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Foreword 

The research project, "Innovative Resource Planning in Urban Publ ic 
Safety Systems, II is a multidiscipl inary activity, supported by the National 
Science Foundation, and involving faculty and students from the M.I.T. 
Schools of Engineering, Architecture and Urban Planning, and Management 
The administrative home for the project is the M.l.T. Laboratory of 
Architecture and Planning. The research focuses on three areas: 1) evaluatio~ 
criteria, 2) analytical tools, and 3) 'impacts upon traditional methods, 
S-~rds, roles, and operating procedures. The work reported in this 
technical report is associated primarily with category 2, in which a set of 
analytical and simulation models are developed that should be useful as 
plannin1, research, and management tools for urban public safety systems in 
many ci:ies. 

This paper describes a new dispatching system for users of the hypercube 
model. The new option is AVL dispatching, for Automatic Vehicle Location. It 
assumes a situation in which the real-time locations of mobile units are 
known to the dispatcher, who always dispatches the closest available unit. 
This capability should be of particular interest to police departments. 

In. potential user of the AVL option may request from IRP an insert to the 
hypercube user's manual, IRP TR-14-75, "Computer Program for Calculating the 
Performance of Urban Emergency Service Systems: User's Manual (Batch Proces­
slng) Program Version 75-001 (Batch)." The insert is labelled Section 
"4.4.5 Automatic Vehicle Location (AVLL'" 

Unless otherwise requested by the user, lRP will forward to all new 
hypercube users the version of the program containing the AVL option. Our 
experience ;s that the new option causes no additional computation time for 
fixed preference dispatch strategies, although it can add 20K or so byte' ~o 
the core storage requirement. This new program version is given the number 
76-001 (Batch). 

All users having version 75-001 (Batch) may have their old version up­
dated by sending a tape to IRP plus $10,00 for postage, handling, and computer 
costs. (IRP, Room 4-209, M.I.T., Cambridge. Mass. 02139.) IRP will send 
back the tape with version 76-001 (Batch) contained thereon. 

The work reported herein was supported by the National Science Foundation 
under Grant GI38Q04. 

Richard C. Larson 
Principal Investigator 
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Abstract 

Automatic vehicle location (AVL) systems present to the dispatcher of 

emergency response units (e.g., police cars, ambulances) the estimated real 

time locations of units within his service area. Building on a recently 

deve'loped "hypercube queuing model, II this paper presents a Markov process 

model for computing the operating characteristics of the radio-dispatched 

fl eet operating under a pol icy that dispatches the closest aV,a i labl e' unit to 
. 

each call for service (i.e., a perfect resolution AVL system). The model 

accommodates a rsalistic description of the service area and rather general 

spatial deployment policies for units. 

In implementing the model for efficient computer execution, the focus 

is on computation and storage minimizing procedures for generating the 

state-to-state Markov transition rates. One useful technique involves the 

effective application of a recently developed backward regenerative unit-step 

tour of the hypercube. The algo~ithmic procedures generalize to computer 

solutions of M/M/N queuing systems with distinguishable servers, different 

customer classes, and a cost structure for assigning servers (who may be in 

one of several postures) to customers of each class. 

The paper concludes with a realistic nine-unit police example that 

indicates the general ways in which AVL dispatching improves (and degrades) 

system performance. 
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emergency repair services), increased attention is being focused on various 

technological innovations for improving operational performance. Automatic 

vehicle location (AVL) systems comprise one important class of such innova­

tions. These systems would present to the radio dispatcher the estimated 

locations of all emergency response units under his jurisdiction. Dispatch 

decisions could then be made with an awareness of these estimateq locations, 

resulting in improved operations compared to standard manual dispatching 

procedures. 

This paper presents a method for modeling analytically one simple form 

of dispatching using AVL information. It is assumed that the exact, real­

time locations of all response units are known (i.e., a perfect resolution 

AVL system) and that the dispatcher always dispatches the closest available 

response unit to an incident (closest vehicle dispatching). 

The model builds on lithe hypercube queuing model, II which is a spatially 

distributed queuing model developed recently to analyze analytically the 

performance of urban emergency serivces. l Various algorithms and theoretical 

concepts of the hypercube model are extended to incorporate in an efficient 

manner the more complicated dispatching mechanism presented by the AVL system. 

The hypercube implementation of the closest available vehicle strategy 

computes a 11 of the stalldard hypercube performance measures: workloads of 

each of the units, mean travel times and cross-area dispatch frequencies. In 

addition, it computes new measures that relate specifically to AVL systems: 

point-specific dispatch error probabilities for any non-AVL (fixed preference) 

strategy and point-specific mean travel time reductions due to AVL. 
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Prior to 197 2, two AVL modeling efforts are noteworthy. The first was 

performed by M. Benmore as part of the work of the Science and Technology 

Task Force of the President's Commission on Law Enforcement and Administration 
r) 

of Justice. Co Bellmore specified a probabil ity p that any particular unit 

would be unavailable to respond to a call for service; higher levels for p 

indicate a patrol force with higher workloads. Units were determined to be 

available or busy by independent Bernoulli trials, with p being the busy 

probability. A square simulated region contained N regularly spaced square 

patrol beats, the length of each dimension being IN (assumed integer) beat 

lengths. Position estimation resolution of the AVL system was specified by a 

fraction l/r (r integer), such that for a given r each beat was partitioned 

. t 2 1n 0 r square subbeats. The AVL system would specify the subbeat of the 

patrolling unit with certainty, but the location of the unit within the subbeat 

was assumed to be uniformly distributed. The dispatcher using the AVL system 

would always dispatch the vehicle estimated t~ be closest according to the 

right angle distance metric. This metric specifies that the distance between 

two points (xl'Yl) and (x 2'Y2)' assuming directions of travel are parallel 

to the coordinate axes, is d12 = IXl - x2 1 + IYl -Y2 1 . In using the right 

angle distance metric, the unit's position was "guesstimated" by the dispatchE:r 

(actually a computer subroutine) to be at the center of its subbeat. Bellmore's 

analysis focused on travel time savings achievable with AVL as a function 

of workload p and resolution r. While a pioneering effort in the analysis 

of AVL systems, Bellmore's model was limited in several areas: (1) the actual 

way that units become busy is not according to independent Bernoulli trials, 

and there is significant dependence among states of response units; (2) it is 

not apparent how to apply Bellmore's ideas to realistic nonsymmetric situations, 

perhaps involving overlapping beats; (3) being a simulation model, it was 

impractical with Bellmore's model to compute point-specific (as well as 
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area-averaged) performance measures; (4) the resolution model, in terms of 

subbeats, does not reflect the workings of any actual AVL system. 

The second effort by Bales3 used most of Bellmore's ideas but with a 

resolution model that was found realistic for most radio-trilaleration AVL 

systems. This modeled the p05ition estimation error as a circularly sym~etric 

Gaussian error, where the peak of the Gaussian distribution was located at 

the response unit's location. 

Recent technological advances in AVL development have revealed syst~ns 

whose resolution is well within a fifth or less of a beat length." Bellmore's 

and Bale's work, as well as Larson's work in 1972,4 indicated that systems 

with such good resolutions achieve response time reductions almost as great 

as perfect resolution systems. Thus, for modeling the operational impacts 

upon an emergency service system (most likely a police department) it is not 

unreasonable to assume a perfect resolution system. 

