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ABSTRACT 

A study of techniques for the prediction of crin1C' in the City of 

Los Angeles has been conducted by the Spac(' Technology Applications 

Office of the Jet Propulsion Laboratory. This is a part of a continuing 

program of the application of technology to civil problems, funded by 

the Technology Applications Office of NASA. The motiyation and 

immediat.e application for the study was the evaluation of the effective­

ness of a new tactical system -- llse of helicopters as police patrol 

vehicles. 

Alternative approache s tn c rime prediction (causal, quasi­

causal, as sociative, extrapolative, and pattern- r('cognition models) 

are discussed, as is the environment within which predictions were" 

desired for the immediate application. The decision was made to use 

time-series (extrapolative) model s to produce the desired predictions. 

The characteristics of the data and the proc('dure used to choose 

equations for the extrapolations arc discussed. The usefulness of 

diHerent functional form.s (constant, qltadratic, and exponential 

for,ms) and of different parameter estimation techniques (multiple 

regression and multiple exponential sluoothing) are compared, and 

the quality of the resultant predictions is assessed. 

Appendixes present a discussion of the different approaches 

to crime prediction that were considered, a technique for simultaneous 

consideration of arrests and offenses, and algorithtus for analysis of 

time-series. Included is the development of a modification to the 
~ 

multiple exponential smoothing technique which eliminates the need 

for .§: priori estimates of the model parameters. 
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SECTION I 

INTRODUCTION 

A. BACKGROUND 

The capability to predict crime could be of considerable value to the 

police in a numbe r of ways. For example, strategic decisions relating to 

force structures and training eluphases would be easier if reliable long-range 

forecasts of crim.e were available. Tactical decisions on the day-to-day 

deployment of forces would be eased by accurate short-range forecasts or by 

forecasts of specific crimes. Analysis of the effectiveness of new (and old) 

equipment can be performed more accurately if appropriate crime prediction 

capability exists. An understanding of the relationships between social, 

economic, political, and moral conditions and crime, expressed in a model, 

could be used to devise effective crime prevention campaigns. These potential 

uses hc.we generated interest in the broad technical problem of predicting crime. 

In 1968, the Jet Propulsion Laboratory (JPL) was called upon to assist 

the Los Angeles Police Department (LAPD) in evaluating the effectiveness of 

helicopters as police patrol vehicles. The requested assistance was provided 

by JPL' S Space Technology Applications (STA) Office, as Task 86. (The re­

Slllts of the Task 86 evaluation are documented elsewhere*.) This was funded 

by the Technology Applications Office of NASA as a part of its continuing pro­

gram in applying technology to civil problems. It was neces sary to this eval­

uation that crime levels be predicted. 

Investigation of the prediction of crime was undertaken separately, as ST A 

Task 125, with the evaJuation of the effectiveness of a new tactical systelu (that 

is, Task 86) to be used as a focus for the effort. In particular, a major part of 

the evaluation was to be a determination of the reduction in crime, if any, due 

):<Weaver, 
650-89. 

R. W., Effectivenes s Analysis of Helicopter Patrols. JPL Document 
Jet Propulsion Laboratory, Pasadena, Cali£" Jut. 27, 1970. 
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to the pTl>sence of the helicopters. In order to mate tlw necessal'y comparisons, 

pn'dictions of the crime levels that would have occurred without the helicopters 

were required. 

B. OBJECTIVES 

The objectives of Task 125 were as follows: 

1) Assist Task 86, Effectiveness Analysis of Helicopter Patrols, in 

the evaluation of the effectiveness of helicopters as pab'ol vehicles 

by producing a set of crhne predictions for use in comparisorls 

with actual crime occurrences. 

2) Dete rmine current and potential applications of c rime prediction 

to permit assessment of the usefulness of different types of crime 

predictiol1 models. Determine ~nput and output requirements and 

operational constraints for these models. 

3) Review existing and potential crime prediction techniques to 

determine the most promising approaches for further development. 

Thus, the task consist~d of three inte rrelated parts which we re carried on 

essential1y in paral1el: A determination of the potential applications of crime 

prediction, a study of the state of the art, and an exercise in the real world. 

C. APPROACH 

Crime prediction is but one application in the general problem of quanti­

tative forecasting. Thus, in reviewing the state of the art, it was necessary to 

consider recent advances in forecasting procedures as well as the relatively 

scant lite rature on c rime prediction. 

Potential applications of crime prediction capability were determined by 

surveying the applicable literature and by considering operations within the 

LAPD. They were further explored in discussions with officials of the Los 

Angeles Police Department. 
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The most appropriate type of model for any particular application dC'pends 

up'.ln a number of factors (Appendix A). Primary among these is the type of 

application. Thus, in Task 86, helicopters were placed in 2 of 17 police divi­

sions, making divisional boundaries important. The experiment was cxpect<,'d 

to show effects on fium.bcrs of offenses and arrests, so these quantit!es were 

selected. The helicopter experiment was to run for a year, so predictions 

were needed for the same length of time. 

A second major factor in choosing the kind of model to use was the con­

straint on the resources available for the study. Thus, although one could 

speculate that the use of cause and effect relationships might provide th(> most 

reliable predictions, development of such relationships would ha.ve been a more 

extensive research project than possible within the limited resources of this 

task. 

A third factor that had to be considered was the availability of data. Many 

data types exist in the files of various public agencies. but others would have 

to be collected in the field - often an expensive, time-consuming operation. Pre-

liminary crime prediction work for Task 86 had revealed that division boundaries 

had been changed a number of times during the historical period of interest. 

Fortunately, the LAPD files included quarterly crime reports for each of about 

600 reporting districts, which can be considered as building blocks out of which 

divisions are made. Thus, it was possible to Te-combine the data from the 

reporting districts according to the geographical boundaries of the divisions 

during the test period. 

3 
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As a result of the assessment of these factors, it was decided to use eight::' 

years of quarte rly:::::: data from the LAPD file s arld to use extra.polative (i. e. , 

time-series) models to predict for the ninth year, 1969. 

Section II of this report discusses the generation of predictions in greater 

detail. In brief, the approach taken was as follows: Time-series for each of 27 

crime types in 24 geographical areas were built from LAPD quarterly summari~s 

for the basic geographical building blocks, the police reporting districts. Ana­

lytical techniques used for each time-series were chosen by cOl1."lparing the 

predidive accuracy of each of a ,"al'icty considered. 

It wa.s reasoned that arrests were related to offenses, and that a systenl 

that reduced offenses would tend to reduce arrests as a result. Further, an 

increase in arrest effectiveness could be expected to reduce offenses due to 

the detention of multiple offenders. This relationship was investigated~ and a 

statistical test for evaluation of the experin"lental results, using arrests and 

offenses together, is discussed in Appendix B of this report. 

>:: Eight years was chosen as the sample size to avoid a major jurisdictional 
boundary change, affecting five of the current divi(dons, which occurred 
in January, 1961. 

)~):: A slnaller interval, such as a Inonth, would, if the data were obtainable, 
provide more data points in the history. The mail"). benefit provided by 
these additional points would be a more detailed determination of seasonal 
effects; they would provide little, if any, improvement in trend calculations. 
A larger inte rval, such as a year, would provide large r nurobe rs to work 
with. (It is shown later that prediction uncertainties arE' usually smaller 
percentages where expected nun"lbers are larger.) It was deemed impractica1 
to \.lse a yearly interval, however, because it could be anticipated that the 
effectiveness of the helicopter patrol might change after some break-in 
period. 
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SECTION II 

PREDICTION OF CRIMF2 

A. SUMMARY 

In developing a prediction model, it is necessary to make technical 

decisions on three levels (see Table 1). The first decision level is the rnost 

comprehensive and has a major impact on the predictions eventually produced. 

At this level, the variable& to be predicted and the type of model to be used 

must be chosen. The second decision level 1;<" the selection of independent 

variables and their functional relationships. The last decision level is the 

choice of specific parameter estimation techniques. 

Selection of the variables to be predicted depends upon the use to whicD 

they will be put. Hence, for the evaluation or helicopter patrols, number of 

offenses - with an enlpha.ais on property crimes - was chofien to allow inves­

tigation of anticipated crime reduction, and number of arrests was chosen to 

allow investigation of anticipated improvement in police operational effectiveness. 

The quality and availability of data plays an important role in many of the 

modeling decisions which must be made. Since the immediate application called 

for accurate predictions of crime levels, it was decided to use extrapolative 

models to make quarterly predictions of 1.7 crilne types {see Table 2) in 24 

geographical areas (see Table 3 and Fig. 1). 

The choices of functional relationships and of param.eter estimation 

techniques were made on the basis of their pr,-~dictive abilities. Standard 

econometric techniques were considered, but rejected because of the failure 

of key assumptions. Instead, 6 of the 8 years of data was used to pl''3dict the 

remaining 2 years for each of the 648::~ time-series, by each of the model­

technique combinations. The resultant matrix of prediction results was then 

---------------------~::(27 crime types) x (24 geographical areas) = 648 time-series. 

5 
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Table 1. The three levels of modeling decisions 

Level 1. Type of Model and Dependent Variables to be Predicted 

it, Types of Models (s ee Appendix A): Extrapolative, as sociative, 
quasi- causal, causal, pattern recognition. 

b. Dependent Variables to be Predicted: Number of offenses and/ or 
arrests, probability of a crin.e event. specific crinlcs, calls for 
police service, and others. 

c. Geographical Boundaries: Block, census tract or reporting 
district, division, city, county or region, state, nation. 

d. Frequency and Length of Prediction: Hourly, daily, weekly, 
monthly, quarterly, annually. 

Level 2. Independent (,'Explanatory") Variables and Functional Relationships 

a. Independent Val'iables: Proxy variables such as tin"1e, COl.'re­
lated variables such as popUlation. variables resulting from 
theory such as measures of social pres sure. 

b. Functional Relationships: Linear or nonlinear, feedback control 
systelTIS, and others. 

