Proceedings The 1995 ONDCP International Workshop: Drug Abuse Treatment Technology > August 15–16, 1995 Baltimore, Maryland > > Sponsored by Executive Office of the President Office of National Drug Control Policy Counterdrug Technology Assessment Center | | ļ | |--|---| ľ | | | | | | _ | # Proceedings The 1995 ONDCP International Workshop: Drug Abuse Treatment Technology > August 15–16, 1995 Baltimore, Maryland > > Sponsored by Executive Office of the President Office of National Drug Control Policy Counterdrug Technology Assessment Center . #### The 1995 ONDCP International Workshop: Drug Abuse Treatment Technology | Aug | st 15–16, 1995 Baltimore, Maryland | |-------|---| | | | | Intro | uctionii | | Ove | iew | | 1 | Opening Presentation / | | | New Approaches to Understanding Drug Abuse | | 2 | Workshop I: Innovative Treatment Approaches | | | Innovative Treatment Approaches | | | Cocaine Intervention Program | | | Anti-Cocaine Catalytic Antibodies | | | Effect of Treatment on Drug-Related Behavioral Problems 2-53 | | | Clinical Approach to Medications Development for Addiction | | | The Development of Medications for the Treatment of Drug Addiction 2-89 | | 3 | Workshop II: Drug Testing/Monitoring Technology | | | The Orleans Parish District Attorney's Diversionary Program | | | The Alternative Matrix Program for Drug Abuse Detection and Deterrence . 16 3300 3-13 | | | Telemetered Drug Detection System: A Demand Reduction Tool 1 6 3.30 / 3-37 | | | Alcohol & Drug Use in the Workplace | | | Evaluation Research in Demand Reduction Planning | | 4 | Appendices | | | A List of Attendees | | | B Program | #### Introduction The Office of National Drug Control Policy (ONDCP) is pleased to have hosted this First International Workshop on Drug Abuse Treatment Technology. The workshop was organized by the Counterdrug Technology Assessment Center (CTAC) to promote technical information exchange on current issues and developing opportunities in advancing technologies for drug abuse treatment and prevention. Attendees to this workshop were drawn from the demand reduction, drug abuse treatment, and associated law enforcement communities. Demand reduction of illicit drugs incorporates the disciplines of biochemistry, psychology, physiology, and social sciences to improve drug abuse detection and therapeutic treatment for drug users within the law enforcement and criminal justice processes. Workshop presentations explored the effective application of innovative technology to all aspects of drug abuse treatment and prevention. Promising areas of associated research and applied drug abuse treatment technology were highlighted in two separate workshop panel presentations. The Innovative Treatment Approaches panel focused on current and emerging developments in drug immunization and treatment research and applications within the criminal justice processes. Several new technical approaches were presented. Among these, an interim report by a Columbia University research team described how artificial enzymes could be employed to provide catalytic antibodies that destroy cocaine molecules in the bloodstream before they reach the brain. Other panelists discussed the medical, legal, and ethical issues raised by the application of such technology within the law enforcement and criminal justice systems. The Drug Testing/Monitoring Technology panel considered current and emerging developments for the noninvasive detection of illicit drug use through the analysis of hair, sweat, urine, and saliva. The presentations described the employment of advanced analytic technology for detecting drug use within the respective matrices to extend the window of detection and provide more effective drug abuse testing. Several field testing activities were described, including the interim results from an ongoing study of first-time offenders in the New Orleans Parish, Louisiana. These proceedings contain the record of those technical presentations provided by the participants on the two workshop panels. ONDCP and CTAC gratefully acknowledge the excellent technical contributions provided by the various panelists at this workshop, as well as the thoughtful and useful comments developed by the many workshop participants attending these presentations. An incredible wealth of information was shared among the attendees and has been taken back to their respective communities in criminal justice, industry, and academia. Dr. Albert E. Brandenstein Office of National Drug Control Policy Counterdrug Technology Assessment Center November 1995 #### Overview #### Exploring New Paradigms for Substance Abuse Treatment The Counterdrug Technology Assessment Center (CTAC) of the Office of National Drug Control Policy (ONDCP) sponsored a technical workshop on drug abuse treatment technology on August 15 and 16, 1995, at Baltimore, Maryland. Experts in the field gathered to discuss the latest in innovative treatment approaches and drug testing technology. The workshop began with some sobering facts from the Maryland Secretary of Public Safety and Correctional Services Bishop Robinson and Assistant Baltimore Police Commissioner Leon Tomlin on the adverse effects substance abuse has on our community. For the past 20 years, they have seen crime increase tenfold, entire neighborhoods destroyed, and new prisons become overcrowded before they can be completed. It is time to find the cure rather than only treat the symptoms. World-class experts, such as Dr. Alan Leshner, Director of the National Institute on Drug Addiction (NIDA), Dr. Herbert Kleber, Center for Addiction and Substance Abuse, and Dr. Jerome Jaffe, Department of Health and Human Service, then guided technical discussion on the nature of drug addiction and the latest breakthroughs in technology for the treatment of substance addiction. Dr. Leshner set the central theme for the gathering with NIDA's goal to "replace *ideology* in the treatment of drug addiction with *science* by the year 2000." A review of the CTAC-sponsored research program focused the workshop on some opportunities for using advancements in science and technology to improve our drug abuse treatment programs. While many differing approaches were expressed, one common problem among *all* researchers was the lack of relevant clinical data to support their research. For example, CTAC's project with NIDA's Addiction Research Center will provide a state-of-the-art brain scanning facility and radiochemistry laboratory dedicated to measuring the interaction of cocaine and other drugs of abuse with neuroreceptors in the brain. CTAC also sponsors a project called the Drug Evaluation Network (DENS) to link treatment centers and research facilities on a common computer network. Both of these projects will increase the availability of and expand access to relevant clinical data for researchers *and* treatment providers alike. CTAC's plans for next year include establishing a node on the DENS network to serve as a "model" treatment center. In the area of innovative treatment approaches, Dr. Donald Landry, from the Columbia University College of Physicians and Surgeons, discussed progress on a CTAC-sponsored project to develop artificial enzymes as a therapeutic drug to "immunize" addicts against cocaine. The highly specific catalytic antibodies bind with the cocaine molecules in the bloodstream and deactivate the cocaine before it reaches the brain. An immunization drug would have the potential to render the cocaine serum levels in the blood stream harmless for up to 6 months per treatment. To complement Dr. Landry's work, CTAC is exploring new ideas for agonists to *replace* abused drugs in the brain or antagonists to *block* drugs in the brain. This year, CTAC expects to begin developing cocaine agonists and antagonists. #### Breaking the Cycle The second day of the workshop went beyond treating drug effects and addressed the entire spectrum of factors known to contribute to drug dependence and abuse: social, environment, employment, family, and physiological. It was shown that the highest success was achieved from in-patient treatment programs where all aspects of the patient's environment were controlled. Since everyone cannot and does not enroll in an in-patient regime, the importance of having noninvasive means to remotely monitor and test patients for relapse was stressed. For improving noninvasive drug testing and monitoring, a CTAC project with the Jet Propulsion Laboratory uses technology previously developed by NASA to monitor an astronaut's bodily functions in space to remotely monitor the sweat and hair of parolees and inmates for signs of drug abuse. The New Orleans District Attorney's Office described its Diversionary Program for first-time offenders and how it is being used in conjunction with CTAC's efforts to serve as a "testbed" for evaluating new appliques for drug monitoring and testing as they are developed. In all, the technical workshop was a success and focused the resources of our corrections officers, research scientists, and treatment professionals on exploring those improved drug treatment opportunities available from advancements in technology. The broader spectrum of the underlying causes of drug dependence and abuse is now understood by those scientists and researchers who can make a difference. Dr. Albert E. Brandenstein Office of National Drug Control Policy Counterdrug Technology Assessment Center November 1995 # Opening Presentation | | | | | 1 | |-----|---|---|--|---| | | | | | | | . 4 | | | | 1 | | | | | | 1 | I | | | | | | | | | , | | | | | | | | | | | | | | | Ī | | | | | | | | | | , | | | | | | | | | | | | | | | ## New Approaches to Understanding Drug Abuse Dr.
Edythe London National Institute for Drug Abuse (NIDA) ### Positron Emission Tomography Research - Demand Reduction Efforts to reduce the demand for illicit drugs of abuse require knowledge of the biological mechanisms that support addiction. Because drug abuse is a chronic disease of the brain, identification of long-term neurochemical abnormalities in affected individuals can help target the development of effective therapeutic agents. The Counterdrug Technology Assessment Center, ONDCP has therefore initiated a research program to use positron emission tomography (PET) scanning, a noninvasive nuclear medicine procedure, to assay brain function in individuals who suffer from addictive disorders and normal control volunteers in order to delineate abnormalities in brain function that are associated with addiction. Scientists at the Intramural Research Program of the National Institute on Drug Abuse (NIDA) are focusing on such differences in brain function with the use of PET and a radiolabeled tracer for measuring consumption of glucose by the brain. Regional rates of glucose metabolism can be mapped, and they provide an index of local brain function. Persistent Abnormalities in Brain Function in Drug Abusers. In a recent study comparing the patterns of brain activity by PET, NIDA investigators have demonstrated that individuals with histories of polydrug abuse, including injection of heroin and cocaine, show abnormalities in brain function—even when detoxified from illicit drugs of abuse. When compared with normal volunteers, matched for age, sex, and socioeconomic status, detoxified subjects who actively use illicit drugs of abuse show deficits of glucose metabolism in the visual association cortex in brain (Fig 1). It is not known to what extent this and other abnormalities in brain function of substance abusers predates or is a consequence of illicit drug abuse. Figure 1: PET scans showing rates of glucose utilization (mg/100g/min) in a normal volunteer (left, control) and a participant with a history of polydrug abuse. Arrows indicate visual association area of the cortex, where the substance Craving for Cocaine - A target for Therapeutic Intervention. Environmental stimuli that are regularly associated with drug use are thought to elicit behavioral and physiological responses that contribute to drug craving and, thereby, to the perpetuation of addiction. As curbing craving for cocaine has been identified as a target for therapeutic intervention, knowledge of the brain mechanisms that underlie craving is needed. NIDA investigators are addressing this problem by pairing PET scanning with self-report assessments in cocaine abusers during two experimental sessions. In one test session, neutral stimuli, including a videotape on arts and crafts, are presented. In another session, research volunteers are presented with a drug-related stimulus complex (videotape of cocaine-related activity, paraphernalia, and a small amount of cocaine). In subjects with a history of cocaine abuse, the cocaine-related stimuli produce craving, quantitatively reported