
[\
~

1="""""--~-""""'~":""""~"- "'''"n'''''''~ ,-.-"'- ''''''''=~'''-='1

1
{,t,ll, 1:"1 ~ d<:: !" '1,~, *"'~~ T:"'~~ ;t'il .,-'po, r" ~ ~.", .. ,-! ~ ,f; . .-:; ,'I • "rt, "',. ," , ... :.... l\ ~: , ... 1(" f.,.; I
~!~~r~j ~j ,,~~., (.;", -:~;, t,l" b , • .: : .. ': :',.:1 [

I

U.S. DEPARTMENT OF COMMERCE "
National Technical Information Service

PB-257 087

p;=a!ilO'tt.at#.~~~:,"'.=c.=~~~=-,.:.~~·

Security Analysis and

!Enhancements of Computer

Operati ng Systems

California University
~-.. '-~--' .
! 'NcJRS

1 ~~J\R 3 0 ~9ri

Prepared for

National Bureau of Standards, Washington, D C Inst for Computer Sciences
and Technology

Apr 76

!
\)

If you have issues viewing or accessing this file contact us at NCJRS.gov.

o j
'=

IB3m~rrr' ~~JLl1mlE.~ . • . ' 0
FRO:,1 NATIONAL TeCHNICAL ,INFORMATION ~~WiCE,

Product Uablllty Insurance: Assellment of Related i for t~~ ASS, estine,nt Df 'O~8an Outfalls
.' " Probfeml3.'nd ISlues.Steff Study liJ) ADP::t')235,14(PAT 34 P PC$4.00/MF$3.00

i;.,:::,;"PB-252 2t14/PAT 181 P PC$9.50/MF$3.00~ 'Gul~~lInes fOr Documentation of Computer Pro-
~,. EvalUation of Home Solar Heating System granls and Automated Data Systems "

UCRL-51 711t~AT 154 P PC$6.75/MF$3.00 PB-i~50 867/PAT 54 P PC$4.50/ME=$3;OO
Developing Noise Exposure C~>ntours for General II , ,.

AVJation Airp,prts ,,' NOlif Abatement for Stationary' Sources In Japan
ADA-D23 429/PAT205 p', PC$7.75/MF$3.00 PB-!~50 586/PAT 116 pc PC$5.50/MF$3.00
Cooling Tower Environment, 1974. Proceedlngsfjof (,' U.S\\ Coal Resourcei and RQsentes . '

c a Sympollum Held at the UWverslty of Maryland PB-~52 752/P. AT. 16 p PC$3.50/MF$3.00. "
Adult Education Center on 'Mar. W, 1974 II ""=
CONF-140302/PAT 648 p PC$13.60/MF$3.00 Structured Programming Series. Vol. XI. Estil'naHg

,Software Project Resource Requirements
Biological Servlcei Program. Fiscal Year 1975 ADA-D16 416/PAT 70 cp PC$4.50/MF$3.00
P6-251 738/PAT 52 P f>C$4.50/MF$3.00

" II An Ailas ,of Radlallon Histopathology
TIOw26-676/PAi 234 p PC$7.60/MF$3.00
r:.lderal Funding of Civilian (F,tesearch 8ndDevelop
mint. Vol. 1. Summary
PB-251 266/PAT 61 p PC$4.5Q/MF$3.00 \) D

Federal Funding Qf Civilian Research arid Develop- 0

Ment.Vol. 2:. Case Studies' "" "
PB-251 683FPAT 336 P PC$10.00/Mr:$3.00
Handbook on Aerosols
TID-26-600/PAT 141 P PC$6.00/MF$3.00

Assess,~ent' of a· Singh! Family· Residence Solar
Heating System In a Suburban Development Salting
PB-246 141JPAT 244 P PC$8.0Q/MF$3.00 .

Technical and, Economic Study of an Un~erground
Mining, RubbJlzatlo"""nd In "Situ Retorting System
for Deep Oil Shale Deposits. Phase I Report
PB-2ij9 3441 PAT 223p PC$7.75/MF$3.0Q

A Prelimil1aryForecast of ~nergy Consumption
,Through 1985
pa..251 445/PAi 69 p PC$4.50/MF$3.00

Q

a

",
'1-10' W TO ORDER or your order 'Will be, manually flUed,.jr.t- "You Ir~ aisoplace your order by tele

suring a delay. You can opt for airf!,Ulilphone or TELEX. The order desk number
amvery for a $2.00 charge per itemP-lust is (703) "'557·46-50 and the TELEX nU'mber
che!llc the Airmail Service box. If you're is 89·9405.

When you indicate the method of pay- reatly pressed 1,01' time, call the NTIS Rush Whenever a foreian s~les price is ti0T
Mento p1ea~ note if apun:hase order is not Order Service:; (703) 557-4700. For a specified in the !istinls. al~ foreilfl buyers
accomJ:lllnied1 by payment, you will be ~illed $10.00 charge p~t item. your order will he Jnust add the folJowiq wrces to each or-
~an addltlon $$.00 ship an(l bill charge. And airmailed within 48 hoUrs. Or, you can ~r: $2.50 for tach paper COPY. ~i.5().·for
please include the card expiration date :;vhen pick up your onter in the Washington In- tach microfiche; and SIO.OO £or ~ Pub-

I!usina American ExpresS. (orm,ltioo Cerrter " Bookstore or at ouro lUbed.Search. "
Normal delivery time takes three to five Sprinafield OperatiOftS. Center within 2<4 Thank you for your interest in NTIS. We

~ __ :~~:}~:::~::_:~n~~:~:~~_::~ __ ~~·::~~:~~~ _______ .lI
'H a ff '

q

" .

METHOD O~PA YMENT D

o Charge my NTIS£ieposit accountno. ______ -...,.._

tl Purcha~e order no._""--_"..-___ ..__-------
SNAMEc __ ~ __ ~ ________________ -------___ -----

o Chclekenclosed for $ __ ---.,,----------.,.. ~.~. ----~----------------~--------.--~~-------o (.hargclo my American Express Card account number o

01, I") II" II II lIt II 11 ClTY. "STAT£, ZlP __ · -'--.-----';.,--------7i!2l1i:!'-'

Card expiration l,Iate _______ ---:...----
" Sijna1ure_ ________ ------ hem Number Paper" Copy ,M""evfiche" Unit {Price-o Airmail Service .. ,requested

Clip and (Ollit to!

H ••

o

~(PC) .'(MF)

Q

o
(; 0. Q o·

>' . ..
'C
.'

"
d

!~" t

, ,
"

.'

PB

:~ny~g$ ~&lld
of COtrFifU

~~@M~

, .

257

.'

,""'

1

I
(
~

!l
;j

~ t
r ,I

! ii
,~;

I

(~;

\
'-'I

:, (,

f)

,,)

ij
It \\

o
Ii

o
& t

o

o

I
~
1
!
i
I
!

,!

1
)

'8257087
U.S. OEPT. 01'" r.;OMM.

BIGLIOGRAP~lIC DATA
SHEET

4. TITLE AND SUBTlTLE
J

l. PUBLICATION OR REPORT NO.

~BSIR ... 76"'1041 ,

2. Govlt Acces\;ion
No.

" ,I
I

Secur,ity AnalysiS & Enhancements
of dJmputer Operating Systems

7. AUTHOR(S) The RISOS P~Qj oct .,
La~rence Livermore Laooratorv

9. PERFORMING ORGANIZATION NAME AND ADDRESS

The RISOS Project
Lawrence Livermore Laboratory
Livermore, California 94550

12. Sponlloring Ot&a~h:ation Name and Complete Address (Street, City, State, ZIP)

~ationa1 Bureau of Standards
Department of Commerce

,.; ~, liashington~ D.C. 20234

is. SUPPu'~MENTARY NOTES

3. Recipient'.s Accessioll No.

S. Publication Date

f..--!.A~'O:ril 12Z§
6. Performing Orgariizl1ti\1n Code

S. P~rIotming Orgaa. Report No.

10. Project/Task/Work Unit No.

640.1112
11. Conml¢t/Grl1l1t No.

13. Type"of Report /1(Peciod
Covered

Final "7/74-12/7:5
14. Sponsoring Agency G<fde

I-____ ___ ~ __ ~ ___ ~ _____ ._._'___"..;..;.. ·' ·~~l= _____ .. -, __ ~~~. ,-" -- "--';;;.lI~.~. -~"""'''''''''''''''1''

16. ABSTRACT (A 20(]...word ok' less factual BUmmDk'Y of mOllt sit1;nificant information. If docunwnt iJl¢ludes a si/1nificF.l(.il
biblioSt'sphy Of litE::rsllqe survey. mention it here.) ()

The p1.'otection of computer resources. data of value, and indi'triclual
privacy has mo~~vated a conce:rn for security of EDP. installations,
especiaJl.1y of the operating systems. In this report , three commercial
operating systems are analyzed and security enhancements suggested .'':,
Because of the similarity of operating systems and their security
proble.nm~ specific security flaws are formally classiHed accor:ding
to a taxonomy developed here. This classification leads to a clearer
understanding of security flaws and aids in analyzing new systems. « .
The discussions Gof security flaws and the security enhancel.nents

" offer a starting reference for planning a securityinvesti~ation
of an EDP installation's operating system.

17. liEY WORDS (six to twelve enfrHls; a(phab4tical order; capitall~e oMy the li'tsl I"Uer of the first key wotd Unless s proper
name; separated by semicolons) "

BBN ... TENEX; IBM OS/360; operating system security; ~.~cur::lty flaws;
software security; taxonomy of integrity flaws; UNlVAC 1100
Series OS

lB. AVAILABILITY ~Unlimited

o For OffiCial Distribution. Do Not Release to NTIS

o Order From Sup. of Doc::., U,S. Government Printing Office
Washington. D.C. 20402, S.,p Cat. No. C13 . . .

.lKJ O;der From. NatiOl1;>.! Tec::.:hnic::rtJ Information Servi~e (NTIS)
Springfield, Yirginianlil

19. SECU.RIT~/fLASS '''''1~11. NO. OF PAGES
(THIS REPORT) l

UNCL ASSIFll?:D

20. SECURITY ((j.ASS
(THIS PAGE)

UNCLASSIFIED a I

.

USCOMM-DC 2~042.P74

o

1

I a

I

))

t t:'

o

o

If G

II
d

'I

"

'.!.>

o

(\

1"
! . i

!
i

~,f

'"~ ____ ~':"' __ ,_~~""'_~v_~~._._of"l-""--""'_< _____ ':"~~."'':''''''~''''''''_~_· --,~ ... --~-~",~ ... ----.:--.--+::-~""'-~--~"---

i)

NBSIR 76·1041

SECURITY ANALYSIS AND
ENHANCI;:MENTS OF COMPUTER
OPERATING SYSTEMS

.,>

R. P. Abbott
J. S. Chin
J. E. DonneJley
W. L. Konigsford
S. Tckubo
D. A. Webb

The RISOS PJQject
. Lawrence LIvermore Laboratory
Livermore, California 94550

T. A. Linden, Editor

,7

I~~titute for ~omputer Sciences and Tech~OI09Y
N~~al Bureau of .Standards
Was'hmgJon, D. C. 20234

April 1976

Final Report

o

I(
jr

U.s. DEPARTMENT OF COMMERCE, Elliot L. Rief"ardson, Secretary ~).
Jam~4'A~"B8ker. I'll. Under Secretary l'i .'

Dr. Betsv Aocker-Jotmson. A,'ssistantSecretary faT Science and Technology
" "';r I>

NATIONAL BUREAU OF STANDARDS~Eme8t Ambler. Acting Director" . ..

... 6

if
.\\

/J

o

o

1
l~

I

\

r

o

This is one of a series of documentaprepared as part of a project on compt..'Pftr secu~;1ty and

privacy at the Institute f~r Computer Sciences and Technology of the National Bureau of Standards.

This docl...'lllent is intended primarily fCl~ uae by those who are responsible for managing arid operating

government dat~ processing inota11ationa. It provides an understanding of the types of'security

problems that arise 1n current computer operating systems, and it suggests ways 1n which the security
, u

of thelle operating sy.stems can be enhanced. The -:;locument may also be of use to: (1) those engaged in

the development of computer ',security techniques, (2) the manufacturers of computer systems and

software, and (3) those responsible,_~or mana&ing and operating computer systema in the private sector.

This document concerns the security problelD8 that arise in computer operating systems. In order

to develop a balanced set of security safeguards, one should use it in conjunction with ;;!ocuments that

treat other specific aspects of the security problem. Other NaS publications on computer security

that may be of particular interest for this use are~

Computer Security Guidelines for Implementing the Privacy Act of 1914, Pederal Information Processing
Standards Publication 41, U.S. Government Printing Office. Washington, D.C. 20~02. Catalog Woo
Cl3.52~4l, $0.70.

Guidelines for Automatic Data Processing. Physical Security and Risl' Management, Federal Information
Porcessiug Standards Publicstion 31, U.S. Government Printing Office, Waahington, D.C. 20402,
Catalog No. C13.52:3l, $1.35.

Exploring Privacy and Data Security costs - A Summary of a Workshop. NBS Technical Note 876. U.S.
Government Printing Office, t~ashinston, l>.C. 20402, Catalog No. 013.46:876., $0.1.\5.

Proposed Federal Information Processing Data Encryption StandllI'd, the Federal Rt'lgist:er, August 1. 1975.
,>

,~\

Computer Sec/1rity Risk Analysis Guidelines, to be published.
if

This rerort is applicable to most general purpose computer operating sYftems~ how~¥~r, it discusses,

in detail, the security featllrea of three operating systems. 'l'heSEjo\system~ are: IBH's ,OS/MVT, UNIVAC"s
'J ' 1100 Series Operating SysteM, and Bolt Beranek and Newman's TENEX system ~br the PDP-lO.

}
chosen for their illustrative value-~two gf them because they are the mos~ commonly used

-;'1

They were

large systems

in the Federal Governmeli't in'l',ento.ry, and the third because a deta'Ued anll,lysis of its security was

available, andbQcause many of the specific security flaws fbund in the ~ystem can pe useft as detailed

examples of typical security flaws. Moat known TENEX . .flaws have been ccirrected in all currently used
versions of the syste/ll.' ;) , <',

Guidance is prQviqed for sf,eCific security enhancements; however, ~he amount of detail contained
~)

in this report is constrained by the danger that exc~ssive detail cou~Jd be harmfUl t &tcessi.)~ detailS

about current" security flaws Ihight. be used by someone intent on penet/rating security. On the otijer

hand, those responsible ror security must be made aware of the secud/ty techn:!.ques that arE!' available.
" !

and they must understand and pJ;'epare for the dangers to which they "~te still Qxp,osed.)

The authors of this document have attempted to write it in a waf that provides as much infor~tion
as pq,Ssible to those responsibl~' for system security; while at tlie s~e time minimiz:Glg its potential

usefulness to someone who might misuse the in£'ormation, It is J~,enffrallY aclJiowl~dged that ~he security'

provisions of most current operatin~ systems. Can be broken 'by an ~rped:enced progrSllmler who "'has sRent

much time working with the system and has a very detailed underst1lnding of its inner workings. ',fhl;!,

guidance used in the prepar~t:ion of this document was that it ShO?ld not increase t:h~numb~r of people

. . . I
iii j

o (J

VI}

o

\~

II

1
!
(

i

!

)
I
i

who know all the details needed 1;0 effect a 13~cudty penetration. liany details about gpecifi'~ security

f1aw~ have not been included in this report either becaUSe thert' is no reasonable enhancemenf;to correct

the flaw or because e1(ploitation of the flaw could be carriE'uout by someonl)' with rt>lativelylittle

additional detailed information about the system.
The security enhancements suggested in this document do not provide complete protect.;'c,I'I against all

the security flaws in the operating systems. 'the reader should n,ol; anticipate that the cOI:rection of

the identified security flaws will do any more than reduce the number of avenues by which the system
,')

software might be penetrated. Whether the suggested enhanlOcments will result in a significant improve-

ment in a aystem's overall security posture depends on many factors that are unique to each computet

installation; in particul:ar, it depends on the charactet.:;istic$ of the data processing environment. the

specifiq soft~are and hardware configurations, the value or sensitivity of the information being

processed, 'and the nature of the threats to that information that can reasonably be anticipated. It is

very difficult to evaluate whether a specific security enhanc~ment is a .cO'st~ef£ect:!.ve way of improvinl!:

a system's overall security posture; that decision can only be m3'de:< by people who know the character

istics of the specific data processing ins~~llation and who are also familiar with the current state-of

the-art in computer security. Many d,ata processing installations may have the OptiOh of relying mostly

\\on physical, procedural, and udministutive security' controls so that confidence in the integrity of

int~rnal system controls is not need~!d.
Early drafts, of this document - togeth~r with lisi~s of spedUc security flaws - were made available

to the different vendo';:s. In most cases vendor action is the most efficient way to corrC'ct a security

flaw. This document will be e~F<!cial1y useful if it reduces th(~ current tendency for the same secnri ty
o It

flaw to reap~ear repeatedly ~n different systems.

\,J '~\
f', ',DenniS K. Brans tad
>',·-Theodore A. Linden

Institute fqt C6\llpt[ccr Sciences and Technology
National Burenu of Standards

;;;--~~
~

:;

!)

c

o

iv

10

o (j

(J 0

'\ If
i

-1---

'i

j
I

j

-----------------,~-'

Contents

Abstract ••••••• ..
1. Art Overview CR. P. Abbott) • • • • •• · . .

2.

3.

4.

5.

1.1 Motivation for Enhancing Security ..
1.2 Technical Issues in Enhancing Security •••
1.3 Operatang System Security within Total EDP Protection •• · .
1.4 An Example of A Security Flaw • • <=a • • •

Security Enhancements of Operating Systems (D. A. Webb)
2.1 Detection Controls • • • • • •
2.2 Corrective"Preventive Controls •••

a. Hardware
b. Software . . ,. ,.

c. User Action
d. Administrative"Physical

Taxonomy of Integrity Flaws (W. L. ~igeford?
3.1 Introduction . " ...
3.2 'l'ay.onomy of Integrity Flaws •

3.3 Class of User. • • • •
a. Applications Users
b. Service Usen
c. Intruder

3.4 Class of Integrity Flaw
3.5 Class o~ Res~urce •••
3.6 Category of Method
3.7 Cat.egory of Exploitation

" ii, •

. .
..

I

.. .'. . .

3.8 Detailed Description of Operating System Security Flaws
a. Incogplete Parameter' Validation • •

b.
c.

d.

Inconsistent ParaDeter Validation • • '" • '. •
19p1icit Sharing of Privilege<!l/Confideritial Data

,:'

Async.hronous Validation/Inadequate Serialization

..
'\ · . .. ,.-

, ". . .
e. Inadequate Identification/Authorization/A\\lthent'tca1;ion
f. Violable Prohibition/Limit • • • •
g. Exploitable Logic Error

IBM OS/MVT (W. L. Konigeford)
4.1 Introduction ••••••••
4.2 Overview of OS/MY! History

.. .
4.3 IBM/360 and OS/MVT Prevention Concept$

a. Ha~dware Isolation Features •
b. Control Access Fe,atures • • ~)

c. Integrity M~itoring and Surveillance
4.4 StllIl1n.E11rY'. • • • • • • • • • •

4.5 Ope~ting System Integrity Flaws
UNIVAC 1100 Series Operating SYstem (J. s. Chin)

c

5.1 Introduction ••••••••••••
o

. 5J' Des.ign Criteria of the Operating System '\

(')

v

o

~
~,SL,_._._ •• ",..":_ '

. ,. , .

.
C'

'. 'I Ii .. 11 . ~.

..
. . ..

. . .

.. "Ii • " • • • • • • •

. "

oil •

, . ,

• .if • • •

..
. . .

· "

.. .,""
· . .

it • • •

· .
· . .

. · .

..

.. '1' r ..

· .. ,.

,.. .,..
,\

It to • • " • •

· .
Ii) · " · .

(. r.

o

1

1
2

3

4>

5
6

6

7

7

8

9

10

10
10

10

11

11
12

"12

12

12

13
13
13

14
16

17
,19

22

23
23
26
26

27
28
2a/

28
29

29
30

31

3}

32

I c

6,

5,3 1108 Archi~ecture , , . ',f ~
, '

a. Memory Interfnce , I
; J'

b. System. Control
5.4 Integrity~eatures . ,

a. User Control . • .It • • • .it
b. States of Execution , .
c. Vrotection of Permanent Files . . .
d. Protcction of Magnetic Tapes ...
e. Audi t Trails " . . .
f. Role of System Console Operator
g. Impact of System d~gradation

5.5 Summary • .. • ... • ~ OIl ... to ~ "",'

$.6 Operating System Integrity Flaws
Bolt lletanek and Newman TENEX (J. E. Donne 'l.Z ey)

6.1 Introduction to TENEX
6.2 'lYPical Vse of TIlNEle • OIl -(.i' •

• •
, .

6.3 threrview of TENEX 1lilrdware Architecture and 'Integrity Peatures
a. CPU • • • a • .. • • •

b. Virtual M~al'dWare

· ;

· ..

"
.. 10 • •

, . ..

. .
~\ .. .

c. periPh;;rrs;-:". • • . .
6.4 Operati~?stem Desi~~ and Integrity Features

a. File pro~ection) • • •

b. Directory Protect~ n '.. • • • •
c. Process,Protection

6. S SUllllIlary ':.. • •

6.6 Operating Systcm Integrity Flaws •

a •• E:n.isting Flaws' . • •

b. Flaws that have been Fixed •
I

7. Summary andCon.clusions

Glossary. (fl. L. Kcinigafot'fi) •
Bibliography (D. A. Ycbb) •

References .- ,
+1 •

..

.... " ...

o

()

vi

· . .

.. 0 •

;. .If.. .

n
34

, . . 34

34

34

35

35

35

t 36
36

• ,//37

. .11 37
38

. . 39

40

40

42

42'

U

:'3

:'4

45
45
46

47
48

48
49
52

54
59

62

'1
j

i
"1
I
\

(I

Acknowledgment

This report,waa p~epared for the National Bureau of StBndarda, Order No. ,S-413SS8~74. 86 part

of the WOli:k o~ the ~searc:h tnSecurt:d Operating Systems (RISOS) projcetat Lawrence Livemofe

Laboratoty. 'J:he ~:~OSproject 1$ Bpon8orl7~ by ~he Advanced }tenMrch Ptojecto Agency o~f the

(pepartment of Defen.ae (ARPA) under ARPA Order No. 2166. The "o\'k wao perfomed under the aUlipiccno

of ~he U.S. Energy ~searC:h and Develop~~nt Adt:!iniatration. "

The authors of th16 document are:

R • 1'. AblJott
" J. S. Chin

J. E. 1)onnelley

W. L. Konigsford

S. Tokllbo ',)

D. A. Webb
"7

Co

(j

0

o
)?

c

\1

,jl

vii

o

~

0

il

fJ <,

~;

a

'-'I:

[I

'"

0

" 'til
\)

K1

'"
0

::)

•
~
~
I
!
I

'I'

o

()

()

J)

j,'-'. ________ ---C. __ ~~ _ ______ -<:G/,-___ ~ __ =_ _____________________ _

---"
o

f)

[j

SECURITy'ANALYSIS AND ENHANCEl\fENTS OF

COMPUTER OPERATING SYSTEMS (I

o

:)t'

The protection of computer res:llurces,data of vnlue, and individual privacy has motivated a conocern

for secvrity' of EDP installations, especi~lly of the operating systems. In ~nis report, three

commercial operating systems ite analyzed and security enhancements $uggG1ted. Because of the

similsl'ity f)f operatin'g systems and theiT security problr~. specific security flaws are fonually

classified according to a taxonomY developed h~re. !bi~lassification leads to a' clear~r understanding

of security flaws M.d aids ine,analyzing new systellls. TI18 discussions of security flaws and the securioty

enhancements offer a starting reference for planning a ~~curity investigation of an EDPinstallation's

operating system. ;\

Key words: BSN-TENEX; IBM OS/360; UNlVAC 1100 Series OS; operating system securit:Yi software securitYj

security flatiS; taxonomy of integrity flaws.