Level 3. Parameter Estimation Techniques 

a. Mathematical: Regression (least- squares), exponential smootlL­
ing, Fourier analysis, spectral analysis, moving averages, 
and others. 

b. Nonmathematical: Trial and error, II eyeballing" , simulation, 
physical modeling, and others. 

c. Treatment of outlying points resulting from unusual occur­
rences andlor clerical e).':t'Ol'S. 
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Table 2. Crirne types predicted for Task 86 

1. Murder, rape, c:.nd aggravated assault offenses 

2. Street robbery offenses 

3. Other robbery offense s 

4. Total robbery offenses (2 + 3) 

5. Residence burglary offenses 

6. Business burglary offenses 

7. Phone booth and other burglary offenses 

8. Total burglary offenses (5 + 6 + 7) 

9. Theft from person offenses 

10. Theft and burglary from auto offenses 

11. Bicycle and other theft offense s 

12. Total theft offenses (9 + 10 + 11) 

13. Auto theft offenses 

14. Total property offenses (4 + 8 + 12 + 13) 

15. Total property arrests (19 + 20 + 23 + 24) 

16. Total "Part I" offenses):~ (14 + 1) 

17. Other arrests (murder, rape, drunk, etc.) 

18. Aggravated assault arrests 

19. Robbery arrests 

20. Burglary arrests 

21. Felony theft arrests 

22. Misdemeanor theft arrests 

23. Total theft arrests (21 + 22) 

24. Auto theft arrests 

25. Narcotics arrests 

26. TC'ltal arre sts other than traHic 
and forgery (17 + 18 + 19 + 20 + 23 + 24 + 25) 

27. Total arrests {26 + traffic + forgery} 

~:~The FBI publishes the Uniform Crime Report annually. 
The Ilseven majorll or IIPart III crimes, as defined in 
that publicahon, are murder and non-negligent man­
slaughter, forcible rape, aggravated assault, robbery, 
burglary, theft, and auto theft. 

7 
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Tablp 3. Geographic areas used for Task 86 predictions 

1 
J.. • Central Division 13. Newton Street Division 

2.. Rampart Division 14. Venice Division 

3. University Division 15. North Hollywood Division 

4. Hollenbeck Division 16. Foothill Division 

S. Harbor Division 17. Devonshire Division 

6. Hollywood Division 18. Area 2. (Divisions 3, 7, 12. , 13) 

7. Wilshire Division 19. Area 3 (Divisions 1, 2, 4, 
, 

11) 0, 

8. West Los Angeles Division 20. Area 4 (Divisions 9, 10, 15, 16, 17) 

9. Van Nuys Division 21. Area 5 (Divisions 5, 8, 14) 

10. West Valley Division 22. Area 2 less University Division 

11. Highland Park Division 23. Area 4 less West Valley Division 

12. 77th Street Division 24. Los Angeles City (Sum of 1 thru 17) 
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c0mpared with plots of the time-series to select model-technique combinations 

for the final predictions. 

Figures Z and 3 show the steps involved in proceeding from the raw data 

(LAPD quarterly reports, internal memoranda, jurisdictional boundary maps, 

and discussions with personnel within the departluent) to the final predictions. 

First, a "dictionary" was constructed. By entering this dictionary with 

a reporting district number and a date, it was possible to determine, among 

other things, which division contained that reporting district at any other 

specified date. Program 1 used this information to recombine the historical data 

from the LAPD reporting districts given in the quarterly crime reports into 

time-series data for the LAPD divisions as they were during the study. 

This data was then used by Program 2 to evaluate a set of models. There 

were 54 models in all that were compared, these being formed through combina­

tions of the fo110wing (see Fig:. 4): 

1) Constant, quadratic, and exponential dependence on time. (Time 

was used as a proxy variable for the underlying causal factors. ) 

2) Outlier rejection criteria of 2, 4, 00 standard deviations of the 

(uncensored) trial fit. (The data contains some II outlying" points, 

that is, points that might decrease prediction accuracy. Such 

points could be the result of clerical error or unusual events, 

such a s riots. ) 

3) Multiple regression (least squares) and modified multiple exponential 

smoothing algorithms for determination of model parameters. Fiv~ 

smoothing constants (0.01, 0.03, O. 1, 0.3, 0.5) were tried with 

the exponential smoothing algorithm. 

Program 2 applied each of the model-technique combinations to the first 6 years 

of each time-series and detenuined prediction errors during the seventh and 

eighth years of data. 

These results weJ:e then compared with plots of the time-series, produced 

by Progralu 3, and models were chosen for the extrapolation into the test 

period. 
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CONSIDER AND CHOOSE 
TYPES OF PREDICTIONS 
TO BE MADE - LEVEL 1 

DECISIONS 

" 
SELECT DEPENDENT AND 

INDEPENDENT VARIABLES - I--~~~~~ 

LEVEL 2 DECISIONS 

SELECT ANALYTICAL TECH­
N�QuEs TO BE CONSIDERED 

IN LEVEL 3 DECISIONS 

GATHER CRIME DATA 
FOR POLICE 

REPORTING DISTRIC~ 

OBTAIN HISTORY 
OF JURISDICTIONAL 

BOUNDARY CHANGES 

GENERATE HISTORICAL TlME­
SERIES FOR CURRENT DIVISION 

BOUNDARIES BY CRIME TYPE 

APPLY EACH CANDIDATE ANALYTICAL 
TECHNIQUE TO EACH TIME-SERIES. 

GENERA TE PLOTS 
OF THE CRIME 

TIME-SERIES ESTIMA TE PREDICTIVE ACCURACY OF EACH 

COMPARE ANALYTICAL TECHNIQUES. 
CHOOSE MODELS TO BE USED IN 

SUBSEQUENT PREDICTIONS -
LEVEL 3 DECISIONS 

PREDICT FOR THE TEST PERIOD 

Fig. 2. Steps in the prediction of crirne 
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,-
Functional Form of Prcdictinn 1vlodel 

I- , 
Y ~ b Z 

-- + bIt) Y ,:: b + bIt + b Z t Yt 
: ('xp {b 

t 0 t 0 0 

+ seasonals + seasonals x seasonals 
; 

where Yt is the predicted amount of c rirne during 
period t 

t is the time proxy 

bot b l , bz'l 
s('asonals are the paraluetcrs of the models. 

-
X 

Criterion for Rejection of Outlying Data Points 

ZO" 4a coa 
(No rejection) 

where a is the standard deviation of a fit to all the data. 

X 
Parameter Estimation Technique 

Regression Exponential Srnoothing Constant 

(Least Squares) 0.01 I 0.03 J 0.1 I ' 0,3 I 0.5 

(
3 Functional) ~ (3 Outlier Rejec-) (6 Parameter Esti-) _ (54 MOdel-techniqUe) 

Forms / X tion Criteria X mation Techniques - Combinations 

Fig. 4. Model-technique combinations 
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Finally, the data hom Prograrn 1 and the chosen model-technique 

combinations ,:rere used by P rogranl 4 to produce predictions for the test 

period. 

B. FUNCTIONAL FOIU.tiS 

Ont::e it has been decided to produce predictions by extrapolation of 

historical time-series, it is necessary to select candidates for the equations 

to be used for this extrapolation. In the preaent case, thiE problem has three 

.f 1" t" d th parts: treatment of trends, incorporation 0., seasona vaTla lon, an e 

handling of cyclical variations. 

Time-series prediction luodels uso time as a proxy for the unknown 

variables that cause crime levels to change. If it is a poor proxy, or if these 

variab] es do not change with time, then ~10 variation wIth time would be 

expected. Hence, a constant model was included among the candidates. A 

linear rnodel accounts for a steady change in crime, while a quadratic model 

allows a steady change in that rate of change. Since a quadratic model ca.n 

also show a steady change in crime, and since it was desired to keep the number 

of functional forms investigated to a tractable number, the linear model was not 

included as a candidate, while the quadratic model was. The rate of change of 

many processes is dependent upon the current state of that process, thus leading 

to exponential behavior with time. To account for such growth processes 

among the factors causing changes in crime levels, an exponential model was 

included among the candidates. The growth rate was arbitrarily allowed to 

change linearly with time to provide slightly greater flexibility. Since the 

rnodel was not based on an understanding of the basic phenomena involved, 

it was felt that additional candidates would be superfluous. 

Seasonal variation can be incorporated in a nurnber of ways, the simplest 

of which - the use of additive):~ seasonal constants - was used here. If a large 

:;:The exponential model is analyzed as linear with time after the dependent 
variable is replaced by its logarithlu. Additive seasonal constants become 
multiplicative when the antilog is taken. 
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number of "seasons ll were used (such as months or weeks, instead of quarters), 

thi s procedure could require too many degree s of freedom (that is, II use Up" 

more than its II share,t of the data), and more sophisticated techniques, such as 

Fourier analysis, might be required. 

Possible cyclical variations were ignored, with the expectation that the 

provisions for modeling changes in trends would account for the most prominent 

cyclical changes, if any. Further, the data base was not long enough to 

anticipate much success in determining cyclic variations if present . 

C. DATA PROBLEMS 

A history of the variable to be predicted is the only data required for 

prediction by J.ure extrapolation. This history, often available for some period 

of time, can be quite extensive. The 27 crime types (see Table 2) for each of 

24 geographic areas (see Table 3 and Fig. 1) constitute 648 different time­

series. Quarterly data for 8 years provides 32 data points in each series. 

Whether 32 data points is sufficient for development of a satisfactory prediction 

model depends not only on the use of the model, but on the dispersion of the 

data itself. The minimum amount of data needed cannot be predicted ahead of 

time, but the succe s s of this task indicates that) for mo st of the crime types 

treated, the data obtained was sufficient. 

Available crime data suffers from a number of problems. One of these 

is that reporting criteria may vary considerably from place to place and time 

to time. As an extreme example, when New York City introduced centralized 

record keeping in 1950, the reported number of burglaries jumped 1300% over 

the preceding year. 

Another problem is that the jurisdictional boundaries of various police 

organizational units within a city are generally determined by operational 

considerations. As a result, recorded data for these units suffers from discon­

tinuous changes. From 1958 through 1968, for example, the LAPD underwent six 

major and about 30 minor boundary shifts, going from 13 divisions at the 

beginning of 1958 to 17 at the start of 1969 (see Fig. 5, which shows only the 

15 
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major changes). Fortun;otely, many agencies gathering data about people, 

including LAPD, are n.ow using census tracts as basic units, so that it was 

possible to obtain consistent histories for geographical areas. 

