If you have issues viewing or accessing this file contact us at NCJRS.gov.

| | - o

U.S. DEPARTMENT OF COMMERCE

T e ARSI, T SRR e S RN T O A BRSSO R ST AT :; R " . A
i National Technical Information Service
&
R4 1R nETe g
AP PRI S B s ad 1
3 i Lo 2 %) ‘] % PB"257 087
:

Security Analysis and
Enhancements of Computer
Operating Systems

California University

! ‘ i

i * " NGRS
*3 \BR B0 177

i

ACQUISITIONS

Prepared for : P

National Bureau of Standards, Washington, D C Inst for Compui‘er Sciences |
and Technology

Apr 76

N

IBE%"H? SE LJLEIR&S

NATIONAL TECHM”‘AL |NFORMAT|0N SE

FROM

Product Uabillty Insurance: Asseument of Ralalud

Probjems and Issues. Staff Study

BT

Avjatlon Airports

ADA-023 429/PAT - 205 p.. PC$7.75/MF$3.00 , ,
Cooling Tower Environment, 1974. Proceedings of * u. si
= a Symposium Held at the University of Marylmd

* Adult Education Center on Mar. 4-§, T974
CONF-74 0302/PAT 648 p PC$13‘ 60/MF$3.00
Biologlcal Services Program. Fiscal Year 1975
PB-251 738/PAT 52 p FC$4.50/MF$3.00

A Ailas of Radiatlon Histopathology
TID-26-678/PAT 234 p PC$7.60/MF$3.00

Federal Funding of Civililan Research and /Davelop-

mé&nt. Vol. 1. Summary

PB-251 266/PAT 61 p. PC$4. 50/MF$3. 00 . :
Faderal Funding of Civillan Research: and Develop— o

mant. Yol. 2. Case Studles

PB-251 683/PAT 336 p PC$10 00/MF$3. 00

Handbook on Aarosols

TID-26-608/ PAT 141 p PC$8, 00/MF$300

PB-252 264/PAT 181 p PC$9, 50/ MF$3.00=*

" Evaluation of Home Solar Heating System
UCRL-51 711/PAT 154 p - PCS$6. 75/MF$3.00

Developing Noise Exposure Contours for General

VACE | |
s !/ e

/f Ior

R

N

Mining, Rubblizatio

& Assessinent of Ocean Outfalis .
ADA)23 514/PAT 34 p PC$4. 00/MF$3.00

Guid/allnes for Documeéntation of Computer Pro-
grams and Automated Data Systems S
PB-250 867/PAT 54 p PC$4.50/MF$3.00°

e NO:; Abatement for Stationary Sourcos in Japan
PB- 250 586/PAT 116 p: PC$5,50/MF$3. 00

| Coal Resources and Reserves e
PB-052 752/PAT 16 p PCS 350/MF$3 00 N

‘Struttured Programming Series. Vol. XI. Estithating ..
Software Project Resource Requirements :
ADA-016 416/PAT 70.p PC$4.50/MF$3.00

: Assessment of a Single Family- Resgidence Solar
Heating System in a Suburban Development Setting
PB-246 141/PAT 244 p PC$8.00/MF$3.00

Technical and Economic Study of an lJnderground

nd in ‘Situ Retorting Syatem ‘
for Deep Oil Shalemqsits. Phase | Report
PB-259 344/ PAT 223 p PC$7. 75/ MF$3.00

A Preliminary Forecast of Energy Consumption . .
Through 1983
PB-251 445/PAT 69 p PC$4. 50/MF$3 00

HOW TO ORDER‘

or your order will be manually ﬁ!led, in-
suring ‘a delay. You can opt for ammul
~ delivery for a $2.00 charge per item &Just

- chegk the Airmail Service box. If you're

‘When you md:cate the method of pay-
ment, please note if a purchase order is not
accompanie \by paymient, you will be billed
san addition $5.00 ship and bill charge, And
please include the card expiration date when

- "using American Exprcss.

Normh[delivery time takes three to five

weeks. Tt is vitathat you order by number

 METHOD OF PAYMENT R
. [[J Charge my NTIS deposn account no.

-really pressed for time, call the NTIS Rush

Order Scrvxce; (703) §57-4700,. For a

$10.00 charge per item, your order will be

airmailed’ within 48 houts. Or, you can
pitk up your order in the Washington In-
formation Center & ‘Bookstore or at out.
Springfield ' Operations Center within " 24

houn for a 36,00 per items charge.

i

s

"You i
phonc or\TELEX The order desk number
is.(703) “557-4650 and the TELEX nuinber
is' 89-94085.

thnever a foreign - sales price. is NOT
specified in the listings, all foreign buym
must add the following charges to each or-

der: . $2.50 for each paper copy; $1.50 for

each microfiche; and 31000 for each Pub-
lished Search, -

Thank you for your mterest in NTIS. We
apprecaate your order. .

“NAME

[0 Purchase order no
[J Check enclosed for: 3

2

~[J Charge o my American Exprcss C ard account nu'nher Lo ‘ o

. 5 o
i g

CITY. STATE, ZIP

Card expiration da'e i e
B Sngnuture ‘

Quanijly

D Airmad Services rcquested

RS Clip and mnﬂ toi '

";u 'i' : 'm s s " . L o o
% Netlonal Techules! information Service

' US. DEPARTMENT OF comnc“s

Speinghield, Va. 22161
@ (m) ss‘!-«so TELEX 59.9408 -

 Item Number ‘Paper Copy

‘Mirofiche

Unit Price

_(PC)

" AMF)

5. . |) . < 44

o

Al Pnces Sub)cct
11/76 .

0 e

L - "!.‘

o

to Change -

TSub Tnt.\l
@ Addmuml Charge|

Emer Gnnd' Tota'

s,

R T

1lso plm:c your order by tele-

28

REPRRODULED &

NATIONAL TECHNIC At
INFORMATION SERVICE

DEU\R{M: " fr LUMMERs
CaPRINGE # Jong

<l g U R 7>.M~W&\kb«_~.-(1va\’

o

e e i e A oo b 1

O

e i B AP g S

~
A

MBS-114A (REV. 273}

U5, DEFT. OF COMM. 1. PUBLICATION OR REPORT NO., 2. Gov't Accession
BIBLIOGRAPHIC DATA

Lad L NO.‘
_ SHEEY . NBSIR~76-1041
7. TITLE AND SUBTITLE — ; .

r
g
il

PB257087

3. Recipient's Accession No. -

5. Pubficaiion Date

April 1975

&. Performing Organization Code

Secugity Analysis & Enhancements
of Gﬁmpnter Operating Systems

7. AUTHOR(S) The RISGS Projecct

8. Performing Organ. Report No,
Lawrence Livermoze Laboratory

9. PERFORMING ORGANIZATION NAME AND ADDRESS >

The RISOS Project
. Lawrence Livermore Laboratory
Livermore, California 94550

[0, Froject/Task/Work Unit No._

640.1112
11, Contract/Grant No.

12, Sponsoting Organization Name and Complete Address (Street, City, State, ZIP) 13, Type-of Report & Period
National Bureau of Standards C°V“fd{'

_ Department of Commerce Final 7/74-12/75

2~ - Washington, D.C. 20234 14, Sponsoring Agency Cide

o

15, SUPPLEMENTARY NOTES

i

0 -

sl TEdmL

16. ABSTRAC'I' (A QOO-WOrd or less [actual summary of mosl sigmfxcant mformatxon If docume‘nt inﬁludes a Slgﬂlficafx
bibliography or Iitq-rature survey, mention it here.)

The protection of computer redgources, data of value, and individual
privacy has motivated a concern for security of EDP installations,
egpeclally of the operating systems. In this Teport, three commercial
operating systews are analyzed and security enhancements suggested.
Because of the similarity of operating systems and their security
problems, specific security flaws are formally classified according . K
to a taxonomy developed here, This clagsification leads to a clearer
understanding of security flaws and aids in analyzing new systems.
The discussionsGFf security flaws and the security enhancements

_ offer a starting reference for plamning a security investigation
of an EDP installation's operating system. '

¥

SURJECT TO CHANGE

12, KEY WORDS (six to twelve enfrias; alphabetical order; capitalize ohly the first intter of the firat key word unless & proper
name; separated by semicolons)

BBN-TENEX; IBM 0S/360; operating system security; security flaws;
software security, taxonomy of integrlty flaws} UNIVAC 1100
Series 08

18. AVAILABILITY

[Z] Ualimited T ¢ J19. SECURITY CLASS. ©

[‘1 NO. OF PAGES
(THIS REP/JRT) , ~

[For Offij’cial Distribution. Do Not Release to NT!S :

UNCL ASS!FIED
E_:] Order From Sup. of Doc., U.S. Government Pnntmg Offlce ' 20. SECURITY Q!,.ASS
Washmgton, D.C. 20402, 8D _ $D Cat. No. Ci3 (THLS PAGE)
E:}Order From Nauona! Tec mca] Informanon Servu’:e (NTIS) - :
Spnngheld Vlrgxnxa 22161 UNCLASSIFIED o

g

USCOMM-DC 20042-R74

]

3}

/i
it
S i
T J
.""
J
i
7
¥
A
P
7
o
o
a9
D
I
(3
o o :
E4
@
B
o Al
o
R js)
S 145

=
7 .
A\
o
£o)
o
L’L
L&
i
i ®
AL
5y
.,

NBSIR 76-1041

SECURITY ANALYSIS AND

ENHANCEMENTS OF COMPUTE(?R |

OPERATING SYSTEMS

Ny

e

R. P. Abbott

J. 8. Chin .
J. E. Donnelley
W. L. Konigsford
S Tekubo

D. A. Webb

The RISOS Project
‘Lawrence Livérmore Laboratory
Livermore, California 94550

T. A, Linden, A.Editor

6r{ titute for Computer Sciences and;Technology
Natjonal Bureau of Standards »
Washington, D. C. 20234

it

April 1976 -

. Final Report

£

el
i

u.s. DEPARTMENT OF COMMERCE Elliot L. Rlchardson. Secrataryf“

Jamep A. Baker, Hll, Under Sacratary Lo

o

Dr. Betsy Ancker-Johnson, Ass:stant Sacretary for Sclenca and Tachnology

e

1r

0

A

O

NATIONAL BUREAU OF STANDARDS ‘Ernest Ambler, Actmg Dlractor

14

P

@

-]

- Foreword

A

« i ' <
o ‘ .

This is one of a series of documents prepared as part of a project on compubar secuﬁﬁty and
) ; privacy at the Institute fpr Computer Sciences and Technology of the Rational Bureau of Standards.
e R ‘ L This document 1s intended primarily fov use by those who are responsible for managing arid operating
ﬁ government date processing installations. It provides an unde%standing of the types of‘security
) probiems that arise ﬂn current computer operating systems, and it suggests ways in.whic§ the gecurity
{ of thege operating systems can be enhanced. The Jocument may also be of use to: (1) tkose engaged in Y
‘ . the development of computer wecurity techniques, (2) the manufacturers of computer systems dand
% ' o ‘ software, and (3) thosu responsible .for managing and operating comiputer systems in the private sector.
: This document concerns the security problema that arise in computer operating systems. In order
to develop s balanced set of security safeguards, one should use it in conjuncticen with documents that
treat other gpecific aspects of the security problem. Other MSS publications On'Computer gsecurity
that may be of particular interest for tlils uge are: ‘ : ?

i
1
{ » h
5 { .
. !
‘ ;
]

.) ‘ !
Computer Security Guidelines for Implementing the Privacy Act of 1974, Pederal Information Proueseing 4

: Standards Publication 41, U.S. Government Printing Offiue, Washington, D.C." 20402, Catalog Wo.
E C13.52341, $0.70.)

Guidelines for Automatic Data Processing, Physical Security and Rigk Management, Federal Information

i : Porcessing Standards Publication 31, U.S. Government Printing Office, washington, D. C. 20402,
Catalog No. €13.52:31, $1.35.

; Exploring Privacy and Data Security Costs — A Summary of a Workshop, NBS Technlcal Note 876, U.8. °
B : Government:. Printing Office, Washington, D.C., 20402, Catalog No. 613.46:87§, $0.85, s =

Proposed Federal Information Processing Data Encryption Standard, the Federal Register, August 1, 1975.

Computer Securiﬁy Risk Analysis Guidelines, to bé published.

This report is applicable to most general purpose computer operating sy#tems' howayer, it discusses, !
; - : : . : in detail, the security featurea of three operating systems. These\systemq are: . IBM's OS/MVT, UNIVAC"s .
ﬁ‘ & N % 1100 Series Operating System, and Bolt Beranek and Newman's: TENEX §§stem ﬁbr the PDP-10. They were

! chogen for their illustrative value--two gf them because they are the mosk commonily used large systems !
) g in the Federal Governmedt inventory, and the third because a detailed anglysis of its security was ,
available, and because many of the specific security flaws rfbund in the %yetem can be used as detailed

examples of typical security flaws. Most known TENEX. flaws have been cdrrected in all turrently used e
o versions of the system.: R = i b

a H "

;

Guidance is provided for specific security enhancements, however, /he amount. of detail contained
£ in this report is constrained by the danger that excessive detail cou]ﬁ be harmful, Excessive detaills)
about .current. security flaws aight be used by someone intent on penet;ating security. On the other S

k2

: j
e A b i b, A A g

i

"hand, those respongible for security must be made aware of the securf&y techiiques that aré available,
‘ : \ s : ; and they must understand and prepare for the dangers to which they T%e still exposed. ?
: ‘ The authors of this document have attempted to write it dun a wa;

L3

that provides as much dnformation 5
as poasible to thoge responsible’for aystem security while at tle aﬁme time minimizfﬁg its potential

. § ; usefulness to someone who might misuae the information. It is genﬂrally acknowledge& that the security
k E ' provisions of most. current operating systéms can be broken by an %%perienced programmer who has spent
» ; : much tiwe working with the system and has a very detailed understdnding of its inner workings. The
.) v guidgnce used in the ppepa:ation of this document was that it shojild not Increase tha number of people

S

!

H
4

1o

s

{
4
]

SEPRUNCRPI R
nE

o5

SRR

i

i pseta g e SN
3

TP
I
j
i
H
£
s

? S
H
£
¢
i
t "
‘o
¥
&
b

v

. }
é 3
A | ‘
 who Ikoow all the details needed to effect a security penetration. Many details about specifiec security S . Contents o \ |
; flaws have not been included in this report either because there is no reasonable enhancemenf to correct ‘ \ » . |
" the flaw or because exploitation of the flaw cduld be carried out by someons with relatively lictle A o E 3 < T S L L T T T 1
i additiongl detailed tnformation about the gystem. ' . . An Overview (R. P. Abbott) I ‘ A A FL A P AL R L L S S 1
. The security cnhancements suggested in this document do not provide complete protecticn against all 1.1 Motivation for Enhancing Security . « « « ¢ « v ¢ v 4 o o 4 v v v v v i v s w kb e 2
; . the security flaws in the operating systems. 7The reader should not anticipate that the correction of 1 1.2 Technical Issues ir Enhancing Securdty .+ & o+ v b 4 v v o ¢ v o o ¢ o o« s 5 3 ¢ o v 2 x s 3
: the identified security flaws will do any move than reduce the number of avenues by which the system 1.3 Operating System Security within Total EDP Protection « « v « ¢ « o « ¢ ¥ » 5 ¢ 6 o o « & &
_ software might be penetrated. Whether the suggested enhancements will result in a significant improve~ ‘, . 1.4 An Example of A Security FIBW o o 4 « 4+ v v« 4 v v a v v a v o s v e b e e e s 5 ’
{ ' ment in a system's overall security posture depends on many factors that are unique to each computer : 2, Security Enhancements of Operating Systems (D, A, Febb) . v o v v v 4 2 v o » T e 6
’2 ingtallation; in parti(;d],;ar, it depends on the characteristics of the data processing environment, the 2.1 Detection Controls . . & 4 s o'y o s 5 s s.o o 2 o 5 s « & 4 6 o v o v v et b 0w s 6
% specific software gnd hafdware configurations, the value or sensitivity of the information being . :; - 2.2 Corrective-Preventive CONLIOLS .+ + v v o 4w v v v v v v v v v v o o) s v o v 4 s o v o 7
processed, and the natura of the threats to that information that can reasonably be anticipated. It is & g, Hardware . . . v o 0 v v oo i i e i s b e e e e e e e 7
ln very difficult to evaluate whether a specific security enhancement is a cost-effective way of improving by SoftwaXe o . v v v v v v b 4w a v e e i e s e e e e e e e ey sy e e e e 8 -
a system's overall security posture; that decision can only be made by people who know the character- : Co User ACLion « v v v s 4 v o 6 0 s a0 s b s e s e s e e e s s s e e e s e e s 8
: isties of the specific data processing ins\yllar.ion and who are also familiar with the current state-of- d, Administrative-Physic8l . « ¢« v 4 v v o v 4 6 4 s s 4 et a b s s e s e s s s 10)
< the-art in computer gecurity. Many data processing %xmtallations may have the option of relying mostly 3, ‘Taxonomy of Iptegrity Plaws (W. L. Kat;;igaford) S E e v e w s e e h e e e s s ke s 1¢
% (. on ?hysical, procedural, and administrative security controls so that confidence in the integriky of [2.1 Introduction . . « &« ¢ « o « s ‘u:.\‘, B T T T O ST 10
internal system controls is not needed. 3.2 Tayonomy of Integrity FIaWs . . o o v v v 4 ¢ 4 o o v v v ar e s v s e ek v e e s e 10
j Early drafts of this document - together with lisls of specific security flaws - were made available f 3.3 Class 0f USET v « v v s v s v s v v v v s o e v e e e 1L
" to the different vendors. In moat cases vendor action is the most efficlent way to correct a security a. Applications l}sers B T T T S R G e e e e 11
flaw, This document will be eéx:’%iallyﬁuaeful if 1t reduces the current tendency for the same security ‘ B ServiCe USETS « o s s b v o v v v v e s ae e s e e ¥'12
flaw to reappear repeatedly in different systems. i L € L . .
\\ ; ‘ , ‘ 3.4 Class of Integrity FI1aw . ¢ v ¢ v ¢ s v v v %0 s o s v o v v o 5 a o 1 s sTaa w o a sk 12
g . ' i 3.5 C1ass OFf RESOUTCE + o 4 « v o o o ¢ o o o s s s s v s s o o s s s o v s s 8 s a"a s o 54 12 o
' ; N ‘ 3.6 Category of Method '« ¢ o v v v v ¢ s 0 4 v vt bk u s d e e e e s e s b e e e s e 13 o
°) i s Dennis K. Branstad x\é 3.7 Category of Exploitation ¢ s & o « R A R R R I R 13
. : - WTheodore A. Linden,y ‘ 3.8 Detailed Description of Operating System Security Flaws . . o & 4 v ¢ v « o & 2 s o 0 o s 13 :
. ’ giiivﬁ:;_:eB‘i::;é‘(;'o’e;?aigiznggiizces and Technology i 2. Incomplete Parameter Validation « . o v v v v vV vie v vt o o e e 14
L e e b. Inconsistent Parameter Validotion « , « 4 v s ¢ v v 4% 4w v W0 e s v e e w4 . s 16
‘ == f ; c. Implicit Sharing of Privileged!Confideri‘tial L N N ¥ =
% ,) d. Asy?nchronous Validation/Inadequate Serializ'gtion e s e e w s '.~ e e e ;19
) @ . g g e. Inadequate Identificution/Authorizntion/A\‘lthenti.cation e e aE ke e e e e a 22 °
§ ¢ . . ' . | , i 2 f. Violable Prohibition/Limit « & v w 4 v o 4 v v 4 4 v 0 o 0 4 = s o w6 8 R 23
;; @ o . o) a 8. Exploitable Loglc BXTOT & o 4 v v v v v v v 6 v o b s v s g e e e Vo s 23 =
. ‘ S AR R o » 4. IBM OS/MVT (Wy L. Xonigeford) « » « v v v s v v s v o o s n o s v v o v v e ey 26
: , P & 7 4.1 Introduction_.v...‘eﬁ‘.:‘-’\“,w..‘..’./.w......... 26 &
) |) . 4.2 OVOTViéw of OS/MVT HISEOTY « s o v v v w o o v b v b e e s e oo n iy s anannns 27
‘ i , 2 4,3 IBM/360 and OS/MV Prevention COMCEPLE .+ . » 4 v o« v ¢ o s oSe v v o v s o oo v oy s s 28
jf i \‘ s - (8. Hardware Isolation Foatures - + 4 « « « » KERIR IR IR Ce e v 28"
) :) Y . b, Control Access FEatures . « « « o { v o v & v 4 v s v s s n § v e ein v o w n s 28
i . | 4 ; o \\‘ V . : ' T : ¢, I:\tsegrity Monitoring and SUrveillance . . « v . 4 v ¢ n e 4 e e . au s \. e i u 2!? '
é-ci . ’) \ ‘) : n :.4.,4Suma:y..................‘.....f.....,...,.a‘-:‘.... 29
i Gt Oy ' : ; , 4.5 Operating System Integrity FIaWS . . + v ' 'v ¢ v v o vt b 4 s v s s p v o siw s 0w 30
o o \\\\ e, @ - 5. UNIVAC 1120 Series Operating System (J. S. c?:ig) R R LR
| ; ‘ . ‘ 5.1 INtroduCtion . .+ s v v v v v e ke s s e s e e e e e e e s ey 2% B
i : D \ , , , . ’ 5.5 Design Criteria of the Operating SYSeB S . < « v o ™v ¢ v v v o 4 4 s 0 o s s s A 32 .
" o , © ‘ . o
v o ; o , 2 RS , ‘ - v . -, :
~ .
b) : , . :
@)) . ; ° = .
{ FA o ot . - 4
%:a_*b : a L k S : 2 .) _ k ‘ “’ o . ' . o ' GO . %i 2 U e i Q\P e e s o e i 4 y o . e

