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lm N SECTION 1
axed .
l ] INTRODUCTION
lw’:.‘..l g
T A, BACKGROUND
":;‘LI Ty
.lr:m - The capability to predict crime could be of considerable value to the

police in a number of ways. For example, strategic decisions relating to

I } force structures and training emphases would be easier if reliable long-range

forecasts of crime were available. Tactical decisions on the day-to-day

deployment of forces would be eased by accurate short-range forecasts or by

forecasts of specific crimes. Analysis of the effectiveness of new (and old)

lj;ﬂ N equipment can be performed more accurately if appropriate crime prediction
= An understanding of the relationships between social,

e capability exists.
[~—J - economic, political, and moral conditions and crime, expressed in a model,
.. could be used to devise effective crime prevention campaigns. These potential

uses have generated interest in the broad technical problem of predicting crime.

In 1968, the Jet Propulsion Laboratory (JPL) was called upon to assist

e
l the Lios Angeles Police Department (LAPD) in evaluating the effectiveness of

Poma - helicopters as police patrol vehicles, The requested assistance was provided

by JPL's Space Technology Applications (STA) Office, as Task 86. (The re-
cults of the Task 86 evaluation are documented elsewhere®*,) This was funded

by the Technology Applications Office of NASA as a part of its continuing pro-

gram in applying technology to civil problems. It was necessary to this eval-

uation that crime levels be predicted.

[m e
|
R o
Investigation of the prediction of crime was undertaken separately, as STA
i[m 7 Task 125, with the evaluation of the effectiveness of a new tactical system (that
ST is, Task 86) to be used as a focus for the effort. In particular, a major part of
= the evaluation was to be a determination of the reduction in crime, if any, due
o’
*Weaver, R. W,, Effectiveness Analysis of Helicopter Patrols. JPL Document
‘[m Ny 650-89. Jet Propulsion Laboratory, Pasadena, Calif., Jul. 27, 1970.
B9 mey
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to the presence of the helicopters. In order to mahe the necessary coniparisons,
predictions of the crime levels that would have occurred without the helicopters

were required,
B. OBJECTIVES
The objectives of Task 125 were as follows:

1) Assist Task 86, Effectiveness Analysis of Helicopter Patrols, in
the evaluation of the effectiveness of helicopters as patrol vehicles
by producing a set of crime predictions for use in comparisorns
with actual crime occurrences.

2) Determine current and potential applications of crime prediction
to permit assessment of the usefulness of different types of crime
prediction models. Determine input and output requirements aﬁd

operational constraints for these models.
3) Review existing and potential crime prediction techniques to

determine the most promising approaches for further development,

Thus, the task consisted of three interrelated parts which were carried on
essentially in parallel: A determination of the potential applications of crime

prediction, a study of the state of the art, and an exercise in the real world.

C. APPROACH

Crime prediction is but one application in the general problem of quanti-
tative forecasting, Thus, in reviewing the state of the art, it was necessary to
consider recent advances in forecasting procedures as well as the relatively

scant literature on crime prediction.

Potential applications of crime prediction capability were determined by
surveying the applicable literature and by conside ring operations within the
LAPD. They were further explored in discussions with officials of the Los
Angeles Police Department,

L.

el
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The most appropriate type of model for any particular application depends
upan a number of factors (Appendix A). Primary among these is the type of
application. Thus, in Task 86, helicopters were placed in 2 of 17 police divi-
sions, making divisional boundaries important. The experiment was expected
to show effects on numbers of offenses and arrests, so these quantities weve
selected. The helicopter experiment was to run for a year, so predictions

were needed for the same length of time.

A second major factor in choosing the kind of model to use was the con-
straint on the resources available for the study. Thus, although one could
speculate that the use of cause and effect relationships might provide the most
reliable predictions, development of such relationships would have been a more

extensive research project than possible within the limited resources of this

task.

A third factor that had to be considered was the availability of data. Many
data types exist in the files of various public agencies. but others would have
to be collected in the field - often an expensive, time-consuming operation. Pre-
liminary crime prediction work for Task 86 had revealed that division boundaries
had been changed a number of times during the historical period of interest.
Fortunately, the LAPD files included quarterly crime reports for each of about
600 reporting districts, which can be considered as building blocks out of which
divisions are made. Thus, it was possible to re-combine the data from the

reporting districts according to the geographical boundaries of the divisions

during the test period.
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As a result of the assessment of these factors, it was decided to use cight®
years of quarterly®# data from the LAPD files and to use extrapolative (i, e.,

time-series) models to predict for the ninth year, 1969.

Section II of this report discusses the generation of predictions in greater
detail, In brief, the approach taken was as follows: Time-series for each of 27
crime types in 24 geographical areas were built from LAPD quarterly summaries
for the basic geographical building blocks, the police reporting districts. Ana-
lytical techniques used for each time-series were chosen by comparing the

predictive accuracy of each of a variety considered.

It was reasoned that arrests were related to offenses, and that a system
that reduced offenses would tend to reduce arrests as a result., Further, an
increase in arrest effectiveness could be expected to reduce offenses due to
the detention of multiple offenders. This relationship was investigated, and a
statistical test for evaluation of the experimental results, using arrests and

offenses together, is discussed in Appendix B of this report.

* Right years was chosen as the sample size to avoid a major jurisdictional
boundary change, affecting five of the current divisions, which occurred
in January, 1961.

%% A emaller interval, such as a month, would, if the data were obtainable,
provide more data points in the history. The main benefit provided by
these additional points would be a more detailed determination of seasonal
effects; they would provide little, if any, improvement in trend calculations.
A larger interval, such as a year, would provide larger numbers to work
with, (It is shown later that prediction uncertainties are usually smaller
percentages where expected numbers are larger.) It was deemed impractical
to use a yearly interval, however, because it could be anticipated that the
effectiveness of the helicopter patrol might change after some break-in
period.

JPL-STA 650-126
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SECTION II

PREDICTION OF CRIME

A, SUMMARY

In developing a prediction model, it is necessary to make technical
decisions on threc levels (see Table 1). The first decision level is the most
comprehensive and has a major impact on the predictions eventually produced.
At this level, the variables to be predicted and the type of model to be used
must be chosen. The second decision level i® the selection of independent
variables and their functional relationships. The last decision level is the

choice of specific parameter estimation techniques.

Selection of the variables to be predicted depends upon the use to which
they will be put. Hence, for the evaluation of helicopter patrols, number of
offenses - with an emphasis on property crimes - was chosen to allow inves-

tigation of anticipated crime reduction, and number of arrests was chosen to

allow investigation of anticipated improvement in police operational effectiveness.

The quality and availability of data plays an important role in many of the
modeling decisions which must be made. Since the immediate application called
for accurate predictions of crime levels, it was decided to use extrapolative
models to make quarterly predictions of 47 crime types {see Table 2) in 24
geographical areas (see Table 3 and Fig. 1).

The choices of functional relationships and of parameter estimation
techniques were made on the basis of their predictive abilities. Standard
econometric techniques were considévr-ed, but rejected because of the failure
of key assumptions. Instead, 6 of the 8 years of data was used to predict the
remaining 2 years for each of the 648% time-series, by each of the model-

technigue combinations. The resultant matrix of prediction results was then

:ﬁ(Z? crime types) x (24 geographical areas) = 648 time-series.



JPL-STA 650-126

Table 1. The three levels of modeling decisions

Lievel 1., Type of Model and Dependent Variables to be Predicted

el

Types of Models (see Appendix A): Extrapolative, associative,
guasi-causal, causal, pattern recognition.

b. Dependent Variables to be Predicted: Number of offenses and/or
arrests, probability of a crime event, specific crimes, calls for
police service, and others.

c. Geographical Boundaries: Block, census tract or reporting
district, division, city, county or region, state, nation,

d, Frequency and Length of Prediction: Iourly, daily, weekly,
monthly, quarterly, annually.

I.evel 2. Independent (""Explanatory!) Variables and Functional Relationships

a. Independent Variables; Proxy variables such as time, corre-
lated variables such as population, variables resulting from
theory such as measures of social pressure,

b. Functional Relationships: Linear or nonlinear, feedback control
systems, and others.

Level 3., Parameter Estimation Techniques

a. Mathematical;: Regression (least-squares), exponential smootli~
ing, Fourier analysis, speciral analysis, moving averages,
and others.

b, Nonmathematical: Trial and errer, "eyeballing'', simulation,
physical modeling, and others.

c. Treatment of outlying points resulting from unusual occur-

rences and/or clerical errors,

ey
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Table 2. Crime types predicted for Task 86

o =~ O b W

O

10.
11.
12.
13.
14.
15.
16.
17.

18.

19.

20.
21.
22.
23.
24.
25.

26,

27,

Murder, rape, and aggravated assault offenses
Street robbery offenses

Other robbery offenses

Total robbery offenses (2 + 3)

Residence burglary offenses

Business burglary offenses

Phone booth and other burglary offenses
Total burglary offenses (5 + 6 + 7)

Theft from person offenses

Theft and burglary from auto offenses
Bicycle and other theft offenses

Total theft offenses (9 + 10 + 11)

Auto theft offenses

Total property offenses (4 + 8 + 12 + 13)
Total property arrests (19 + 20 + 23 + 24)
Total "Part I'' offenses® (14 + 1)

Other arrests (murder, rape, drunk, etc.)
Aggravated assault arrests

Robbery arrests

Burglary arrests

Felony theft arrests

Misdemeanor theft arrests

Total theft arrests (21 + 22)

Auto theft arrests

Narcotics arrests

Total arrests other than trafiic
and forgery (17 + 18 + 19 + 20 + 23 + 24 + 25)

Total arrests {26 + traffic + forgery)

*he FBI publishes the Uniform Crime Report annually.