This document has been pr$pared for Use by cocpute~, EDP. and systcm$ 7Janagers:

o To aid in understand~ng the iSSU5S of confidentiality. protection, and security as they apply

to computer operating systems.

o To prOVide information that will assist in assessing h<)!1 much effort is required to (;nhance the

integrity fea,tures i of their operating systems.

To meet these objectives, two operating systems, which are cocmarcially available, were selected

for analysis. The two' systems 1iere selected frot! toose cOllm";Only used in Federal Go,yel'J1l!lont compute:t

centers. A third system has also been BnRjned and is presented here because of its more recent design

fu.d because the issu~ of security was considered during' its design phase.
(~

The material in this document is divided into three major areas. Sections 1"3 compri~e the fi~st

area. Section 1. introduces the material with discussions of the lllOtivatioJlal and "technical aspects

of computer security and the relative importance of operating system security. Section 2 deiUs lI'i.th

general operating system security as it appli~~ to a range of systems. Section 3 presents a taxonomy

of integrity flaws, tha~pis, a more formal, systematic way of portraying and,classifyi.ng these problems.

The second major area contains sections ,.4. 5, and 6, IUld each dealS .with a specific operating
/, ',' -' \\ <

system: IBM OS/MVT, Ur.rIVAC 1100 S.eries Oporating Systt)m. and Bolt Beranek and ~ewmant,s TENEX for the

PDP-lO, respectively. The last area includes section 1" the summary and conclUsions; a glossatyf and a

bibliography.

1

.'-------

~II'
I'

1.1 MOTIVATION FOR ENHANCING SECURITY

Initial interest in cot!lputer~~cul:hy came rronl the area of national security. It is fairly easy

to recognbe the need for protec:in~\ the d~ta tn~t relates. to a, nation' s dafens~. How~ver, Vrivacy
and confidentiality heeame isSu'es a:~!the nat:ion I s' attention wali focused on the 1nc.reaS1ng amount ~f
personal information, Gontain~~)'/i!h4n. comP!lt,ep systQil¥,> •. As the vohlJl1e o£ information grew, so did the
possibility that information inhht be used in a lliannerwhich was not intended.

In the business community and in the Government, many computerized records afford opportunities.

Of or fraud or 'embezzlement. Some examples of V'olatile Ilnd highly sensitive recol:'ds Jlre! proprietary
data Ilnd programs; recordacof ownership --cash deposits, stock transactions, real prop~rty. etc.; aPd
online banking. It is easy to imagine the implication of even a temporary modification ot"such records.

A dOciaion, baaed on the temPorarily modified data, could have far-reaching ef~ects.

De£i~i~:tCl~S of security (as appiied t~' c~mputers) ~ confidentiality, and privacy are presented in '\

the Glos$nry. Consider at.~his point. hOI~Gver. a rather legalistic and si~listic definition of these

words:
Integrltl. is the state tbat exists when there i~ complete assurance that under all conditions a

systfillll .. :or~s as intended.
Computer sec.u1'ity is the composite protection of administrative and physical security fOl'1:omputer

assets and data security.
I

Data security is protection against accidental or deliberate modification. destruction. or

disclosure of data. '
. ~!

~ntiality: relateS to data. The tiord confidential means entrusted 'dth the confidence of

another or ~1ith his secret affairs or purposes; intended to be held in confidence aT k~pt secret.
Controlled accessibilitr is the protection provided to infotmation and computational resources

by the hardw~e and softwar~ mechanisms of the computer itself.
Privacy relates to the ind1vidual. The r<~ght of an individual to decide what information about

himself he I~ishes to share tl:i.th others, to b~ free from unwarranted publicity, and to '"ithhold himself

and his p:rDJlertY' from public scrutiny if he so chooses.
Public LaM 93-579 (The Privacy Act of 1974) is not necessarily a justificat~,on fot' enhancing the

security of a computerts operating system; however, it does focus attention on the protection of data.
An examination o£ tbe Privacy Act is in order so t{tat an appropriate level of effort may be directed

tOI~ard oEcrating system secUrity as it affects the confidentiality and privacy of data.
l' ' '.'

'IlIe first portion of the "PriVaCY Act of 1974" reads:

"Sec. 2. (a.) The Congress finds that -
(1). the privacy of an individual is directly affected by the collection, maintenance,

use~ and dissemination of personal information by Federal agencies;

(2)

(3)

(4)

the increasing use of computers and ~ophisticated information technology. while
essential to the efficient operations of the Government. has greatly magnified the
ha~ to indiVidual privacy that can oecur from any collection, ~intenancei use,

o~ dissemination of personal information;
the opportunities forlln individual to secure employment, insurance, and credit,
and his right to due process, and other legal protections are endangered by the

misuse of certain information systems;
the right to privacy is a p~rsonal and 'fundamental right protected by the

Constitution of the United States; and

2

"

PI
I
1
I
)

\
l
1

i
"9

i ,
,

"1

(5)
I}

-. -U------ - - -

in ord:r to protect the privacy 0'£ indiYiduals . identified in infot'llla~tion systems"
maintained by Federal agencies .. it is peces;sa;;ty and .prope~ for ,the Con~ress to

(!.-,- . r::.. -:;) 0

regUlate the collecdon, maintenance, use, and dissemitiation.of information t'(sUch
agencies."

Another excerpt f~om the Privacy Act of 1974: (JC
IISec. 3. (m) Gov~rnmen,t Contractors. When an agency provides bi a contract for the operation
by Or on behalf of the ag~n~ of a system of ~pcords to accomplish an agency fun~tionJ the

If ". "
~gency shall, consistent with its authority, cause the requirements of this seetion to be
applied to such system. • •• any such contractor ••• shall be considet-ed to be an employee of
an agency. It

" Personal information about an individual must be protected against misu~e. That is, the person!s
priVacy must be safeguarded by maintaining the confidentiality of data related to the indiVidual. tf that
information has been placed in a computer system, that computer system must maintain die confidenti.ali ty
of the information. Therefore, that compuier system must be secure against the misuse of inf~rnation
on individuals.

The law not only mandates the protection of information but requires. agencies to implement security
safeguards as stated in Secti?n 3 of the law: y

liCe) Agency Requirements.-Each agency that maintains a syste~ of records shall-.••

(10) establish '~ppropriate administrative, technical, and physical safeguards to insure the

secu~ity and confidentiality of records and to protect against any antiCipated threats or
hazards to their security or integrity Which could r~sult in substantial harm, embarrassment.
inconvenience, or unfairness to' any individual on whom information is maint.ained; and ••• tr

1.2 TeCHNICAL ISSUES IN ENHANCING SECURITY

Data security is the protection of data against aiHdental or deliberate destruction, modification,
or disclosure. If a remote-access, timeshared syStem crashes and causes confidential information to be
displayed randomly on one or more terminals, it may be considered to be an accident. If. however,

someone causes the crash f~~ ,the p~ose of gathering such information, then that is a deliberate'
disclosure of confidential information. Neither case is desirable.

From a software point of View, both the operating system and each application. program bear "
responsibility for maintaining data securfty. It 1'5, however, the operating system that controls,
assigns, allocates, and supervises all reso~rces wj~hin the computer system. Core space; input/output
(I/O) cha.nnels, peripheral units, data files> the master fil e index, and the CPU are accessible to an
application program only after appropriate dialog (i.e. I system calls) with' the operating system.
ShOUld the operatin'g system be tricked, subverted, contrOlled, or compromised by an applicll.t;ion program,
the confidentiality of information may be violated. The end result is the same regardless of whether
the act of subversion was accidental or deliberate.

The ideal situation is one in which operating system security is a major design criterion. Even
then" consideration must be given as 1;0 whether the design is correct, the deSign is correctly
interpreted, .and the interpretat:~n is correctly implemented. Unfortunately, computer science" has not
advanced to the point where it is possible to prove that a sizable program has been correctly designed,
interpreted, and implemented. It may well be that an incorrf(it deSign, an incorrect interpretation of
that ll.2sign, and an incorrect implementation may appear to pr~:vide a satisfactory operating system.
Other combinations of corrector incorrect deSigns, interpretations, and implementations may also appear
to be satisfactory.

3

~_ ~ -____ ... -- --__ _a __ _ -----' -----------

(if

/..1,'

Fo:c the most pa;l.'t, the operating systems" that. are in "4se today have not been designed Idth security

C) and controlled accessibility as significant design criteria, In viel" of th~ desire to prptect a(!l

ipdividlJ.a.1'S ri~gh"t;o privacy, it may be a violation of."'the right to privacy to 11ait for an occurrence

of system compromise. 'Therefore, 'an pperating system must be"examined for weaknesses, by knol-Iledgeable
iJ C1 \) -,

systems analysts (prograrnmexs), wi~h th~ objectiVe of implem,entirtg cOl'~ectiQns for any and all observed

wcolm,esses., o

:"'0

& 1.3 OPERATING SYSTEII SECURITY WWIN ",,!,AL EDP PROTEctION , \~--~ i
Op"".ti,~ ,y,to. ",,"ity i, only one .. p~t of t .. ,ot.1'i.t"rlty-priY""y-omfidO>ltiality hJ?1

protection picttlre and needs to be viewed within a:)compl'ehensive cost-risk analys!s. lnsome cases," ~)
the integrity of the operating systcm is Po minor element; however, in other cases the operating

system is critical. and can be the weakest link of the complete SOP system.

overa~rotection of a computing installation encompasses three protection ~reas:
o PhYs~1.

~ "

o Information.

o Service.

PhYSical protection is the safeguarding of, installation fac~lities against all physical threats;

that is~ protection against damage or loss from accident, theft, malicious action, Of fire and other

envitotunental hazards. Physical security techniques involve the use of locks, personalID badges,

gua~ds, security clearances, sprinkler systems, etc. PhYSical protection isa prerequisite fOT

infonnation ih~, service-level protection,'

lnionnation (d"'-ta) "protection is the, safeguarding of informa,txJn against accid.e~tal or unauthorized

destructi'bIb modification, or disclosure. This requires the use of both ,physical sj:lcurity jJncluding

procedural and administrative) and controlled-accessibility techniques. Thr software mechanisms that

control,access are operating systems, application pr~grams, and utility or service programs.

Service-jeva! prote~tion is the safeguarding of a computer systemis services fr~~ degradation or

failure (i.e,. crashing). A reliability f~i1ureor I1l!llicious action can cause this service ~egradation.
'I

The nature of the applicat~ons at 11 given installation, normally indicate the importance of" se7urity

measures' for this protection.

A blend of different security,measures is used to achiove the desir~d d~gree of protection:

(!\ Ilerso~~l security - ~redit "CheCkS, security training, and reminders. I

o Management policies - standard oper~t{ng procedures which reflect a constant and committed
. c· . ~

desire to protect computer-contained information. J
0' Physical s~CUr,;.ty \;.. contrOlled physic~l access locks, guards, and fire protecti~n. ,

o Operating sy~~~m ~ecurity - protection of system tables!,,;;checldng of all argum~ts. and

verification of parameters., 0" /'(

It is inw0rtant to Wlderstand that operating syste~ security is only one aspect.~f the total

security area needed for insuring integrity, priv~cy. Ilnd confidentiality protection;! The operating

sy§tem can be used (or misused) in very sophisticated and subtle ways to effect a seburity compromise.

Also, the detectiw of sec~ity,;Il\isuse can be prevented or covered up in some instances. (Later

Sections '.till discuss several ofJhese sec,urity flaws ang what action can be taken,: to prevent or

eliminate them.) These teChniques 4.emonstrate that an installation's operating system, is a critical

avenue through t~hich .d~ta and semce can, be compromised. However> in the overall protection of an

instapation the ''1'1eakest link" concept is relevant and ,must be considered. This docll1l1ent addresses

4

only operating=ayatewsaml=shuuf,u"l:;€ ·used lis a, starting reference for planning

of an ::I.nstalJ;at"ion' s 0ts;rating system. l'ublications that; cover Qther elements

referenced lI1"~~he Bibliography.

~l. 4 MI EXAMPLE OF A SECURI'n FLAW
\)

a h

Secdons 4, 5, and 6 examine'general and specif:i.c flaws. Before presenting thismate:r;ial.f1.t

will' be useful to .consider arC ~xample from an interactive time shared !!ystem. Even though the /~xample

" is somewhat technicat the conclUsions and lEis sons are" important and illustrativE\ of seveI;"al l~efJific
problems discussed later. .The example ha'i; been chosen because: I.:> l

• It is specifi.c to. Ii nu'mber of systems and may be generalized to S:PlY to most Syst.~rIJ..' ",as

will be noted. " > l
4' It is relatively harmless in the event that a misguided reader should invoke it atllinst an

unsus~ecting and unprotected system.

o It se~ves tutil1,~strate the POint~at
,Ii .

cOJJlputer security is a function of the ~V;virp~ent in
1 " which the computer operates.))

Assume the folloW'ing sequence of actiq·ns on an interactive time-shared or
<;:,

system:

A program is 'Otarted.

o The program activates an 1/0 activity.

J' ,
multiPliiograill;mable

I

II

o

')

, ~
o The prpgr\'lll! terminates after the I/O request :l.s i!()uEl'd. but before the I/Oli request is completed.

• '7. !

The preceding s~quence will result in th~ permanent elimination of the program's #pre space as a
further system resource (i.e., a memory lockup). In other' wo:rds. the system Wilt' have to be stopped

/1" '

and then reloaded beiore the core sp.:~ce that was used by the prolCtraril 1iIay be rea~'signed to any other
- J

user. Altflough the example is specifiq,'to a number of present-day systems, :itE/.' generalized l?orm has a

much broader application: any sy~tem that permits two or more asynchronous e~~nts to take pLace is

susceptible. to resource lockup. Those systems "which perfoo; a periodic or cq{\ditional collection of, aU
memory space (or resources) not attached to an active p-x:,ocess w;1.11 be immune/to this example.

The inner workings of the operating system and how the 'above sequence r'esults in a meJlicn:y lockup

requires further explanation. An operating system can ~be viewed as consis~'ing of two sections: an
, . . i!

interwpt handier and a housekeeper. In this example, the housekeeper. uIl~bn receipt of the enGing
.? " j

request, severs all. connections between itself and the. program. An ~cep,hon is made £.0,;:: the niemory ..
map table because of the outstanding Ilo request. When the end ~f 1./0 j~~tiOn is pro~e9ned by the I)

intetrupt handler, it removes all traces of the outstanding Ilo rtt-questl but does not, <;:l:ear. the me1!lOry

map entry. Thus, the memory map is left with a setting whi~h indicatj/ that-.t llortio~' of '~Pre is

occupied. , / 0 ,,:-' '

I -,
A number or different observations may be drawn fTom the .memot:y roCkUP example-; I:: ~

1) Although the actions that must occu1: 'are specified, therea~e any number off' ways 1:lprogram "

can be wiitten to produce the same end-result. The 1/0 devJce-activated c~;:n be 'f..ape or disk.

The"program can be written in assembly l~ng\Ulge as -well ~s!some higher-:leJ~l languages.

2) The exal1lPle does not ,state, ~hiC, h oP,erat,ing system, Will. be~jillffected by thejprocedu~e,', ,In ~act,
it will -Work on a number of operating systems coPtrOl,lin~,the hardware o{different manu-

facturers. This suggests that ther.!}is a ,commcmality am4ng operating i!y,stems with :regard to
o I ;/

the tYPe=:-,~f errors to be found in each. I

/
5

" e.:;>£t~

"

I)

(.I '.1

o

1:1
\

o
'0

3) Taken together items 1) and 2) suggest that' a) there may be a Set of generic classes of er~s
tbat a;f;t applicable across manuractul:er product lines and b)' each, generic ai/ror may b~, expressed

jin a variety of progranuning styles. Amore thorough treatment of this point lltlly be fotmd in

sectio~ 3, Taxonomy of Integrity,Problems. 0

4) This patticular example is time dependent. The command to terminate the ~rogram ~ occur

J:;.1~fter I/O is startJl'di but before it is co~let\;d. Operating systems are VulnerablEl to both
(~,

tirlle-depen~'as well as time-indepe.ndent sequences. ()

5) Wha~ .is the impat:t of this example on security? If the computer 5ystell\,ha~ a real-time

coaponent. it is possible;that critical real-time progral\\s will not be able to find space to

fit in core. l'Olatever the real-time programs are suppos~ to do, they may lose theil~ time

liness. If the system has no real~time component, revenue may be lost either as a result of 0

the machine not producingrevenu~ from clients or because the job queue is not exhausted at

the end of the time period. /~\., '/?
6) Any overt action that forces an abnonlllll reaction from a computer operai~~:)fuay be a !Il-;;'~ing

action to .hide or to bl'ing into being a .more devastating set of circumstances. It should be

noted that there is ample opportunity in the, example to erase all but a few lines of the culprit

code. This erasur~ makes it difficult if not impossible to tr~ce accountability in an audit

t~il sense.

A more powerful point can be established as a result of items 5) and b). The decision as to

whether a particular operating system flaw affects security, and ultimately p~ivacy and confidentiality,

is a functiOn of the environmsnt in which the computer operates and the mission to which it is assigned.

A fla\~ tbat has catastl'ophic consequence at one installation may have no iEpact at anotber inst<illation.

2. Security Enhancements of Operating Systems

This section discus~es general controls and actions that can be taken within a computer instal

lation to enbance the integrity of operating sys,tem.~. These security ,enhancements can serve as either

a detection (audit) or a corrective-preventive c~mt'rol. D\lpending on tbe nature of the problem and the

pro~osed action, different enhancement~ may be implemented by use'rs, systetllSprogrrunme;s. or instal-
. " . a

lation man~gers.

The security flaws discussed here are formally classified in the taxonomy in section 3. General

and specific examples of' integrity problems and, their enhancements a,re descJ;'ibed in sections 4,5, and

6, l'fhel'e specif;i.coperating systems al'e analyzed.

Z.l DETECTION CONTROLS
\\

If data ,are examined or changed by an unauthorized user, an integrity compromise bas. o~eurred.

This compromise is magnified when the compromise goes undetected. If this nction is not detect~d and

rep~rted. then nehher corr.ective action nor preventive measures will be taken. Thus. an integral part

of operating systec security is the inClUsion of detection controls or audit trails.
"

o

o

~fost operating systems Itave SO/Zl6 audit-trail facilities. ~n a .transac'tion-oi"iehted system, the

audj,tingcan be complete enovgh to allow lOO%- reproduction of ~ll operations for a given time period.

This level o,f l'epor"ting does prOVide information for d~tect1ng misuse of the system. However, ~ecordinS"

all system actions does not mean that integrity ptoblems are llecessari!y reported to the proper pe?'p~\.
(e.g., a security offlkr). This is an administrative step that must be taken in addition to the I \ 'c~
initial recording. '\.~/

(}

6

()

t
) .
t ,

c

I'

Jl
>\~

" ,
For systems that are not transactiort~or~ntedj the detection control is much more compl~x. It is

() quite common to log statistics as to what jQPS and Users ;re running and what., resources are tilling used.

Normally, tbis log infortnlitton is sent to a consvle typewrite;. ,but an admini,ljtratiie Step' ~s still""

required to report any discrepa~c~"to the proper person. The in~ormation ca.n be" helpful in de;ecting

resource exploi'tation such,as system degradation Or 'system crashes".~ How~vero detection controls are
" Q "

often inadequate to det,~ct information exp~oftation such as the destruction, reading, or altering of

data, This is because.,,'the file access inf6rmatioll is normally not; maintained. c,

Commel:cial audIt 'package& are available frol'l most of the lli~ge ce;~ified public accountant (CPA) 'if
firms [~J. These packages, however, onl)! extract and report data fIl,?Dl preViously created files (ctUite

often fil~s of financial information)~, The data arc,' checked to see if they are accurate, but there are

nQ facilities to determihewhat user program read or modified the data. What is required is an audit

trail of not only who is on the system, but what data files' are avaIlable, what files are 0 referenced,."

how fpes are referenced, and in genera1~, any exception to a l1:redefined standard of nqrmal processing~

2.2 CORRECTIVE-PREVENTIVE CONTROLS

Numerous cortective-pre~entive controls can eqhance the security of operati~g syste~. These

controls can affe"t tbe operating system directl)'. as with code modifications, or indire('tly, as with

procedural and administrat~ye changes. Basically the ~ontrols are measures designed to preventCusers

from 1) executing in a supervisor s~~e or master mode. 2) reading or altering data or files to which

authorized access has not been gl'anted, and 3) degrading system performance by crashing the system or

USing resourceS witho~t corresponding accounting charges.

'fhese controls are impleme~ted throtlgh hardware, software, USer actions, 01' administl'ltt1vel

phYsical steps. ~e ease and ;~~t ~lthese erth~~~me~t'; varY~~n$idi;rablY':'H~r~war~ and soxtlta.re

changes usually reqUire more effort and cost than those taken eithfr by users Or by enacting admin

istrative controls. However, the effectiveness of each enhancement must be considered.

a. Hardware

Some "hardware controls ar?original1y built into the system; others can be added as required. In'

both cases, some amount of so£1ware coordination is usu}llly"requil-ed to derive the full pr~tection
b,c;,nQfits.

G Bu:tit'-in controls

With a ~ulti~user environment. it is necessary to protect against unauthorized reading, modification,

and executio~ of sections of ~eJliOry. Several ha~dware designs can provid~ this pro~ction and are

usually fundamental to the computel' arc~itecture. One, physical memory can be originally di~ided into

sections and n key assilrned to each Section. The key indicates the type of access 'allowed, if any.

Two, protection can also be prOVided on a logical section oi memory via base and bounds registers.

Three, virtual storage cftn be used that requires the hardware to j)erform paging and segmentation.

lil. addition til ll\emoty protecti~n, control protection is also normally a deSi~ed-in hardware

feature that involves the, restrictid use (execution) of certain instructions. Examples Ot actions that

a, system protects against ,are: rnpdifying program status words, halting execution, and issuing di~ect
1/0 commands. This protedtion is often implemented by the machine having two modes, or states, of

operation; system and USet'. System mode is a privileged state in which any instructiOn lllar be

executed; user"mode is a rl~stricted state in :.which certain° instructions can not be executed.

7

a

i t,~~

~

()

" [,.!

o Add~on controls
Protection can also be prdVided by adding a neW piece of hardware or modifying existing hardware.

However, specifAc changes are limlted by the harcll<i8,re configuration in question, and'most computer .. ,

installation'S do not have the :r~!lources to effect these changos. Thr~: examples .,of add-onhardwl1r~, ~1'5

~sfollol'/s: "0 G "Ott" .. "~".
, One, an encryption device. can be used 1:or protecting data. For e~u:ple, the e~cryptionv awrHhm

"~acently descri1;Jed by the Nati~nal Bureau of Standards J2] can be il1lpleme'lted in hd~dware~ 'l'hi~ device

could then be attached to I/O or storage devices. With this configuration> data are transmitted or

s~ored in an encrypted (Iimreadablell) form. EVett 1f an unau~lwd,zed user accessed the dat!l,~t could

rllll:'oi(-decdded-whilouy al~(j' obt~i\ling and using the '~~y that .originall)' encrypted thec!d.ta. 'rhus.

the key must be protected to protect the data, but this is a much easier task, Currently, tlncryption

appears to be the mqst reasonable hardware addition for providing data security. '!'he National Bureau

of Standards intends both t~ sub~it the encryption algorithm to the Secretqry of Commerce for con

sideration as a Wlifo:rm Federal ADP "Standard and subsequently to publish guidelines for implementing
"

and using the algorithm [2]. II

Two, a hardwuremonitor can be attached to the existing hardware to record (or trap) e"ecution c .
actions. This monitoring records and evaluates how a system is being used in tertlS of efficiency.

Also, the monitor can be used to log references to resources such as riO channels and disk driVes.

And three, a device can be added that provides permanent write protection for a physical section

of core. The section of core could contain sensitive control or status infol~tion needed only by the

operating systell!~ Although this featurJ' has sigllif~cant security i1llplications. it is not available

for all systems.

b. Softtlare

Software controls are the most common and direct security enhancements for· operating systems.