5.3

5.4

1108 Archifecture .« . v « ¢« ¢ s s v £ 4w v e e s ¢ .
2, Memoxy Interface . o o v v ¢ o v o 0 v v a b a 0 e bl
be System Comtrol « o v o 4 v s r e v 0w s s ks a .
Integrity Featur®s o v v « o v v a0 s v b sa e e

i v a,Use‘tControl‘.~.....‘.......~....(‘a"v...
! b, States of Bxecution .« . « v « w ¢« U b © 0 v e 6 Foaw
‘ c. Frotection of Pexmanent Files . . v . . ¢ o ¢ v o/l o,
{ I
: d, Protection of Magnetic Tapes « o v « % « o v » & &0 0 s o
e, Audit Trails « . . 4 o ¢ v 5 v v 4 o s v o 0. ‘e
: f. Role of System Console OperatoT . . « + .+ . % .o
3 g. Impuct of System Degradation “ e
;. S.SSumary.,...‘...._.....‘u..‘....a..
: 5.6 Operating System Integrity FLAWS « v o v v o e v n v va s s
’ 6. Bolt Beranek and Newman TENEX (J. E. Dommelley) « « + » « wa s » »
j - 5.1IntroductiontoTENEX........»*;.....;,..
6.2 Typical Use 0f TENEX « w'u v vov s v s v v n o o s o n v s
1 6:3 Overview of TENEX liardware Archltecture and Integr:ty Features
E - S 4 2
, b. Virtual Memos uaxdware........,.....H.
* c Peripherg e
R 6.4 Operatfnl,/dystem De51 and Integmty Features + v 4 = o + »
‘) 4. File Protection . B v A e e e e e e s
: “ b, Dxrectoryprotectln. .. B T T R T
; ~¢t. Process Protection . . . v - . o v e 0V ks e
6.5 SUBMAYY . o i 4 Ve w o« h b m e e e e e e e e e e e
) 6.6 .Operating' System Integrity FIBWS v v v v o e e e e e e
a: EXASting FIOWS + ¢ v v v v v v 6 Sk a s e e e s e e
b. Flaws that have been FiXed » « v + v v v v v o o v v a0 » «
7.Sumatyand(lonclusmns..‘...........:........
Glossary (Hu L. Bonigeford) « o v s v v vve o 5 v 4 v o n s wn nn oa o
Bibliography (D 4. HeDB) - « v v ¢ v v v v v e b e e e e e e
REFETERCES + v v v v v v o v v n fa v e e e e e e e e
i [
i : ’ f
B
"j (o
S > N
(4 ’ a
.) vi
o
. 9)
o 5,
. » R o
{;‘:4 . I

-

R L4
- 1
ce ... B4
Ve ae . 59
R 5

-t
i
!
|
) Acknowledgment
| This report was prepared for the National Bureau of Standards, Order No. 5-413558-74, as part ’ ca ®
{ of the work of the &aearch In Secured Operating Systems (RISOS) project at Lawrsnce Livormors
E Laboratory, The RISOS project is sponsored by the Advanced Research Projects Agency o£ the :
% Pepartment of Defenae (ARPA) under ARPA Ordér No. 2166, The work was performed tnder the aunpices. ? 3
. l of the U,S. Energy ﬁéaearch and Development Adminiuttation. :
‘ The authors of this document are: 1
| R. P. Abbott 3
« } J, 8. Chin
J J. E, Donnelley
W. L. Konigsford . N
| B S. Tokubo Y
E D. A, Hebh o
2 i :
) s i
i I]
i .
i 8
I
N)
a)
i 0 .
¢ W ‘
i ‘ 2
5 n o :
5 [z} :
g 2 o
o v o . ¢ .
. L \ i I
? IS “ (=] 1N
- \ ’ n . “
N . A i) , o
E (/ - o ‘ Ia
! .
i it
3) (L s .
i) >
& 4 b §
° el
E
’ ; # g w7
. o o]
& : F . e
) K% <
\‘7 Sty Q
[#2 1 ’ ’ ©
B [Dy B
N @
K i 7 Y] © K g
e e : = : o

f e}

[N

¢ PR,

et b el i

S S A S

&

SECURITY ANALYSIS AND ENHANCEMENTS OF
COMPUTER OPERATING SYSTEMS |

o

“ i) el
O . 2

The protection of computer resources, data of value, and individual privacy has motivated a cli:im;éem
for security of EDP installations, especially of the operating systems. In this report, three
commercidal operating syst’ems are analyzed and Security ephancements suggllited, Because of the
similarity of operating systems and their security problpas, specific security flaus are formally
classified according to a taxonomy developed heve. !}:15) lassification leads to a’ clearer understandmg
of security flaws and aids moanalyzmg new systems. The discussions of security flays and the secunoty

enhancements offer a starting reference for planning a §pcurity investigation of an EDP-installation’s
operating system. g

Key words:

BBN-TENEX; IBM 0S/360; UNIVAC 1100 Series 0S; operating system security; software security;
security flaws; taxonomy of integrity flaws,

¢y 1. An Oyerview

‘This document has been prepared for use by computer, EDP, and systems managers:
© To aid in understanding the issues of canfident:lahty. protection, and security as they apply
to computer operating systems.

o To provide information that will assist in assessing how much effort is required to enhance the .
integrity features' of their operating systems.
To meet these objectives, two operating systeiss, which azxe corz*arcmuy availuble. were selected
for analysis. The two systems were selected from those commonily used in Federal Governmant computer

A third system has also been sneiyzed and is presented here because of its more recent design

and because the issue of security was considered durmg its design phase,
N

The material in this document is divided into three major areas. Sections 1-3 conprise the first
area. Section L dntroduces the material with discussions of the motivationsl and “technical aspects
of computer security and the relative importancé of operating system security. Section 2 deals with
general operating system security as it applies to a range of systems, Section 3 presents a taxononmy
of integrity flaws, that~is, a more formal, systemauc way of portraying and classifymg these problems.
The second major area contains secnons 4, 5, and 6, and each deals thh a specific operating
system: IBM 08/MVT, UNIVAC 1100 Series: Operatmg System, and Bolt Beranek and Ijlewman's TENEX for the

centers .

_PDP-10, respectively. The last area includes section 7, the sumnary and conclusions; & glossary? and a

bibliography.

Q

&

t
H
i
:
1
[
i
i

7

“for fraud or ‘embezzlement. Somz examples of volatile and highly sensitive records are: proprietary

1.1 MOTIVATION FOR ENHANCING SECURITY

N
N . i N I

Initial interest im computer uecunty came from the area of natwnal secunty. It is fairly easy
to rocognize the need for protectm ythe data tnat relates to a nation's defense. However, privacy
_and confidentiality betane issues & / the nation s attention wad focused on the increasing awount of
personal information, wntamed mgh.m computer systeig. As the volume of, information grew, 50 did the
possibility that information mght be used in @ manner ‘which was not intended.

In the business community and in the Govermment, many computerized recorcvlbs afford opportunities

o

data and programs; recorﬂsgaf ownership --cash deposits, stock transactions, real property, ete.; and ;
online banking, It i3 easy to imagine the implication of even a temporary modification of:*%ugh records. f
A decinion, baged on the tempurarily modified data, could have far-reaching effects. . ;

Definitious of security (&s applied to computers) ; confidentiality, and privacy are presented in f:\ ‘.
the Glossary. Consider at this peint, hmmver, a mther legalistic and sigplistic definition of these !
words: ' ‘

Integrity is the state that exists when there is complete assurance that under 21l conditions a |
system vorks as intended, i

Computer security is the compos:.te protection of administrative and physical security for computer

‘assets and data v.ecunty. N j
Data secm‘ltz is profection agsinst accmental or deliberate modification, destruction, or ‘ ;
disclosure of datd.” : :
Cohfidentiakitz relates to data. The word confideéntial means entrusted with the confidence of

another or with his secret affairs or purposes; intended to be held in confidence or képt secret.
Contyolled accessibility is the protection provided to information and computational resources

by the hardware and softwarc mechanisms of the computer itself.. o » &

Privacy relates to the 1nd1v;1c§ua1. The right of an individual to decide what information about
‘himself he wishes to shave trith others, to be free from unwarranted pubhcity, and to withhold himself
and his property from public scrutmy if he so chooses.

Public Law 93-579 (The Privacy Act of 1974) is mot necessarily a justification for ewhancing the
s.xet:i.\x'i‘t:y~ of a computer's operating system; however, it does focus afctant:ion on the protection of data. ‘ 1
An axmnination of the Privacy Act is in order so that an asppropriate level of effort may be directed
toward opemting system sectrity as it affects the confidentiality and privacy of data.

The First portion of the "Privacy Act of 1974" Yeads: g ‘

"Sec¢, 2, {a) The Congress finds that —

(1) the privacy of an individual is directly affected by the collection, maintenance,

use, and dissemination of personal information by Federal agencies;

A (2) the increasing use of computers and sophisticated J.nfomatmn technology, while i
' essential to the efficient operations of the Government, has greatly magnified the B
hazm to individusl privacy that can og¢cur from anyw ¢ollection, maintenance, use, ;
or dissemination of personal information;

3 the opportunities for an individual to secure employment; insurgnce, and cfedit,

and his right to due process, and other legal protections ave endangered by the
misuse of certain information systems; < v X
4) the pright to privacy is & personsl and ‘fundamental right protected by the g
‘ Constitutior} of the United States; and . v .]

|
|
A it enime . e i bt wmw%ww

;;x\

“ T T e . '7'*~f—fj4“‘iWV‘ ’4’”) "ff e "”L”"T

(5] in oxder to protect the privacy of mdi‘viduals 1dent1fied in informstion systems . ~ o 1
'mamtamed by Federal agencies, it is necessary and proper for the, Congress to - ’ :
regulate the collection, maintenance, use, and dlss’eminatmn of informntmn Ev such
agencies.' 0> '
Another excerpt fxom the Privacy Act of 1974:

: 7
95e¢. 3. (m) Government Contractors. When an agency provides by a contract fo%' the operation

by or on behalf of the agenay of a system of records to accomplish an agency funétion, the
agency shall, consistent with its authority, cause the requirements of this section to be
applied to such system. .,.any such contractor,..shall be considered to be an employeé of
an agency.") ’
Personal information about an individual must be protected against misuse, That is, the person's
privacy must be safeguarded by maintaining the confidentiality of data related to the individual. If that
information has been placed in a computer system;, that compﬁter system must maintain the confidentiality
of the information. Therefore, that compu/(er‘system must be secure against the misuée of inforpation
on individuals. K] ’
The law miot only mandates the protection of information but requires agencies to implement security
safeguards as stated in Section 3 of the law: & ’
"(e) Agency Requirements.-Each agency that maintains a system of records shall—...
(10) establishapprbpriate administrative, technical, and physical safeguards to insure the ‘
security and confidentiality of records and to protect against any anticipated threats or
. hazards ta their security or integrity which could result in substantial ‘harm,' embarrassment,
inconvenience, or unfairness to any individual on whom information is maintained; and ...’"

1,2 TECHNICAL ISSUES IN ENHANCING SECURITY

Data security is the protection of data against a%:idental or deliberate destruction, modification,
or disclosure. I€ a remote-access, timeshared system crashes and causes confidential information to be
displayed randoinly on one or more términals, it may be considered to be an aceident. If, howeVer,
someone causes the crash fm' ‘the purpose of gathering such information, then that is a dehberate
disclosure of confidential mfarmatmn. Ne1ther case is desirable. . : ;

From a software point of view, bcth the operating system snd each applzcation program bear

rgsponub;llty for maintaining data security. It i%, however, the operating system that controls,

assigns, allocates, and supervises all resources within the computer system. Core space, input/output
(I/0) channels, peripheral units, data files, the master file indé,x, and ‘the CPU are accessible to an

‘application program only after appropriate dialog (i.e., system calls) with the operating system.

Should the operating system be tricked, subverted, con{rolled, or compromised by an application program,
the confidentiality of information may be violated. The end result is the same regardless of whether
the act of subversion was accidental or deliberate. \
The ideal situation is one in which operating system security is a major design criterion. Even
then; consideration must be given as to whether the des:.gn is correct, thé design is correctly
interpreted, and the 1nterpreta*¢on is correctly 1mp1emented Unfortunately, computer science has not.
advanced to the point where it is poss1ble to prove that a 51zab1e program has been correctly designed
interpreted, and implemented. It may well be that an 1ncorrﬁct design, an incorrect interpretation of
that design, and an incorrect implementation may appear to pravide a satisfactory operativxg system,

Other combinations of correct or incorrect designs, mterpretatxons, and implementations may also appeay
to be satisfactory.

@

oo

G

Fox the most part, the operating sysi:ems‘> that axe in‘use today have not been desigx;ed with security

< and controlled accessibility as sign1f1cant design criteria. In view of t:he desire to i:rotect an
1;/1d1v1dma1's right to privacy, it may be a vxolatmn of Sthe right to privacy to wait for an occurrence
of system compromise,
b systems analysts (programers), with the objective of mp*ementmg correctmns for any and all ohserved
Lweaknesses. “ g . s '

Therefore, an operating system must be examined for weaknesses s by knowledgeable

(«'

| 1.3 OPERATING SYSTEM SECURITY WITHIN TOTAL EDP PROTECTION
i
OPeratmg system secur:.ty is only one aspect uf the total’ mtegnty-pnvacy-conﬁdentmhty
- protection picture and needs to be viewed within al comprehens:.ve cost-risk analys.w.s. In some cases,
the integrity of the operating system is a minor élement; however, in cther cases the operatmg s
system ig critical and can be the weakest link of the complete EDP system.

Overal)\ protection of 4 computing installation encompasses three protection areas:

o Physitpl.

o Information.

o Service. \ ' , :

Physical protection is the safeguarding of installation facilities against all physical threats;
- that is, protection against dawage or loss from accident, theft, malicious action, or fire and other
environmental hazards., Physical securitybtechniques involve the use of locks, personal ID badges,
guards, securlty clearances, sprinkler systems, ete. Physical protection is.2 prerequisite for
information \d\serv1ce-1evel protection. :

Infbrmatlon (duta)wprotection is the safeguard1ng of informatisn against accldental or unauthor1zed
destructibn, wodification, or disclosure. This requires the use of both physical securlty ﬁ;ncluding
procedural and administrative) and controlled~acce551b111ty techniques. The software mechanlsmsbthat
contzol access are operating systems, application programs, and utility or service programs. ’

Service-level ‘protection is the safeguardmg of a computer system's services frem degradatloﬁ or
fhllure (i.e.y crash1ng3 A rellahlllty_fdllure‘or malicious act1on»can cause this service éegradatlon.
The nature of the appllcatlons at # given installation.ﬁormally indicate the importance af”#%eurity
measures for this protection, .

A bIend of different securlty measures is used to achicve the desiresd degree of protection:

e Personnel security — credit checks, security training, and reminders. ’

‘©. Management pollcles - stdndard operating procedures whlch reflect a constant and committed

desire to protect computex-contalned 1nformat1on. , /

o Physical secur= ty = controlled physxcal access locks, guards, and fire proteetl(n.

N o Operating system <ecur1ty protection of system tableslﬁcheckzng of all argum/nts, and

verification of parameters. .

It is 1mportant to understand that operating system securlty is only one aspect. ;f the total
securlty area needed for lnsurlng integrity, prlvacy, and confldentlallty protectlan
vystem can be used (or misused) in Very sophlstlcated and subtle ways to effect a s8 urity compromise,
Also, the detection of securlty\ﬂlsuse ‘can be’ prevented or covered up-in some 1nstances.

Z The operating

(Laterk
sections will discuss several oftkhese security flaws and what action can be taken _to prevent or
ellmxnate them) “‘These techniques demonserate that an 1nsta11at1on s operating system is a critical’
avenue through which ‘deta and service can be compromised, However, in'the overall protection of an

installation the "weakest 1ink" comcept is relevant and must be considered. This document addresses

b

P
i
s

E
b

" 18 somewhat technical the conclusions and léssons are important and illustrative of sevetal/%pegific

requires Further eXplanation. An operating system can-bz viewed as'eonsiscﬁng of two secfions: an ‘ S

" request, severs all connections betueen itself and the program.

o ! . A . ot

;) . //
only operau;ng;systemu anu—auuuld be- eae 48 a starting reference for planning a secutrity inveatigatipn“v

_\\\\

of an inatallatﬁon 8 UQeracing system. Publications that cover other elements of security are /

% i .) i
o o X ' . . 2
5 : , ;

=

@

1.4 AN EXAMPLE OF A SECURITY FLAW , - Vi

<7

L Sections 4, 5, and 6 examine general and ePecific flavs.

Before presenting this‘material,/it o
will’ be useful to conaider an’ example from an interactive timeshared system, Even though the pxample

problems discussed later. The example ha® beeri chosen because: i / o e

will be ndted. . #
« It is relstively harmless in the event that a misguided reader should invoke it a/einst an
unsusﬁéeting and unprotected system. ‘

7
e It aerves tutilluatrate the poinn h§at computer seeurity is a function of the evbironment in
7o .
) : /o : ‘

] It is specific to &4 number of systems and may be generalized to apply to moBt syst;ﬂs, as
/

i

which the computer operates.

Asgume the following aequ%?ce of actions on an interactive time~shared or multipiograbmable
gystem: 0 '

[O
A

o . The proéram activates an I/0 activity. \ k f/

o The progrnm terminates after the I/0 request is igsudd, but before the I/U /request is completed,
The preceding sequence will result in the permanent elimination of the progran's #ore space as &
further system resource (l.e., a memory lockup).

o A program ig started.

In other words, the system wi11 have to be stopped

and then reloadedebefore the core spaee that was used by the prograg may be reaesigned to any other

user. Altlough the example is epecific ‘to a number of present—day systems, ltg generalized form has a

much brodder application: = any sygtem that permits two or moré asynchronoug events to take place is -

susceptible: to resource lockup. Those syatems ‘which perform a periodic or coﬂditional colleetion of all 3: B

memory space. (ar resources) mot attached to an active process will be immunefto this example. ' »
The inner workings of the operating system and how the ‘above gequence results in a memory Lockup

inter{hpt handler and a housekeeper. In this example, the housekeeper, upon receipt of the euding

4n excegcion is made fot the memory

map table because of the outstanding 1/0 request. When the end of I1/0 aenion is proeessed by the ?

intefrupt handler, it removes all traces of the outscanding I/0 request/ but does not glear the memory

map entry. .Thus, the.memory map 13 left with a setting which indicate 7chatﬂg.portie&rof Epre ds .

occupied. L ‘ ' : ' T { :)

'A number of different observations may be’ drawn from the DEWOTY ockup example./

1) Although the actions that must occur are specified, there 37/
can be written to produce the same end-result. . The I/O device-activatad cah be £ape or disk.
The program can be written in assembly 1anguage as well as/some higher—lev@l languages.

2) The example does not state which operating system will be/affected by the#procedure. In fact,
it wiil WOrk on a number of operating systems controllirig the hardware of different many= '
facturers.

°

the types’ of errors to be found Iin each.

i

SN . B

= i

&

= I B
/ . A7 .2
4 . (;3’>'ﬂ;<; &5

e any number ofuways n program o ‘ e

This suggests that’ there is aeeommunality am ng operating systems with regard to S T

oo . . . "Ov

1
{
&
i
i
EN
!
3
o
i

‘3 detection (audit} or a corrective-preventive chntwol.

 This level of reportmg does provide information for detecting misuse of the system.

3) Taken together items 1) and 2] suggest that &) there may be a set of generic classes of erm;s

%" . that are applicable acrdss manufacturer product lines and b) each generic ei/ror may be, expressed

sina vamety of programmmg styles. A more thorough treatment of this point may be fmmd in

sectzon 3, Taxonomy of Integrity cProblems. 3
4) This partlcular exdmple is time dependent. The command to terminate the program must must oceur
w after 1/0 is started; but: ‘before it is completed. Operating systems are vulnerabie to beth
ime-degendent ‘as well as tme—:.ndependent sequences. f
5) What is the impatt of this emmple on security? If the computer systenm, has a real-time
component, it is possible that critical real-time programs #ill not be able to find space to
Whatever th; real-time programs &re supposed to do, they may lose their time»/‘

o o

£ir in core.

liness, If the system has no feal-time component, revenue may be lost either zs a result-of °
the machine not producing-revenue from clients or because the job queue is not exhausted at
the end of the time period. S LR

-~ 8) “Any overt action that forces an abnormal reaction from may be a masiung
agtion to hide or to bring into being a more devastating set of circumstances. It should be
noted that there is ample opportunity in the e%ample to erase all but a few lines of the culprit

This erasurg makes it difficult if not impossible to trace accountebility in an audit-

Vg
a computer operates

code.
t¥ail sense.

A more powerful point can be established as a result of items 5) and 6).
vhether a particulat cperating system flaw affects security, and ultimateliy privacy and confidentiality,
is a function of the environwent in which the computer operates and the mission to which it is assigned.
A flaw that has catastrophic consequence at one installation may have no irpact at another installation,

“

The decision as to

2
A

7. Security Enfmncemﬁents of Operatingi Systems

This section discusses general controls and actions that can be taker within a computer instal-
lation to enhance the integrity of operating systems. These security enhantements can serve as either
Depending on the nature of the problem and the
praﬂpased action, different enhancement§ may be 1np1emented by users, systeus’ programers, or instalw
lation managers.

The security flaws discussed here are formally classified in the taxonony in §ect1on 3.
and specific examples of integrity problems and their enhancements are described in sectmns 4, 5, and

General

“

§, vhere specif;tc operating systems are analy:ed.

«

; 2.1 DETECTION CONTROLS - e N
- N N N

0

2 "

If data are examined or changed by an unauthorized nser, an integrity compromise has ogc'un‘edr.
If this action is not detected and
'I'hus 3 an mtegml part

This compromise is magnified when the c‘ompromiﬁe goes rundetacted.
reported, then neithet corrective action mox preventzve measures %ill be taken.
of operatmg system security is the inclusion of detection controls or audit trails.
. Most operating systems liave soms audit-trail facilities. In 4 transaction-oriented system, the
auditing can be complete enough to allow 100%- reproductmn of all operations for & given time period.
However, recording
all system actions does not mean that integrity problems are necessarily reported to the proper pe?nle

This is an administrative step that must be taken in addition to the / A
‘) \/ B

(e.g., a secupity offiter).
initial recording,

-

G

O

5

and execution of sections of Hemory.