A further problem 11: that unusual events are commonly recorded in the 

standard categories. For example, burglary al<rests in the University Division 

in August 1965 were 10 times the normal average for August because of looting 

d~ring the Watts riot. Such points must be identified and properly handled.::~ 

A slightly different kind of problem is the appropriatenes s of the data 

type used. Specifically, in order to detect whether helicopter patrol has a 

repressive effect on crime, it is desirable to deal with numbers of offenses of 

various types of crime. However, a large fraction of crimes cOlnmitted are 

never reported to the police. Yet the files of "offenses known to police" are 

the primary (or only available) source of historical data. Changes in any of 

several factors, such as police-community relations, could conceivably change 

tho fraction significantly. To validate the prediction techniques and to detect 

whether such changes were occurring, predictions were made for the divisions 

that did not use helicopter patrols. It may be noted that the divisions without 

helicopters did indeed perform as predicted):~::~. 

To determine whether the helicopter patrols contribute directly to the 

effectiveness of police operations, it would be desirable to deal with the number 

of offenders caught and the number of crimes solved. Conceivably, court 

conviction records could be used, but this data would be difficult to obtain and 

," 
"'Since the objective in this task was to predict under "normal" conditions, 

such extremely unusual data points we.re simply rejected as inappropriate. 

::~:~There is one chance in seven that the non-test divisions would have looked 
more effective than they did, but only three chances in 100, 000 that the test 
divisions would have made a better showing, as reported in the Task 86 
final report (Weaver, R. W., Effectiveness Analysis of Helicopter Patrols. 
JPL Document 650-89. Jet Propulsion Laboratory, Pasadena, Calif. I 

J ul Y 27, 1 970. ) 

17 
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of questionable value:::, Arrest statistics, on the other hand, are readily 

available. If it is recognized that arrests are made within constl-aints set by 

law and by police policy, and if it is assumed that those constraints do not 

change just before or dUl'ing the predictlon time period, the number of arrests 

may sel've as a so.tis£actory measure of police performance in the apprehension 

of offender;;. 

D. DATA BASE 

Each police division in Los Angeles contains about 30 or 40 police reporting 

districts (roughly equivalent to census tracts), which have almost always 

remained intact during jurisdictional boundary changes. In addition, the LAPD 

has a file of quarterly crime summaries by reporting district. 

A detailed history of the 600 or so police reporting districts was obtained 

from files of LAPD internal memoranda. A computer program to generate 

time- series for police divisions as constituted in 1969 was applied to the 

60, 000 IBM cards containing all c rime data quarterly reports. 

The quarterly reports used for this data ba,c;e were compiled from 

l'eports filed on each incident and contained some clerical mistakes, thus 

placing a limit on the possible accuracy for subsequent predictions. By way 

of illustration, it may be noted that about 2 1/2% of the repOl'ted offenses and 

arrests were attributed to nonexistent~::::: reporting districts. 

:::In addition to the desired information, conviction data may also reflect the 
police department's effectiveness in gathel'ing and processing evidence and 
the capabilities of the District Attorney's office in prosecuting cases. 

::::::Reporting districts are identified by four-digit numbers, the first two of 
which correspond to the division number. Thus, about 60% of the possible 
numbers are not assigned. The first two digits were assumed to correctly 
identify the division. Consequently, mOS t of the incorrectly numbered 
reporting districts were probably placed in the correct divisions by the 
aggregation process. 
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E. t,10DELING TECHNIQUES 

Time- s~ries prediction models can be ex-pres sed as equations containing 

parameter s chosen to provide a best fit, in some sense, of the model to the 

historical data. 

The traditiona1. statistical technique, multiple regres sion, finds those 

values that minimize the sum of the squares of the differences between the fit 

and the data. The validity of this criterion rests on three assumptions: 

1) The variables used in the model (in this case, time and season) 

are adequate proxies for the factors that control the underlying 

process and are modeled in a functionally correct way. 

2) The process remains stable, in the sense that the "true" values of 

the parameter s do not change. If, for example, crime of a 

particular type is constant~ it must be assumed that that constant 

does not change. 

3) Varjations about the general trend result hon: a multitude of small, 

unmodeled causes, independent from one time period to the next 

and independent of each other. 

There is no reason to believe, however, that any of these as sumptions 

are fully satisfied in the cade ot crime prediction. Hence, it seerns likely that 

placing greater emphasis on more recent data may lead to a better fit during 

the period for which predictions are desired. Fortunately, a relatively new 

technique, exponential smoothing, does this by giving exponentially decreasing 

weight to past data. This technique has shown promise in marketing and inven­

tory control applications. 

The published procedure for exponential smoothing requires initial 

estimates of the parameters. To avoid estimating thousands of initial values, 

a modified procedure was developed. Algorithms for this procedure and for 

multiple regres sion are given in Appendix C of this report. 

It was not known beforehand whether the parameters derived through ex­

ponential smoothing or those from lTIultiple regression would produce the better 

19 
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predictions. Nor was it clear bow far out an outlying point had to be before it 

would unduly influence a prediction. Further, ""hen exponential smoothing was 

used, a wide range of possible weight decay rates were potentially competitive. 

Standard econometric techniques to compare the predictive I:apabilities of 

different model-technique combinations were investigated, but were rejected 

due to failure of key assumptions. 

It was decided to us e a direct approach: applying each !nodel-technique 

combination to the first 6 years of data of each time-series to generate pre­

dictions for the seventh and eighth years;'(. The variances of these predictions 

were then compared, and plots of the time-series were inspected to select 

m.odel-technique comparisons for extrapolation to the ninth year, 1969. 

F. STATISTICAL EVALUATION TECHNIQUES 

For SOlne purposes, predictions can be used directly. Other. applications, 

however, require that the predictions be processed in some way. When evalua­

tion of the effectiveness of a new b::ctical system is the goal, the predictions must 

be used as a basis of comparison with the crime levels that actuall y occurred. 

To be meaningful, these comparisons must be made statistically. That 

is, the predictions cannot be expected to match the actuals exactly. Sta~istical 

evaluation is required to determine whether the differences should be attr5buted 

to chance or to the new tactical system. 

The differences to be expected as a result of chance are described by the 

standard deviation of the prediction error. Estimate s of the standard deviations 

were also determined directly:::::': Once the models were chosen, 4 years of 

data wel'e used to predict the fifth year, 5 years to predict the sixth, 6 years to 

predict the seventh, and 7 years to predict the eighth. These 16 quarters 

.'-
"'Two years were used for the comparison period in order to have a larger 
number of data points for the estimation of the prediction variance. 

};~~ 

That h, they were determined by consideration of the models' predictive 
pel'formance, rather than by the usual econometric procedure of dealing 
solely with errors in fitting historical data. 
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of prediction errOl'S were then used to estilnate the qU2..:rterly error:!: for each 

time-series. 

The validity of the models and estimated standard deviations was deter­

mined by applying the same techniques to the divisions without the new tactical 

system (that is, without the helicopters). It was expected that statistical eval­

uation would indicate that prediction errors in these cases would be attributable 

to chance. 

Results during the test period were then compared to confidence limits 

based on these estimated standard deviations. In particular, the probability 

is O. 10 that offenses, for example, of a particular type in a particular division 

during a given quarter would be lower than the 90% lower confidence limit. 

Treatment of offenses and arrests separately is not necessa.rily sufficient. 

A reduction in off'i=mses could be expected to reduce the opportunities for 

arrests. (Consider! for example, the extreme of no offenses.) Thus, effective­

ness in reducing offenses could mask an increase in the fraction of offenders 

apprehended if thf'se related variables are only considered separately. 

Scattergrams of arrests versus offenses were plotted for several crime types 

in several divisions. The resultant clouds of points showed the anticipated 

correlation and suggested that the relationship may be linear. This correlation 

was used to devise a test for determining the statistical significance of offense­

arrest vectors (that is, pairs of values). 

Results from several quarters or several crime types can be compared 

by using a test that considers the directions and/or the amounts by which 

offense-arrest vectors differ from predicted offense-arrest vectors. This 

test can be described by the following analogy: If arrows shot at a target with 

no crosswind present cluster about the center of the target, then a cluster of 

::'Since a longer historical period can usually be expected to produce better 
predictions) these estimates are, in the main, conserva~ive (1. e., slightly 
too large). 
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arrOws to one side of the target is evidence of the presence of a crosswind. It 

is important to note that the conclusion does not depend on the size of the cluster. 

The techniques involved in performing these statistical tests are discussed in 

Appendix B of this document. 

Unfortunately, the usefulness of this test relies upon the assumption that 

prediction errors are not correlated. As there was some evidence of correlation, 

the results of this test, though supporting the conclusions':: of other analyses, 

were inconclusive by themselves. 

;~ 

See, the Task 86 final report (Weaver, R. W., Effectiveness Analysis of 
Hehcopter Patrols. JPL Document 650-89. Jet Propulsion Laboratory 
Pasadena, Calif. July 27, 1970.) , 
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SECTION III 

ANALYSIS OF THE SELECTION PROCESS AND RESULTS 

A. THE MATRIX 

It was noted jn parts A and E of Section II that 54 model-technique com­

binations were applied to the first 6 years of data from each of the 648 time­

series to produce prediction errors for the remaining 2 years for which data 

was available. The resultant 35 thousand comparisons are too voluminous to 

publish in this report. Table 4, restricted to the t'i:!st divisions and suppressing 

the variation with different outlier rejection criteria):: and different exponential 

smoothing constants)::~\ suggests the nature of the information used. The body 

of this table contains the ratio of the standard deviation of the prediction errors 

during the two years 1967 a::.d 1968 produced by the model-technique combination 

at the top of the column to the standard deviation about a horizontal line fit by 

least squares through the historical data. For each crime type, the denomina­

tor of the ratio is the same for all model-technique cOlnbinations, so differ­

ences result entirely from differences in the prediction accuracy of the model­

technique combinations. The purpose of forIning the ratios was to provide 

"normalized" numbers describing the prediction accuracy which could be 

compared among crime types and alTIong divisions more easily than the "unnor­

malized" esthnated standard deviations of the prediction errers. The reader 

is referred back to Table 2 for a list of crime types. 

To illustra.te how this table can be used, consider total burglary offenses 

(crime type 8) in these two divisions. The data for these two time-series is 

plotted in Figs. 6 and 7. The strong trend noticeable in both divisions explains 

):C Figures are shown for the best rejection of outlying points on the regression 
fits and no rejection when exponential smoothing was used. 