The "'seven major' or '""PartI' crimes, as defined in
that publication, are murder and non-negligent man-
slaughter, forcible rape, aggravated assault, robbery,
burglary, theft, and auto theft.
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compared with plots of the time-series to select model-technique combinations

Ly
b
L

for the final predictions.

CONSIDER AND CHOOSE
TYPES OF PREDICTIONS
TO BE MADE - LEVEL 1

Figures 2 and 3 show the steps involved in proceeding from the raw data L

(LAPD quarterly reports, internal memoranda, jurisdictional boundary maps, o

DECISIO
and discussions with personnel within the department) to the final predictions. | N3
First, a "dictionary' was constructed. By entering this dictionary with T
a reporting district number and a date, it was possible to determine, among - SELECT DEPENDENT AND GATHER CRIME DATA OBTAIN HISTORY
other things, which division contained that reporting district at any other [~ = INDEPENDENT VARIABLES - | B FOR POLICE OF JURISDICTIONAL
specified date, Program 1 used this information to recombine the historical data 8 = LEVEL 2 DECISIONS REPORTING DISTRICTS BOUNDARY CHANGES
from the LAPD reporting districts given in the quarterly crime reports into — = )
time-~series data for the LAPD divisions as they were during the study. .
This data was then used by Program 2 to evaluate a set of models. There - SELECT ANALYTICAL VT'ECH- GENERATE HISTORICAL TIME-
were 54 models in all that were compared, these being formed through combina- L . NIQUES TO BE CONSIDERED SERIES FOR CURRENT DIVISION
. IN LEVEL 3 DECISIONS BOUNDARIES BY CRIME TYPE
tions of the following (see Fig. 4): L .
1) Constant, quadratic, and exponential dependence on time. (Time - v
was used as a proxy variable for the underlying causal factors.) - »
2) Outlier rejection criteria of 2, 4, co standard deviations of the | APPLY EACH CANDIDATE ANALYTICAL GENERATE PLOTS
. . . " RTI , TECHNIQUE TO EACH TIME-SERIES, OF THE CRIME
(uncensored) trial fit. (The data contains some 'outlying' points, ESTIMATE PREDICTIVE ACCURACY OF FACH TIME-SERIES

that is, points that might decrease prediction accuracy. Such
points could be the result of clerical error or unusual events,

such as riots.)

3 Multiple repression (least squares) and modified multiple exponential e COMPARE ANALYTICAL TECHNIQUES.
) ip ' reg ‘ q sl e p P . , CHOQSE MODELS TO BE USED IN
smoothing algorithms for determination of model parameters. Fivg — = SUBSEQUENT PREDICTIONS -
smoothing constants (0.01, 0.03, 0.1, 0.3, 0.5) were tried with S LEVEL 3 DECISIONS
the exponential smoothing algorithm. e
-
Program 2 applied each of the model-technique combinations to the first 6 years T
of each time-series and determined prediction errors during the seventh d i
e ' & s PREDICT FOR THE TEST PERIOD
eighth years of data. L. .,

These results were then compared with plots of the time-series, produced L

g

‘[j
¢ on

by Program 3, and models were chosen for the extrapolation into the test

period. Fig. 2. Steps in the prediction of crime

=
e

P

11

10 [ :



JEL-STA 650-126 S ] TPL-STA 650-126
il
i
Z Z - ]
o2 O
o~ B = s
o) a 8] ‘ ] Functional Form of Prediction Model
o )
o | o - Lot o 2 G - ex
T & o _ v = by v, = bo thittb,t Y, © exp (‘bO + blt)
(VS [
8% ] + seasonals + secasonals X seasonals
EI = » :
v e where yt is the predicted amount of crime during
s ‘ ] period t
%m g . t is the time proxy
O B ] b, by, b,
Q o 1 2 y .
o et e o X 1 are the parameters of the models.,
C we g scasonals
e L H .
DE ¢ [ X
, : { 6§ g = Criterion for Rejection of Outlying Data Points
X ) ;
| ,I % ad I \)64, 3 - ] 20 4o 0
% o  » :%E i 157&5 5 . - (No rejection)
1o >, y .
% E = ) £ - = ] where 0 is the standard deviation of a fit to all the data.
= SAWRID o SR
Al / 32 X
9 = ] Parameter Estimation Technique
3
, i ] d b ey
w § l é] K g Regression Exponential Smoothing Constant
% > 5_-———>6 29 § e ] (Least Squares) 0.01 0.03 0.1 | 0.3 0.5
= 9 \s|EE - =
£ S|« % |
' 58 EOX 5 ~ i
E ]
u;'c:z_ fy (3 Functional\ « <3 Outlier Rejec—) (6 Parameter Esti- 54 Model-technique
- S =<t -
?Z - g g - ] Forms / tion Criteria mation Techniques Combinations
a] . ] :
< > o~ ety]
Z < o > ool
own oV = Py e -
[o¥a) = o
Dz =g l
o< QU5 R
oL o~
-
L‘, 1 Fig. 4. Model-technique combinations
. ] 13
Lo




JPL-STA 650-126

Finally, the data from Program l and the chosen model-technique

combinations were used by Program 4 to produce predictions for the test

period.
B. FUNCTIONAL FOERMS

Once it has been decided to produce predictions by extrapolation of
historical time-series, it is necessary to select candidates for the equations
to be used for this extrapolation., In the present case, thie problem has three
parts: treatment of trends, incorporation of seasonal variation, and the

handling of cyclical variations.

Time-series prediction models use time as a proxy for the unknown
variables that cause crime levels to change. If it is a poor proxy, or if these
variables do not change with time, then no variation with time would be
expected. Hence, a constant model was included among the candidates. A
linear model accounts for a steady change in crime, while a quadratic model
allows a steady change in that rate of change. Since a quadratic model can
also show a steady change in crime, and since it was desired to keep the number
of functional forms investigated to a tractable number, the linear model was not
included as a candidate, while the quadratic model was. The rate of change of
many processes is dependent upon the current state of that process, thus leading
to exponential behavior with time. To account for such growth processes
among the factors causing changes in crime levels, an exponential model was
included among the candidates, The growth rate was arbitrarily allowed to
change linearly with time to provide slightly greater flexibility. Since the
model was not based on an understanding of the basic phenomena involved,

it was felt that additional candidates would be superfluous.

Seasonal variation can be incorporated in a number of ways, the simplest

of which - the use of additive® seasonal constants - was used here. If a large

“The exponential model is analyzed as linear with time after the dependent
variable is replaced by its logarithm. Additive seasonal constants become
multiplicative when the antilog is taken.

14

[

a
3

z3

i

=3

P |

JPL-STA 650-126

number of '"'seasons' were used (such as months or weeks, instead of quarters),
this procedure could require too many degrees of freedom (that is, ''use up"
more than its ""share' of the data), and more sophisticated techniques, such as

Fourier analysis, might be required.

Possible cyclical variations were ignored, with the expectation that the
provisions for modeling changes in trends would account for the most prominent
cyclical changes, if any. Further, the data base was not long enough to

anticipate much success in determining cyclic variations if present.

C. DATA PROBLEMS

A history of the variable to be predicted is the only data required for
prediction by pure extrapolation. This history, often available for some period
of time, can be quite extensive. The 27 crime types (see Table 2) for each of
24 geographic areas (see Table 3 and Fig. 1) constitute 648 different time-
series, Quarterly data for 8 years provides 32 data points in each series.
Whether 32 data pointe is sufficient for development of a satisfactory prediction
model depends not only on the use of the model, but on the dispersion of the
data itself. The minimum amount of data needed cannot be predicted ahead of
time, but the success of this task indicates that, for most of the crime types

treated, the data obtained was sufficient.

Available crime data suffers from a number of problems. One of these
is that reporting criteria may vary considerably from place to place and time
to time. As an extreme example, when New York City introduced centralized
record keeping in 1950, the reported number of burglaries jumped 1300% over

the preceding year.

Another problem is that the jurisdictional boundaries of various police
organizational units within a city are generally determined by operaticnal
considerations. As a result, recorded data for these units suffers from discon-
tinuous changes, From 1958 through 1968, for example, the LAPD underwent six
major and about 30 minor boundary shifts, going from 13 divisions at the

beginning of 1958 to 17 at the start of 1969 (see Fig. 5, which shows only the

15
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major changes), Fortun~tely, many agencies gathering data about people,
including LAPD, are now using census tracts as basic units, so that it was

possible to obtain consistent histories for geographical areas.

A further problem is that unusual events are commonly recorded in the
standard categories. For example, burglary arrests in the University Division
in August 1965 were 10 times the normal average for August because of looting

during the Watts riot. Such points must be identified and properly handled.*

A slightly different kind of problem is the appropriateness of the data
type used. Specifically, in order to detect whether helicopter patrol has a
repressive effect on crime, it is desirable to deal with numbers of offenses of
various types of crime. However, a large fraction of crimes committed are
never reported to the police. Yet the files of ''offenses known to police' are
the primary (or only available) source of historical data. Changes in any of
several factors, such as police-community relations, could conceivably change
the fraction significantly. To validate the prediction techniques and to detect
whether such changes were occurring, predictions were made for the divisions
that did not use helicopter patrols. It may be noted that the divisions without

helicopters did indeed perform as predicteds,

To determine whether the helicopter patrols contribute directly to the
effectiveness of police operations, it would be desirable to deal with the number
of offenders caught and the number of crimes solved. Conceivably, court

conviction records could be used, but this data would be difficult to obtain and

"Since the objective in this task was to predict under ''normal' conditions,
such extremely unusual data points were simply rejected as inappropriate.