.sections and a key ass1gned to each section.

}

A

7

For systems that are not transactmmorwnted, the detectmn control is much more complex.

It is
, uite common to log statistics as td what jebs and users are rurm:mg anid what resources are being used,

Normaily, this log informafion is sent to a consale typewnter, Jbut an admm,jtrauve step 1s stil}

required to. report any dlscrepanc, cf,s “to the proper person. The mformatmn car be’ halpful in detscting
resource _exploftation such.as system degmdatlon or ‘system crashes. However; detection controls are
often inadequate to detact information nxplouatlon such as the destruction, readmg, or altering of

data,

This is because.the file access miormatlon is normally not maintained.
Commercial audit packages are available from most of the 14 ge cextified pyblic accountant (CPA)
firms [%J. These packages, however, only extract and report datd foym previousiy created files (quite
often files of financial informatiom), The data are checked to see if they are accui:ate, but there are
no facilities to determine what user program read or modified the data. What is requued iz an audit
trail of not only who is on the system, but what data files are available, what files are referenced,ﬁ
how flles are referenced, and in general any exceptlon to a predefined standard of normal processmg‘

(R

2.2 CORRECTIVE-PREVENTIVE CONTROLS - ®

A . .

Numerous corrective-preventive controls can enhance thé sgcurity of oper’a.ti;ag systems. These
controls can affect the operating system dzrectly as with code modxfzcatlons, or indirectly, as with .
procedural and admmstrat;we changes. Basxcally the controls are measures des:xgned to prevent users
from 1) executing in a supervisor state or master mode, 2) reading or altering data or flles to which
authorized access has not been granted, and 3) degrading system performance by crashing the system oy
using resources wlthout corresponding accounting charges, §

These controls are 1mplemented through hardware, qoftware, user actlons, or administrati ve/
physical steps. The ease and cost of these enha.neements ‘vary c0n51derab1y) Hargware and software
changes usually reqmre more effort and cost than those taken either by users or by enacting admin-

istrative controls. However, the effectiveness of each enhancement must be considered,

2. Hardware

Some hardware controls are orlglnally built into the wystem, others can be added as required, In’
both cases, some amount of saf(ﬁare coordination is usually required to derive the full protection
beneflts.

o Built-in controls ;

With a nulti-user environment, it i5 necessary to protect against unauthorized reading, wodification,
Several hardware designs can provide this protection and are
psually funéamental to the computer architecture. One, physical memory can be originally dlvided 1nto
The key indicates the type of access allowed, 1f any.

Two, protection can also be provided on a logical section of memory via base and bounds registers.
Three, virtual storage cin be used that Tequires the hardware to perform paging and segmentatzon.

In addition to memoxy protectlon, control protection is also normally a designed-in hardware
feature that involves the restrlcted use (execution) of certain instructions. Examples of actions that
d system protects aga1nst are: modifying program status words, halting execution, and issuing &1¥ect
1/0 commands, This protectlon is often implemented by the machine having two modes, or states, of
9pexat1on* system and uSer. System mode is a prxvxleged state in which any instruction may “be

executed; user-mode is'a restricted state in \\whlch certain” instructions can not be executed.

55

v

a

DY S

w

o Add-on controls

Protection can also be pr6v1ded by adding a new piece of hardware or modifying exlstmg hardware.
Hdl‘wever, gpecific changes are limited by the hardware configuration in questionm, and ‘most computer,
/f) . installa;iorg do not have the resources to effect these changes. Three examples of add-on hardwaré ave

EERE IR) P MRS

L
I

as follows: “ e N

]
|

Y

o recently described by the National Bureau of Standards [2] can be mplemented in h
) could then be attached to I/0 or storage devices. With this configuration, data are transmitted or

: : : stored in an encrypted (‘unreadabie") form. EBveii if an unautkorized user accessed the data, it could
T Tiot be~decoded withoug afsy obtdining and using the" féey that originally encrypted the data. J’hus,
the key must be protected te protect the data, but this is a much essier task, Currently, encryption
appears to be the most reasonable hardware addition for providing data security. The National Bursau
of Standards intends both-tov submit the encryption algorithm to the Secretazy ‘of Commerce for con-
sideration as a uniform Federal ADP ‘:tandard and subsequently to publish g\ndelme% for 1m‘p1ement1ng

dware, Thid device

and uslng the algorithm [2]. %

actions, This monitoring records and evaluates how a system is being used in terns of efficiency,
Also, the monitor can be used to log references to resources such as I/0 channels and disk drives.

And three, a device tan be added that provides permapent write protection for a physical section
of core, The section of core could contain sensitive control or status infoimation needed only by the
operating system. Although this featurd has significant security implications, it is mot available
for all gystems. ’

b. Software

Software controls are the most common and direct security enhancements for. operating systems.

o - However, they are often costly as they require installation implementation and can introduce new
i integrity problems. Some software controls are as follows: 1) removing a function or module from the
operating system, 2) adding a function or module, or 3) modifying existing code.

i o Removing software functions
| The removal of routines or parts of routines can directly increase the level of security of the
l) operating system., The functions of these routines may be useful but permit unintended results. Also,
! some routines may have been originally included to circumvent protectiom features. Two examples of
; removing software are as follows:)
i * The removal of a checkpoint/restart routine can enhance protection. This routine takes periodic
% dumps of program status data and intermediate results so that in case of & system ¢rash, the program
L can be reinitiated at the last checkpoint as opposed to a complete restart, Security can be com-
. . “promised if critical status data :{n the checkpoint dump are altered and used in a reinitiation of the
i program, _

Removing system programmer traps can also enhance proteétion. When a system is implemented,

; ~ " tyaps or "hooks" are often included to allow special operating privileges to system programmers. The
¢ ‘ traps are intended for debugging or lepitimate system maintenance. HoweVer, their usefulness depends
" on the secrecy of their existence, and secrecy is a very poor security protectlon method. Thus, the
use of traps should be strictly limited or they should be Femoved.

fme, an encryption device can be used for protecting ‘data. For gxample, the e Jicryptmna algori'&hm .

“fwo, @ hardwore monitor can be attached to the existing hardware to record (or trap) execution. -
® .

. e .
b i e S et et i s et

SO SV VA P

e L T

=P

i

a . L@

&, Adding software functions - ‘ ' 'oo = .
Adding software functions to an operating system can be done ejthev by the vendor or by the -
installation itsslf,” As security is bscoming more. important, vendo{qs are making available some routines
to afford protection. Two examples of adding software functions are as follgws: . : v e

The use of passwords can protect data files. and gser accounts. -This fuction deals with the -
problems of authorization and authenticatien. The qua‘lxty of the password software mechanism and the o
manner in w}uch the passwords themselves are administered are critical and demonstrate the multi- °
dimensional nature of security enhancements. Short passwords (e.g., only four characters), passwords,
chosen for ease in remembermg (e.g,, name of user's spouse), or, lack of exceptlon action (e.g., not

repepting several incorrect paspword tries) can lead to compromise’and a falge Sense of security, -

A monitor, or control routine, could be used as .an audit tool %o record resource usage or data
accesses. In addltion to, recording this infoymation, & check can be made.syainst & predetermined »
authorization list to see if the action is valid and to prevent its completion if not.

6 Modifying software functibns ,

Modifying existing operdting system code is a nontrivial task. Systems are normally very large
and the interaction among modules is complex so ‘that a change may produce an undesired and- unexpectedJ
Yripple” action. However, code changes can significantly enhance the security of a system.

The following are two examples of system problems that can be corrected by modifyin software:

1) Coding in which parameters are not adequately checked. Some system routines‘ doi\ t validate
input parameters because of the assumption of either a benign environment or that\ nother
system routine made the validation. This can lead to routines being used for unintended
purposes and security compromises. .
2} Coding in which system routines store data in user storage area or execute in master (or

privileged) mode when not required. These practices are not direct security flaws, but they
allow users to modify data being used by the system and gain spccxal privileges —~ either of

which can then be used to compromise integrity.

¢, User Actio;_m_

Individual users can take some direct action. The most obvious is to use existing security con-
trols, such is passwords and proper tape-labeling techniques. Also, system routines should be used in
the intended manner without-using tricks that may have unintended consequences.)

The user must be aware of possible integrity problems and take direct action to counter them. For
example, “in some installations user-to-user Scavenging may be a security problem. That is, code and
data are left after a program terminates and a subsequent user, resident in the same core area, can
read the unaltered information. In this case, 8 user could scrub or zero-out all buffer and data areas
before tennmatmg the program.

Another instance of possible user security action deals with terminal sign-on procedures.\lt is
the user's responsibility to determine that he is interacting with the system and not with anotLer
user's program imitating the system. Entering passwords 615 accounting information on & terminal “
without first verifying that one is communicating with the 6per’71ting system can compromise the entered
information. Another user could be imitating the operating systbﬁn and récording the enteved in- |
formatlon (e.g., passwords) for later unauthorized use. To pre\ “nt compromises of t}us t?pe, users
mv.u:)mteract with the system in & way that can not be duplicated by a user's progzam (e.gl, using a
terminal control key to sign off prior to initiating the sign-on procedure).

&

\fj

S

—

2

: o
Also, users should always sign off properly when fmuhed processmg. This miy involve destroying

all prograns and work files when through, This &vo:\ds the problem o¢f leaving data files ox programs
on the system and available to anyone who happens ta subsequently use the teyrminal.

o
w ©
° o

)

d. Aénninistratwe-l’hysmal Lo o

diw s The 1ns~d-1ation m&nager oy perscm desigx;ated with securlty responsibilxtxes can take direct

nction to enhance operating system secun%y This action normally is to prohibit or mcndate gertain
user, ‘act:mns by policy decisions or by phys:u:al acﬁons {often some hardw:are or software action must
accompany ‘the administratn'e decision).

From, a practlcal point of view, administrative or physical security enhancam&mts are very important.
2

Usually they are the first enhancements made, They can bﬁmplemented in & velatively easy and cost~

’uffect:we mannér andgn;avide a significant amount of security. ,},} ese measures will not prevent the

very determined individual from compromising security, but it does increase the difficulty of com- %
promzsmg and the risk of detection. An added benefit can be a mdre disciplined and orderly instal-
lation. ® ’ :

Items that fall into t’us class include restnc'tmg terminal access, requirmg all tapes to be
iﬁbeledg(mth the corresponding software checks), standardizing log-on pmcedures, requlrmg passwords,
using system-generated passwords, vsing encryption devices for data transmission, Iimiting actions an .
operator may perform in response to console log messages, and nsing guards and some form of badge
jdentification around the computer facilities. : o

A final administrative enhancement concerns # procedure for recording all changes made to the
operating system. A formal pZ‘ocedure should be set up to document and account for each change imple-
mented, This is an aud,lt—type control that fixes accountability, restricts the numbexr of modifications,
and ensures that someone understands the modification, The approval ("sign off") for each step in

modifying an operating system {requesting, i impIementing, and verifying correctness of changes) should be '

done by different people,
3. Tagxonomy of Integrity Flaws

/3.1 INTRODUCTION

P

£

In this section, a system of arranging integrity flaws Into related groups is presented, and one

"class of integrity /Flaw — operating system security flaws — is examiped in detail {Sec, 3.8).

3.2 TAXONOMY OF INTEGRITY FLAWS

Table 3«1 presents a taxonomy (i.e., @& system of arrangement) of integrity flauws. Table 3-1 is
divided into two segments and an exauwple. - Segment one, the syntax portion, clarifies that the mere
existenca of a flaw renders.an installation vulnerable. This is analogous to-the engineering concept
of “unavailable" potential energy. When an individual (ox group) becomes aware of a flaw, an active
pbtentlal to violate installation integrity is achieved — analogous to "available” potentlal energy.
With adequate motivation, skill, reso/%rces, and opportunity, this potential is transformed into
fnnatm energy, and.an 1nsta11ati)// 1ntegr1ty 1§*penetrated. Th:Ls penetration of integrity provides
"the individual with potentmi accifs to one or more classes of resources — items of value to an in-
stallation or its userg. If the individual now chooses, this access may be exploited to produce a ‘
loss ‘For the installation (such 8s a loss of 1nfomatlon, servite, or equipment) and/or a gain for the

individual.
10

1an

Table :3-1. Takonomy of integrity flaws

o A s « i . S

> o

Syntax -
A [Class of User] user acquires the poténtial to compromise the integrity of an installation wvia
2 {Clage of Integmfy Filaw] integrity flaw which, when used, will result in unauthorized adcess to
a [G'Zaae ef Reeaurca] Tesburce, which the user exploits through the method of [Catagory of Mathod]
to [Categoxy sf Ezplmtatwn} ‘

Syn ; tax Elements

L 14 o
[Clase of User] g [Class of Integrity Flaw] [claseof Besourae]

. *Applications o ' *Physical Protection 'Inf*%tmn

«Service «Personnel *Service

*Intruder " o eprocedurgl - *Bauipment
sfiardware ‘ - o

*Applications Softwave 0
*Operating System

[Category of Method] [Category of Exploitation)

*Interception “Dehial of Passession/Use
sScavenging . A) ~ Steal eqmpment
*Pre-emption ' - Destroy equipment
*Possession v - Degrade service

. - Interrupt service
~ Destroy data
« sPenial of Exclusive Posussmn/ﬂse
) - Rzad/Transcribe data
, , N v ~ §teal service
! N S *Modification
: ~ Alter data
- Alter equipment

[}

Example ¢ ‘ B,
|, An "applications' user acquires the potential to compromise the integrity of an installation via
"operating system" integrity flaw which, when ‘used, will ¥esult in unauthorized access to an-
"information” resource, which the user exploits through the method of Vscavenging" to ‘'redd/transcribe

'data."

%

A &ppncaé: ons Users “ ;}

e o g

AT K P
Each clasgificition depicted in the syntax zan be divided into subclassifications and each of
these subclasgsificaitions can by further divided into subclassifications and so on —in desgending
order from most intlusive to most spocific., Segment two depicts the first Jevels of clas.siwflcatmn
for each of the symtax elements. In thf. following paragrdphs, each classification will be ! briefly
discussed, Howevar, because thxs dqcumpent is prineipally concérned w1th operating system secunty

=
flaws, only that . class of flnw wiII be "fully expanded and discussed (Sec.,s 8). i

3.3 CLASS OF UBER : i

A user may have various capabilities at various times, and similar users may be granttsd differi g
sets of capabilities,” However, it is useful to cla,ss:lfy users in terms of broad sets bf c{lpabihtzes.

.1{
!
i
|
v
i

Under thls approach, apphcanons/users are ‘those users who have not been specifically granted
special capnb1x1ties beyond permission| to use the system. They are subdivided imto consumers and
producers, - ConSumers are the authorlzi#d recipients of information products from a computéi“-based i

I
applicationi. Producers are the analysts and applications progranmers who design and implgment specifm .

11 . ; !

iz

e i R

('applxcations which produce information products for comsumers., (Producers may ox hay not be part of the

" include problems of inadequate user-user isolation, lnsuffxclent control over access to data,

B

consumers! organization.
programs require access to data in the system.)

=

Producers require access to the computer system to develop productﬁ* thelr

el

b. Service Users

Servxce users are subdivided into systems and admxnistratzve servicers. Systefis servicers are
membexs of a computer servicing staff that includes the op&>ors, systems programmers, and main-
tendnce engineers who are responsible for the mdintenance and dvailability of computer system resources.
Becouse systems servicers have physical access to the computer, the operating Jystem code, or the dats
storage volumes, they have the capabxlxty to access any information in or on a system. For example,
an operator can replace the 1nsta11¢%10n's protected operating system with a non-protective one or may
use computer console switches to alter main storage contents, The hardware vendor's. maintenance
is equipped with a sot of diagnestic aids which can be utxlxzed as in-
Z%

: dﬂinistrativn servicers are nembexs 6

engineor, in another example, 1
tegrity penetration tools.’

systems stafflhho do not have physica} access to the
computer roon or operating system, but who have \lpecial software privileges, which, for example, perpmit
accoss to privileged hardware 1nstruct10ns and special operating system serv1ces, or permlt special
operations on datz. Such users frequently have the capability to access any information in a system,

¢. Intruder

o

An intruder is an unauthorized user, he is en outsider. This term applies to individuals ox h
orpanizations who have no authorized access to 2 computer ingtallatiomor its products and who have

a possible malicious interest in obtaining unauthorized access.

S 3.4 CLASS OF INTEGRITY FLAW : s

Tﬁé ¢lasses of integrity flaws fiave been mentioned.in sections 1 and 2. Briefly, physical pro-.
tection Flews include: telecommumications intergeption, mixed-security-level access to terminals, un-
authorized access to a computer room, and exposure to natural dlsasters. Flaws 1nvoIV1ng personnel
security include acts such as sabotage, !collusion, dnd user error. Procedaral fluﬂs are, of course,
1nsta11at10n~dependent' Examples of such flaws involve trlcklng {or "spoofing") a system operator
into making ﬁhguthorlzed dafa available to s user; inadequate tape-labellng prodedares 4t an instal-
lation; and "Trojan Horse" subversion of an operating system‘
covertly implanting computer instructions in 2 trusted. (system) program so that the trusted program; .
executes its intended functlons correctly, but with illegitimate side effects. Hardwaré integrity
flaws include problems Suuh as a flaw in vwhich a usfr's terminal. disconnect signal is not passed on to’
the operating systems software, or a flaw in which a1l usyrs are permitted access to an instruction
such as "disk diagnose,' which should have restricted access.

As used here, "Trojan Horse" refers. ux «

1317 involving app11cat10ns software
and
exp101tab1e flaws. in program logic. Almost all applications’ software flaWS have direct analogies with
operat;ng system flaws. Operatlng systems flaws are dmscussed 4an: “detail in Section 3.8,

Syrizzg

3.5 CLASS OF ’stourzc& °

o

=

The rééources of value to an lnsteilation or its users are infbrmaticn, service, and, equipment.
Information includes all the system's files (programs, data, and file directories) and all user files.

» E

» » 12

Y

>

o : Service represents the unimpaired operation of the installation.

]
- @ Implicit sharing of frivileged/confidental data.
; ®

R

Service rescurces include all the
If an applications usex obta1ns accessﬁto the hardware wait/idlo

_mode, monitor/master mode, or unauthgmlzed disk-storage space, then a valuabiv resource has been come
promised.

.capabilities of the operating system.

" of its computers.

it

oo 3.6 . CATEGORY OF METHOD

3 Interception is the interruption wf communication.or connection) For exempla,\;Quser progran

it? mgsquerading as the system could intercept an unwary user's. signeon password. Scaverging is the
searching for something of value from discarded information or suppiies. For exanp)q/%if retding of
(scratch) tapes is not prevented, 8 usdr could search through the data left by a previous user in an
attempt o find some valuablé‘information. ‘Pre~emption involves toking something to the oxclusion of
others such as a user pre-empting CPU cysles.

,; a magnetic,tape cantaining valuable information,

.]
i) i

LA

3.7 CATEGORY OF EXPLOITATION

PR

o

s ¥

Because the categories of exploitation (Table 3-1) are self-explanatory, they are only listed
here for ease of refergal and rompletengss.

0 Denial of Possession/Use B
~Steal equipment
~Destroy equipment . .
-Degrade service . ' S
-Interrupt seyvice , N
—Destroy‘d7f '

&

¢ Denial of Exclusive Po$gession/Use
-Read/Transcribe data
~5teal service

a

Modification
~Altsr data >
~Alter equipment

.

3.8 DETAILED DESCRIPTION OF OPERATING‘SYSTEM SECURITY FLAWS i

Operating system integrity is concerned with the assurance that the operating system works as
intended, Thus, an operating system integrity flaw is any condition that would permit a user (or his
programs) to cduse the operating system to cease reliable and secure operation, Integrity is thus ’
concerned with reliability (fraud and error) problems and with security (zesource and privacy pro-

tection) problems. & =

In this section, the seven major categories of operating system security flaws areudiscuSSed‘and
examples of each are given. The seven categories of operatlng‘system security flaws are:
o Incomplete parameter validation. X
Inconsistent parameter validation. : N
o

Asynchronous-validation/Inadequate~serialization.

i

13

y

[) o

' « P . Equipment resou i;} s include all installation equipment relevant to the unimpairedsoperation 2

o

Possegsion is taking control of property such as stealing

-

4

N

O A T

o Inadequate identification/authentication/authorization. - - - e i
. : e .y ~ : Control Program Control Program B

© * Violable prohibition/limit. » ‘ , : ’ ’ ;

o Exploitable logic error.

Associated with the general text description for each of these operating system security flaws

, is. a table in which that.flaw is further divided into sub-categories along with a brief, descriptive

e;}ample for each sub-category. To conserve space, not all of these sub-categories and examples are

" ‘ discussed in the text. A complete description can be found in A Taxonomy of Integrity Problems [3].
: .

Register Save Area _ V] Register Save Area
a, Incomplete Parameter Validation , ‘ . Ny Data ‘ s Data . . o
N o "
10 rivile € s g @ o ’ o

a At a high level of abstractmn, whenever a proces/s (or program) with one set of privileges r quest :(_ Pointer to User A Program A :i Pointer to User A Program A et ,

service from a second process with another set of privileges, the preservation of system integrity -4 g . £ ! :
¢ i [
by . réquires that the request be thoroughly validated. For most operating systems, the bmgxdary of greatest ; % Data %| [Data
1 Pyl w]
! relevance to system integrity is that boundary between a control program, with complete hardware and H . it - v
g softuare capabilities, and user programs, with a limited subset of capabilities. This separation is i Data Data
! usually enabled by hardware facilities (such as control/monitor state andwsiSrage protection) but is

E
I
| IR
P enforced through software. o , § %, ‘
, In general, user programs invoke control program services in a manner similar to subroutine calls, ; ‘ User A User A ‘
using many parameters. Only the control program has‘ the capabilities to perform the requested services. : Program A ' Program A l
P 0 The purpose of creating this separation or isolation i}?et“een user programs and the control program is R ; P : s Efem coll No. 1 '
. to prévent any user from compromising the functioning\of the control program that is performing . ; o b g 4 9 :
services for all users (e. g.,UI/’O operations, program initiation, date and time, etc.). If the ' ’ - System call No, 1 <‘(; System call No. 2 l
) chiecking mechanism for each of the Tequestsd parameters is not rigorous or complete, it is possible to § 2 5"’. k Transfer pointer . - B
fool" the control program into executing the request in a manner which is detrimental to secure f . -5 _Pammehers
s operatlons. To be valldated ngorously, parameters must be checked for permlss*ble' ‘(;?3 &
; o0 Presence or absence. oo User B iy
N Data types c&_}nd formats. User B *
Number and order. .