However, theyo are often costly as they reqUire installation implementation and can intrOduce new

integrity problems. Some software controls are as follows: 1) removing a function ormadulo from the

operating system, 2) adding a function or module. or 3) modifying existing code.

o Removing software functions

'l'h~. removal of routines or parts of routines can directly increase the level of security of the

operating system. The functions of these routines may be useful but permit unintended results. Also,

some routines may have been originally included to circumvent protectioa features. TliO examples of

removing software are as fo11ol'ls:

• The removal of a checkpOint/restart routine can enhance protection. This routine takes periodic

dumps of program status data and intermediate results so that in case of a system crash. the program

can be reinitiated at the last checkpoint as opposed to a cOl1lplete restart. SE;lcuri ty can be com

'promised. if critical status data in the checkpoint dtnnpare altered and used in a reinitiation of the

program.

RemoVing system programmer traps can also enhance protection. When a system is implemented,

tl:'aps or "hooks" are often inclUded to allow special operating privileges to system programmers. The

traps are intended for debugging or legitimate system maintenance. However, their ~efulness depends

on the secrecy of their existence, and secrecy is a very poor security protection method. Thus. the

use of traps should be strictly limited or they should be removed.

8

! , \

"

1

1
!
f

---2:-,--- :~~'3.---- ~-

o \J

CI " Adding software., functiops

Adding softltare fWlctiofts to all Operating system can 'Qe dOne ~j.thel-\ by the .vendor or by the'

installation itself. As security is becoming more" il1lpottan.t. vendo'~s'ilre making available sOllle routines

"':" to affoX'd protection. Two examples of adding software rl,motions !lore as follqws:

The use of pass~ords can protect data f;{les,~d 1,!seraccounts.This functi'on deals with the

problem; of authorization apd authenti~ation. Th~' ~wility of the password software lIie~h~nism and th~'
manner in whicK the passwords themselves are"administered are critical and demonstrat~ the multi- 0

" dimensional nature,o~ security enhancements. Short passwords (e.g., only four characters). password~o

chosen for ease in remembering (e. g., name of user' s spo~e). o~;Jack of exceptio~ action (e.g.$ not

~po:r:ting. ~everal.,incorr~ct pas(lword. tries).~an lead to ~omprOmist ane;!. a fal~e Sense of security"

A monitor, or control routine. could be used as an audit tool to racord resource usage or data

accesses. In ~ddi tion" tQ~ Tecording this in fo rma tion. a check can be made.s:gainst a predete:rmi'hed })

authorization list to see ~f thvaction is valid and to prevent its cOl1lpletion if not.

o Modifying software functions

Modifying existing. operating system code is a nontrivial task. Systems ar~ nOT1]Jal1y very" large
(<-

and th7, interaction among modules is cOl1lplex so "that a chalige may produce an undesired and'unexpec~:ed'~

"ripple" action. However, code changes can significantly enhance the security of a system.

The following are two examples of system problems that can be corrected by mOdifYifi~&(Oftware:

1) Coding in which parameters are. not adequately checked. Some system routines do t:; t val1d(l,:t,e

input parameters because of the a.ssuntption of 6i ther a benign ,environment or that \ nother

system routine made the validation. This can lead to routinos being used for unintended

purposes and security compromises.

2) Cc>ding in which system routines store data in User storage area or ,~xecute in master' (or

privileged,) lnode when not required. These practices are nO.t direct, security Ela'us, but they

allow users to modify data being used by the system and gain SpCci1l'1' privileges - either, of

which can then be' Used to compromise integrity.

.c. User Actio~

Individual u~ers can tak~ socie direct action. The most obvious is to use existing security con

trols, such ~s passwords and proper tape-labeling,techniques. Also, system routines should be lIsed in
'/

the intended nlanner without using tricks that may have unintended consequences.

The uaer must be aware of possitJle integrity problems ,and take direct action to counter them. For

example,1.n some instal1;ltions user-to-user scavenging may be a security problem. That is, code and

data are left after a program terminates and a SUbsequent user, resident in the same core area, can

read the unaltered information. In this case, a user could scrub 01" zero-out all buffer and data ~eas

before terminating the pr~gram.

Anbther instance of possible user security actio~ deals with terminal sign-on procedure5:~It is

the user's responsibility to determine that he is interacting with the system and not with anot~er
USer's program imitating the systeln. Entering passwords or ~ccounting information on a terminal

without first verifying that ohe is colllinunicatlng with ,the oper.ating system can compromise the entered

inform~tion. Another user could be imitating.~he operating sy;:~ and reco~ding the ~n~ered in

format1on (e.-g •• passwords) for later unauthoraed Use. To pre' .. ;:nt compromlses of'thls tYpe. USI'::rs «
lnUl;;Vintera.ct with the system in a way that can not be duplicated by a user's p:rogrrun (0'&9 Using a

t:oarminal control 'key to. sign off prior to initiating the sign-on procedure).

9

t

I
1
1:

I
f:

~
Ji

!
f

I
I
I
{
\

" !

i
I
I

. ,

[)

J/

'J Ii

Also, users"shoUld always Si~ off proBerlY~hen, f:,niSbed proceseing." This may involve destroying

all progratlS and 'Work files \~hen through. This [ivoids" the problem or lellving data files 01' programs

on the system and a.vailable to anyone who happens tn, subsequentl.Y use thetenninal.

'i"~

.!b A)binistrative~Physical S'
" ' <I ~.;' ' •• :- ,;:'1 ~" q (f -

,''J ~ The i~on manager or per~i~n desigyated Weith s~cu:rity :respo~sibi1ities can take direct

action, to enhMce operating system ,\securiY" This action nOI'll)a.~lY is to prohiplt (>1' mandil-te ee:rtain

user,;'actions by policy decisions or by physj.cal ac;fion!i (o£ten some he~~d\~are or software action must

aCC()lIlI)~ny theadminilSt;-ative decision).
Fro~a practical pOint of view, administrative or physical security enhanc~~nts are very important.

Usually they are c the fi1:st enhancements made. They can b(?implemented in a: T~l,atively easy and cost·

"uffecti;e mann~r an~:50vide a significant amount of security. jf!bese measures wfil not pre'qent the

Ve:r:y deteX'lllined individual from compromisiny, secur~ty, but it 06es increase the difficulty of c::mn- Il
promising and the ris1c of detection. An added benefit: can be a mOre disciplined and orderly instal~

lation.
" Items that fall into t~is class include restricting terminal access, requiring all tapes to be

labeled(j(tdth the corre~ponding software checks), standardizing log-on procedur~s, req~iring passHords.

using system-generated pas!words, using encryption devices for data transmission, limiting actions an

operator may perform in response to console log messages, and using guards and some form of badge

identification around the computer facilities.
A final administrative enhancement concerns a procedure for recording all changes made to the

operating system. A formal :prccedure should be set up to docwnent and i;!ccount; for: each change imple

mented. This is an au~t-type control that fixes accountability, restricts the number of modifications,

and ensures that someone understands the modification. The approval ("sign off") for each step in

modifying an operating system (requesting, implementing, and verifying correctness of changes) should be

done by different people.

3. Taxonomy of Integrity Flaws

3.1 INTRODUCTION

In this section, a system of arranging integrity flaws titto related groups is presented, and one

claSs of' integrity!,laW - operating systetl security flaws - is examined in detail (Sec. 3.8).

3.:1 TAXONOMY OF INTEGRITY FLAWS

Table 3,.1 presents a taxonomy (i.e., a system, of aTrlingement) of integrity flaws. Table 3-1 is

divided into two segments and an example. Segment one, the syntax portion, clarifies that the mere

existence of a £law renders,an installation vulnerable. This is analogous to the engineering concept

of "unavailable'! pot:ential energy. lfuen an individual (or group) becomes aware of a flaw, an active

potential to Violate installation integl'ity is achieved - analogous to Olavailable" potential enel'gy.

With adequate motivation, skill, resources, and opportunity, this potential is transformed"into
, /C)'

1.dnetic energy, and ~n ~nstallat~o.9~;;r'integl;'~ty i~~enetrated. ~is penet:ration of integrity provides

Jthe indiVidual with, 'Potential acc0S's tQ one or more classes of resourceS ~ items of value to an in

stallation or its user~. If the individual now chooses, this acceSS may be exploited to produce a

loss ~or the installation (such as a loss of infor.mation, service, or equipment) and/or a gain for the

individual.
10

t
· {
:'j.

i ,
· ! I
1
t·

·)
,

table\~-l. Tajonomy ~f integrity tlaws

Srntax
.p

A [ctass of User] user acquires the potential to compromise the integrity of an installation via

: (Clase of Integrit~ F~J ~tegrity flaw Which, When used, will result in unauthorized access to

8. fPZaa8
0

of Re80urce) resource, which the user exploits through the method of [C(ltegol'I/ of Method]

to [Catego:t'[J bf E:r:pZo1.tattion]. 0

SEtax Elements

[atews Of Uae!']

, -Applications
-Service
-Intruder

[Categol'I/ of Method]

-Interception
-Scavenging
-Pre-emption
-Possession

()

(7

[CZass of Integt'i'.ty ptalJ]

-Physical Ptotection
-Personnel

D -Pl:ocedul'el
-\\jllrdwal'e' .
-Applications Softlia:te
-Operating System

{ctase 'f>f .Re8ource)

'ln16~tion
-Service
'13quipment

a

[category of E:epZoita#ol~l

-Denial of Possession/Use
- Steal equipment

Destroy equipment
- Oegrade service
- Interrupt service
- Destroy data

-Denial of Exclusive POSsessiOn/Use
- ~Ad/Transcribe data
- Stiial service

-Modification
- Alter data
- Alter equipment

Example \':, o

Nt! "applications" user acquires the potential to cOmPtcnnise the integrity of an installation via

~ lroperating system" integrity flaw which, when 'used, will result in unauthorized access'to anc-,

"informationu resource, which the user exploits through the method of "scavenging" to "re~'~ItTanscribe
data."

~
Each classificlltion depicted in the syntall; ,;:an be divided into subclassifications and. each of

these subClas'sifi~:tions can btl fTJrt:her divided. into subclassifications and so on - in desl\ending 0

order from most indusive to most spocific. Segment two depicts the fi~t levelS of cla~isilficQtion
" :1

for each of the s)lJltax elements. In t~~ following paragril:}'Jh:t, each classification will be:rrieflY
discussed. Howevbr. because this dgCU1l]iellt is principally concerned with operating syste'l\l s:ecurity

c..~ 1:, f), 11 , __

flaws, only that class of flaw will be'ifullY expanded and I~iiscussed (Sec. 3.8) ,'i ~

.3 • .3 CLASS OF tmER
,
I

A uSer may haVe various capabilities at various times, and similar users may be gJtant~!d differ.i 19

sets '~f capab:i.lities.' However, it is useful to bll\ssifY users in terms of broad sets of c~ipabilities.
I

~. APP~ic~hons user; .; ~ ,

Under t'h~S,. ~proach, apPliC~ti~nstusers are those uSers who haVe no~ bee,n spl;lcif:h::al:1y granted
special capabl.t,t-ties bp,yond perm1ssl.On!! to use the system. They are su1fdlVided imto consumers and

produe,ers. Consumers are the authorizi~d recipients of information"products from a CO/IIPut&-based "

applicatiol'l. Producers are the ana~ysts and applicationsprogral!lllers who design and impl~l1ient speei~ic
Ii

11

o

I

i

I
" 1

I
!

I
j
1

t
l
I'

I
(, I "

i
t

I
", I.
~ ,
R

!
j ,
I
I
\

()'

Ii

" 81

applications which produce informa~ion products for consumers~ (Producers mayor 'may not be. ~art of th~
I' consumers' organization. "Producer; '/;'I,lquire ac~~ss to the computl~r system to develop products; their

pt'ograms require access to data in the system.) .'

b. Service USQrs

Servic~ users arc subdivided into systems and administrat'1ve servicors. SysteiWs servicers are

m~mbers of a COmputer servicing staff that inc!udes the op~tors. systems progr~ers. and main-
tenance engineers t/ho are responsl,ble for tb,e ruiintenance anel' Availability of computer system resource!).

Because systems servicors have physical access to the computer, the operhting system code •. or the data,

storage volumes, >:hey have the capability to .access any information in or on a system. For eXample;"

an operatoX' can replace the installtttion's protected operating systclil '-lith a non~protective one or may

usc computer console SWitches to alter main storage cont~nts~ The hardware vendor's"ma.intenance

engineer, in a'lotiler example, is equipped '11th a sot of diagnostic aids which can be 'utilized as in-

tegrity peMtration toolS." ~ c' Ii

Adnlinistrative servicers are TlClllbers o~ systems staff who do not have physicat acceSS to the

COmputer room or operating system, but tlh~ ha~e ~ecIal softwal'eprivileges. W~ich, for example. pe11i\it

access to privileged'hardware instructions and sp cial operating'system s!3rvi~;es. or permi~ special
operations on data. Such u>ei~ frequently have tho capability to acceSS any information in a system.

c. Intruder

An intruder is an unauthorized user, he is 21! t'utsider. This term applies to individuals or

organizations who have no authorized access to a computer installation',or its products and whO have

a possible mcilicious interest in obtaining Unauthorized accesS.

3.4 CLASS OF nJTEG~ITY FLAW

ThG classes of integrity fla,is ilave been mentioned in sections 1 and 2. Briefly, phYSical pro~

tection fhwls include ~ tel ecommunications interr;eption, mixed-security-Ievel access to terminals. un

authorized acceSS to a computer room, and expo~ure to natural disasters. Flaws involving personnel

secul:ity include acts such as sabotage, iic6llusion. ahll u~er er~r. Proced'tlrllt f~l1,wS are, of course,

instal1ati(m.dependont. Examples of such flaws involve trIcking (or "spoofing") a system operator

into making fu~uthol:izoddata available 'to a user; inlldequate tape-labeling pro((~es at an instal-
~ ..

ladon; and "Trojan Horsett subversion of an operating §ystem. As used here. "Trojan Horse" refers 1~~\\

covertly implanting computer instructions in a trusted" (system) 'prograc so that the tr?sted prograntl

executes its intended functions correctly, but with illegitimate side effflcts. Hardwar~ integrity
flaws include problems '~such as a flaw in which a us/Jrls terminaL disconnect signal is not pao:;ed on to'

the operating systems software, or Ii flaw in Which call uS'fs nre perm~tted access to an instruction

such as "disk diagnose," \'1hich should hlJ,ve :restricted ~ccess. ~ Fla'V involving applications soft\~are
include problems of inadequ8te user-user isolation. insufficient control over access to data, and
exploitable flaws in program logic. Almost all applications' soft~are flaws have direct analogie~ ldth

onerating'system flaws. Operating systems flaws Bre discussedin'detail in section 3.8.
• • "<""""-,,,~ "J

3.5 cLAss . .oF~SOU~~ !
The ~ources of value to an inst,!-llation Or its users are infoI"'>1ation, service, and;.equipraent.

\\ Information includes all the system's files (prograns. data, and file directories) and all user files.

It>

/r'

Service rep~esents the unimpaired operation of the installation. Service reS~\lrCeS include a1l' the
(J.. ":

,capabilities of the operating system. If an applicationl1 user obtains accessfto ~he hardware w~it/idle

mode, monitor/master mode, or unauth~rized disk~storage space, then a valuabl~ resource has been cgm-
~ 'I)': '

:promised. Bquipment reso~:!",> .. include all installation equipment relevant to the unimpairelboperation (')
'. of its coitputers. L~" "

3.6 CATEGORY OF MEWOD

, \~~-:::~
Interception is the interruption I')f communication" or connection~ .Ilor example, ~user progr!U:l

~squerading as the system COuld inter(:ept an unwary user' s.sign .. on password. scavel~lng is the
searching for something of ",p.~ue from dliscarded information or supplies. For exampl,rw£ reading of

(scratch) tapes is not prevented, a user could search through the data left by a preylous User in all

attempt .to find som~ valuable .. informati,on. Pre"ernption inVolves 'taking something to the exclusion of
\\

others such as a user pl"e~empting CPU cl'{::les. Posses'sion is taking control of property such as stealing

a JlI!lgnetie, tape c'l~taining valuable infi')rmation. I;'

" 3.7 CATEGORY OF EXPLOITATION

Because tile categodes of exploita:tion (Table 3-1) are self"cxplanatory, they are only listed

here for ease of referQal and r.ompleten"ss.

o Denial of Possession/Use
~Steal equipment
-Destroy equipment
-Degrade service
-InterrUpt ser~ice
-Destroy Od1;{

Q D~nial of Exclusive Pos!session/lJse
~Read/Transcribe data
':'Steal service

, Modification
-Alt~r data
-Alter equipment

1!

3.8 DETAILED DElSCRIPTION OF OPERATING SYSTEM SECURITY FLAWS
o

Operating system integrity is conclerned with t.he assurance that the operating syster.n \'Iorks as
intended. Thus, an operating system in'~egrity flaw is any condition that "'Culd permit 11 user (or hiS
programs) to ca~e the oper.ating system to cease reliable and secure operation. Integrity is thus

concerned with reliability (fraud and error) problems and with security (resource, and privaey pro-

tection) proble!llS. 0

In this section. the seven major categories of operating system security flaws ar.e diSCUSSed and

examples of each ar~ given. The seven categories of operating system security flaws are:

• Incomplete parameter validation.

• Inconsistent parSll!eter validad;on.
(?

• Impli~t sharing of privileged/confidental data.

• Asynchronous-validation/lnadeq\mte-serialization.

13

"
{)

., .

I
" !

o~o

,
, ,

I'
I

~)

o Inadequate identificat~on/authentication/authorization.

() Yiolable prohibition/limit.

o Exploitable logic e170r.

Associated with the general text description for each of these operating system security flaws

is, a table in which that , flaw is further divided into sub-categories along with a brief, descriptive

example for each sub-category. To conserve space, not all of these sub-categories and examples are

discussed in the text. A complete description can be fo\md in A Taxonomy of Integrity Problems [3].

a. "Incomplete Parameter Validati"n

~, At a. high level of abstraction, whenever a proces,~ (or program) with one ~et of privileges requests

service from a second process \'1ith another set of pri&ileges, the preservation of sYi~tem integrity

requires' that the request be thoroughly validated. For most operating systems i the boundary of greatest
()

relevance to system integrity is that boundary bet~een a control program, with complete hardware and

softt1are capabilities, and user programs) ~fith a limited subset of capabilities. This separation is

usually enabled by hard~lare facilities (such as control/monitor state an~~t'6rage protection) but is

enfpl"ced through software.

In general, user programs invoke control program services in a manner similar to subroutine calls,

using many parametel"s. Only the control program has the capabilities to perform the requested services.

The purpose of creating this separation or {solation petween user programs and the control program is
° 10 ,\ a

to prevent any user from comp~omising the functioning of the control program that is. performing

services for all users (e.g., I/O operations, program initiation, date and time, etc.), If the

checking meclltlnism for each" of the'request'ed parameters ,is !1ot rigorous 01' complet~> it is possible to

"fool" the control program ;'nta executing tile request in a ~anner which is detrimental to secure

operations: To be validated ri~oroUslY, parameters must be checked for permissible:

o Presence or absence .•

o Data types('~nd formats.

e Numbe:r and -order.

o Value ranges.

,0 Acc~ss rights to associated storage locations.

o Consistency amOng parameters (e.g., storage lo~ations).
. --:; ,

As an: example, three dangerous results can occur' it a user succeeds in getting the control program
'-:"--' "}

to accept a parameter consisti,lg of an address outside the memory space allocated to that user:

o Th~control program may obtain ¥nauthorized data for that user.

o A set of conditionscau be generated to cause a system crash.

o C9ntrol may be returned in control/monitor state to the user.

A penetratioll"attempt illustrating the return of control in control/monit'dr state to a user progr;un

is described below and in figures 3-1 and 3-7..

1) An instruction which, when executed, will trnnsfercontrol to a predetermined point in the

user':; program is loaded into a registel".

A system call is then made which causes the registers to be saved' by the control program in

Register Save Area (Fig. 3-l}.

Upon return of control to the user, another system call is made. Among the parameters fo~

this system call, is a pointer (address) that has to point to a location in the control pro

"gram. This address tlill be used in t~ansferring control to thll appropriate, control program

service routine. Naturally, the address supplied is the location in the Register Save Area

where 11. transfer back to the us'ert s program had been planted by, the previous system call

(Pig. 3-2).

g
"-

E
Q)

~ V)

(
~

f
i

" ~i

...
<II

Control Program

"

Register Save Area

Data '.

Pointer to User A Program A

Data

•
Data

User A

Program A
•
0 .-
System call No. 1
0
0
0

•

User 8

. .'~~jJ

ILc ,
-~1

"/' Layout of memory after fil"st system
call.

"

0
III ...
E
III

~ V)

g
"-

t..
III
'"

15

-~--

"

Control Program

Register Save Area

Data ..
':1

Pointer to User A Program A
(~'.

Data

Data

User A
Program A

0

Sy~tem call No. 1
0

::;,

roo-

"

-,
I
I
I
I
I
I ..

System coIl No. 2

I Transfer pointer 1 f-
@I

I Parame~llrs I
0

&

User 8

@ Points to Register Save Area instI!Qdof a control
program service routine.

Figure 3-2.

\j

iJ

Layout of memory whelrpr,-qaring to
issue seconc.tsystelil cl111./

o

"

i
!

j
!
i
i
j
1

j
i
1
j
1
j!
I,

j I

~
1
i
1

I
" 1

f';
Ii I.~

I
I
1

1

'\:)1

4) All parameters are checked and approved; and during~xecution of the second system call, control
is returned in control/monitor state to the user, giving the user control of the system."

Table 3-2 further describes the categories of incomplete parameter validation.

Tabl5 3-2. Incomplete parameter validation: categories and examples

1. System routine does not adequately validate parameter attributes.

Example:

o The control program does verify an initial I/O transfer. However, it does not verify that

the initial I/O.transfer will not cause illegal modifica~ion to subsequent I/O transfers.

2. System routine does not properly reiterate parameter valid,ation.

Example:

o Only the fir~t I/O comr:;and or all but the last I/O cgmmanc:\ in a ctained list of I/O commands

is verified.

3. System routine validates a parameter under some conditions but not under all conditions of in

vocation.

Example:

o A "confused-deputy" control-program.service routine aqequately verifies parameters when
directly invoked by a user, but not when a 'user' s parameters arl;l indirectly passed to the

first service routine by a ~econd service routine.

b. ~sonsistent Parameter Validation'

Whenever there are mUltiple definitions of the same construct within an operating system, there

exists the pOssibility that inconsi~,encies among these definitions Will ~reate a security flaw.
~, ThiS design ~rror goes beyond the incogplete pa~ameter validation error. A situation may exist

in which eacll of several cvntrol program routines checks completely for conditions it considers valid;

.holiever, the multiple sets of validity criteria (I.e., conventions) are not completely consistent,

An example of this category of flaw follows;
Operating systems maintain diTectories (e.g •• cata14gs) of the data files used by the system and

its users. The contents of these dh:ecto:i:-ies are

programs. Each of .these interface programs makil:?
in the file system.

often accessed by as many as,. hilf a dozen interface

assumptions as to what consti~utes a valid condition
;::" ,-

Consider something as basic as the characters in the parameters representing the na~e(s) of users
to be given permiSSion to access a file. The routine that creates a master-file-index entry may accept

a chare-cter (such as an embedded blank) as valid in a"specific permission name; whereas all of the

other interface programs that modify/delete master-file-index entries assume blanks will never be valid
and thus do not accept them. Under such cqnditions. specific file permissions could be created (such

as shared access to a rile) which c~uld not thereafter be deleted.
Table 3-3 s~rizes inconsistent parameter validation.

16

Ij

i)

it
)

Table 3~3. Inconsistent parameter validation: categories and examples

Two or more systems routines perfo-nn adequa.te parameter verification for their purpose, but 'the

multiple sets of validity criteria are mutually inconsistent.