by the subjects (Fig. 2). In the drug abusers, but not in normal volunteers, activity in cortical regions implicated in processing of memory is increased during the presentation of cocaine-related cues. Increases in the medial temporal lobe and the dorsolateral prefrontal cortex (Fig. 3), brain areas implicated in declarative memory, are correlated with self-reports of cocaine craving (Fig. 4). The findings indicate that a neuroanatomical network related to the processing of explicit memory links exposure to relevant environmental cues with the genesis of cocaine craving. Further studies are required to delineate the neurotransmitters responsible for linking the activation of these areas with the feeling of craving. Figure 2: Self-reports of craving when research volunteers are presented with neutral or drug-related environmental stimuli. Human subjects who actively use cocaine report feeling craving when the cocaine-related stimuli are present. Figure 3. PET scans showing activation of the dorsolateral prefrontal cortex by cocaine-related cues. When human volunteers with histories of cocaine abuse were presented with cocaine-related cues, they reported craving for the drug and showed a stimulation of glucose utilization (mg/100 g/min) in the dorsolateral prefrontal cortex (arrows), a brain area involved in episodic memory. Figure 4. Correlation of craving with glucose utilization in medial temporal lobe and dorsolateral prefrontal cortex. Regression lines show the relationship between the change in craving and the change in regional brain activity in two test sessions (cocaine-related cues minus neutral cues). Brain activity was assessed as the rate of glucose utilization in individual brain regions, measured by PET. The change in activity in two regions important in episodic memory, the medial temporal lobe and dorsolateral prefrontal cortex, was highly correlated with craving. S Workshop I: Innovative Treatment Approaches | • | | | | |---|---|---|---| _ | | | | | | | | | | | | | | , | | | | | | | | | | | · | | | | | | | | | | = | | | | | 8 | | | | | | | | | | | | | | | | | * | | | _ | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | • | _ | | | | | | | | | | - | | | | | | | | | | | | | | | _ | | | | | | | | | | _ | | | | | | | | | | | | | | | | ## **Innovative** Treatment Approaches Dr. Herbert Kleber CASA/Columbia University Size of Problem ———————— 18,000,000 alcoholics/problem drinkers 2,000,000 cocaine addicts 750,000 to 1,000,000 heroin addicts 2,500,000 multi-drug, hallucinogens, inhalants, etc. TOTAL (non-alcoholic) = 5.5 to 6 million in need of treatment Treatment (Drug) — Available: 600,000 "slots" that can treat 1,400,000 (approx) individuals per year Needed: 1,000,000 "slots" to treat 2,500,000 individuals per year Why the gap? Widespread belief that treatment doesn't work. Need for this Study- There is inadequate information on which substance abuse treatment modalities work and for which populations. There is a reluctance on the part of policy makers, insurance companies and businesses to invest resources in treatment without clear evidence that shows what works and for whom. Study will Provide - National data that answers the questions: How and why do different people come into treatment? What services do they receive in treatment? What are the outcomes of their treatment? A study method that can be used as a national "scorecard" to monitor the effectiveness of all substance abuse treatment. A pilot study of a computer-linked network of treatment programs that could provide data on treatment characteristics/efficacy on an ongoing basis. Methodology- ## Data collection will include: intake interviews and assessment of treatment sites assessment at 3 and 12 months after intake collection of urine specimens and breathalyzer tests to verify self-report data A pilot study of a computer-linked network of treatment programs: select 20 programs in the Northeast as pilots use main study to determine instruments will provide data on changes in treatment, patients & outcome in very short time frame ### Design December 1994 -- May 1995: Convene Advisory Board to resolve research design issues. Identify random sample for treatment units and clients. Work with government to select subcontractor. (Note: Both CASA and TVA have veto power.) ### Data Collection June 1995 -- November 1996: Carry out field interviews. Monitor collection of data and develop statistical programs for analysis. #### Analysis December 1996 -- May 1997: Analyze data on groups and subgroups of patients in each treatment modality. Analyze data on the treatment units' characteristics that are associated with outcomes of the patients. Release a final report. # COCAINE INTERVENTION PROGRAM Guilford Pharmaceuticals Inc. - ◆ 2.1 million people use cocaine on a weekly basis - ◆ Measurable economic costs of illicit drug abuse were more than \$67 billion in 1990 - ◆ Violence and drug related crimes ## NORMAL CELL COMMUNICATION ## **EFFECT OF COCAINE** - ◆ Dopamine transporter was cloned in 1992 - Elucidate the primary structure of the protein - ◆ Allows for the direct examination of a drug's interaction with the human dopamine transporter Λ B Dopamine Potential Dopamine- Sparing Cocaine Cocaine Antagonist Therefore, it is now possible to design drugs which will block cocaine binding but will not interfere with the normal dopamine uptake process. ### Dopamine Transporter Protein - Dopamine transporter protein was cloned in 1992 - Elucidate the primary structure of the protein - **♦** Allows for the direct examination of a drug's interaction with the human dopamine transporter Cooperative Research and Development Agreement with NIDA (CRADA) High Throughput Screening Rational Drug Design 2-24 ◆ Access to cell lines expressing the human cloned dopamine transporter protein ◆ Access to proprietary compounds ### Testing of Potential Anti-Cocaine Drugs ### High Throughput Screening - ◆ Previous methods -250 compounds per week - ◆ Guilford's Method 3500 compounds per week - § ◆ Molecular Cloning - **♦** Robotics - ◆ Computer-Aided drug design - ◆ Three-dimensional structure of the transporter protein - Synthesis of compounds ## Computer-Aided Drug Design #### Molecular Modeling # Guilford has identified several lead molecules which exhibit desirable pharmacological properties ### Test Tube to Humans ### Medications Development Division - Established in 1990 - Animal Models of Addiction - ◆ Toxicology - **♦** Clinical Trials - ◆ Expedited Review ### Summary - ◆ Guilford has established a comprehensive program to develop medications useful for the treatment of cocaine addiction - ◆ Collaboration with NIDA - ◆
High Throughput Screening Capacity - Rational Drug Design ### Acknowledgments The Abell Foundation, Inc. ### Anti-Cocaine Catalytic Antibodies Dr. Donald W. Landry Columbia University, Department of Medicine #### STIMULANT EPIDEMICS 1890's 1920's 1950's 1960's 1980's #### Clinical Characteristics of Cocaine Abuse Magnification of pleasure Dose dependent euphoria Progressive social isolation Transition to binge use Cravings #### Abstinence #### Crash hypersomnolence dysphoria (mild for 12-96 hrs) Withdrawal anergia anhedonia craving (relapse) Extinction gradually diminishing cravings #### **INTOXICATION vs ADDICTION** 40,000,000 EXPOSED 6,000,000 REGULAR 2,000,000 ADDICTED 2-40 # COCAINE PHARMACOKINETICS Dopamine Reuptake Transporter 2-42 Reaction Coordinate Phosphonate mono-ester Transition State analog ### Artificial Esterase Activity | 2 | |---| | 4 | | œ | | mAB | TSA | Km (uM) | K _{cat} min-1 | K _{cat} / K _o | |---|-----|--------------------|------------------------|-----------------------------------| | 3B9
6A12
15A10
2A10
19G8
9A3 | | 490
1017
251 | 0.11
0.072
0.47 | 1100
710
5000 | | 12H1
8G4G | | 82 | 0.064 | 660 | TSA I $$R_1$$ = tether, R_2 = R_3 = H TSA II R_2 = tether, R_1 = R_3 = H TSA III R_3 = tether, R_2 = R_1 = H #### HYDROLYSIS OF (+) AND (-) COCAINE IN PLASMA #### (+) Cocaine #### (-) Cocaine RR > 2000 butyryl cholinesterase $$RR = 1$$ $RR = 1$ #### Kinetic Model Transit time: 15-20 sec Doses of cocaine: 100 mg (0.3 mmol) Dose of enzyme: 500 mg (0.003 mmol) (0.006 meq) Turnovers required: 50 Turnover rate: 2-3 sec¹ [Cocaine] $_{pulm art} = 30 \mu M$ | | Organic
Synthesis | Hybridoma
<u>Screening</u> | Protein
Engineering | |------|--|--|------------------------| | | Analog₁ → | Catalytic mAB _{1,1} → cmAb _{1,2} | cmAb _{x1} | | · | $\mathbf{A_2} \rightarrow$ | cmAb _{1,3} | х3 | | 2-51 | $egin{array}{ccc} A_3 & ightarrow & \ A_4 & ightarrow & \end{array}$ | | Co-crys
Site dir | | | | | Phage of | Co-crystallize cmAb:Analog_x Site directed mutagenesis Phage display mutagenesis Random replacement HC/LC hybrid with metallo binding site Analogs based on substrateassisted antibody catalysis Immunologic screening of active enzymes $$H_3C$$ H_3C Ecgonine methyl ester #### Effect of Treatment on Drug-Related Behavioral Problems Dr. Thomas McLellan University of Pennsylvania • INSULIN DEPENDENT DIABETES COMPLIANCE WITH MEDICATION REGIMEN - <50% COMPLIANCE WITH DIET AND FOOT CARE - <30% RE-TREATED W/IN 12 MO. (by phys, ER, or Hosp) 30-50% MEDICATION DEPENDENT HYPERTENSION COMPLIANCE WITH MEDICATION REGIMEN - <30% COMPLIANCE WITH DIET - <30% RE-TREATED W/IN 12 MO. (by phys, ER, or Hosp) 50-60% ASTHMA (Adult) **COMPLIANCE WITH MEDICATION REGIMEN -** <30% RE-TREATED W/IN 12 MO. (by phys, ER, or Hosp) 60-80% Factors Associated With "Relapse" #1 - LACK OF COMPLIANCE WITH MEDICATIONS, DIET AND BEHAVIOR CHANGE (50%*) #2 - LOW SOCIOECONOMIC STATUS **#3 - POOR FAMILY AND SOCIAL SUPPORTS** #4 - PSYCHIATRIC CO-MORBIDITY TABLE 1 PRE TO POST TREATMENT CHANGE IN THREE GROUPS OF TREATED SUBSTANCE ABUSERS | N = 195 t N = 196 N = 212 t N = 212 t N = 242 2424 | -,,2101 | OUT THEAT | WEIGH | CHANGE 14 | INNEE GROU | וט פריי | - IREATED SI | DR21 VNCE | ABUS | SERS | |--|--|--------------|--------|---------------|-------------|---------|--------------|-----------|--------------|--------------------------| | N = 195 | | | OPIATE | | | OCAIN | IE | A | LСОН | OL | | Drug Composite Score | PROBLEM MEASUREA | | | 6 MONTHS | BASELINE | | 6 MONTHS | BASELINE | | 6 MONTHS | | Drug Composite Score | | | t | N = 196 | N = 212 | t | N =212 | N =242 | | N =242 | | Drug Composite Score | SUTCOME USUALINE SEEDING | ONIVALED | in all | DEFUTIVE I | | | | | LI Y | ROSENKEN PER PER PER PER | | Days Oplate Use | - · · · · · · · · · · · · · · · · · · · | .336 | *** | .256 | .228 | ••• | .081 | .022 | 22,22,23,212 | | | Days Depressant use | Days Oplate Use | 11 | *** | . 6 | 1 | • | 2 | 1 . | | 1 | | Alcohol Composite Score | - | 5 | 444 | 3 | 11 | 404 | 2 | 1 | | 1 | | Days Alcohol use | Days Depressant use | 6 | | 6 | 1 | | 1 | 2 | | 1 | | Days Alcohol use 6 | Alcohol Composite Score | .109 | | .093 | .209 | *** | .080 | .642 | *** | 158 | | Days drank to Intoxication 3 2 6 2 16 3 | | 6 | • | . 5 | . 8 | 44. | 3 | 17 | ***, | | | Medical Composite Score .349 .311 .230 . 168 .229 .223 Days Medical Problems 8 6 .08+ 4 7 6 Psychlatric Comp Score .309 .268 .222 .089 .220 .115 Days psych problems 12 8 9 3 9 4 Employment Comp Score .675 .641 .621 .571 .552 .487 Days worked in past 30 8 10 12 14 11 14 Employment Income \$417 \$537 \$613 \$783 \$697 \$841 Family Composite Score .268 </td <td>Days drank to intoxication</td> <td></td> <td>•</td> <td>2</td> <td>6</td> <td>***</td> <td>2</td> <td></td> <td>٠.,</td> <td>3</td> | Days drank to intoxication | | • | 2 | 6 | *** | 2 | | ٠., | 3 | | Medical Composite Score .349 .311 .230 .168 .229 .223 Days Medical Problems 8 6 .08+ 4 7 6 Psychiatric Comp Score .309 .268 .222 .089 .220 .115 Days psych problems 12 8 9 3 9 .4 Employment Comp Score .675 .641 .621 .571 .552 .487 Days worked in past 30 8 10 12 14 11 14 Employment Income \$417 \$537 \$613 \$783 \$697 \$841 Family Composite Score .268 .225 .250 .136 Days family conflicts 4 3 3 2 2 1 Days social conflicts 2 2 1 | on the state of th | Tolle Leis L | | HE CALLED | FUNCTION | | | | | | | Days Medical Problems 8 8 6 .08+ 4 7 6 Psychlatric Comp Score .309 * .268 .222 **** .089 .220 **** .115 Days psych problems 12 **** 8 9 **** 3 9 **** 4 Employment Comp Score .675 .641 .621 * .571 .552 .487 Days worked in past 30 8 10 12 * 14 11 *** 14 Employment Income \$417 * \$537 \$613 * \$783 \$697 * \$841 Family
