion that 
some courts may encounter when considering alternate inter
pretations of the ceiling principle. There are two basic ap
proaches to establishing ceiling principle frequencies. These 
are based on using either fixed or floating bins to assign allele 
frequencies. Since both the fixed bin and floating bin ceiling 
principle approaches, described in the following sections, 
yield similar DNA profile frequency estimates, either can be 
employed. It is unnecessary to provide estimates for both 
approaches. The choice is up to the laboratory. 

Fixed Bin Ceiling Approach 

1. Fixed bin frequencies will be generated for the appropri
ate data set as described by Budowle et al. (1991). The 
rebinned format will be used. The data sets to be used are 
at least three of the four major population groups. These 
are Caucasians, African Americans, Hispanics, and Ori
entals (this requirement applies to US laboratories). 

2. Global tests for equilibrium will be performed on each 
population data set (Chakraborty et al. 1993a; Devlin and 
Risch 1992a; Weir 1992a). If all the loci meet Hardy
Weinberg and pair-wise linkage equilibrium expecta
tions (i.e., two-locus independence tests), proceed with 
calculating the ceiling principle estimate (step 5). 

3. If a locus is not in equilibrium, based on a global test, in 
one of the data sets, a local test (Weir 1992a) for equilib
rium will be performed only on the alleles in the particu
lar population sample (this step is required only if the 
criteria for step 2 are not met). If the loci meet Hardy-
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Weinberg and linkage equilibrium expectations at the 
local test level. proceed with calculating the ceiling prin
ciple estimate (step 5). 

4. When the criterion in step 3 is not met, the counting 
method will be used for that locus. The observed number 
of genotypes with the particular combination of alleles 
will be used. For the situation where there are no ob
served genotypes, the 95% upper confidence limit on no 
observations for those databases with no observed geno
types will be employed. For a database of size n, the 
formula (Weir 1992a) for calculating the 95% upper con
fidence limit for no observed genotypes is the follOWing: 
1-O.051/n• The highest genotype frequency or a minimum 
of 0.02 (which is the minimum interim ceiling single locus 
genotypE:! frequency) will be used. 

4a. The ceiling principle approach described by the NRC 
Report (1992) did not describe how to proceed when the 
alleles in one population are in disequilibrium based on 
a local test, yet the second and third populations meet 
equilibrium expectations, and the alleles used in the 
ceiling principle estimate derive from the second and 
third populations. It is obvious that there are no tests for 
determining independence across populations, and us
ing the allele frequencies with the product rule should 
present no problem. But to avoid confusion, it is recom
mended to use the genotype counting method for the two 
alleles in all databases and to use the most conservative 
estimate or a minimum frequency of 0.02. 

4b. The same approach as in 4a would apply when two loci 
are found to be in disequilibrium by the local test. The 
counting method will be used for the two loci. The 
observed number of genotypes wiih the particular com
bination of alleles at the two loci will be used to determine 
a genotype frequency. For the situation where there are 
no observed genotypes, the 95% upper confidence limit 
on no observations for each of the databases will be 
estimated. The highest frequency or a minimum of 0.0004 
(which is the minimum interim ceiling two-locus geno
type frequency) will be used. 

5. The putative bands fo1.' estimating a DNA profile fre
quency generally derive from the evidentiary sample. It 
also is acceptable to use either the band(s) from the 
evidentiary sample or the known sample, as long as the 
more common bin frequency is used. The appropriate bin 
frequency for the putative band(s) will be determined by 
establishing a measurement error window (e.g., for the 
FBI that would be ±2.5%). When the measurement error 
correction window spans a fixed bin boundary, the larger 
bin frequency will be used (Chakraborty et al. 1993b; 
Monson and Budowle 1993). 

6. The 95% upper confidence limit will be calculated for • 
each of the·fixed bin frequencies in each population data 
set. The 95% upper confidence limit will be derived using 
the follOWing formula, where p is the bin frequrcy and 
nis the number of alleles in the data set: p+1.645 p(1-p)n. 
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7. The largest 95% upper confidence limit value across the 
data sets at each binora minimum of 0.100 will be selected 
for a ceiling allele frequency estimate. 

8. The product rule will be applied. The single-locus esti
mates for a two-band pattern will be derived using 2P]P2' 
where PI and P2 are the respective allele frequencies; for 
single band patterns, 2p will be used. The multi-locus 
DNA profile frequency estimate will be calculated as the 
product of the individual locus frequencies. 

It should be noted that the fixed bin ceiling approach 
recommended by TWGDAM differs from the NRC Report 
(1992) recommendations in two aspects. First, when estimat
ing an allele frequency for a target profile, the TWGDAMfixed 
bin ceiling approach selects the bin with the higher frequency 
when the measurement error window spans a bin boundary, 
instead of summing adjacent bins. Chakraborty et al. (1993b) 
and Monson and Budowle (1993) have demonstrated that 
selecting the higher frequency of the adjacent bins is suffi
ciently conservative, and there is no demonstrated need for 
summing the bin frequencies. Moreover, the floa ting bin 
approach, described in the following section, yields very 
similar ceiling principle estimates to the fixed bin ceiling 
approach. Second, no interim ceiling frequency estimates will 
be determined using a Native American database, because 
each database represents a subgroup and not a major race or 
population category. The NRC Report (1992) did not describe 
a method for genera ting "general Na tive American" da ta bases 
when applying the interim ceiling principle. 

Floating Bin Ceiling Approach 

The floating bin ceiling approach recommended by 
TWGDAM essentially is carried out in the same manner as the 
fixed bin ceiling approach. There are only two points to 
consider for floa ting bins: 

1. The size of the floating window should be twice the 
laboratory's quantitative match criterion. For example, 
for a match criterion of ±2.5%, the floating window for 
ceiling principle allele frequencies will be±5.0%, which is 
a total width of 10%. 

2. The tests for independence cannot be done globally. They 
must be done locally for each case. 

It is the opinion of TWGDAM members that previous 
interpretations for applying the ceiling principle (such as, for 
example, using ±2.5% floating window instead of a ±5.0% 
floating window for establishing ceiling principle allele fre
quencies) also yield conservative DNA profile frequencies. 
The attempt here is to provide a consensus approach, which 
does not :mggest that previous interpretations of the ceiling 
principle yielded nonconservative estimates. 
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