Example:

c The routine that creates a master-file-index entry permits embedded blanks, but all Or the
other l'outines which modify/delete master-file-index entries treat an embedded blank as an

error. Thus, once granted, a user may be unable to revoke shared access to a file.

c. Implicit Sharing of Privileged/Confidential Data
,,;~,,~

To ensure integrity, an operating :;vstem must be able to isolate each user from all others and

from the control program, This isolation involves both control flow and information. Whenever

information isolation is not complete, the system may allow information of greate~ privilege to become

accessible to a lesser privileged user or may allow one u~er to access another user's information

against that user's wishes.

In many operating systems the control/program portion of the operating system shares memory space

with USer programs, either as work space or as a convenient place to put information associated Hhh

that us.er progr!>Jll. This is a deliberate design policy to facilitate charging individual userS directly

for resources that they USe. If the user requires file operations or other kinds of system resources,

the system maintains the information and the work space for his requirement in an area that will be

uniquely chargeable to that uSer. Because the workspace is shared, but in a mode not normally avaH

able to the user, operating system implementors have often been careless with ~egard to the state in

which the workspace is left after receiving a user request.

For ex~ple, the control program may u~e such a workspace to read ~master index of user

riles along with their associated passwords as part of a search for data reques~ed by a given user.

This func~ion is necessary in order for the system t~ determine that the request is properly form~d
and authorized to the USer ,making the request. If the control progr-am shOuld. find that the request is

improper. it returns control:to the user program originating the request, with an indication of the ,.
nature of the error in the request. However, in this example, the control program dces nothing about'
the information remaining in the shared workspace. As a consequence, the user can noW access the .

workspace ~P obtain from it o~her user identifiers and authentic&~ors (passwords) which he can then

use to masquerade to the system (Fig. 3-3). As shown belOW, even if the system erases the information "

before returning control to the user's program, the information can be obtained by the USer through

some form of concurrent processing, such as an independent I/O op~ration which reads from the 'l'iorkspaj:e
inquestion~ There are other variations o'r this flaw. Sometimes work files and workspace are not -

erased when a user releases them, and anothe'r user can scavenge this "unerased blackboard" when the
uncleared file space or buffer space is next assigned.

Sometimes the full implications of information made.available to a user are not realized by the

system's design3rs. For example, control programs frequently acknowledge the disposition of USer

service ~qtlests by setting a return-coOe/status-flag. Various returnr.ollditions (such as: "illegal

parameter", "segment error", "passwordOK", etc.) and other forms of interprocess c;pmmunication (e. g.,
SEND/RECEIVE acknowledgment) may connote intelligence that enables a user to breec~) security.

o

-; 'I

Table 3-4 summarizes and gives examples of the categories of implilld sharing. '" (

17

... - ,,~ ,_. ---------

III

1
!

(
I

Bofore

After

. Figura 3~3.

I

'i
~r

User A

.,
" '"

System Nucleus

PrQJ:lram X

Issue I/O Request (File A)

., .,
o

WQrks~ce

Sy~eem Nucleus

User A
"Program X

" .. .,
I/O Request complete
" (Error Return)

.0 - __ -..!. _,0- ___ __ . __ _
Workspace

. ",

File A I
File B I
File C I

I
1

Passwo'~ A
Password B
Password C

r~

'/
if
'/

I:
Ii
I'

l
'/

11

;/

/
;/

;/

" " " \.

Master File Index

File A
File B
File C

I
I Password A
J Password B
I Password C
I

Layout of memory befoTe and after issuing :requests to read master file index •

1/

IS

I)

n I!
I' 1 .

, I
i

Table :~4. Implicit sharing of privileged/confidential data: ca~~gories and examples

1. Explicit transfer of information.

Examples:

e While servicing a USer request, the control program uSt's a user-acce,~sible buffer to scan master

file-index entries. While this activity is in process, the user asynchronously :reads this buffer

and obtains another user's file-index 0 password. ",'

o The control program does ndt e:rase blocks of sto:rage or teMporary file space when they are :re

assigned to another user ("unerased blackboard").

o A user's password is still legible through the overstrike characters on the use~ts terminal

printout"or a user's password is listed on his batch output when his job command is flushed

due to incorrect syntax.

2. Implicit transfer of information.

Example:

o A user piecelllise decomposes a password 11)' l..:.t;Clting it on a page boundary and noting plj.ge
o • faUlts or by precisely timing variations in the execution timE', required by a password

checking routine.
r;,

d. Asynchronous Validation/Inadequate Serializ,ation
,~,

System integrity requires the preservation of the integrity of information passed between
\)

cooperating p:rocess~s or control program i~struction sequens,os. If serialization is no~\ enforce~

during the timing window between the stOrage ofa data value and its reference,. (or betw~. t\~O se

quential references), then the conSistency of such a data value may be destroye~ by an asynchroftouS

process.

Control information is especially susceptible "to modification whenever it is located in storage

accessible to It subordinate proce~s. This is somet:i.mes en;lled the "time-oi-check to time-ofuse't

problem. As described under:, the implied sharig;lg of privileged data flaw, ancop:rating system may

frequently share memory space with user programs. This space may not 0!lly be us/;\d iorthe passivp

storing 'of information; but also may contain system or user p~rameters that repr~sent d~ta upon which

future ictions will be based. Whenever there is a I'timing window" bet,~een th~ 'time the control pro-
'. .

/',

gram verifies a parameter and the time it retr~eve~ the parameter from shared storage fqr use. a 0

potential security flaw is created. This is because contemporary operating systems allow a'" user to

have two or more activities (processes) executing concurrently and sharing that user'smemol:j' '~110-
cation. For examPle, a user may initiate an I/O operation and then continue executing his prggram

while the I/O operation completes. ""'"

In another example, a timesharing user may teni~'Orari1y suspend one operation by pressing the

"attention"or negative aCKnowledgment (NAK) key on his terminal, . perform a second operation, aJld th~

return control to the firftoperation for completion. Some systems permit i'mult,itasl(;j.ng," in ,;bich

19

~I

f~~~7ni~~'-t,...-~,,~~---~-----~~-,...,--~-,;-"

I:
!
I
I

1

In
1

a"

p

, !

..1,' .'

two or more programs are sharing a single user's assigned memory (address space) and are executing

concurxently - p'erhaps each being simultaneously executed by separate CPU's of a multiprocessing

compu~er system. -;)
The following steps describe an asynchronous validation flaw, which is depicted in figure 3-4.

o In time frame I, a user issues an I/O request to the control pxograc. The control program

validates all of the I/O parameters (including the address pointer to a valid buffer within

the memory legitimately assigned to the user), enqueues the I/O request (\~hich IIlUst wait until

the appropriate devir.e is no longer busy) t and then returns control to the user.

I) In time frame 2, the user replaces the valid address pointer to his. buffer with an address

that points to a iocation within the control program.

o ~fuen the I/O is performing in time frfu~e 3, the data reqtieste~ by the user is read into (or

out of) the contxol program instead of his valid buffer. Instructions within the control

program can thus be overlayed with instructions supplied by the user, or privileged control

program information can be read out to the user's £ile.

In SODe systems, the control program may use an overflow register save area, located in user

accessible st~ragej whenever the control program's pr~mary save area is £illed. This saved information

generally contains program status and control information.

This situation can give rise to another variation of the asynchronous validation fla\~) should a

user be able to modify such control information. An example of such a penetration attempt fo110\1s:

o A user constructs an I/O record that simply contains an address pointing to a desired location

in one of the user'S programs.

o Multiple copies of this-record are then output as a file.

o The user n~xt initiates an I/O operation to read these l;ecords repeatedly into that area of
.~,

the user's memory utilized by the cOntrol program as overflow storage for registers.

o Then the user issues a system servic'e request that causes the control pxogram to make a

number of nested intra-monitor calls, thus overflowing its primary save area..(The repeated

issuing of certain service requests may also accomplish this ai~.)

o The "registers saved by the ,control program in the overflow"save area will be overlayed by the

input records that contain the address pointing to the user's code. (Some ti~ng adjustments

may be required for the user to accomplish this.)
,";

o When the control program eventually restOres registers and status from the"overflow a.ea, it

will transfer control to the user's p.ogram in monitor/control' state - thus giving the user

full control over the op,erating system.

An operating system may store in'formation over a period of, time in shared auxiliary storage as well

as in main memory. For instance, an operating system may iiave a clleckpoint/I'estart provision to
a . . ., .

record, the state of a running program at coilVenient restart points as "checkpoint" dumps. These check-

'point dumps contain both user d'ata~d control \nformation whiCh specifies the control stath.s to be

assigned if the program is restarted. The checkpoint dumps are recorded in a file speci£ied to the

system by the user and are accessible. by that user for manipulation. Through such manil'ulation, the

user could r,ause his progrwnCto be restarted ~ith ~dified state information that gives his program

~e~ter privileges than that originally specified. This can, for example. result in the user gaining

control/monitor, state privileges.

Tab~e 3-5 further describes the categories of asynchronous validation and serialiZation flaws,

,'lith examples.
o

20

!I
r
I

JI
I
I

....

11
II
Vl

I
I :1.:

I
I

Time Frome 1

User: Issues request to:'
control program for I/o
into User Buffer.

Control Program: Val
idates user's request
parameters.

Control Program

Control Program
Instructions

User Program

I/O Request l
.--..,..-.-----,i/-

t Pointer to
Ii User Buffer

Parameters

Parameters

. 1
I
I
I
I
I

L-_U_se_r_B_uf_f_e_r ~,~

I
I
I
I
I

Time Frame 2

User: Changes I/O buffer
pointer to point to sensitive
Control Program location.

j\ -
Control Program

Control Program

~ Instructions

1---______ 1

User Program I
• 1 · I · I/O Request I

I
• Pojnte~ to f--.J

Control pl~l;Jgram
location

Parameters

Parameters

· · ·
I User Buffer I

/;

I'
Time Frame 3

I
I Control PrOf.!rar:l: !ssues

I physical I/O which reads
a record from user's fIIo
into control program, thus

I overlaylne control program
Instructlons with thO$o
constructed by uscr.

I
I
I
I
I
I
I
!
I
I
I

Control Program

User ~
Instructions h

1----- 1

User Program I
• I
• I •

I/O Request I
I

+ Pointer to ~
Control Program

Jocotion

Parameters

parameters

· · •

I User Buffer, I

c:::==::
- User

File -

0,

I
I
I
I
I
I

"I

I
I
I
I
I
I 0

I
I
I

,I~------------~--------------~------------~ II;""'

Figul'e 3-4. An example of an asynchronous validation flaw.

21

" ,

o "

0.
'?,y

,=~ :"

Ii () <,

~,

o

1

Table 3~S. Asynchronous validation/inadequate seria1ization~ categories and examples:

/-~

1. Asyndl~ioU5 modification of user (inferior process) storage.

Examples:

o A user perforos asynchronous I/O into his parameter list to modify illegally a previously

validated system call.

G A user perfo~ I/O' ~nto a checkpoint/restart file so that his process is given additional

unauthorized privileges when restarted.

2. tnadequatc serialization/contrOl of protected storage.

Examples:

==-;) .
o A user issues a syst'~' call which, in part, sets values in an I/O control table aila then returns

control to the user. The user then issues a second, different system caUcwhich also, in part,

stores values in the I/O control table - thus overlaying a portion of the previously set values

in such a way as to gain unauthorized I/O privileges for the J/O performed in conjunction with

the first system call.

o A system routine is inauced to overlay its own parameter/storage area by a user. The user

supplies an address where a return code is to be stored by the system rou~ne upon return of

control to the user. This user-supplied address o~erlays the initial wo:::} of a buffer where the

system routine .has stored a return jump instruction. ",,';?"

e. Inadequate Identification/Authorization/Authentication

Identifi!;:ation, authorization and authentication are the essential components of the concept of

controlled access. Authorization - the controlled granting of access rights - is ultimately based

upon authenticated, unique identification of individuals and resources. An operating system is

essentially a resource manager. thuS, an operating system is subje~t LO integrity problem~ whenever

1) it doea, not require authorization for an individual or process to access any data or to use any

resource that should not be available to all .. or 2) it does not uniquely identify the resources with

which it is dealing.

A flaw is created whenever a system permits a user possessing one set of privileges/capabilities

to legitimately bypass (contrOlled access) securit.y mechanisms and perform an action only permitted to

users with differing privileges/capabilities or whenever it permits all user$' to perform an action

that should be :restricted only to users of greater privilege.

An inadequate identification/isolation flaw can be created whenever one system routine relies

upon lIle~hanisms (implemented elsewhere in the system) to ensure the isolation of system resources and,

hence, the adequacy of their i?entification. This may be a bad policy if the mechanisms are not, in

fact, adequate,.

For example .. to be identified uniquely a program must be identified both by program name and 'by

.. the n~>of the library from which it was loaded. Otherwise .. it is very. easy for a user to preload a

22

'" ff
t ! q
! ! I,
} f
I!
I ~
I i I
I f
I ! i
I ! (,
! !

! j , . !
1
I , ,

>1 . \
[
:
;

, i

'e,'

counterfeit program whpse name is the same as SOllie control program routine (which mus'~ be dynamically
- a

loaded when required) and to have this counterfeit toutine used by the control progracgin place of the

" authentic routine '~~.,1v-i'
To accomplish this, the user generates an activity t~at will result in the controf;program re

questing this routine. The.loader will see that the named (counterfeit) routine is already loaded

(which is legitimate) and will set up the control p~ogram to use the counterfeit program.

As another example. the user-IO or password-cllEicKlnglljechanism may be circumvented if it does not

effectively limit the number of times a user can attempt to log into the system or if it does not limit

the elap~ed time permitted for completing a login. It may be possiblej under such circumstances, for

a user to utilize another computer to exhaustively enumerate all password bit combinations and thus

break password security.

Some systems have extensive
0

authorization checking associated with most, but not all. of the file

access methods and do not restrict use of those access methods whi~h do not perform authorization

checking. Any user who obtains documentlltion for these latter access methods (unrequired capabilities)

has simply to use them to access any file in the system. This is an e)~lll:lple cif the bypass of con-

trolled-access me~anisms.

Table 3-6 summarizes the categories and presents ~jditional examples of the inadequate identi-
0',

fication, authorization, and authentication flaw.

f. Violable Prohibition/Limit
J),

An operating system is described both by its embodiment in computer instruction,s and by its

external documentation. \~enever these t~o descriptions differ, an integrity flaw may exist. A

security flaw is created whenever a documented oper!1ting system limit or procedural prohibition is not

enforced.

For example, those who implement an operating system may not treat the situation in which the
o

upper limit in size of tables or buffels is reached or when queoo space becomes saturated. Docu-

mentation may specifY precisely these upper limits and prohibit exceeding the limits, but should a

user deliberately or ac~identallY cause an overflow or over10~d, then various results may occur - some

times a system Crash~~y.~SU¥L) sometimes system operation is ~egraded, sometimes sensitive data can

be lost, and in some i,;;;t;at:(4(such data ctluld be compromised.

Table 3-7 gives examples ~ this flaw. \{

g. Exploitable Logic Error

In any lIiajor oper~ting system, there are - at any ~pint in time - some "bugs!! or logic errors.

~y of these errors depend upon statistically improbable timing situations ,and are not under the con

trol of any individual user. SOllie of.,these logic errors!·ca."l, however, be intentionally exploited by
It,,!. 1,-.

a user to compromise the integrity of"a:''"!Y~tem.
One example involves incorrect error handling, The system. may. for instance,. perform an illeral

action before signaling an error c~ndition. Consider, for eX8lllpl~, that .a user requests a series of

modifications be made to the file 'directorY entrY of another 11ser, to which the first user has read

only authorization. If the system performs the requested actil;lns and then determines th,at the actions

exceed ,\:he request:i.ng user's authorj,zation, the ~ec.uri:tlf of Hi;;'-,~ystellt hWi been cOlllpromi,sed. through a

logic error. This also may happen if a system serV~ce su~h ~~:; si~rJge dump is initiated concurrently
L,(l,I'::-, "

with the checking of a ~ser ' so authori;ration to request tJle s~i\hed servic~,for It~e specified.: .. storage

areas. By the time the error is detected, forbidden areas maii1! have already peen lIsted.

o

Table 5-6. Inadequate<!identification/authorization/auth~ntication: categories and examples

L Inadequate resource idel'ltification/isolation.

Examples:

0'" A u'!i~ program with the same name as a. system program is preloaded by a user and is then accepted

and used by the systef;).

C' , .. ~;:..-

o ~ system routine aSsumes the validity of a system control table whenever the control table is
located in system storage to which uSers do not have direct write access. In fact, ,it is
possible for a user to create a counterfeit control table and have it copied into system storage

by certain control program service 'routines) such as the storage deallocation routine.

2.. Bypass of controlled-access security.

Examples:

o '. A user 6egally bypasses the file initialization (open) routine and its security mechanisms by

utilizing a basic file access method ••

\\. .
b ~ USeT obtain~~system p~ivileges by taking a legal exit from abnormal job termination (i.e.,

abort) processing.

o A user obtains system privileges by discovering and using a "trap door" exit to the system meant

for system maintenance programmer use.

o An operating syst~m, Wh~'~ does not prevent a user from simulating its logout and login functions,
permits an unattendel (hardWired) terminal to simUlate a logged out terminal and ob'tain Illlother

user's password during a simulated login process.

On a more subtle' level, a user may discovex that half-word arithmetic instructions are used to

improperly process a half-word return-address parameter. If the largest possible half-word number is

used as an address, an unanticipated overflow may occur, resulting in an address pointing to location

0001 in contro~ program memory, which may cause a system crash.
" In another situation, by pressing the "attention" (or NAK) interrupt button em his tel'Il1inal

during the printing of the login error message, a user may be able tocause'the system to erroneously
accept a new login attempt without advancing the counter set to record the number of prevlous login
attempts. This system error permits automation of an exhaustive enumeration of passNords ,with no

indication to ,system operators that this is taking place.
In a last example of incorrect error handling, it sometimes occurs that protection mechanisms are

disabled or modified as a result of a (deliberate) user error and ~y not be reset when the control
program later returns control to the(Jser. This can result in the user obtaining unauthorized privileges.

24

r
11

It
I I

1 ;

! I
71
I!

I
i

',1
i

; I
. :

I
.i
. t

I': , I
; 1
~ 1

- ------.. ------

Table 3-7. ViOlable prohibition/limitt categories and examples

1. Violable system limit.

2.

Exa'mples:

• A user is supposed to be constrained to operate only within an assigned PB;rtidon of main
storage, while in fact, the user may access data beyond this partition.

e A user is supposed to be constrained in the amount of system queue space availllble to his
;:---

process, when in fact, the user may create an uninterruptible, endless lo~p on a system call

that eventually USes up all of the control program's queue space. This causes the system to
crash •

Violable system procedural prohibitions.

Example:

ill A user is able to obtain unauthorized privileges by omitting notification to the opera.tinge. system
of an e~it from an I/O error-processing routine, although the documentation requiTes SUch
notification.

Table 3-8 lists three categories of logic error flaws and presents some additional examples.
There are tWO additional categories of exploitable logic flaws. 'Th~se are listed here for completeness

and without examples!
o Incorrect process/function initiation or termination.

()

o Control-$tate software errOr trap.

u

2S

o
.-.--,-~--.~.----------- --

I

~

o Table 3-8. Exploitable logic error: categories-and examples
.--____________ -...:0 L ------------------,

1.

2.

3.

Incorrect erro:r-handling sequericing"

n Example!

10) The operating systems fails to update a count of unsuccessful login attempts if a user presses

th'~)interfupt key (NAK) ort' his te:rminal just after submitting a password guess.

Instruction side-effects,

Examples:

o The operating system uses full-word, arithmetic on a half-word return address supplie4 by the

user. If the valllt~ supplied ~is -1, this causes an overflow into the index field of the word,

and a return to the user in ':'control state.

o An -operating system uses a particular ind;irect-addressing instruct.,90n in user space to access

some pa:rameters. The user substitutes a similar indirect instruction which increments an index

registe:r after ,each execution and thus creates a flaw.

Incorrect resourctl'allocation/de-allocation.
c

Example:

o The same tape Or core block is assigned to two us~rs at the same time.

4. IBM O~/MVT

4.1 INTROPUCTION

The IBM System/360 family of computers was developed in the early 1960's to consolidate the

divergence and incompatibility among IBM's three Or mOTe existing families of second-generatiotf com

pl.!ters. The System/360 design provides for 'a large main memory. a I.!niform treatment of input/ol.!tPl.!t

(I/O) functions, non-stop operation unde~ an operating system, and multisystem operation.
,~,

The central processing unit (CPU) has the following characteristics: 16 general registers (15 of

which may be used as accumulators, index registers, Or b~~-addressing_T.egisteTs); binary addT~ssing;

fixed and variable field lengths; de~imal and hexadecimal radices. bit manipulation. al.!tomatic indexing;

nand floating- and fixed-point arithmetic. There is ~ selectively maskable interruption system, tpain

storage protection ke.ys, and four alternative CPU states: stopped vs operating; running Vs waiting;

masked (uninterruptible) vs interruptible; and supervisor vs problem states. The regularity and clarity

of the ~ystem/360 instruction architecture redl.!ces the probability that system programmers will mis

understand or fOTget abdut an instruction effect. This in tl.!rn diminishes the possibility of integrity

flaws arising from instruction side effects. On the other hand, instrl.!ction limitations in the

26

n-
Il

!
!

r
I
J

f
t

f!
\ {
:1
, !
; {
, I

~ t
- ;

I

management of base address'ing and, in I/O programming and error sensing have tended to compliCAte some

elements of systems progTamming. w'iiich increases the possi5ility of integrity flaws arising from pr';,
gramming complexity.",

The operating system discussed in this report is tne as/MYT system (Operating System for Multiple.
, il

yariable Number of Tai:lks) which consists of a set ol service and control progTams, inclUding a master

:!schecIut;ar, job sched1Jt,:r, and supervisor. The master scheaulet' handles all communications to and from

the:'J?per.!1~,or~ ~hereas t~~\jOb scheduler is primarily concerned with j~b-stream analysiS, I/O deviee

allocation and se~up, and job initiation and termination.

Central control resides in the superv{sor, which has responsibility for storage allocation, task

sequencing, and I/O monitoring. Pravision for this control is embOdied in the following ~"ncepts:

o Supervisor mode (CPU superviSOT state) with associated priVileged instructions.

o Storage protection to enSl.!re the supervisor's survival~

I1J Hardwan:. monitoring of program instTuction viOlations"

o A CPU wait state available to the supervisor (as opposed to a stop/halt instruction av~ilable

to the applications programmer).

4.2 OVERVIEl'l OF OS/MYT HISTORY

OS/MVT was not deSigned to prevent deliberate user-tampering with the operating system. Instelld~'

an "accidental-error" philosophy was imple'mented, specifying that the operating system would attempt

to protect itself and other users of the system from common Haccidental user eTrors," but there would

be no explicit attempt to protect against a user deliberately trying to interfere with the operation

of the system. Concern about this philosophy was evinced as early as 1964, when the Systems Objectives

Requirements Committee [4] of the IB"(SHARE users gToup stated:

'~he Committee is concerned with the problem of maintaining security of datal particularly

for those systems which allow for multiple progTam execution. This encompasses both

governmental and" corporate security, the fomer represented by claSSified and top secret

data, and the latter by management information systems,

Members of the Committee have investigated this problem both inside and outside of IBM~ .and

very little seems to be being done for a variety of reasons."
Q

In addition to the accidental-error philosophy, OS/MVT (in common with most other third-generation

systems) does not have a clearly and systematically defined interface with the user.. Th~ variation in
such an interface tends to increase the probability that integrity flawswil~ be intTodu~ea during

implementation and to increase the difficulty of sysJ;ematical~y c~l'l'ecting,such flaws,

Several installations, in the ensuing yeaTS, have made extensive modifications to OS/WIT to enhance

its integrity in the presence of deliberate user attempts to penetrate the system. Two such instal

lations are ~lcDonnell-Douglas Corporation and Cornell University. IBM developed an experimental

Resource Security System (RSS) \4hich was fi~ld tested at the Massachusetts Institute of Te,pnology;
c,

TRW Systems, Inc.; and the Management Information Division of the State of Illinois. System integrity

was cOnsiderably enhanced in this system, although some known integrity flaws Were ~ot addressed [5].
The OS/VS2 Release 2 (OS/MYS) for the newer IBM/370 line of computers has attempted to close system

atically all known integrity flaws ~d has made a committment tp f:i.x any integrity flaws uncovered in

that system. The design approaches used in the MYS system are relevant to installations concerned

with OS/MVT integTity flaws. These design approaches are discussed by W. S. McPhee [61; portiox)','$ Of

lIhich are paraphrased in 'operating System lntegrity Flaws. section 4.3.