Value ranges.
Acdcoss rights to associated storage locations.
Con51stency among parameters (e.g., storage 1or:ations)

o .
~; As an example, three dengerous results can occur iy a user succeeds in getting the control program o L// , @ Points to Register Save Area "‘Sf&’d of a control

Q.0 0 O 0

pregram service routine,

: to accept a parameter consistiag of an address outs1de the memory space allocated to that user? ‘ ,,// N ‘

; o The -control program may obtain ynauthorized data for that user. ' :) Figure 3~1. Layout of memdory after first system Figure 3-2. Layout of memory when preparing to

P : call, , , issue secon& systen call.

] o A set of conditions can be generated to cause a systém crash. : : : 3

i o Control may be returned in control/monitor state to the user. i j‘ ' () a e

' A penetration.attempt illustrating the return of control in control/momtor state to a user program ‘ . u ‘ - 4 ©

T is described below and in figures 3-1 and 3-2. ' ' » ' ' » S o ‘ . o

o 1) An instruction which, when executed, will transfeér control to a predetermined point in the - i g":: . , 5 ' : T

H P ‘ Y 5 . "
/ ” user's program is loaded into a register. s ’ : : : p :

: 2) - A system call is then made which causes the registers to be saved by the control program in . . o

« Register Save Area (Fig. 3-1). ¢

. R i

7 3) Upon return of c¢ontrol to the user, another System call ismade. Among the parameters for : : . S

. this system call, is a pointer (address) that has to point to a location in the control pro- ¥ . ‘ A R -

. ' . gram, .This address will be used in tyansferring ¢control to the appropriate control program ‘ . :) : S N : : -

‘service routine. Naturally, the address supplied is the location in the Register Save Area o . ‘ - : S : ,

e vhere a transfer back to the user's program had been planted by, the previous system call ' i « - : 4 T . Lo N

; (Flg. 3-2), . N . . * ; : . L ‘ - T on ;

: 14 ' ' ot

ks - . H

ER : i “ " , 15

vi,,h,‘ - : o

i + 5 %

EERt

)

4) All parameters are checked and approved; and ‘during ‘execution of the second system call, c_;ontrol é) Table 3:3. Inconsistent parameter validation: categories and examples
is returned in control/monitor state to the user, giving the user control of the system. * . Ce, ‘ - e
Table 3-2 further describes the categories of incomplete parameter validation. . ‘ Pl Two or more systéms routines pe;fom adequ?.te parameter verification for their purpose, but the
) o :) ; multiple sets of validity criteria are mutually incopsistent.
’ Table 3-2. Incomplete parameter validation: categories and examples i
- Example:
1. System routine does not adequately validate parameter attributes. ;
. ! © The routine that creates a master-file-index entry permits embedded blanks, but all of the
Example: . . » 4 other routines which modify/delete master-file-index entries treat an embedded blank as an
) ' ; error. Thus, once granted, a user may be unable to revoke shared access to a file.
o ‘The control program does verify an initial I/O transfer. However, it does not verify that ' ;) : - -
the initial I/0 transfer will not cause illegal modificacion to subsequent I/0 transfers. ; ¢: Implicit Sharing of Privileged/Confidential Data ‘A)
i N ’ 2 To ensure integrity, an operating svstem must be able to isoql;:\\e each user from all others and
2, System routine does not properly reiterate parameter validation. - 4 <= from the control program, This isolation involves both control flow and information. VWhenever
i - ‘ information isolation is not complete, the system may allow information of greater privilege to become
Example:) : ' z accessible to a lesser privileged user or may allow one user to access another user's ihformation
_ . .) o against that user's wishes.)
o Only the first I/0 command or all but the last I/0 cyrmand in a chained list of I/0 cormands : | In many operating systems the control/program portion of the operating sSystem shares memory space
is verified. . : - with user programs, either as work space or as a convenient place to put ‘information associated with
. . that user program. This is a deliberate design policy to facilitate charging individual users directly
_ 3. System routine validates a parameter under some conditions but not under all conditions of in- ; for resources that they use.’ If the user requires file operations or other kinds of system resources,
G vocation. i the system maintains the information and the work space for his requirement in an area that will be
- : ' R : ' . _ ; uniquely chargeable to that user, Because the workspace is shared, but im a mode not normally avail-
Examples ‘ L able to the user, operating system implementors have often been careless with vegard to the state in
3 . . _ ' , ' — . which the workspace is left after receiving a user request.
: © A 'confused-deputy" control-program service routine adequately verifies parameters when o For example, the control program may use such a workspace to read i _the master index of user
t directly invoked by a user, but not when afuser's parameters are indirectly pgssed to the - files along with their associated passwords as part of a search for data requested by a given user.
' o first service routine by a second service routine. - This function is nec.:‘essary in order for the system to determine that the request is properly formed
_ B ‘ and authorized to the user making the request. If the control program should find that the request is .
‘ b. Incon51stent Parameter Valldatmn . : . impi-oper, it returns control-to the user program originating the request, with an indication of the
> | Whenever there are multiple definitions of the same construct within an operating system, there nature of the error in the request. However, in this example, the control program dees nothing about’
o . exists the possibility that inconsistencies among these definitions will create a security flaw. v the information remaining in the shared workspace. As a consequence, the user can now access the
; ‘ B "l'hi g design efrdr goes beyond the incomplete parameter validation error. A situation may exist . workspace and obtain from it other user identifiers and authenticators {passwords) which he can then ‘
‘ : in which each of 'several control program routines checks completely for conditions it considers valid;] use to masquerade to the system (Fig. 3-3). As shown below, even if the system erases the information "
R however, the multlple sets of validity criteria (i.e., conventions) are not completely consistent, . before returning contzol to the user's program, the information can be obtained by the user through
1 An oxample of this category o £ flaw follows: - . = ‘ some form of concurrent processing, such as an independent 170 opgration which reads from the workspace
‘ ‘ Operating: systems maintain directories (e.g., catalogs) of the data f11es used by the system 4nd in question. There are other varidtions of thlS flaw. Sometimes work files and workspace are not
i its users. The contents of these d1rector1es are often accessed by as meny as, 1zlf a dozen interface " erased when a user releases them, and another user can scavenge this "unerased blackboard" when the
; programs. - Each of these interface programs mak¢s assumptions as to what constltutes a va}id condition uncleared file space or buffer space is next assigned.
' S in the file system. . = % Sometlmes the full implications of information made avmlable to & user are not realized by the
e Consider something as basic as the characters in the parameters representing the name(s) of users , system's designers. For example, control programs frequently acknowledge the disposi ition of user
: L to be given permission to access a file. The routine that creates a master-file-index entry may accept ‘ service requests by setting a réturn-code/status-flag. Various return conditions (such as: "illegal”
L a charagter (such as an embedded blank) as valid in a specific permission name; whereas all of the o parameter!’, 'segment erroxr', 'password OK", etc.) and other forms of interprocess cpmtm::.catmn (e.g-s
other interface programs that modify/delete master-file-index entries assume blanks will never be valid ~ SEND/RECEIVE acknowledgment) may connote intelligence that enables a user to breec}! security. .
:‘ R and thus do not accept them. Under such conditions, specific file permissions could be created (such ' ;' Table 3-4 sumarizes and gives ekanples of the cgtegoz:;es of implied sharing, = | ¢
‘ ‘ as shared access to a file) which could not thereafter be deleted, . ‘ - k 7
f , - ; Table 3-3 smamze,s inconsistent parameter validation, y ’ &) i ; g : _
T 16 ‘ ' : v | , :
F ! AN \\ k
fﬁk A \ }
& &
- . O

segrarnre” g e L e E e e e . : . . O S U S S

08 e S b

W

Bofore

-]
)
o
Workspace
o
Sy: em Nucleus
- User A

After

Figure 3-3,

D

\‘System Nucleus

User A
Program X

v e

1ssue 1/0 Request (File A)

File A 1 Password A
File B | Password B
File C | Password C

—

UMasier File Index

it

s, T

Program X

@ .

o

I/O Request complefa
o - {Error Return)

File A | Password A
File B'| Password B
File €} Password C

1

1
o |

o

18 l V ;

4

Layout of memory before and after iissu’in‘g requests to read master file index,

Ll

q.

ORIy

PA

B

Table I-4, Implicit sharing of privileged/confidential data: cat%gories‘ and examples

L

li

Explicit transfer of informatiom: . c

Examples:

e While servicing a user request, the control program B58s a user-accessible buffer to scdn master-{
file-index entries. While this act1v1ty is in proce§s, the user asynchronously reads this buffexr

and obtains another user's file-index password

«
a

S

o The control program does not erase blocks of storage or témporary file space when they are re-

assigned to another user ("unerased blackbaard").

© A user's password is still legible through the overstrike characters on the user's terminal
printout,.or a user’s password is listed on his batch output when his ‘job command is flushed

due to incorrect syntax.

Implicit transfer of information.

Example:

‘e

o A user piecewise decomposes a password by lmat:nz, it on a page(boundary and notmg page
faults or by precisely tlmmg variations in thf‘ execution time Tequired by a password

checking routine.,
)

d,

during the timing window between the storage of a data value and its reférence (or betw

Asynchronous Validation/Inadequate Serialization

Q

System mtegnty requires the preservatlon of the 1ntegr1ty of mformatmn passed between
cooperating processes or control program :mstructlon Sequences. If serwhzatmn is nol\\;nforced w

two sex

quential references), then the consistency of such a data value may be destroyed by an asynchronous
process.

accessible to 4 subordinate process.
problem.

Control information is especially susceptible ‘to modlflcatlon yhenever it is located in storage:

This is sometimes called the "time-of-check to time-of-use'
As described under the implied sharigng of pmvlleged data flaw, an\ operatmg system may
frequently share memory. space with user programs, This space may not only be used for the passive
storing ‘of information; but also may contain system or ‘user parameters that represent data upon which

‘future dctions will be based.

Whenever there is a "tzmmg window!! between the tife the control pro~
gram verifies a parameter and the time it retrieves the parameter from shared storage for use, a

potential security flaw is created. 'I'lus is becaus:: ‘contemporary operating systems allow a user to

have two or more actwities (processes) executlng concurrently and sharmg that user's memory alio-.

catiori.

=

For example, a user may initiate &an I/0 operation and then contmue executing his’ prqgram
while the I/0 operation completes.

In another example, a timesharing user may temporarily suspend one operation by pressing »he

19

PR

B

“

which

Llne

‘Mattention! or negative acknowledgment (NAK) key.on his terminal, kpepfcrm & second operation 3 -and ‘then
return control to the first operation for completion. Some systems permit "multitasking," in

two or more programs are sharing o single user's assigned memory (address space) and are executing
concurrently — p:érhaps each being simultaneously executed by separate CPU's of a multiprocessing
computer system. o
The following steps describe an asynchronous validation flaw, which is dep:cted in figure 3-4.
‘o In time frame 1, 2 user issuss an I/0 reguest to the control program. The control program
" yalidates all of the I/0 parameters (including the address pointer to a valid buffer within
I the memory legitimately assigned to the user), enqueues the I/0 request (which must wait until

the appropriate device is no longer busy), and then returns contral to the¢ user.
‘o In time frams 2, the user replaces the valid address pointer to his buffer with an address

®

that points to a location within the control program.
o Vhen the I/0 is performing in time frame 3, the data requested by the user is read into (or
i]) out of) the control program instead of his valid buffer, Instructions within the control
: \ program can thus be qverlayed with instructions'supplied by the user, or privileged control
i program information can be read out to the user's file.
1 In some systems, the control program may use an overflow register save aree, located in user
accessible storage, whenever the control program's primaxy save area is filled. This saved information
generally contains prograin status and control information.

i
H
1
¥

This situation can §ive rise to another variation of the asynchronous validation flaw, shonld a

‘ user be able to modify such control information, An example of such a penetration attempt follows:

' © A user constructs an 1/0 record that simply contains an address pointing to a desired location

‘ in one of the user's programs.

o Multiple copies of this record are then output as a file, : -~
The user next. initiates an I/0 operation to read these Tecords repeatedly into that area of
the user's memory utilized by the control program as overflow storage for registers.

’ © Then the user issues a system Service requést that causes the control program to make a
nucber of nested intra-monitor calls, thus overflowing its primary s_ave darea. -(The repeated
issuing of certain service requests may also accomplish this aip.)

@ The 'registers saved by the control program m the overflow save, area will be overlayed by the

L . input records that contain the address pointing to the userts ccde. (Some timing adjustments
may be required for the user to accomplish this.)

. ©. When the control program eventually restores registers and status fmnf the. overflow area, it
o will transfer control to the user's _progran in monitor/control -state ~ thus giving the user
L full control over the operating system. -

An operating system may Store information over a perlod of time in shared auxiliary storage as well
o as in ma:m memoxy. For instance, an ﬂperatmg system may have a checkpomt/restart Prova.smn to
e " xeeord the state of a running program at c.onvement Testart points as “checkpoint" dimps. These check~
: "’po:mt dumps contain ‘both user data and control mfomatwn which specifies the control status to be
SRR ’ assigned if the progran is a:estarted The checkpomt dumps are recorded in a file specified to the
d ‘ system by the user and are accessxbl& by that user for mampulatlon. 'I‘hiough such manipulation, the
. user could rause his program “to be restarted with codified state information that gives his program
A Si 7 greater privileges than thet originally specified. This can, for example, result in the user gaining
‘ ” ‘control/monitor state privileges, ; v o |

Table 3-5 further descnbes the categories of asynchronous validation and serialization flaws,
with examples. o .

)

2}

Action

Storage Layout

i

il

Time Frame 1

Time Frame 2

I
Time Frame 3

User: Issues request to'
control program for 1/0
into User Buffer,

Control Program: Val-
idates user's request
parameters.

User: - Changes 1/0 buffer
pointer to point to sensitive
Control Pregram location,

~Control Program: lssues
physical 1/0 which reuds
a record from user's file
into gontrol program,
overlaying control pfogrom
instructions with those
constructed by usar,

iy emiiri—s irmmas— bttt

0

2]

i
Control Program Conirol Program Control Program
Control Program Control Pregrom = User = pe—User
Instructions Instructions I Instructions N File
User Program User Program } User Program {
: I,Z : ‘ : ' ‘
1/0 Request // 1/O Request | 1/0 Request ‘
i |
éPointer to - A Pointer to — 4 Pointer to M
¢ User Buffer] Control Pisgram Contral Progrom
| location Jocation .
Parqmel'ers } Parameters Parametors
' Paramefers | Parameters Parameters.
. | - .
User Buffer e ' User Buffer User Buffer,
]
Figure 3-4. An example of an asynchronous validation flaw.
2 N

RN

2l

RTINSO SV

S s gt

o)

v

{
|

gy

i

5

Table 3-5. Asynchronous validation/inadequate sSerialization; categories and examples:

.

SN
1, Async/x{;o\ﬁcus modification of user (inferior process) storage.
Examples:

o A user performs asynchronous 1/0 into his paremeter list to modify illegally a previously
validated system call,

6 - A user performs 1/0 into a checkpoint/restart file so that his process is given additional
unauthorized privileges when restarted.

2. Inadequate serialization/control of protected storage. e

Examples:

=)

o A uSer issues a syste/ call which, in part, Sets values in an 1/0 control table arid then returns

control to the user. The user then issues a second, different system call’which also, in part,
stores valves in the I/0 contyrol table — thus overlaymg a portion of the previously set values
in such a way as to gain unauthorized 1/0 privileges for the I/0 performed in conjunction with
the first system caill.

©. A systém routine is induced to overlay its own parameter/storage ares by a user, The user

supplies an address where a return code is to be stored by the system routine upon return of

control to the user. This user=supplied address overlays the initial wordSJ of a buffer where the

system routine has stored a return jump instruction. =

' =

" the nagt,of the library from which it was loaded.

e. Inadequate Identification/Authorization/ Authentication

Identification, authorization and authentication are the essential components of the. concept of
contrelled access, ~Authorization — the controlled granting of access rights — is ultimately based
upon authenticated, imique identification of individuals and resources. An operating system is
essentially a resource manager. Thus, an operating system is subject to integrity problems whenever

1) it does not require authorization for an individual or process to access any data or to use any

resource that should not be available to all, or 2) it does not uniquely identify the resources with

which it is dealing,

A flaw is created whenever a system permits 2 user possessing one set of privileges/capabilities
to legitimately bypass (controlled access) security mechanisms and perform en action only permitted to
users with differing privileges/capabilities or whenever it permits all users to perfo_fm an. action
that should be restricted only to users of greater privilege. N

An inadequate identification/isolation f£law can be created whenever one system routine relies
upon mechanisms (implemented elsewhere in the system) to ensure the isolation of system rYesources and,
hence, the adequacy of: their identification.

o -

This may be a bad policy if the mechanisms are not, in
fact, adequate, ‘

For example, to be 1dent1f1ed uniquely a program must be identified both by program name and by

Otherwise, it is very.easy for a user to preload a

[

22

N,

)
\Kk’\\j‘

G

counterfeit program whose name is the same as some control program routine (which mus{j) be dynamically
loaded when required) and to have this counterfeit routine used by the control prcgrax:\: in place of the
authentic routine, :

To accomplish this, the user generates an activity that will result in the controi progmm ré-
questing this routine, The.loader will see that the named (counterfeit) routine is already loaded
{vhich is legitimate) and will set up the control prpgram to use the counterfeit program.

As enother example, thé user-ID or password-'cﬁetk:ing"rﬂbchanism may be circumvented if it does not’
eéffectively limit the number of times a user can attempt td log into the system or if it doés not limit
the elapsed time permitted for completing a login. It may be possible; under such circumstances, for
a user to utilize another computer to exhaustively enumerate all password bit combinations and thus
break password security: -

7

EC

Some systems have extensivg authorization checking associated with most, “but not all, of the file-
access methods and do not restrict use of those access methods whith do not perform authorization
checking. Any user who obtains documentation. for these latter access methods (unrequired capabilities)
has simply to use them to access any file in the system. k ‘

trolled-access mechanisms.

This is an example of the bypass of con-

Table 3-6 summarizes the categories and presents a/.ichtional examples of the inadequate identi-
fication, authorization, and authentication flaw, ,t~'" #

Q

£. Violable Prohibition/Limit N ‘ K

B n

, An operating system is described both by its embodiment in computer instr{xctio‘n,; and by its
external documentation. Whenever these two descriptions. differ, an integrity flaw may exist. A
security flaw is created whenever a documented operating system limit ox procedu'ral prohibition is not

enforced.

For example, those vho implement an operating system may not treat the situation in which the
upper limit in size of tables or buffers is reached or when qt.\eue space becomes saturated. Docu~
mentation may specify prec1se1y these upper limits and prohibit exceeding the limits, but should a
user deliberately or accidentally cause an overflow or overioad, then various results may occur — some-
times a system crash\“&v resul’A, sometimes system operation is degraded , sometimes sensitive data can
be lost, and in some 1nsf2»“/ s such data could be compromlsed.

Table 3-7 gives examples '\f this flaw,

g Exploitable Logic Exrror

In any major operating system, there are ~ at any ppint in time — some "bugs" or logic errors,
Many of these errors depend upon statistically improbable timing situations and sre not under the con-
trol of any individual user. Some of these logic exrors’ can however, be intentionally explon:ed by
a user to compromise the integrity of /a S)Jtem.

One example involves incorrect error handling, The system may, for instance, perform an illeral
Consider, for example, that a user réquests a series of ‘
modifications be made to the file dlrectory entry of another user, to which the first user has read-
only authorization. If the system performs the requested act;t;ns and then detemmes that the actions

exceed the requesting user's authorlzatmn, the securn:}r of

action before signaling an error conditlon.

&stem has been compromised through a
This also may happen if a system servme such aﬁ & stov'age dump is initiated concurrently
with the checking of a user's\ authorization to request the s

logic error.

_ivhed serv:.ce for the specifled, storage

'\

areas. By the time the error is detected, forbidden areas msl have already been listed.

23

i
i
v
I
i
{
{
!
i
i

P .
il o

4 ' "

! . .
' * Table 3-6. Inadequatevidentification/authorization/authentication: categories and examples Table 3-7, Violable prohibition/limit: categories and examples
1. Inadequate resource identification/isolation. ' B 1. Violable system limit. .

‘ : Examples: : Examples:

o o A u,‘s,;f-;r‘”program with the same name as a system program is preloaded by a user and is then accepted ; o A user is supposed to be cofistrained to operate only within an assigned partition of main

‘ ’ and used by the systen. ‘ V S storage, while in fact, the user may access data beyond this partition. ’

o ’ PR e . "

E o A system routine assumes the validity of a sfstem control table whenever the control table is B o A user is supposed to be constrained in the amount of sysfiem queue space zvailable to his
3 located in system storage to which users do not have direct write access. In fact, it is) _: » process, when in fact, the user mgy create an uninterrﬁtible, endless loop on a system call
possible for a user to create a counterfeit control table and have it copied into system storage ; that eventually uses up all of the‘control program's queue space., This causes the systen to
k by certain control program service routines, such as the storage deallocation routine. . crash. "

E ; . i

% 2. Bypass of controlled-access security. ’ 2. Violable system procedural prohibitions.