"“There is one chance in seven that the non-test divisions would have looked
more effective than they did, but only three chances in 100, 000 that the test
divisions would have made a better showing, as reported in the Task 86
final report (Weaver, R, W., Effectiveness Analysis of Helicopter Patrols.
JPL Document 650~89, Jet Propulsion Laboratory, Pasadena, Calif.,

July 27, 1970.)
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of questionable value®. Arrest statistics, on the other hand, are readily
available, If it is recognized that arrests are made within constraints set by
law and by police policy, and if it is assumed that those constraints do not
change just before or during the prediction time period, the number of arrests
may serve as a satisfactory measure of police performance in the apprehension

of offenders,

D. DATA BASE

Each police division in Lios Angeles contains about 30 or 40 police reporting

districts (roughly equivalent to census tracts), which have almost always
remained intact during jurisdictional boundary changes. In addition, the LAPD

has a file of quarterly crime summaries by reporting district.

A detailed history of the 600 or so police reporting districts was obtained
from files of LAPD internal memoranda., A computer program to generate
time-series for police divisions as constituted in 1969 was applied to the .

60, 000 IBM cards containing all crime data quarterly reports.,

The quarterly reports used for this data base were compiled from
reports filed on each incident and contained some clerical mistakes, thus
placing a limit on the possible accuracy for subsequent predictions. By way
of iliustration, it may be noted that about 2 1/2% of the reported offenses and

arrests were attributed to nonexistent™* reporting districts.

“In addition to the desired information, conviction data may also reflect the
police department's effectiveness in gathering and processing evidence and
the capabilities of the District Attorney's office in prosecuting cases,

""Reporting districts are identified by four-digit numbers, the first two of
which correspond to the division number. Thus, about 60% of the possible
numbers are not assigned. The first two digits were assumed to correctly
identify the division. Consequently, most of the incorrectly numbered
reporting districts were probably placed in the correct divisions by the
aggregation process.
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B, MODELING TECHNIQUES

Time-series prediction models can be expressed as cquations containing
parameters chosen fto provide a best fit, in some sense, of the model to the

historical data,

The traditional statistical technique, multiple regression, finds those
values that minimize the sum of the squares of the differences between the fit

and the data. The validity of this criterion rests on three assumptions:

1) The variables used in the model (in this case, time and season)
are adequate proxies for the factors that control the underlying
process and are modeled in a functionally correct way.

2) The process remains stable, in the sense that the ''true'’ values of
the parameters do not change. If, for example, crime of a
particular type is constant. it must be assumed that that constant
does not change,

3) Variations about the general trend result from a multitude of small,
unmodeled causes, independent from one time period to the next

and independent of each other,

Tkere is no reason to believe, however, that any of these assumptions
are fully satisfied in the case ot crime prediction. Hence, it seems likely that
placing greater emphasis on more recent data may lead to a better fit during
the period for which predictions are desired. Fortunately, a relatively new
technique, exponential smoothing, does this by giving exponentially decreasing
weight to past data. This technique has shown promise in marketing and inven-

tory control applications.

The published procedure for exponential smoothing requires initial
estimates of the parameters. Tc¢ avoid estimating thousands of initial values,
a modified procedure was developed. Algorithms for this procedure and for

multiple regression are given in Appendix C of this report.

It was not known beforehand whether the parameters derived through ex-

ponential smoothing or those from multiple regression would produce the better

19



JPL~-STA 650-126

predictions. Nor was it clear how far out an outlying point had to be before it
would unduly influence a prediction. Further, when exponential smoothing was
used, a wide range of possible weight decay rates were potentially competitive.
Standard econometric techniques to compare the predictive capabilities of
different model-technique combinations were investigated, hut were rejected

due to {ailure of key assumptions.

It was decided to use a direct approach: applying each model-technique
combination to the first 6 years of data of each time-series to generate pre-
dictions for the seventh and eighth years®*, The variances of these predictions
were then compared, and plots of the time-series were inspected to select

model-technique comparisons for extrapolation to the ninth year, 1969,
F. STATISTICAL EVALUATION TECHNIQUES

For some purposes, predictions can be used directly., Other applications,
however, require that the predictions be processed in some way. When evalua-
tion of the effectiveness of a new tactical system is the goal, the predictions must

be used as a basis of comparison with the crime levels that actually occurred.

To be meaningful, these comparisons must be made statistically. That
is, the predictions cannot be expected to match the actuals exactly. Statistical
evaluation is required to determine whether the differences should be attributed

to chance or to the new tactical system.

The differences to be expected as a result of chance are described by the
standard deviation of the prediction error. Estimates of the standard deviations
were also determined directly**: Once the models were chosen, 4 years of
data were used to predict the fifth year, 5 years to predict the sixth, 6 years to
predict the seventh, and 7 years to predict the eighth. These 16 quarters

ES
Two years were used for the comparison period in order to have a larger
number of data points for the estimation of the prediction variance.

“That is, they were determined by consideration of the models' predictive

performance, rather than by the usual econometric procedure of dealing
solely with errors in fitting historical data.
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of prediction errors were then used to estimate the quarterly error™ for each

time-series,

The validity of the models and estimated standard deviations was deter-
mined by applying the same techniques to the divisions without the new tactical
system (that is, without the helicopters). It was expected that statistical eval-
uation would indicate that prediction errors in these cases would be attributable

to chance.

Results during the test period were then compared to confidence limits
based on these estimated standard deviations. In particular, the probability
is 0. 10 that offenses, for example, of a particular type in a particular division

during a given quarter would be lower than the 90% lower confidence limit.

Treatment of offenses and arrests separately is not necessarily sufficient.
A reduction in offenses could be expected to reduce the opportunities for
arrests. (Consider. for example, the extreme of no offenses.) Thus, effective-
riess in reducing offenses could mask an increase in the fraction of offenders
apprehended if these related variables are only considered separately.
Scattergrams of arrests versus offenses were plotted for several crime types
in several divisions. The resultant clouds of points showed the anticipated
correlation and suggested that the relationship may be linear. This correlation
was used to devise a test for determining the statistical significance of offense-

arrest vectors (that is, pairs of values).

Results from several quarters or several crime types can be compared
by using a test that considers the directions and/or the amounts by which
offense~arrest vectors differ from predicted offense-arrest vectors. This
test can be described by the following analogy: If arrows shot at a target with

no crosswind present cluster about the center of the target, then a cluster of

*Since a longer historical period can usually be expected to produce better
predictions, these estimates are, in the main, conservative (i.e., slightly
too large).
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arrows to one side of the target is evidence of the presence of a crosswind. It
is important to note that the conclusion does not depend on the size of the cluster.
The techniques involved in performing these statistical tests are discussed in

Appendix B of this document.

Unfortunately, the usefulness of this test relies upon the assumption that
prediction errors are not correlated. As there was some evidence of correlation,
the results of this test, though supporting the conclusions* of other analyses,

were inconclusive by themselves.

%

See the Task 86 final report (Weaver, R, W., Effectiveness Analysis of
Helicopter Patrols. JPL Document 650-89, Jet Propulsion Laboratory,
Pasadena, Calif. July 27, 1970.)
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SECTION III

ANALYSIS OF THE SELECTION PROCESS AND RESULTS

A, THE MATRIX

It was noted in parts A and E of Section II that 54 model-technique com-
binations were applied to the first 6 years of data from each of the 648 time-
series to produce prediction errors for the remaining 2 years for which data
was available. The resultant 35 thousand compariscons are too voluminous to
publish in this report. Table 4, restricted to the test divisions and suppressing
the variation with different outlier rejection criteria* and different exponential
smoothing constants*%, suggests the nature of the information used. The body
of this table contains the ratio of the standard deviation of the prediction errors
during the two years 1967 aud 1968 produced by the model-technique combination
at the top of the column to the standard deviation about a horizontal line fit by
least squares through the historical data. For each crime type, the denomina-
tor of the ratio is the same for all model-technique combinations, so differ-
ences result entirely from differences in the prediction accuracy of the model-
technique combinations. The purpose of forming the ratios was to provide
"normalized" numbers describing the prediction accuracy which could be
compared among crime types and among divisions more easily than the "unnor-
malized' estimated standard deviations of the prediction errcrs. The reader

is referred back to Table 2 for a list of crime types.