The following paragraphs brieflY discuss the IBM/360 and OS/MVT security approaches in the c~t~·

go~ies of prevention (isolation and controlled acce~s) and integrity moni~oring.

27

o

4.3 IBM/360, AND OS/MV'i' PREVENTION CONCEPTS

The fiTst step in preventing impairment of system integrity is to isolate users fro~ each ather
and from th!3 operating system. The isolation features of the system are storage protect1on, program c::

interrupts, tape/disk write prPtection, and privileged instructions.

a.~Bardware Isolation Features

~Storage protection prevents currently operating CPU or I/O channel programs from i~truding into

other programs and their associated data areas. A number of different main storage reglons should be

accessible and distinguishabl~ f10m each other because I/O channel operations may be related to latent

CPU programs rather than the program cUrrently being executed ~Y the CPU" Stor~ge protec~ion is
realized by providing each of the 2048-byte blocks of storage with an 8-b1t reg1ster (3 b1tS unu~ed).
The m~nitor may store any 4-bit combination into anyone of these registers. The communicants w1th
storage (namely the CPU, each selector channel, and eachmultiplex subchannel) are provided with in

dependent 4-bit key combinations by the monitor. These key assignments are di7ided into two classes,

zero mId nonzero. The zero key, considered as the master key to all locks, is assigned only to appro

priate sections of the monitor. The protection function applies only to op,er~tions that store, ~nto
a block. Storage takes place only if the key and lock combinations match or 1f the ma~ter~key, 1S,used.

Otherwise, the store is inhibited, and a program erroT interruption occurs. Fetch (read) protect1on

is supported by the'hardwaTe-storage-protect feature (as the fifth bit in the register), but is ~ot
used by the operating system. (This permits any use~ to read all the contents of main storage.)

There are a number of basic control instructions, such ,as thcrse initiating 110 or changing pro

gram status, which can be executed only in the supeTVisor state. Any attempt at execution by an appli-
II ' t' cation program results in a hardware "program errol" 1nteJ;'l"Up lon. .

Instruction and data formats are checked "for COTrectness as the instructions are executed . This

policing action distinguishes and identifies instruction erruys (such as addressing or operation
, ' annot cause machine checkS; each of

i)

exception errors) and machine errOTS. Thus, 1nstruct1on errors c

these types of ~rror causes a different type of interruption.
The way an applil:ation program Tequests services from the control program is through an inter

ruption. The preferred method is through execution of the supervisor call instruction~ which causes a

supervisor-call hardware intt.rruption. Although the supervisoT call instruction ispxefened, some

IBM and installation subsystems have implemented other methods of generating int~ruptions to request

control program services.
J.fagnetic tapes have a detachable plastic ring whose presence or absen~ce is sensed by the tar

read-wri~e unit to permit or prevent writing on th~ tape. Some direct-acce~s devices may be equipped

with a m~ri~al switch to achieve the same Tesults. The operating system uses a file mask I/O order

(Le., chan~e1" command) to prevent an I/O operation fTOm Teading or writihg beyond assigned limits.
, l'ntegr1'ty flaws t·hat permit subversion of most of these There are a number of operat1ng system

hardware isolation features.

h. Control ActesS Featutes

Although there are installations whose computing TequiTements can be satisfied within an enViron

ment of complete user isolation from eac~ other, it is far more typical for users to have requireme~ts
to interact with each other -sharing re~ources such a~ programs or files. This ability to share

, • 'f' d l'S called contTOlled access. Controlled selectively through authoTized access to spec1 1e Tesources
aCCeSs relies upon an effective system of isolation, without which access can not be controlled. In

.. ~

'I! .1
(I

II
U
1\
1 I

I
i

V'J

common with many other third-generation operating systems, the OS/MVT design philosophy introduces very
few constraints upon unlimited access, leaving most such constraints to be implemented by admin

istrative and operator procedures.
The OS/MVT file system includes a VolUme Table Of Contents (VTOC) ott each direct aCCeSs volume and

of an optional tape label for tapes. These label~\~rovide for password contTolled access and for

expiration-date controls that require permission from a system operator for a user to write into the

file before its expiration date. There is a ce/(Itral file index (CATALOG) which lists the name of each

cataloged file and gives its volume identification (serial number), Any entry in this CATALOG is

available for legitimate modification by any user.
The IBM-supplied, data-set (file), password-protection scheme is not used by most installations

because it is procedurally cumbersome to use and because of limitations in the security it prOVides. A

number of installations (e.g., Yale University) have implemented their Own version of data-set password

protection.

c. Integrity Monitoring and Surveillance

In keeping with the OS/MYT accidental-error philosophy, integrity monitoring (assurance that tho

system is working as intended) and surveillance (the monitoring and recording of system activity) are

not oriented toward the detection and identification of deliberate user-tampeTi\\g with the operating

system or with o~her user's files.
The most comprehensive of these monitors is the System Management Facility (SMF). It is possible

to generate more than a hundred types of records; the installation using system generation parameters

can specify th?se types of records it wishes generated. Most installations use purchased software

packages or installation-written programs to format and summarize the thousands of records SMF produces

daily. SMF records can b~ produced for the following Cil.tegories of data: job accounting, data set

(file) use, disk space use, device use by job step, program calls, and installation-captured data.

While SMF appears to offer a detailed and useful security audit trail, its usefulness is compromised

by three factors. First, the SMF output files are no better protected than any other system file,

thus permitting their unauthorize& modification by a user. Second, a user who has penetrated the

integrity of the operating system can prevent the SMF programs from recording information about his
I}

activities. Third, a system cTash will prevent the recording of, and cause the loss of, the most

Tecently produced Tecords. While SMF data may thus be compromised, it will not necessarily be COll'

promised. Therefore, SMF data must be reviewed by an installation for any indications of~unusual

activity - such as a statistically signifiC'~t increase in the occurrence of invalid timesharing pass

words (e.g., Time-sharing Option passwords).

4.4 ." SUMMARY

The security of OS/MVT can be enhanced in three ways:
\~

8 Operational~" An installation can choose to execute applications in a ;ingle-thTead. stand-

alone mode in which it is assumed that each program being executed has full access to all data

and programs in or staTed on the system, including accounting information.

• Applications: All access to the system is thTOUgh one or more designated application sub-{)

systems that the installation has audited and is confident can not be subverted. No other

~ctivity (such as program testing or compiling) can take place concurrently, and all data to be
(,

protected (incl1,lding the ,trusted versicm of the operating system) are removed from the system

before other activity. is allowed.

29

" ,
t"
(:
!

" i F~
le' I,
f"
1,

\
},
r;
r
1"

1;
i:
l~ j:
'I;
i'
r li
,

~
I

.. ~
. ~.

e Systems~'

are undertaken to eliminate most known integrity
Extensive programmed modifications

flaws an~to monitor
"'1'11 increase' the effort and risk required to

system integrity. This"

subvert the system.

4".5 OPERATING SYSTEM INTEGRITY FLAWS

running OS/MVT shot!ld be' aware of the following twO specific in~egrity flaws. These
Installations

flaws are discussed because it is relatively easy to counteract the effects of these flaws, Togethe~
6 d 66th se flaws also serve as specific ex

with similar integrity flaws described in Section 5. an •• e"
h y (Section 3) The generic des-

amples of the classes of integrity flaw$ de$cribed in t e taxonom " . fl
cription of the flaw is taken from. the taxonomy. The ,reader should not assume that the&e two aws

i OS/MVT Easily exploitable flaws
aTe tY'l)ical of the other int.:egri ty flaws that are known to exist n • ,

1 they are no longer applicable to currently operating systems.
are not described in this document un e6S

o Generic Description; ';' Asynchronous validation/inadequ~te serialization.

Th
e checkpoint data set produced by the checkpoint/rescart facility

Specific Description! '(tel' .,
, , t data This data set is not protected from modificat1on or COUn -

conta.ins senS;J.tlve sys, em •
feiting) by the user prior to its use by the restart facility,

" . f f 'bl 's for the installation to remove the check-
security Enhancement: One opt10n, 1. (\,as1 e, 1

, is not feasible, control mechanisms must be
poitit/restart capab~~ity from the system. If thlS

developed to require:)\ '
-System-operator validation of ch~~~point files.

I label ing p'rocedures for checkpoint vo11,ll1leS • . - Externa
_ Off-line library control over access to checkpoint files.

t ' 'pt via the checkpoint SVC and
_ Prohibition of 1/0 to checkpoint data se s, excc

authorized system utility prog~ams.

o Generic Description: Inadequate identification/authori z.ation/autheritication.
" It l' 5 possible to bypass tape label processing even if this function Specific Descnpt1on:

is included in the system by specification during system generation. For example," a user,
may change the label-type, which is specified in a SY$tem control block, before the tape f1le

is opened and the label accessed. •
. t a eters which describe

E h t The system can be Inod. Hied so that 1mportan par m Security n ancemen :
user files are maintained in memory protected from the user. This may be combined wit,h an
automatic-volume-recognition package acquired commercially or from another installation.

Alternatively, naming conventions and logs for external tape labels can be adopted such that

the system operator will only mount tapes authorized to the requesting user.

30

, J
, i
, l

~ i ,
i I. . f
r;

5. UNIVAC 1100 Series Operating System

'~--.

5.1 INTRODUCTION

The UNIVAC 1100 Series Operating System operates any of the three lIDO-series c~mputers. the 1106,

1108, and 1110. It cqmbines multiprogramming, multiprocessing, timesharing, communications, and real

time systems into a complete set of software- from basic service routines to compilers. The major

subsets (with some examples shown in parentheses) are: I' ,;

o Executive system.

o System processors (collector, FURpUR, SECURE). D

o Utility system p,rocessors (FLUSH, CULL, DOC).

e Language processors (FORTRAN, COBOL, ASSEMBLER).

o Subroutine library (FORTRAN library, SORT/MERGE).

o Applications programs (GPSS, PERT). '

The executive system is responsible for controlling and coordinating the £un~tio~s of the internal

environment. By using multiprogramming and multiprocessing, it'handles batch'processing, demand pro

ceSSing (timesharing). and real-time processing. "Since installations do not have the same needs and

requirements, each capability supplied by the executive may be eliminated by an installation during

system.generation. Permanent da~a files, ana pr~gram files are kept oft mass storage devices with some

security me~?res to ensure that' files are not subje:t to unauthorized use.

The executive system consists of several classes of routines, grouped by the functions provided.

A set of control statements are provided for directing the execution of individual taSKS of a

job and for relaying operational infOrmation about the j~b to the executive system.

The supervisor component controls the sequencing (coarse scheduling), setup (dynamic allocation
of storage space), and execution (centra.l-processor-unit dispatching) of all jobs.

Cil Available facilities ar,e a~)signed by the executive as needed to fulfill the :requirements qf

all runs entering the system.

o File-control routines allow file manipulation Without concern for the physical characteristics
of the recording devices. (/'

• Operator-communication functions display system status information to the ri~erators.
• Input/output device handlers and symbionts control the activities of all 'I/O ,p.hannels and

peripherel equipment attach\,d to the system.

31

fj
il

: ,

! I

. I

I

J,
I

5.2 DESIGN CRITERIA OF THE OPERATING SYSTEM

Because of the flexibili ty of the hardware and software configurations, the 1100 OpeJ:'atlng Sys

tem can handle both scientific and bu!;iness fObs. Jobs maY be ;;ubmittedvia anyone of three ways:

centrnl job-entry terminals; remote job-entry terminals, and demand terminals. Once submitted, a job

may be handled in any of thJ:'ee modes: real-time. batch, and demand processing. The differences of

the three operating modes are not in the way data is handled but rather in the priority and queuing

of the job's tasks for dispatching.

UNIVAC (in the 1100 Series OpeJ:'ating Systeni Progranuner Reference Manual) lists the following as

fundamental design criteria!

13 Individual components operate reent;c;lntly· whenever possible.

Q Components and data areas are permanently resident in main storage only if nonresidency is

'either impossible OJ;' would impose an unacceptable overhead.

o The central processor units (CPU's) are in general treated equally.

o Components must be able to execute on any CPU.

o Wherever feasible, real-time requests are given top service priority.

I) Interrupt lockouts and software intedocks on interrupt-related data must be kept to a minimum.

Q Most executive system components operate as ordinary activities and are managed in the same

way as user activities.

o Service requests by an,~ndividual USer are to be validated to whatever extent is necessary

to eliminate undesi~ed interaction with the system and other users. . '

o Code for optional hardware components and software,capabilities should be written such that

it, need not be generate!;! if t!1e ~ssociated component or ,capability is not configured.

o Each type of peripheral (e.g. j te1etypewritbrs and printers). has an associated sYlllbiont, a

'peripheral-hundling routine. The symbionts buffer larg'~ aInounts of data from low-speed

peripherals to mainstora&e to minimize the number of <lata transfers.

"

5.S 1108 ARCHITECTURE

The CPU's are interfaced to the I/O peripherals by I/O cO~,ltrollers (IOC). As a result of the

roc, the CPU does not. concern itself with the physical capabilities and limitations of I/O devices,

The CPU and the IDe are connected to the main storage device. Data transfers are usually buffered to

increase efficiency. There is a hardware option, back~to-back block transferring, which allol>!s data

manipulation to be handled completely within main memory without the involvement of the CPU once the

process has been initiated. This leaves 'the CPU completely independent dur~ng long data transfers.

(See figure 5~1.)

(j

32

(

f.

(j

I)

}1' I

"

1/

Interleaved Interleaved
main main I'

storoge stOro96

()

"
'~;, "

<,:
~

\

MMA
;)

MMA

J j

"

,
, '

// '0

'I

,I
\;, " II

CPU

" . "
'" -
~ ...

- . ()

,J

"
I

1/0 channel I/O
- c~mtrQJter ,

(ICC)

c'
c

,~

t C'.-. \} TlO peripherals

Figure 5-1. CPUI~ IOC, and inter:if~aved lDain storage with MMA,'s fo1' UNIVAC lIOS.
Q

o

33

1 :.

j

: -;

;

; i

a. MemotY Interfac~
The CPU's and the IOC's are interfaced to the storage units by the multimodule access eMMA) units.

There is one MMA for each storage unit. The UNIVAC 1108 may have from one to four storage units. A
storage unit provides 64~)rds of main storage C36~bit words). Hardware implementation exists to

provide address interleavi'n~ for grea.ter efficiency. An Ml-IA is used by the CPU's and IOC' s to request

and receive acceSS to the corresponding storage unit. l~en a conflict occurs between two or more

aCcess requests, the MMA services the requests on a priority basis.

b. System Control
. . . h dl d through the 128 control registers, the interrupt

The majority of the control act1v1t1es are an e

d h
.. t Dynamic allocation is serviced in order of priority and by the queue

system, an t e queU1n? sys em.
ordering within each priority, The first request aTriving at priority ~ will be handled the moment

there are nO requests of a higher priority. The dispatcher, controlling CPU usage, opeTates in a

similar fashion, Le., switching consists simply of taking the highest priority activity from a list

(called the switch list) of all activities currently requiring CPU service. lVhen an I/O interrupt

occurs, the type of interrupt and the channel on which'it occurred is either queued or routed to the

appropriate processing routine. When the interrupt is queued, the priority of the interrupt helps

determine the length of the time before servicing.
The availability control unit (ACU) provides hardware configuration control. It interfaces with

the CPU's, IOC's, storagf~ units, and MMA's for up to 24 peripheral subsystems. The ACU provides for:

o Dividing the entire system into independent systems.

o Disabling CPU's Or :iOC's ,~henever a power failure occurS.
Q Taking a unit oi~f line for maintenance without impacting the operation of the remaining units.

o Initiating auto~atic recovery upon system failure.

e Maintaining an availability table for all units.

5.4 INTE.GRITY FEATURES

a. User Control

9 The basic p.ogram entity for which storage allocation is required is called a bank. When in main

storage, a·.bank occupies contiguous physical addresses. In thl.' logical program sense!:, a bank is a

collector-defined portion 0'; the program .that is specified by a single bank-descriptor word (BOW).

(The collector functions as a loacer or linkage editor;) By this collector definition, a program is

logically organized into two b,ank;s: instruction banks (I-banks) and data banks CD-banks).

. Th~ profile of the entire task with. all of its associated banks is maintained in the program

control table (PCT). The portion of the, PCT controlling the banks is called the bank-descriptor. table

(BOT). In the 130T i\.re th~, !lOW's describing eiich bank belonging to the program. The BOW's contain'

bank control information su~h as whether or not the bank is read-write protected and what are the upper

and lower boundaries of the bank area.
A program area is thus described rind controlled by the PCT. Within the PCT are two control words:

the program state register (PSR) and the storage limits register (SLR). The P,SR contains the guard

nlode an.d storage protection deSignators. Main storage protection can be established in either one of

two modes. One mode (exec mode) affords write, read, and jump protection; the other (user mode) affords

protection only when writing. A program, may run
l

in either of two modes. Exec mode allows the program

to use privileged instructions; user mode does not. The SLR contains the upper and lower absolute')

34

~~

I
\

i
I
I
!

address limits of main,storage in which the active I-bank and O-bank of the currently operating pro

gram are located. Thus the type of storage protectibn and Whether or not it is enforced depends on

the condition of the guard mode and the write-only storage protection designators in the PS~.

b. States of Execution

There are fout states in which a program may execute.

o The ptogrri~r°j;Uns in exec mode with no storage limits enforcement ,,'

o The program runs in e~ec mode with storage limits enforced.

o The program runs in user mode with no storage limitsenforcemetlt.

o The program runs in user mode with storage limits enforced.

The last state is the only "safe" state with regards to security. A user job getting into any of the

first three state~ can.cause a security compromise.

c. Protection of Permanent Files

Cataloged files are protected by the concept of keys: read-key required, write-key required.

both read and write keys required. In core, files are protected by storage li~its> read-only desig

nator, and write-only designator; Files, in general, ean be manipulated by using the file utility

routines (FURPUR) supplied by the system. A user can also write his own file manipUlation routines.

Physical security of cataloged files on mass storage is provided by the SECURE processor which

produces backup tapes. Most files can be saved by SECURE. Certain files a~e marked with "unload

inhibit" which will not allow them to be removed from mass stox;,a{je. These unload-inhibit files are

determined by reu1 time or other speciaI considerations. There is also a guard option for reading that

even prevents the privileged read necessary to make the backup copies. This option is required for

t;ertain special files which are internal to the system and are either highly transient or highly

classified., A checkswn is optionally provided to check the backup c~py. With these backups, no file

will lose more than a certain amoWlt of processed data if the system' crashes with some kindg~ata loss.
S"C " y ~ URE tapes are handled by SECURE routines only. These tapes should be stored separate from user tapes.

In other words, there must be a SECURE tape vault, exclusive of user tapes.

d. Protection of Magnetic Tapes

All magnet;c tapes are "exclusively assigned." That if, two diffe:.:ent jobs shOUld not be able

to access the same tape at the same time. Each 'ta~e is i4rn~ffied by a series of header labe19. the
volume header identifies the reel number and the owner o~' tha! reel if it is private (as opposed to

public). The file header <;ont:ains inform.ation such as. ~pename, file generation and version numbers,

creation pnd expitation ~ate, and access control designators. When'the operator mounts and londs a

tap~, the 'system shOUld check the headers against the tape :request if the tape ;s labe..led. (The

earlier releases of the 1100 Operating System did not perform an adequate checkf however, the later

relea.ses do.)

A tape-labeling system is necessary to offset any operator error which m;ty occur. If such a

system is not available, more procedural checks must be added to double check for human errOr. One

possibility is for the operator to always copy th~ user identifier and the reel identifier into a

tape log. b~Ok, then to take thet~og book to the vault librarian who then must initial the 1.0g book

before g1V1ng the tape to the operator.\, (Ownership of tapes must alSo be checked.) There could be II.

log book at the vault for the operator to initial. With the incorporation of all of, theSe procedures,

35

~: i
lrl

~ :i~
rt:
,V

0'

; .. "',.;""~:,.~:, .. ;li

, i

. 1

f.\ ,

,-,
"

the possibility of using a wrong tape is greatly reduced. The overhead involved with these procedures

is time and the cost of log books. Alternate methods may be more reasonable for an installation with

few tapes.

e. Audit Trails

While the 10& books record tape usage, the system maintains logs to record system usage. Audit

trails (log entries) record the following: 1) job initiation and termination statistics, 2) user

specified log control messag~s, 3) console messages, 4) I/O errors,S) symbiont activity, 6) tape
labeling information, 7) checkpoint/restart information, 8) facility usage., and 9) cataloged mass-storage

file usage.
The total amount of time used by a job is broken down into the various subsystems used. A log

entry is created and subsequently inserted into the master log whenever the configuration of a job is

changed by assigning or freeing a tape or an arbitrary device file,or whenever a cataloged file is

created, assigned, or freed. The actual u~age, or lack thereof, of a file or tape is not logged

since the mere .act of assigning a file does not imply usage. In fact, a user may assign any file or

tape. The access control is not checked until the access is performed. Thus, the "usage" entries in

the master log lis~ the reservations made by the job for various types of storage and facilities and

the amount of time spent USing each type.

made by the job.

These entries do not adequately describe the actual access

~be system master log is updated at intervals. Until update time, the logging information is

kept as a temporary file, and temporary files are destroyed by a system crash. Therefore, a user can
., I'

get on the .machine, perform unauthorized actions and be undetec'ted (i.e •• not recorded on the master

log) if a system crash occurs. Some installations have incorporated their own audit trails .into the
1100 Operating System. If a larger overhead is acceptable, more specific information must be added

to detect an intended breach of security. The presentation of the information should be directed towill;d

the person (not necessarily a system programmer) responsible for examining audit information.
The use of the audit trail raises the questions of who and how often the log entriel are examined.

Administ1.'ative procedures need to be~' ~ emented" to ensure that the audit trail information is
examined in a consistent and timelY m ner and that appropriate actions are taken. An example of such

a procedure is the eXist~nce of at"s C.Urity office~", Whose. console ou~put are the highlig~ts of the
log. The important entrles (as de ned by the adinin1strauon) are prlnted onto the se~urlty console.

The offico;r's task is to use tJ:l.?~ info;rmation in detecting breach attempts. The presentation of log
/~ ,

entries to a security offi~shoUld be easier to read than are the current log tables. A list of

times and files used lna.p1fot be significant to the security. while a message indicating a guard mode

fault from user ~/ terminal m.. would get his attention.
Implementing these administrative procedures will require a redesign of not only the logging

system but also part Qf the interrupt system. 'Currently j a user program may sUllPly an interrupt

handling routine for software errors so that information would not be passed to the log. routine.

Thus, a guard-mOde fault would not be logged. The interrupt must be logged before control is passed
to the user's interrupt handling routine.

f. Role of System Console Operator

Just as the tape vault procedure can be used to ident~fy a user's access rights to a tape, 'a sys
tem conSole operator could have a procedure to determine when or when not to honor a request for

operator intervention. Messages from the 'system wei'uld be formatted so that they contain flag characters
which a user could liot duplicate onto the system console asa spoofing mechanism. Once the operator

36

II
I!
II

j
{
I
j

: t
1\
t ~
11

'II I
1 t
11
I!
!