AT P t 4

Examples: s o ’ Example _ ;

: 5 "

: o A user legally bypasses the file initialization (open) routine and its security mechanisms by ® A user is able to obtain unauthorized privileges by omitting notification to the operating system

utilizing a basic file access method.’] of an exit from an I/0 error-processing routine, although the documentation requites such
: i . ‘ . notification. T p

© A user 6btain§)> system privileges by teking & legal exit from sbnormal job termination (i.e., ;
abort) processing. b : Table 3-8 lists thrée categories of logic error flaws and presents some additional examples.

o Dl

There are two additional categories of exploitable logic flaws. Thése are listed here for completeness
and without examples:

o A user obtains systeém privileges by discovering and using a "trap door' exit to the system meant

. ‘ for system maintenance programmer use. E : :] Inc%rrect process/function initiation or termination.
) g P . . o Control—sta‘.kte software error trap.

o An operating system, whf{*}é does not prevent a user from simulating its logout and login fum¢tions,

pernits an unattended (hardwired) terminal to simulate a logged out terminal and obtain snother) ’ \

user's passwoi-d during a simulated login process.

On a more subtle level, a user may discover that half-word arithmetic instructions are used to
improperly process & half-word return-address parameter. If the largest possible half-word number is ; o
used as an address, an unanticipated overflow may oecur, resulting in an address pointing to location -
0001 in contro] program memory, which may cause 8 System crash. !

In another situation, by pressing the Mattention" (or NAK) im&arrupt button on his terminal |
during the printing of the login error message, a user may be able to ‘cause the system to erroneously ;
accept a new login attempt without advancing the counter set to record the mumber of previous login
attempts, This system error permits automation of an exhsustive enumeration of passwords, with no
indication to system operators that this is teking place. ‘

Ina last‘ example of incorrect error haﬁdling, it sometimes occurs that protection mechanisms are j s : . ‘)
disabled or modified as a result of a (deliberate) user error and may not be reset when the control V ’
program later returns control to themser. This can result in the user ubtaiﬁing unauthorized privileges.

*

E

e o b L 5, e 2 050 Y7 e AR ey g 3 0 51050 S, bt 01 i i

ety

. . o, 1 f N |)
L L o]
e N

! o Table 3-8, Exploitable logle error: categories-and examples

)

management of base addressing and 1n 1/0 programming and error sensing have tended to complicate some
elements of systems programming, which increases the possibility of integrity flaws arising from pro-
gramming compléxity, P
The operating system dlScussed in this report is thie OS/MVT system (Uperating System for Multiple,
‘)'arlable Number of Tatks) which consists of a set of service and control programs, 1nc1udmg a master
- . ﬂscheduwr, job scheduler, and supervisor. The master scheduler handles all communicatitns to and from

=) T}ne operating systemis fails to update g count of unsuccessful login attempts if a user presses ‘ o, the\,pperator.‘ dhereas the.\ job scheduler is primarily concerncd with job-stream analysis, I /0 device
thd &nterrupt key (NAK) off his terminal just after submitting a password guess, P i

allocation and sesup, and job initiation and termination.
: , _Central control resides in the supervisor, which has responsibility for storage allocation, task
j 2. Instruction side-effects, A sequencing, and I/0 monitoring, Prgvision for this control is embodied in the following eenceptss

[

1.) Incorrect error-handling sequencing,

©

i vt «» Example!

I ; S £ o o Supervisor mode (CPU supervisor state) with associated privileged instructions,
Examples: i e Storage protection to ensure the supervisor's survival, '
: ;‘ #» Hardware monitoring of program instxuction violations,

© The operating system uses full-word arithmetic on a half-word return address supplied by the ; o A CPU wait state available to the supervisor (as opposed to a stop/halt instruction available
user. If the value supplied is -1, this causes an overflow into the index field of the word, é ! " to the applications programmer).
and & veturn to the user in control state.) 2

i ’ H , v 4.2 OVERVIEW OF OS/MVT HISTORY
o An operating system uses a particular indirect-addressing inscrucr.,'}'on in user space to access ‘ o » : ((

0S/MVT was not designed to prevent deliberate user-tampering with the operating system. Instead,’
an "accidental-errox' philosophy was implemented, specifying that the operating system would attempt
») to protect itself and other users of the system from common "accidental user errors," but there would
: |3, ‘Incorrect resourég vgllocation/de~allocation. o . i : be no explicit attempt to protect against a user deliberately trying to interfere with the operation
) ‘ L ‘ ’ ; of the system, Concern about this philosophy was evinced as early as 1964, when the Systems Objectives
5 Requirements Committee [4] of the IBM SHARE users group stated:
of "The Committee is concerned with the problem of maintaifing securlty of data, particulariy
for those systems which allow for multiple program execution. This encompasses both
a governmental and corporate security, the formér represented by classified and top secret

N y

data, and the latter by management information systems. ’ . ' °

some parameters. The user substitutes a similar indirect instruction which increments an index
register after.each execution and thus creates a flaw.

o

Example:

o The same tape or core block is assigned to two users at the same time.

4. IBM 0S/MVT | |

o , ; i Members of the Committee have investigated this problem both inside and outside of IBM, and
: ’ ' very little seems to be being done for a variety of reasons."
In addition to the accidental-error philosophy, OS/MVT (in common with most other thud—generation
i systems) does not have a clearly and systematically defined interface with the user. Tha variation in
: such an interface tends to increase the probability that integrity flaws will be int‘rodu(\ce‘a during '
divergence and incompatibility among IBM's three or more existing families of second-generatiod com-

: ‘ 1 implementation and to increase the difficulty of systematically correctmg such flaws,
- . N N . 3 i
: puters. The System/360 design provides for-a large main memory, a uniform treatment of input/output Several installations, in the ensuing years, have made extensive modifications to OS/MVT to enhance

(1/0) functions, non-stop operation under an operating system, and multisystem operation. its integrity in the presence of deliberate user attempts to penetraté the system. Two such instal-
The central processing unit (CPU) has the following characteristics: 16 general registers (15 of lations are McDonnell-Douglas Corporation and Cornell University. IBM developed an experimental
which may be used as accumulators,. index regis.terS, or base-addressing .vegisters); binary addrsssing; Resource Security System (RSS) which was field tested at the Massachusetts Institute of Technology;
i fixed and variable field lengths; decimal and hexadecimal radices; bit manipulation; automatic indexing; 5 TRW Systems, Inc.; and the Management Information Division of th(c State of Illinois. System integrity
ol vand floating- and fixed-point arithmetic. There is a selectively maskable interruption system, main- ik " was considerably enhanced in this system, although some known integrity flaws were pot addressed [S].
storage protection keys, and four alternative CPU states: stopped vs operating; running vs waiting; ‘ b The 05/VS2 Release 2 (0S/MVS} for the newer IBM/370 line of computers has attémpted to close system-
masked (uninterruptible) vs interruptible; and supervisor vs problem states. The regularity and clarity atically all known integrity flaws and has made a committment to fix any integrity flaws uncovered in

of the System/360 instruction architecture reduces the probability that system programmers will mis- ! "that system. The design approaches used in the MVS system are relevant to installations concerned

SRty 2 s ws) . ! b ;
understand or forget about an instruction effect. ' This in turn diminishes the possibility of integrity with OS/MVT integrity flaws. These design approaches are discussed by W. S, McPhee [6]; portxons of
flaws arising from instruction side effects. On the other hand, instruction limitations in the which are paraphrased in Operating System Integrity Flaws, section 4.3.

The following paragraphs briefly discuss the IBM/360 and OS/MVT security approaches in the gge-
go:cies of preventmn (isolation and controlled access) and integrity monitoring.

o 27

4,1 INTRODUCTION

PP

The IBM System/360 family of computers was developed in the early 1960's to consolidate the

NN ¥ N

3
I

26

T

s -

Y Sonavvt bt oniant e

Ny

4.3 1BM/360.AND OS/MVT PREVENTION CONCEPTS
The first step in preventing impairment of system integrity is to isolate users from each other
and from the operating system. The isolation features of the system are storage protection, program c

interrupts, tape/disk write protection, &ud privileged instructions.

a.~«Hardwarc Isolation Features

Storage protection prevents currently operating CPU or I/0 channel programs from intruding into
other programs and their associated data areas. A mumber of different main storage regions should be
accessible and distinguishable from each other because I/0 channel operations may be relatod to latent
CPU programs rather than the program currently being executed by the CPY. Storige protection 18
realized by providing each of the 2048-byte blocks of storage with an 8-bit register (3 bits unused).
The monitor may store any 4-bit combination intd any one of these registers, The communicants with
storage (namely the CPU, each selecto® channel, and each multiplex subchannel) are provided with in-
dependent 4-bit key combinations by the monitor. These key assignments are divided into two classes,
sere and nonzero, The zero key, considered as the master key to all locks, is assigned only to appro-
priate sections of the monitor. The protection function app11es only to operatlons that store into
a block, Storage takes place only if the key and lock combinations match or if the master key is used,

Otherwise, the store is inmhibited, and a program error interruption occurs.

Fetch (read) protectxon

is supported by the "hardware-storage

-protect feature (as the fifth bit in the register), but is not -

used by the operatlng system.

(This permxts any user to read ail the contents of main storage.)’

There are a number of basic control instructions, such as those initiating I

/0 or changing pro-

t

gram status, which can be executed only in the supervisor state. Any attempt at executlon by an appli~
cation program résults in a hardware "program error! interruption. ’

Instruction and data formats are checked ‘for correctness as the 1nstruct10ns are ‘executed, This
policing action distinguishes and identifies instruction errtys (such as addressing or operation
exception errors) and machine errors. Thus, instruction errors cannot cause machine checks; each of .
these types of error causes a different type of interruption.

The way an application program requests services from the control program is-through an inter-
ruption. The preferred method is through execution of the superv1sor call instruction which causes a
supervisor-call hardware interruption. Although the supervisor call instruction is pxzfer&ed. some
1BM and installation subsystems have implemented other methods of generating interruptions to request
control program services,

Magnetic tapes have a detachable plastic ring whose presence or absence is sensed by the ta?P
xead—wrltc unit to permit or prevent writing on the tape. Some dlrect-access devices may be equipped
with a man\al switch to achieve the same results. The operating system uses & file mask I/0 order
(i.e., channer“command) to prevent an 1/0 operation from reading or writing beyond assigned limits.

There are a number of operating system integrity flaws that permit subversion of most of these

P

hardware isolation features.

b, Control Actess Features

Although there are installations whose computing requlrements can be satlsfled within an environ-

ment of complete user isolation from each other,

jt ‘is far more typical for users to have’roqulremeqts '

to interact with each other — sharing resources such as programs or files. This ability to share

selectively through authorized access to ‘specified resources is called controlled access.

Controlled

access relies upon an effective system of isolation, without which access can not be controlled, 1In

28

oo s

. words (e.g., Time-sharing Option passwords).

o] =

common with many otheér third-generation operating systems, the OS/MVT design philosophy introduces very
few constraints upon unlimited access, leaving most such constraints to be implemented by admin-
istrative and operator procedures, "

The OS/MVT file system includes a Volime Table Of Contents (VTOC) ot each direct access volume and
of an optional tape label for tapes. These labelL&prov1de for password controlled access and for
expiration-date controls that require permission from a system operator for .a user to write into the
file before its expiration date. There is 2 cefitral file index (CATALOG) which lists the name of each
cataloged file and gives its volume identification (serial number). Any entry in this CATALOG is
available for legitimate modification by any user. '

The IBM-supplied, data-set (file), password-protection scheme is not used by most installations
because it is procedurally cumbersome to use and because of limitations in the security it provides. A

number of installations (e.g., Yale University) have implemented their own version of data-set password
protection.

L4

¢. Integrity Monitoring and Surveillance

In keeping with the OS/MVT accidental-error philosophy, integrity monitoring (assurance that the
system is working as intended) and surveillance (the monitoring and recording of system activity) are
not oriented toward the detection and identification of deliberate user—tamperlAg with the operating ‘

it i

system or with o;her user's files, . N

The most compiehensive of these monitors is the System Management Facility (SMF). It is possible =~ - 5
to generate more than a hundred types of records; the installation using system generation parameters ’
can specify those types of records it wishes generated., Most installations use purchased software
packages or installation-written programs to format and summarize the thousands of records SMF produces
daily, SMF records can be produced for the following categoriés of data: job accounting, data set :
(file) use, disk space usé, device use by job step, program colls, and insfallation-captured data, . §
While SMF appears to 6ffer a detailed and useful security sudit trail, its usefulness is ‘compromised w
by three factors, First, the SMF output files are no better protected than any other system file, ;
thus permitting their unauthorize& modificatiocn by a user. Second, a user who has penetrated the . ;
integrity of the operating system can prevent the SMF programs from record1ng information. about his.
activities. Th1rd a system crash will prevent the recording of, and cause the loss of, the most) !
recently produced records,. While SMF data may thus be compromised, it will not necessarily be com- ‘
promised. Therefore, SMF data must be reviewed by an installation for any indications of wunusual

activity — such as a statistically significant increase in the occurrence of invalid t1meshar1ng pass~

4.4 - SUMMARY

-

k4

The sccurity of OS/MVT can be enhanced in three ways:

) OperatlonaI*J An installation can choose to execute applications in a 51ng1e thread, stand- i
alone mode in which it is assumed that each program being executed has full access to all data ok
and programs in or stored on the system, including accounting information. i

¢ Applications:

All access to the system is through one oxr more deSignated application sub-,

systems that the installation has audited and is confident can not be subverted.

No other

act1v1ty (such as program testing or compiling) can take place concurrent;y, and all data to be %
protected (1nc1ud1ng the .trusted versicn of the operatlng system) are removed from the system
before other activity.is allowed.

a

S BN S P S

rammed modifications are undertaken to eliminate most known integrity

e Systems: Extensive prog
flaws and to monitor system integrity. This will increase the effort and risk requlred to

subvert the system.

4.5 OPERATING SYSTEM INTEGRITY FLAWS

ouid be aware of the following two specific ingegrity flaws. These

; Installations running 0S/MVT sh
he effects of these flaws.

is relatively easy to counteract t
6.6, these flaws also serve as gpecific ex-

The generic des-

S . flaws are discussed because it Together

with similar integrity flaws described in Section 5.6 and
ntegrity flaws described in the taxonomy (bection 3.
The reader ‘ghould not assume that these two flaws
koown to exist in OS/MVT. Easily exploitable flaws
ie to currently operating systems.

amples of the classes of 1
eription of the flaw is taken from the taxonomy.
are typical of the other ingegrity flaws that are

are not described in this document unless they are o longer applicab

o Generic ﬁéscription: ? Asynchronous validation/inadequate serialization.
The checkpoint data set produced by the checkpoxnt/resrart fac111ty

gpecific Nescription:
. contains sens;tlve system data: This data set is mot protected. #rom modification (or counter-~

) by the user prior to its use by the restart facility. N
One option, if feasmble, is for the 1nstallat10n to remove the check-
1£ this is not feasible, control mechanisms must be

feiting
Security Enhancement:
point/restart capability from the system.

developed to require:
-— System-operator validation of chCprolnt files.

- External labeling procedures for checkpoint volumes.
o zheckpoint files.

— 0ff-1line library control oyer access t
sets, except via the checkpolnt SVC and

— Prohibition of I/0 to checkpoint data
authorized system utility programs. '

Inadequate 1dent1f1cat10n/author1“axlon/authentlcatlon.

It is possible to bypass tape 1abel processing even if this function
For example, & user

4 : o Gemeric Description:
ﬂ Specific Description:
is included in the system by specification during system generation.

: which is specified in a system control block, before the tape file

may change the label-type,
is opened and the label accessed.

Security Enhancement: The system can be modified so that imp
: user files are maintained in memory protected £rom the user.
e = " ‘automatic-volume-recognition package acquired commercially or. from another 1nsta11at10n.
Alternatively, naming conventions and logs for external tape labels can be adopted such that

ortant parameters which deseribe

This may be tombined with an

the system operator will only mount tapes authorized to the requesting user.

Q

30 ' .

O

&

R

&

e
ot

5. UNIVAC 1100 Series Operating System

e

5.1 INTRODUCTION

&

+

The UNIVAC 1100 Series Operating System operates ﬁny of the three 1100-series computers, the 1106
1108, and 1110, It combines multiprogramming, multiprocessing, timesharing, communiéaiions, and real»'
time systems into a complete set of software — from basic service routines to compilers; The major’
subsets (with some examples shown in parentheses) are: ¢ i

o Executive system.

System processors (collector, FURPUR, SECURE). & : -
Utility system processors (FLUSH, CULL, DOC).

Language processors (FORTRAN, COBOL, ASSEMBLER).

Subroutine 1library (FORTRAN library, SORT/MERGE)

Applications programs (GPSS, PERT).

G- 8 0 ©

The executive system is responsible for controlling and coordinating the functlons of the internal
environment. By uSing multiprogramming and mulylprocesszng, it handles batch processing, demand pro~
cessfng (timesharing), and real-time processing. “Since installations do not have the same needs and
requirements, each capability supplied by the executive may be eliminated by an installation during.
»system.generation. Permanent dgta’files_and program files are kept oft mass stofage devices with some
security measures to ensure that files are not subject to6 unauthorized use. :

The exetutive system consists. of several classe; of routines, grouped by the functions provided,
.~ A set of control statements are provided for directing the execution of individual tasks of a -

Vi
1 if 1 . . 1. E i 1 h .! : he o .
. A L *

(-]

The supervisor compongnt controls the sequencing (coarse scheduling), setub (dynamic allocation
of storage space), and execution (central-processur-unit dispatching) of all jobs.
e Available facilities are assigned by the executive as needed to fulfill the requirements of
all runs entering the system.
@ File-control routines allow file manipulation without concern for the physicael characteristics

of the recording devices.
.

<

Operator~-communication functions display system status 1nformat10n to the Gberators.
Input/output device handlers and: symblonts control the activities of all I/0 channels and
peripherel equipment attached to the system. ' .

»

3

Gy P

——

o

1

gt

v deifbalidin
%

DESIGN CRITERIA OF THE OPERATING SYSTEM

. 5.2

Because of the flexibility of the hardware and software configurations, the 1100 Operating Sys-
tem can handle both scientific and business jobs, “Jobs may be submitted via any one of three ways:
central job-éntry terminals, remote job-entry terminals, and demand terminals, Once submitted, a job
The differences of

may be handled in any of three modes: ryeal-time, batch, and demand processing.

the three operating modes are not in the way data is handled but rather in the priority and queuing

"of the job's tasks for dispatching,

UNIVAC (in the 1100 Series Operating Systefs Programmer Reference Manualj lists the following as

fundamental design criteria:
o Individual components operate reentwxantly-whenever possible.
© Components and data areas are permanently resident in main storage only if nonresidency is
‘either impossible or would impose an unacceptable overhead, ?
The central proeaésor units (CPU'sS) are in general treated equally.
Components must be able to exccute on any CPU, A
Wherever feasible, redl-time requests are given top service priority.
Interrupt lockouts and software intevlocks on interrupt-related data must be kept to a minimum,

8 U O © ¢

Most executive System components operate as ordinary activities and are managed in the same

way as user activities. A ;

o Service requests by an individual user are to be validated to whatever extent is neces(sary
to eliminate undesived interaction with the system and other users.

o C;)de for optional hardware comporents and software capabilities should be written such that
it need not be generated if the associated component or capability is not configured.:

o Each type of peripheral (e.g., feletypewrit’érs and printers) has an associated symbiont, a

peripheral-handling routine. _The symbionts buffer larg.gé amounts of data from low-speed

peripherals to main 'sto’rage to minimize the number of data transfers. ‘

5.3 1108 ARCHITECTURE.

‘The CPU's ave interfaced to the 1/0 peripherals by I/0 controllers (IOC). As a result of the
I0C, the CPU does not.concern itself with the physical capabilities and limitatidhs of 1/0 devices,
The CPU and the I0C are connected to the main storage device. Data transfers are usually buffered to

increase efficiency. There is a hardware option, back-to-back block transferring, which allows data

" manipulation to be handled completely within main memory without the involvement of the CPU once the

process has been initiated. This leaves the CPU completely independent during long data transfers.

22

(See figure 5-1.) , 2

32

Y]

et

T

&4

S o
-~ * o
N 2
s !
lnferl?qved Interleaved Sy
main ‘main 4
storage storage
' 1
MMA ! MMA
:::4”‘*\‘—?%\\\‘1
/"/‘ ™ \\ﬂ\‘
N
5 = }j
CPU 5 P
1/0 channel 1/0 .
. —— - controller
10C
[. "' ‘
N P N 170 peripherals
F 5-1. CPU, 10C, and interje: . L B L o : < :
iguze S-1. f 1 ’ and interieaved main stordge with MMA's for UNIVAC 1108. ‘ RS
€] :
] . b
ﬂ B
C(\;// z s

33

0

i e

¢
t
A

“a, Memoxy Interface

ced to the storage units by the multimodule access (MMA) units.

L interfa
The CPU's and the I0C's are in units. A

There is ‘one MMA for each storage unit. The UNIVAC 1108 may have from one to four storage o
storage unit provides e4m\)rds of main storage (36-bit words). Hardware 1mp1eTentat10n ?xlio R
provide address 1nterleav1ng for greater efficiency. An MMA is used by the CPU's and 10C!'s q
and receive access to the corresponding storage unit. When a conflict occurs Egtween two or more

access requests, the MMA services the requests on a priority basis.

b. System Control

The majority of the control acti&ities are handled through the 128 contro? r?gisters, th: inter:upt
system, snd the queu1ng system. Dynamic allocation is serviced in order of priority and b: the qﬁiu
ordering within each pr1ority. The first request arriving at priority X will be handled the mome
there are no requests of a higher priority. The dispatcher, controlling CPU usage, operates in a
similar fashion, i.e., switching consists simply of taking the highest priority act1v1ty,from a list
{called the switch 1ist) of all activities currently requiring CPU service. When an I/0 1nterrupth
otcurs, the type of interrupt and the channel on which ‘it occurred is either queued'o; routedhto the
appropriate processing routine. When the interrupt is queued, the priority of the interrupt elps

j of the time before servicing.
deter:izea;:zli::f;:y control wnit (ACU) provides hardware configuration control. It interf?ces with
the CPU's, 10C's, storage units, and MMA's for up to 24 peripheral subsystems, The ACU provides for:

o. Dividing the entire system into independent systems.

Disabling CPU's or i0C's whenever a power failure occurs. '
Taking a unit off 1ine for maintenance without impacting the operation of the rema1n1ng units.