To illustrate how this table can be used, consider total burglary offenses
(crime type 8) in these two divisions. The data for these two time-series is

plotted in Figs. 6 and 7. The strong trend noticeable in both divisions explains

* Figures are shown for the best rejection of outlying points on the regression
fits and no rejection when exponential smoothing was used,

#*% Figures are shown for those smoothing constants that indicated the best per-
formance (smallest ratios). Results for exponential smoothing with the quad-
ratic model are not shown because a programming error existed when the
matrix was prepared,
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Table 4. A portion of the matrix

"

(2) University Division
Model Constant Quadratic Exponential
Algorithm|Regression| 2P Regreasion PPN R egrassion| TR

Crime

Type
1 3.6 2.2 1.4 1.9
2 2.6 2.4 4,6 1.3 0.7
3 2.6 1.8 1.6 2.2
4 3.7 2.5 2.0 2.6
5 1.5 1.2 1.2 1.4 1.3
6 1.0 0.8 3.7 Not 0.8 0.6
7 0.5 0.7 5.3 available 2.4 1.0
8 1.7 0.9 0.9 because of 1.1 0.7
9 1.6 1.8 1.9 program= 2.7 1.0
10 1.9 1.1 1.2 ming error, o g 0.8
11 1.7 1.5 2.3 1,4 1.5
12 2.3 1.6 1.1 1.3 1.1
13 3.6 2.8 2.9 1.5 1.3
14 2.8 1.6 1.0 1.0 0.9
15 1.9 2.0 1.5 2.2 1.3
16 3.0 1.7 1.0 1.0 0.9
17 1.2 0.3 1.2 7.6 0.4
18 1.8 0.8 0.6 0.9 0.6
19 0.9 0.8 0.9 1.8 0.8
20 0.7 0.7 0.4 0.6 0.6
21 0.8 0.9 2.1 1.5 1,6
22 0.8 1.0 0.8 1.7 0.8
23 0.9 1.0 1.0 1.9 0.7
24 2.9 2.7 4,1 2.2 1.6
25 3.6 1.4 1.4 2.6 1.6
26 1.7 1.0 2.0 1.3 1.0
27 1.9 1.0 1.8 1.2 1.0
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Table 4 (Contd)

(b) West Valley Division
Model Constant Quadratic Exponential
Algorithm|Regression ES}:EEI;:}?S? Regression Esﬁzﬁte}?iizl Regression E\é}:ﬁgzsﬁigl

Crime
Type

1 3.0 1.5 1, 1.1

2 3.0 2.9 5. 1.9 .7

3 2.9 2.6 2.0

4 3.1 2.2 1.3

5 1.7 0.9 2.1

6 0.9 0.8 2.3

7 1.5 1.4 Not 2.2 .8

8 2.0 0.4 available 0.9 .6

9 2.6 1.8 because of 1.9 2.0
10 2.6 1.0 .2 program- 0.7 0.4
11 2.2 0.7 .4 ming error 0.8 0.6
12 2.5 0.8 1.3 0.7 0.4
13 2.6 1.0 .1 0.7 0.7
14 2.4 0.6 1.4 0.8 0.3
15 1.9 0.8 1.5 1.1 0.6
16 2.4 0.7 1.4 0.7 0.3
17 1.1 0.2 2.0 18.7 0.9
18 1.3 0.6 0.8 0.9 0.8
19 4,8 4.5 4.1 4,2 4,2
20 3.2 1.7 1.5 1.0 0.6
21 1.2 0.7 2.1 1.7 1.5
22 1.3 0.7 1.4 2.2 0.7
23 1.3 0.7 1,7 2.2 0.7
24 1.5 1.6 1.9 2.0 2.2
25 22.4 20.4 19.3 21.0 14.8
26 2.7 1.4 1.0 0.9 0.7
27 1.7 1.0 0.6 0.5 0.7
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the poor predictions obtained by the regression fit of the constant model, while
the robustness of the exponential smoothing algorithm is shown by its relatively
good performance even with the constant model. (The highest value of the
smoothing constant was required to obtain this performance.) The S-shape of
West Valley's curve explains the poor performance of the quadratic model. In
bath cases, the exponential model with the exponential smoothing algorithm was
eventually chosen. It may be noted that the prediction error in the West Valley
Division would be expected to be smaller than in the University Division, be-
cause there is noticeably less variability in the data. (Close inspection of the

plot for University, however, will show that much of the apparent variability is

seasonal.)
B. MODELS SELECTED

Model-technique combinations® cannot be chosen by simply finding the
smallest numbers in the matrix. Many other factors must be considered.

Among these are the following (not necessarily in order of importance):

1) For each crime type in the several divisions, and in each division
for the several crime.types, somewhat similar processes can be
expected to be at work, Hence, models chosen should show consis-
tency in both directions unless there are reasons to choose other-
wise,

2) A poor fit by the regression algorithm (for a particular model)
suggests that the model shape is inappropriate, so that a good fit
with exponential smoothing should be viewed with skepticism*,
Similarly, a fit that improves drastically as older data is discounted
more and more rapidly (that is, as the exponential smoothing con-

stant increases), also suggests an inappropriate model,

*That is, a model (constant, quadratic, exponential), an algorithm (regres-
sion, exponential smoothing), a smoothing constant (0.01, 0.03, 0.1, 0.3,
0.5), and an outlier rejection criterion (no rejection, rejection of points
outside 2 or 4 standard deviations).

**For example, crime type 17 (other arrests), with the exponential model, in
the West Valley Division.
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3) Poor fits by all models® suggest that data in the two years used
for evaluation of the prediction errors were unusual in some way and
that model-technique combinations should be chosen some other way,

4) Visual inspection of plots of the time-series can be very helpful in
deciding upon the appropriateness of various models and the useful-
ness of results in the matrix.

5) Generally speaking, when the exponential smoothing algorithm is to
be used, small values of the smoothing constant are to be preferred,
because large values essentially ignore a great deal of the available
data.

6) Occasionally, trend parameter estimates, seasonal parameter
estimates, and data during the final 2 years combine in peculiar

ways to sugges! inappropriate models.

Table 5 shows the final choices of models for each of the 648 time-series,
and Table 6 gives a summary of the frequencies of choice. Refer to Table 2 for

the list of crime types and Table 3 for the list of divisions.

It may be observed from Table 6 that the exponential model was chosen
more than half the time, suggesting that much of the crime in the city of Los
Angeles is growing exponentially and that better predictions might have been
obtained if population had been used as a proxy variable instead of or in addi-
tion to time. It may also be noted (and this was also apparent in Table 4, show-
ing a portion of the matrix) that the exponential smoothing algorithm was chosen
more than 4-1/2 times as often as the regression algorithm, when both algo-

rithms were equally available,

Several general conclusions were drawn about the selection of model-

technique combinations for predicting crime:

1) Automatic rejection of outliers is very rarely useful with the modi-
fied exponential smoothing technique.

2) Automatic rejection of outliers is rarely useful with multiple re-
gression; when it is useful, 40 and 20 seem about equally effec-

tive.

%
For example, crime type 25 (narcotics arrests) in the West Valley Division.
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Table 5. Crime prediction mcdels chosen
Division
Crime i 2 3 4 5 & o -1 9 1o 123 12 13 13 15 16 17 i8 i9 24 21 22 L3 24
Type
1 i2lz 3215 2116 3211 3214 3213 3212 321} 3211 3212 210 -2 1o 2211w 3214 3214 3211 3212 321l 321l 3218 3213 321s 3213 3215
2 1214 3215 3212 3213 1211 2116 32RD 0 211D 3214 3211 3211 3213 2110 2K10 1214 2130 210 321 3G 24l 321F 3211 Anlg 3aig
3 3215 1211 2M16 1215 3211 3283 3211 3212 3211 3211 3203 3214 1215 3211 3215 2110 32il 1110 3212 san 32137 121 - 3113 338
+ 1214 2110 © 2110 3213 2110 3211 3211 321 3211 2110 3214 20110 3211 3211 3211 2LIG 211o 3212 321l 23D 32l 2I16 21106 2o
5 1211 32313 2110 2116 2116 3110 3211 1215 1215 2110 2110 1215 3213 3110 1215 2140 1213 2H10 2110 2110 3215 - 3211 (2110 21106
6 1211 3215 03213 1215 3211 321t 1213 12l3 1215 1212 3211 3211 111G 3110 1215 2110 1213 3212 321l 1214 2L 3211 B215 3213
7 1213 2110 3212 3110 2130 iilo 1211 3130 1213 2130 3212 §213 321z 1215 1110 1214 1213 l213 1212 1212 1214 1218 121} 1213
8 1130 3211 3213 2110 3110 2130 1215 3118 1205 3213 2110 321t 2ile 211G 1215 3211 211 3130 2116 1213 3110 3130 1215 321!
9 3214 2110 2212+ 2110 110 3213 3213 321 1211 1215 321} 3213y 2213% 2110 3l1¢ 3110 1110 213 1116 3213 2110 3212 3213 220+
10 2212~ 3213 2110 3110 3213 2130 3212 3110 3213 3212 2110 3214 1215 3110 3214 2110 32i2 - 3211 3110 3116 3116 3211 3lie 3110
i 3130 1212 3214 3213 1213 32i2 3214 3130 3211 3211 2110 1214 3211 1215 1213 21i0 321} 3213 3213 32il 3211 3213 3211 2110
12 2214% 3211 2110 3110 311¢ 2130 2110 2110 32i1 3211 3110 2130 3211 3212 2110 21to 3212 3213 3212 3211 3110 2134 3212z 3212
13 3214 2110 3211 3212 2110 3211 3211 3110 3110 3211 2110 2lle 2110 3213 3211 2110 1215 3211 3212 3120 3214 3110 3110 2110 —
14 3214 3211 2)iu 2110 3214 2130 3110 311¢ 3211 3211 2ile 2110 3215 3213 2110 3214 3211 2110 213¢ 32t 3213 2110 3211 0 31IC }-U
15 2212+ 3212 2130 2211+ 2110 2110 3211 3211 3213 3211 3110 3213 2130 2110 1215 3213 3130 3212 2l1e  2)le 3214 2130 3110 3214 b
le 2130 . 3211 2116 2110 3214 2130 3110 3110 3211 321f 2130 2110 3214 3110 3211 2110 3211 z2llg 3212 3211 3213 2110 321t 3118 (In
W 17 1211 2116 210 1211 3213 3211 3211 3211 3214 1215 1211 3211 1215 3215 3211 3212 3211 1211 123} 3213 3213 3211 3215 211¢ |_a
o 18 2110 3213 3213 1110 22l2% 2110 3213 2211 3212 1215 2110 3213 3215 3213 2110 3211 2110 2110 3214 3213 2110 3214 3213 2110 >
19 2110 1110 1110 221l= 2212% 2211% 3212 2110 3212 1215 1214 3211 1130 111G 1214 3110 2110 1215 2110 210 2211% 1215 3211 2110
20 3110 2110 2130 2130 2z22% 2130 1213 3213 3213 3215 2110 2130 3224 2110 3211 3211 211G 213¢ 2130 21i¢ 22Kb% 2130 3213 2130 81\
21 32i2 100 2110 21y00 1130 0 1110 3212 3212 2110 1213 1211 1110 121 3211 3211 2130 1214 1110 3110 3110 1215 1110 215 113D [}
22 3213 zno o 2110 3213 110 1213 3211 1212 3214 1213 1213 3213 3213 3110 3213 3215 3213 3211 3212 2110 3213 3110 1215 3213 l-l—'
23 3213 210 2110 3213 0 R215 {212 3211 1213 3214 1214 2211® 3213 3211 3110 1130 3215 1215 321l 32iF 2116 321} 3llo 1215 3212 [\
24 2212+ 3213 3211 3110 3211 3213 3116 1211 3130 1110 . 3214 3211 3213 3110 3211 3211 Q211 3211 3213 3214 3223 3211 3212 32l o
25 1212 3214 3213 . 3213 3215 2110 2110 3213 3213 3213 2110 3211 3211 2110 3214 3215 3214 2110 3215 3211 3214 2110 3214 2214
26 1212 2110 3211 3213 3211 3211 2130 3211 311¢ . 3211 2110 2110 1215 211@ 3211 3214 3110 31l 321l 2110 211G 3130 3214 3210
27 121z 2110 3211 3241 3212 3211 3214 3211 3211 3130 2110 3116 2130 3215 2110 3214 3213 3211 321} 3130 21lu 3211 3215 32{l
x;’Ihe computer implementation of the expunentin’ smoothing algorithm with the quadratic model contained a programming error, However, plots of all predictions. along
with their historical time-series, were prepared and inspected visnally. In all cases. including these, predictions were consistent with "eye-ball™ extrapolations.
% The model-techaique combinations are identified by the following 4-digit code: | ;
| | |
First [}ipit ~ Functional Form | Second Digit ~ Alporithm | Third Digit - Outlier Rejectiun Critericn { Fourth Digit.~ Expoueatial Smouthing Constant, @
1 = constant niodel | 1 = multiple regression I' 1 = cutliers beyond 2 sigma are rejected | 0 {aused with multiple regression; « not relevant
ypsa g+ bquarter + residuaal | 2= modi!i:'d multiplte exponelzntial | 2= ontliers beyond 4 sigma are reject.ed | tia=911
2 - quadratic model [ smoothing f 3 = no outliers are rejected. | 2:2=0.03
ypEa, fagtd aztz b arter * residual | I [ ta=n.t
3 = exponential model ! | l Fra=03
. | | Era=975
log Y= a, tatd bquarter + residual | | }
~ AR mus S e S e S e S s S Sy S At Y B SO Rt m f IR T = 1