Composite Score .268 * .225 .250 **** .136 .198 **** .094 Days family conflicts 4 3 3 2 2 **** 1 Days social conflicts 2 2 2 **** 1 | Medical Composite Scare | .349 | *:-: | .311 | | ٠ | .168 | 229 | | 223 | | Psychiatric Comp Score .309 .288 .222 .089 .220 .115 Days psych problems 12 8 9 3 9 4 Employment Comp Score .675 .641 .621 .571 .552 .487 Days worked in past 30 8 10 12 14 11 14 Employment Income \$417 \$537 \$613 \$783 \$697 \$841 Family Composite Score .268 .225 | Days Medical Problems | 8 | | 8 | 6 | -08+ | 4 | | | | | Days psych problems | Psychiatric Comp Score | .309 | ٠ | .268 | .222 | | 089 | • | *** | | | Days worked in past 30 8 10 12 14 11 11 14 14 Employment Income \$417 \$537 \$613 \$783 \$697 \$841 \$841 \$198 \$198 \$199 \$199 \$199 \$199 \$199 \$19 | Days psych problems | 12 | *** | 8 | 9 | *** | | | ••• | | | Days worked in past 30 8 10 12 14 11 14 14 | Employment Comp Score | .675 | | .641 | .621 | • . | .571 | 552 | | 497 | | Employment Income \$417 | Days worked in past 30 | 8 | | 10 | 12 | • | | | ** | | | Family Composite Score .268 .225 .250 .136 .198 .094 Days family conflicts 4 3 3 2 2 1 Days social conflicts 2 2 1 | Employment Income | \$417 | • | \$ 537 | \$613 | • | · · · | | | | | Days family conflicts 4 3 3 2 2 1 Days social conflicts 2 2 1 | Family Composite Score | .268 | • | .225 | .250 | *** | | | 4+4 | | | Days social conflicts 2 2 2 2 | Days family conflicts | 4 | | 3 | 3 | | 2 | | | .55. | | | Days social conflicts | 2 | | 2 | 2 | | 1 | 2 | . | 1 | | DUMENTE OF THE PROPERTY | Durable Complete State of the | O.H. MALLEMA | HEDI | THANG HUBLIC | SAEETY PHOR | LEMS | | | | | | Shared Needle/Syrings 23% *** 3% 3% 3% <1% 0% | Shared Needle/Syrings | | | | | | | _ | 23323 | | | Had Unprotected Sex 14% 9% 22% • 13% 19% • 7% | Had Unprotected Sex | 14% | | 9% | 22% | . | | | 40 | | | Legal Composite Score .133 .102 .064024 .051006 | Legal Composite Score | .133 | | .102 | .064 | ** | | | ••• | | | Days illegal activity 4 • 2 2 • 1 1 | Days illegal activity | 4 | • | 2 | 2 | ** | 1 | 1 | | 1 | | | illegal income | \$289 | •• | \$109 | · \$105 | | \$83 | \$26 | | s ₁ | [^] All measures derive from ASI interviews covering the 30 day periods prior to baseline and 6-month follow-up. ⁼ p < .05, = p < .01, = p < .001 by paired t-test ### Drug Related Risk Behaviors by Treatment Status | | în-Tx | Out-Tx | |--------------------------------------|----------|------------| | Weekly injections during prior monti | 1; | | | Heroin | 33% (40) | 69% (61)** | | Cocaine | 22% (27) | 61% (54)** | | Combined ("Speedball") | 32% (39) | 45% (40)* | | Been to "Shooting Gallery" | 33% (41) | 55% (48)** | | Been to "Crack House" | 11% (13) | 28% (25)** | ^{*} p<.05 ** p<.01 by Chi-Square 2-57 ## Six-Month Re-Incarceration Rates for Two Groups Opiate Dependent, Federal Probationers SIX-MONTH OUTCOME STATUS COMPARISONS AMONG PROGRAMS During the 30 Days prior to follow-up, what proportion of patients were: | Treatment Program | | Average for
All Programs | |---------------------------------------|---|-----------------------------| | Abstinent from Alcohol | | 59% | | Abstinent from all Drugs | • | 84% | | Working >30 hrs/ week | | 77% | | Receiving welfare income | · | 11% | | Committing crimes | | 3% | | Experiencing serious psych symptoms | ŀ | 32% | | Experiencing serious family conflicts | | 25% | | OPT-1
N=45 | Sig. | OPT-2 | |---------------|------|-------------| | 51% | DII. | N=53
45% | | 80% | • | 71% | | 80% | • | 72% | | 2% | ** | 28% | | 0% | | 7% | | 33% | | 34% | | 24% | * * | 31% | | INPT-1 | Sig. | INPT-2 | |--------|------|--------| | N=54 | Dif. | N=46 | | 78% | • | 63% | | 87% | • | 98% | | | | | | 74% | | 83% | | 9% | | 4% | | 4% | | 0% | | 27% | | 35% | | 22% | | 24% | During the 6 months since leaving treatment, what proportion of patients were: | , i man a banding their | | |-----------------------------------|-----| | Re-treated for Alcohol problems | 12% | | Re-treated for Drug problems | 10% | | Hospitalized for Medical problems | 9% | | Hospitalized for Psych problems | 7% | | | | | 15% | * | 9% | |-----|---|-----| | 10% | | 15% | | 11% | | 8% | | 4% | | 7% | | 9% | * | 15% | |----|---|-----| | 9% | | 7% | | 9% | | 9% | | 7% | | 9% | All figures express as percentage. ^{*=}p<.05, **=p<.01 by Z test for differences between proportions ## METHADONE SERVICES Target Behaviors at Six-Months By Level of Service # Clinical Approach to Medications Development for Addiction Dr. George Woody University of Pennsylvania ## **Define objectives** # Define primary and secondary measures Secondary measures could be: "craving" or "wish to use" psychiatric symptoms illegal activity employment & family adjustment decreases in morbidity & mortality ## WORK DERIVES FROM "WAR ON DRUGS" #### SUPPORTED BY NIDA MEDICATIONS DEVELOPMENT PROGRAM "IF THIS IS A WAR, IT'S MORE LIKE THE 100 YEARS WAR THAN THE INVASION OF GRENADA" HERBERT KLEBER, M.D. #### **KEY ISSUES** **MUCH KNOWN ABOUT EFFECTS OF COCAINE** NOT MUCH KNOWN ABOUT WHAT IS WRONG WITH COCAINE ADDICTS #### DOPAMINE TRANSPORTER # MAY MEDIATE REINFORCING PROPERTIES OF COCAINE COCAINE BINDING BLOCKED BY MAZINDOL, GBR 12395, WIN 35,428, BUPROPION MAZINDOL AND BUPROPION REDUCED "COCAINE CRAVING" IN METHADONE PATIENTS (OPEN TRIAL) RECENT DOUBLE-BLIND STUDY OF BUPROPION IN METHADONE PATIENTS SHOWED NO EFFECT # The Dopamine Hypothesis of Cocaine Reinforcement #### DI ANTAGONIST: SCH 23390 ### STUDIED IN ANIMALS; NO CLINICAL DATA ### REPORTED TO BLOCK OR AUGMENT COCAINE-INDUCED HYPERACTIVITY IN THE RAT WITH A U-SHAPED DOSE RESPONSE CURVE DOSE-FINDING WOULD BE DIFFICULT ANTAGONISE COCAINE EFFECTS; MIGHT LEAD TO INCREASED USE IN ORDER TO ACHIEVE "HIGH" #### **D2 ANTAGONISTS** USED IN SCHIZOPHRENIA; MOST ALSO BLOCK DI, 5-IIT AND ADRENERGIC RECEPTORS TEND TO BLOCK EFFECTS OF COCAINE BUT INCREASE ITS SELF-ADMINISTRATION IN ANIMALS, POSSIBLY DUE TO PARTIAL MASKING OF COCAINE'S EFFECTS FLUPENTHIXOL - OPEN TRIAL BY GAWIN REPORTED REDUCTION IN CRAVING & USE CONTROLLED STUDY NEEDED PROLOXIN PATIENTS USE COCAINE PRECLINICAL - REDUCED MESOLIMBIC DA ACTIVITY; PREVENT WITHDRAWAL EFFECTS FOLLOWING COCAINE, ALCOHOL AND NICOTINE CLINICAL - NO ABUSE POTENTIAL; REDUCED ALCOHOL CONSUMPTION IN ALCOHOL USERS (APPLICABILITY TO DEPENDENCE UNCLEAR); BLOCKED RUSH & FEEL OF COCAINE NO CLINICAL TRIALS ONLY PARENTERALLY AVAILABLE EXPLORATION OF MECHANISMS MAY BE VALUABLE Global Response (much improved depression and 75% reduction in self-report drug use) Primary could be: Drug use as measured by: urine tests; breathalizer self - report observer report money spent on drugs Retention Physician or patient assessment of severity #### 5-HT1a AGONISTS # PRECLINICAL - INCREASE DA SYNTHESIS IN NUCLEUS ACCUMBENS & CONDITIONED PLACE PREFERENCE BUSPIRONE - NO WITHDRAWAL OR SELF-ADMINISTRATION - NO CLINICAL DATA ON ADDICTS GEPIRONE - NO EFFECT IN RECENT STUDY # Are Substance Use Disorders Moral Problems, "Diseases", or "Conditions"? It may depend on the diagnosis: Abuse - may be behavioral: DSM - IV & ICD - 10 disagree Dependence - more like a disease: agreed-upon definition: ICD-10 and DSM-IV agree on criteria for dependence has a course; tendency to relapse # DESIPRAMINE META-ANALYSIS Characteristic of randomized desipramine (DMI) studies | Study | No.
pat. | Treat | Days of study | Reten.
in tr. | Abstin.
in treat. | |-------------------------------------|----------------|-------------|---------------|------------------|--------------------------------| | Towns & | 11 | DMI | 12 | 55% | 64% u.cl | | Tennant &
Tarver, 85 | 11 | Plac | 15 | 55% | 70% u.cl | | Giannini
et al., 87 | 10
10 | DMI
Plac | 45 | 80%
80% | NA | | Arndt
et al., 92
!Methadone N | 36
23
4. | DMI
Plac | 84 | NA 1 | 70% u.cl-25%* 70% u.cl-70%* | | Gawin
et al., 89 | 2Å
2Å | DMI
Plac | 84 | 38%
31% | 59% abst
17% abst | | Kosten
et al., 89 | 21
18 | DMI
Plac | 56 | NA | 38% abst
55% abst | | Kosten
et al.,92
!Methadone | 30
31
M. | DMI
Plac | 84 | 73
87 | 28% u.cl
24% u.cl | | | | DAGE | 168 | 50% | 78% abst | | McElroy
et al, 89 | 6 | DMI
Plac | 100 | 50% | 50% ubst | | Weddington et al., 91 | 17
21 | DMI
Piac | 84 | 53%
75% | 6.3 wk c free
4.6 wk c free | ^{• 6} month follow-up #### **CARBAMAZEPINE** # EFFECTS OPPOSITE COCAINE: INCREASE DA CONTENT IN BRAIN SLICES **ANTI KINDLING HYPOTHESIS** OPEN STUDY SHOWED SIGNIFICANT EFFECT (HALIKAS) NO EFFECT IN CONTROLLED STUDIES ## EXISTING PHARMACOTHERAPY FOR SUBSTANCE USE DISORDERS METHADONE NALTREXONE BENZODIAZEPINES FOR ALCOHOL DETOXIFICATION DISULFIRAM LAAM BUPENORPHINE (IN FINAL TESTING STAGE AND LOOKING GOOD) WHAT ABOUT COCAINE? LANDRY (SCIENCE, MARCH, '93); CREATED A MONOCLONAL ANTIBODY THAT BINDS TO COCAINE AND THEN BREAKS IT DOWN ANTIBODIES AS A FORM OF PASSIVE IMMUNIZATION; COCAINE METBOLIZED BEFORE IT CAN WORK **TEST-TUBE STAGE** ## Potential Approaches to Drug Abuse Treatment - Reduce Relapse to Drug-Taking Behavior - Reduce Craving - Attenuate Withdrawal Symptoms - Antagonize Acute Overdose Toxicity - Reduce Drug-Taking and Drug-Seeking Behavior - New Chemical Entity (NCE) PRE IND - IND Drug Being Developed for Another Indication - Marketed Drug For Another Indication #### 5-HT TRANSPORTER # MAY CONTRIBUTE TO EUPHROIC AND REINFORCING EFFECTS OF COCAINE AND OTHER SUBSTANCES FLUOXETINE: (BATKI, 1993) -2 STUDIES, BOTH GOOD DESIGNS METHADONE (N=52): LESS COCAINE USE & CRAVING IN FLUOX. GROUP; FEW ACHIEVED ABSTINENCE PRIMARY COCAINE (N=32): FLUOX. GROUP HAD LOWER DROPOUT RATE; NO DIFFERENCES IN USE ### OPIATE AGONISTS, PARTIAL AGONISTS, & ANTAGONISTS METHADONE: HIGH DOSES (120 MG) SUPPRESS "SPEEDBALL" (Kosten); OPEN TRIAL NEEDS CONTROLLED STUDY BUPRENORPHINE: SUPPRESSES COCAINE IN RHESUS MONKEYS (Mello) POTENTIATION OF COCAINE IN SQUIRREL MONKEYS (Kamien) NO EFFECT IN LARGEST CLINICAL STUDY (Johnson) **NALTREXONE - MIXED DATA** #### LITHIUM ###
NO PRECLINICAL RATIONALE **FEW STUDIES** NO OVERALL BENEFIT A FEW CASES OF PERSONS WITH CYCLOTHYMIA OR BIPOLAR ILLNESS WHO IMPROVED ## CONCLUSIONS #### PSYCHOSOCIAL TREATMENTS HELPFUL BUT MUCH ROOM FOR IMPROVEMENT DESIPRAMINE HAS WEAK EFFECT AMANTADINE AND FLUOXETINE MAY HAVE EFFECT NOTHING IDENTIFIED WITH STRONG EFFECT AGENTS WITH WEAK/MODEST EFFECTS MAY BE USEFUL IF COMBINED WITH PSYCHOSOCIAL TREATMENT #### **CONCLUSIONS** MANY FALSE LEADS, PRIMARILY DUE TO USE OF OPEN, UNCONTROLLED TRIALS APPROACH HAS BEEN TO TEST EXISTING DRUG EASIEST, LEAST EXPENSIVE THING TO DO? SPOILED DUE TO BEING LUCKY WITH OPIATE RESEARCH? MORE UNDERSTANDING NEEDED **BACK TO THE BENCH** ## #### The Development of Medications for the Treatment of Drug Addiction Aimee Friedman Jocelyn Lehrer Counterdrug Technology Assessment Center Office of National Drug Control Policy #### INTRODUCTION This paper discusses the primary reasons for the current reluctance of pharmaceutical companies to invest in the research, development, and marketing of medications for the treatment of opiate and cocaine addiction. Recent developments in federal processing and clinical trial procedures which should stimulate company interest in anti-addiction efforts are elaborated. The report draws heavily from the Institute of Medicine's The Development of Medications for the Treatment of Opiate and Cocaine Addictions: Issues for the Government and Private Sector. #### PROBLEM STATEMENT There has long been limited pharmaceutical research, development, and marketing in the field of addiction treatment. Only three substances, methadone, levo-alpha-acetylmethadol (LAAM), and naltrexone, have ever been marketed specifically for the treatment of opiate addiction. Methadone became successful in the 1960's, and the latter medications were developed in the late 1960's and early 1970's. With the exception of the 1993 approval of LAAM, no drugs to treat opiate addiction have been approved since over a decade ago. Currently, no approved medication for the treatment of cocaine addiction exists (IOM, 1995). It is estimated that there are 2.1 million cocaine-dependent persons and 750,000 to 1 million opiate-dependent persons in the United States (Hunt and Rhodes, 1992; Kreek, 1992). Substantially greater pharmaceutical activity has been documented in areas with afflicted populations of comparable or substantially smaller size. About \$400-500 million is spent yearly on the marketing and development of medications to treat the 2.1 million epilepsy patients in the U.S., and three new drugs have been approved or are in the process of approval (IOM, 1995). Also, several pharmaceutical companies have products in various phases of development for the treatment of amyotrophic lateral sclerosis (Lou Gehrig's Disease), which currently afflicts approximately 25,000 individuals in the United States (IOM, 1995). There are several reasons for the current lack of pharmaceutical interest in the development and marketing of anti-addiction medications. Primary obstacles are in the area of treatment financing, and include issues of funding methods, patient population size, and the regulatory policies of state governments and federal agencies. Other disincentives include liability concerns, the degree of current knowledge of mechanisms of addiction and relapse, lack of trained specialists for the treatment of drug addiction, difficulties in conducting