):0;< Figures are shown for those smoothing constants that indicated the best per­
formance (smallest ratios). Results for exponential smoothing with the quad­
ratic model are not shown because a programming error existed when the 
matrix was prepared. 
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Table 4. A portion of the matrix 

(a) University Division 

Model Constant Quadratic 

Algorithm Regression Exponential Regression Exponential 
Smoothing Smoothing 

Crime 
Type 

1 3. 6 2. 2 1.4 

2 2.6 2.4 4.6 

3 2. 6 1.8 1.6 

4 3. 7 2.5 2.0 

5 1.5 1.2 1.2 

6 1.0 0.8 3.7 Not 

7 0.5 O. 7 5. 3 available 

8 1.7 0.9 0.9 because of 

9 1.6 1.8 1.9 program-

10 1.9 1.1 1.2 ming error 

11 1.7 1.5 2.3 

12 2.3 1.6 1.1 

13 3. 6 2.8 2.9 

14 2.8 1.6 1.0 

15 1.9 2.0 1.5 

16 3.0 1.7 1.0 

17 1.2 0.3 1.2 

18 1.8 0.8 0.6 

19 0.9 0.8 0.9 

20 0.7 0.7 0.4 

21 0.8 0.9 2. 1 

22 0.8 1.0 0.8 

23 0.9 1.0 1.0 

24 2.9 2.7 4.1 

25 3. 6 1.4 1.4 

26 1.7 1.0 2.0 

27 1.9 1.0 1.8 
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Exponential 

Regression 
Exponential 
Smoothing 

1.9 1.3 

1.3 0.7 

2. 2 1.6 

2. 6 1.4 

1.4 1.3 

0.8 O. 6 

2.4 1.0 

1.1 O. 7 

2.7 1.0 

0.9 0.8 

1.4 1.5 

1.3 1.1 

1.5 1.3 

1.0 0.9 

2.2 . 1. 3 

1.0 0.9 

7.6 0.4 

0.9 0.6 

1.8 0.8 

0.6 0.6 

1.5 1.6 

1.7 0.8 

1.9 0.7 

2.2 1.6 

2.6 1.6 

1.3 1.0 

1.2 1.0 
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Table 4 (Contd) 

(b) West Valley Division 

Model Constant Quadratic Exponential 

Algorithm Regression Exponential 
Regression Exponential Regression Exponential 

Smoothing Smoothing Smoothing --
Crime 
Type 

1 3. 0 1.5 1.4 1.1 1.0 

2 3.0 2.9 5.6 1.9 1.7 

3 2.9 2.6 5.0 2.0 1.7 

4 3. 1 2.2 1.3 1.3 1.4 

5 1.7 0.9 0.4 2. 1 0.7 

6 0.9 0.8 0.8 2.3 2.3 

7 1.5 1.4 2. 1 Not 2.2 1.8 

8 2.0 0.4 1.8 available 0.9 0.6 

9 2.6 1.8 2.0 because of 1.9 2.0 

10 2.6 1.0 1.2 Iprograrn- 0.7 0.4 

11 2.2 O. 7 1.4 ming error 0.8 0.6 

12 2.5 0.8 1.3 0.7 0.4 

13 2. 6 1.0 1.1 0.7 0.7 

14 2.4 0.6 1.4 0.8 0.3 

15 1.9 0.8 1.5 1.1 0.6 

16 2.4 0.7 1.4 0.7 O. 3 

17 1.1 0.2 2.0 18. 7 0.9 . 
18 1.3 0.6 0.8 0.9 0.8 

19 4.8 4.5 4. 1 4.2 4.2 

20 3.2 1.7 1.5 1.0 0.6 

21 1.2 O. 7 2. 1 1.7 1.5 

22 1.3 0.7 1.4 2.2 0.7 

23 1.3 0.7 1.7 2.2 0.7 

24 1.5 1.6 1.9 2.0 2.2 

25 22.4 20.4 19.3 21. 0 14.8 

26 2.7 1.4 1.0 0.9 O. 7 

27 1.7 1.0 0.6 0.5 0.7 
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the poor predictions obtained by the regression fit of the constant model, while 

the robustnes s of the exponential smoothing algorithm is shown by its relatively 

good performance even with the constant model. {The highest value of the 

smoothing constant was required to obtain this perforlnance.} The S-shape of 

West Valley's curve explains the poor performance of the quadratic model. In 

b('}th cases, the exponential Inodel with the exponential smoothing algorithm was 

eventually chosen. It may be noted that the prediction error in the West Valley 

Division would be expected to be smaller than in the University Division, be­

cause there is noticeably less variability in the data. (Close inspection of the 

plot for University, howeve 1', will show that much of the apparent variability is 

seasonal. ) 

B. MODELS SELECTED 

Model-technique combinations~:~ cannot be chosen by simply finding the 

smallest numbers in the matrix. Many other factors must be conside red. 

Among these are the following (not necessarily in order of importance): 

1) For each crime type in the several divisions, and in each division 

for the several crime. types, somewhat similar processes can be 

expected to be at work. Hence, models chosen should show consis­

tency in both directions unless there are reasons to choose other­

wise. 

2) A poor £it by the regression algorithm (for a particular model) 

suggests that the model shape is inappropriate, so that a good fit 

with exponential smoothing should be viewed with skepticism~'(*. 

Similarly, a £it that improves drastically as older data is discounted 

more and more rapidly (that is, as the exponential smoothing con­

stant increases), also suggests an inappropriate modeL 

~'(T<hat is, a mod,el (constaz:t, quadratic, exponential), an algorithm (regres-. 
SlOn, exponenhal smoothmg), a smoothi.ng constant (0.01, 0.03, O. 1, 0.3, 
0.5)" and an outlier rejection criterion (no rejection, rejection of points 
outsIde 2 or 4 standard deviations). 

~~>.'(For example, crime type 17 (other arrests), with the exponential model, m 
the West Valley Division. 
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Poor fits by all models~:' suggest that data in the two years used 

for evaluation of the prediction errors were unusual in some way and 

that model-technique combinations should be chosen SOlne other way. 

Visual inspection of plots of the time-series can be very helpful in 

deciding upon the appropriateness of various models and the useful­

ness of results in the matrix. 

Generally speaking, when the exponential smoothing algorithm is to 

be used, small values of the smoothing constant are to be prefe rred, 

because large values essentially ignore a great deal of the available 

data. 

Occasionally, trend parameter estimates, seasonal parameter 

estimates, and data during the final 2 y:ears combine in peculiar 

ways to sugges~ inappropriate models. 

Table 5 shows the final choices of models for each of the 648 time-series, 

and Table 6 gives a summary of the frequencies of choice. Refer to Table 2 for 

the list of crime types and Table 3 for the list of divisions. 

It may be observed from Table 6 that the exponential model was chosen 

more than half the time, suggesting that much of the crime in the city of Los 

Angeles is growing exponentially and that better predictions might have- bepn 

obtained if population had been used as a proxy variable instead of or in addi­

tion to time. It may also be noted (and this was also apparent in Table 4, show­

ing a portion of the matrix) that the exponential smoothing algorithm was chosen 

more than 4-1/2 times as often as the regression algorithm, when both algo­

rithms were equally available. 

Several general conclusions we re drawn about the selection of model­

technique combinations for predicting crime: 

1) Automatic rejection of outliers is very rarely useful with the modi­

fied exponential smoothing technique. 

2) Aatomatic rejection of outliers is rarely useful with mUltiple re­

gression: when it is useful, 40' and. 2(1 seem about equally effec­

tive. 
,'~ 

., For example, crime type 25 (narcotics arrests) in the West Vallev Division. 
-
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Table 5. Crime prediction mcdels chosen 

~ Crlme I l 3 4 S b 7 h 9 10 !1 
Type 

Il l.l 14. 15 16 I. ill 19 .!u 1I 2.! .!3 2 • 

I 1212 3215 allo 3111 l214 3213 3212 3Z11 nil 3212 2.110 211e 2l1i;;: 3l.14 3214 3211 3!ll 3.!1l 3.!1l 3;!IS 3113 3215 n!5 3115 

~ 1214 3215 3212 3213 1211 lllG 3all 2110 ,214 3211 3211 3213 2110 ZJlO 1114 .;!lH~ 2110 3211 3 Ill, ZUI..! 3Z11 3211 2110 32.14 

I 3215 1211 2110 1215 3Z11 3213 3Z1l ll12 321I 3211 3213 3214 1215 3;011 3215 2110 ::iZl! 1110 ,2IZ 3211 3Zll 1.!1l 311'J 3~!1 

4 1214 2110 2110 3213 lilt) 3211 3Z1I 3211 3211 2.110 3214 2110 3211 nil 3211 211e 2110 3212 3211 2110 3211 ZIlG 2110 lllv 
5 1211 1213 2110 21 HI lllO 3110 3211 1215 IZl5 2110 2110 Ill5 3213 3110 1215 ZIlO 1213 ZIHI lllO lllO 3215 3211 2!10 2!111 

6 Ill! 3215 3213 lal5 3211 3211 1213 12B IllS Ill.! 3211 3211 1110 3110 IllS 2110 1113 32.12 3211 Ill4 3211 3211 1215 3213 

7 Ill3 lllO nl2 3110 2130 1110 IlI1 3130 lal3 2130 3212 ll13 3a12 1215 1110 laB lZB 1213 lllZ 121a IZB lZl~ 12.11 1213 

8 1130 3ll! 3213 2110 3110 l130 1215 3110 1215 3213 2110 3all llIO 2110 1215 3UI nll 3130 2.110 1215 311t! 3130 1115 3211 

9 3214 2110 12IZ" 2110 Il10 nl3 3213 3Z1! 1211 IllS 3l.1l n13 Z213~ l110 3110 3110 1110 3213 1110 3113 2110 3212 3a13 lZll:,' 

10 l21Z::: 32.13 2110 3110 3213 2130 3212 3110 3213 nil 2lIO 3214 IllS 3110 3214 2lIO 32i2 ,lll 3110 3110 3111i 3211 3110 3110 

11 3130 121l 3114 31.13 Il13 3212 3214 3130 3211 3211 2110 1214 3211 IllS Ill3 2110 3UI 3113 3213 3al1 3Z11 3213 nil lUO 
12 U14~ 3211 2110 3110 3110 2130 2110 l110 JZll 31.11 3110 2130 321l 3212 2110 20110 3212 3213 3212 3211 3110 al30 nil 32n 

13 3214 2.110 3211 lZI2 allo 3111 3211 3110 3110 3all l110 lllO lllO 3213 3211 lllO 1215 3211 32ll 3130 3214 3110 3110 lllO 