9¢1-099 VIS-"Idl
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3) Rejection of outliers, if done, should be a manual operation, based
on additional knowledge that the data to be censored is atypical.

4) Multiple exponential smoothing models with large smoothing con-
stants are prone to overrespond in a fashion similar to that of

multiple regression models with too few degrees of freedom.

C. RESULTS

Quarterly predictions and associated prediction uncertainties for 27 crime
types for 24 geographical areas for 1969 were obtained. Crime in the divisions

.

without helicopters matched the predictions well.* The uncertainties (magni-
tudes of one standard deviation) varied with the crime type and sample size,
but were usually about 15% (see Fig. 8). As would be expected, uncertainties
are, in general, larger when the expected number is smaller and smaller

when the expected number is larger.

*That is, a chi-square test on the distribution of residuals, measured in stan-
dard deviations, produced values well within those that would be expected to
occur at random if drawn from a Gaussian distribution.
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SECTION 1V

CRIME PREDICTION APPLICATIONS

A, POTENTIAL APPLICATIONS

Crime prediction methodology is relatively new to the police system. As
a result, its full potential is largely a matter of speculation. Some conjectures

are presented in this section,

Long range (5 or 10 year) forecasts could be used by police policy-
making echelons in planning recruitment campaigns, police academy curricula,
force structure, and equipment acquisition. Forecasts would be particularly

useful in this area if they could be relied upon to reflect changing trends.

Policy planners and operational commanders must know what alternative
force structures can do. Task 86 has demonstrated that crime predictions can
be used in conjunction with operational experiments to assist in the evaluation

of the effectiveness of certain new and old tactics and equipment.

Tactical commanders can more easily deploy their forces in an effective
manner if they know when, where, and how much of their forces will be needed.
Prediction models can help supply this information. In this application, the

capability to predict specific crimes might be of the greatest benefit.

1f, as anticipated, activities of the police have an influence on the amount
of crime, then a tool that would allow police planners to estimate the effects of
2 number of alternative possible actions could be of considerable value.
Development of such a tool requires a better description of social forces and
processes than is currently available to analysts. In addition, since these
relationships are probably also dependent upon social conditions (such as
educational levels, unemployment, housing conditions, etc.), such a postulated
tool would potentially be useful beyond the police system - by legislators, social

workers, city planners, and others. (In this regard, it may be noted that the
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limitation of the current methodology is that it is "open loop'. That is, there
is no way to incorporate into the prediction model actions taken by the Police
Department or other social agencies. A causal model would presumably contain

such feedback loops.)
B. CURRENT APPLICATIONS

Corresponding to the broad spectrum of potential uses for crime prediction
methodology, several rather different approaches have been proposed and are
under study. The next few paragraphs will describe some of these applications
briefly. It should be noted, however, that there are some gaps - no quantitative

research was uncovered focusing on some of the potential uses. ™

Predictions for use in decisions concerning the tactical deployment of
police resources are concerned more with calls for police service than with
actual crime data. To be useful, such predictions must be concerned with the
distribution of needs for the police by jurisdiction, by hour of the day, by day
of the week, and by season. LEMRAS (Law Enforcement Manpower Resource
Allocation System), which has been in use in several cities and in the Van Nuys
Division of Los Angeles for about 1 year, produces such predictions by use of

exponential smoothing techniques.

Prediction of individual crimes requires a different approach. Conceivably,
a comprehensive study of the causes of crime could provide sufficient under-
standing that such predictions could be made. As a first step, Philadelphia, in
conjunction with the Franklin Institute, has been studying the correlations
between about three dozen variables and the occurrence of crime in order to

identify conditions under which crime is likely.

"In particular, there appears to be no quantitative researczh relating crime to
controllable social factors. Changes in housing conditions, unemployment rates,
welfare rules or costs, police deployment policies, and the like are apparently
not being investigated in terms of their quantitative effects on crime. As a
result, there is not enough information to construct closed-loop control models
or long term prediction models.
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Another approach to the prediction of individual crimes is under study in
Los Angeles. Called PATRIC, it is an attempt to isolate the crimes committed
by the same criminal or gang by recognition of patterns in modi operandi

(methods of operation). This approach has met with two major implementation

problems, both of which can probably be resolved by sufficient time and
experience, One problem is the difficulty in describing crimes in such a way
that the computer can identify patterns. This problem has two facets, deter-
mination of suitable descriptors and quality controls. The other major problem

is that of collecting and processing data fast enough to be useful.

The determination of effectiviness of new tactical alternatives is exem-
plified by Task 86, Since this application is discussed throughout this report,

it will not be elaborated upon here.

The scientifically most appealing technical approach to crime prediction
is that of causal modeling. Models of this type are considerably beyond the
current state of the art: A great deal of research into the forces interacting
within our society must be conducted before such a model will be feasible. A
good causal model would give insight into the probable effectiveness of various
possible gross social actions and changes, and is the only hope for reliable
long term predictions. Butitis quite possible that extrapolative models would

continue to give more precise short term predictions.
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SECTION V

CONCLUSIONS

Crime statistics can be predicted with sufficient accuracy for some
of the possible applications by extrapolation of historical data.

The potential applications of crime prediction methodology are
sufficiently diverse that no single technical approach is appropriate
to all.

Current qualitative and quantitative understanding of the causes of
crime is grossly insufficient to permit the construction of usable
causal crime prediction models.

Extrapolative crime models rely upon the assumption that trends
will continue as in the immediate past. For example, changes®*

in public policies (especially, but not exclusively, by police
agencies), in economic or social conditions, or in public moral

or philosophical attitudes can invalidate this as sumption.

“That is, extraordinary changes in these factors beyond those that have
occurred during the period of time covered by the data base.
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APPENDIX A

PREDICTION MODELING

There are three levels on which modeling decisions must be made: the
kind of model, the choice of independent variables and functional relationships,
and the selection among many available parameter estimation techniques. Each

of these topics is discussed below.
A, TYPES OF MODELS

The first consideration of any modeling effort must be the user. What
kinds of information will be most useful? Are some kinds of information
required? How will it be used? How accurate must it be? What are the payoiffs
for accuracy and the costs of errors? What are the users' data resources,
constraints, and computational capabilities? Will the user need more, better,
or different information later than he needs now? Questions such as these are

prerequisite to an intelligent choice of analytical emphases.
A classification of model types follows:
1. Extrapolative (Time-Series) Models

Historical data is simply extrapolated into the immediate future. Sophis-
tication can range from simple ""eyeball" extrapolation of a plot of the historical
data to complex manipulation dealing with cycles, trends, and seasonal

variations.
2. Associative Models

If two objects behave similarly, it is not unreasonable to anticipate that
this similarity extends beyond the data used for the comparison. That is,
objects that are associated in some way with the phenomena of interest can be
used to predict those phenomena. For example, if the divisions of a city are
assumed to be alike in some sense, crime data from some divisions could be

used to predict crime rates in other divisions.
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3. Quasi-Causal Models

A limited approach to consideration of the factors that influence crime is
to seek those whose time-series are highly correlated with the crime time -
scries of interest, Predictions are then based on the assumption that the
observed correlations will continue and the expectation that the highly correlated
variables are at least proxies for the real causes. Since the supposed cause-
effect relationships are not known, the parameters associated with the genuine
causal factors used are, at best, point estimates of the partial derivatives of

those relationships., The danger of identifying false causes is particularly high
in a model of this kind.