@
e Initiating automatxc recovery upon system feilure.
6 Maintaining an availability table for all units,

5.4 - INTEGRITY FEATURES

a. User Control

The basic program entity for which storage allocation is required is called a bank. When'in main
storage, a bank occupies cont1guous physical addresses. In the log1ca1 program sense, a bank is a
collector-defined portion of the program that is specified by a single bank-descrlptor word (BDW).

(The collector functions as a loader or lxnkage editor.) By this collector definition, .a program is
1og1ca11y organized into two banks: 1nstruct10n banks {I-banks) and data banks (D-banks) .,

The profile of the entire task with.all of its associated banks is maintained in the program
cbntrol table (PCT). The portxon of thg PCT controlling the banks is called-the bank-descripton tabI?
(BOT). In the BOT are the BDW's describing each bank belonging to the program. The BDW's contain
bank control information such as whetlier or not the bank is read-write protected and what are the upper
and lower boundaries of the bank area, ’ '

A program area is thus descrlbed #nd controlled by the PCT. Within’the PCT are t?o contrpl words:
the program state register (PSR) and the storage 1imits register (SLR). The PSR contains the guard
mnde and storage protection designators. Main storage protection can be establlshed in either one of
two modes. One mode (exec mode) aff@rds write, read, and jump protection; the other (user mode) affoxds
protectlon only when writing, A program may run in elther of two modes. Exeg mode allows the program
to use privileged instructions; user mode does not. The SLR contains the upper and lower absolute’

3

&

SN

address limits of mainwstorage in which the active I-bank and D-bank of the currently operating pro-
gram are located. - Thus the type of storage protectidn and whether or not it is enforced depends on
the condition of the guard mode and the write-only storage piotection designators in the PSR,

b. States of Execution o

2
There are four states in which & program may execute.
© The ptogré%ﬁfuns in exec mode with no storage limits enforcement..
o The program runs in exec mode with storage limits enforced.
o The program Tuns in uéer mode with no storage limits enforcement.

-0 The program runS in user mode with storage limits enforced.

i

The last state is the only Vsafe" state with regards to security. A user job getting into any of the
first three states can.cause a security compromise,

~

c. Protection of Permanent Files

Cataloged files are protected by the concept of keys: read-key required, write-key required,
both read and write keys required. In core, files are protected by storage limits, read-only desig-
nator, and write-only designatorQ‘ Files, in genexal, tan be manipulated by using the file utility
routines (FURPUR) supplied by the system. A user can glso write his own file manipulation routines,

Physical security of cataloged files on mass storage is provided by the SECURE processor which
produces backup tapes. Most files can be saved by SECURE. Certain files are marked with "unload
inhibit!" which will not allow them to be removed from mass storege, These unload-inhibit files are
determined by real time or other special considerations. There is also a guard option for reading that
even prevents the privileged read necessary to make the backup copies. This option is required for
zertain special files which are internal to the system and are either highly transient or highly
classified. A checksum is ‘optionally provided to check the backup copy. With these backups, no file
will lose more than a certain amount of processed data if the system crashes with some kind/,x‘data loss,
SECURE tapes are "handled by SECURE routines only. These tapes should be stored separate from user tapes.
In other words, there must be a SECURE tape vault, exclusive of user tapes. ’

d. Protection of Magnetic Tapes

:) 5
All magnetic tapes are “exclusively assigned.' That is, two diffevent jobs should not be able

mamwsﬁeumtweﬂthsmeum.EmhmmisMmﬁﬂwbyamﬁ%ofmmwlwd& The
volume header identifies the reel number and the owner of thel reel if it is private {(as opposed to
public). The file header contalns infoxmation Such as. félename, file generation and version numbers,

.creation and expiration date, and access control designators. When the operator mounts and loads a

tape, the’ systpm should check the headers against the tape request if the tape is labeled. (The
earlier releases of the 1100 Operating System did not perform an adequate check; however, the later
releases do,) B v ;

A tape-labeling system is necessary to offset any operator error whlch may oceur. * If such 2
system is not available, more procedursl checks must be added to double check for human error, One
possibility is for the operator to always copy ‘the user identifier and the reel identifier into a ,
tape log book, then to take the t p\\gog book to the vault librarian who then must initial the Yog book
before giving the tape to the operator\ ' (Ownership of tapes must also be checked.) There could be a
log book at the vault fox the operator to initial, With the incorporation of all of these procedurgs,

35

1
(

»

Shtlinaty i A3 e sbosie. i ESaaos SRS

the possibility of using a wrong tape is greatly reduced. The overhead involved with these procedures
is time and the cost of log books. Alternate methods may be more reasonabie for an installation with

few tapes.

e, Audit Trails

While the 10§ books record tape usage, the system maintains logs to record system usage. Audit
trails (log entries) record the following: 1) job initiation and termination statistics, 2) user-
specified log control messages, 3) console messages, 4) I/O errors, 5) symbiont activity, 6) tape-
labeling information, 7) checkpoint/restart information, 8) facility usage, and 9} cataloged mass-storage
file usage.

The total amount of time used by a job is broken down into the various subsystems used. A log
entry is created and subsequently inserted into the master log whenever the configuration of a job is
changed by assigning or freeing a tape or an arbitrary device file, or whenever a cataloged file is
created, assigﬁed, or freed. The actual usage, or lack thereof, of a file or tape is not logged
since the mere act of assigning a file dceéhnot imply usage. In fact, a user may assign any file or
tape. ‘The access control is not checked until the access is perf;rmed. Thus, the "usage" entries in
the master log list the reservations made by the job for various types of storage and facilities and
the amount of time‘spent using each type, These entries do not adequately describe the actual access
made by the job, .

~ The system masfer log is updated at intervals. Until update time, the‘loggihg information is
kebt as a temporary file, and temporary files are destroyed by a system crash. Therefore, a user can
get on the machine, perfb}m unauthorized actions and be undeteé&ed (i.e., not recorded on the master
log) if a sfstem crash occurss Some installations havekincbrporated their own audit trails into the
1100 Operating System. If a larger overhead is acceptable, more specific infbrmétion must be added
to detect an intended breach of security. The présentatioﬁvof the information should be directed toward

?

the person (not necessarily a system programmer) responsible for examining audit information,
The use of the audit trail raises the questions of who and how often the log entrie¥ are examined.
emented to ensure that the audit trail information is

Administrative procedures meed to be ing
examined in & consistent and timely mynner and that appropriate actions are taken. An example of such
a procedure is the existence of a "s/curity officer’ whose console output are the highlights of the
log. The important entries (as def/ined by the administration) are printed onto the sesurity console,
The officer's task is to uselﬁgj, information in detecting breach attempts., The presentation of log
éntries to a security offgggz/éhould be easier to read than are the current log tables. A list of
times and files used ma;&%ﬁt be significant to the security, while a message indicating a guard mode
fault from user 3995/;€/terminal Yyy would get his attention.

Implementing these administrative procedures will require a redesign of not only the logging
system but alsobpart of the intérrupt system. Currently, a user program may supply an interrupt- '
handling routine for software errors so that information would not be passed to the log routine.

Thus, ‘2 guard-mode fault would not be logged. The interrupt must be logged before control is passed
to the nser's interrupt handling routine. C

f. Role of System Console Operator

Just as the tape vault procedure can bé used to identify a user's access rights to a tape,:h'sys-
tem console operator could have a procedure to determine when or when not to honor a request for
operator intervention, Messages from the -System would be formatted so that they contain flag characters
which a user could mot duplicate onto the system console as a spoofing mechanism. Once the operator

36

Ry

cations, For example, bank protection: can be write

is sure that the system if the requestor, he can safely comply, If the requestor is a user, the

operator must check two points: 1) the user is really who he says he is, and 2) the user i; authorized
to request that particular action. An examplevof this process is the authorization of a job that k ires”
operator interaction, The operator would have a list of all users allowed this privile é and. wo lzequ e
confirm that the request camé from.that user rather than Erom another user masqueradin gas oﬁb : &
authorized persons., These procedures will differ depending upon the installations' . reaine

; . needs and require~
ments. Each installation should decide upon & set 6f rules and enforce them ‘ !

AN
\\ N

\\\
B Im%kg; of System Degradation

/
f other instullation-dependent procedure is the handling of a system crash
dO F A : i !
n¢t consider a system crash a security problem, Other installations view a crash as a reliability

problem, a matter of poor throughput. Still othérs worry about system crashes and recoveries Begause of
time-sensitive data processing or the loss of information. 7

Certain installations

As ~ .) 3 0
] suming that a system crash is serious with Tespect to security, a procedure should be established
- ‘ |) .
T system recovery, Before recovery begins, steps must be taken to identify, as specifically as
ossi co o
p 1h%e, the redason for the crash. This is not an easy task. The system itself may be in control

at the time of the crash even though it was caused by a user, (For example, he requested a confusing

sequence of tasks, supplied bad data, etc.) Where possible, the user job responsible for the crash

must be identified. ision “ysqs .
entified. A decision by a Yperson of Tesponsibility" is made as to whether malice was -~

meant or an accident happened, The security officer's console log might be one tool used for decidi
It must be pointed out that this procedure will make system recovery take longer, | "
It is possible for a user to cause a system crash after making spurious files. There is a‘chance
therefore, that the recovery system may be fooléd into giving these spurious files more rivil '
more data, etc. This woul% be a security breach. : . 7 ’ egé?,

Solving this problem involves the redesi] '
/ em th ign of the recovery systém and possibl '
6f the normal system, ‘ < ’ Y o5 s powions

5.5 SlWARY o N
gned with operating system security in mind,
nly by redesigning parts of the operating

and changes in these areas would g i
‘ greatly impact
the design of other areas. One such area is the file management complex of routines.

The UNIVAC 1100 Seriés Operating System was not desi

y ‘ ,
Therd are a numbur of known flaws that can be corrected a
system., Certain parts involve a large amount of code,

.Although nat all areas lend themselves to rédesign, a large number of the ptoblemsCare‘fixableA
Consider as aﬁ example the problem of file protection in this system, To protect thé files from un~
authorized usér access, an access table can be implemented, Because the table size must be liﬁited

A . ¥

‘ : : ; not
a1l user files can be protpcted in this way. However, »

not all files are sensitive in nat
s ure, Thus, a
user can-assess each file's protection require it hi ' :
& ments and submit his sensitive files £ i E
: ‘) or t fieb i
T : st T this kind of

Problems that would inyolve complicated software changes may have solutions in hardware appli- .

; *prntected‘by introducing an add-on ha i

into the system. ' o " st
Still other problems lend themselves best toiﬁrocadural soluti

. ; oS Restriction of access isvr
indeed the most straightforward of soiutions. z ‘

Assuring that all users with access
ced | : rd ¢ Wit cess to the system are
1eg1t1ma§e {by physical restrictions, by imposing heavy‘identigy checks, or by a combination bf the . -~

32

o
5
T
]
!
E
:
1
o
H

%

‘

-

two) allows the system to relax its mistrust of users. The ultimate in procedural protection mech-
anisms is the restriction of computer operation to serial (batch) SerV1ce.' That is, only one job is
allowed on the system at any instant of time.

Timesharing and concurrent job processing introdude complications that the standard UNIVAC sys-
tem is currently unable to adequately provide protection. Procedural, hardWare, and software fixes
can be introduced (and some UNIVAC sites have done so) to reduce the prohab:lxty of computer mis-
management to a leyel of "acceptable" riskuduring concurrent processing.

Y

5.6 OPERATING SYSTEM INTEGRITY FLAWS »

¢

The following examples have been carefully chosen because they 1llustrate security problems yet
involve a minlmum amount‘of exposure or risk to installations. The first two integrity flaws can be
fixed at the option of each installation. The final three flaws appeared in early versiqns'(before
level 31) of the operating system and have been corrected by Univac (as‘qf three or more yeara ago}.
They. are 1isted to illustrate the types of gecurity problemg that occur in computer operating systems.
o© QCeneric Description: Inadequate identlfzcat1on/authorlzat1on/authent1cat1on. '

Specific Description: The protection mechanism of reentrant processors (REP’S) cannot write-
protect the REP's I-bank.

Implications of Flaw: If the I-bank of a REP is not write-protected, a user program can
attach to the REP, install a Trojan horse, and then release the REP back into c1rculat1on.
Future calls to the REP will trap the callers.

Security Enhancement: UNIVAC has developed a hardwars attachment (two cards per CPU) whlch
implements proper write protection for the I-benks. A switch is also provided to allow access

by systems personnel to run debug shots.

‘:“‘x ' . » PP 3 3 2 -
o Generic Description: Implicit sharing of privileged/confidential data.
Specific Description: Portions of core are not cleared before the user has access to the areas

in question. ' i N o
Impllcat1ons of Flaw. The user given uncleared storage can inspect the residue left by the

. sys;emyar by another user. Information he can get may include file access words, passwords,
keys, EXPOOL“informgtion, etc. There is an option for the col}ector'that allows the user to
specify core sections not to be clearcd before release to him. There are also at least two
instances of EXPOOL information leakage., Both are recoverable bx\the user, allowing him to
scavenge for sysgem control information.

Security Enhancement: This collector option (B-~option) must be removed
"elear" must be the rtule.

The default of
CLRCOR is a conflguratlon parameter whlch can be set at system
generat:on so that the system always clears caié;l

I
i 38

43
L

s -

e e e v P S T

_Advanced Research Projects Xgency (ARPA).

Generic Description; Inadequate identification/authorization/authentication.

Specific Deseription: The check for the system file name is inadequate.
Implication of Flaw: Access to the system file SYS$*DLOCS specifies the run as being
"privileged." To determine if a job s privileged, the system concatenates the first three

characters of the qualifier name with the firat three characters of the filename. Thisg gix~
character result is compared against the string '"SYSDLO". If the comparigon yields eguality,
the job is assumed to be privileged. Therefore, 4 job with access to the file SYSA*DLOA ig
considered privileged. Any ptivileged run can access the tekt and the master file éirectory
information of any f£ile catalogued in the system without supplying any of the access keys.

_ Security Enhancement: The entire name of the file and {its quatifier must be checked. This
check must be expanded to include the entire qualifier (SYS$) and the entire filename (DLOCS),
instead of just the first three characters of the qualifier and filename.

o Generilc Description: Ymplicit éharing of privileged/confidentdal data.
Specific Descfiption' In systems released before level 27, register Rl contained the access
< /
key for the 1/0 instructions. . 7

Implication of Flaw: A user can write into regiater R1l. An all-blank keyword {s the access

key that allows any request to be honored. A user who wrxites blanks into register Rl can then
igssue I/0 requests to gain unauthorized access to system information and to data belonging to
other ueers.w ' . '
Security Enhancement: A control word can be defined in system space to hold the access key.
All checks on the I/0 requests-should be compared against this control word.

[#]

[Genefic Description: Exploitable logic error,

Specific Description: A user can load a bank before his access rights to it are checked.
Implication of Flaw: A file pointer is updated too early., The user can access banks to which
he has no legal rights.

' Security Enhancement.' The. user's access rights must be checked before updating the ?ile
pointer. The code is already in the LIJ/LDJ section of the system. The two sets of faw=
gtructions need to be interchanged.

4

.. . 6. Bolt Beranek and Newman TENEX

. 6.1 INTRODUCTION TO TENEX
© The TENEX operating system was designed by Bolt Beranek and Newman Inc. (BBN) with support by the
The original intent was to develop a medium cost system
employing state-of-the-art virtual memory hardware and software, user-controlled multiprogramming, and
a flexible user-controiled software interrupt system to'serve the research groups at BEN. The one
need that forced the development of the new system more than any other was the need to nun large LISP
programs which typically require a rather large and scattered wor]'ng set.

39

&

gl

3i
¥
5
iy
{3
i

CERa T

i
i
1
i
i

To obviate the need for developing w completely mew set of utility programs, TENEX was designed
to be ﬁardwaxe,andusoftware upwdrd compatible with Digital Equipmeﬁt Corporation equipment, the BEC 10/50
system. By having DEC UUOfs (DEC system talls) tause loading=of .2 user interpreter to perform the
equivaléent TENEX JSYSes (TENES(J system calls), TENEX wos able to implement o completge new set of system
cslls and still maintain the DEC 10/50 compatibility with a ninimum additiop to the security kernel of

N

tha operating system.

6.2 TYPICAL USE OF TENEX

Figure 6;%:shows & system status listing for a ﬁtypical" TENEX system. Thgrlisting gives the‘
reader a visual picture of the typical use of TENEX. A description of how the listing was generated
and vhat the various fields represent should help it to convey the waximum smount of information.
This description follows: ‘ '

1) To generate the listing, a user on one TENEX system Tan a TELNET program that aliowed him to

connect to the "typical® TENEX system. The TELNET program has a Eedture {discussed in
section 6.6.b with respect to a security problem) that allows it to accumulate the terminal

output from the remote system in 8 disk file. This disk file, the TBELNET typestript file,

was later edited-intg this report. o ‘
Starting at the top of the listing is a line of header put in by the TELNET program. The "4V

is the first character of terminal output and is the prompt character from the TELNET program.
The user then typedl "tenex! followed by a carriage retum\ ™ R>).* The TELNET program com-
pleted the connection through the ARPA metwork as it typed "is complete” and the initial
herald by the remote system follows the "4 delimiting the end of the TELNET programs' command
output. In the case of TENEX, the hersld indicates the TENEX version number (here 1.33.16)

2)

o

and the EXEC version number (here 1,53.21).

3) The "¢ is the prompt from the remote TENEX's EXEC language progessor (EXEC).
typed "login username password <ESC><CR>', The password doesn't echo, and the system Tecog-
nizes the default account string for this user when the user typed the ASCII besc‘ape character
{<ESC») .

4) The user was then 10gged-in, and he got some information about his status, a note as to when
he last logged in (to detect password leakage problems) and Was given the prompt “e" by his
now ‘logged-in EXEC (discussed in section 6.4.c, 'Process Protection}. He then typed "1d<CR>"
which generated the status listing, and he typed 'logout<CR>" after the last "@' prompt to
logout. An ASCII SUB {control-Z) tells the original TELNET that the user wants to talk to it,
aE?iin eliciting the "#". ‘The user then disconnects and quitf leaving the typescript file.

5) As far as the load status itself goes, after some load statistics (e.g., an average of 6.31
processps are currently requesting the CPI), the load status Iines are generally broken up
into four fields: job mumber, terminal number, user name, and a variable length field. The
variable length field includes: a) the subsystem in use (default is EXEC}; b) t}fe usarts local
network site, shoun in parentheses "()" (default is a local user); and ¢) the user":s gon-
nected directory, shown in angle brackets "<>'' (default is the user's login directory}. Most
of those terms are discussed in detail later where they relate to security issues end are
noted here simply for later reference. The only lines that are not of this format are lines
that do mot start with a mumber (the job number). These lines indicate active AREA net con-

The user then

nections and are not pertinent to this discussion.
e C o :
—

* ‘ : ’ .
- Characters in angle brackets (<>} indicate ASCII standard characters.

. : ~ 40

7

Yl

D

£

TELNET typescript file ﬁtqrted at TUE 18 MAR 75 1937:27 EDT

%tengx i% complete,#
TENEX 1.33,16. EXEC 1.93,21
@}ggig Eisus LLL
H TTY113 18-MAR-7S 16:
PREVIOUS LOGIH: 18-MRR~-?8 14:?2/;3;

@eld ‘
Lood 6.31 5,19 s5,p5
Up 32:44:36 25+2+5

Jb TTY Usor . Jabs

34 114% not logged in

23 }%gm gjs?ﬁ éDa(LLL“EISDSJ

mi SEXEC . (AMES~
G 110 aith EXEC - (AMES~TIP#48)

127 idie’

4gPH§3: bgh TELMET
3 <> BBN-TENEXB:2418/1. .
48 52 Jones NLS Bz 184} &e

25 9P% Risos FTP. (LLL-RIS0S)

2$és¢?5sed,uith EXEC.

‘The load status progrom jiself.
FAn RSEXEC probleg ig discusséé.
fBlank indicatds EXEC use.

fﬂ TELMET problem is Gispussed,
:Hn aciive netunrk conrect ton,
(A fanoy tree strustured editor,
*The file troansfer program.

:The%bmgkup orehival sysiem,

A spelling correctio f

; = 3 o Lion progeoah
,Sgstem’printér ccntrol? g ‘
A Yser’s unnamed progrom,

A simple powerful editor.