14 3214 3l.1l lllO 2110 3214 ll30 3110 3110 3211 3211 l1l0 2110 3215 3213 2110 3114 3211 2110 2130 3211 3213 2.110 3211 31lC 
15 .!lIZ'" 321l ll30 la11* 2110 l110 3211 32Il 3213 3l.1l 3110 3113 aI30 lllO 1215 3213 3130 nil 2110 2110 3214 l130 3110 3214 

16 l130 3111 l110 2110 3214 2130 3110 3110 31.1l 3211 2130 2110 3214 3110 3211 lIlO 3211 allo 3112 3ZIl 3213 2110 nil 3110 

17 1211 2110 llJO 12Il 3213 3211 3211 3211 3214 IllS 1211 3211 1215 3215 3211 3212 3211 IlII 1211 nl3 3a13 3211 3215 allo 
18 2.110 3213 3213 1110 2212* 2110 3213 2211 3212 1215 2110 3213 3215 3213 2110 3Z11 2110 2110 3214 3213 2.110 3~14 3213 2110 

19 ll10 1110 1110 Zlll* 22ll" 2211* 3212 2110 3212 1215 1214 321l 1130 1110 1214 3110 2110 1215 Z110 2110 2.211" 1215 nll l1l0 

20 3110 2110 2130 2130 2222" 2130 1213 3213 3213 3215 2110 213() 3224 lllO 3211 3211 21lG 2130 2130 2110 2211':' 2130 3113 2130 

al 3212 lIlO 2110 2110 1130 1110 321l 3212 2110 1213 1211 1110 1211 3211 3211 2130 1214 1110 3110 3110 1215 1110 IllS 1130 

22 3113 2110 2110 3213 1110 Il13 3211 1212. 3214 1213 1213 nl3 3213 3110 3213 3U5 3213 3211 3212 2110 lll3 lila 1215 3213 
23 3213 liiO 2110 3113 IllS 1212. 3211 1213 3214 12.14 2211" 3213 3211 3110 1130 3215 IllS 3211 32Jl 2110 3211 3110 I2lS 321~ 

24 UI2" nl3 3l.11 3110 3211 32U 3110 1211 3130 1110 3214 3211 3213 3110 3211 3211 1211 3Z11 3213 3214 3Zl3 3211 3212. 32.1l 
25 1l1l 3114 3213 JaI3 3215 2110 2110 3213 3213 3213 2110 3Z11 3211 2110 3214 3215 3214 2110 3215 3211 3210J lllO 3lH J214 
2b 1212 2110 3211 3213 3211 3211 2130 3211 3110 3211 2110 2110 1215 2.110 3Z11 3Z14 3110 3110 3211 lllO 211t 3130 37.14 3211 

27 121Z 2110 3211 3211 3212 3211 3214 3211 3211 3130 2.110 3110 2.130 3215 2110 3214 3213 3211 3Zll 3130 2110 3111 321-5 3211 

" The computer iruplemt"ntation o£ the expunenh~~ smoothing algorithm with the- quadratic model contained a programming error .. However. plots or a11 predictions. aion~ 
with their hu~torical time-series, were prepared ':lOd inspected dSllally. In a1\ cases. including these. predictions were consistent with "eye-ban" extrapolations. 

The model .. technique combinatiuns i1 re identiCit'd h)f the (ollowing -i-digit code: 
I I I 

I I I 
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1 ;.; co"stant ntudd I 1 ';;; multiple regression I 1 :: outliers beyond l sigma are rejected I n : °.lsed \T:!.!.." mu1tlp~e regression; Q- not relevant 
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3) Rejection of outlic)rs, if done, should be a manual ope:t<ttion, based 

on additional knowledge that the data to be censored is atypical. 

4) Multiple exponential smoothing models with large smoothing con­

stants arc pronB to overrespond in a fashion similar to that of 

multiple regression model::> with too few degrees of freedom. 

C. RESULTS 

Quarterly predictions and associated prediction un~ertainties for 27 crime 

types for 24 geographical areas for 1969 were obtained. Crime in the divisions 

without helicopters matched the predictions well. >!; The uncertainties (magni­

tudes of one standard deviation) varied with the crime type and sample size, 

but were usually about 15% (see Fig. 8). As would be expected, uncertainties 

a.re, in general, larger when the expected nurnber is s111aller and srnaller 

when the expected mm1ber is larger. 

>!;That is, a chi-square test on the distribution of residuals, measured in stan­
dard deviations, produced values well within those that would be expected to 
occur at random if drawn from a Gaussian distribution. 
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SECTION IV 

CRIME PREDICTION APPLICATIONS 

A. POTENTIAL APPLICATIONS 

Crime prediction methodology is relatively new to the police system. As 

a result, its full potential is largely a matter of speculation. Some conjectures 

are presented in this section. 

Long range (5 or 10 year) forecasts could be used by police policy­

making echelons in planning recruitment campaigns, police acader.:iY curricula, 

force structure, and equipment acquisition. Forecasts would be particularly 

useful in this aJ'ea if they could be relied upon to reflect changing trends. 

Policy planners and operational commanders must know what alternative 

force structures can do. Task 86 has demonstrated that crime predictions can 

be used in conjunction with operational experiments to assist in the evaluation 

of the effectiveness of certain new and old tactics and equiplnent. 

Tactical commanders can more easily deploy their forces in an effective 

m.anner if they know when, where, and how much of their forces will be needed. 

Prediction models can help supply this information. In this application, the 

capability to predict specific crimes might be of the greatest benefit. 

If, as anticipated, activities of the police have an influence on the amount 

of crime, then a tool that would allow police planners to estimate the effects of 

a number of alternative possible actions could be of considerable value. 

Development of such a tool requires a better description of social forces and 

processes than is currently available to analysts. In addition, since these 

relationships are probably also dependent upon social conditions (such as 

educational levels, unemployment, housing conditions, etc.), such a postulated 

tool would potentially be useful beyond the police systen.l - by legislators, social 

workers, city planners, and others. {In this regaI'd, it may be noted that the 
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limitation of the current methodology is that it is I! open loopl! . That is, there 

is no way to incorporate in'~o the prediction model actions taken by the Police 

Department or other social agencies. A causal model would presumably contain 

such feedback loops.) 

B. CURRENT APPLICATIONS 

Corresponding to the broad spectrum of potential uses for crime prediction 

methodology, several rather different approaches have been proposed and are 

under study. The next few paragraphs will describe some of these applications 

briefly. It should be noted, howeve 1', that the re are sorne gaps - no quantitative 

reseal'ch wc::t.s uncovered focusing on some of the potential uses. ,:~ 

Predictions for use in decisions concerning the tactical deployment of 

police resources are concerned more with calls for police service than with 

actual crime data. To be useful, such predictions must be concerned with the 

distribution of needs for the police by jurisdiction, by hour of the day, by day 

of the week, and by season. LEMRAS (Law Enforcement Manpower Resource 

Allocation System), which has been in use in several cities and in the Van Nuys 

Division of Los Angeles for about 1 year, produces such predictions by use of 

exponential smoothing techniques. 

Prediction of individual crimes requires a different approach. Conceivably, 

a comprehensive study of the causes of crime could provide sufficient under­

standing that such predictions could be made. As a first step, Philadelphia, 1n 

conjunction with the Franklin Institute, has been studying the correlations 

between about three dozen variables and the occurrence of crime in order to 

identify conditions under which crime is likely. 

>::In particular, th·ere appears to be no quantitative research relating crime to 
controllable social factors. Changes in housing conditions, unemployment rates, 
welfare rules or costs, police deployment policies, and the like are apparently 
not being investigated in terms of their quantitative effects on crime. A s a 
result, there is not enough information to construct closed-loop control models 
or long term prediction models. 

36 

[, I 
L ~ ... J 

L I 
[ I 
[~. J 
[ J 
[' 1 

[ I 
[ ] 

[ J 

[ ] 

[ ] 
[ ] 
[,. ] 

[ ] 

[, ] 

[ J 
r 

JPL-STA 650-126 

Another approach to the prediction of individual crimes is under study in 

Los Angeles. Called PATRIC, it is an attempt to isolate the crimes committed 

by the same criminal or gang by recognition of patterns in modi operandi 

(methods of operation). This approach has met with two major implementation 

problems, both of which can probably be resolved by sufficient time and 

experience. One problem is the difficulty in describing crimes in such a way 

that the computer can identify patterns. This problem has two facets, deter­

mination of suitable descriptors and quality controls. The other major problem 

is that of collecting and processing data fast enough to be useful. 

Th~ determination of effectiveness of new tactical alternatives is exem­

plified by Task 86. Since this application is discussed throughout this report, 

it will not be elaborated upon here. 

The scientifically most appealing technical approach to crime prediction 

is that of causal modeling. Models of this type are considerably beyond the 

current state of the art: A great deal of research into the forces interacting 

within our society must be conducted before such a model will be feasible. A 

good causal model would give insight into the probable effectivenes s of various 

possible gross·social actions and changes, and is the only hope for reliable 

long term predictions. But it is quite possible that extrapolative models would 

continue to give m\ore precise short term predictions. 
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SECTION V 

CONCLUSIONS 

Crime statistics can be predicted with sufficient accuracy for some 

of the pos sible applications by ext:rapolation of historical data. 

The potential applications of crime prediction methodology are 

sufficiently diverse that no single technical app:roach is appropriate 

to all. 

Current qualitative and quantitative unde:rstanding of the causes of 

c:rime is g:rossly insufficient to permit the const:ruction of usable 

causal crime prediction models. 

Extrapolative crime models rely upon the assumption that trends 

will continue as in the immediate past. For example, changes::' 

in public policies (especially, but not exclusively, by police 

agenciesL in economic or social conditions, or in public moral 

or philosophical attitudes can invalidate this assumption. 

::'That is, extraoxdinary changes in these factors beyond those that have 
occurred during the period of time covered by the data base. 
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APPENDIX A 

PREDICTION MODELING 

There are three levels on which modeling decisions must be made: the 

kind of model, the choice of independent variables and functional relationships, 

and the selection among many available paralneter estimation techniques. Each 

of these topics is discussed below. 

A. TYPES OF MODELS 

The first consideration of any modeling effort must be the user. What 

kinds of information will be most useful? Are some kinds of information 

required? How will it be used? How accurate must it be? What are the payoffs 

for accuracy and the costs of errors? What are the users' data resources, 

constraints, and computational capabilities? Will the user need more, better, 

or different information later than he needs now? Questions such as these are 

prerequisite to an intelligent choice of analytical emphase s. 