4, Causal Models

If some or most of the factors that influence the variable of interest and
the ways in which these influences occur are either known or theorized, causal
models can be constructed to express this knowledge or theory. Causal models
that include factors under the control of one or more of the u

sers are clearly
of the greatest potential value.

5. Pattern Recognition Models

Models in this category are aimed at isolating the crimes committed by

single criminals or gangs, and using this information to identify likely crime

targets and likely suspects.

B. VARIABLES AND FUNCTIONAL RELATIONSHIPS

With the exception of models designed to test theories, the selection of

appropriate factors to be included as independent variables

and the functional
forms to be used is a difficult question.

Resource limitations generally dictate

that the variables be restricted to those data types for which records are

available. Some insight into the choice of functional forms may be gained by

consideration of plots of the variable to be predicted against each of the

candidate factors. Consideration of the fraction of the variance which is
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eliminated by a fit obtained when using a functional expression under considera-
tion can also be enlightening; however, the variables and functions that give

the best fit do not necessarily provide the best predictions.

In this task, tirme was selected as proxy for all other variables in the
expectation that it would serve as an adequate proxy. Functional forms were
chosen on the basis of how well they performed when 6 years of data were used

to predict the next 2 years,
C. PARAMETER ESTIMATION TECHNIQUES

The final level on which modeling decisions must be made is the technical
one of choosing techniques for determining the prediction parameters. Two
techniques were discussed in Section II: regression and exponential smoothing.
There are other techniques, such as moving averages and optimal filtering,
that might also be considered. When a manageable number of variables are tu
be predicted, and especially when unmodeled changes are known to have occurred,
consideration should be given to '"eyeball' fitting and extrapolation, coupled with

the use of experienced judgement.

43



SR

Y

n

N

|
|

i
i

JPL-STA 650~-126

APPENDIX B

ARREST-OFFENSE VECTORS

The anticipated effects of using helicopters as patrol vehicles include a
reduction in the number of offenses (in at least some categories of crime) and
an increase in the proportion of offenders caught. It has been observed in the
past that (in most crime categories) arrests are positively correlated with
offenses*. Hence, the data types dealt with here, arrests and offenses, are
not independent, and a reduction in the number of offenses can cause a reduction
in arrests that might mask, if the data types are treated separately, an increase
in the fraction of offenders caught. This appendix presents the development of
a technique for determining the statistical significance of test results when both

data types are considered simultaneously.

The first step is to consider the relationship between arrests and offenses
for a particular crime type in a particular division. This is done by combining
the arrest and offense time-series in the arrest-offense plane (see Fig, B-1,
the details of which will be discussed presently), Each time point then provides
two coordinates {(one from each time-series), which may be used to prepare an
arrest-offense scattergram. The resulting ""cloud" of historical points can be
represented by a probability distribution, two contours of which are shown
(labeled '"1g" and '"2¢") in Fig, B-1. The contour lines shown are ellipses, a
consequence of assuming that the appropriate probability distribution is bivariate

Gaussian. Mathematically, the parameters of the ellipses are given by

afs
"Since a larger number of offenses usually means that more criminals are
working in the area, this is not a surprising observaticn.
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where
a = semimajor axis of the lo ellipse

b = semiminor axis of the lo ellipse

o = orientation angle
and
p = correlation coefficient obtained from a simple regression
of past arrests on past offenses
o, = standard deviation of arrest forecasts
0, = standard deviation of offense forecasts

Assuming that the bivariate Gaussian distribution is appropriate, the lo ellipse
can be expected to contain 39% of the data points, the 20 ellipse to contain 86%,
and a 30 ellipse to contain 99%. Further, data points are equally likely to fall

into each of the quadrants.

In light of the previous discussion, it may be noted that points falling in
Quadrants I or II suggest improved effectiveness in apprehending offenders,
while points in Quadrants II or III suggest successful repression of crime, Only
those points falling in Quadrant II suggest improved effectiveness in both areas,

and only points in Quadrant IV suggest decreased effectiveness in both areas.

The next step is to determine what results are needed to conclude (at

some statistical confidence level) that a change in the system (such as using
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helicopters for patrol) has caused a bias toward some quadrant or pair of

guadrants to occur®,
The problem may be stated mathematically as follows:
Given N statistically independent trials of some event R. What is the
aumber n such that 1+ probability is at least p (the confidence level)
that the nurnber of times the event occurs, k, will be less than n,
under the hypothesis that the probability of occurrence of the event is P ?
or

Find the smallest integer n such that Pr (k <n lP, N)>p

Since each trial is independent {(by assumption) and has a probability P of

resulting in R,l the probability obeys the Bernoulli distribution law:

/
Pr(k=x|P, N) = @:) PE(1 - p)N-¥ (B-1)
Consequently,
n-1
Pr(k<n| P, N) = Y (1;1) P* (1 - P ¥ (B-2)
x =0

"The following "crosswind" analogy has been suggested: Consider an ideal
archer shooting along a long thin line. Ignore the few times his arrow
actually lands on the line. This archer is ideal in that his shots are unbiased
and statistically independent. If there is no wind, approximately half his shots
will go to the left of the line and half to the right (since he is unbiased). Itis
not likely, however, that exactly half will go to each side. If there is a right-
to-left crosswind, considerably more than half can be expected to go to the
left of the line. If he shoots N arrows, how many must go on one side of the
line before the existence of a crosswind has been (statistically) demonstrated?
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Then, the desired value of n is that which satisfies
N x N-x I N X N-x
2 (X> P* (1 - P) <psxgo(X>P (1-P) (B-3)

To simplify notation, let

f =Prlk=x|P, N) (B-4)

N
G =Prikxz|P, N)=x§rfx (B-5)
q=1-p (B-6)

With this notation, Eq. (B-3) may be rewritten, after multiplying by minus one

(which reverses the inequalities) and adding one, as Eq. (B-T).

Gn s£q< Gn—l (B-7)

The value of n that satisfies these conditions cannot be found analytically, but
must be determined by computation of the Gr or by table search. When N is
large, the Gaussian approximation to the Bernoulli distribution may be used,

with Eq. (B-7) becoming

n - NP n-NP-1
. 'I’(,/NPHT_FT)_) =p > ( P(1 - P)) (B-8)

where
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To recap, when n has been found from Eq. (B-7) or Eq. (B-8), its meaning

is

i -ials to
= the minimum number of occurrences of event R in N tri

n - 3 "
reject, at a confidence level of p, the hypothesis that the

probability that event R will occur is no greater than P.

This statistical test rests upon the assumption that differences between

s . Hime
predicted and actual crime data are statistically independent from one tim

i ime -ti » the
period to the next. Unfortunately, inspection of the crime-time plots for

. . . Thus
non-test divisions showed that this assumption could not be relied upon hus,

though application of the test to LAPD data during the helicopter test period

gave results suggesting that the use of helicopters did indeed give improvement

.  etical
in both areas of effectiveness;, this statement could not be given a statistica

foundation.
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APPENDIX C

ALGORITHMS FOR TIME-SERIES ANALYSIS

The extrapolation of time-series has been used for some time by statis-
ticians, economists, scientists and others interested in forecasting the future,
This appendix presents some discussion of the technical problems involved and
two algorithms, multiple regression and modified multiple exponential smooth-
ing, for producing predictions from streams of historical data. Since regres-
sion is an older technique, with a longer history of development, a more com-
plete set of theoretical results is presented, but the analytical development
is abbreviated. Exponential smoothing is a considerably newer technique:
Theoretical results are less extensive, and more attention is devoted to the
analytical development., It should be noted that both techniques are members

of the general class of weighted regression techniques.

In general, time-series data exhibit four components: secular trend,
cyclical variation, seasonal variation, and irregular fluctuations. The trend
component is probably the most familiar; its existence is usually easily recog-
nized when the series is graphed. This component commonly increases with
time since many factors (for which time is used as a substitute, or proxy) grow
as a result of population increases, technological advances, etc. Since, in the
main, these underlying factors change smoothly with time, the trend components
of time-series usually change smootnly (but not necessarily linearly) with time.
The second, or cyclical component, has been chiefly observed and studied in
economic time-series: As a result of feedback loops in the economic system,
business conditions tend to vary between the extremes of boom and recession
over intervals of several years. Cyclic fluctuations have also been observed
in meteorological and sunspot data and undoubtedly exist in many other tvpes
of time-series, Seasonal effects are also evident in many time-series. Because
of their regularity, it is common for published data to be geasonally adjusted
to provide more readily understandable statistical information. The irregular
component of time-series is the most difficult to interpret. These fluctuations

result from factors that do not change smoothly with time. When the fluctuations
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are small enough or when the processes giving rise to them are poorly under-
stood, they are usually assumed to occur randomly (though perhaps with some
autocorrelation). From a sampling of the time-series, an estimate of the
expected variation can usually be inferred and the fluctuations may be approx-
imated by a probability distribution. Occasionally, fluctuations occur which
are unlikely to be associated with this distribution, possibly caused by unusual,
nonrecurring events such as riots, natural disasters, etc. The difficulty in
distinguishing between these two types of fluctuations makes the irregular com-

ponent of time-series the most difficult to interpret and to deal with.

A common approach to time-series analysis has been to model first the

trend by fitting a polynomial or other function of time to the data and then to

search for periodic fluctuations that result from seasonal and cyclical influences.