Thi sis the approach taken vvith the hypercube model, namely a perfect resol ution 

AVL system is assumed. The 1 imi tat i Dns of the earl i er model i ng work regard i ng the 

1 ack of independence of the states of response units, the adaptabi 1 i ty to arbitrary 

(nonsymmetric. realistic) situations, and the computation of point-specific 

performance measures are overcome within the hypercube framework. Given thi s 

framework, one model s the geography ofa regionas a set of discrete points called 

repor!.i!!.9. areas or geogra phi ca 1 atoms. A mobile response un i t ~ typi call y a pol ice 

car, can be located in anyone of a subset of these poi nts, ca 11 ed a d i stri ct, wi th an 

arbitrary probability distribution over the atoms in the district. In police 

applications a district may in fact be called a beat or sector or route or 

area. Districts may overlap in arbitrary ways, reflecting rather comp1icated 

spatial deployment pol icies. An example with N = 5 response units \'Iith nOI1-

overlapping districts is given in Figure 1. Here a call for service arrives 

from an atom in the northeast quadrant of district 3, finding all five 
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• Location of geographical atom 
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~ Atom containing incident 
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Successively larger 
dispatch radii 

Figure 1: Example in Which the District Unit is Not the 

the Closest Available Unit 

of travel 
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response units available at the locations (atoms) indicated. A dispatcher 

operating under a non AVL dispatching strategy, would most 1 ikely dispatch 

unit 3 to the scene of the call for service. However, assuming right angle 

travel distances, unit 2 is found to be closest to the scene, followed by 

unit 1 and then unit 3. Thus, with this configuration of units and this 

particular atom for the call for service, the AVL strategy implemented within 

the hypercube model would dispatch unit 2, yielding a substantial savings in 

travel time or distance. 

A non AVL strategy is usually described by a vector of preferred units 

for each atom generating a call for service, and the dispatcher assigns the 

first available unit in the vector (starting with the most preferred unit, which 

most likelywould have been thedistrict3unit inthis example). An AVL strategy 

is a matrix strategy, with an element in the matrix being the probability that 

some unit n will be the ith preferred unit. Given a specified availabil Hy 

of units and a location for the call, if the non AVL strategy yields a dispatch 

decision different from the AVL strategy (that is, if it selects other than 

the closest available unit), then a dispatch error is said to occur. The 

hypercube model computes numerous performance measures for the system, 

including region-wide and point-specific dispatch error probabilities. This 

allows detailed analysis of any fixed preference (non AVL) strategy vs. an 

AVL strategy. 

After briefly reviewing the relevant termino1ogy of the hypercube model, 

the paper focuses on the efficient computation of state- and unit-dependent 

rates of transition to other system states. Exploiting and expanding certain 

ideas applied to earlier implementations of the hypercube model, an efficient 

procedure is found for computing the upward trans ition rates (i .e., those that 

determine frequencies of dispatch of each vehicle) without ever storing the 

; 
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usually huge dispatch probabil ity matrix. Part of the procedure involves a 

unit-step tour of the hypercube vertices. The methods are illustrated with 

a simple computational example. 

Once the state-to-state transition rates are found, the hypercube model 

is "solved" in the· usual way,l where solution implies numerical computation 

of the steady state system probabilities. Then these probabilities are 

coupled with a second hypercube tour, detailed in Section V, !:() compute 

system performance measures. A nine-unit example, first studied with a simu­

lation model,4 is then analyzed in Section VI. Certain point-specific 

performance measures for the nine-unit example are available for the first 

time. A final discussion section indicates how the algorithmic procedures 

used here apply to a rather general class of queuing system. 

For convenience, a summary of frequently used symbols is given in Table 1. 

Those desiring additional background en AVM systems may wish to consult 

Refs. [5J and [6J. 
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Table 1: Summary of Frequently Used Symbols 

N Total number of response units 

J 

f. 
J 

T .. 
lJ 

-1 
]J 

Total number of geographical atoms 

Fraction of region-wide workload generated from atom j, j =1,2, ... ,J 

Mean travel time from atom i to atom j, i,j = 1,2, ... ,J 

Probability that response unit n is located in atom j while 
available, n = 1,2, ... ,N; j = 1,2, ... ,J 

Average number of calls for service generated per hour from within 
the entire region of interest 

Average service time per call 

Vertices of N-dimensional unit hyperucbe in the positive orthant 

B A vertex contained in CN 

bn The nth binary digit (from the right) in B, n = 1,2, ... ,N 

w(B) Weight of vertex B (Lbn) 

v(B) Numerical value of vertex B 

d.. Hamming distance between two vertices B. and B. 
lJ 1 J 

A.. Infinitesimal mean rate at which transitions are made from state i 
lJ 

A 

to state j, given the system is in state i (i f j) 

Matrix of infinitesimal transition rates (with A .. 
" 

- - L A •. ) 
Hi lJ 



t . 
nJ 

r(e) 
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Table 1 (cont.) 

kth member of unit-step hypercube tour, k = 1,2, ... ,2
N 

Mean time for unit n to travel to atom j, given unit n is 

available, n = 1,2, ... ,N; j = 1,2, ... ,J 

Workload of unit n (measured in fraction of time busy servicing 

call s ), n = 1,2, ... , N 

Fraction of all dispatches that send unit n to atom j, n = 1,2, ... ,N; 

j = 1,2, ... ,J 

Prob{unit n is the closest available unitlcall in atom j, state of 
N 

the system is B
k
}, n = 1,2, ... ,N; j = 1,2, ... ,J; k = 0,1, ... ,2 -1 

Prob{unit n is the closest available unit and is located in atom 

rlcall in atom j, state of the system is Bk}, n = 1,2, ... ,N; 
N r,r = 1,2, ... ,J; k = 0,1, ... ,2 -1 

Expected travel distance of unit n, given that call in atom j, 

state of the system is Bk, and unit n is dispatched, 
N 

n = 1,2, ... ,N; j = 1,2, ... ,J; k = 0,1, ... ,2 - 1 

Atom number of eth closest atom to some specified atom, 

e=1,2, ... ,J 

Set of available units, given the state of the system is Bk, 
N k = 0,1, ... ,2 -1 

I 
1 

J 
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II. Brief Description of the Hypercube Model 

Before describing the method used to model AVL dispatching, we give a 

brief overview of the relevant hypercube terminology. A more detailed 

description is given in Ref. [lJ. 

The hypercube model assumes a geographical region R which is quantized 

into J geographical areas or atoms. Associated with each atom j (1 ~ j ~ J) 

is the fraction of region-wide workload f. generated from within the atom 
J 

J 
(Lf.=l). 
j=l J 

Central to dispatching decisions, the variable T .. lS the mean 
lJ 

travel time from atom i to atom j. 

For the region R, there is a set of N response units to respond to calls 

for service from the atoms. While available, these response units can be 

mobile and their possible locations are given by the location matrix 

L = (~nj)' where ~nj is the probability that response unit n is located in 
J 

atom j while available ( l: ~ . = 1 for all n). The set of possible locations 
j=l nJ 

for unit n (i.e., those j for which ~ . > 0) is called the unit's district; 
nJ 

note that in general, districts may overlap. 