A classification of model types follows: 

1. Extrapolative (Time-Series) Models 

Historical data is simply extrapolated into the immediate future. Sophis­

tication can range from simple "eyeball" extrapolation of a plot of the historical 

data to complex manipulation dealing with cycles, trends, and seasonal 

variations. 

2. Associative Models 

If two objects behave similarly, it is not unreasonable to anticipate that 

this similarity extends beyond the data used for the comparison. That is, 

objects that are associated in some way with the phenomena of interest can be 

used to predict those phenomena. For example, if the divisions of a city are 

assumed to be alike in some sense, crime data from Some divisions could be 

used to predict crime rates in othE,r divisions. 
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3. Quasi-Causal Models 

A limited approach to consideration of the factors that influence crime is 

to seek those whose time-series are highly correlated with the crhne time­

series of interest. Predictions are then based on the assumption that the 

observed correlations will continue and the expectation that the highly correlated 

variables are at least proxies for the real causes. Since the supposed cause­

effect relationships ar.e not known, the parameters associated with the genuine 

causal factors used are, at best, point estimates of the partial derivatives of 

those relationships. The danger of identifying false cause s is particularly high 
in a model of this kind. 

4. Causal Models 

If some or most of the factors that influence the variable of interest and 

the ways in which these influences OCcur are either known or theorized, causal 

models can be constructed to express this knowledge or theory. Causal models 

that inclUde factors under the control of one or more of the users are clearly 
of the greatest potential value. 

5. Pattern Recognition Models 

Models in this category are aimed at isolating the crimes committed by 

single criminals or gangs, and using this infor.mation to identify likely crime 
targets and likely suspects. 

B. VARIABLES AND FUNCTIONAL RELATIONSHIPS 

With the exception of models designed to test theories, the selection of 

appropriate factors to be included as independent variables and the functional 
forms to be used is a difficult question. 

Resource limitations generally dictate 
that the variables be restricted to those 

data types for which records are 
available. Some insight into the choice of functional forms may be gained by 

consideration of plots of the variable to be predicted against each of the 

candidate factors. Consideration of the fraction of the a . 1 . h . 
v r1ance W:HC 1S 
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eliminated by a fit obtained when using a functional expression under considera­

tion can also be enlightening; however , the variables and functions that give 

the best fit do not necessarily provide the best predictions. 

In this task, time was selected as proxy for all other variables in the 

expectation that it would serve as an adequate proxy. Functional fonns were 

chosen on the basis of how well they performed when 6 years of data were used 

to predict the next 2 years. 

C. PARAMETER ESTlMA TION TECHNIQUES 

The final level on which modeling decisions must be made is the technical 

one of choosing te chniques for determining the prediction parameters. Two 

techniques were discussed in Section II: regression and exponential smoothing. 

There are other techniques, such as moving averages and optimal filtering, 

that might also be considered. When a manageable number of variables are tlJ 

be predicted, and especially when unnlOdeled changes are known to have occurred, 

consideration should be given to "eyeball" fitting and extrapolation, coupled with 

the use of experienced judgement. 
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APPENDIX B 

ARREST-OFFENSE VECTORS 

The anticipated effects of using helicopters as patrol vehicles include a 

reduction in the number of" offenses (in at least some categories of crime) and 

an increase in the proportion of offenders caught. It has been observed in 'the 

past that (in most crime categories) arrests are positively correlated with 

offenses>:~. Hence, the data types dealt with here, arrests and offenses, are 

not independent, and a reduction in the number of offenses can cause a reduction 

ill arre sts that might mask, if the data types are treated separately, an increase 

in the fraction of offenders caught. This appendix presents the development of 

a technique for determining the statistical Significance of test results when both 

data types are considered simultaneously. 

The first step is to consider the relationship between arrests and offenses 

for a particular crime type in a particular division. This is done by combining 

the arrest and offense time-series in the arrest-offense plane (see Fig. B-1, 

the details of which will be discussed presently). Each time point then provides 

two coordinates (one from each time-series), which may be used to prepare an 

arrest-offense scattergram. The resulting tlcloudl! of historical points can be 

represented by a probability di3tribution, two contours of which are shown 

(labeled "la" and 112alf
) in Fig. B-l. The contour lines shown are ellipses, a 

consequence of assuming that the appropl'iate probability distribution is bivariate 

Gaussian. Mathematically, the parameters of the ellipses are given by 

>:~Since a larger number of offenses usually means that more criminals are 
workin.g in the area, this is not a surprising observation. 
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1 -1 [2 (J a (J 0] e = - tan 
222 (J - (J 

a 0 

where 

and 

a = sernilnajor axis of the la ellipse 

b = semiminor axis of the 1a ellipse 

8 = orientation angle 

P = correlation coefficient obtained from a simple regression 

of past arrests on past offenses 

(Ja = standard deviation of arrest forecasts 

= standard deviation of offense forecasts (Jo 

Assuming that the bivariate Gaussian distribution is appropriate, the 1a ellipse 

can be expected to contain 39% of the data points, the 2a ellipse to contain 86%, 

and a 3a ellipse to contain 99%. Further, data points are equally likely to fall 

into each of the quadrants. 

In light of the previous discussion, it may be noted that points falling in 

Quadrants I or II suggest improved effectiveness in apprehending offenders, 

while points in Quadrants II or III suggest successful repression of crime. Only 

those points falling in Quadrant II suggest improved effectiveness in both areas, 

and only points in Quadrant IV suggest decreased effectiveness in both areas. 

The next step is to determine what results are needed to conclude (at 

some statistical confidence level) that a change in the system (such as using 
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helicopt.ers for patrol) has caused a bias toward some quadrant or pair of 

quadrants to occur~::. 

The problem may be stated mathematically as follows: 

Given N statistically independent t rials of some event R. What is the 

number n such thai: t?:·. probability is at least p (the confidence level) 

that the nun1.ber of times the event occurs, k, will be less than n, 

under the hypothesis that the probability of occurrence of the event is P? 

or 

Find the smallest integer n such that Pr (k < niP, N) 2: p 

Since each trial is independent (by assumption) and has a probability P of . 
resulting in R, the probability obeys the Bernoulli distribution law: 

I ::: fxN) pX (1 _ p}N-x Pr (k ::: x P, N) \ (B-1) 

Consequently, 

::~ 

(B-2) n - 1 ) 
Pr (k < niP, N)::: L: (~px (1 _ p)N-x 

x::: 0 

The following llcrosswind" analogy has been suggested: Consider an ideal 
archer shooting along a long thin line. Ignore the few times his arrow 
actually lands on the line. This archer is ideal in that his shots are unbiased 
and statistically independent. If there is no wind, approximately half his shots 
will go to the left of the line and half to the right (since he is unbiased). It is 
not likely~ however, that exactly half will go to each side. If there is a right­
to-left crosswind, considerably more than half can be expected to go to the 
left of the line. 1£ he shoots N arrows, how many must go on one side of the 
line before the existence of a crosswind has been (statistically) demonstrated? 
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Then, th e de sired value of n is that which satisfies 

n-l() n ) L: ~ pX (l _ p}N -x < p ~ E (~pX (1 _ p)N-x 
x::: 0 x::: 0 

(B-3) 

To simplify notation, let 

f ::: Pr (k::: x I P, N) 
x (B-4) 

N 
G ::: Pr(k.2 r I P , N) ::: l: f 

r x x:::r 
{B-5} 

q ::: 1 - p (B-6) 

With this notation, Eq. (B-3) may be rewritten, after multiplying by minus one 

(which reverses the inequalities) and adding one, as Eq. (B-7). 

(B-7) 

The value of n that satisfies these conditions cannot be found analytically, but 

must be determined by computation of the G or by table search. WhenN is r 
large, the Gaussian approximation to the Bernoulli distribution may be used, 

with Eq. (B-7) becoming 

(B-8) 

where 

i t Z 
CP(t) = ~ exp (-s /Z)ds ...rz;;rr _ CX) 
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E (B-7) or Eq. (B-8), its meaning 
To recap, when n has been found fronl q. 

f vent R in N trials to 
n = the minimUlTI number of occurrences 0 e 

reject, at a confidence level of p, the hypothesis that the 
'11 .' 1~0 greater than P. probability that event R "\Vl OCCUI IS 

t') that differences between 
This statistical test rests upon the assul1'lp 1C n , 

data are statistically independent from one tlme 
P redicted and actual crime 

, t' plots for the 
eriod to the next. Unfortunately, inspection of the CrllTIe - lme 

p . ti Id not be relied upon. Thus, 
non-test divisions showed that thIS aS5un1p on cou , 

l
' t' f the test to LAPD data dtuing the helicopter test perIod 

though app lca Ion 0 • , 

ti
· that the use of helicopters did indeed gIve Improvement 

gave results sugges ng· , , 

of effectl'veness, this statement could not be given a statlstlcal 
in both areas 

foundation. 
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APPENDIX C 

ALGORITHMS FOR TIME-SERIES ANALYSIS 

The extrapolation of time-series has been used for some time by statis­

ticians, economists, scientists and others interested in forecasting the future. 

This appendix presents some discussion of the technical problems involved and 

two algorithms, multiple regression and modified multiple exponential smooth­

ing, for producing predictions from streams of historical data. Since regres­

sion is an older technique, with a longer history of development, a more com­

plete set of theoretical results is presented, but the analytical development 

is abbreviated. Exponential smoothing is a considerably newer technique: 

Theoretical results are less extensive, and more attention is devoted to the 

analytical development. It should be noted that both techniques are members 

of the general class of weighted regression techniques. 

In general, time - series data exhibit four components: secular trend, 

cyclical variation, seasonal variation, and irregular fluctuations. The trend 

component is probably the most familiar; its existence is usually easily recog­

nized when the series is graphed. This component commonly increases with 

time since many factors (for which time is used as a substitute, or proxy) grow 

as a result of population increases, technological advances, etc. Since, in the 

main, these underlying factors change smoothly with time, the hend components 

of time - series usually change smoofnly (but not neces sarily linearly) with time. 