The seasonal effects are often quantified by indices obtained by averaging month-

ly or quarterly values of the series. Cyclical effects are often determined sub-
jectively through observations of the residuals after the removal of trend and
seasonal effects. A sophisticated technique for analysis of cyclical effects is
spectral analysis, originally developed in research on telecommunication sys-
tems, This approach, which has been applied to economic time-series (see
Ref. C-1), consists basically of the determination, by means of the spectral
density function of the series, of the period and phase of cycles that account
for a statistically significant portion of the series variance. This technique
has the advantage of verifying the existence of suspected cycles and even un-

covering cyclic behavior that would otherwise go unrecognized.

A, MULTIPLE REGRESSION

1. Preliminaries

The problem to be solved is the estimation of the coefficients (and related
statistics) of a model relating one dependent variable, denoted y, to one or
more (K, say) independent variables, denoted by X The regression is linear
if the only power any X takes in the model is unity. It is multiple if K is 2 or
more. The dependent and independent variables all vary with some index vari-
able (such as time); hence, a subscript, t, is added to the notation: Vi and xtk‘
The model is then represented by
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K
yt=k§13kxtk+et t =1, 2,

where e, is the residual, representing the '"irregular fluctuations''.

t

(C-1)

In the time-series application where the model is a polynomial in time

plus seasonal constants, K = n + L ~ 1, where

n
L

H

Further, the independent variables are

where

and

it

X

1 if t corresponds to season i

= 0.

it

0 otherwise

Ltk

:tk

For convenience in notation,

vectors and matrices:

X

11

21

Tl

for k

the degree of the polynomial

the number of seasons in a year.

fori=1to L

= ltoK

the various time-series are defined as

12 °°°

T2 "
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Ther,, the model, Eq. C-1, can be succinctly written as Eq. C-2.
Y = XB + & (C-2)
2. Determination of Parameters

It can be shown (see, for example, Ref, C-2) that the choice of parameters
that minimizes the sum of the squares of the residuals (hence the term ''least

squares''), thereby minimizing the variance, is given by Eq. (C-3).
B = (X'X)" X'y (C-3)

where the prine (') denotes a matrix transpose, and B is the vector of estimates
S
of the coefficients, Bk' Then, the vector of smoothed values of Y, denoted Y,

is

O\
Y = XB (C-4)

and the vector of estimated residuals, E, is estimated by

S A
E=Y-Y=Y - XB (C-5)

3. Coefficient of Determination and Multiple Correlation Coefficient

The coefficient of determination, Rz, is defined as the ratio oi the amount
of variation '"explained" by the regression to the variation of the original series

of the dependent variable:

Y! - BX!
RZ = 1 . X - BX'Y (C-6)
T :
2
(y. - %)
tgl Vg oY
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where

T
y = -,Il—, zl Vi the mean value oi the original series.
t =

The multiple correlation coefficient, R, commonly used as a measure of
the ""goodness' of fit, can take on values between -1 and +1, with the extreme
values representing perfect negative and perfect positive correlation, respec-
tively, between the dependent and independent variables. Multiple correlation

coefficient values near zero represent regressions with little or no correlation.
4. Statistical Inference

The estimated standard deviation of the fit, denoted s, may be found from
Eq. (C-7).

s = B'BAT - K - 2) (C-7)

The estimated covariance matrix of the coefficient vector, denoted Sbb’
is given by Eq. (C-8).

S, = s& (xx)~t (C-8)

5. Forecasting

Suppose a forecast is desired at some time t = T, and estimated values
7\ .
of the independent variables, XT’ are known. Then the forecast for the dependent

variable is simply

B, (C-9)
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2 ..
and the estimated variance of the forecast, sp » 18%

2
s.zzs,\z+ s2 + s}/z (c-10)

! Yr T

where
2 = R C-11
S¢  © Ri Sy Xy ( )
T
b, Confidence Intervals

Upper and lower 100y percent confidence limits on the model parameters

are given in Eq. (C-12).

= B+z, S (C-12)

where Sb is a K x 1 vector of the square roots of the diagonal elements of Sbb’
2z is from a Student's t distribution of cumulative probability,

(1 + y/2), and

o
i

T - K -2 degrees of freedom

<
i

2.
#If the independent variables are known exactly, then s¢ = 1is, of course,; zero.
T
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The statistical significance of individual components of B is demonstrated
at the 100y percent confidence level if

T > 2 (C-13)

where bi and Sb- are the i-th elements of the B and Sb vectors, respectively.
i

Similarly, 100y percent confidence levels for a forecast are given by
Eq. (C-14).

(C-14)

B. EXPONENTIAL SMOOTHING

Exponential smoothing has emerged as a competitor* to simple regression
as a technique for estimating the parameters of a model fit to a nonstationary
discrete time-series. Theoretically speaking, exponential smoothing% and
simple regressicn are members of the more general class of weighted regres-
sion techniques: In simple regression, data points are weighted equally; in
exponential smoothing, they are weighted by an exponential decreasing with the
"ages' of the data points. As a result of giving more weight to the more recent
data, exponential smoothing often performs better in extrapolation, particularly

when the process is modeled imperfectly or is nonstationary.

%*There are, of course, other techniques, such as moving averages and Fourier
analysis, which are also competitive.

%#%This statement holds for exponential smoothing as developed by Brown in Ref.
C-3. (It is proved in his Appendix A.) In some recent generalizations, such
as presented in Ref, C-4, the weight given to each data point may be different
for computation of estimates of different parameters in the model being fit.
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The exponential smoothing technique requires initial estimates of the
model parameters. After a sufficiently long time, depending on the smoothing
constant (that is, the rate at which the weighting factors decay), the initial
estimates do not influence the estimates produced. In the meantime, a poor
set of initial estimates can lead to poor predictions. Here, Brown's develop-
ment (Ref. C-3, Chapter 9) of multiple exponential smoothing is paralleled
to derive a modified multiple exponential smoothing procedure which does not
require initial estimates of the parameters. The result is analogous to com-
putation of a cumulative average, such as is used to report season-to-date

batting averages for baseball players.

1. Preliminaries

The problem to be solved is the estimation of the coefficients of an nth-

degree polynomial in time™ to model a given discrete time-series.
Let

' for t =1, 2, ., T represent the uniformly spaced (input data)

values of the discrete time-series to be modeled,

Vi for any (integral) t represent the predicted or smoothed values of
the time-series,
Cq for k=1, 2, ., L and any t represent additive seasonal effects

for each of L. seasons, and
X fort=1, 2, .» T represent the seasonally adjusted time-series,

so that

— A A A
X, =y, + Ck(t) and v, = X - Ck(t) (C-15)

"The index variable, denoted here by t, could refer to some other quantity
instead of time, but it is convenient to use ther term 'time'' rather than
the more precise, but awkward term ''the index variable. !
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where k(t) is the season corresponding to time t and Qt is the estimate of Xy
The assumed nth-degree polynomial model can then be expressed as

a

n
- s r
Xpyo = IZ;O o ()T e (C-16)
or as
n br v
Mpr T T Tty (C-17)
r=0
where
a. br are alternative expressions for the coefficients of the poly-

nomial depending upon whether the polynomial is expanded
about time 0 or time t, respectively, and

e, is the residual (that is, the difference between the fit and the
data), and is often assumed to be an independent, Gaussian

random variable.

Several of the variables defined above will be estimated at different points in
time. The following conventions will be used to indicate such estimates: When
the variable does not already have a subscripted t, a subscript t will be added.
(For example, brt will represent an estimate of br made from data available at
time t.) When the variable does already have a subscripted t (as does Y’c)’ then

a circumflex (or "hat") will be added (as in ?t).

Often, the seasonal effects must also be estimated prior to their removal.

Since

n
A\
X, = ). b /!
t =0 * t-1
this can be done as follows:
A A a2 br t-1
= _— s A
“k(t) T Cu(t-1) T %%kt L;O rl (Yt ¥ Ck(t-L))J (C-18)
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where single exponential smoothing 1s applied to each seasonal constant

separately® with a possibly different smoothing constant for each. Time-varying

values of the smoothing constants, &, as shown later®¥, can be found from

(07
@ . = k (C-19)

K1 -t

where @ is the ultimate value of the kth smoothing constant.

With these preliminaries out of the way, it is possible to proceed to the
next subsection with the seasonally adjusted time-series X, for which the poly-

nomial coefficients brt will be estimated.

If it is desired to study the variations in the fitting constants, it may be
more convenient to deal with the a_p since their values do not nominally vary
with t. (That is, the a,; = 2, for all t if the data is from a noise-free poly-
nomial of degree less than or equal ton.) The 2y and brt are related by the

following equations:

(C-20)

#*Cf. Pegels' models in Ref. C-4,
#*%See also Ref. C-5.
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.; Ay 1

2. The Fundamental Theorem of Modified Exponential Smoothing

To proceed with the development of exponential smoothing, the next step

is to define multiple smoothing of orders 1 through p. Let

Sy = apx + B S,

(2) _ (2)
s, = a5, +B,S

t7t~1 (C-21

Scp) T % Sip"l) ¥ Bts(tlj)

where ¢ is the smoothing constant to be used at time t, and is so defined

t
that the ratio of the weights assigned to successive data points

is (1 - @), and the asymptotic value of @, is &, the smoothing

t
constant chosen from considerations not discussed here.