From a queuing point of view we assume that customers (calls for 

service) are generated fro~ within the region in a Poisson manner at a mean 

rate A per hr., with each atom j acting as an independent Poisson generator 

with mean rate Af .. Given the arrival of a call for service, exactly one 
J 

of the servers (response units) is dispatched to its location, assuming at 

least one server is available. For the case of a zero-line capacity queue, 

any call for service.that arrives while all N response units are busy is 

either lost or serviced from outside the region or by special reserve units 

from within the region. For the case of an infinite line capacity queue, any 

call for service that arrives while all N response units are busy is entered 

, i 
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at the end of a queue of calls that is depleted by any simple queuing 

discipline that ignores the incident's location (e.g., first come, first 

served, random). The service time of any response unit for any call for 

service is assumed to have a negative exponential distribution with mean 

lhl. (It is strai·ghtforward to general ize the results to allow each server 

n to have its own mean service time l/~. Moreover, recent computational 
n 

experience with other service time distributions indicates a significant 

insensitivity of results of the model to the exact form of the service time 

distribution. 7) Since the service time is assumed to be independent of the 

identity of the server, the location of the customer, and the history of the 

system, variations in the service time that are due solely tovariations in 

travel times are ignored (mean travel time being assumed to be an order of 

magnitude smaller than mean on-scene service time). 

A state of the system is denoted by an ordered set of N binary digits 

B = {bN,bN_l , ... ,bl }, where unit n is said to be busy if bn = 1 and idle 

(or available) if b = O. The weight of B, denoted w(B), is equal to ~b , 
n n 

the number of binary "ones" in the set B. The numerical value associated 

with the set B is 

N 
v(B) = 2: b 2n- 1 

n=l n 
. 

To each set B {bN'bN_l , ... ,b1} there corresponds a unique point or vertex 

(or state) in RN with nth coordinate equal to bn (n = 1, ... ,N). The set CN 
of all 2N such vertices is the set of vertices of the N-dimensional unit 

hypercube in the positive orthant. 

Defining binary set operations in the usual way, the Hamming distance 

between two vertices B. and B. is the weight of the symmetric set difference 
1 J 

d., :: w([B.nB~J U [B!nB.J). 
lJ 1 J 1 J 
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For example, two vertices that are unit Hamming distance apart differ in 

only one binary digit. The "upward" Hamming distance is defined to be 

and the "downward" distance 

where 

d .. 
lJ 

+ - d .. + d: . 
1 J lJ 

The state space of the zero-line capacity model is CN' where each vertex 

(state) corresponds to a particular combination of response units busy and 

idle. This state space l'S aug e t d b II' f' . m n e y an ln lnlte tail II for the infinite-

line capacity case. Sl'nce the tw d 1 d o mo e s are governe by the same equations 

for unsaturated states (i.e., states with at least one available response 

unit), we will focus the development on just one of the models: the zero-line 

capacity model. The infinite-line capacity case requires modifications for 

dispatches from a queue identical to those described in Ref. [lJ. 

The state transition matrix is A = (Aij ), where Aij = infinitesimal mean 

rate at which transitions are made from state i to state j, 

system is in state i; i,j = 0,1, ... ,2N -1, if j, and A .. = 
11 

given that the 

- 2: A... Here 
jfi lJ 

for convenience we index the states according to their numerical values, 

i.e., we select i so that v(B i ) = i,i = 0,1, ... ,2N-1. 

There are two classes of transitions on the hypercube: upward transitions 

that change a unit's status from available to unavailable and downward 

transitions that do the reverse. Fo ' t B {b b r a glVen ver ex i = N' N-l,···,b1}, 

upward transitions can occur to all "adjacent" vertices B. for which d:. = 1 
J lJ' 

If unit n is the unit whose status is changed (from idle to busy), then 
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Bi = {bWbN_l,···,On,···,bl } and Bj = {bWbN_l,···,ln, .. ·,bl}. Downward 

transitions can occur to all adjacent vertices B. for which d:. = 1. No 
J 1 J 

transitions occur to vertices that are more than unit Hamming distance from 

B. since only one unit is assigned to each call. 
1 

Since the service times are all distributed as negative exponential 

random variaDles with mean ~-l, the transition rate associated with each 

downward transition is equal to~. Thus, for all (i,j) for which dij = 1 we 

have A .. =~. For convenience we set ~ = 1, thereby equating the unit of 
lJ 

time to the mean service time. 

The upward transition rates depend in a complicated way on the regionis 

geography, the system state and (for AVL dispatching) the real-time locations 

of the available units. Following the earlier work with fixed preference 
, 

dispatching strategies, 'we will develop a recuy.'sive'method to generate the 

set of upward transitions rates, first by fixing the geographical atom of the 

call, then by touring the hypercube in a unit-step fashion. The entire matrix 

is completed as soon as the hypercube has been toured once for every 

geographical atom. 

As argued in Ref. [lJ, the model is a finite-state continuous Markov 

process whose steady-state probabilities are determined from the equations of 

detailed balance, 

l: P{B.} A •• 
{B.sCN:dt.=l} 1 lJ 

1 1 J 

+ l: P{B.}, j 
{B.sCN:d:.=l} 1 

1 lJ 

N = 0,1, ... ,2 -1 (1) 

where P{B j } - Prob{system is occupying state j under steady-state conditions}, 

} ° for j = 2N - 1, 

Aj = lA otherwise. 
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To guarantee a probability distribution, we also require that the probabilities 

sum to one, i.e., 

a condition which makes anyone of the balance equations redundant and 

therefore removable from the set of equations. 

(2 ) 
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III. Computing the Upward Transition Rates for an AVL Strategy 

As in the hypercube model with fixed preference dispatching, it is 

necessary to develop a time- and storage-efficient way of generating the 

upward transition rates. For each atom j (1 ~ j ~ J) we shall tour the 

hypercube in a unit-step fashion, visiting in succession the states 

From one step to the next, the status of only one response 

unit changes, either from busy to idle or idle to busy. The procedure for 

generating the upward transition rates avoids the requirement of storing 

usually huge intermediate matrices. 

Unlike the model with fixed preference policies, the AVL model requires 

a particular unit-step tour to be traversed. This is the back\</ard regenerative 

unit-step tour Sl ,S2""'S2N derived in Ref. [1]. Thus a particular hypercube 

vertex has an associated B; such that i = V(B i ), i == 0,1,2, ... ,2N - 1, and 

an Sk such that the vertex is the kth visited vertex in the unit-step back-

ward regenerative unit-step tour, k = 1,2, ... ,2 N. Note that Sk = BV(Sk)' 

To generate this tour for N units, one supposes that the tour for N - 1 

units is known, the tour for one unit being {O},{l}. The first 2N- l entries in 

the larger tour are obtained simply by augmenting the entries in the smaller tour 

with a zero ("0") intheNthdigit (from the right). Thefina12N- l entries are 

obtained by augmenting the entries in the smaller tour with a one ("1") in the Nth 

di git and revers i ng the order of the sequence. As an exampl e, after carryi ng out thi s 

procedure twice, starting with the one-unit tour, we obtain the 3-digit 

tour: Sl = {D,D,D} :: BO' 52 = {D,O, l} = Bl , S3 = {O, 1, 1} = B3, S4 = {O,l ,D} = B2, 

S5 = {l,LD} = B6, 56 = {l,l,l} = B7, S7 = {1,0,l} = B5, S8 == {l,Q,D} = B4' 

We noW focus on computing the upward transition rates. Note that in 

general any unit n can be dispatched to a call in atom j, provided it can 

possibly becloser than any other available unit(s}. Such multiple-choice assignments 

-15-

from the same state to the same atom occur with fixed preference 

policies only in the caSe of tied in dispatch preferences. In order to 

compute incrementally each upward transition rate, we must narrow our focus 

to the particular atom containing the dispatched unit, thereby defining 

qna!jk = Prob{unit n is the closest available unit and is located 
in atom alcall is in atom j and the state of the 
system is Bk}. 