;gnfassembler‘)
FH fost disploy type editopr,
fHn old report geggrutur._r

:The RISDS system Exerci
:The Fortrunjbmmpiler. Nk
fAn unknown subsystem,

‘A subsystem to reod messages,

OPND © 182/3 <> BBN-TEMEX:? Z09R1/8. AS
_OPND 184 <- BBN-TENEX:? wom3- pag -
30 45 Friend BSYS,{lsis»)

48 43% Taylor LISP.<{Speuch>

d 42k Compus SPELL
17" 4Bd& Sys josk PRINTR.<Syztems
2B 37 User (PRIY)

21 36% Ristuff LI5P -
13 32k Edit TECD
38 264 A=zsembl [MACRO
?é aqﬁ ;ast TYEDIT
Z3% Repori RUHOFF
45 22% Moo F ,
36 2% Risas EXERCI =
29 1TH Humbep Fd

B 16% Bart 505
16 14% Alongnome. X008
13 11% Bort RERDMA
24 1BK Friend SHDMSG .
23 2% Macll MACHIL o

22 ‘ggi o " TELSER, <Heg >
3 g;gégg; . {Luadsiut>
Szl ser1 <3 EBH*TEHES;?S:?/Z, 835
éﬁg%5§gg§; <?rint9r>
ND #3B88/1 <> BENSTENEXE: 3541r
@?sgguraaaz ‘ sagggaggggfgéi?gé?3§§’

USED B:8:5 IH-B:2:14
#oisconnect
Fouit SEE ¢

BR

'LOGOUT JOB 3. USER RISOS. ACCT LLL. TTY 113, aT

R messoge sending -facil it
8 PDP-11 GrcsSfagsemhleb.y.
A detochad job. “

JREEXEL serwor discussed,

371878 1641 PDIT
P

<

Figure 6-1, ”Exa’mple of a system status listing for a "typical” TENEX systen

o [Q‘% ’ B

" , 4%

o

¢

<

4]

6) Anything after and including a ";" on a line was included as a comment and was edited in for
typi ; names
this report. Also some subsystem use was modifisd to further typify the status. Some
I\
were changed, and scme 1ines were deleted to shorten the listing. ‘ o
A!; an example in hand of typical TENEX use, the initial entering, editing, spelling correction,

below), this mechanism makes monitor entry and exit from user Space very simple, 'L.. srtunately the .
Monitor recursion mechanism {using JSYSes within the Monitor) is still awkward, ThlS recursion is

once removed from the user, however, .nd is therefore somewhat less sesurity sensitive,

v "b. Virtual Memory Hardware
storing, and network mailing of this section were done with TENEX. | -

TENEX is a virtual memory system with separate virtual spaces for the Monitor and the user, This
6,3 OVERVIEW OF TENEX HARDWARE ARCHITECTURE AND INTEGRITY FEATURES , _ fact; reduces some security problems.. For example, it is not possible for a user t¢ put his program

into monitor mode by having the Monitor return by mistake with the monitor mode bit set, If the TENEX
Monitoxr did so, it would simply return to somewhere within the Monitor. This would likely cause a
system crash, but weuld not allow the users program to run in monitor mode.

a, CPU

%

The TENEX operating system can currently run on a DEC KAlQ processor with a BBN pager or-on a

DEC KI 0 p:OCe T (h KLIO are all DEC PDF -10 pIOCGSSOIS) The 1“’-!:18-1 llllplemen- “le usey can sti t
4 550r. The KA]-O KIlO and

to Put a program segmént into the Monitor space somehow and then try to get the Monitor to jump into ‘ ‘

pcie [edALAARAAN

if?‘ cation vas on the KALOfor which BBN designed the pager. The KI10 version is selected at assembly it, but zhis i: a slightly more difficult problem that also exists on any system with write—m?difiable

i nted by translating between the KI10 format and the BBN pager format for the page or pageable code. ' ‘ o o)

i ine ang is fnplens ; deals with is the KA10 version, so only the KALD system Another advantage of having a virtual memory map for the Monitor is that it is possible to write-
tables. The system upon which this veport de thus restricting the report to the KA1D protect the monitor code. TENEX currently makes some use of this feature,
will be considered. There is lxtt.le loss of generality m . ‘ The fact that pait of the Monitor virtual space is mapped on a per-process basis makes the Monitor
version of TENEX. PDP-10 CPU that aids system integrity is the fact th}t b simpler and eummates a ‘class of security problems. Associated with each TENEX process is a page

Probably the most impovtant feature of the o e for simplicity than for speed. The mech- . 3 called the Process Starage Block (PSBY. Contained within the PSB is the map for the Monitor's pex-

; the instruction set and I/0 structure Were opt:u;n; J:Zructmns is uniform throughout the mstrucbmn N f» proceSS ared (the last 128 pages of the monitor virtual space). The PSB is p‘oi red to by a pager)

: enism for computing the e & e alysis routines from the need to consider many '1 ‘reister, 50 i’c is very easy to change when rescheduling a new proceg { The kinds of security prob- ’ o “
IR set, thereby freeing the programmer and automailz 2na)c’o lete set of Boolean operators, stack ! lems that thlq feature eliminates are those which can hujpen when. th:? monitor confuses references to or ,
S - special cases. Included in the instruction set I:P _testing and masking instructions. Many fails to protect from the user-process specific information (e.g., tife implied sharing of prlvxleged o
L operators, variable-length b)'tP- operators, “und flexible fzt ::entfcal operations, but the instruc- ! data class r/f flaws discussed in the faxonomy in section 3). ~ :

of these instructions are almost nover usod 303 mazy Pe:er::and and use. ‘The I/0 structure is also l 5tills /another hardware feature that simplifies system coding and therefore makes it easier to o
L tion} sve oxganized in a vey that makes then 335); c: unel- rogram mechanisms that appear in many com- secure 'IE;JEX, is the operation of the monitor mode instructions which reference user space. On the ‘
Sl very simple and doesn't contain the sophisticate sk) PDP-10,- the 16 general registers can be,reference,d. ds the low 16 words of a virtual space. These

puter systems of avout the sane v:mtage. » hitecture daés not admit @ practical virtual ma- same registers are used for both Monitor and user spaces. ‘I‘herefore» when the Monitor is entered, it
‘ One disadvantage of the PDP-10 is that its :r 11;“,; a program running in monitor mode to de- | has to save any user registers that are needed by the Monitor routines. To reference user space, tﬁe
» chine mnitor. There are Severd’ inStm“tlo;Scz :tsiructmnz would have to be emulated in a virtual ‘ ' * Monitor is given a special sot of instructions, . When the Monitor veferences a user address which ’
¥ termine that it is reaily in nepinen o s £ n:«u 1ing out the particuldr tronblesome in- happens to be between 0 and 15, the pager automatically causes. this réfarence to go to a special saved

machine momtor, and no-mechienisn 15 averldble o7 e M 10 simulate all instructions, i register area of the PSB. In this way, if the Monitor has a user address to reference, it need not .

structulons. This fact requires that a virtual machine monitor for the PDP-10 si . :

a mechanism that is impractically slow on the PDP-10 itself, A TENEX emulator was implemented on the
MAXC at the Xerox Palo Alto Research Center (PARC) which made some otherwise difficult measurements
possible, but this is a one of a kind system and the additional measurements are very 1imited. A
P virtual machine monitor for the PDP-1C itself would make TENEX development much smoother and make much
: more complete testing of the operating system possible. ‘ .

The hardware modifications hecessary to allow the KAl0 to support a virtual machine monitor are
fairly minor, The software task of writing & virtual machine monitor For the PDP-10, however, would

make a special check to see if it is between 0 and 15. ’

c. Peripherals v , : ‘

ix

The most security sensitive TENEX peripherals ave the paging drum and the disks, which are used
for permanent file storage.

/OB S NSRS,

Failures in these units have caused security problems in the past, but
generally such failures only result in system crashes.

for these contingencies should be augmented.

The little fault tolerance built into TENEX

e e

be & major undertaking. .

The JSYS mechanism that was introduced with the BBN modifications to the KALQ processor greatly
Lo " simplifies the Monitor call mechanism. The most important part of the JSYS mechanism is the JSYS
- vector located optionally at & Fixed location in real core or in a reserved page in the per-process
region (disclssed in section 6.3.b) of the Monitor's virtual space. (This opt:on is a recent addition
Iy for JSYS trapping which is also discussed in section 6.4.c.) The JSYS vector contams the addresses

“ of the routines used to handle the JSYS calls ‘and the addresses of words to store the information

TENEX supports a wide variety of online terminal devices. The software that associates these
devices with processes.is fairly simple. No security problems were discovered in its implementation.
Intrinsically, however, mechanisms are designed into TENEX which allow é?ocesses to &ssign a mon= -

logged-in terminal device and to accuzgi‘itely simulate -2 non-logged-in EXEC. The way the mechapisms

work, there is no way that a user starting to use a hard-wired, non-logged-in terminal can assure
himself that the terminal is not'assigned to a process which is simulating-on EXEC, Terminai like
connections that are effected through the ARPA network do not have this problem because the netmbrk
) necessary to return to the calling process. When coupled with the per-process mapping (Sec. 6.3.b "terminals" are created and destroyed every time a conmection is set up. _ ; B ”
: i _ 42° : . S - 43 ‘

TENEX suppoits an extensive set of communications software. There are problems discussed in
section 6,6.a concerning the auto-answer telephone facilities and the interface to the ARPA computer
network, The ARPA network software presents a unique problem both intrinsically and in terms Qf the
implementation of the interface multiplexing.

Intrinsically, the ARPA network (or any network of the same type) represents some unique problems
because it allows arbitrary processes to communicate with arbitrary processes on other host systems.
Traditionally, computer systems have kept a fairly tight control as to which processes were allowed to
handle specific devices. Because the ARPA network is logically multiplexgd to look like a very large
number of devices, access to these pseudo devices is given out very freely. Any process. ({especially
privileged processes) handling one of these pseudo network devices is maintaining a security perimeter
and must be assured of correct operation to assure system integrity. (See the Privileged subsystem
problem discussed in sgction 6.6.b for example.) Even an interactive terminal user using a process to
connect to another site (e.g., the TELNET connection, in figure 6-1) is incurring the security risk
that the remote system might spoof his local process into releg@ing»sensitive information. If the
user explicitly gives sensitive information to .an ARPA network connection, he has no assurance that
its integrity will be protected. All such network communication must assume malicious tapping and
‘noisy communication channéls, and therefore, combative techniques like encryption and error checking
must be used,

The Net%ork Control Program (NCP} that performs the logical multiplexing for the ARPA network
connections is g complex program making auditiﬁg and correct implementation difficult. Also, there
are many situations where it is natural for the NCP to trust the Interface Message Processors (IMP's)
_handling the communication metwork functions and even the remote hosts to foilow_network protaocols
and/or to perform in a generally reasonzble manner, This trust can lead to problems.

There were several times during the course of the TENEX study that problems of one kind or
aliother were traced to the NCP. The NCP is a complex and,rééidly changing portion of the TENEX monitor,
however, so it was not inciuded in the main thrust of the TENEX security study and will not be directly
discussed-in the remainder of this4report. . ‘ , B

TENEX also supports a complete‘aséortment of tape devices, line printers, card readers, paper
tape equipment, etc, There are minor intrinsic security issues.associated with many of these devices,
but these issues are generélly'applicabie to such devices on any system, and there were no outstanding
novel implementations on TENEX. '

There is one other peripheral-associated mechenism that deserves mention and that is the TENEX
Backup System (BSYS). This is a magnetic storage system that is used as a;chivai storage for TENEX.
The system uses ordinary magnetic tapes and requires manual. operator tape manipulatidn. This system
is sensitive in thdt it has to multiplex the physical tapes among users. An incorrect archival re-
trieve could give one user another user's file, However, this system was not looked at in detail for
the TENEX study, and no problems associated with it appeared after the initial bugs were shaken out,

6.4 OPERATING SYSTEM DESIGN AND INTEGRITY FEATURES .

There are some terms that need to be mentioned before a discussion of the TENEX software design
and integrity features can be continued. Included here are only those terms and associated information

pertinent. to the security and integrity discussion:

44

Item
Directory

File

Job

Process

Usex

The discu5§ion of TENEX software securit

Protection,

2. File Protection i

)

In TENEX, any filitcan be named and access
recognized: - read, writef\execute, append,

the name of a file from the system (e.g., by trying to

access is requested when
~ explanatory,

. Each file contains 18 bits of prét;étion‘infbrmation.
fields called SELF, GROUP, and OTHER,
recognized (plus one unused bit}.

chosen as follows:

1) 1f thg user is connected to the directo
is used to validate access,

Environment
System

directory

system

Process, job

system

a user attempts to write beyond the end of a file

. o

below) or by knowing their password.

2) TENEX has 36 user groups that are set

access word contains a 1 bit for each group th
with each directory is a 36

ship word has a 1 bit for &

dccess th

3)

b. Directory Protection

In addition to the file protection,
The directory protection mechanism,

inaccessible to the tser.‘

; y and inte
directory Protection, and process Protection,

like the group mechanism,
Associated with each directory is a

45

Associated Items
password, directory éroteﬁtion, default.
file protection, directoxry group
membership word.

Protection bits,

Tty

login directory, conneg&é& directory,

) job process structure, job file structure.

)
process capabilities, inferior Process
structure,

login directory (and associated. password),

user group access word, initial capa-
bilities, '

grity will be broken into three parts: file

-requested by any user, Five kinds of
. acees <]
and list, ol

$ 23

List access is requested when a user asks for
list the file's name in a directoryj. Append

The others are self

A

. This information is broken up ‘into threeﬁ
Each field has one bit to denote each of t
When a user attempts to access a f

he five accesses
ile, the appropridte field is

Ty containing the file, then the SELF protection field
= A user is initially connected to h
MLy connect to other directories by owning them (see the discu

is login directOry and can
ssion of directory protection

v up administratively (the use i t
! : x has n
over themQ. Associated with each user is a 36 i

-bit user group access word, The user's group
8t the user has GROUP access to, Associated

~bit directory group membership word. The diréctory group. member-
\ 5 . very group that the directory belongs to.
e file, the user does not have the SELF relationship to th

does have gréup access to a group which ¢ o X

i the fiie‘s directory belo :
tection field is used to validate dccess, ‘ { it i

If, when attempting to
file's directory, but

If neith ’ : |
[er 1) nor. 2) hold, then the OTHER Protection field is used to validate access

there is a facility for directory protection within TENEX .
is‘gdminigtratively controlled and is
Protection word that is broken up into

o

fields analogous to those for files (SELF, GROUP, and OTHER) . The first bit in this :ield 1zczzzd 1o
1imit all mccesses. If this bit is off, a user can't even know of the existence of : eOi;: o D
directory. If this first bit is on, then the other bits ‘are used for governing OWNE o 1; e
access. OWNER access allows connection to the directory without a password, control o 1th ectory
counting, and some other control functions, OPEN access allows the user to open fll:S ;n eczor
aceording to their file protection. APPEND access allows the user to add files to ¢ edm1: ari;us

This protection scheme is flexxble, but its part1cu1ar form of flexibility also admi i :n o
incompletely defined and at times seemingly inconsistent situations. The d1rectox"yhprotezf1the .
group mechanisms are poorly documented. Typical TENEX users have nothing to do wit any1 B oteiflon
tection mechanisms, A good deal of sophistication by users is required to change the file pr -
word, The group and directory pratection mechanisms are often difficult to use even for experlzzollltles
system users. The jack of user manipulatory facilities for the directory protection and group Iac

serfously limit the utility of these facilities. !

¢. . Process Protection .

Processes within a TENEX job occupy @ txee structure with the TENEX EXECutive language Prooe:oooo
(EXEC), usually at the root. TENEX processes have always been able to protect themselves from 12 orx T
processes. (Note: ‘“The terms superior and inferior are used to indicate the relative positior o .
processes in the tree. Process A is superior to process B if A is on the shortest path between B an
the root,) With the implementations of the JSYS trapping facility, however, ouperlor processos can now
protect both themselves and the user's resources from 1nfer10r‘processes: This property has important
applications to debugging, Trojan-horse problems, and extensive programmlng: » ciree

The cases of the debugging problem and the Trojan-horse problem are quloa 51m?1a?. In the firs
case, one is gemerally worried about protection from a well-meaning but possibly misdirected process

~and in the second gase from an unknown and possibly malicious processy but the basic problem is the

same; . In each case, the user wants to protect himself from a process that might try to adversely affect
e e::ii;??i"i;e TENEX development an invisible debugger, 1DDT, was developed which monitors execution
of a user's process 1n a way 1nv151b1e to the process.. This debugger is quite useful for mon1tor1ng,
but it cannot protect the user from arb1trary system calls by the process being debugged The new "
JSYS trapping feature for TENEX allows a superior process to handle system calls for ap inferior. is
mechanism allows the superior to completely protect itself and the user's resources from the untrusted
1n£er;::u§:°::zz.theoretlcal ab111ty to solve the classical Trojan-horse problem exlsts: it is awkward
to 1mp1ement and has not yet been programmed. The problem-is interpreting the inferior's ‘JSYS calls
and deczdlng whether or not to allow them. Until a complete security system is implemented, however,
a user's files can be protected with the simple mechanism outlined below.

The user could put whatever files the untrusted program is to be allowed to reference in a spare
directory (this scheme requires that such 4 directory exists) and then, after connecting to the spare
directory, he could rTun the untrusted program under & trivial monitor that simply traps ‘any attempts
" to connect to another directory. This would crudely solve the class1cal Trojan-horse problem and allow
users piotection from undebugged programs.

The JSYS trapping facility is very new ™ Bew enough that at the time of this writing, no complete
documentation exists, The JSYS trapping facility was designed, however, largely to aid implementation
of the TENEX RSEXEC system, so the RSEXEC makes heavy use of JSYS trapping and is a good example of the
ways in whmch extensive monitors can be written for TENEX.

46

R
The RSEXEC system is designed to giv; the user accest to TENEX on a network virtual basié: To
this end, it allows users to acquire directories on other host computers and to use the files in those

directories as if they were local files. Thie requires that the RSEXEC trap JSYS calls and make ref-

erences to remote files look like references to local files. <y

A set of capabilities are maintained with each TENEX process. These capabiliti \\\o used to
denote apeclal privileges of the process. Typlcal privileges aret ’ N

o CTRLC allows a process to enable "cont:pl—c" /g a PSeudo Interrupt (PSI, software i\barrupt)
condition. "control-C" is usually re/érvea~ i>tha break character to escape from a process in
TENEX. A process with the "control~C" capability can handle its owm "control—C‘s"

o SUPMAP allows a process to perform memory mapping operations on its superior.

o WHEEL allows various privileged JSYSes. - This capability is an all-powerful capability given

to system programmers.

Processes in TENEX are also allowed f£lexible access control over the virtual memory pages of pro-
cessesg and files that they have access to. This is not particularly pertinent to secuoityzexcept to
note that this mapping scheme correlates with the file protection mechanisms in the sense that virtual
memoyy mapping allows at most those accesses allowed to the file or process being mapped. '

One other TENEX feature which fits most naturally here.is the way in whtch the TENEX executive
language processor was essentially kept out of the TENEX security kernel. When a uger infeially con-
nects to TENEX, he is given an EXEC. This EXEC is not logged in, however, and is only able to in-
terpret the user's commands and perform simple operations. When the user tties to login, the EXEC
gimply performs a login JSYS supplying the name, password, and accountkgiven by the user, If this
login is successful, the EXEC is given access to the user'g login directory, the user's capabilities,
ete. At this point the EXEC is acting like any other processa running in the usual enviromment for the
user. It can only access files accessible to the user and‘hésuonly those privileges granted to the
uger by the wmonitor. In: this way, the EXEC need only be trusted by the user with his respurces to the
extent that jany other poogram‘which is running unprotected must be trusted. The EXEC can no more de-
grade the Monitor than can any other user process. Also, users cannot bé affected by‘another user's
EXEC unless there I1s a problem in the TENEX monitor. For this reagon, except for possible Trojan-
horse-like problems, the TENEX EXEC need not be consi&ereq part of the TENEX secq&ity kernel.

6.3 SUMMARY -

0f the secnrity problems that have been discovered in TENEX; the majority of them have besn
eliminated from more recent versions of Ehe:systemQ' The more significant known problems that}re~
main occur in the-area of the peripheral interfaces. In TENEX it is possible, though difficult, to
handle the classic Trojan-horae pfoblem using'tﬁé system call ﬁrappinérfeature (JSYS); TENEX does.
not address the general problem of controlled communication between mutually suspicious procesases that
is solved by experimental capability—list (C—list) systems.

Much of the TENEX implementation ig relatively easy to analyze. Its major waaknesses from the
point of view of code ohscurity are in the file syztem, the Network Control Program, and the _
scheduler. Portions of the TENEX process and software interxupt handling code hdve been exteneively

analyzed and exercised. These sections of the monitor now appear tp be implemented correctly.

b

47

6.6 OPERATING SYSTEM SECURITY FLAWS

During the more than 2 years of the TENEX study, 20 to 30 fiaws were found in the system that
could loosely be classed as security flaws. Of these, some 13 or 14 were analyzed in depth. These
£laws were observed in TENEX releases between 1.29 and 1.32. Some of the existing flaws have been
fixed in releases 1.33 or 1.34.

Here wg present a few of the flaws that we have investigated. All of the known problems that
still exist in TENBX are presented along with methods for minimizing their effects. .Furthermore,
since the other flaws havé been fixed at all current TENEX ingtallations, we hdve included represen=
tative examples of these earlier flaws. These examples are fairly typical of the range of securlty
problems that occur in computer operating systems; however, the ease with which some of these problgms
were fixed 1s not typical. The flaws are categorized within the scheme presented in the taxonomy in
gection 3 in order to display the TENEX flaws in terms of global operating system problems. The

associated taxonomy category is shown in parentheses.

a, Bxisting Flaws

o List-access failure during file recognition. (Inadequate jdentification/authorization/
authentication)

There is a feature of the TENEX monitor which fifis in the remainder‘of a recognizable name
for aégg?e at the user's request. The monitor code which handles this name recognition fails to
check »see if the requestor of the recognition has 1ist access. Users must be aware that this
problem exists and not depend on list-access protection.

The needed fix is to add the appropriate access check. 1In the meantime, usgr; Tho really
have a need to hide the names of files in their directory can get soreone to protec thelr

directory using the directory-list protection.
6 Crash on drum overflow. - (Violatable prohibition/limit)

1f users create too many-private pages, the Monitor crashes. TENEX doés not use any paging
schemt Sor its secondary drum storage. If the drim fills up, the system crashes.

There are two schemes that have been used to alleviate this problem, One is to make the
drum larger by logically including some disk storaﬁé. This scheme could work because there is an
upper limit on how much drum storage can be demanded by users. This upper 1imit is very large,
however, so the initial scheme of veserving disk space for the drum overflow is too impractical
to be used to sqlve the problem completely. What is needed is a paging scheme for the “"drum"

storage.
Another scheme that has begn used to prevent system crashes 1s ‘the triggering of a machlne— o

size-exceeded software 1nterrupt if the drum is close to f1111ng~up This does protect the sys-
tem from crashing, but probably destroys A user program which was not doing anything wrong.

¢ ' Circular ma?ping causes hung process. (Exploitable logic error)

This problem appears if a user sets up a circular set of indirect map pointers in a process
and then tries to kill thekprocess. The killing pf&cess hangs irrevocebly in the KFORK (kill
fork) JSYS. ' . =

Hav1ng this problem occur simply degrades system performance and uses up the user's resources
(the process hangs in an unterminating loop). There is currently mo certain way known to get -rid
of such hung processes short of restarting the system.)

This problem could be fixed by having the KFORK JSYS 1imit the number of indirect page
pointers that. it will follow in the same way that the pager does.