clinical research, and societal stigma (IOM, 1995). The financing of treatment is a major focus of concern. Few opiate- or cocaine-dependent individuals have private insurance or the private means to pay for treatment. Of those who do have insurance, only a fraction use it, due largely to the stringent limitations most private insurance plans place on treatment nature and duration. Fear of employer notification is a hindrance as well. For instance, while approximately 10% of methadone treatment recipients have private insurance, only 5.2% use it to finance their treatment (SAMHSA, 1994). Due to the difficulty associated with using private insurance, fiscal responsibility is left mainly to federal, state, and local governments. For instance, 80% of methadone treatment in 1993 was financed through these means. The primary problem with public financing is that policy is seen by companies as having little guarantee of stability. Additionally, public subsidy and Medicaid carry substantial restrictions on treatment amounts and time periods that notably decrease the potential market for medications, by cutting down on the supply-demand aspects of free enterprise (IOM, 1995). State Medicaid programs are not required by federal law to cover drug abuse treatment; when offered, treatment coverage is often quite limited (GAO,1991; CRS,1993b). The market size for anti-addiction medications is also limited. First, while the population of cocaine- and opiate-dependent individuals is already small, only a fraction of these individuals are expected to seek treatment and be consistent in recovery efforts. For example, while a 1992 census indicated that there were an estimated 500,000-1 million opiate-addicts in the U.S. (Kreek, 1992), 117,000 received methadone treatment and an additional 80,000 were enrolled in other types of treatment programs in 1993 (Harwood, et.al., 1994). It is important to note, however, that a 1992 National Drug and Alcoholism Treatment Survey found an 85.3% utilization rate for methadone treatment programs (IOM, 1995). Second, any anti-addiction medication developed is likely to be useful for only one indication within addiction (e.g., reduction of withdrawal symptoms), restricting the range of its use. A single medication would probably also be usable for only a portion of the patient population, as the narcotic-dependent group is a heterogeneous one that differs along a variety of dimensions (e.g., pregnancy, psychiatric status, multi-drug use, HIV, socioeconomic supports) (IOM, 1995). However, it has been suggested that the potential applications of new anti-addiction medications are broader than commonly perceived, in that a single drug can have more than one use in the medical spectrum. For example, in "Lives Saved by Naloxone Hydrochloride" (NIDA, 1992), Henrich Harwood documents the variety of uses for Naloxone, a drug originally created for the treatment of overdose and the harmful side effects of heroin and other opiate abuse. For example, over three million patients yearly are given Naloxone in operating rooms to counteract the analgesic effects of high dosages of opiates given during surgery. Methadone was also commonly used as an analgesic at one point, and clonidine, an agent initially marketed for high blood pressure, has been administered for the treatment of heroin and nicotine withdrawal symptoms (H. Kleber, Center on Addiction and Substance Abuse-CASA, personal communication). Therefore, it is clear that a medication developed for one specific purpose may have wider medical usage. Such is likely to be the case for new medications developed for drug-dependent individuals. Third, a substantial portion of treatment providers firmly embrace the concept of drug-free treatment. Many of these individuals view pharmacotherapy as the substitution of one drug for another (H. Kleber, CASA, personal communication). The likelihood of disease and pregnancy in the patient population also raises concerns regarding research and product liability. Lawsuits are an issue with the potential for harm due to unforseen effects of the medication in combination with drugs of abuse, illness, or pregnancy (IOM, 1995). However, it should be noted that the possibility of subjects' poly-drug abuse or sensitive physical conditions were not a major liability concern in the LAAM and buprenorphine clinical trials conducted through Medications Development Division (MDD) of NIDA. Also, the adverse effects of trials for AIDS or other diseases are probably higher that those perceived for LAAM. Additionally, a Data Safety Monitoring Board for multi-center NIDA-sponsored trials is utilized to insure safety of the subjects (C. Grudzinskas, Medications Development Division-MDD, personal commun The state of scientific knowledge as well as difficulties associated with attracting researchers to the addiction field also inhibits company interest. As is the case with scientific understanding of most diseases, there are presently gaps in the knowledge of addiction processes. The mechanisms of cocaine action and drug craving have not been fully elucidated, and companies are deterred from becoming involved in an area where they perceive the basic knowledge base as weak IOM, 1995). However, it is important to note the conclusions of a report requested by the Senate Committee on the Judiciary and done by Pharmaceutical Manufacturers Association (PMA), which involves the survey of companies that had and had not been involved with research and development in the drug abuse field. Companies that had been involved in related research and development did not view the state of neuropharmacological knowledge as a problem. It was only companies which had not pursued this work that insisted the scientific base was too narrow to enter the field (PMA letter, 1989). Additionally, Dr. Herbert Kleber (CASA) has noted that the scientific community has far more information on cocaine and heroin's effects on the brain than on neurological mechanisms in other illnesses, such as depression and schizophrenia; numerous companies are pursuing costly projects in these areas. Also, as of 1994, all recognition and receptor sites for the major drugs of abuse have been identified and cloned; this major advance will allow scientists to design and test chemical compounds which act at drug receptor sites within the body (C. Grudzinskas, MDD, personal communication). Scientists and treatment specialists face numerous disincentives to entering the addiction treatment field, including "the perceived low
prestige, low-paying positions, difficulties in conducting clinical research, personal health risks of working with patients who often have serious illnesses, uncertain treatment reimbursement, a stigmatized patient population, and the involvement of many patients with crime and the criminal justice system" (IOM, 1995). These obstacles have led to an increased reluctance on the part of clinicians to enter the field of addiction treatment. Physicians are the individuals that the industry works with in research and development, the relative paucity of clinical activity in addiction treatment development leads companies to believe that there may be little clinical interest in new anti-addiction medications (H. Kleber, personal communication). Societal stigma is a deterrent to involvement for pharmaceutical companies as well as researchers and clinicians. Companies fear that a drug used to treat addiction will be unpopular for other indications, due to negative public sentiment toward drug addiction and the associated population (IOM, 1995). Some companies also believe that the process of clinical research to develop anti-addiction medications would be problematic, due to difficulties with subject reliability, accessibility, and follow-up interviews. Assessment of test-drug effects could be easily confounded by patient conditions and illnesses such as multi-drug abuse, pregnancy, HIV, and tuberculosis. There could also be difficulty in conducting adequate control trials and delineating appropriate efficacy goals or standards (IOM, 1995). However, NIDA conducted successful clinical trials for LAAM and buprenorphine, enrolling almost 1400 subjects in 38 centers over the course of fourteen months. The above factors were not major impediments to conduction of clinical trials, and should not be of concern (C. Grudzinskas, MDD, personal communication). Finally, clinical research on a controlled substance is cumbersome due to DEA and state regulations. If a drug is labeled by DEA as a Schedule II substance, it is subject to DEA determination of yearly production quotas. While quotas are enforced in order to prevent drug diversion, they ultimately lead to a significantly restricted market for the manufacturer. Manufacturing costs may be adversely affected by the quotas, as optimal production batch sizes may exceed quota limitations. Scheduling also places notable restrictions on physicians who would otherwise prescribe the medications more widely (IOM, 1995). The DEA scheduling process commonly takes from several weeks to two months after the approval of a New Drug Application (NDA) by the FDA. There is a perception among companies that the scheduling process takes too long; this is probably because scheduling comes at the time when manufacturers are ready to move forward with marketing. If a potentially marketable drug is a narcotic, it must go through additional procedures imposed by individual states once the federal screening process has been completed. Currently, these state processes frequently take over two years. Dr. Frank Vocci, Deputy Director of MDD, suggests that the sluggish process in many states, due to their individual policies and processes, acts as a primary obstacle to anti-addiction medication development for pharmaceutical companies (personal communication). While the DEA determines scheduling on a federal level, each state has its own separate scheduling process. State scheduling standards may differ from those of the DEA. Many states cannot begin their process of new screening and scheduling until after completion of the DEA evaluation. In states with linkage between federal and state agencies (New Jersey, Texas and Illinois), the scheduling process can be completed in thirty days. In states that require their own scheduling to be enacted (New York and California), action by a state regulatory agency or legislature must be taken. The possibility of significant delay at the state level is increased as many state legislatures convene in widely spaced sessions (IOM, 1995). The problem of drug scheduling is not the only obstacle preventing medications from being incorporated into state treatment programs. Compliance with federal and state guidelines by the state narcotic treatment programs are the responsibility of that specific state. In fact, federal approval of any treatment program is dependent of the state's approval of that program first. Every program must abide by federal regulations as well as state specifications, which can be even more stringent. Differing state jurisdictions make it difficult for a particular drug to reach the entirety of its predicted recipient population. While the federal prerequisite for an addict to be admitted to a methadone maintenance treatment program is a documentable history of narcotic dependence (L. Cummings, MDD, personal communication), some states have much stricter policies regarding program participation. For example, Californians must have a two year history of addiction in order to receive treatment in state programs; this then allows for only two years of treatment. New York State requires proof that a prospective patient has undergone treatment at least twice previously, before allowing the individual into a state program (IOM, 1995). In addition, by federal standards, all clinics must have a licensed physician as the designated medical director. Alternatively, California requires one physician for every 200 patients and a case worker to counsel every 40 patients. New York State insists on one physician for every 300 patients, two full-time nurses for the first 300 patients, and one for every hundred thereafter, along with one counselor for every 50 patients. Any center not up to these standards and others will be prevented from administering the new medication (IOM, 1995). Thus, companies are deterred by the complexities of state regulations when considering the feasibility of acceptable return on investment. The history of the development and marketing of LAAM all too well portray the difficulties of the entire licensing process. July 9, 1995 was the two year anniversary of the approval of LAAM. In those two years, it has only been approved in approximately 60 clinics in 24 states. The majority