For all states in which there is at least one aval'lable . unlt" we must have 

a proper probability distribution: 

N J 
L L q 1 0k = 

n=l a=l na J 
j = 1, .•. ,J; k = Q,1, ... ,2N - 2, 

For k = 2N - 1 we have B {l 1 l} k = " ... , , implying that all units are busy; 

in that case calls are either lost or handled by a back-up service, and 

for all n,a,j 

Since the hypercube upward transition rates are aggregated over possible 

unit locations, we must also define 

Pn1jk = Prob{unit n is the closest available unitlcall is in atom j 

and the state of the system is Bk}. 

Clearly, 

J 
= l: q I Ok a=l na J 

(3) 

Now, the upward transition r:tes Aik are calculated as follows: The 

matrix A is initialized to zero. Then when the point of the tour is reached 

where the call is in atom j and the state of the system is B = {b b b· } 
i N' N-l)"" 1 ' 
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the transition rates to all the adjacent states Bk={bN,bN_i, ... ,b~, ... ,bl} 
+ such that dik = 1 and b~ = 1 f bn will be incremented by"fjPnlj;' The 

quantity Af/n1ji is the component of the total upward transition rate out of 

state B; corresponding to calls from atom j that result in unit n becoming 

busy (transit;oning to state Bk). The incrementing is given by 

"'k +- "'k + "LP I" . 1 1 J n Jl 

In many cases PI" = ° for some n and no operation is performed. n Jl 

(4 ) 

We start the tour in state Sl - BO = {O,O, ... ,O}, implying that all 

N units are available for dispatch. Our initial focus is toward computing 

qnaljO' then toward updating the computation as unit-step transitions are 

made from state to state. 

To generate the qnaljk efficiently, we rank all atoms i for each 

unit n for Which Q, , > 0, in order of increasing travel time to atom j. 
nl 

After doing this for all n, we merge the rankings into a global ranking, 

defining the eth entry in the global ranking to be the eth closest possible 

unit location to atom j. In the case of two or more units possibly occupying 

the same location or atom (implying overlapping districts) or in the case 

of two or more different atoms being the same travel time to atom j, the 

e-ordering is assigned arbitrarily and any resulting tie(s) will be broken 

by random choice. For the eth entry in the ranking, atom r(e) is the 

corresponding unit location and 1nr (e) 

atom r(e) while available. 

The minimum ranking for unit n is 

L . = 
nJ 

min e 
{all e:~nr(e»O} 

is the probability that unit n is ;n 

IT --
\ i 

Ii 

! . ; 
, , 

- , 

The maximum ranking is 

Unj == max e 
{all e: Q, ( »o} nr e 
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Thus, possible locations for un,'t f I n can range rom the L ' th entry in the 
nJ 

tabl e to the Unj I th entry. For the case of coll ectively exhaustive nonover-

lapping districts, this range starts with the L ,Ith closest atom to atom J' 
nJ 

and ends with the Unj1th closest atom to atom j. The L ,IS wtll prov~de a 
nJ , 

guide for ordering the response units for use in the backward regenerative 

unit-step tour of the hypercube vertices. 

Ignoring ties (for the moment), we compute qnaljk by arguing as follows: 

qna/jk = Prob{no available unit is closer than T , to atom j} • 
aJ 

Prob{unit n is in atom jlunit n is not in any closer 
atom} . 

Setting a ~ r(e), the first term on the right hand side is simply 

N e-l 
P~e = 1 - m~l f~lqmr(f)ljk, 

and the second term is 

e-1 
= Q,nr(e)/(l - f~lQ,nr(f)' 

(5 ) 

(6 ) 

the denominator arising from the conditional information that unit n is 

not closer than atom r(e). 

computations is 

Thus, the equation that is useful in iterative 



P 'lvc 
qnr(e)ljk = ~e nr(e) 

N e-1 
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= [1 m~l f~l qmr(f)ljk]['lvnr(e)/(l 
e-,l 

l: 'lvnr(f))]' 
f=l 

(7) 

Note that 'lv~r(e) need only be computed once for any atom j and P>e is found 

simply by subtracting the total accumulated probability (through table entry 
e-l) from one. 

compaction 

Suppose, given full availability of units, that some unit n may be 

located in two or,more consecutive atoms r(e), r(e+l), r(e+2), ... , r(e+m). 

Then if only average travel time (rather than its distribution) is to be 

computed with the model, the m+l entries in the e-ordered table can be 

replaced by one aggregate entry. Call the new "aggregate atom ll r(e-rm). Then 

the new ent.ry in the table is specified by 

e+m 
Tr(e-Hll)j = i~eTdi)j'lvnr(i )/'lvnr(e-Hll)" 

This compacted entry remains applicable to all 2N system states, often 

yielding substantial savings in computation time. 

Ties 

Suppose in the process of computing q ()I"k iteratively 11 (11 > 2) nr e J -

units are found which could be tied for dispatch preference. In other words, 

up to n units could be equidistant from atom j, located either in the same 

atom i or in different atoms equidistant from atom j. In such a case the e 

r ," i 
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. 
ranking for the tied units can be assigned arbitrarily. Then, if one wishes 

to treat ties inexactly, they could be ignored by applying Eq. (7) directly, 

implying that a tie would be broken in the same (arbitrary) way each time 

that it 1S incurred. 

If an exact treatment is desired, let e denote the ranking of the last 
11-

untied unit location. Let the tied units be denoted by sl ,s2, ... ,sl1' corres-

ponding to unit locations ranked e + 1,e + 2, ... ,e + 11. Then for some 
11- 11- 11-

unit si Eq. (7) is replaced with 

where 

Q(e
ll
_,s;) - Prob{unit si is dispatchedla possible tie among units 

sl,s2,···,5
11 

and no unit dispatched in any unit 
location ranked e or lower}. 

11-

Allowing all possible combinations, we have 

While this equation is tedious to compute for general 11, in practice one 

rarely incurs ties of order higher than two or three. 

I 
I 
! 

I 
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Transitioning to Adjacent States 

Suppose at some unit-step tour state Sk'-l we have computed 

qnaljv(Sk'_l) for all nand a. For instance, at state So we would have 

computed qna[JO' Then we make a unit-step transition to an adjacent tour 

t te S = B causing some unit m to change status. For notational 
s a k I V (Sk I ) , 

simplicity let k = v(Sk ' )' Now for state Bk we want to compute qna\jk for 

all n and a, taking advantage of our previous computations wherever possible. 

If the smalle~t possible e ranking for unit m (Jl.mr(e) > 0) is such that 

there is always an available unit n closer to atom j than unit m, then the 

change in status of unit m does not affect the other units and all the 

h d if 
q ,remain unchanged from the previous tour state. On the other an , 

na [Jk , 
unit m could possibly be the closest to atom j, then some computatlons must 

be performed, Thus, letting a k = set of available units in state Bk, there 

are two cases: 

1. 