The second, or cyclical component, has been chiefly observed and studied in 

econonlic time- series: As a result of feedback loops in the economic system, 

business conditions tend to vary between the extremes of boom and recession 

over intervals of several years. Cyclic fluctuations have also been obser.ved 

in meteorological and sunspot data and undoubtedly exist in many other types 

of time-series. Seasonal effects are also evident in many time-series. Because 

of their regularity, it is common for published data to be seasonally adjusted 

to provide more readily understandable statistical information. The irregular 

component of time-sel'ies is the most difficult to interpret. These fluctuations 

result from factors that do not change smoothly with time. When the fluctuations 
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are small enough or when the processes glvmg rise to them are poorly under­

stood, they are usually assumed to occur randomly (though perhap8 with some 

autocorrelation), From a sampling of the time-series, an estimate of the 

expected variation can usually be inferred and the fluctuations may be approx­

imated by a probability distribution. Occasionally, fluctuations occur which 

are unlikely to be associated with this distribution, possibly caused by unusual, 

nonrecurring events such as riots, r.atural disaste rs, etc. The difficulty in 

distinguishing between these two types of fluctuations makes the irregular com­

ponent of time-series the most difficult to interpret and t.o deal with. 

A common approach to time-series analysis has been to model first the 

trend by fitting a polynomial or other function of time to the data and then to 

search for periodic fluctuations that result from seasonal and cyclical influences. 

The seasonal effects are often quantified by indices obtained by averaging month­

ly or quarterly values of the series. Cyclical effects are often determined sub­

jectively through observations of the residuals after the removal of trend and 

seasonal effects. A sophisticated technique for analysis of cyclical effects is 

spectral analysis, originally developed in research on telecomm.unication sys­

tem.s. This approach, which has been applied to economic time-series (see 

Ref. C-l), consists basically of the determination, by means of the spectral 

density function of the series, of the period and phase of cycles that account 

for a statistically significant portion of the series variance. This technique 

has the advantage of verifying the existence of suspected cycles and even un­

covering cyclic behavior that would otherwise go unrecognized. 

A. MULTIPLE REGRESSION 

1. Preliminarie s 

The problem to be solved is the estimation of the coefficients (and related 

statistics) of a model relating one dependent variable, denoted y, to one or 

more (K, say) independent variables, denoted by x
k

. The regression is lineE.. 

if the only power a.ny x
k 

takes in the model is unity. It is multiple if K is Z or 

luore. The dependent and independent variables all vary with some index vari­

able (such as time); hence, a subscript, t, is added to the notation: Yt and Xtk' 

The model is then represented by 
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t = I, 2, ... , T ( C-1) 

where e
t 

is the residual, representing the "irregular fluctuations". 

In the time-series application where the model is a polynomial in time 

plus seasonal constants, K = n + L - I, where 

n = the degree of the polynomial 

L = the number of seasons in a year. 

Further, the independent variables are 

where 

and 

for i = 1 to L 

{ 
0

1 if t corresponds 

otherwise 

to season i 

= tk 
for k = 1 to K 

For convenience in notation, the various time-series are defined as 

vectors and matrices: 

yz 

y = ,x= {3 = , etc. 
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TherL, the model, Eq. C-l, can be succinctly written as Eq. C-2. 

y :;: Xf3 + lS ( C-2) 

2. Determination of Parameters 

It can be shown (Ree, for example, Ref. C-2) that the choice of parameters 

that minimizes the sum of the squares of the residuals (hence the term "least 

squares ll ), the reby minimizing the variance, is given by Eq. (C-3). 

( C-3) 

where the prine (J) denotes a matrix transpose, and B is the vector of estimates 
A 

of the coefficients, f3k . Then, the vector of smoothed values of Y, denoted Y, 

is 

~ = XB ( C-4) 

and the vector of estimated residuals, E, is estimated by 

A A 
E = Y - Y = Y - XB ( C-5) 

3. Coefficient of Determination and Multiple Correlation Coefficient 

The coefficient of determination, R 2, is defined as the ratio of the amount 

of variation II explained" by the regression to the variation of the original series 

of the dependent variable: 

1 -
yly - BX'Y 

T 
L (Y

t 
- y)2 

t:: 1 
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1 T 
Y :: T 2: Yt , the mean value of the original series. 

t:: 1 

The multiple correlation coefficient, R, commonly used as a measure of 

the "goodness" of fit, can take on values between -1 and +1, with the extreme 

value s representing perfect negative and perfect positive correlation, respec­

tively, between the dependent and independent variables. Multiple correlation 

coefficient values near zero represent regressions with little or no correlation. 

4. Statistical Inference 

The estimated standard deviation of the fit, denoted s, may be found hom 

Eq. (C-7). 

2 /\ A 
S :: E' E/( T - K - 2) ( C-7) 

The estimated covariance matrix of the coefficient vector, denoted Sbb' 

is given by Eq. (C-8). 

( C-8) 

5. Forecasting 

Suppose a forecast is desired at some time t = T, and estimated valuE:s 
A 

of the independent variables, X
T

, are known. Then the forecast for the dependent 

variable is simply 

/\ = XI B 
T ' 
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2 
and the estimated variance of the forecast, sf ' 

... I ... 

1S'" 

2 + 2 + A 2 = SA. S Sx 
YT T 

where 

6. Confidence Intervals 

(C-I0) 

(C-ll) 

Upper and lower 100y percent confidence limits on the model parameters 

are given in Eq. (C-12). 

::: B ± z Sb 
vp 

(C-l2) 

where Sb is a K x 1 vector of the square roots of the diagonal elements of Sbb' 

z is from a Student' s t distribution of cumulative probability, 
vp 

p ::: (1 + y /2), and 

V ::: T - K - 2 degrees of freel-10m 

2 . f 
):~If the independent variables are known exactly, then Sx 1S, 0 course, zero. 

T 
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The statistical significance of individual components of B is demonstrated 

at the 100y percent confidence level if 

b. 
1 > 

Sb. 
1 

z 
vp 

( C-13) 

where bi and Sb. are the i-th elements of the Band Sb vectors, respectively. 
1 

Similarly, 100y percent confidence levels for a forecast are given by 

Eq. (C-14). 

( C-14) 

B. EXPONENTIAL SMOOTHING 

Exponential smoothing has emerged as a competitor}:~ to simple regression 

as a technique for estimating the parameters (Jf a model fit to a nonstationary 

discrete time-series. Theoret~cally speaking, exponential smoothing>:o:~ and 

simple regression are members of the more general class of weighted regres­

sion techniques: In simple regression, data points are weighted equally; in 

exponential smoothing, they are weibhted by an exponential decreasing with the 

"ages ll of the data points. As a result of giving more weight to the more recent 

data, exponential smoothing often performs better in extrapolation, particularly 

when the process is fllOdeled imperfectly or is nonstationary. 

~~There are, of course, other techniques, such as moving averages and Fourier 
analysis, which are also competitive. 

>!o!<This statement holds for exponential smoothing as developed by Brown in Ref. 
C-3. (It is proved in his Appendix A.) In some recent generalizations, such 
as presented in Ref. C-4, the weight given to each data point may be different 
for computation of estimates of different parameters in the model bein~ fit. 
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The exponential smoothing technique requires initial estimates of the 

model parameters. After a sufficiently long time, depending on the smoothing 

constant (that is, the rate at which the weighting factors decay), the initial 

estinlates do noi; influence the estin'lates produced. In the meantime, a poor 

set of initial estimates can lead to poor predictions. Here, Brown I s develop­

ment (Ref. C-3. Chaptel' 9) of multiple exponential smoothing is paralleled 

to derive a modified multiple exponential smoothing procedure which does not 

require initial estimates of the parameters. The result is analogous to com­

putation of a cumulative average, such as is used to report season-to-date 

batting averages for baseball pl<qers. 

1. Preliminaries 

The problem to be solved is the estimation of the coefficients Q£ an nth­

degree polynonlial in tinle::: to nlodel a given discrete tiIne-series. 

Let 

so that 

for t = 1, 2, ... , T represent the uniformly spaced (input data) 

values of the discrete time-series to be modeled, 

for any (integral) t represent the predicted or smoothed values of 

the time-series, 

f k 1 2 , L and any t represent additive seasonal effects or = , , •.• 

for each of L seasons, and 

for t = 1, 2, . , ., T represent the seasonally adjusted time-series, 

( C-lS) 

:;: The index variable, denoted here by t, could refer to SODle other quantity 
instead of thne, but it is convenient to use ther terDl "tinle il rather than 
the n10re precise, but awkward terDl "the index variable. " 
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where k(t) is the season corresponding to time t and ~t is the estimate of x
t
. 

The assumed nth-degree polynonliallnodel can then be expressed as 

or as 

where 

b 
l' 

n a 

L l' 
(t+T) l' Xt+T = + e t +T 1'-=0 r! (C-16) 

n b 

L 
r r 

x t +T = -T + et+T 
1'=0 1'1 (C-17) 

are alternative expressions for the coefficients of the poly­

nomial depending upon whethe l' the polynomial is expanded 

about time Q or time t, respectively, and 

is the re sidual (that is, the difference between the fit and the 

data), and is often assumed to be an independent, Gaussian 

random variable. 

Several of the variables defined above will be estimated at different points in 

time. The following conventions will be used to indicate such estimates: When 

the variable does not already have a subscripted t, a subscript t will be added. 

(For example, b t will represent an estimate of b made from data available at 
l' l' 

time t.) When the variable does already have a subscripted t (as does Yt)' then 

a circumflex (or "hat") will be added (as in Y
t
). 

Often, the seasonal effects must also be estimated prior to their removal. 
Since 

this can be done as follows: 

(C-18) 
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where single exponential smoothing 1S applied to each seasonal constant 

separately}:: with a possibly different smoothing constant for each. Time-varying 

values of the smoothing constants, Ci k ' as shown later:::::', can be found from 

( C-19) 

where O!k is the ultimate value of the kth smoothing constant. 

With these preliminaries out of the way, it is possible to proceed to the 

next subsection \\'ith the seasonally adjusted time-series x
t 

for which the poly­

nomial coefficients b
rt 

will be estimated. 

If it is desired to study the variations in the fitting constants, it may be 

n10re convenient to deal with the art' since their value s do not nominally vary 

with t. (That is, the art = 21' for all t if the data is from a noise-free poly­

nomial of degree less than or equal to n.) The art and b rt are related by the 

fol1owing equations: 

n - r . 
I: (- t)l b +" t/i! 

i = 0 l' 1, 

::: Cf. Pegels I models in Ref. C-4. 

~:'~~See also Ref. C- 5. 
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2. The Fundamental Theorem of Modified Exponential Smo()thing 

To proceed with the rlevelopment of exponential smoothing, the next step 

is to define multiple smoothing of orders 1 through p. Let 

f3 = t 

S(2) = O!t St + f3 S(2) 
t t t-l 

(C-21) 

S(pj = O! S(p-l) + f3 S(p) 
t t t t t-1 

is the smoothing constant to be used at time t: and is so defined 

that the ratio of the weights assigned to successive data points 

is (I - O!), and the asymptotic value of O!t is O!, the smoothing 

constant chosen from considerations not discussed here. 