of drug-dependent individuals reside in New York State and California, where LAAM has yet to be approved (IOM, 1995). BioDevelopment Corporation, the LAAM manufacturer, cites the long nature of the state approval process as the single most unfavorable factor in the development and distribution of anti-addiction medications. However, the FDA, DEA, ONDCP and NIDA collectively suggested that BioDevelopment complaints were overstated. It was concluded that if BioDevelopment had notified state legislators and regulatory agencies earlier, LAAM could have gone through the process of state approval and scheduling in a shorter time span (IOM workshop, 1994). Therefore, although state policies are still problematic, the approval process can be facilitated. If this is the case however, one wonders why New York and California have still not approved LAAM in spite of having two years to do so (H. Kleber, CASA, personal communication). #### **PROGRESS** In the years from 1989 to the present, several problems related to federal processing, approval, clinical trials and other areas of concern have been addressed on the federal level. - 1 NIDA formally established the Medications Development Division in 1990, with the specific goal of helping addiction treatment medications to be brought to market. Dr. Charles Grudzinskas, with twenty years of experience in the pharmaceutical industry, was chosen to be Director (L. Cummings, MDD, personal communication). MDD now works with the industry "to perform the research and development necessary to secure FDA marketing approval" (IOM, 1995). - 2 The FDA Food, Drug and Cosmetic Act provides financial incentives to pharmaceutical companies through accelerated approval, rolling New Drug Applications (NDA), and treatment Investigational New Drug programs. These provide for faster FDA review, as well as patient access to medications before final FDA approval. Company products can now be moved through the system more quickly, allowing the generation of revenue to begin before approval and possible scheduling are completed (IOM, 1995). - 3 -In May 1991, the FDA classified drug dependence as a severe, life-threatening illness. As a result, the FDA now utilizes an expedited review process for all potential anti-addiction medications. The employment of rolling NDA and accelerated approval processes led to the approval of LAAM in eighteen days from NDA submission (IOM, 1995). Naltrexone also received a new indication for adjunctive treatment for alcoholism in an expedited manner in late 1994. Buprenorphine is currently undergoing a rolling NDA for the treatment of opiate dependency (L. Cummings, MDD, personal communication). - 4 The User Fee Law, as part of the FDA Prescription Drug User Fee Act of 1992, mandates a fee for all companies pursuing an NDA. (H. Davis, FDA, personal communication) funds generated as a result of the law allowed for three new hires at FDA, with expertise in the review of potential anti-addiction medications, to facilitate the NDA approval process (C. Grudzinskas, MDD, personal communication). - 5 The issue of recognizable clinical endpoints was addressed as a concern by pharmaceutical companies. In late 1992, coordinated specifically for anti-addiction medications, efficacy endpoints and approval requirements for most aspects of clinical trials were established by the FDA Advisory Committee and NIDA. Called, "Guides for Development and Evaluation of Drugs for the Treatment of Psychoactive Substance Use Disorders," they are still in draft form; however, Dr. Vocci, MDD, suggests that the "non-institutionalized format is not a deterrent to companies." These primary outcome measurement standards have been very helpful to
the heads of R & D and potential sponsors in the formulation of drug development programs (IOM, 1995). - 6 NIDA is actively considering funding an additional several VA sites where clinical trials would take place, from protocol design to data collection and preparation for statistical analysis. Emphasis would be placed on anti-cocaine medication development, with a focus on the elimination of craving and the blockage of cocaine from its receptor (C. Grudzinskas, MDD, personal communication). - 7 LAAM's approval involved the rolling NDA process, and NIDA-sponsored centers were used for clinical trials. DEA cooperation led to registration of the clinical sites in six months; there is usually a higher time variable as to when site registration can be completed (L. Cummings, MDD, personal communication). The communication and cooperation of NIDA, FDA, DEA and ONDCP from the start of its development in 1990 until its approval in 1993 brought about an 18 day NIDA/FDA approval. Only another 60 days were needed for rescheduling and treatment regulation guidelines to be established by the DEA and ONDCP. LAAM's development and approval are not quite as impressive when histories of other public health important medications are considered. However, "if the industry, the research community and regulatory agencies can all act with mutual respect in their common duty to public health, each will benefit" (Grudzinskas and Wright, 1994). - 8 In April of 1995, it was announced that the "reasonable pricing" clause introduced in 1989 to National Institute of Health's (NIH) Cooperative Research and Development Agreement (CRADA) was removed (NIH, 1995). The deletion of this clause is a significant step toward long-term, productive partnerships between the NIH and the pharmaceutical industry, as it allows for independent company digression in the pricing of developed medications. Additionally, there have been an increased number of material transfer and screening agreements since the repeal of the clause, allowing NIDA to screen more compounds for anti-addiction medications and increasing the prospect for NIDA-industry partnerships in the development of anti-addiction medications in the near future (L. Cummings and F. Vocci, MDD, personal communication). #### CONCLUSION Even with recent progress in federal policy and clinical trial facilitation, it is evident that further effort is required to facilitate pharmaceutical involvement in the addiction treatment field. It is largely the responsibility of federal and state governments and agencies to streamline and coordinate their processes so as to enhance the probability that pharmaceutical companies will become invested in both the well-being of drug-dependent individuals and our nation as a whole. #### Works Cited - CRS (Congressional Research Service). 1993a. Medicaid: An Overview. Washington, DC. Library of Congress, CRS. CRS report No. 93-144 EPW. In: IOM -Development of Medications for the Treatment of Opiate and Cocaine Addictions: Issues for the Government and Private Sector. Washington, DC: National Academy of Sciences. - GAO (General Accounting Office). 1991. Substance Abuse Treatment: Medicaid Allows Some Services But Generally Limits Coverage. Washington, DC: GAO. HRD 91-92. In: IOM Development of Medications for the Treatment of Opiate and Cocaine Addictions: Issues for the Government and Private Sector. Washington, DC: National Academy of Sciences. - Grudzinskas, Charles, Wright, Curtis. 1994. An 18-Day Approval Becomes Reality. Pharmaceutical Executive. 74-80. Harwood, H.J. 1992. Lives Saved by Naloxone - Harwood, H.J. Thomson, M., Nesmith, T. 1994. Healthcare Reform and Substance Abuse Treatment: The Cost of Financing Under Alternative Approaches. In: IOM -Development of Medications for the Treatment of Opiate and Cocaine Addictions: Issues for the Government and Private Sector. Washington, DC: National Academy of Sciences. Hunt - DE, Rhodes, W. 1992. Characteristics of Heavy Cocaine Users Including Polydrug User, Criminal Activity, and Health Risks. Prepared for the Office of National Drug Control Policy by Abt Associates, Inc. In: IOM -Development of Medications for the Treatment of Opiate and Cocaine Addictions: Issues for the Government and Private Sector. Washington, DC: National Academy of Sciences. Hydrochloride (NIDA Drug Abuse Policy Center, Contract number 271-92-2004). Rockville, MD: NIDA. - IOM (Institute of Medicine). 1995. Development of Medications for the Treatment of Opiate and Cocaine Addictions: Issues for the Government and Private Sector. Washington, DC: National Academy Press. - IOM (Institute of Medicine) Workshop. Policies to Stimulate Private Sector Development of Anti-Addiction Medication. June 13, 1994. Washington, DC. - Kreek, M.J. 1992. Rationale for maintenance pharmacotherapy of opiate dependence. In: IOM Development of Medications for the Treatment of Opiate and Cocaine Addictions: Issues for the Government and Private Sector. Washington, DC: National Academy of Sciences. NIH (National Institute of Health). April 1995. NIH News. Contact Anne Thomas. SAMHSA (Substance Abuse and Mental Health Services Administration). 1994. Client Date System FY 1992: Opiate and Cocaine/Crack Admissions to Treatment. In: IOM Development of Medications for the Treatment of Opiate and Cocaine Addictions: Issues for the Government and Private Sector. Washington, DC: National Academy of Sciences. Workshop II: Drug Testing/Monitoring Technology ## THE ORLEANS PARISH DISTRICT ATTORNEY'S DIVERSIONARY PROGRAM Rosemary Mumm, MS, NCAC II DIRECTOR 619 South White Street New Orleans, Louisiana 70119 504-822-2414 Presentation at the: ONDCP/CTAC DRUG ABUSE TREATMENT TECHNOLOGY WORKSHOP August 16, 1995 ## COMPREHENSIVE APPROACH TO DRUG TREATMENT IN CRIMINAL JUSTICE SYSTEM - Identification of drug users - 2. Assessment and Classification - 3. Referral to appropriate treatment - 4. Supervision in treatment - 5. Frequent drug testing - 6. Relapse prevention training - 7. Aftercare planning - 8. Continuous monitoring (from 'National Drug Control Strategy", The White House 1992) ### ONDCP COUNTERDRUG TECHNOLOGY ASSESSMENT CENTER #### **AND** ## ORLEANS PARISH DISTRICT ATTORNEY DIVERSIONARY PROGRAM - * Demand Reduction Technology - * To evaluate the use of noninvasive drug testing using the biological matrices of: Hair **Sweat** Saliva * Testbed: currently operating Diversionary Program for drug-involved, first-time offenders ## ORLEANS PARISH DISTRICT ATTORNEY ENTRY INTO DIVERSION PROGRAM ### **DIVERSIONARY PROGRAM** #### PARTICIPANTS BY CRIMINAL CHARGE: FELONY 69% MISDEMEANORS 31% NARCOTICS 82% NON-NARCOTICS #### TOP 3 CHARGES | 1) | POSSESSION OF CRACK/COCAINE | 44% | |----|-----------------------------|-----| | 2) | POSSESSION OF MARIJUANA | 30% | | 3) | PRESCRIPTION BY FRAUD | 5% | 18% ## DIVERSIONARY PROGRAM REQUIREMENTS - Misdeameanor = Average 3.8 months Felony = Average 7.6 months - Meetings with Diversion Counselor 2 4 times per month - Abstinence - Community Substance Abuse Treatment - Random Urine Testing - Periodic Hair Testing - 12 Step Groups - Payment of Restitution and Program Fees - Family Involvement - Referral to Community Resources - Vocational/GED/Job Search - Health/Medical - Housing/Homelessness - Financial Needs #### FEATURES OF HAIR AND URINE TESTING ### Hair detection: Wider "Window" of Detection providing an historical view of drug use 30, 60 or 90-day samples standard, depending upon hair length and period to be analyzed - Non-invasive collection and easy storage - Resistant to tampering/adulteration - If challenged, a second sample can be submitted #### Urine detection: - Reflects recent drug use, 2 3 days for many drugs - On-site testing capabilities - Wider range of drugs for volume, broad-based testing Variable Commence ## USE OF DRUG TESTING IN THE DIVERSIONARY PROGRAM #### HAIR TESTING: Collection at program intake (on-site) and every 2 months throughout program duration - assessment of drug involvement - monitoring drug abstinence - reduces frequency of urine testing - provides backup for missed urine tests - enhances initial and revised treatment planning - provides a sense of security for program skeptics - deterrence of drug use since "you can't beat it" - results reveal highly contaminated samples #### **URINE TESTING:** Collection at intake (off-site) and randomly throughout program duration (2-3 times per month) Daily call to a recorded message line to receive notification (365 days a year) - provides immediate feedback on most recent drug use - deterrent effect more frequent - tests for drugs other than the NIDA 5 ### RECIDIVISM PERSONS RE-ARRESTED RE-ARREST INCIDENTS (As of 7/25/95) # The Alternative Matrix Program for Drug Abuse Detection and Deterrence David A. Kidwell, Ph.D. Chemistry Division Naval Research Laboratory Washington, DC 20375 202-767-3575 August 16, 1995 **Drug Testing/Monitoring Technology** ## **Outline** - Overview of the program - Issues uncovered with hair analysis any potential consumer should consider - Example of technology application - Tandem mass spectrometry ## Focus of the Alternative Matrix Program Examine the application of other matrices besides urine to deter drug use ### • Hair: - Samples easily obtained - Longer window of detection - Before widely employed - - Examine passive exposure issues - Provide better analysis technology ### Sweat: - Applicability just being investigated - Potential for long-term, remote monitoring of high-risk individuals in criminal settings ### Saliva: - Easily collected - Possibility for DWI Levels correlated with intoxicated state ## **Does Drug Testing Deter Drug Use?** Percent Reported Drug Use Data from DoD World Wide Surveys # Why Perform Research in Testing Technology? - Main historical matrix was urine - Urine can: - Provide a large sample - Drugs present in high concentrations - Testing cheap - Urine disadvantages: - Messy to collect properly - Can be easily