I i
! !
If

II

is sure that the system i~ the requestor, he can safely comply. If the requestor is a user, the

operator must check two points: 1) the USer is really lIho he says he is, and 2) the user is authorized

to reques.t that particular actiOn. An example"of this process is the authorization of 11 job that requires"
oper~tor interaction, The operator would have a list of ~11 users allowed this privilege and would
conflrm that the request came from. that User rather than from another USer masquerading as one of the

authorized persons. These procedures will differ depending upon the installations' needs and require
ments. Each installation shOUld decide upon a Set of rules and enforce them •

:;:,:~\

~~ct of Systell!. Degradation

l/other insh,l1ation-dependent procedure is the handling 0'£ a system crash. Certain installations
do n~l: consider a system crash a security problem. Other installations view a crash as a reliability
problem, a matter of poor throughput. Still others wo~ about system crashes ~

."/ and recoveries because of
time-sensitive data proceSSing Or the loss of information.

o
Assuming that a system crash is serious with respe~t to security, a procedure shOUld be established

for ~ystem recovery. Defore recovery begins, steps must be taken to identify> as ~peci£ical1Y as

posslbte , the reason for the crash. This is not an easy task. The sYStem itself may be in "0 t '1
h ' . .. n ro

at t e tlme of the crash even though it was caused by a user. (For example
l

he requested a confusing
sequence,of t~sks, supplied bad data, etc;) Where POssible, the user job responsible for the crash
must be ld~ntJ.fied. A decision by a "person of responsibHity" is made as to '~l\ether malice was

meant or an accident happened. The security officer's console log might be One tool used for deciding.
It must be pointed out that this procedure will make :;ystem recovery take longer.

It is possible for 3; Use'!" to cauSe a system c;rash after making spurious files. There is a chance,
therefore, that the recovery system may be fooled into gl'vl'ng thAse p' £'1

v s urlOUSl es more privileges,
more data, etc, This WOllle! be a security breach

'I . •

Solving this problem ;lnvolvesthe redes~gn of the reeovery system and possibly of other Portions
of the normal system.

5.5 SUMMARY

The UNIVAC 1100 Series Operating System was not
~ , designed ''lith operating system security in mind.

can be corrected only by redesigning parts of the operating
system. Certain parts involve a large amount of code, and changes in these areas WOuld greatly impact
the design of other areas: One such area is the file management complex of routine~.

Therd are a numbl.>:t' of known flaws that

,AlthOUgh n,\[all areas lend themselves to redeSign, a large number of the problems"are fixable.
Conslder as an examp~e the problem of file protection in this system. To protect the files from un

authorized user access, an,access table can be imp~emented. Because the table size must be limited,. not
all user files can Joe prot~cted in this way. However, not all files are sensitive in nature. Thus; a
user can aSSess each file's protection requirements and submit his sensitiv~ files for this kind ~£c
protection. '

Problems that would inVOlve complicated software changes may have SOlutions in hardWare appli~ .
cations. For example, ban~ protection can be write-protected ~y introducing an add-on hardware unit
into the syst\'lm.

Still other problems lend themselves best to procadu!"al "'Oluti~s. Restriction of aCcess is
indeed thl;! most straightforward of solutions. Assuring that all users with access to the system are
legitimate (by phY::iical reStrictions, by impOSing heavy identity checks-, or by a combination of the

37

. .

. ,

, I

two) allowS the system to relax its mistrust of users. The ultimate in procedural protection mech

anisms is the restriction of computer operation to serial (batch) service. That is, only one job is

allowed on the system at an~' instant of ti~.
Timesharing and con~urrent job processing introduce complications that the <;tandard UNIVAC sys

tem is currently unable to adeqluately provide protection. ProceduralJhardware, and software fixes

can be introduced (and some UNIVAC Sites have done "'so) to reduce the probability of computer mis

management to a leyel of "acceptable" risk"during concurt'ent processing.

5.6 OPERATING SYSTEM INTEGRITY FLAWS

The following examples have been carefully chosen because they illustrate security problems yet

involve a minimum amount of exposure or risk to installations. The first two integrity flaws can be

fixed at the option of each installation. The final three flaws appeared in early versions (before

level 31) of the operating system and have been corrected by Univac (as ~f three or more years ago).

They. are listed to illustrate the types or security problems that occur in computer operating systems,

e Generic Description: Inadequate identification/authorization/authentication.

SEecific DescriEtion: The protection mechanism of reentrant processors (REP's) cannot write-

protect the REP's I-bank.
Implications of Flaw~ .If the I-bank of a REP is not 'ttite-protected, a user pt'ogram can
attach to the REP install a Trojan horse, and then release the REP back into circulation. , , .
Future calls to the REP wili trap the callers.
Security Enhancement::' UNIVAC has developed a hardwarle attachment (two cards per CPU) which
implements proper write protection fot' the I-banks. A sldtch is also provided to allow acCeSS

by systems personnel to TUn debug shots.

G Generic DesJ$.4ption: Implicit sharing of privileged/confidential data.
Specific Description: Portions of core are not clear~d before the user has access to the areas

in question. 0

Implications of Flaw: The user given uncleared sto:t'age can inspect the t'esidue left by the
system\7Gr by another user. Information he can get may include file access words, passwords,

keys J EXPOOL' infoI'11lfltion, etc. There is an option i;or the coqector' that alla'ws the user to

specify core sections not to be cleared before rel!l:~se to him. There are also at least two
instances of EXPOOL information leakage. Both aTe :recoverable by",the user, allOwing him to
scavenge for system control information. ,
Security Enhancement: This collector option (B-option) must be ~emoved. The default of

"clear'· must be the rule. CLRCOR is a configuJ!tion parameter which can be set at system
generation so that the system always clears d~~.

o
38

Ii
Ii '"

c

I

I
J,
\

L
II
II
1 !
d
II
II
Ii . II

\ j
H
~I d
t i

.tIJ f
I {
II r I

g' Generic Desoription; Inadequate identi£ication/~uthori~ation/authentication.

Specific Description: The check for the system file name is inadequate •

Implication o~ Flsw: Access to the system ~ile SYS$*DLOC$ specifies the run as being
IIpt'1viletr~d." To determine if a job is privileged, the system concatenates the Urst three

characters of the qualifier name with the first three characters of the filename. This six

character result is compared against the string "SYSDLO", If the compariaon yields equalitYt

the job is assumed to be privileged, Therefore, a job with acceSs to the file SYSA*DLOA ia
considered privileged. Any priVileged run can access the tekt and the master file dire~tory
information of any file catalogued in the system without supplying any of the access keys.

Security Enhancement: The entire name of the file and its qualifier 1l),\1st be checked.

check must be rutpanded to inclUde the entire qualifier (SYS$) and the entire filename

instead of just the first three characters of the qualifier and filename.

This
(DLOC$).

o Generic Description: Implicit ~haring of privileged/confiden~al data. ,
Specific, Description: In systems released before level 27, register Rl

,<
containe~

key for the Ufo instructions.
Implication of Flaw: A user can write into register Rl.

1/

/,'
An all-blank keyword 1s

the access

the access
key that allows any request to be honored. A user who writes blanks into register RI can then

issue I/O requests to gain unauthorized access to system information and to data belonging to
other users,

Security Enhancement: A control word can be defined in system space to hold the access key.

All checl~s on the I/O requests· should be compared against this control word.
(A

o Generic Description: Exploitable logic error.

Specific Description! A user can load a bank before his access rights to it are checked.

Implication of Flaw: A file pointer is updated too early. The user can access banks to which
he has no legal rights. ,

(, Security Enhancement:" The user's access rights must be checked before updating the file

pointer. The code is already in the LIJ/LDJ section of~he system. The two sets of io-
struct;ons need to be interchanged.

()

6. Bolt Beranek and N ewmail TENEX
" II

6.1 INTRODUCTION TO TENEX

The TENEX operating system was designed by Bolt Beranek and Newman Inc. (BBN) with support by the

Advanced Research Projects Agency (ARPA). The original intent was to develop a medi~ cost system

employing state-of-the-art virtual memory hardware and software, user-controlled multiprograwming, and

a flexible user-controlled software interrupt system to 'serve the research groups at BUN. The one
need that forced 'the development of th~ new system more than any other was the need to run large LISP
progtams, which typically require a rather "rg. and ,catt.r.~~. ,.t .

39

I)

D

I ,

~ i
; { ,-
,"i
;'r

[i

· h,
i 11

'1

, ,
,)

T,9 obviate the need for developmg 1,\ completely new set of utility programs, TENEX ,was designed

to be h~,rdware, and software upward compa~ib1e With Digital Equipment COl1'oration equipment; the UEC la/SO

system. By having DEC UUO'5 fPEC system calls) eaU$c loading"of.a user interpreter to perform the

equivalent TeNEl(JSYSes (TEN~i system calls). TENEX'was able to implement a complete neW set of system
:.c. I)

calls and still maintain the DEC 10/50 compatibility with a minim~ additio~ to the securi~f ketnel of

the operating ~ys~em.

6.2 TYPICAL USE OF TeNal

Figure 6~1 shows a liystem status listing for a "typical" TEN;e)(system. The listing gives the
~ (~

reader a visu~ picture of the typice."j. use of TBNEX. A description o~ how the listing ~s generated

and what the various fields represent shou{~ help it to convey the maxi~ amount of information.

This 4esctiption [ollows:

""

1) To generate the listing, a user on one TENEX system ran a !ELNET progtam that alLowed him to

connect to the "typical" TENeX system. The 'TBLNBT program has a fca'tt.rre (discussed in

section 6.6.b with ~espect to a security problem) that allows it to accumulate the terminal

output from the ~emote system in a disk file. This dis~ file, the TELNET typescript file,

was later edited·into this report.

2)/) Statting at the top of the listing is a line of header put in by tb~ 'l'ELNET program. The trl/II

lS the first character of terminal output and is the prompt character from the 'l'ELNET program.
~- .,

The user then typed "tene)tll followed by a carriage return 1'\fR». The TELNET program com-

pleted the co~nection through the ARPA network as it tYped "lis complete" and the initial

herald by the re~ote system fOllows the ,,~, delimiting the end of the TELNeT programs' command

output. In the case of TENEX. the her~ld indicates the 'TBNEX version numuer (here 1.33.16)

and the EXEC version number (here 1.53.21).

3) The "@" is the prompt from the remote TENEX's 'EXEC language processor (EXEC). The user then

tyPed "ICgin usermlme passwol'd <'ESC><CR>". The passworli doesn't echo, and the system recog

nizes the default account string f6r this user when the user typed the ASCII ~scape character

(<ESC».

4) The user was then logged-in, and he got some information about his status, a note as to when

he last logged in (to detect password leakage problems) and Was given the piolIIPt "@II by his

no~ 'logged-in EXEC (d~,scussed in se'ction 6.4.c, "Process Protection). He then typed ,ild<CR>1I

which geilOrated the status listing, and he tn>ed "logout<CR>" .after the last 1I@1I prompt to

logout. An ASCll SUB (control-'l) te~ls the original TELNET that the ~ser wants t;.\: talk to it,

ag\lin eliciting the 11/1'''. The uSer then disconnects and quit~ leaving the typescript file.

S) As far as the load sU,ttus itself goes., after sOllie load 7,'tatistics (e.g./ an average of 6.31

processl;)s are curr.ently requesting the CPU) I the load status lines are generally broken up

into four fieldS: job nUlliber, terminal mmiber. user name, and a variable length field. The

variable length field includes: a) the subsystem in use (default is EXEC}t b) the user's local

network site. shottn in parentheSes 110" (default is a local user); and c) the u!<er1s con

nected directcry l shown in angle brll$kets H<>tt (default is the user's login directory). Most

of these terms a;e discussed in detail later where they relate to security iSsues Pl1d are

noted here 'simplY for later reference. The only lines that are not of this format are lines

that do not start 1'Iith Ii number (the job number). These lines indicate active ARPA net con-

nections and are not pertinent to this discussion.
o

---,,:: .. ---
Characters in angle b'rac1<ets,«» indic~~e ASCII s.tandard characters.

40

!
I
I

[.

I ,
i

'f
~

()

1\

TELNET tl~pe:script. file started.at TUE 18 MAR 75 193?:~'" 'E"'T
~lenex is Complete.~ ,. v
TENEX 1.33.16~ EXEC 1.53.21
@login risos LlL

JOB 9 Dli T1)'113 IB-MAR-7S
PREVIOUS LOGIN: 18-MAR-75

@ld
Load 6.31 5.19 5.05'
Up 32:44:36 25+2+5 Jobs 12;>;: idle'

Jb TTY User .
34 11~ not logged in

9 113 R}sos lD~(LLL~RISOS)
26 112!/(SWith R.SJ;:XEC~ (Ar'1ES-TIPol?46)
46 111:.1< J\~fll1es
42 53* lab TEU-IEY

oPt-U)' *3/2 <::> BBN-TENEXS! 2* 11:1/1 > OS
48 52 Jones NLS <~
25 56* Risos FTP,(llL-RlS05;

OPND 162/~ <: > 88N~TENEX:? 361':11/6, 88
_OPMD 164, ,- 'BBtt-TENEX!? 3ee3 .• 831=:
"e ~ Frlend 85'1'S .. <:1si;;:) -
46 4.::>* Ta':llor LISP ... <Spe\:.1ch>

3 42* Campus SPEll
17 46* Sy:.sJocK PRINTR~(S'Jsf,em)
28 3? User (PRIV)
21 36* Ai~\uff LISP
13 32* Edit TEeD
38 26* Assemb 1 f'1ACRO
41 34* Fast TVED1T'
12 2'3* Repor f. RUNOFF
45 22* Nbs
36 21* Risos EXERCI
29 17* Number f'46
e 16* Bart' 50S

16 14* Alongname~XOS
19 11* 8art. READMR
24 H:)* Friend SNDf'1SG
23 2* 1"1ac 11 t'IACl"lll
39 Del.. Balch
26 Det. I.JQii
5 (LUlNF)
4 O~SSER) ,'.

TEI~5tR,. <t·it=>0. >
<LoadstaD

Cll!.J *E.Vl '()" B8li-Tfn"IE;'~:4Y1*3/2. 836
2 (8ATem-!) <80+ ;:h) ,
1 (PR INTR) <Pr i~t~r:>
6 (SYSJQB) -
DPr;D #~66e/ 1 <> B8N~DTENE>:B! 35* 163,"2. 88
OPHD *,,,667. <:- 8BN-TENEX8!35*165. 88'

.,
"

; ThBPQ~k'JP arch i Vet 1 system.

;~ spelling correcf.ion program.
: ,.yslem print.er t::ontrol
.: A IJs~r" S I-,nnamed progr~m.

~R simple pOl erful editor.
i[An assembler.
~A fast display type editor.
,.An old report generator.

;The RISOS system Exerciser.
;The Fortran ~ompiler.
;An unKno~~ SUbsystem.

;AR subsyst.em to .read messages.
message sending -facility.

.!R PDP-l I eros;:> . assembler.

.:t:j detached job.

.: RSEXEC server d i SotJssed •

@logou;.
'LOGOUT JOB 9,. USER RISOS~ .RCCT lLL TTY 113. AT

_ ~SIED 6!6:5 IN6:Z!14
oIfd150onnect.

3/18/?5 1641 PDT
Ii'

';;'quit

Figure 6~1. Exanmle of a sy t • C)
~'l" S em status l;i.sting for 11 "tvnical II,....PX

(J,' - systetl •. '

41

, ' 1 '

1'ncludl'ng a It,'" on a line was included as a comment and was edited in for
6) Anything after and

this report. Also some subsystem USe was modified to further typifY the status. Some names

were changed, and seme lines were deleted to shorten the listing.
, ", 1 . editing, spelling correction,

Ali ~1n example in hand of typical TENEX use, the lnlua ente;rlng.

storing. and network mailing of this section Were done with TENEX.

6.3 OVERVIEW OF rENEX HARDWARE ARCHITECTURE AND INTEGRITY FEATURES

a. CPU
TheTENEX operating system can currently run on a DEC KAlO processor with a BBNP~g~r o~ on a

(Th v'lO KIlO and KLlO are all DEC PDP-lO processors.) The in1tJ.al 1mplemen-
DEC KIlO processor. e "'" ,
tat ion was on the KAIO'for which BBN designed the pager. The KIlO version is selected at assembly

time and is implemented by ~ranslating between the KIlO format and the BBN pager format for the page

tables. The system upon which this report deals with is the KA10 version, so only the KAIO system

will be considered. There is little loss of generality ~n thus restricting the report to the,KAIO

version of TENEX.
Probably the most impoTtsnt feature of the PDP-IO CPU that aids system integrity is the fact t~at

the instruction set and I/O structure Were optimized more for simplicity than for speed. The mech
anism for computing the effective addresses used by instructions is uniform throughout .:h~ instruction

set, thereby freeing' the programner and automatic analysis routines from the need to C0l1s1der many

special cases. Included in t~e instruction set are,a complete set of Boo1e~ op~rators, ,stack

opera:~ors, varbble-Iength byte operators,:and flexible bi t..,testing and maskl~g 1nstruCt1on~. Many
of these instructions are almost never used and many perform identical operatlons, but the lnstruc
tiOM are or~anized in a way that makes them easy to understand and use. 'The I/O structure is also

very'Simple and doesn't contain the sophisticated channel-program mechanisms that appear in many com-

pute:r systeos of about the same vi~tage.
One disadv~tage of the PDP~lO is that its arenitecture does not admit a practical virtual ma-

chine monitor, There are several instructions that allow a pr9gram .unning in monitor mode to de
termine that it is really in mr.>llitor moqe. Such instructions would haVe to be emulated in a virtual

machine monitor, and no mechanism is available for singling out the particular troublesome ~n- ,
struct,ions; This fact requires that a virtual machine monitor for the PDP-IO simulate all l.nstructlons,

a mechanism that is impractically sloW on the PDP-10 itself. A TENEX emulatOr was implemented on the

MAXC at the Xerox Palo Alto Research Center (PARe) which made some otherwise difficult measurements

possible. but this is a on~ of a kind system and the additional measurements are :ery limited. A
virtual machine monitor for the PDP-Ie itself would make TENEX development much smoother and make much

more complete testing of the operating system possible.
The hardware modifications necessary to allow the KA10 to support 3 virtual machine monitor are

fairlY minor. The software task of writing a virtual machine monitor for the PDP-lO. however, would

be ~ major undertaking.
The JSYS mechaniSm that was introduced with the BBN modifications to the KAlO processor greatly

simplifies the Monitor call mechanism. The most important part of the ·JSYS mechanism is the JSYS
vector located optionally at a fixed location in real core or in a reserved page in the per-process

region (discUssed in section 6.3.b) of the Monitor'S virtual space, (This o~tion is a recent addition
for JSY$ txapping which is a1$0 discussed in section 6,4.c.) The JSYS vect~f contains the addresses

of the routines used to handle the JSYS call's"nd the addresses of words to store the information

t th II ' g process When coupled with the per-process mapping (Sec. 6.3.b necessary to return a e ca ln .

\ 42

:.-,\~ "

beloW), this mechanism makes monitor entry and exit from'user' space very simpYoi:.

MonitoI' recursion mechanism (USing JSYSes within the Monitor) is still al~kward.

Jj~~rtunatel)' the
This recursion is

once removed from the user, ~owever, ~nd~is therefore somewhat less security sensitive.

b. Virtual Memory Hardware

TENEX is a virtual memory system with separate virtual spaces for the M~nitot and the user. This
fact. reduces some security problems. For example, it is not possible for a user tG put his program

into monit~,r mode by having the Monitor return by mistake with the monitor mode bit set. If the TENEX
Monitor did so, it would simply return to somewhere within the Monitor. This would likelY cause a

system crash, but WOUld, not allow the users program to run in monitor mode. The user can still attempt

to put a program segment into the Monitor space somehow and then try to ,get the Monitor to jump into

it, but this is a slightly more difficult problem that also exists on any system with write-modifiable
or pageable code.

Another auvantage of having a virtual memory map for the Monitor is that it is possible to ~~rite~

protect th~~onitor code. TENEX currently makes some use of th~s feature.

The fact,that paH of the Monitor virtual space is mapped on a per-process basis makes the Monitor

simpler and ~{iillinates a 'class of security pl'obiems, Associated with each 1'I:NEX process is a page

called the Froce'ss Storage Block (PSB). Contained within the PSB is th-G map for the Monitorls pel"
process area (the last 128 pages of the monitor virtual space). The PSB is p~it.ed to by a pager

',' :reistel", soh is very easy to change when rescheduling a new pr!.)ce~r. The kinds of security prob-
, , ' " 1ems that thi~,\ feature eliminates are those which call l.:;;'pen when. th~)monitOl' cOllfttses l.'eferences to Or

fails to prot~ct from the user-process specific information (e.g., tIre implied sharing of privileged

data class flf £laws discussed in the ,j:ax.onomy in section 3).
Stilj-/';lUother hardware feature that simpli~ies ~ystem coding and therefore makes it easier to

secure 1ENEX is the operation of the monitor mode instructions which reference user space. On the

PDP-10,' the 16 general registers can be reference? as the low 16 words of a vir.tua1 space. These

same registers are used for both Monitor and User spaces. Therefore, when the Monitor is entered, it

has to save any user registers that are needed by the Monitor routines. To reference user space, the

Monitor is given a special sot of instructions., When the MonitOr references a user address 'Which

happens to be between 0 and 15, the pager automatically causes this reference to gO to a special saved
regiSter area of the PSB. ;n this way"if the Monitor has a user address to referr,nce. it need not

make a special ~~eck to see if it is between 0 and 15.

c. Per!phera1s

The most security senSitive TENFX peripherals a~e the paging drum and the disks, Which are used
for permanent file storage. Failures in these units have caused security problems in the past, but

generally such failures only result in system crashes. The little fault tolerance built into TEN EX

for these contingencies should be augmented.

TENEX supports a wide variety or ~nline terminal devices. 'rhe software that associates these

devices with processes" is fairly simple. No seCurity problems 'Were discovered in its implementation.

lntrinsically. however. mechan;i;sms aie designed into TENEX which allow p1-ocesses to aSSign a non

logged-in terminal device and to accut~telY simulate a non~logged~in EXEC. The way the mechanisms

work, there is no way that a use: starting to use a hard-wired, non~logged-in te~inal c~~ assure
himself that the terminal is not assigned to a process which is ~imulatingoon EXEC. Te~inal-lik~

con~ections that are effected through the ARPA network do not have this problem because the netw6rk

"te~inalsll are created and destroyed every time a connection is set up.

43
o

, :
1,

, i

i
'. !

t,

TENEX s~ports an ~xtensive set of communications software. There are problems discussed in

section 6.6.a concerning the auto-answer telephone facilities and the interface to the ARPA computer
network. The ARPA network software presents a unique problem both intrinsically and in terms of the

implementation of the interface<-::ultip{~xing.
Intrinsically, the ARPA network (or any network of the same type) represents some unique problems

because it allows arbitrary processes to communicate with arbitrary processes on other host system~.

Traditional1y~ computer systems have kept a fairly tight control as to which processes were allowed to

handle specific devices. Because the ARPA network is logically multiplex~d to look like a very large

number of devices, access to' these pSeudo devices is given out very freelt. Any process (especially

privileged processes) handling one of these pseudo network devices is maintaining a security perimeter

and must be assured of correct operation to aSSure system integrity. (See the Privileged subsystem

problem discussed in s~ction 6.6.b for example.) Even an interactive terminal user using a process to

connect to another site (e.g., the TELNET connection, in figure 6-1) is incurring the security risk

that the remote system might spoof his local process into relee,ingsensitivc infotmation, If the

use~ explicitly gives sensitive information to an ARPA network connection, he has no assurance that

its integrit:r will be pror,ected. All such network co~ication must assume malicious tapping and

noisy commun;ication channelS, and therefore, combative techniques like encryption and error checking

must be used:~
i

The Netvork Control Program (NCP) that p,erforms the logical multiplexing for the ARPA network

connections is a complex program making auditi*~ and correct implementation difficult. Also, there
are many situations where it is natural for the NCP to trust the Interface Message Processors (IMP's)

handling the communication network fUnctions and even the remote hosts to follo~ network protocols
and/or to perfO:J:1ll in a generally reasonable manner. This. trust can lead to problems.

There were several times during the courSe of the TENEX stUdy, that, problems of one kind or
another were traced to the NCP. The NCP is a complex and rapidly changing portion of the TENEX monitor,

however, so it was not included in the main thrust of the TENEX security study. and will not be directly

discussed in the remainder of this report.