2. 

L ,> mi n U J' 
mJ { m: a~J n 

In this case all q I'k remain unchanged. na J 

L ,< mi n U J' 
mJ - {nsl\} n 

11 such that e < L ' remain unchanged In this case a qnr(e)\ kj mJ 

h t t of unl't m has no effect for units (since changing t e s a us 

located in atoms closer than the unit can be located). All 

h th t e > L . are recomputed applying Eq. (7). 
q n r ( e ) \ j k s u c a mJ 

T 
( . 
I 
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Reordering the Response Units 

In traversing the hypercube in a unit-step fashion, the amount of com-

putation to be performed will depend in large part on the frequency with 

which we encounter case 1: LmJ· > min Un" implying all the qna!J'k 
n available J 

are unchanged from the last toured vertex. The more often we encounter this 

case, the less will be the computational effort. Examining the backward 

regenerative unit-step tour, and recalling that the state of unit n is 

specified by the nth binary digit from the right, we see that' in a. complete 

tour 

pond 

unit n changes status 2N- n times. Thus, by making binary digit n corres­

to that unit m for which L ' is the nth largest of the L ,'s, we change 
mJ mJ 

the status most frequently of units distant from atom j (resulting in case 1 

occuring much more frequently than would occur with an arbitrary ordering of 

response units). Thus, to summarize, we reorder the response units as 

follows: 

Unit is that unit with largest Lmj . 

Unit 2 is that unit with second largest L . , mJ 

Unit N is that unit with smallest Lmj . 

We now briefly analyze the efficiency of the combined procedure of per-

forming the unit-step tour and reordering the response units when computing 

qna!jk for a fixed j. Suppose, in the worst case, that one simply recomputed 

qnaljk exhaustively for each different system state Bk· The number of 

different values for q I' k for fi xed j and k is MAX U J' - MIN LmJ' + 1. 
na J m m m 

Since these values would have to be recomputed for each state, the total number 

of computations of q ! 'k required per complete set of states would be na J 

bounded above by 



-22-

[MAX Umj - MIN Lmj + lJ2N, 
m m 

since there are 2N different states. If one does not count "zeroes" as 

computations, due to units that are busy (and thus cannot be dispatched), 

then a better approximation for the number of times qnaljk must be computed 

is 

[MAX Umj - MIN L . + 1]2N- l , 
m m mJ 

since each unit is available (nonbusy) at half of the vertices. If one also 

wishes to discount "zeroes" due to exceeding the smallest Umj of the currently 

available units for a given 

the number of computations 

state Bk, then perhaps the best approximation of 

of q 1 ok is given by na J 

L 0 + 1)2N- l 
nJ ' (8 ) 

vJhere thi s average range is used to refl ect the fact that as soon as the 

range is exceeded for an available unit, all remaining qnaljk are zero. 

We now quote a formula from the Appendix for the number of computations 

of qnaljk required using the backward regenerative unit step tour in combina­

tion with reordering the units according to L o. To avoid excessive complexity, mJ 
we allow no ties and require that the upper bounds be ranked in the same way 

as the lower bounds. So, given the reordering of units, we must have 

LNj < L (N-l)j < 

U Nj < U ( N -1 ) j < 

Define the positive part of X as follows: 

if X > 0 

if X.s.O 

; I 
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Then the number of computations of q 10k required 0 na J uSlng the backward 
regenerative unit step tour with reordered units is 

N N 
= 2: 2: (U. -L 0 +1) 2n-m- l 

m=l n=m+l nJ mJ + 

N 
+ 2: (U 0 - L ,+ 1). 

m=l mJ mJ 

(9) 

In applying (9) in practical situations (e.g., data describin~ the.district 

of a police department of one large city) one usually experiences reductions 

in computational effort (compared to the average range formula given by 

Eq. (8)) of at 1 east 4-to-l and sometimes up to 1 O-to-l . 

As a further remark on efficiency, it is noteworthy that the matrix 

dispatching strategy implied by AVL dispatching requires no more storage of 

dispatching information than is required for fixed preference dispatching; 

and this is (N + 1)2
N 

nonzero matrix elements, as argued in Ref. [lJ. The 

process of incrementing the (aggregated) upward transition rates during the 

hypercube tour, as the qna IJ' k are computed, impl i es that neither q I' nor 
na Jk 

Pn[jk need be stored after leaving state Bk. This is indeed fortunate since 
q ld ' 2 N naJjk cou requlre an array of NJ 2 elements to store completely; for 

N = 10 units and J = 100 atoms, this is about 108 storage elements, far too 

many to make the procedure practical. 
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IV. Illustrative Computational Example 

To ill ustrate the procedures descri bed in Sect'ion III, we consider the 

simple N = 3 unit, J = 16 atom example summarized in Table 2. Here the 

atom of the incident is fixed at j = 1. We wish to compute qnr(e)\lk as 

specified in Eq. (7), From Table 2, note that units have been numbered 

according to lower bounds Lnl , with L31 = 1, L21 = 5, and L'l = 11; atoms 

have been ordered by the index e according to increasing travel times 

Tr(e)l' 
The procedure for computing qnr(e)/lk starts in state BO = {O,O,O}. 

Applying (7) for e = 1,2,3,4, it is apparent, due to no overlap with unit 2, 

that qlr(e)\lO = ~lr(e)' Subtracting the sum of the probabilities from one 

at that point, we have P~5 = 1 - (0.25 + 0.133 + 0.167 + 0.200) = 0.25. 

Thus q2r(5)\10 = 0.25(0.364) = 0.091. Now P~6 = 0.159, and thus 

qlr(6)\10 = 0.159(0.133/(1 - [0.75J)) % 0.085. Continuing this process yields 

q1r(7)\10 % 0.032 and qlr(8)\10 % 0.042. But e = 8 = U", thus computations 

are completed for state BO' 

We now undergo a transition to state B, = {O,O,l}, causing unit 1 to 

become busy. But unit 1 had zero probability of being dispatched in state 

{O,O,O} since Lll > U
31

' and thus all of the computations remain unchanged. 

Following the backward regenerative unit-step hypercube tour, we next undergo 

a transition to state B3 = {O,l ,1}, causing unit 2 to become busy. This 

requires (U
31 

- L21 + 1)+ = 8 - 5 + 1 = 4 values of qnr(e)\lk to be recom­

puted; the new computations are easy, since unit 3 is t:le only unit available. 

The next transition to state B2 = {0,1,0} requires no new computation since 

Lll > U
3l

. The next transition is to state B6 = {l ,1,0}, causing unit 3 to 

become busy. Then the only nonzero qnr(e)llk 's are q3r(e)11k which equal 

the corresponding i
3r

(e)' The next transition to B7 causes all units to become 

-25-
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busy and the probability qnr(e)llk is zero for all n. (Recall that with a 

zero-line capacity system, calls that arrive when all N units are busy are 

lost or handled by some back-up service system.) The final two states B5 

and 8
4 

require only that unit 2 be dispatched, thus completing our example. 