adulterated/substituted - Short window of detection for many drugs Window of Detection Influences Testing Rate, Convenience, Cost, and Gaming of System by User ## **Does Impression of Detection Influence Use?** Data from DoD World Wide Surveys ## Most Pressing Issue False Accusation of an Individual as a Drug User - Depends upon the testing scenario - Legal AND employment purposes - Beyond a reasonable doubt - Don't want to incarcerate or fire an individual based on faulty science - Screening or survey purposes - False positives must be considered but weight depend upon the consequences Example is ingestion poppy seeds producing a Heroin positive for urinalysis ## Older Hypothesis for Incorporation of Drugs (Growth Model) ## Can You Remove All External Exposure? Removal of Externally Applied Cocaine Exposed to 5 µg/mL Cocaine, 1 hr, 37C, Phos 5.6 ## Can Laboratory Procedures Distinguish Exposure from Use? Example of two literature methods purported to be useful Problem: Literature procedures ignore that people wash their hair. Hair care removes external contamination leaving tightly bound drug introduced from external sources and confuses the laboratory analysis. ## Current Model for Incorporation of Drugs (Sweat Model) # Why is the Means of Incorporation of Drugs into Hair Important? Why should sweat be of interest? - Drugs in sweat can come from two sources: - Drug user - - Ingestion of the drug and then excreation into the sweat - Contact of the drug with drug-free sweat effects determination of drug use - Non-drug user - Contact of the drug with drug-free sweat - Contact with the drug in the past and then sweating - Contact with sweat of another drug user - Only need to consider passive exposure questions if contact with a drug, through past or present use, is possible. - Hair testing is becoming widely employed for civilian preemployment screening - Being used in numerous court cases - Laboratory studies showed potential for passive exposure and false accusation of drug use - Does this occur in real-life situations? - Examined children living in a cocaine using environment # Positive Rate of Cocaine Users and Their Children ### **Children Positive** ## **Adults Positive** **Negative** ## Can We Distinguish Passive Exposure from Use by the Amount of Drug Found? Distribution of Cocaine in the Hair of Users and Their Children # Are Metabolites a Marker of Cocaine Use? Benzoylecgonine? **Family Member** ## Hair Type Bias - Hair is a complex matrix - Mechanism for drug incorporation not clear - Often poor correlation of use and amount in hair - Black African hair appears to have more drugs than Caucasian hair ## Does All Hair Behave the Same Towards Drugs? Uptake of Cocaine by Various Hair Types Exposed to 5 μg/mL Tritiated Cocaine, 1 hr, 37C, pH 5.6 ng Cocaine/mg hair # What are the Implications for the Use of Hair Analysis? #### How much proof is necessary for exposure/use? - Interpretation of hair analysis in forensic cases depends on the circumstances - Forensic setting - Interpret results cautiously - Preemployment testing - Inform customer of caveats - Survey - Possible support for other data - Keep in mind - - Negative results not very meaningful - Differences in uptake of drugs vs. hair type - Negative results prove nothing may be too low of dose - External exposure hard to differentiate from actual use - Drugs are present in many environments - Drugs enter hair by a number of different routes - Once present, route of entry lost and no removal procedure will distinguish endogenous drugs from external contamination - Patterns of drug use may be mimicked by external exposure ## **Technology Needed for Testing of Other Matricies** Like urine other matrices contain drugs - However: - Concentrations lower than in urine - Sample size limited - Technology must be pushed for accurate identification and confirmation # Comparison of Conventional Mass Spectrometry to Tandem Mass Spectrometry # Participants in the Alternative Matrix Program #### Summary - Working with drug treatment personnel to: - Gather baseline data for saliva, sweat, and hair - Compare to urine - Disseminate information to the drug testing community - Test and address concerns of passive exposure - Working with Law Enforcement personnel to: - Develop advanced technology # Telemetered Drug Detection System: A Demand Reduction Tool Gil F. Richards, JPL/CalTech ## JPL Device Development Team - Biochemistry: - Gil Richards and Roger Kern, Chemical and Biological Technologies Group, Science and Technology Development Section - Gregory Kampa, Kampa Consulting - Electronics and Telemetery - Conrad Foster, Communications Ground System Section # Goal: Real-Time Detection of Cocaine Abuse in at Home Detainees and Out-Patients - The device should: - Be non-invasive - Expand upon existing drug detection techniques to minimize research and development time - Be an extension of current electronic sensor technology - Have remote capability and rugged design compatible with normal daily activities - Contribute to the development of a generic technology to detect substances of abuse #### **Benefits** - Criminal Justice System - Real time remote drug abuse monitoring coupled to at home detention - Drug Abuse Treatment - Monitoring out-patient compliance - Rapid overdose screening - General Medical Community - Ethical pharmaceutical dose monitoring in hospitals, at home and in remote emergency settings ## **NASA Applications** Remote data acquisition for life science experiments - space flight medical assessment - EVA muscular fatigue monitor - Cocaine is detected by a chromogenic antibody competition assay - Signal is converted by photodiode illumination array matched to antibody reporter dye - Device is attached directly to skin as a transdermal patch - Transmitter and Interface Electronics are coupled to a reusable at home detention bracelet or anklet system ## **Steps in Device Development** - Demonstrate Drugs in Sweat - Demonstrate Ab's displacement is a suitable detector - Demonstrate sufficient sweat can be made available to operate device - Demonstrate biochemical signal can be presented to match with electronic interface - Demonstrate transdermal patch operation on human subjects - Integrate electronics, telemetry and packaging #### MEASURED DRUG CONCENTRATIONS IN PERSPIRATION | Drug | Concentration (µg/ml) | Range
(µg/ml) | |---------------------------------|-----------------------|------------------| | Methamphetamine | 1.4 | 0.88-1.42 | | Morphine | 1.5 | 0.31-2.7 | | THC | 0.32 | 0.034-1.0 | | Benzodiazepine | 0.19 | 0.14-0.33 | | Cocaine | 50 | 3.4-317 | | Barbiturate | 70 | 66-74 | | Methadone | 0.48 | 0.31-0.86 | | Cotinine (nicotine metabolite) | 0.51 | 0.10-0.93 | | | Rest
(w/o exercise) | Endurance
exercise | Exhaustive exercise | |--------------|------------------------|-----------------------|---------------------| | | | . ·. | | | Lactic Acid: | 1990 µg/ml | 3940 µg/ml | 10,400 µg/ml | | Ammonia: | 153 µg/ml | 463 µg/ml | 1630 µg/ml | Injection Volume = 50 ul Flow flate = Im/min Excitation Wavelength = 490 nm Emmission Wavelength = 520 nm #### **Sweat Production** - Normal Rate of Sweat Production ranges from near 0 to 0.5 ml/ sq.cm/day - Sweat Production under a patch has been measured at 0.017 ml/sq.cm/day which is experimentally sufficient to run the proposed multilaminate device - Using passive area amplification the flow rate can be further enhanced several fold - Incorporation of an active Pilocarpine iontophoresis element into the patch can produce 0.050 ml/sq.cm in 10 minutes #### **SAMPLE ON DEMAND:** Pilocarpine Sweat Enhancement #### Detector Layer Geometry # **Steps in Device Development** - ✓ Demonstrate Drugs in Sweat - ✓ Demonstrate Ab's displacement is a suitable detector - ✓ Demonstrate sufficient sweat can be made available to operate device - Demonstrate biochemical signal can be presented to match with electronic interface - Demonstrate transdermal patch operation on human subjects - Integrate electronics, telemetry and packaging ### Commercialization - Merle McKenzie, JPL Technology Transfer and Commercialization Office - James Rooney, Technology Affiliates - Steve Prusha, Targeted Commercialization - JPL Commercialization Workshop for Industry, July 26, 1995 # 163302 ## ALCOHOL & DRUG USE IN THE WORKPLACE J. MICHAEL WALSH, Ph.D. # Current Use any Illicit Drug Marijuana, Cocaine [1979-1993] ## CURRENT USE ILLICIT DRUGS - ☐Employed Full Time - ☑ Employed Pt. Time - ⊡Unemploye∈ - □Oliner # Current Drug Use by Employed ### asn joyoatt noillin 801 (leismixorqqs--8891 ni 🗀 dinomissi ni lonoals besu ansahemA ן About 11 million are classified as אוווסן אין drinkers מייי sbinib legali esu siexinib (weel 1862 L # Drug and Alcohol Testing The key to an effective program ## Percentage of US Companies Conducting Employee Drug Tests # Test-positive Rate Among Job Applicants # Signs of Success: Decrease in Current Drug Use Among Full Time Workers TESTE MALES EL CETOINE ES Source: National Household Survey ### The Laboratory in the "Cassette" specific: 21 selected monoclonal antibodies. • simple: only 2 pipetting steps. • visual: precise, readible results without additional equipment. • present: ease of use, anywhere. • complete: no additional reagents required. MERCK Helping solve the problems of drug abuse #### **ONTRAK TESTCUP INSTRUCTIONS...** 1. Add specimen to cup. 2. Close lid by turning to "TEST" position. 3. Tilt cup *forward* for 3 – 5 seconds. Wait for "test valid" lines to appear. Timing is not required. 5. Peel off label and read each result. 6. Close lid by turning to "stop" position for storage. Please refer to the package insert for full details on the use of ONTRAK TESTCUP. For immediate technical assistance, contact the Roche Response Center* at 1-800-526-1247. Plandex 12258-0795 #### **Roche Diagnostic Systems** A Member of the Roche Group Roche Diagnostic Systems, Inc. Branchburg Township 1080 US
Highway 202 Somerville, NJ 08876-3771 1-800-526-1247; in Canada 1-800-268-0482 ## FINALLY, An alcohol Test that's ... - Simple - Accurate - Reliable Three easy steps: 1. Swab mouth to collect saliva. 2. Insert collector into test. 3. Read color bar after several minutes. * A150 test only • D.O.T. Approved* & F.D.A. Cleared Helping solve the problems of drug abuse # Alcohol 1. Place ON·SITE Alcohol test card on a flat surface and peel off protective cover. Remove contents and discard desiccant. Record specimen I.D. 2. Using small transfer pipet, transfer only one drop of reagent from reagent well to detection reagent pad in the Result well. 3. Using large transfer pipet, transfer one drop of specimen to the Sample well. 4. Read results 2 minutes after sample addition. Purple "positive" sign at ≤2 minutes indicates ethanol concentration ≥0.01% w/v. Negative specimen (<0.01%) does not produce a positive sign (+) in ≤2 minutes. #### Results Positive test results are presented by a purple positive sign (+). Negative results are presented by the reagent pad remaining pale yellow. #### **Ordering Information** To add a "plus" to your alcohol testing program, call the Roche Response CentersM at 1-800-526-1247. Package Size Order Number ON•SITE Alcohol Test 50 tests 00302 #### **Roche Diagnostic Systems** a subsidiary of Hoffmann-La Roche Inc. Roche Diagnostic Systems, Inc 1080 US Highway 202 Branchburg, NJ 08876-1760 1-800-526-1247; in Canada 1-800-268-0482 Plandex 12242-0593R ## **EVALUATION RESEARCH IN DEMAND REDUCTION PLANNING** Jerome J. Platt, Mindy Widman, and Victor Lidz Division of Addiction Research and Treatment Medical College of Pennsylvania and Hahnemann University Department of Psychiatry Philadelphia, Pennsylvania ### PROGRAM EVALUATION DEFINED A process of making reasonable judgments about program - Effort - Effectiveness - Efficacy - Adequacy Based on systematic data collection and analysis Designed for use in - Program management - External accountability - Future Planning Includes special focus on - Accessibility - Acceptability - Comprehensiveness - Integration of services - Awareness - Availability - Continuity - Cost of Services Source: Attkisson and Broskowski (1978). |] · | • | | | |-----|------------|----|----| | | | | | | | | | _; | | | | | | | | Appendices | | | | • | | .