TENEX also supports a complete assortlDent of tape devices. line printers, card readers, paper

tape equiplDent, etc. There are minor intrinsic security issues.associated with many of these devices,

but these issues are generally applicable to such devices on any system! and there were nO outstanding

novel implementations on TENEX.

There is one other pexipheral-asso.ciated mechanism that deserves mention and that is the TENEX

Backup System (BSYS). This is a magnetic storage system that is USed as archival storage for TENEX.

The system uses ordinary magnetic tapes and requires manual operator tape manipulation. This system

is sensitive in that it has to mUltiplex the physical tapes among users. An incorrect archival re
trieve could give one user another user's file. However, this system was not looked at in detail for

the TENEX study, and no problems associated with it appeared after the initial bugs were shaken out.

6.4 OPERATING SYSTEM DESIGN AND INTEGRITY FEATURES

There are some terms that need to be mentioned before a discussion of the TENEX software design

and integrity features cm: be continued. Included here are only those terms and associated :j,nfonnation
pertinent to the security and integrity discussion:

44

;,)

~ Environment
system Directory Associated It~ms

password, directory protection, default
file protection, directory group
membership word.

File directory

Job system

protection bits.
e;F~-)

login directory, conne~t~t directory j

Process process, job

job process structure, job file structure.

User system

The discu.s~ion of TENEX SOftware

. ~~'

process capabilities, inferior process
structure.

login directory (and ~ssociated.password),
User group access word, initial capa
bilities.

security and integrity will be broken 't h protection d' ln 0 tree parts: file , lrectory protection, and process protection.

File Protection
iJ I,

In TENEX any f'l IJ b
, ' 1 ~<can e named and access-requested by any USer

recognlZed: read, write~,execute, append, and list List a " Five kinds of acces~e
the .name of a file from the sy t (. .' ccess. lS req,.~ested when a user asks for

s em e.g., by trYlng to list the file's name'
access is request d wit' ." ln a directory). Append

'. een a USer a~~empts to write beYond the end of a file
explanatory. • The others are self

Each file contains IS bits of PrOt~ction
fields called SELF i GROUP, and OTIiER. E ' information. This information is broken up 'into three'

. ach fleld has one bit to denote each of th ~. .
recogniz,~d (plus one unused bl'tl. Wh e l:lVe acceSSes , en a user attempts t • "
chosen as follO\~s! . . 0 access a flle, the apPropriate fi,eld is

1) If the user is . 0 t d
• c nnec e to the directory containing 'the file, then
lS used to validate a A . the SELF protection field

ccess. User lS initially connected t h' "
only connect to other directo' b . 0 lS logln dlrect0xY and can

. rles y Ownlng them (see the discussion of directo~ p¥o~ectl>on
below) or by knowing theiT password. -; ••

2) TENE~ has 36 User groups that are set
up administratively (the u~er has no d' over them).

3)

A . ., lreCt control
ssoclated Idth each User is a 36-bl't U ser group access word Th , access Word contains a 1 bi't for ea h • e user s group

'th h d. c group that the user has GROUP access to ASSOcl'ated
Wl eac irectory is a 36 bit d' •

- lrectOry group membership I~ord Th d' .
ship word has a 1 bit for every , • e nectory group member-

"., group that the d1rectory belongs to. If, when attempting to
access t •• e flle, the tiSer does not have the SELF relatio h' , . ,
does have gr6up access to a grouP Which the f'l 1 d' ns lp to the flle' s dnectory, but

, , . 1 e s lrectOI"/ belongs to then th GROUP
tectlon fleld is used to validate access. ' e. pro-
If neither 1) nor 2) hold th

, en the OTIiER protection field is used to vaUdate access.

b. Directory Protection

In addition to the file protection th ' • ere 1S a facility for directo . .'
The directory protection mechanism l'k th . ..,. ry protectlon within TENSX.
" ' 1 e e group mechanlsm, is admini~tratively controlled and is
lnacceSSlble to the user. Associated with each directo't'V •

-; lS a protection word that is broken' up into

45

: '

fields analogous to those for files (SELF, GROUP, and OTHeR). The first bit in this field is used to

limit all accesses. If this bit is off, a user can't even know of the existence of the protected

directory. If this first bit is on, then the other bits are used for governing OWNER, OP:N, and APPEND

access. OWNER access allows connection to the directory without a password, control of f11e ac

counting, and some other control functions. OPEN access allows the user to open files in the directory

according to their file protection. APPEND accesS allows the user to add files to the directory.

This protection scheme is flexible,but its particular form of flexibility also admits various

incompletely defined and at times seemingly inconsistent situations. The directory protection and

group mechanisms are poorly d~cumented. Typical TENEX users have nothing to do with an~ of','jhe pr~
tection mechanisms. A good deal of sophistication by users is required to change the f11e pr

o
tect1

0
n

word. The group and directory protection mechanisms are often difficult to use even for experienc~d ..
system users. The lack of user manipulatory facilities for the directory protection and group fac111t1es

seriously limit the utility cif these facilities. '

c. Process Protection

Processes within a TENEX job occupy a tree structure with the TENEX EXECutive language processor

(EXEC), usually at the roqt. TENEX processes have always been able to protect themselves from inf~rior
processes. (Note: The terms superior and inferior are ~sed to indicate ,the relative position of

processes in the tree. Process A is superior to process B if A is On the shortest path between B and

the root.) l~ith the implementations of the JSYS trapping, facility. however. superior processes can now

f • f' . s es Thi.s property ,has important
protect both themselves and the user's resources rom 1n er10r proce s •

applications to debugging, Trojan-horse problems, and extensive programming.
The cases of the debugging problem and the Trojan-horse problem are quit~ similar. In the first

case, one is generally worried about protection from a well-meaning but pos.siblY misdirected process,

and in the second case fro!II an unknown and possibly malicious process; but the basic problem is the

same. ,In each case, the user wants to protect h1mself from a process that might try to adversely affect

his envir6riment.
Early in the TEN EX development an invisible debugger, IDDT, was developed which monitors execution

of a user's process in a way invisible to the pro'c,ess. This debugger is quite us~ful ,for monitoring.

but it' cannot protect' the user from arbitrary system calls by the ,process being debugged. The new

JSYS trapping feature for TENEX allows a superior process to handle system calls for an inferior. This

mechanism alloWS the superior to completely protect itself and the user's resources from the untrusted

inferior process.
Though this theoretical ability to solve the classical Trojan~horse problem e~ists, it is awkward

to implement and has not yet been programmed. The problem is interpreting the ,inferior's JSYS calls

and deCiding whether or not to allow them. Until a complete security system is implemented, however,

a user1s files can be protected with the simple mechanism outlined below.
The user could put \'lhatever files "the untrusted program is to be allowed, to reference in a spare

directory (this scheme requires that such a directory exists) and then, after connecting to the spare

directory. he could run the untrusted program under a trivial monitor that simply traps 'any attempts

to connect to another directory. This would crudely solve the classical Trojan-horse problem and allow

users protection from undebugged programs.
The JSYS trapping facility is very new -- Dew enough that at the time of this writing, no complete

documentation exists. The JSYS trapping fa~ility was designed, however, largely to aid implementation

of the TENEX RSEXEC system. so the RSEXEC makes heavy use of JSYS trapping and is a good example of the

ways in which extensive monitors can be written for TENEX.

46

"

" The RSEXEC system is designed to give the user acces~ ~? TENEX On a networ~ virtual basis. To

this end, it allows users to acquire directories on othe.t' host computet's and

directories as if they were local files. This requires that the RSEXEC trap

erences to remote files look like references to local files.

A set of capabilities are mai~tained with each TENEX process. These

denote special privileges of the process. Typical privileges are:

to use the files in those

JSYS calls and make ref-

used to

"
o CTRLC allows a process to enable "con,tl:.q1-C" q~~ a PSeudo Interrupt

condition. Itcontrol-C" is usually rJj~;i,;rl:i:.:2) the break character
c

(PSI, software ~rrupt) ",,-
to escape from II process in

TENEX. A process with the "control-C" capability can handle its own "control-CIs".

o SUPMAP allows a process to perform memory mapping operations on its superior.

o WHEEL allows various privileged JSYSes. This capability is an all-powerful capability given

to system programmers.

Processes in TENEX are also allowed flexible access control over the virtual memory pages of pro

cesses and files that they have access to. This is not particularly pertinent to secu~ity except to

note that this mapping scheme correlates with the file protection mechanisma in the sense that virtual

memory mapping allows at most those accesses allowed to the file or process being mapped.

One other TENEX feature which fits most naturally here is the way in wh~ch the TENEX executive

language processor was essentially kept out of the TENEX security kernel. ~;n a us~r inf~iallY con

nects to TENEX, he is given an EXEC. This EXEC"is not logged in, however. and ~.!3 only able to in

terpret the user's commands and perform simple operations. When the user tries to login. the EX~C

simply performs a login JSYS supplying the name, password, and account given by the user. If this

login ia successful, the EXEC is given access to the userl~ login directory. the user's capabilities,

etc. At this point the EXEC is acting like any other process running in the usual environment for the

user. It can only access files accessible to the user and has(lonly ,Fhose privileges granted to the

user by the monicljr. In" this t~ay. the EXEC need only be trusted by t~e user with his resources to the

extent that,Bny other program which is running unprotected must be trusted. The EXEC:,can no more de

grade the Monitor than can any other user process. Also, users cannot be affected by'another user's

EXEC unless there is a problem in the TE~X monitot'. For this rea~on, except for possible Trojan

horse-like problews. the TENEX EXEC 'need not be consid~~ed part of ,he TENEX secufrity kernel.

6.5 SUMMARY

Of the security prablems that have been discovered .in TENEX, the majority of them have beE;n

eliminated from more recent versions of the,system. The more significant known problems that re

main occur in the·area of the peripheral interfaces. In TENEX it is possible, though difficult, to

handle the classic Trojan-horse ptobl~m using'th~ ,s¥.stem call trapping feature (J5YS); TENEl{ doea:

not address the general proble~ of controlled communication between mutually suspicious processes that

is solved by experim~ntal capability-list (C-list) systems.

Much of the TENEX implementation is t'e~atively easy to analyze. Its major weaknesses from the

point of "view of code oqscull"ity are in the file system; the'Network Control prQgr~. ana the

scheduler. Portions of th~ TENEX process and software interrupt handling code have been ext~nsivelY
analyzed and exercised. These sections of the monitor noW app~ar to be implemented correctly.

47

« '
__________ ~ ________ ~ __________ ~~ __ ~ __ , ________________ • _______ , __ =_~~~~.~ __ ~~.~~~~·m!l.'~~~~~

;-,

6.6 OPE~tING SYSTEM SECURITY FLAWS

During the more than Z years of the TENEX study, 20 to 30 flaws were found in the system that

could 100se11 be classed as security flaws. Of these, some 13 or 14 ~ere analy~ed in depth. These

flaws wet'e observed in 'l',ENEX releas'es be'tween 1.29 and 1.32. Some of the existing flaws have been

fixed, in releases 1.33 or 1.34.
Here w~ present a few of the flaws that we have investigated. All of the known problems that

still exist in TE~X are presented along with methods for~minimi~ing their effects. Furthermore,

since the other flaws have been fixed at all current TENEX inijta~lations, we have included represen

tative examples of these ear~ier flaws. These examples are fairly typical of the range of security

problems that occur in computer operating systems; however, the ease with which some of these problEl;ms

were fixed is not typical. The flaws are categori~ed within the scheme presented in the taxonomy in

section 3 in order to display the TENEX flaws in terms of global operating system problems. The

associated taxonomy category is shown in parentheses.

a. Existing Flaws

G List~access failure during file recognition. (Inadequate identification/authorization/
authent1.cat:f.on)

II

There is a feature of the TENEX monitor which fills in the remainder of a recognizable name

fOr a~le at the user's request. The monitor code which handles this name recognition fails to

check ~"'see if the requestor of the recognition has list access. Users must be aware that this

problem exists and not depend on list-access protection.
The needed fix is to add the appropriate access check. In the meantime, uS~':;--'~~lO really

have a need tQ hide the names of files in theiT directory can get someone to prdtec:,' ',their

directoTY using the directory-list protection.

o Crash on drum overflow. (Violatable prohibition/limit)

Ifusers create too many 'Private pages, the Monitor crashes. TENEX does not use any paging

schellib"fol' its secondary drum storage. If the drUm £ills up, the system crashes.
Th~re are two schem~s that have been used to alleviate this problem. One is to make the

drum larget' by logically including some disk stora~e. This scheme could work because there is an

upper limit on how much drum storage can be demanded by users. This upper limit is very, large,
however, so the initial scheme of reserving disk space for the drum overflow is too impractical

to be used to s~lve the problem completely. What is needed is a paging scheme for the "drum"

storage.
Another Scheme' that has be¢n used to prevent system cr~shes is the triggering of a machine-

size-exceeded software interru~t if the drum is close to filling)~~~. This does protect the sys-'

tern from crashirtg, but probably destroys a \Iser program which was not doing anything wrong.

o Circular mapping causes hung process. (Exploitable logic error)

This problem appears if a user sets up a circUlar set of indirect map pointers in a process

and thoo tries to Idll the process. The killing pr~cess hangs irrevocably in the KFORK (kill
"-

fork) JSYS.
~aving this problem occur simply degrades system performance and uses up the user's reSources

(the process hangs in art unterminating loop). There is currently no certain way known to ,get rid

of such hung processes shott of res~arti~g the system.
This problem could be fixed by having the KFORK JSYS limit the number of indirect page

pointers that it will follow in the same \~ay that the pager does.

48

fl

\
;
t
!

I

I ,I
,\

!"
!
1
"!

!
I

1
I

'~

• Lack of scanner hang up and recall signal. (Hardwartl) \

As mentioned earlier, some of the telephone scanners used ~dtfl TENEX do not have adequate
signals to notice when an auto~ans\iter phone call is hung up and another call on the sam.e line fs

" initiated. This allows new callers to get old jobs if the old job was hung liP without a proper
logout.

To avoid this problem" the system should be configured with the prefer scanner signals that

are available. US~TS on systems without the proper hardware can minimize this problem by logging
out properly whenever possible. This problem occurs only with telephorte calls, so a system without

s;
telephone access (e.g.) only hardwired and/or network access) does not have the problem.

b. Flaws That Have Been Fixed

o Skip return problem~ (Exploitable logic error)

This error occurred because of the way the monitor implemented the mechanism'which returns

'to the user's program counter (PC) + 1 rather than directly to the user's saved PC (calied a sldp

return). The mechanism was simply to add 1 to the user's return word. If the PC happened to be

-I, this addit:on would overflow into the index field of the word. In this case, because of the

,,,way in which the return instruction works, the return would be done to the locatiort specified in
.:.-:2.--::

general register 1. This return location also controls whether return is to user or monitor

space. Under certain conditions, the user could control what was in regi~ter 1 and in some other

registers. This control would allow the user to ~'t", ;,;t'n to the registers that he had set up in

the monitor's space. These r~gisters could contain a program that bOQtstr~~s in a program de
signed by the user to take over the complete control of the TENEX monitor.v

This was the only case encountered during the study of TENEX in 'which a complete take over
of TENEX could be accomplished in thiS somewhat fundamental way. The password check problem

noted below was as serious in its consequences, but was not as fundamental in nature.

The problem was patch{!d the afternoon that the bug 'vas encountered and was distributed to all

TENEX sites through the ARPA network the same day. The fix amoun,ted to\\masking out the indirect and

index bits in the use,r return word before returning to the user.

o Password information leak. (Implied' sharing of privilegediconfid~ntial data)

This problem combined several featureS of TENJ:X to produce a security threat in a clever 11ay.

The first fe~ture is that a user can find out when a page in his virtual space which was ullJllapped
has been referenced. The second feature is that the TENEX :password-checldng routine did cha~.eter
at-a-time checking of a User's submitted pass~ord._ The third feature was the fact that user pro
cesses can themselves submit passwords for checking in a flexible way,

What a user could do to exploit these features was to submit' a ca,:didate password in us~:r
space in such a way that the first character which was not known to be corre~t is 1 byte before a

page boundary with an e~)ty page to follO~. ,Then, if the character is correct. the passwo~d checker

will reference the next page thereby telling the tiser that the passl~ord character was correct.

As long as the character is incorrect, the user can simplz:;;hange it apd try it again. This re
duces the nUmber of 'guess'es required to, guess an N-character password from on the order of 64**N

to on the order of 64*N. This allows passwords to be dis~overed in a reasonably short amovnt of
time.

The fix to this problem was to have the password checker reference the full length of the
submitted password regardless of where the check fail~d.

49

'i

"0, . ~(~

This flaW is mentioned because it is an instance of a very stubborn type of pl'oblem that is

not directly ll.ttack~d by any of the current ptogram-verification £!. pl'ogram-ptoving techniques.

The problem is one of having the sY,~tem leak sensitive information to a user process through

timing or other unrelated infonr.ati~n channels (in this case the fac; thl~t a pag,~ fault had oc

curred). With this Froblem. the password checker could have been proven' correct as could the page

mapper, but between the two of them they leak out some critical system information. There are ,

many other wa01 in which a system can leak information from one process to another without directly

transferring any data. However
J

because this general problem is not directly pertinent to TENEX,

it is not discussed further.

o Incorrect communication instruction usage. (Exploitable logic error)

ThiS is a caSe where inappropriate use was made of one of the special user-to-monitor space

communication instructions. Here the instruction WaS intended to fetch a byte from the user

space. It would do this properly, but would aiso do any in directing that was requested by the

USer in the monitor space. When doing indirecting on a PDP-lO, new memory words £01' the address

calculation are accessed from addressed locations until an address is found in which the indirect

bit is turned off. (For details, see DEC System 10 Assembly Language [7).) If an un~pped Mon~
itol' page \'-las re;ferenced 4uring this address computation, 'l'ENEX would crash.

The fix ,~as to use the proper communication instruction that also did its indirection in the

user space. The actu~l fix which was initially implemented was to mask out the indirect bits of

the user submitted pointer. This initial fix unnecessarily limited the user1
S flexibility.

The instruction set for the TENEX machine, even with these few user~monitor communication

instructions, is so simple that ~ugs of this kind are rare.

o Accounting problem. (Inadequate identification/authorization/authentication)

This is a case where an add-on mechanism was not properlY tied into the monitor's usual access

control mechanism$. Originally in TENEX. user accounts wete not validated. They were only used

for system informatioTh Later it l'IaS decided to charge accortling to the accountS. This required

account validation. Initially, this was implemented by having the EXEC check accounts if ~f ac

count change was requested through tha EXEC. This didn't suffice, however, because users eould

still change their accounts directly with the change acco~t JSYS, thereby bypassing the EXEC's

check.
In TENEX. version 1.32 changes were made to the change~&ccount JSYS to have it validate ac-

,counts directly.

Q TELNET typescript file problem. (Implied sharing of privileged/confidential data)

This is an exampie of where the Trojan-horse problem can still plague unwary TENEX users.

'The TENBX TBt.NET program is a program that can be used to connect to other sites on the ARPA net

work. This program has a feature for accumulating the us~r's terminal printout in a file, called

his typescript file. This facility i~ turned on by default, but the file geneTated is made

temporary so that is disappears if the user logs out without having explicitly saved it. Before

.i~~thiS' pltoblem was noticed, the protection for the typescript file was set to the default protection

"',: of the directory that it was in. This was generally set t(} allow all users TOad Ilccess. This

meant that after a user had'completed a TELNET transaction and until he logged out, his 'typescript

file, containing possibly sensitive info~ation like passwords, etc., was up for grabs.

50

r II'
11

I
t
I

,",<J

The fix "qas to set the protection of the wpescl'ipt file to self only. Thc moral is that,

even though TENEX has .facilities for combating the Trojan horse problem, users must be wary of 0

leakage when running arty programs ~hat are allowed to reference !>.ensitive data. '
II

• Privileged subsystem problem. (Inadequat e j dent j fl cat ion/ authorization/ ituthen ti cationL

This problem, which Was alluded to earlier in the ARPA networK diSCUSSion (Sec. 6.S.c), dem

onstrates the need to keep privileged processes to an absolute minilrrum (zero if possible).

TENEX hi!; it facility cal1ea linking wllich allows two usel'~ to communicate by sending all

terminal output generated by either USer to both USer terminals. When one user attempts to link

to another, he is allowed to do so ortly if the other user is accepting links.

-The RSEXEC system/which Was mentioned earlier, implements as one of its services a mechanism

for host-to-host.' network links. In the earlier stages of the RSEXFC development, it waS found

desirabl~ to have the process at each site which listened for these network links to be a priv~

ileged process. The way it was implemented, the nen.ork link was put througl1 in spit; of the

fact that the receiving party might be refusing links. This left potentially sensitive infOr~

maHon exposed.

The point here is that any privileged processes running on TENEX are in the TEN EX security

kernel. If TENEX is ever to be proven COrrect then any such processes must be proven eorreet.

The easiest way to do this is to have no such processes.

o Unchecked file delation access. (Inadequat~ identiri~a~10n/authorization/authentication)

The OELNF JSYS is a monitor call that dele.' , III hut SOme number of versions of a fHe. Such

a JSYS was initially thought convenient, but in actwll practicu is almost never used. It was prob~,

ably the fact that the iJELNF JSYS is so seldom used that caused this integrity problem to go un~

detected for so long.

In coding DELNF, the file protection chec~ 14as ~imply -omitted. This allowed any user to de"

lete any file in any directory with simply open and list access to the directory. This includes

almost all files •

The important thing to note about this problem is the fact thatt.here could be an accl!!Sl'>

check omitted in DELNF even though the proper check Was madCJ' in PELF (the JSYS usually used fOl'

deleting files). This dual implementation situatioh is caused by ineffective organization and

causes comparable problems in many systems. TEKEX generally has very few problems o.f this SOl't.

There is a feature of TENEX that effected the OHm: i~roblem that can be moSt appropriately

discussed here, When 1JlNEX deletes a file as with Df:I,NF, it simply sets a "deleted" bit in the

file descripto~. Such deleted files ~an afterward be undeleted if desired. These deleted files

are only really destroyed if the user eXPli~JtlY asks fo.r them to be expunged or if he logs out.

If, before deleting and expunging BllY file;; \10gging llut, the user had first taken the p;re

caution of undele1:ingall files. he would have~een safe from all but the most insistently mal i-
cious DELNFing programs. ""

There are syst~m files that would cause a system crash or serious degradation if deleted

example the TENEX EXECutive), ;;0 this wasn't really an acceptable SOlution, but with it uSers

could at least protect their own files fdrly well.

51

:1

,
"

: ('

"

7. Summary and (Conclusions
(j ~\.

The protection of computer resources, data of Value, and individual privacy has motivated a con-

• ,cern for security of BtlP installations. Because operating systems are such an integral and critical

part !;Ff large instal':i;'ations, this cOfiCel"!l foX' security has ext'ended to operating systems. This docu

ll1~nt report.!l some of the securit~.'flaws and security enhan'cements developed from a research project.

Thi~ IIIlterie.l is a starting reference (~or planning a security investigation of an EDP in:stal ..

lation'!!;' operatingsystelD. Its intended use is ,at Federal Government ED? i~etallatiOns with la~ge
commercial systems. However, the results can be applied to most EDP installations.

To meet this objective, three commercial o~erating systems are analyzed and security enhancements

suggested. The specific security flaws discussed are formally classified according to the taxonomy

developed here. Flaws can be classified formally because of the similarity of operating systems and

their security pt<'blems. This classi;ication leads to ~ clearer understanding of security p1-'obl~ms

and aids in analyzing new systems.

The operating systems chosen for analysis represent a major seg:ment of the curient "Federal EDP

installations but not the enthe spectrum. The choice of systeJIl's implies neither evaluation nor recom

mendation b(ltl: only prevalence of use .and interest. Also ~ no attempt at completeness of flaw description

is present()d, only a representative set of flaws for which s'ome amount of security enhancement can be

done.

Several conclusions are drawn from the overall analysis ~

~ Security is not an absolute but is relative fo~ each installation, depending on the data, re

sources, and mission of the facility as wel~ as on the potential hazards. Each installation

must determine its own cost-riSk trade-off.