------~~~-~-~-
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V. Performance Measures 

Once the upward transition rates are generated, the steady state 

equations of balance are solved in the usual way,' yielding numerical values 

for the steady state probabilities P{B k}, k = O,1~ ... ,2N - 1. These 

probabilities allow us to obtain numerical values for the performance 

measures of interest: region-wide: lilean travel time, dispatch error 

probability, workload imbalance, and fraction of dispatches that are inter­

district dispatches; response unit specific: workload (measured in.fraction 

of time busy servicing calls), mean travel time, fraction of responses of each 

response unit that are interdistrict; 9istrict specific: fraction of responses 

into each district that are interdistrict, mean travel time; point specific: 

mean travel time, dispatch error probability, frequency of patrol passings 

(in the case of mobile police patrol)~ fraction of calls handled by response 

unit n, n = 1,2, ... ,N. This mixture of performance measures allows one to 

focus simultaneously on several region-wide objectives while assuring that 

spatial inequities in the delivery of service are maintained at an acceptable 

minimum. The dispatch error probability in conjunction with mean travel times 

and interdistrict dispatch frequencies allows one to compare the advantages 

and disadvantages of AVL dispatching to any fixed preference policy; such a 

comparison would require two executions of the model--one for each policy. 

Individual Workloads 

Knowledge of the P{Bk}' s is sufficient to compute the workload Pn of each 

unit n, 

r P{B.}. 
{i:b=l} , 

n 

, , 
t 
1 , , 
1 

I 
I 
f 

! 
J 
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The unit-step tour has certain periodicity properties that make computation 

of the sum particularly easy.9 

Retouring the Hypercube 

For the remaining performance measures it is necessary to reconstruct 

the Ilfine structure" on the hypercube, which requires qnaljk and its sum over 

a, P
n1jk

. Due to the enormous storage requirements implied by storing these 

quantities, the decision ismade simply to retour the hypercube using the 

computed P{B
k
} at each step to generate many of the performance measures 

iteratively. The fact that two tours of the hypercube are made--one to set 

up the equations of balance and,after their solution, one to compute performance 

measures--intensifies our interest in assuring that the tour is structured 

efficiently. 

Unit-Specific Mean Travel Times 

With a fixed preference dispatching strategy, the mean travel time t . nJ 

for unit n to reach atom j can be determined simply by knowing the dispatching 

strategy, the mean travel time from atom i to atom j ~ij' and the time-average 

statistical locations L = (tnj ) of the units while available within the 

region R. However, with AVL dispatching the mean travel time is a complicated 

function of the r~al-time location of all available response units, whose 

availabilities are determined by the system state Bk. Thus the mean travel 

times are computed iteratively in the second tour of the hypercube. 

We use q l'k to compute the expected travel times, which depend on the 
na J 

location of the unit when dispatched. Define 

tn\jk = Expected travel time for unit n, given the incident is in 
atom j, the state of the system is Bk, and unit n is dispatched. 

-29-

Thus t nljk is the expected travel time for unit n (conditional on atom j and 

state Bk), given that it is the closest available unit. Recalling that T . 
aJ 

n Jk > 0, is the travel time from atom a to atom j, we have for all PI' 

J 
= ~ q I'k~ ./P I'k a=l na J aJ n J 

n = 1,2, ... ,N. (10) 

(If Pn1jk = 0, then t n1jk is undefined.) 

Now the travel time t nj , not conditioned on system state, is ~alculated 

as follows: For each state Bk = {bN,bN_1, ... ,b;, ... ,bl } in the second 

hypercube tour such that bn = ° and Pnl jk > 0, tnk is incremented by 

t nljk Pn1jk P{B k}. In other words, 

(11 a) 

After the computations are completed for all states Bk the result is scaled: 

Inter-Area Dispatch Frequencies 

For the remaining performance measures it is necessary to compute 

Pnj = fraction of all dispatches that send unit n to atom j 
( ~ P . = 1). 
n,j nJ 

Following Ref. [lJ and the arguments above for travel time, 

all n,j 

(11 b) 

(12) 
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This too is computed iteratively at each hypercube vertex. 

Once p . and t , are computed for all (n,j), then one uses equations 
nJ nJ 

(14)-(20) given in Ref. [lJ for additional performance measures involving 

interdistrict dispatch frequencies and mean travel times. 

Dispatch Error Probability 

One may wish to execute the hypercube model with a fixed preference 

dispatching po11cy in order to compute dispatch error probabil ities. This 

requires the computation during the second hypercube tour of the state­

dependent dispatch probabilities for both the fixed preference policy and the 

AVL policy. 

Define for any fixed preference policy 

P.{C I } ~ Prob{dispatching a response unit other than the closest 
J available unit to atom j}. 

= total number of response units that are optimal given 
state Bk and a call in atom j (this is the number of 

tied units). 

r m = the number of the mth optimal unit, where r m = 1 ,2, ... ,N 

andm=1,2, ... ,nkj . 

If nkj > 1 it is ~ssumed that the unit dispatched to atom j (given state Bk) 

is to be chosen randomly from among the tied units rl,r2,···,rnkj 

Since (1 - P ) is the probability that some unit other than rm is 
r m ljk 

the closest one to dispatch, given atom j and state Bk, the unconditional 

dispatch error probability is given by 
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E (1 (13 ) 
r 
m 

m= 1 , 2 , •.. ,n kj 

where P{B k} in this case refers to the hypercube model with fixed preference 

dis pa tc h po 1 icy. 

Multiple Values of System-Wide Workload 

When one desires to execute the hypercube model with several d~fferent 

values of system-wide average workload p = AIN (everything else remaining 

constant), a significant computational efficiency is experienced. This occurs 

for either AVL or fixed preference dispatching. The efficiency derives from 

the fact that, regardless of the different number of workload levels desired, 

~ two tours of the hypercube are regui red. 

The first tour is again to set up the equations of balance. After they 

are solved for one value of p, they can be altered easily to adjust for the 

next level since all the upward transition rates (A .. such that d:. = 1) are 
lJ lJ 

changed by the same relative amount. The fine-grain state-dependent dispatching 

policies remain unchanged and thus there is no need to recompute the A .. IS lJ 
by touring the hypercube. The computed steady st?te probabil ities must be 

stored for each different workload level for use in the second hypercube tour. 

The second tour is used just as before to compute iteratively most of 

the system performance measures. Now at each state the measures for each of 

the workload levels are updated, thereby eliminating the need for more than 

one additional tour of the hypercube. For large problems, however, there 

exists a tradeoff between execution time (implying only one additional 

hypercube tour) and storage (which can grow very 1arge if the performance 

measures for all workload 1 evel s are computed--and stored--simultaneously). 
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In anticipating large problems and limited memory computers, the current 

programmed version of the model executes one (re)tour of the hypercube to 

compute performance measures for each workload level specified. 

1 -33-

VI. Nine-Unit Example 

In this section we apply AVL dispatching to the N = 9 unit square region 

shown in Figure 2. Here each unit, when available, is equally likely to be 

located in one of 16 evenly spaced atoms defining its district. Calls for 

service are uniformly distributed over all 9x16 = 144 atoms. Calls that 

arrive when all nine units are busy are entered ;n a queue of calls that is 

depleted on a first-come, first-served basis. Travel times are directly pro­

portioned to right-angle distance. 

We wish to compare AVL with two popular methods of fixed prefer~nce 

dispatching: Strict Center of Mass (SCM) and Modified Center of Mass (MCM). 