* | | | · | | • | |) Formative Evaluation (Exploratory Research) Process Evaluation 计图像图像 医二氏性皮肤 医二氏性畸胎 Outcome Evaluation* #### TYPES OF EVALUATION RESEARCH #### FORMATIVE EVALUATION (Exploratory Research) - Provides information to guide planning, development, or implementation of a specific program. - Always prospective. - Includes: Needs Assessments. - Examples: - Study tracking incidence of substance abuse among New Jersey correctional admissions to inform program planning - Early bleach distribution studies which evaluated the most appropriate packaging. #### PROCESS EVALUATION • Examines whether or not the services which should have been provided, were provided. Also explores who received these services. - Can be prospectively or retrospectively designed. - Example: Studies of who accepts bleach for needle disinfection. ### TYPES OF EVALUATION RESEARCH #### **OUTCOME EVALUATION*** - Explores the effect of the program on the participants, on society, or on others. Can be prospectively or retrospectively designed. - Includes: - evaluation of program's success in meeting its outcome goals - cost-effectiveness (or cost-benefit) analysis - impact evaluation, that ist evaluation, that is, effect of program on the rates of "ill designed to treat - Example: DATOS • True Experimental Designs Quasi-Experimental Designs TRUE EXPERIMENTAL DESIGNS Must be prospective Includes: - Randomized Control Trial - Cross-over Design TRUE EXPERIMENTAL DESIGNS (continued) ## RANDOMIZED CONTROL TRIAL • Subjects are randomly assigned to a treatment and a control group. Assignement can be blind (unknown to the participants) or double blind (unknown to the participants or those giving the treatment). In drug treatment research, likely to be blind only. • Example: Clinical trials of drugs as treatment for disease. TRUE EXPERIMENTAL DESIGNS (continued) ## CROSS-OVER DESIGN - Subjects are randomly assigned to receive a treatment or a placebo. After the passage of time, those in the control group receive the treatment and those who have received the treatment receive the placebo. Can also be blind or double blind. - Example: Patients receive carbamazepine for manic-depression for 4 weeks, while another group of patients receive a placebo. After 4 weeks, the "treatments" are switched. ## TRUE EXPERIMENTAL DESIGNS (continued) #### MAJOR STRENGTHS - Most likely to truly measure the impact of the program, since subjects are randomly assigned to a treatment or control condition - · In cross-over design, subjects act as their own controls #### MAJOR WEAKNESSNES - Can be expensive, because study must continue long enough for its effect to be measured - Denies subjects in control group the benefit of the treatment or drug being offered. - Conversely, subjects in the experimental group may be exposed to a dangerous intervention. - May not be replicable in the real world. - Those agreeing to participate may be very different from the general population Can be prospective or retrospective Lacks Random Assignment Includes: - Cohort Studies - Prospective Survey - Before-After Design QUASI-EXPERIMENTAL DESIGNS (continued) ## **COHORT STUDIES** - Examines two groups (cohorts) who have been assigned to interventions by luck or chance. Assignment not in hands of researcher. - Example: Comparison of two cohorts of drug abusers entering different treatment settings during the same period of time QUASI-EXPERIMENTAL DESIGNS (continued) #### PROSPECTIVE SURVEY - E Long-term study of individuals who may become assigned to interventions. - Example: Study of individuals with alcohol problems who may or may not, due to the passage of time, enter a particular treatment program(s) for these problems. QUASI-EXPERIMENTAL DESIGNS (continued) ## BEFORE-AFTER DESIGN • Examines the effect of an intervention on only one group of individuals. • Example: DARP studies QUASI-EXPERIMENTAL DESIGNS (continued) #### MAJOR STRENGTHS - Can be much less expensive (exception is Prospective Study) - Reduces the chance that individual will be eliminated from participating in a desired program - Occurs in the real world 3-82 QUASI-EXPERIMENTAL DESIGNS (continued) ## MAJOR WEAKNESSNES - Since there is no random assignment, groups may not be comparable. This can be somewhat controlled by subject matching. - If treatment has become the "gold standard," it may become difficult to find untreated or "other treated" controls - In the Prospective Study, one group may end up with too few people for an accurate statistical assessment - Lack of control group in the Before-After design does not allow researchers to accurately assess if the observed change is due to the intervention or to some other factor, for example the passage of time. ## THE SPECIAL CASE OF DRUG TREATMENT - Variables usually measured may not actually reflect treatment improvement - Varying definitions can be applied to the same term - Standards of success may be highly variable for different types of drug users - Research has consistently assessed short-term, rather than long-term, outcome THE SPECIAL CASE OF DRUG TREATMENT (continued) Variables usually measured may not actually reflect treatment improvement For example, <u>retention in treatment</u> is usually believed to be highly related to treatment success. However, some studies have shown that retention is reflective of characteristics which usually predict a poor outcome, such as severity of psychological involvement (Carroll, Power, Bryant, and Rounsaville, 1993). THE SPECIAL CASE OF DRUG TREATMENT (continued) Varying definitions can be applied to the same term 3-86 For example, <u>retention in treatment</u> has been variously defined as lasting in treatment for 1-4 weeks after entry (Agosti, Nunes, Stewart, and Quitkin, 1991), attending half of required treatment sessions (Gainey, Wells, Hawkins, and Catalano, 1993), or completing a number of sessions over a certain period of time (Carroll, Rounsaville, and Gawin, 1991). THE SPECIAL CASE OF DRUG TREATMENT (continued) • Standards of success may be highly variable for different types of drug users For example, <u>abstinence</u> from all drugs may not be a standard applicable to those in methodone maintenance treatment. In another example, cocaine abusers who are also alcoholics may not be able to completely control both addictions, at least without the addition of services during their treatment (Carroll, Rounsaville, and Bryant, 1993). gradient das de la companya de la c -87 THE SPECIAL CASE OF DRUG TREATMENT (continued) • Research has consistently assessed short-term, rather than long-term, outcome For example, most studies <u>measure outcome</u> for only 6 months to 1-year following treatment. This time period may be insufficient to assess the actual impact of treatment, both positive and negative. However, the costs per subject for prospective longitudinal studies may be prohibitive. Likewise, memory, which is relied upon for retrospective longitudinal studies, may be faulty. ## RECOMMENDATIONS FOR EVALUATION STUDIES I ## Research on Populations - Types - General Population Studies - Client Population Studies - Examine - Demography - Psychopathology - Natural history - Treatment-seeking behavior - Patient needs - Availability for treatment - Diagnostic subtypes - Diversity - Differences in natural contingencies (such as employment or social networks) - Example: National Survey of American Attitudes on Substance Abuse (1995). Source: Adapted from Leukefeld and Tims (1993) ### RECOMMENDATIONS FOR EVALUATION STUDIES II ## Treatment Modalities and Therapy Research - Studies of the effectiveness of interventions, including
treatment modalities such as inpatient versus outpatient care - Studies evaluating the effectiveness of pharmacological agents, including field testing - Systematic evaluation of nontraditional or experimental interventions, such as acupuncture - Assessments of self-help treatments, including 12-step program - Theory-based studies Example: I-glutamine study, Jerome J. Platt, P.I. Source: Leukefeld and Tims (1993) ## RECOMMENDATIONS FOR EVALUATION STUDIES III ## Research Design Issues - Documentation of the training and experience of treatment providers in treatment outcome studies - Inclusion of both behavioral and intrapsychic outcome measures - Inclusion of survival rates in outcome analysis - Reconciliation of differences among studies, including standardization of outcome terminology and definition Example: Drug Evaluation Network System, Herbert Kleber, P.I. Source: Leukefeld and Tims (1993) #### RECOMMENDATIONS FOR EVALUATION STUDIES IV #### Other Issues - The importance of diagnosis and comorbidities in drug treatment - The value of treatment planning in assessing outcome - Matching patients to treatment - Drug testing and drug testing methodologies as integral to treatment - The role of legal issues and legal involvement in drug treatment outcomes - HIV/AIDS - Relapse to drug use and relapse prevention - The role of training in the effectiveness of counselors and other treatment personnel Examples: Alternative Matrix Technology Program, David Kidwell, P.I.; PET study, Edythe London, P.I.; and Cocaine Analytic Antibodies Research, Donald Landry, P.I. Source: Modified from Leukefeld and Tims (1993) ## Appendix A List of Attendees . · MS. DIANA ANIM DIRECTOR OF SUBSTANCE ABUSE SERVICES BALTIMORE CITY DETENTION CENTER 401 E. MADISON ST. BALTIMORE,MD 21202 (410) 637-1049 MS. LAURA BOUCHER CORRECTIONS COUNCILOR FRANKLIN COUNTY HOUSE OF CORRECTIONS C/O F.C.H.C 160 ELM STREET GREENFIELD,MA 01301 (413) 774-4014 MR. WILLIAM R. CALTRIDER PRESIDENT CENTER FOR ALCOHOL & DRUG RESEARCH AND EDUCATION 22 W. PENNSYLVANIA AVE. SUITE 309 TOWSON,MD 21204 (410) 494-8388 MR. HARRY F. CONNICK DA NEW ORLEANS NEW ORLEANS DISTRICT ATTORNEY'S OFFICE ORLEANS PARISH DISTRICT 619 SOUTH WHITE STREET NEW ORLEANS, LA 70119 (504) 827-7232 MS. SHARON WIMAN CUNNINGHAM DIRECTOR OF SALES & MARKETING FRANKLIN DIAGNOSTICS 140 HANOVER AVE. CEDAR KNOLLS,NJ 07927 (201) 285-5116 MR. PAT DONAHOE DRUG TESTING COMMITTEE MEMBER PA. STATE TROOPERS ASSOCIATION 3625 VARTAN WAY HARRISBURG,PA 17110 (717) 540-5646 MR. JACK FARRELL EXECUTIVE DIRECTOR PARTNERSHIP FOR A DRUG-FREE NJ 300 OBERVER HWY 214 SUITE 214 HOBOKEN,NJ 07030 (201) 798-7171 MR. JOHN AVOLIO APPLICATIONS CHEMIST BARRINGER INSTRUMENTS 219 SOUTH STREET SUITE 200 NEW PROVIDENCE,NJ 07974-2100 (908) 665-8290 DR. ALBERT BRANDENSTEIN DIRECTOR CTAC OFFICE OF NATIONAL DRUG CONTROL POLICY 750 17TH ST NW WASHINGTON, DC 20500 (202) 395-6781 MR. BOYCE CAMPBELL OFFICE OF NATIONAL DRUG CONTROL POLICY CTAC 750 17TH ST NW WASHINGTON,DC 20500 (202) 395-6761 MS. PENELOPE COOK DRUG DEMAND REDUCTION OFFICER 377TH THEATER ARMY AREA COMMAND 5010 LEROY JOHNSON DRIVE NEW ORLEANS, LA 70056 (504) 286-9289 MS. BONNIE CYPULL MANAGER TREATMENT ENHANCEMENT BALTIMORE SUBSTANCE ABUSE SYSTEM 2701 N. CHARLES ST. SUITE 501 BALTIMORE,MD 21218 (410) 554-8111 MR. JACK DURELL PRESIDENT TRI 2005 MARKET STREET 1 COMMERCE SQUARE 1020 PHILADELPHIA,PA 19103 (215) 665-2880 MS. DIANA FISHBIEN SENIOR RESEARCHER U.S DEPT OF JUSTICE 1100 VERMONT AVE., 2ND FLOOR WASHINGTON,DC 20530 (202) 616-2908 MR. PATRICK F. BOGAN EXECUTIVE DIRECTOR FRIENDS MEDICAL RESEARCH 2330 W. JOPPA RD. SUITE 103 LUTHERVILLE, MD 21093 (410) 823-5116 MS CANDI BYRNE CLEARINGHOUSE 1600 RESEARCH BOULEVARD ROCKVILLE, MD 20850 (800) 732-3277 DR. STELLA CHAO RESEARCH SCIENTIST ALZA PHARMACEUTICALS CORP 950 PAGE MILL PALO ALTO,CA 94304 (415) 962-7604 MR. LEE CUMMINGS SPECIAL ASSISTANT TO THE DIRECTOR NATIONAL INSTITUTE ON DRUG ABUSE 5600 FISHERS LANE RM 11A-55 ROCKVILLE, MD 20857 (301) 443-1428 MS. ANNA DE JESUS PRE-DOCTORAL FELLOW NIH/NIDA/ARC 4940 EASTERN AVE. BALTIMORE,MD 21224 (410) 550-1594 MS. ANDREA EVANS EXECUTIVE DIRECTOR BALTIMORE SUBSTANCE ABUSE SYSTEM 2701 N. CHARLES ST. SUITE 501 BALTIMORE, MD 21218 (410) 554-8111 MS. ERIKA FITZPATRICK GOVERNMENT INFO SERVICES PERIODICAL PRESS UNITED STATES HOUSE OF REPRESENTATIVES WASHINGTON, DC 20418 MS. MARY LEE FLEISHELL MANAGER MARKETING AND BUSINESS DEVELOPMENT IMMALOGIC PHARMACEUTICAL INC 610 LINCOLN STREET WALTHAM,MA 02159 (617) 466-6082 MR. MIKE FRIEDENBERGER DRUG TESTING COMMITTEE MEMBER PA. STATE TROOPERS ASSOCIATION 3625 VARTAN WAY HARRISBURG,PA 17110 (717) 540-5646 MR. JOSEPH GERADA AGENCY AGAINST DRUG & ALCOHOL ABUSE - MALTA C/O DEA ATTN: GAYLE RUPERT 700 ARMY NAVY DRIVE ARLINGTON,VA 22202 (202) 307-4249 MR. R. JOHN GREGRICH POLICY