'Bt = 1 - ¢, for convenience, since it occurs often. Similarly, B = 1 - a.

t

Starting with S, = xy, these difference equations can easily be solved for the
Sscp) in terms of the x, to provide the following results:
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2 t-1 g
‘ Xt+ ‘th-l + ﬁ x":“2 + .. . F B Xl _ o t=1 BT]'
Sy 7 2 -1 1-pt 2 -1
t 1+ 8 + B +...+8 7,0 1
t-1~T
t-1 7 17T
(2) . _« 1 o 2 (C-22)
Sy F t Z_:OB 1-Bt"711—§oﬁ Fer -T,
1-g" 7= 2
-1 N
ol t-1- T3
-] =T
t-1 7 1 i=1 T
S(P) - o Z B 1 & E E Bpxt_ D T1
t 1-80 .50 1-85T17 =0 r <o 2
- B Tl" 2 P i=1

From these equations, it is evident that the time-varying smoothing constant,

@, must be given by

(07
.« - = _t1 C-23
o, = ) Bt or, equivalently, o, B+ @ ( )

If it is now assurned that the observations are taken from an nth-degree poly-

nomial in time, so that

= ..l. 2 ..}.... - 1’l=
Xip = Pop = PPt 3T by P - P oy (-R)
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then the fundamental theorem of modified exponential smoothing states that the

smoothed series St, e Sip) can be expressed as linear combinations of the
coefficients bOt’ N bnt and that consequently (if p = n + 1) the coefficients
can be expressed as linear combinations of the smoothed series. More

succinctly, the fundamental theorem states that there exists a matrix Mt such
that

S, =M, b (C-25)
with (if p = n + 1) an inverse M _l, so that

(C-26)

where

bOt St
(2)

bit St

A a
by = 5 ;

(p)

bn‘.: St

Cmy My Mgz ]
Mot ™22t M2zt
ma1e M3t 33t
LI T T IO |
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The theorem may be demonstrated by substituting Eq. (C-24) into Eq. (C-22),

which gives, for r=1, ..., ps

t-1-T
t-1 7 17,
1 o 4
s 2o B b | S 2 F
1 -8 Tl=0 L-B Tz—
r -1 (C-27)
t-1- 2, Ty
i=1
2: T, n+lbjlt r j-1 —I
o "": T
r -1 - B Z; (-1 Z=:1 \
T.=0 =1 1
t - Z Tl r k
.:l -y
1-8

j- -1 T

R 6 i~ S L B
i, = =T — - -

gt gh G- r,For-gT =0 171002

(C-28)
r-2 r-1
t-1-9, Tj , t-1- 3 7, . i-1

i=1 r-1 i=1 ‘I'r

i Il T
Z ¢ ri 1 Z ;=1 1

Tr—l =0 T e Tl Tr=0
1 - ’B i=1
3. Computational Sequence

The algorithm for use of modified exponential smoothing is essentially the

same as that used by Brown (Ref. C-2). Explicitly, the following sequence of

steps may be used:
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1)

Step 1: Initialization

a)

A priori guesses of the values of the coefficients, b, are
not required, but starting values are needed. One way to
obtain the first set would be to temporarily ignore the
seasonal constants, Cpe and fit the first L (or the firstn + 1)
data points to the polynomial. Thus,.if L>(N+ 1), set
b1, = (E'E)—IEZ, where

and F = /1 -(L-1) (L-1% ... (9™ (-1t

1 -(L-2) (L -2)% ... (=)L -2)"

b=
!
o)
—
.
——
H
[
—

—
[e]
o

o

If L < (n+ 1), then simply fit the first n + 1 points to the
polynomial by bt___nJ,_1 = Fily, where

and F = 1 -n n R P L

—
L
a3
1
F—t
~—
-
o}
1
ponn
~—
>

(-Yn-1"

—
1
.
—
-
—
1
-
fa—y

[—y
o
(=]

(]
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b)

c)

Sk{t-q) -

d)

With starting values of the coefficients in hand, the starting
values of the smoothed series (starting att = L orn + 1) may

be obtained from the fundamental theorem, Eq. (C-25):

St=Lorn+1 :¥t=Lorn+lBt=Lorn+l

Next, it is necessary to obtain starting values for the
seasonal constants. 1f L >(n+ 1), the residuals during the

initial period can be ased, so that

!
(o)

. £ =
ot~ Tt °r 4

{
y—
-
-

1
et

n
S b (-7 [zt -y fora =
r=20 rt 9

If, on the other hand, L < (n + 1), the polynomial fits the data
points exastly, so the next L points may be used to find initial
values of the seasonal constants. FPerhaps a better technique
is to use 2L or 3L data points in finding the initial set of b
At completion of thie initialization, the smoothed series, it’
and the seasonal constants, ¢,, are available as of some

time t.

Step 2: Increment the time index.

a)

b)

Increment t by 1. Find the seasonally adjusted value of the
time~series from X, =Yy + Ch(t-1)" Compute the new value
of the smoothing constant, o from Eq. (C-23).
Compute the smoothed series from Eq. (C-21).
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c) Compute new values of the coefficients from Eq. {C-26), and

update the estimate of the appropriate seasonal constant by
Eq. (C-18).

d) If desired, use Eg. (C-15) to compute the smoothed value of

the time-~-series, ?t’ and compile any statistics of interest.

3) Step 3: Exit.

Has the available data been exhausted? If not, return to Step 2.
If so, the b and ¢, are now available for prediction b

~tpa k 4
Egs. (C-15) and (C-17).

4, Elements of the 1\'41: and M;l Matrices

It can be shown that

Sn( t, x} = n+l

i

i [V] il
W’J
NW‘
i
6]

o)

8
L3
1
b

‘_rt'f‘
fa
(@]
Sr-s
Ly
z
=
—
1
L)

n
- j
where Sn (oo, x) ; Anj x’, and

by

ER I .
Cird = () T (*F)6 - 0%, ana
Anj = an(n)
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el

. In particular, the first few sums are:
. . n of these numbers r P , m e:
v 2nd symmetry relations to simplify calculatio 1

Recursion® and Sy '

=

can be demonstra ted:

o Selts ®) = (x - x)/(1 - x)
for j=1 E
) .
( . Sl(t, x) = [x - tx° ¥ (t-1) xt+1]/(l - x)2
Fln-it DAy for L< j = /2 ?
. n.- — -P“u
A . = JA --]_ ._l n 3J
nj -ty ] I
. < W
forn/2<j=sn . m Sz(t, x) =[x+ %% - %<t (th -2t - 1) xT1 (t - 1)2 xt+2]/(l - x)3
!Xn,n_j,*_l N
% t 2 3 3t 3 t+1 2 .
forj=1, lsrsn SS(t’ x) = (1 -x)(x+4x"+x7)-t7x (1 -%x~ -x {(.’71: + 3t + 1)
() M%
N |
(L for 1 <jsn/2, r=1 - Fox(-6t% +4) + x% (362 - 3t + D}] M1 -0t

=

‘ : - iC . (n-1)
1) ©,p, o (7D P30

e These sums can be used to obtain simpler expressions for some of the
. (a-1) + C_. (n-1) for 1<jsnf2 1<r<n ;l‘, elements of the M, matrix given in Eq. (C-28). In particular, with j = 1,
T Yr,j-l b

i - <isnf2, r=n
(n-1) + (n+1-3) Cn—l,j (n-1) for 1 <j=n

an-—l;j-l ¥ mrlt - for all . .
- forn/2<jsmn lsr=n [
n-r ‘
(-) Cr, n+1-—j(n) ,
‘] For r =1, j > 1,
j-1
i (=)’ o
E M5t~ (G =) S,y (6 B8)
- it = G-t \ gt/ i1
. . o .
. _ (=) 1 t j-1 1) Kk 3 - -
I TG-DE \ (g B¢ B k§lﬁ Ak B r};l c li-nd
%The author is indebted to Dr. Harry Lass for discovery of the recursion ﬂ
relation for the er(n). , X
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Hence,
t
= = .@_ + _EB___—-
gt B
Y CEY ) - (“‘a)
13t ZBZ 21 - gY
Similarly, for r = 2, J> L
r— ,
Ty, J-1-q _
j j = . t-1 B *7T
IO 321 -1y s (e- Ty )
Togr - (- DA\p gt/ | gF\ Y/ Fe -8
L
5, 1 (t B
* - o
its i M"Y, s
In addition to the Mt matrix used in Eq. (C-25), its inverse, M, s

also required, as may be seen in Eq. (C-26).

For exponential smoothing where the data base is assumed to be
(practically speaking) infinite, the M matrix is constant™, and is the upper

left hand corner of

#See Brown (Ref. C-3), p. 135.
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1 ,__B; ﬁ(l}‘B)
o Zaz ‘
- 28 2B(1 + 28)
Yo T Tw T
, .38 38U+3B) ‘
o 2

20

Inverses of this matrix for n = 2 and 3 are presented here, even though

computation is trivial, for the convenience of the reader.

il
N
g
t

3 2 -1 )
When n w =
~ (a/ﬁ -a/B

3 -3 1

Whenn = 3, M7} <[ &b-5a)  _ ol0-Ba) ol -0)
~ OO 28 28 28
of /18 - 20%/8% o /8%

The inverses, for n = 2 and 3, of the more general Mt matrix are given

below. The subscripted t has been omitted for improved readability.

Ifn = 2,
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while if n = 3,

1 my, M3

M= 1 my, M3
1 m m

32 33

then
(mp,maq - m,,m, ) (mg,my g - m,my,) (m) m,s - m,,my ;)
M= A m,.,) (m,; -~ mya) (m m, )
R ] B 33 33 13 13 23
(mg, - m;5) (my, - mj,) (m,, - my,)
L _
where

D = det M = mj,(my; - mys) + myylmys - m,) + my,lmyy - m,s)

With modern high-speed computers, computation of the elements of these
matrices is a simple matter. It should be noted that they depend upon & and t,
but not upon the time-series data, and need not be recalculated for each time-

series.
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