A similar analysis was reported previously (Ref [4J, Chaps 6,7) using a 

Monte Carlo simulation model. 

Suppose atom j is located at (x.,y.). To specify the two fixed preference 
J J 

pol icies, \'/e define the center of ~ of unit n (x~,y~), where 

J 
yO = t: R, .y. 

n j=l nJ J 

and the center of mass of calls in district n, 

-xn = t: f.x./ t: f. 
jedistrict n J J jedistrict n J 

y = t: f.Y.; t: f. 
n jedistrict n J J jedistrict n J 

Now, an SCM dispatching strategy derives its vector of fixed preferences 

for units for calls from atom jedistrict m by rank ordering according to 

travel distance from each unit's center of mass to the call's center of mass: 
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Unit n is the itr preferred if Ixo - x I + Iyo - y I is the ;th 
n m n m 

smallest travel distance. 

A more sophisticated strategy, the MCM strategy, derives its vector by 

rank Ol~derings according to travel distance from each unit. I s center of mass 

to the atom containing the call: 

U 't . .th f d'f I 0 I I 0 I' th .th nl n 1 s 1 pre erre 1 xn - x j + Y n - Y j 1 S e 1 

smallest travel distance. 

The MCM strategy includes information on the exact location of the call 

whereas the SCM strategy does not. Thus, we would expect that mean travel 

times would be highest for SCM, second highest for MCM, and lowest for AVL. 

Nine runs of the hypercube model were performed for each strategy: SCM, MCM and 

AVL, each run representing a different level ofworkload p. Here p::A/9;.l=Aj9; it 

is important to note that since there are no lost call s p is identically equal to the 

average util ization factor (fraction of time busy) for units in the system. The average 

cost per run using the M.LT. IBM 370/1 t38 computer was about $4.00 for the fixed 

preference strategies, $12.00 for the AVL strategy and $15.00 for both the AVL 

strategy and dispatch error probabilities with a non-AVL strategy (both AVL and 

non-AVL strategies being computed at the same time). 

Mean Travel Time Reduction vs. p 

At a given value of p the mean travel time reduction caused by AVL dis­

patching is s.ly the difference between the region-wide travel time of the 

fixed preference strategy and that of the AVL strategy. Curves displaying 

mean travel time reductions for both SCM and MCM strategies are shown in 

Figure 3. As one can see, the greatest travel time savings available from AVL 

occur for small values of p, when most units are available and the number of 

possible dispatching choices is large. For MCM dispatching, the mean travel 

time reduction decreases monotonically with p whereas that for SCM dispatching 

is a unimodel function of p, reaching a maximum at about p = 0.20. This 

unimodality is caused by the relatively high conditional dispatch error 
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probability associated with a dispatch decision at small p, given that the 

district unit is busy (but because of small p, most near-by units are 

available); this high conditional error is caused by ignoring the callis 

exact location, thereby often yielding ties in dispatch preferences where 

it is clear that one unit is more likely to be closer than another. Note 

that for both SCM and MCM the comparitive advantage of AVL dispatching con-

verges to zero as p converges to 1.0, a point at which there is virtually no 

choice allowed in selecting an available unit for dispatch. 

Probability of Dispatch Error vs. p 

Similar curves of probability of dispatch error vs. p are given in 

Figure 4. Again, dispatch error tends to be high when p is small. Dispatch 

error is a monotonically decreasing function of p for MCt1 dispatching and a 

unimodal function for SCM dispatching. Note that at P = 0.0, for instance, 

approximately 28 percent of dispatch decisions could be improved (in the 

sense of smaller travel times) by employing AVL diSpatching compared to 

either of the fixed preference dispatching strategies. 

Amount of Interdistrict Dispatching vs. p 

AVL dispatching has its disadvantages as well as its advantages. One 

disadvantage is that the amount of interdistrict dispatching increases, thereby 

decreasing the amount of contact a server has with citizens in his "own ll 

district. In police applications, where "district Jl is a police beat or 

sector, this is said to cause a loss of beat or sector "identity.1I 

Curves indicating the extent of interdistrict dispatching for each of the 

three strategies are shown in Figure 5. As expected for SCM and MCM strategies, 

the fraction FI of dispatches that are interdistrict dispatches almost 
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equals p for small and moderate values of p. This is intuitively explained 

by the fact that a fraction p of calls for service find the district unit 

busy and thus require an out-of-district unit if immediate service is to be 

delivered. Also as expected, the fraction Fr is significantly increased for 

low and moderate values of p by switching to AVL dispatching. For instance, 

Fr at p % 0.0 is about 0.28, which is just what we expect since the dispatch 

error probability at p ~ 0.0 is about 0.28, thereby necessitating interdistrict 

dispatches for 28 percent of calls for service even when all units are 

avail abl e. 

?robabi1ity of Dispatch Error as a Function of Incident Location 

Each of the previous three sets of curves had been derived earlier with 

a simulation model [Ref. 2, Chaps. 6,7J. However, the results reported here 

do not suffer from sampling error and they were generated at a cost at least 

an order of magnitude 1 ess than the simu1 ation costs. t~oreover, the hypercube 

model produces point-specific as well as area-averaged performance measures, 

something that is too expensive to obtain from a simulation model. 

An important example in the case of AVL dispatching, the point~specific 

dispatch error probability has been heretofore unobtainable. Computations 

of this quantity with the hypercube model have indicated that region-wide 

dispatch error probability can be rather modest, say 12 percent, yet specific 

atoms can have an associated dispatch error probability as high as 50 percent 

or more. This significant degree of spatial inhomogeneity in dispatch error 

probability is illustrated in Figure 6, which displays for a fixed p (p=O.l) 

this probability as a function of incident location x as one travels west to 

east at a y value fixed at y=1.37S. Ascanbeseenfromthefigure, d'ispatch 

error probability increases sharply near the boundaries of districts, reflecting 
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the fact that a unit on the other side of the boundary has a significant 

probability of being closest to the call. Thus AVL dispatching would yield 

the sharpest reduction in travel times to incidents located near the borders 

of other districts. 
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VII. Discussion 

The methods reported here for efficiently implementing AVL dispatching 

within the hypercube framework apply to a more general class of queuing system. 

In queuing terms, there are J classes of customers (corresponding to the J 

atoms), each class j arriving as an independent Poisson process to an M/M/N 

queue with distinguishable servers. Server n, if available, will be in 

posture i with probability t . (rt . = 1). 
m i n1 

And there is a cost T .. of 
1J 

assigning a server in posture i to a class j customer. The methods discussed 

in this paper allow one to model analytically (and solve numerically) the 

beha\rior of this system, operating under a policy that always assigns that 

server with minimum (immediate) cost. It should be noted, that in the spirit 

of the models of Carter, Chaiken and Ignal1 8 and of Jarvis,9 that a server 

assignment policy that minimizes immediate cost does not in general minimize 

time-average cost of the system (although the difference between the two 

policies in system-wide mean cost has been found to be small--less than one 

percent when the cost has been travel time). In nonspatial applications one 

can imagine that customer classes could be defined by one or more of the 

following: yearly income, educational level, amount of cash carried, ethnicity, 

physical size, sex, or (in computer applications) type or source of data 

message. Too, a server's posture could be specified by any number of varia-

bles, including priority of his current activity (which is viewed as pre­

emptable), degree of fatigue, amount of cash on hand, amount of core storage 

available. 