ANALYST OFFICE OF NATIONAL DRUG CONTROL POLICY OFFICE OF DEMAND REDUCTION 750 17TH ST. NW WASHINGTON,DC 20500 (202) 395-6749 MS. BEVERELY HAWKS PROJECT OFFICER ELECTRONIC PROVING GROUND P.O BOX 109 FORT HUACHUCA,AZ 85613 (520) 538-4927 MS. CAROL HUBNER MEDICAL DEVELOPMENT DIV OF NIDA PARKLAWN BLDG, RM 11A55 5600 FISHERS LANE ROCKVILLE,MD 20857 (301) 443-6270 DR. PAUL F. JACKSON GUILFORD PHARMACEUTICALS 6611 TRIBUTARY STREET BALTIMORE,MD 21224 (410) 563-6131 MR. JOSEPH FORTUNA PRESIDENT CHEMICAL DETECTION SERVICES, INC. 9208 ARABIAN AVE. VIENNA,VA 22182 (703) 281-0921 MR. PAUL M. GAGNON U.S.ATTORNEY U.S. DEPT. OF JUSTICE - U.S. ATTORNEY'S OFFICE -NH 55 PLEASANT ST. RM 312 CONCORD,NH 03301 (603) 225-1552 MS. BARBARA GIBSON DIRECTOR OF EXECUTIVE AFFAIRS ADDICTION RESEARCH & TREATMENT CORP. 22 CHAPEL STREET BROOKLYN,NY 11201 (718) 260-2950 MS. RUTH HARGROVE-JOHNSON HEALTH PROGRAM ADMINISTRATOR BALTIMORE SUBSTANCE ABUSE SYSTEM 2701 N. CHARLES ST. SUITE 501 BALTIMORE,MD 21218 (410) 554-8111 DR. BARBARA H. HERMAN DIRECTOR CLINICAL OPIOD PROGRAMS MEDICATIONS DEVELOPMENT DIVISION, NIDA 5600 FISHER LANE RM 11A-55 RM 11A-55 ROCKVILLE,MD 20857 (301) 443-3318 MR. DENNIS HUNSICKER COMMITTEE CHAIRMAN DRUG TESTING COMMITTEE PENNSYLVANIA STATE TROOPERS ASSOCIATION 3625 VARTAN WAY HARRISBURG,PA 17110 (717) 540-5646 DR. JEROME H. JAFFE HHS/PHS CSAT 218 BEECH VIEW COURT TOWSON,MD 21286 (301) 443-8490 MS. AIME FREEDMAN INTERN OFFICE OF NATIONAL DRUG CONTROL POLICY CTAC 750 17TH ST. NW WASHINGTON,DC 20500 (202) 395-6619 MR. FRED GARCIA DIRECTOR OFFICE OF NATIONAL DRUG CONTROL POLICY 750 17TH ST. NW WASHINGTON,DC 20500 (202) 395-6738 MS. ANTOINETTE M. GILHOOLEY MANAGER MEMBER ASSISTANCE PROGRAM PA STATE POLICE 175 EAST HERSHEY PARK DRIVE HERSHEY,PA 17033 (717) 783-5590 MR. THOMAS HARR CHIEF MENTAL HEALTH & ADDICTION SERV. HEALTH & HUMAN SERVICES 401 HUNGERFORD DR. 5TH FLOOR ROCKVILLE,MD 20850 (301) 217-1300 MS. SANDI HILL CHIEF EXECUTIVE OFFICER BALTIMORE RECOVERY CENTER 16 SOUTH POPPLETON ST. BALTIMORE,MD 21201 (410) 962-7180 MS. CARRIE T INGALLS NATIONAL ACADEMY OF SCIENCE 2101 CONSTITUTION AVE. N.W. WASHINGTON,DC 20418 (202) 334-3387 MS. ROSE JOHNSON OFFICE OF NATIONAL DRUG CONTROL POLICY CTAC 750 17TH ST. NW WASHINGTON,DC 20500 (202) 395-6774 MR. BRUCE D JOHNSON NAT'L DEVELOPMENT & RESEARCH 11 BEACH STREET NEW YORK,NY 10013 (212) 966-8700 MS. MARY JONES-BROWN INMATE SERVICES SUPERVISOR MONTGOMERY COUNTY DEPARTMENT OF CORRECTIONS & REHABILITATION 1307 SEVEN LOCKS ROAD ROCKVILLE, MD 20854 (301) 294-1755 DR. JONATHAN L. KATZ CHIEF PSYCHOBIOLOGY SECTION NIDA DIVISION OF INTRAMURAL RESEARCH 4940 EASTERN AVE. BLDG. C BALTIMORE,MD 21224 (410) 550-1533 DR. DAVID KIDWELL NAVAL REASEARCH LAB CODE 6170 WASHINGTON, DC 20735 (202) 767-3575 DR. GREG LARSEN DIRECTOR UNIVERSITY OF TENNESSEE 105 STUDENT SERVICES BLDG KNOX,TN 37996 (615) 974-6621 DR. ALAN LESHNER NIDA 5600 RM 1005 FISHERS LANE ROCKVILLE,MD 20857 (301) 443-6480 SGT. JAMES LOGUE DELAWARE STATE POLICE P.O. BOX 430 DOVER,DE 19903 (302) 378-5216 MR. BEN JONES EXECTUIVE DIRECTOR NASADAD 444 N. CAPITOL ST. SUITE 642 WASHINGTON,DC 20001 (202) 783-6868 MR. ELIAS "LOU" KALLIS OFFICE OF NATIONAL DRUG CONTROL POLICY 750 17TH ST. NW WASHINGTON,DC 20500 (202) 395-6760 MR. MICHAEL A. KEANE EXECUTIVE DIRECTOR CHAMPLIN FOUNDATION 237 SOUTH 18TH STREET PHILADELPHIA,PA 19103 (215) 512-1291 DR. HERBERT D KLEBER RESEARCH FDN MENTAL HYGIENE 722 WEST 168TH STREET NEW YORK,NY 10032 (212) 841-5220 DR. ARVID G LARSON NICOLE LARSON ASSOCIATES 6921 ESPEY LANE MCLEAN,VA 22101-5455 (703) 893-4971 DR. VICTOR LIDZ ASSISTANT PROFESSOR MEDICAL COLLEG OF PA HAHNEMANN BROAD & VINE - MS 984 PHILADELPHIA, PA 19102 (215) 762-7289 DR. EDYTHE D LONDON CHIEF SECTION ON NEUROIMAGING & DRUG ACTION NIDA ADDICTION RESEARCH CENTER P.O. BOX 5180 BALTIMORE, MD 21224 (410) 550-1540 MR. JAMES L. JONES UNIT MANAGER MONTGOMERY COUNTY DEPARTMENT OF CORRECTIONS & REHABILITATION 1307 SEVEN LOCKS ROAD ROCKVILLE,MD 20854 (301) 294-1735 MR. GEORGE A. KANUICK PUBLIC HEALTH ANALYST SUBSTANCE ABUSE AND MENTAL HEALTH SERVICES ADMINISTRATION ROCKWELL II, 6TH FLOOR 5600 FISHERS LANE ROCKVILLE, MD 20857 (301) 443-7730 MR. C. WAYNE KEMPSKE ASSISTANT DIRECTOR MD ALC & DRUG ABUSE ADM 201 W PRESTON STREET BALTIMORE,MD 21201 (410) 225-6901 DR. DONALD LANDRY COLUMBIA UNIVERSITY 630 WEST 168TH STREET NEW YORK,NY 10032 (212) 305-6874 MS. JOSIE LEHRER INTERN OFFICE OF NATIONAL DRUG CONTROL POLICY CTAC 750 17TH ST. NW WASHINGTON,DC 20500 (202) 395-6619 MS. CATHARYN T LIVERMAN NATIONAL ACADEMY OF SCIENCE 2101 CONSTITUTION AVE. N.W. WASHINGTON,DC 20418 (202) 334-3387 MR. KENT LUNSFORD OFFICE OF NATIONAL DRUG CONTROL POLICY CTAC 750 17TH ST. NW WASHINGTON, DC 20500 (202) 395-6777 MR. PETER LUONGO NETWORK SERVICES MANAGER HEALTH & HUMAN SERVICES 401 HUNGERFORD DR. 5TH FLOOR ROCKVILLE,MD 20850 (301) 217-1340 MR. JAMES P. MCAVOY PROGRAM MANAGER ORIANA HOUSE P.O. BOX 1501 AKRON,OH 44309 (216) 996-7730 MR BRADLEY J MICKLICH MANAGER ARGONNE NATIONAL LABORATORY 9700 S. CASS AVE. ARGONNE,IL 60439 (708) 252-4849 MS SUZANNE MURPHY EXECUTIVE DIRECTOR CANARSIE AWARE INC 1310 ROCKAWAY PARKWAY BROOKLYN,NY 11236 (718) 257-3195 MR. DAVID N NURCO
FRIENDS MEDICAL SCIENCE RES CT 1229 W MT ROYAL AVENUE BALTIMORE,MD 21217 (410) 837-3977 MS. RENEE N. PARCOVER CORRECTIONS SPECIALIST III MONTGOMERY COUNTY DEPARTMENT OF CORRECTIONS & REHABILITATION 1307 SEVEN LOCKS ROAD ROCKVILLE,MD 20864 (301) 294-1755 DR. JEROME J PLATT HAHNEMANN UNIVERSITY BROAD & VINE - MS984 PHILADELPHIA,PA 19102-1192 (215) 762-4307 MS. DANIELLE B. MASSEY-HILL OUTPATIENT COORDINATOR COOPER HOSPITAL 600 BENSON STREET CAMDEN,NJ 08102 (609) 342-8799 DR. A. THOMAS MCLELLAN UNIVERSITY OF PENNSYLVANIA 2005 MARKET STREET SUITE 1020 PHILADELPHIA, PA 19103 (215) 665-2880 MS. THERESA MITCHELL DIRECTOR NEXT PASSAGE COUNSELING CENTER 730 ASHBURTON STREET BALTIMORE,MD 21216 (410) 362-7980 MS. MARIAN PATRICIA NEEDLE ACTING DIRECTOR INTERNATIONAL PROGRAM NATIONAL INSTITUTE ON DRUG ABUSE 5600 FISHERS LANE ROCKVILLE, MD 20857 (301) 594-1928 MS. ROSE OCHI ASSOCIATE DIRECTOR OFFICE OF NATIONAL DRUG CONTROL POLICY 750 17TH ST. NW WASHINGTON,DC 20500 (202) 395-6632 MR. EDDIE L. PERKINS DRUG DEFENSE COORDINATOR DRUG ENFORCEMENT ADMINSTRATION 317 QUARRY AVE. ARLINGTON,VA 22202 (202) 307-8185 MS. ROSITA PODBERESKY JOHNSON BASSIN & SHAW 8630 FENTON STREET 12TH FLOOR SILVER SPRING, MD 20910 (301) 495-1080 MR. ROBERT L. MAY EXECUTIVE DIRECTOR NATIONAL TASC 8630 FENTO STREET SUITE 121 SILVER SPRING, MD 20910 (301) 608-0599 MR. FRANK H MCPHERSON COMPUTER SCIENCES CORPORATION 1254 HORESHOE BEND. MOUNT PLEASANT,SC 29464 (803) 849-7695 MS. ROSEMARY MUMM DIRECTOR DIVERSIONARY PROGRAM NEW ORLEANS DISTRICT ATTORNEY'S OFFICE 619 SOUTH WHITE STREET NEW ORLEANS,LA 70119 (504) 822-2414 DR. RICHARD A. NELSON NIDA P.O. BOX 5180 BALTIMORE,MD 21224 (410) 550-1412 MR. ANTHONY OLANDU DIRECTOR BRIGHT HOPE HOUSE 1611 BAKER STREET BALTIMORE,MD 21217 (410) 462-5110 DR. NANCY S. PILOTTE PILOTTE PROJECTS IN SCIENCE & EDUCATION 6013 WATCH CHAIN WAY COLUMBIA,MD 21044 (410) 997-8020 MR. ROBERT POTTER GENERAL MANAGER OF DEVELOPMENT HABIT MANAGEMENT INC. 648 BEACON STREET 3RD FLOOR BOSTON,MA 02215 (617) 267-4894 DR. EDWARD J POZIOMEK RESEARCH PROFESSOR OLD DOMINION UNIVERSITY DEPT. OF CHEMESTRY AND BIOCHEM ALFRIEND CHEMESTRY BUILDING NORFOLK, VA 23529-0126 (804) 683-5643 MR. GIL F. RICHARDS CAL TECH/JET PROP LAB 4800 OAK DRIVE MAIL STOP 89-2 PASADENA, CA 91109 (818) 354-2233 MR. DAVID N. SAUNDERS ASSOCIATE PROFESSOR SCHOOL OF SW VIRGINA COMMONWEALTH UNIVERSITY P.O. BOX 2027 RICHMOND, VA 23284-2027 (804) 828-1041 DR. MONTE L. SCHEINBAUM MEDICAL OFFICER FOOD & DRUG ADMINISTRATION 5808 VALERIAN LANE N. BETHESDA, MD 20852 (301) 443-3741 MR. PAT SHIER OFFICE OF NATIONAL DRUG CONTROL POLICY CTAC 750 17TH ST. NW WASHINGTON,DC 20500 (202) 395-6777 DR. SOLOMON H SNYDER DIR DEPT OF NEUROSCINECE JOHNS HOPKINS SCHOOL OF MED 725 NORTH WOLFE STREET BALTIMORE,MD 21205 (410) 955-3024 MS. KAREN R. TALLMAN TECHNOLOGY DEVELOPMENT SPECIALIST ECONOMIC DEVELOPMENT (TVA) 400 WEST SUMMIT HILL DRIVE KNOXVILLE,TN 37903 (615) 632-4882 DR. BENY J PRIMM EXECUTIVE DIRECTOR ADDICTION RESEARCH & TREATMENT. CORPORATION 22 CHAPEL STREET BROOKLYN,NY 11202 (718) 260-2950 DR. BARBARA ROBERTS OFFICE OF NATIONAL DRUG CONTROL POLICY 750 17TH ST. NW WASHINGTON,DC 20500 (202) 395-6601 MS. JANICE SAWYER SENIOR STAFF CONSULTANT BIRCH & DAVIS ASSOCIATES 8905 FAIRVIEW ROAD # 200 SILVER SPRING,MD 20910 (301) 650-0275 MR. JAMES SCHULTZ DRUG TESTING COMMITTEE MEMBER PA. STATE TROOPERS ASSOCIATION 3625 VARTEN WAY HARRISBURG,PA 17111 (717) 540-5648 DR. BARBARA S. SLUSHER DIRECTOR OF NEUROBIOLOGY GUILFORD PHARMACEUTICALS 6611 TRIBUTARY ST. BALTIMORE, MD 21224 (410) 563-6121 MR. STEPHEN B. SUMMERS MANAGER TECHNOLOGY DEVELOPMENT ECONOMIC DEVELOPMENT (TVA) 400 WEST SUMMIT HILL DRIVE KNOXVILLE,TN 37902 (615) 632-4882 MS. CAROL TIFFANY SR TECHNICAL ASSOCIATE GUILFORD PHARMACEUTICALS 6611 TRIBUTARY ST. BALTIMORE, MD 21224 (410) 563-6125 MS. JOAN M. REID COMM HEALTH NURSE MONTGOMERY COUNTY DEPARTMENT OF CORRECTIONS & REHABILITATION 1307 SEVEN LOCKS ROAD ROCKVILLE,MD 20854 (301) 294-1755 MR. TERRELL M ROSE PROJECT DIRECTOR/S.T.E.P ARKANSAS HEALTH DEPARTMENT 715 W. 2ND STREET LITTLE ROCK,AR 72201 (501) 374-8613 MR. DAN SCHECTOR OFFICE OF NATIONAL DRUG CONTROL POLICY 750 17TH ST. NW WASHINGTON, DC 20500 (202) 395-6733 DR. ROBERT SCHWARTZ DIRECTOR UNIV OF MARYLAND DRUG TRT 630 W. FAYETTE STREET BALTIMORE,MD 21201 (410) 706-5154 MS. TISH SMITH PROJECT COORDINATOR ELECTRONIC PROVING GROUND P.O. BOX 109 FORT HUACHUCA, AZ 85613 (520) 538-4816 MS. BETTY TAI CHIEF, REGULATORY BRANCH NIDA/NIH 5600 FISHERS LANE RM 11A-55 ROCKVILLE,MD 20857 (301) 443-3318 MS ANITA TIMROTS ONDCP DRUGS & CRIME CLEARINGHOUSE 1600 RESEARCH BOULEVARD ROCKVILLE,MD 20850 (800) 732-3277 MS. BETTE W. TREADWELL NIDA/INVEST PROGRAM COORDINATOR INFORMATION DATA SYSTEMS INC. 8737 COLESVILLE ROAD # 500 SILVER SPRING,MD 20910 (301) 565-5910 MS. MINDY WIDMAN ASSISTANT PROFESSOR MEDICAL COLLEGE OF PA HAHNEMANN UNIVERSITY BROAD & VINE - MS 984 PHILADELPHIA,PA 19102 (215) 762-8438 DR. GEORGE E WOODY UNIVERSITY OF PENNSYLVANIA UNIVERSITY & WOODLAND AVE PHILADELPHIA,PA 19104-6021 (215) 823-5809 DR. J. MICHAEL WALSH PRESIDENT THE WALSH GROUP 6701 DEMOCRACY BOULEVARD, SUITE 300 BETHESDA,MD 20817 (301) 571-9494 MR. JOHN T. WILLIAMS PROJECT OFFICER ELECTRONIC PROVING GROUND STEWS-EPG-EE FORT HUACHUCA,AZ 85613-7110 (520) 538-4848 MR. LLOYD YOUNG CRIMINAL JUSTICE PROGRAM ANALYSTS DEPT. OF CRIMINAL JUSTICE SERVICES 805 E. BROAD STREET RICHMOND,VA 23219 (804) 371-0533 MR. ROBERT WASSERMAN CHIEF OF STAFF OFFICE OF NATIONAL DRUG CONTROL POLICY 750 17TH ST. NW WASHINGTON, DC 20500 (202) 395-6700 MS. FLORENCE WILLIAMS OFFICE OF NATIONAL DRUG CONTROL POLICY 750 17TH ST. NW WASHINGTON,DC 20500 (202) 395-6781 DR. THOMAS YULE MANAGER ARGONNE NATIONAL LABORATORIES 9700 S CASS AVE. ARGONNE,IL 60439 (708) 252-6740 ## Appendix B Program | | | | 1 | |---|---|--|-----| | | | | = | | | | | | | | | | 1 | | | | | 1 | | | | | Į | | | * | | 1 | | | | | 1 | | • | • | | , | | | | | 1 | | | | | 1 | | | , | | 1 | | | | | . [| | | | | | | | | | | ## The 1995 ONDCP International Workshop #### **Drug Abuse Treatment Technology** Sponsored by: The Counterdrug Technology Assessment Center Office of National Drug Control Policy Dr. Lee P. Brown, Director Executive Office of the President August 15-16, 1995 Sheraton Inner Harbor Hotel Baltimore, Maryland USA #### **Program** #### Monday, August 14 Presenter Time/Place **Event** | | | riesentei | |--------------------------------------|--|---| | 5:00–7:00 p.m.
Chesapeake Gallery | Registration | | | 7:00–10:00 p.m.
Camden Yards | Baltimore Orioles vs. Cleveland Indians (Optional) | | | | Tuesday, August | : 15 | | Time/Place | Event | Presenter | | 8:00 a.m.
Chesapeake Gallery | Registration | | | 9:00 a.m.
Chesapeake I & II | Plenary Session: | | | 9:00–9:10 a.m. | Introduction/Workshop Overview | Dr. Albert Brandenstein
Director, ONDCP/CTAC | | 9:10–9:30 a.m. | State Perspective | Hon. Bishop Robinson
Secretary, MD Dept. of Public Safety and
Correctional Services | | 9:30–10:15 a.m. | ONDCP Demand Reduction Perspective | Mr. Fred Garcia
Deputy Director, ONDCP | | 10:15–10:30 a.m. | Break | Deputy Director, ONDCP | | 0:30–11:00 a.m. | NIDA Perspective | Dr. Alan I. Leshner
Director, NIDA | | 1:00–11:20 a.m. | Local Law Enforcement Perspective | Col. Leon Tomlin
Ass't Commissioner, Baltimore City Police | | 1:20 a.m12:00 Noon | "New Approaches to Understanding
Drug Abuse" | Dr. Edythe London
NIDA | | - | | | | |---|---|--|---| | | | | | | ı | | | | | | | | | | | | | | | ı | | | | | | | | | | j | | | | | I | | | | | | | | | | | | | | | ı | | | ŧ | | • | | | V | | | | | | | 1 | | | | | | | | | | į | , | | | | | , | | | | | , | | | | | | | |