1 - O!t for convenience, since it occurs often. Similarly, f3 = 1 - O!. 

Starting with S I = Xl' these difference equations can easily be solved for the 

s~p) in terms of the x
t 

to provide the fol1owing results: 
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{3t-l + Xl 

(3t-l + 

t-1-71 7 
a I: {32 S\2 = ---,- I: {3 

t t 
v 1-{37-0 1 -

t -""1 Xt_T -7 
1-{3 ' 72 =0 1 2 

2: 1 
t-1- L Ti 

i= 1 

I: 
7 = 0 

P 

( C-22) 

7 
(3Px P 

t - I: 
i = 1 

From these equations, it is evident that the time-varying smoothing constant, 

at' must be given by 

or, equivalently, (C-23) 

If it is now assurned that the observations are taken from an nth-degree poly­

nomial in time, so that 

1 n 
... t -, b t (-p) n. n 

62 

[ .. I 

[ ~J 
.[ ~I 

l. :J 
r :J 
[ ~1 
r-.) 
I - ~. 
L. .D 

l-: ]f 

l.Jl 
f' 11 

l 
\ , 

~J 

JPL-STA 650-126 

then the fundamental theorem of modified exponential smoothing states that the 

smoothed series St' ... , S~p) can be expres sed as linear combinations of the 

coefficients bOt' , .. , bnt and that consequently (if p = n + 1) the coefficients 

can be expressed as linear combinations of the smoothed series. More 

succinctly, the fundamental theorem states that there exists a matrix ~t such 

that 

~t = M b 
""t , .... t 

( C-25) 

with (if p = n + 1) an inverse 
-1 

~t ' so that 

-1 
~t = ~t ~t (C-26) 

where 

and _~t is the upper left hand corner of 

m
13t 
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The theorem may be demonstrated by substituting Eq. (C-24) into Eq. (C-22), 

which gives, for r ::: 1, ... , p, 

r -1 
t - L: 

1-{3 i=1 

T. 
1 

r ~ 1 
t-l- L: T· 

i = 1 1 

T ::: 0 
r 

T n+lb'lt 
(3 r L: J- , 

j = 1 (j-l)~ 

r 

L 
i = 1 

Comparison of Eqs. (C-25) and (C-27) shows that 

(_)j -1 a? t - 1 {3Tl 
t-l-T 1 r/ 2 

m = L: _ {3t-T 1 L: 1 _ {3t-T 1- T2 rjt (1 - (3 t) (j - 1) '. T = 0 1 T = 0 
1 2 

r-2 r-l 

T. 
~~ 

\)j_l 

t-l- L: T' t-l- L T. (r r-1 1 T i= 1 1 i= 1 {3 r-l T 

I: I: 
{3 r L: T. 

r - 1 i = 1 1 

T = 0 t- L T. T 
r-l 1 r=O 

i = 1 1 - {3 

3. Computational Sequence 

( C-27) 

l 
~ 

( C-28) 

The algorithm for use of modified exponential smoothing is essentially the 

same 'as that used by Brown (Ref. C-2). Explicitly, the following sequence of 

steps may be used~ 
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I.=.J 
[~] 

[ :1 
[] 
[ :J 
[ :] 
[] 
[] 
[] 

C ~] 
l~ ] 
~- ~]: 

~. ] 
], 

- ]. 

- II 
-, ] 

-. n 
D 
't.\ 

1) 

y = 
"'" 

y = 
rv 

. 
l . 
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Step 1: Initialization 

a) A priori guesses of the values of the coefficients, b , are 
r 

yz 

yz 

not required, but starting values are needed. One way to 

obtain the first set would be to temporarily ignore the 

seasonal constants, ck ' and fit the first L (or the first n + 1) 

data points to the polynomial. Thus, if L > (N + 1), set 

bt=L = (F'F) -lFY, where 
'" ~ "'''' 

and F = - (L - 1) 

- (L - 2) 

1 - 1 1 

o o o 

If L ~ (n + 1), then simply fit the first n + 1 points to the 
... 1 

polynomial by ~t=n+l =! x.' where 

and F ::: 
2 

-n n ,.,., 

.. (n-l) 
. ? 

(r..-l)'· 

.... . ... 

\Yn+Y \ 
-1 1 

n 
( .• ) 1 

0 0 o 
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b) With starting values of the coefficients in hand, the starting 

values of the smoothed series (starting at t = L or n + 1) may 

be obtained from the fundamental theorem, Eq. (C-25): 

S t L + 1 = ~t = L or n + 1 ~,t = L or n + 1 "" = or n·- .-

c) Next, it is necessary to obtain starting values for the 

seasonal constants. If L > (n + 1), the residuals during the 

initial period can be used, so that 

for q = 0 

n 
I' b t {_q)r / r~ 

r = 0 r 

y for q 
q 

= 1, ... , L - 1 

If, on the other hand, L:S (n + 1), the polynomial fits the data 

points exactly, so the next L points may be used to find initial 

values of the seasonal constants. Perhaps a better technique 

is to use 2L or 3L data points in finding the initial set of b rt · 

d) At completion of the initialization, the smoothed series, ~t' 
and the seasonal constants, ck ' are available as of some 

time t. 

Step 2: Increment the time index. 

a) Increment t by 1. Find the seasonally adjusted value of the 

time-series from x t = Yt + ck{t-L)" Compute the new value 

of the smoothing constant, O!t' from Eg. (C-23). 

b) Compute the smoothed series from Eq. (C-21). 
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c) Compute new values of the coefficients from Eq. (C-26), and 

update the estimate of the appropriate seasonal constant by 

Eq. (C-1S). 

d) 1£ desired, use Eq. (C-15) to compute the smoothed value of 

the time-series, Ye and compile any statistics of interest. 

Step 3: Exit. 

Has the available data been exhausted? 1£ not, return to Step 2. 

If so, the ~tma and ck are now available for prediction by 

Eqs. (C-15) an2r( C-1 7). 

Elements of the M and M-
l 

Matrices 
"'t ..... t 

It can be shown that 

S (t, x) -
n 

n 
where S (00, x) - " 

n - j~ 1 

D (t, x) 
n 

A . xj, and 
nJ 

= (1 - x)n + 
n n 

2: ,2: 
r=1 J=l 

The Anj are Eulerian numbers and the Cr/n) are another set of numbers, given 

by 

C .(n) 
rJ 

A . = C ,(n) 
nJ nJ 
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. l"f calculation of these numbers 
tr relations to SllUP 1 Y 

Recursion}\: and symme, Y 

can be demonstrated: 

A .= 
IlJ 

C ,(n) 
TJ 

1 

+ {n - j + l} An-I, j 

l
( 'A 

J n- 1, j-l 

A '+1 U, n-J 

'1 n-l) 
(_)J - 11. (j -1 

for j ::: 1 

for 1 < j ;s n/2 

for n/2 < j :::: n 

for j ::: L 1 ~ r :5 n 

for 1 < j oS n/2, r::: 1 

r (1)+jC (n-I) 
l{n+1-j) C r _ l ,j-l n- r-Lj 

for 1 < j S n/2, 1 < r < n 
_ C , (n-l) + C ,(n-l)\ 

r, J-l rJ 

, I -1) + (n+l-J') C ' (n-l) for 1 < j S n/2, 
Jc 1'1\n 11.-1,J n- ,J-

r ::: n 

n-r ( ) 
(-) C r , n+l-j n 

for n/2 < j S n, 1 oS r oS n 

'!:The author is indebted to Dr. Harry Lass for discovery of the recursion 

relation for the Crj{n). 
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In particular, the first few sums are: 

[ t t+ 1J 2 S 1 (t, x) ::: X - t x + (t - 1) x /( 1 - x) 

[ 2 2 t 2 t+ 1 2 t+2] 3 S2(t, x) ::: X + X - t x + (2t - 2t - 1) x - (t - 1) x I( 1 - x) 

2 . 2 2 }] 4 + x ( - 6t + 4) + x (3t - 3t + 1) I{ 1 - x) 

These sums can be used to obtain simpler expressions for some of the 

elements of the hlt matrix given in Eq. (C-28). In particular, with j ::: 1, 

::: 1 for all r, t 

For r ::: 1, j > 1, 
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Hence, 

lTI12t 

Similarly, £01' l' ::: 2, j > I, 

Sj_l (t, (3)1 
+ a 

t - 1 

2: 
T=:O 

1 

-1 
In addition to the M matrix used in Eq. (C-Z5), its inverse, ~t ,is 

""t 
also required, as may be seen itl Eq. (C-26). 

For exponential smoothing where the data base is assuxned to be 

(practically speaking) infinite, the M matrix is constane::, and is the upper 

left hand corner of 

~:'See Brown (Ref. C-3), p. 135. 
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Z{3 (1 + 2.8) 

2ei 

3{3 (1 + 3(3) 

2(i 

Inverses of this matrix for n ::: 2 and 3 are presented here, even though 

computation is trivial, for the convenience of the reader. 

-1 (2 -1 ) Whenn = 2, M =: 
,....,co 

CI./ (3 - CI./ (3 

3 -3 1 

Whenn 3, 
-1 CI.( 6 - 5(1) CJ.( 10 - Sa) a( 4 - 3C1.) 

= M :; 
",co 2(32 2(32 2{32 

a 2 /{3Z - 2C.? / {3Z ci /f3 Z 

The inverses, for n = 2 and 3, of the more general ~t matrix are given 

below. The subscripted t has been omitted for improved readability. 

If n = 2, 

-1 
then M 1 

=: -----
fiZZ - m 12 
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while if n = 3, 

1 

M= 1 

1 

then 

(m22
m 33 - m 32m 23) (m32m 13 - m12m33) (m 12m 23 - m Z2

m 13) 

M- 1 1 (m
23 

- m 33) (m
33 

- ro l3) (m
13 

~ m 23) 
::: 

D r<J 

(m
32 

- m 22) (m
12 

- m 32) (m22 .. mlZ) 

where 

With modern high-speed computers, computation of the elements of these 

matrices is a simple matter. It should be noted that they depend upon ex and t, 

but not upon the time-series data, and need not be recalculated for each time-

series. 
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