A practical application of the AVL dispatching strategy, using the 

h b d 1 · d . 1 't 12 ypercu e mo e , 1S now un erway ln one arge Cl y. 

The computer listing of the model for up to N = 15 units programmed in 

PL/I, is available (along with user's manual 13 ) from the authors. 
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~pcndix:* Number of Probability Computations Required with the Backward 
Regenerative Unit-Step Tour 

The purpose of this appendix is to derive Eq. (9), which specifies the 

number of computations of qnaljk required for a particular atom j in the 

course of touring the hypercube in a unit-step fashion (according to the 

backward regenerative tour), with units rank ordered according to the L .. 's: lJ 

In the derivation we also require 

We motivate the general result from the N = 4 unit problem which is 

summarized in Table A-l, whose columns contain (left to right) the unit number, 

the number of state changes (or transitions) during a tour, the number of 

computations of q I'k per transition, the transition(s) at which that number 
na J 

of computations occur, the binar'Y representations of the state in the tour, 

and a simple linear index denoting the state. We focus on state transitions 

and the number of computations required per transition. Since the computations 

of qna Ijk must start at state $1 (0000), we include IIgoing to the start statell 

as a transition. Thus, there are 2N transitions for an N unit problem, with 

unit n experiencing 2N-n transitions (excepting unit N which experiences 

2° + 1 = 2 transitions). 

We partition transitions into two cl asses: (1) those which invol ve a 

unit n for which L . is the minimum of all L .. 's currently in the available 
nJ lJ 

*While this Appendix is self-contained, certain mathematical properties of 
the backward regenerative unit-step tour are invoked. Those wishing additional 
background in this area may wish to consult Ref. [9J. 

Unit 
Number 

4 

3 

2 
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Table A-l: Summary of N = 4 Unit Problem 

Number of 
State Changes 
During Tour 

2 

2 

4 

8 

Number of 
Computations 
Per Transition 

(U4 -L2 +1)+ 

(U 3 - L2 + 1 )+ 

a 

(U4 -L1 +1)+ 

(U3 - Ll + 1 ) + 

Transition at I State Sk Index Number 
Which Computa- of Unit- k of state Sk 
tions Occur Step Tour 

start up at state 1 

8+9 

4 +5 

12 + 13 

2+3,6+7 

14 + 15 

10 + 11 

~+2, 3+4,5+6,7+8 

13+14,15+16 

9 + 10 

11 + 12 

-I 
I 
; 
I 

I' 

il !, 

0000 

0001 2 

0011 3 

0010 ' 4 

011 0 5 

0111 6 

0l0l 7 

01 00 8 

11 00 9 

1101 10 

1111 11 

1110 12 

1010 13 

1011' 14 

1001 15 

1000 16 
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settlk; (2) all other transitions. For those in class 2, there is always at 

least one available unit that can be closer to atom j than unit n, regardless 

of the location of unit n; for those in class 1, unit n can be closest, 

regardless of the locations of the other available units. 

Consider first class 2 transitions. The transition from state Sl to S2 

is of this type. Here unit 1 becomes busy while the other 3 units remain 

available. If there is any overlap in the table of qnr(e)ljk values, it 

occurs between the upper bound of unit 4 and the lower bound of unit 1. The 

amount of overlap is U4 - Ll + 1, if positive. Since the overlap is zero 

otherwise (implying 0 computations resulting from the l-to-2 transition), we 

abbreviate the number of computations as (U4 - Ll + 1 )+' where 

'f 0 th ' () 0 Since there are 2N- l (=22=4) (x)+ = x only, x > ; 0 erWlse x + = . 

transitions involving unit 1 while unit 4 isavailable, (U4 - Ll + 1)+ 

computations are experienced 4 times. Similarly there are two transitions in 

which unit 1 changes state and unit 3 is available (while unit 4 is busy); 

each of these requires (U3 - Ll + 1)+ computations. Once unit 1 makes 

a transition when units 4 and 3 are busy and unit 2 is available, requiring 

(U2 - Ll + 1 )+ computations. In general for an N unit probl em, cl ass 2 

transitions of unit 1 require 

computations. The same reasoning applied to class 2 transitions of an arbitrary 

unit m yields for the number of computations 

~ (U - L + 1) 2n-m-l 
n m + n=m+l 
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Summing this last quantity over all m, we obtain the first term on the right 

hand side of Eq. (9). 

Now consider class 1 trans'itions and subdivide these into two subclasses: 

(a) those which result in the unit m becoming available; (b) those which 

result in unit m becoming busy. For an N unit problem, exactly one transition 

of type (2b) will occur for each unit N, N-2,N-4, ... , and exactly one transi-

tion oftype (2a) will occur for each unit N-l,N-3,N-5,... A (2b) type 

transition must occur for unit N in transitioning from state S2N~1 t~ 

S(2N- l +l )' 

S(2N-l +l)' 

by construct of the tour which adds a "one" in position N at state 

Similarly such transitions must occur for all units m resulting 

from subtracting an even number from N, since at points in the tour which 

begin with the 2n highest indexed units busy (n integer), the tour for units 

1,2, ... ,(N-2n) has reversed an even number of times, yielding forward "subtours.1I 

The length of each subtour is equal to the number of N-tour entries for which 

the 2n highest indexed units are busy. If the Nth digit switches to one 

only once in an N-digit tour, the nth digit must switch to one only once in 

an n-digit forward subtour. If units N,N-2,N-4, ... incur type (2b) transitions 

for an N-unit problem, the reversal of the transition sequence when unit 

N+l is busy in an (N+l )-unit problem indicates that those same units will 

experience type (2a) transitions in such a problem. Thus, units m obtained by 

subtracting an odd number froin N each experience a type (2a) transition. 

For transitions of type 2(a) (resulting in unit m becoming the possibly 

closest unit), it is clear that the number of computations of qnaljk required 

is U - L + 1. For transitions of type 2(b), unit m is no longer available. m m 
But, by the construct of the backward regenerative unit-step tour, unit m-l 

must a.lso be unavailable (since the transition from 0 to 1 for unit m follows 

2m-2 consecutive states in which unit m-l is busy). Al so by the construct of 
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the tour, unit m-3 must be free when unit m makes its type 2(a) transition. 

This is so since the tour has stepped backward to state Sl' picking up all 

zeroes except for unit m-l at the point of unit rn's transition to busy status. 

Thus, if we do not count erasing zeroe5 in positions L3 - Ll as computations, 

then the number of computations required as a result of unit m making a type 

2(b) transition is U 2 - L 2 + 1 (since unit m·2 is now the possibly closest m- m-
un it). 

In the N=4 example, the transition 8+9 is of type 2(b), causing unit 

4 to become busy and requiring U2 - L2 + 1 computations. Unit 2 1 s transition 

10+11 is also of this type, yielding the state 1111, implying that all units 

are busy; here no ordinary computations are required and our formula is still 

valid since Um-2 - Lm-2 + 1 is not defined for Uo and LO' 

Finally, since we include the stal~ting state as a transition, we must 

add UN - LN + 1 as the number of computations required to start the process. 

Adding all computations required for type (2a) and (2b) transitions and for 

the starting state, we obtain the second term on the right hand side of 

Eq. (9), and our derivatio~ is complete. 

-" f 
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