• Operating system security is not a binary, yes-no, condition. Primarily because o~ its size
, ~

and complexity, no large operating system can be said to be completely secure. HO\~~~r, many

security enhancements can be incorporated into systems to make them harder and costt,br to

penetl.'ate or compromise.

• Software security, which includes operating system and user applications programs, is only one

aspect of the total security of ~', EDP installation. Administrative, physical, and hardware

security need to be considered and kept in perspective.

• Operating syste~ are not necessarily the ~ critical point of security or the point that

requires the first enhancements. Also. they may not offer the highest return in terms of the

cost-protection trade-off as compared to physical or administrative security.

• There are .a limited number of basic secur~ty flaws (S to 15 depending on the way they are

described) • There can be numerous different exploitations, but the number of basic flaws re

mains fairly constant. These basic flaws tend to re-occur in different systems because of the

similar architecture and d¢sign of the machines and operating systems."

• With the expected technical growth of EDP installations (e.g., in the area of networks), the

s~curity of complex systems will require continuing analysis. Current security fi-laws and en

hancements may not remain valid with the technological changes that are taking place.

• Today1s commercial op~rating systems were not designed witkc,security as a critical deSign

factor. Efficiency, flexibility, and cost were more important, not the demand for security.

This orientation led to security via retrofitting) and this is shown to be a poor method as

~hanges often introduce new and sub~le security problems.

"
"

52
I

I
,j

• There are some enhancements that can be institut~d by installations to increase operating ~ys
tern security and increase the difficulty of u~ penetration. But these are often in the area Or
software modification and thus require a system expertise that is not always readily available

at installations. However, some operating system security problems can only be "fixed" through
a redesign of the entire system.

• ContinUing research and development "in operating systems security are being performed in uni

versities, research institutions, commercial firms, and government agencies. ,An informative

summary of sites and security work being done has been published [8]. The list of sites in~

cludes: MIT, Carnegie-Gl:'ellon, Lal-trence Livennore Labora,tory, In£'onnation Sciences lnsti tute.

MITIU!, TRW, Systems Development Corporation, IBM, Honeywoll, National Bureau of Standards, and
the'Air Force Electronic Systems Division.

o If secu:t;ity modifications a;e to be made to operating system code I it is very desir'able to have

"clean" coding. (That is, coding written in a straightforward style, b d . h . k unen~um ere '~ilt ~rlc s
or complex instructions.) Easily readable coding does not add to security per se, but does aid

in understanding the code, and reduces the chance that a routinl~ can be used in a manner other
than w~at was originally intended.

o

53

_____ ---"L,~, ~ ___ ~ ______ ________ ____________________ _____ ___ =="""'~"==~~" ~ ~_~~~ __ ~ .. _,>~ .. ,"~'">'"

Q

, I

\
:. J

!

tJ

Glossary

This glossary defines tenns that' may not be defin~d in the text or that requi1:especial emphasis
.. ,)

1ll1d ease ot refeTTal. The items in bTSckets [1 specify thfl context of the teTJllS .•
Manyc>f the definitions have been modified to make them C\';>nsist#nt With the definitions that are

to Appear in the Glossary of Terminolot,Y for Computer Systems ~lecur:tty (9].
::,.-,

Access

The ability and the means to communicate with (input to or receive output from), approach or make

use of. Dat'Ja aCceSs is often categorized by" combinatioIis of read, w\rite, or execute.

Asynchronous [event/process1
Events or processes which 'Occur at an 'lmk~lown time or execute at an unknowil rate with respect to

each othet'. An ex~le is an I/O process which proceeds at ~ :rate independent of the program which

initiated it.

Audit trail

A ch'tonological record of system activities which is sufficient to enable the reconstruction, re

view, and examination of the sequence of environments and activi~ies surrounding or leading to each

event in the path of a transaction from its inception to output of final results.

Authentication

The act of vC;lt'ifying the eligibility (i.e., authorization) of a user and his agents (e.g., programs,

terminals) to ~ svecific categories of information.

Authotj.zation

The granting to a user, a program, or a vrocess the right to ~.

Capability [process/user]

The right to access granted to an individual, program, or process. In a capability system, this --- ,.
right to access is signified by a protected bit pattern or oy inclusion on an access list.

Certification {operating system]

Prodng or measuring; the integrity of a system. Certificlltion is the act of authOritatively
confinnintl.lllla an effectivp methodology) that the protection capabilities or characte:ristics of a

syste~ comply with a particular set of requirements.

An assurance. based on defined objectives and arrived at through a elosed process of assess~ent.
that the probability of operating system design. and/or implementation flaws is less than a specified

value, and that the probability of a hardware failure is leSS than a specified value.

Confidentiality

A concept that applies to data that must be held in confidence. con'fidenti.ality describes the
status accorded to data and the degree of protection that must be provided for such data. The pro
tecti~n of data confidentiality is one of the objects of security. Data confidentiality applies not
.~>nly to data about individuals but to any proprietary or sensitive data that must be tx-eated in con

!:idence.
= = 54

I
11
II
II
II
I

Controlled access 1)

The concept that each authorized user of a system be permitted aCceSs to that information nnd

resour¢es to Which he is authorized, but to no more.

Limiting access to the resources of an automated data p~ocessing system to only authorized users,
programs, and proces~es or (in computer networks) other authorized data processing systems.

Control program

That part of an operating system which diTectly interfaces with the hardware and which initiateS
and gu~des the execution of all other programs and processes. A control program frequently consists
of an interrupt handier and a,housekeeper component. Other terms used synonymously inClude: super~

visor, monitor, andexecuti ye.

ContrOl. state

One of two generally possible states in which a computer system may operate; the other is the
I'

user state. In the cont'rol state, certain privileged inst.uetions are permitted" c)(ecution. Priv~

ileged instructions are not permitted to execute when the system is operating in the user state. Other
terms used synonymously include: supervisor state~ monitor mode. and executive stllte. (The arch

itecture of some comp:.tter systems supports operation under fewer or more than two hardware s~:?-tes.)

Cost-risk analysis

The assessment of the cost of providing a given degree offtrotection vs the potential risk of not
protecting a resource. (This is a function of the econo~ic c6nsequences of a loss and the threat
probabil it)',,)

Encrypt [data]

The. coding of information to conceal its meMing; to convert plain text into an unintelligible
form by means of a cryptosystem.

Flaw [operating system]

An op~'rating system integrity flllW is tho state that exists wheneVer a user (or his programs) has
the potential to cause the system to cease reliable and secure operation. An integrity failure ~xists
when this potential has been exercis~ and ~h(b reliable and secure operation 1)£ the system is breach¢d.

A reliability flaw represents tho potendal to cause Ii system to cease correct operlltion (e. g';, to"

crash or degrade the operation of a system), a security flaw represents the potential for one user to
acceSs (i.e., read, modify, manipulate, or destroy) another user's information or programs against that
user~s wishes or to gain. control of the operating system.

Integrity

Integrity is the state that exists when there is complete assurance that under all qortditions a
system worl<:s as intended. That is, the'system l'eflects the logical correctness and relidlQlity ~£ tho
operating system; the logical completeness of the ha:rc!wal'e lind software that implement thp protection
mechanisms; and the consistency of the data structures and accuracy of the stored data. :~ntegrity is
concerned with reliability (fraud and error) problems and with security (resource and privacy protection)

II
problems.

55

o
',~_"~""",,,,-.Jj._.,,..,,.,,,-,,,,,,_,,, ,,~~,,,,,.... ~_. ~., _-".~~ __ "-., __ ... _.~~"'oft __ _~"""_'"'_W"" <~"·'~"''-'"-'_''':'_~ __ ·:':-'-''''k'._~_''''''''''''''_'''''~·w...>.i'''' •. ''''~.'',,,,,,,,,,,'~''', __ .«"",,',<,~.-Jl" •• ,~~""", •.. "~<-""'.~

Interactive [computer system]
.- that the user l'S in l'ntimate control of the execution of his work. and may

Use-of a computer such
~ke modifications or enter data between execution steps.

Isolation [user]

data and ~esources in an operating system such that users may not accesS
The containment of users, , .. .

each other's data and resources and may not manipulate the protection ~ontrols of the operat1ng system.

Uultiprogramme~ [computer system]

A system which executes numeroUS processes or programs concurrently, by overla~ing or inter~
Ft i.. example, pe~';tting lllOre than one process to timeshare computer perlpheral

leaving their execution. ,~ ~~

devices.

Operating system
The aggregate of control and maintenance software that i~ used to support user interface functions.

Paging
f . £ t' (pages) between main 'storage and aux-

A procedur'e for moving <standard-she blocks 0 1n orma 10n
. d' t £11 programs to share main storage con-

ilial;'y storag~ units. This is generally use to perml sever

currently.

Proventive mech¥ism

a software or hardware mechanism that implements all or part of the
A preventive mechanism is

isolation and .c~n-
elements 'pf protection in a system.

In an operating system, these elements ar.e:

trolled access.

PrivacY [informati?ri.l.

The Tight of an individual

his social environment; this is

to self-determination 'as to the degree to which he wi~l inter&ct with

manifested by an individual"s willingness to share inform!ltion about

himself with others; and may be compromised by unauthorized exchange
of information about the individual

between ~ther parti~s.

process [computer]

A process (or task) is 'a computati(~'~ that may be executed concurrently (r-~llc other computations.

This term may represent either a sequence of instructions or an entire (independently dispatcnable)

work unit. (An operating system generallY represents the latter by a control block containing an

address-state and a processor-state description. A process may involve several programs and several

h Two or more processes may sha're programs andJQta.)
jobs. A user may create more t an one process.

Protection . !
The defending or guarding of the hardwa;re, software·, and information resources of a computer sys

rf/
tern.

Real-time process'

See time-dependent.

56

Reliability

A measure of the ability to f~.ction without failure.

Remote-access [computer system]

A hardware and software system which permits input to be made from a location other than the

central computer room. Usually, such a system provides remote output as well; operates OVer tele

conununications circuits; and manageS a number of remote-access ntations or terminals.

Scavenging [data]

Searching through data not erased from storage after use (i.e., residue), without necessarily

knowing its format or content, in an attempt to lo~ate or acquire unauthorized information.

Security

Security is the realization of protection of data, the mechanisms and resources used in processing

data, and the security mechanism(s) themselves. Data security is the protection of data against ac

cidental or unauthorized destruction, modification, or diSClosure using both physical security measu~~1

and controlled access techniques. Physical security is the protection of all computer facilities

again~~ all physi~al threats (e.g., damage or loss from accident, theft, malicious action, fire, and

other environmental' hazards) '. p~ysical security techniques involve the use of locks, badges (for

personnel identification), gua~d.~. personnel secu;ity clear~c~s, and administrative measu~~s to con

trol the ability and means to approach, communicate with, or otherwise make uSe of, any material or

component of a data processing system.

Security kernel [operating system]

That portion of ,an operating system. whos~ operation must be correct in ordQr to ensure the secu1:ity

of the operating system. Ideally, t~is involves the ·isol.ation of all ha, J'1iare and software functions.

features, and data which form the basis of. protection of programs and information in One protected,

centrJlized part of the system (Le., kernel). The rest of the operati;ng system is Hnked to this

kernel in a manner such that the kernel is inv5'ked by all referf ..:es t information In the system.

Only the protection mechanisms themselves are placed in the ke.rnel, and the polic\-making code which

directs these mechanisms is placed elsewherr in protected compa ~en"s.

Spoof

To deliberately induce a system user Or opera~,)1 '~O tal,e an incorrec.t action.

Suspicious processes

In a multiprogramming enviTonment, th(\ concurrent use of the system fo1;' sensitive data or I'lrograms

by users who mutually distrust one anotnel" or whe:re one distrusts t'c ~i\er. Such processes normally

grant only the minimal number of required cn~ ities to each other.

Symbiont

Slnall routines that buffer large amount!.> , • .ita from low~speed peripherals to main storage to

minimize the number. of data transf<:ll's.

57

.--- ._--_.- _. -

I
!
I
J

System call
• call but transfers control to the operating sys

An instruction that acts much~like a subrout1ne
. /"

tem rathN' than one of thfll user' !i';-$!.!brout~nes,
. J

Tax<momy

i wh~ch proceeds from. the most inclusive classification to the most
A system of classificat On ~ .

explicit.

Time-dependent [~equence]
h ' h can produce different results depending upon the rate

A sequence of computer i~~?ructions w lC
A re'al-time process involves time-dependent instruction sequences, which ,must

at Which it is executed. dId
) 'd of elapsed time fOD, the process to pro uce va 1

be executed tlithin specific (usual).y small penO s .

results.

Timing windoW [execution]

AnY'unit of time (genexally at

instruction) between two sequential

supplied by' the first process.

least the length of time it takes a computer to execute a single

processes, where the second process is dependent upon information

Trap 'door
-eated .~n a computer system. for the purpose of collecting, altering, or

A breach intentionally ~~ ~

destroying data.

Trojan hors'e[flaw]

A trusted program which contains a trap door.
. ,

Validate
'and eVGluations to determine complian.ce with security specification, s, and,require-

., To perform tests .. . f
usually C

onsidered to be less comprehensive and rigorous than cert1 1cat10n.
ments. Vali,dation is

An organization of memory (based on automatic
swapping of data and programs as required between

operating memory and secondary memories) that allows addressing as

existed, although the executable memory available to the processor

range of' 4ddres$~Jlg which may be referenced by a program.

if a very 'large executaDle memory

is generally much smaller than th~

W01;'king set

The

• :;.li.ken to

, , f d frequently Generally, this i.s area. of a processes' 5 virt,ual storage tha,t 15 re erence •
be the portion that is referenced enough to require presence in primary memory •

58

o

Bibliography

AUDITING

Krauss, L. I., SAFE: Security Audit and Field Evaluation for Computer Facilities and Information

Systems. (Firebrand, Krauss and Co., East BrunSWick, N. J., 1972).

An auditing handbook that has several hundred checkpoints of security related items for cow~uter
facilities. The book is desi&ned to aid in a do-it-yourself field investigation of security measureS
and safeguards. The user estimates the importance of ~ach item and his faeilities compliance, and then

calCUlates a secu=ity index value (a weighted average). The eight classifications of checkpoints are:
personni!; physical; data, programs, and documentation; operational; backup;developmentJ insurance;

and security program.
,

Computer Control Guidelines, Canadian Institute of Chartered Accountants, (Auerbach ~uplishers,

Princeton, N. J., 1971).

A book presenting the resul t,s of a study perfo'rmed by the Canadian Institute of Chartered' Ac

countants. The book deals with 25 control objectives, giving the minimum control standards and specific

control techniques.

Kuong, J. F., C~uter Security, Auditing and Controls. -A Bibliography, Management Advisory Publi

cations, Welle.:ley Hills. Mass., 1973.

This non-annotated bibliography covers several hundred publications in the interrelated areas of

auditing. controls, and security. The bibliogrnphy is cla?sified into six main subheadings and numerous
subclassifications. The main subheadings are: EDP Auditing and Controls, computer secudty and

privacy, EDP planning anc,l operations control, EDP management review and evaluadon,.online and real

time systems, and· checklists and gui'delines.

, . ~IBLrOGRAPHY

Abl;.:>tt. R. P., et a1., A Bibliography on Computer Operating System Security,. Lawrence Livermore
Laboratory, Rept •. UCRI,-:Sl'55 (1974). .' '

This bibliography has over 750 entries on the subject of computer security. The emphasiS is on

software and, in particular, operating system security. The first part of the bibliography is a key

word out of context (KWOC) index and the second part a master listing of each entry •.

GENERAL SECURITY

AFIPS System Review Manual on Securitl' American Federation of Inform~tion Processing SOcieties, Inc.,
. "

Montvale, N. J., 1974.

,}

This manual is the first AFIPS System Review Manual. It is intended to be used as a guide for
" reviewing existing systems and as a checklist dlll'ing system development. The inte'l'Ided audience in-

cludes managers. EDP auditors, and systems designers •. The chapter topicS include.: personnel, physical

security, operating systems, access controlS, programs, commuriications, storage, and input/output. Each

chapter contains "General Principles" to ,e followed and a c)1ecklist of related questions.

59

a

.~

I
!
I
i

1

I
t
I

I
'I
I
r

t
f
!

t

V~n Tassel, D., Computer Security Management (Prentice-Hall, Inc., Englewood Cliffs, N. J.,

J'~ri1 1972.)

This bOok is a good examination ofnumerou$ computer security topics. These topics include:

(~~~mes and disaste.rs, company security, embenlement o EDP controls, auditability, program secu

~i1;Y. ~Og-raPhiC techniques, disaster protection, insurance, service bureau If,llations. and time

s)j,~~ security. The book deals with management controls and operating procedures and has a series

of checklist questions.

Data Security and Data Processing; Vols. 1 to 6 (G320-1370 to G320-1376). (International Business

Machine Co~., White Plains, N. Y., 1974.)

These six volumes report the findings of a program initiated in 1972 by IBM to strengthen data

security research and ~echnology, and to identify user requirements. A wide range of specific topics

are covered and vresented at different levelS of det~il. Volum~ 1 is written for management and

discusSes data security in general. Volume 2 summarIzes the findings of the study. VOlumes 3 through

6 present in detail the findings of the four sites: the Massachusetts Institute of Technology, the

State of Illinois, TRW Systems, Inc., and the IBM Federal Systems Center at Gaithersburg, Maryland.

DPERATING SYSTEM SECURITY

Anderson, J. P., "Infonnation Security in a Multi-User Computer Environment," Advances in Computers,

(MOrTis Robino£,£ editor, Academic Press, Inc., New York, 1972), PP,: 1-35,

This short article deals with methods of explPiting flaws OT weaknesses in operating systems 9Sf

multi~user systems to illegally access"data. Some hardware and software enhancements are suggested;

however. the article is quite technici;,:

Conway, R. W., W. L. Maxwel:, and H. L. Morgan" "On the Implementation' of Security Measures in Infor

mation SystemS," COIDDIWlications of the ACM, April 1972, pp. 211-220.
, --

'l'hiS paper discusses the nature of flexibility in a secure system and to relate the costs of

implementation and enforcement to. that flexibility. A security matrix model is presented and uSed to

explain 'security featu.Tes of several existing systems.

PHYSICAL SECURITY

'Guidelines for Automatic pata ProcessiuB 'p~ysi~al Security and Risk Management, National Bureau of

Standards, Federal Info'tlllation Proces~ing ,Standards Publication,FIPS PUB 31, June 1974.

\:\ This document is part of the Federal Infqrmation Processing Standards Publication Series. The

~ip\lblicat::lon provides guidelines to be used by organizations in structuring phYSical securitypl'ograms.

It inCludes the following topics~ security analysis, natural disasters. supporting utilities, system

reliability, procedural measures and controls, off-site fa~i1ities, contingency plans, security ali~re-. . ~

ness, and security audit. It also contains statistics and information relevant to physical security

and giVes references to other, mOre detailed, publications.

60

Molho, L. M., "Hardware Aspects of Secute Computing," !-FIPS Conference Proceedings, Spring Joint enm
puter Conference, Vol. 36, 1970, pp. 13~~141.

This paper reports the findings of a study of the hardware aspects Of controlled access time

shared computing. It deals with the storage protection system and.the.Problem/Supervisor state con
w

trol system of an IBM System 360 Model 50 computer. Methods of enhancing securityOare diScussed,

PRIVACY - CONFIDENtIAL tTY

Renninger, C. R. and D. K." Branstad, Ed., Government L"oks at Privacy and Security in Computer Systems.

National Bureau of Standards Technical Note 809, National Bu.reau a$;\ Standards. Washington, D.C.) 1974.

" This publication summarizes the proceedings of a conference held fo;the purpose of highlighting

the nee~s and problems of Federal, State. and local governmJ~nts in safegUatding'"individual privacy ,and

protect~ng confidential data contained in computer systems from loss or misuse~ The conf~rencewas

sponsored by the National Bureau of Standards in November 1913. Major needs and the cost implications
of providing security measures are discussed.

Renninger, C. R., Ed., Approaches to Privacy and Security in CQl\\puter Systems. National Bureau of

StandaTds Special Publication 404, National Bureau Qf Standards, ~aShl.·ngtonJ D C " •• , 1974.

; This publication !..ummarizes the proceedings of a sl'~ond National Bureau of Standards cO~ference
held in March 1974 to continue the dialog in search of ways to protect confidential infotmation in Com

puter systems. Proposals are presented for meeting governmental needs in Safe~al'ding individual

privacy and data confidentiality as identi:fied in the pTior NBS conference.
\\ ;

Westin, A.'''F. and M. A. Baker, Databanks In a Free Society (Quadrangle Books. New York, 1972).

This book.Te:orts the results of a 3-year study of computer databanks and Civil t3berties. The

study was COlllllU.sS~oned by the National Academy of Sciences. The book includes: 1) a profile of 14

organizations that USe computers for record keeping, 2) a description ~f changes both in organizational

record-keeping pat~~s and in ciVil-liberties protections that were believed to be taking place but

were not ob:;erved, siG4escription of those changes that were observed taking place, and 4) the findings
about accuracy and security problems in computerized record systems. U

" y

61

()

. '1

References

I,'

[1] Adams, D. L. and Mul1arky, J. P., "A Survey of Audit So~tware,'iI The Journal of Accountancy, 39~66

(September 1972).

[2] 'tlfe Federal Regist~r. Monday, March 17, 1975, tlashington, D.C., Vo~ .• 40, No. 52, pp. 12134-12139.

[~J J(onigsford, W. L., A Ta,x<momy of Integrity pr~~. Lawrence Livermore La~orato:ry Rept. (TO be

pl,Iblished) •

(4] IBM SHARE GUIDE, 16,20 Users Group, Appendix F, Report of Systems Objectipns~gnd Requirements
\ ~:

9~~, Rept.. No. SSD 123 (June 1964),

[5] ·Data Security andPata Processing, Vo1s, 1-6, IBM, White Plains, NY, Rept •. Nos. G320-1370 through

-1376 (June 1974).

[6] McPhee, W. S., HOperatin~ System Integrity in OS/VS2," The IBM Systems Journal, No.3, IBM,
" Armonk, NY (1975).

(7) decsystem10 assembly languagt! handbook, Software l.)istribution Center, DEC, Maynard, MA 01754,

Rept. No. DE!t"tONRZC-D (1973).

[8] Sa1tzer, J. J ';~Ongoing Researc11 and Deve1opmci1;t on 'InfOrmation Protecd.on," <per8ting System Revi&w,

8-.24 (July 1974).

[9] Glossary of Terminology for Computer Systems Security, federal Informat!on Processin~ Standards,

Tas!< Group 15: Computer SysteMS SeC\lrity, National Bureau ?f Standard~; September 2, 19'/,S.

(I

r)

\~

RAC/lt/1a
.,>

lJSCOMM-NBS-DC

c') "

NOnCE
UThis r~p\Jrt W3I prepared as an actount 01 wor)c.
spotlSOl1:d by the U~led StJres, Gcwernment.
Neitht\t the' United States. not the Unit~d Stalell;
£neru Rc!Cuch &. Developme,pt Admin4lr~tion,
nOl, ClIy/ ~"or theIr ,employees • .'l nor any ~r;',\heir

~' ~~tfSC~rl.. 1ubcontUctofl,!: trl their~'femployeelf
m:i~" ,'60)' warranty. express or Implied. or
... umti "l'leg.\Uabllity ~r ... po.si~ilUy 10: Ih~
aeCUfllCr. complt:tene.,:(,!'or ,.psefuftiW or, any
bjf~Jfm~~ionh ;~ppar,g,~'I'.;t pr\~uct (llr p.rocess
~l~loseJf or ~t-Sfcll!nl1~ lh., iii use wallld fH,t
Infrin,e piVII\!lrrowncd '/ighl,." f

, 1;<"" "1)

62

".

\-;.-

'0

'I;

I
I

I
!

1/

,--:- '.;..

I'

<,:~

(J
(, ,-'

" /,'

\
()

u
':-::;,

'f,

.~

)
\\'

!I

'il