48 i

¥

]

S S e S,

® ' Lack of scanner hang up and recall signal. (Hardware) \\

As mentioned eatlier, some of the telephone scanners used\%itﬁ TENEX do not have adequate
signals to notite when an auto-ansier phone call is hung up and another call on the same line fs
initiated, This allows new callfrs to get old jobs if’the old joh was huﬁg up without a pro@er
logout.

To aveid this problem, - the system should be configured with the proper scanner signals that
are available. Users on systems without the proper hardware can minimize this problem by logging
out properly whenever possible, This problem occurs only with telephcﬂe calls, so a system without
telephone access (e.g., only hardwired and/or network access) does not have the problem.

b. Flaws That Have Been Fixed

o Skip return problem. (Exploitable logic error)

This error occurred because of the way the monitor implemented the mechanism‘which returns
“to the user's program counter (PC) + 1 rather than directly to the user's saved PC (calied a skip
return). The mechanism was simply to add 1 to the user's return word. If the PC happened to be
-1, this addition would overflow into the index field of the word. In this case, because of the
éway in which the return instruction works, the return would be done to the location specified in
general register 1. This return location also controls whether return is to user or monitor
space. Under certain conditions, the user could control what was in register 1 and in some other
registers, This control would allow the user to reiurn to the repisters that he had set up in k
the monitor's space. These registers could contain a program that bootstrgns in a program de-
signed by the user to take over the complete contxonl of the TENEX monitor.
This was the only case encountered during the study of TENEX in which a complete take over
of TENEX could be accomplished in this somewhat fundamental way, The password check problem
noted below was as serious in its consequences, but was not as fundamental in nature.

The problem was patched the afternoon that the bug was encountered and was distributed to all
TENEX sites through the ARPA network the same day. The fix amounted cuﬁmasking out the indirect and
’ t A\ .
index bits in the user return word before returning to the user.

o Password infoxmation leak, (Implied sharing of privileged/confidéntial data)

This problem combined several features of TENEX to produce a security threat in a clever way.
The first feature is that a user can find out when a page in his virtual space which was unmapped
has been referenced‘ The second feature is that the TENEX password-checking routine did cha,ﬁnter~‘
at-a-time checking of a user's submxtted‘paSSVord.‘ The third feature was the fact that user pro»
cesses can themselves submit passwords for checking in a flexible way. ‘
What a user could do to exploit these features was to stbmit a candidate passwdrd in user
space in such a way that the first character which was not known to be correét is 1 byte béfaré a
page boundary with an empty page to fbllow. Then if the character is correct, the pusswoidvchecker
will reference the next page thereby telllng the tiser that the password character was correct,
‘As 1ong as the character is incorrect, the user can simply change it and try it again. This re-
. duces the number of guesses required to guess an N-character password from on the order of 64**N
EZmZ? the order. of 64*N. This allows pagswords to be di;govered in a réasonab;y short amount of
The fix to this problem was to have the password checker reference the full length of the
submitted password regardless of where the check failed. ’

49

i)

,é}«_”

e Rt e G o A i e

e

g

This flaw is mentioned because it is an instance of a very stubborn type of problem that is
not directly sttacked by any of the current program-vérification or program-proving techn1q:es.
The problem is one of having the system leak sensitive information to a user pracess thr:ui -
timing or other unrelated mformation channels (in this case the fact that & page fault ha X ¢ .
turred). With this preblem, the password cheeker could have been prOVen>correct as could the pag
mapper, but between the two of them they leak out some critical system information, There :re .
many other Ways in which a system can leak information from one process to another without direc y
trensfexring any data. However, because this general problem is not directly pertinent to TENEX,

it is not discussed further.

o Incorrect commmication instruction usage. (Exploitable logic errox)

This is & case where inappropriate use was made of one of the special user-to-monitor space
communication instructions. Here the instruction was intended to fetch a byte from the gser
space. 1t would do this properly, but would also do any indirecting that was requested by the
user in the wonitor space. When doing indirecting on a PDP-~10, mew memory words for the address
calculation are accessed from addressed jocations until an address is found in which the indirect
bit is turned off, (For details, see DEC System 10 Assembly Language [7].) If an unmapped Mon-
itor page was referenced during this address computation, TENEX would crash.

The fix was to use the proper communication instruction that also did its indirection in the
user space. The actual fix vhich was initially implemented was to mask out the lndfr?c? bits of
the user submitted pointer. This initial fix unnecessarily 1imite§ the user's flexxbxlfty..’

The instruction set for the TENEX mdchine, even with these few user»monito; communication
instructions, is so simple that bugs of this kind are rare. ’

o‘ Accoumting problem. (Inadequate 1dent1fication/authorlzat;on/authenticatlon)

This is a case where an add-on mechanism was not properl& tied into the monitor's ususl access
control mechanisms., Originally in TENEX, user dccounts were not validated. They were only used
for system information, Later it was decided to charge according to the accounts. This required
account. validation. Inltlaliy this was implemented by having the EXEC check accounts if ap ac-
count change was requested.through the EXEC. .This didn‘t suffice, however, because users Lould
still change their accounts directly with the change account JSYS, thereby bypa551ng the EXEC's

check. ‘ . v
In TENEX, version 1.32 changes were made to the change-account JSYS to have it validate ac-
. counts directly.

] TEiNET typescript file problem. (Implied sharing of privileged/confidential data)

This is an example of where the Trojan-horse problem can still plague unvary TENEX users.
tThe TENEX TELNET program is a program that can be used to connect to other sites on the ARPA net-
vork. = This program has a feature for accumulat1ng'the user's terminal printout in a file, called
his typescript file. This facility is turned on by default, but the £3i1e generated is made
temporary so that is disappears if the user logs out without having explicitly saved it, Before
Jthis problem was noticed, the protection for the typescript file was set to the default protect1on

* of the dirertory that it was in. This was generally set to allow all users read access, This

meant that after a user had completed & TELNET transaction and until he logged out, his ‘typescript
file, containing possibly sensitive information like passwords, etc., was up for grabs.

50

AR e T e . T

B s

? terminal output generated by either user to both user terminals.

-~

The £ix was to set the protection of the typescript file to seif oply. The moral is that,
even though TENEX has facilities for combating the Trojan horse problem, users must be wary uf°
leakage when running any programs that are allowed to reference sensitive data.”

e Piivileged subsystem problem. (Inadequate identifxcation/authorization/authentication)o

) This problem, which ﬁhs alluded to earlier in the ARPA network discussion (Sec. 6.3.¢}, dom~
onstrates the need to keep privileged processes to an absolute minimum (zéxo if possible).

TENEX hds a facility called linking which allows two users to communicate by sending atl
When one user attempts to link
to another, he is allowed to do so only if the other user is accepting links.)

The RSEXEC system, which was mentioned earlier, impleménts as one of its services a mechanism
for host-to-hestnetwork links. In the earlier stages of the RSEXEC development, it was found
desirable to have the process at each site which listened for these network links to be a priv- <=,
ileged process. The way it was implemented, the network link was put through in spité of the
fact that the receiving party might be refuszng links. This left potentiaily sensitive infor-
matlon exposed,

The point here is that any privileged processes running on TENEX are in the TENEX security

kernel. If TENEX is ever to be proven correct then any such processes must be proven corréct.
The easiest way to do this is to have no such processes.

o Unchecked file deletion access. (Inadequate identiflication/authorization/authentication)

The DELNF JSYS is 4 monitor call that delet: . 1}l but some number of versions of a file. Such

a JSYS was initially thought convenient, but in actual practice is almost never used, Tt was prob«

ably the fact that the DELNF JSYS is so seldom used that caused this integrity problem to go un-
detected for so long.

In coding DELNF, the file protection check was simply omitted. This allowed any user to dé-
lete any file in any directory with simply open and list access to the directory. This includes
almost all files,

The important thing to note about this problem is the fact that there could be an access
check omitted in DELNF even though the proper chieck was made.in DELF (the JSYS usually used for
deleting files}. This dual implementatiod situatiow is caused by ineffective orgenization and
causes comparable problems in many systems. TENEX generaLiy has very few problems of this sort,

There is a feature of TENEX that effected the DELNF & rablem that can be most appropriately
discussed here, When TENEX deletes a file as with DELNF, it simply sets a ''deleted" bit in the
file descriptor. Such deleted files ¢an afterward be undeletéd if desired. These deleted files
are only really destroyed if the user expllfltly asks for them to be expunged or if he logs out.
If, before deleting and expungxng any f11e543§110gg1ng wut, the user had first taken the pre-
caution of undeleting all files, he would have eeen safe from all but the most insistently mali-
cions DELNFing programs, :

There are system files thgi would ctause a 5&§tem crash or serious dégradation if deleted (for
example the TENEX EXECutive), so this wasn't really an acceptable solution, but with it users
could at least protect their own files fairly well.

o

51

‘Q?

7. Summaty and Conclusions

IS

The protection of computer resources, data of value, and individual privacy has motivated a con=

. cern for security of ELP installations. Because operating systems are such an integral -and critical

part of large iﬁétaffatiuns, this concern for security has e;fended to operating systems. This docu-
ment report§ some of the security flaws and security enhan'cements developed from a research project.

'I'lu'; material is a starting reference for planmng a secunty investigation of an EDP instal-
lation's operating system. Its intended use is-at Federal Government EDP installations with large .
conmercial systems. However, the results can be applied to most EDP installations.

To meet this objective, three commercial opersting systems are analyzed and security enhancements
suggested. ‘The specific security flaws discussed are formally ¢lassified according to the taxonomy
developed here, Flaws can be classified formally because of the similarity of operating systems and
their security pyoblems, This classification leads to a clearer understanding of security problems
and aids in analyzing new systéms. ,

The operating systems chosen for analysis i'epresént 2 major segment of the cursent Federal EDP
installations but not the entire spectrum. The choice of systems implies neither evaluation nor recom-

mendation byt only prevalence of use and interest. Also, no attempt at completeness of flaw description

is presented only a.representat1ve set of flaws fbr*which some amount of security enhancement can be
done. ‘

‘fga§\iv
Several cancluSions are drawn from the overall analysist b
® Security is not an absolute but is relatzve for each installation, depending on the data, re-
sources, and mission of the facility as well as on the potential hazards. Each installation
must .determine its own cost-risk trade-off. .
e Operating system §ecurity is not a binary, yes-no, condition. Primarily because QE iﬁs size
and complexity, no large operating system can be said to be completely secure. Ho er, many
security enhancements can be incorporated into systems to make them harder and cost~\Lr to
7 penetrate or compromise.
. o Software security, which includes operatlng system and user applications programs, is only one
aspect of the total security of an EDP installation. Administrative, physical, and hardware
. security need to be considered and kept in perspective.

e Operating systems are not necessarily the most critical point of security or the point that
requires the first enhancements. Also, they may not offer the highést return in terms of the
cest-protection trade-off as cdmpared to physical or administrative security,

e ‘There are a limited number of basic security flaws (S to 15 depending on the way. they are
de;cribed).
mains fairly constant, These basic flaws tend to re-occur in'differentfsystems because of the

There can be numerous different exploitations, but the number of basic flaws Te-

" similay architecture and design of the machines and operating systems."

& With the expected technical growth of EDP installations (e.g., in the area of hetWorks), the
security of complex systems will require continuing analysis, Current security flaws and en-
hancements may not remain valid with the technological changes that are taking place.

® Today's commercial operating systems were not designed with-security as a critical design

factor. Efficiency, flexibility, and cost were more important, not the demand for security.

This orientation led to security via retrofitting, and this is shown to be a-poor method as

thanges often intioduce new. and subtle security problems.

52

-
@

e There are some enhancements that can be 1nstituted by installations to increase operating sys-

ten security and increase the diffidulty of a penetration. But these are often in. the area of
software modification and thus require a system expertise that is not always readily available
at installations. However, some operating system security problems can only be "fixed" through
a redesign of the entire system. i

Continuing research and development in operating systems security are being_performed in uni-
versities, research institutions, commerclal firms, and government agencies, An - informative
summary of sites and security work being done has been published [8]., The list of sites ine
cludes: MIT, Carnegie-Mellon, Lawrence Livermore Laboratory, Information Sciences Institute,
MITRE, TRW, Systems Development Corporation, IBM, Honeywell, National Bureau of Standards, and
the Air Force Electronic Systems Division, N

1f security modlfications are to be made to operating system code, it is very desirable to have
Yclean codlng. (That 15, coding written in a straightforward style, unencumbered with &ricks
or complex instructions.) Easily readable coding does not add to securlty per se, but does aid
in understanding the code, and reduces the chance that a routznm can be used in a manner other
than what was originally intended. /

N

3

o

e S SR SN S S

it

4
pe

Glossary ‘

B

This glossary defines terms thag may not be defined in the text or that require special empha51s

and ease of referral. The items in brackets [} specify the context of the terms.

Many of the definitions have been modified to make them consisty fnt with the definitions that are
to appear in the Glossary of Terminolopy for Computer Systems decurfty [9].

Access

The ability and the means to communicate with (input to or receive output from), qpproach or make
use of, Data access is often categorized by combinations of tead, write, Or execute,

Asynchronous [event/process] , -

Events oy processes which oceur at an Lnknown time or execute at an unknown rate with respect to
sach other, An example is an 1/0 process which proceeds at a rate independent of the program which
initiated it.

Audit trail

A chronoldgical record of system activities which is sufficient to enable the reconstruction, 1e-
view, and examination of the sequence of environments and actividies surrounding or leading to each
event in the path of a transaction from its inception to output of final results.

Authentication “ a

: RSN
e

The act of verifying the eligibility (i.e., authorization) of a user and his agents (e.g,, programs,
terminals) to access specific categories of information,

Authoxization

The granting to a user, a program, or & process the right to access.)

Capability [process/user]

v *

The right to access granted to an individual, program, OT process. In a capability system, this
[- 3 » s
right to access is signified by a protected bit pattern or By inclusion on an access list.

Certification [operating system}

Proving or measuring the integrity .of a system. Certification is the act of authoritatively
confirming tyia an effectivs methodology) that the protection capabilities ox characteristics of a
system comply with a particular set of réquirements.

An assurance, based on defined objectives and arrived at through a closed process of assessment,
that the probability of operating system design and/or implementation flaws is less than a specified
value, and that the probability of a hardware failure is less than a specified value,

Confidentiality

A concept that applies to data that must be held in confidence. Confidentiality describes the
status accorded to data and the degree of protection that must be provided for such data. Thg PrO~
tection of data confidentiality is one of the ubJects of security. Data confidentiality applies not
only to data about individuals but to any proprietary or sensitive data that must be treated in conf
fidence. 7 ; ’

o N)

= 54

L

Controlled actess 3 N

The concept that edch authorized user of a system be permitted access to that information and
resources to which he is authorized, but to no more.

o

Limiting access to the resources of an automated data processing system to only authorized users,

programs, and processes or (in computer networks) other authorized data processing systems.
A

~

Control program y 3

That part of an operating system which directly interfaces with the hardware snd which initiates
and guides the execution of all other programs and processes. A control program frequently consists
of an interrupt handler and avhousekeeper~component. Other terms used synonymously include: super-
visor, monitor, and“executive:

o

Control state

One of two generally possible states in which & computer system may operate; the other is the
user state, In the c0;t701 state, certain privileged instructions are permitted“execution. Priv-
ileged instructions are not permitted to execute when the system is operating in the user state. Other
terms used ‘synonymously include: supervisor State, monitor mode, and executive state. {The arch-
itecture of some computer systems supports operation under fewer or more than two hardware states.}

Cost-risk analysis

The assessment of the cost of providing a given degree of}@rotectlon vs the potential risk of not
protectlng a resource. (This is a function of the economic consequences of a loss and the threat
probability,)

Encrypt [data]

The coding of information to conceal its meaning; to convert plain text into an unintelligible
form by means of a cryptosystem, '

Flaw [operating system]

An opérating system integrity flaw is the state that exists whenever a user (or his programs) has
the potential to cause the system to cease reliable and secure operation. An integrity failure exists
when this potentlal has been exercised and the reliasble and secure operation of the system is breached,

Q

A reliability flaw represents the potential to cause & System to cease ¢orrect operation (e.g., to.

crash or degrade the operation of a system); a security flaw represents the potential for one user to
access (i.e., read, modify, manipulate, or destroy) another user's information or programs against that
user's wishes or to gain control of the operating system. ~

Integrity) ©

Integrity is the state that exists when there is complete assurance that under all cenditions a
system works as intended. That is, the system reflects the logicai correctness and reliéﬁility of the
operating system; the logical completeness of the hardware and software that implement the protection
mechenisms; and the consistency of the data structures and accuracy of the sioréd data, Integrity is

concerned with reliability (fraud and error) problems and with security (resource and pr%yacy protection)
problems, ‘

35

o

4

3

&

o g oGS]

iy D, st i

Interactive [computer system]

i i j k and ma
Usclof a computer such that the user is in intimate control of the executitn of his wor y

make modifications or enter data between execution steps.

Isolation {user] |
operating system such that users may not access

ources in an
ontalnment of users, data, and res .
e protection controls of the operating system.

each other's data and Tesources and may not manipulate the

Multiprogrammed [computer system]
grams concurrently, by overlapplng or inter-

sses Or Pro
tem which executes numerous proce
g han one process to timeshare computer peripheral

leaving their execution. Ffr example, permitting more t
devices,

Operating system |
is used to support user interface functions.

The éggregate ofvcontrol and maintenance software that
Paging

A procedure for mov1ng'standard size blocks of informati
iliary storage units. ThlS is generally used to permit severa

on (pnges) between main storage and aux-

1 programs to share main storage con-
currently.

Proventive mechanism ‘ ’
chanism that implements all or part of the

me:
ive mechanlsm is a software or hardware :
’ Preve“t isolation and con-

In an operating system, these elements are:

elements 'of protectién in a system.

trolled access. <

Privacy [informatian, P . @ B » -
s to the degree to which he will interact with

i indivi ination a
¢ right of an individual to self-determina \ . ‘
- . s willingness to share information about

by an 1nd1v1dual'
his social environment; this is manifested s
himself with others, and may be compromised by unauthorlzed exchange of information about the individ

between other partles.

%

Process [computer] i L
; cuted concurrently w1th‘other computat1ons.
or an entire (1ndependent1y dispatchable)

by a control block containing an

A process {or task) 1is ‘a computatici. that may be exe
This term may represent either a sequence of instructions
work unit. (An operating system generally represents the latter

several
address-state and a processor-state description. A process may 1nvolve several programs and

Frkol
' a.
jobs, A user may create more than one process. Two Or more processes may shire prognams and data.)

protection

i i dwaré k information resources of a computer sys-
The defending or guarding of the har%z?ze, software, and inform ’

tem.

Real-tine process’

See time-dependent. .

56

Reliability

A measure of the ability to finiction without failure.

Remote-access [computer system]

A hardware and software system which permits input to be made from a location other than the
central computer room. Usually, such a system provides remote output as well; operates over tele-
comnmumications circuits; and manages a number of remote-access stations or terminals.

Scavenging [data]

Searching through data not erased from storage after use (i.e., residue), without necessarily
knowing its format or content, in an attempt to locate or acquire unauthorized information.

Securlty

Security is the realization of protection of data, the mechanisms and resources used in processing
data, and the security mechanism(s) themselves. Data security is the protection of data against ac-
cidental or unauthorized destruction, modification, or disclosure using both physical security measurcs
and controlled access techniques. Physical security is the protection of all computer facilities
against all physical threats (e.g., damage or loss from accident, theft, malicious action, fire, and
other‘cnvironmental hazards) . Phy51ca1 security technxques 1nvolve the use of locks, badges (for
personnel 1dent1f1cat10n), guards, personnel security clearances and administrative measures to con~

trol the ability and means to approach commumicate with, or otherwise make use of, any materlal or
component of a data processing system.

Security kernel [operating system)

That portion of an operating system, whose operation must be correct in order to ensure the secubity

of the operating system. Ideally, this involves the isolation of all hailware and software functions,
features, and data which form the basis of protection of programs and information in cne protected,
centrlized part of the system (i.e., kernel). The rest of the operating system is linked to this
kernel in a manner such that the kernel is invoked by all referc ces't information 17 the system.
Only the protection mechanisms themselves are placed in the kernel, ard the policy-making code which
directs these mechanisms is placed elsewhere in protected compa- mens.

Spoof

To deliberately induce a system user or opera®or o take an incorrext action.

Suspicious processes

In a multiprogramming environment, the goncurrent use of the system for sensitive data or programs
by users who mutually distrust one another or where one distrusts t>. ‘ther. Such processes normally

grant only the minimal number of required co- ities to each other,

Symbiont

Small routines that buffer large amounts . sta from low-speed peripherals to main storage to

minimize the number of data transfers.

B

57

hohy

g e b S S v I el ik

Systeni call

n (4 1 a i ‘ a-. c b ‘t a s (8] o] Qp t SySs~
An i stru t On that cts much 1 ke Subroutlne 611 }5) tr nsfex conty 1t the erating 24

tem rather than one of thé user'«is,broutinas.
* //

Taxonomy

i i ificati he most
A system of classification which proceeds £rom the most inclusive classification to th

explicit.

Time~dependent [sequence]

ions which can produce different results depending upon the rate
—dependent instruction sequences, which must
rocess to produce valid

A sequence of computer 1q}~ruct
at which it is executed. A real-time process involves time

be Ekecuted within specific (usually small) periods of elapsed time for:the p

results.

Timing window [execution]) N
h of time it takes a computer to execute a single

: time (genexally at least the lengt . :
s e . he second process is dependent upon informstion

instruction) between two Sequential processes, where &
supplied by'the first process.

|
i

Trap ‘door » ‘ o _
A breach intentionally ¢reated in a computer system for the purpose of collecting, altering,

.

destroying data.

Trojen horse [flaw] - - , - .

“A ﬁrusted program which contains a trep dopr.

Validéte

' ’ N . . : I3 * '3 s .re—
To perform tests and evaluations to determine compliance with security specifications and Tequi

meﬁts. Validation is usually considered to be less comprehen51ve
x' ,;\

and rigorous than certification.

Virtual storage

‘ ween
An organization of memory (based on automatlc swapping of data and programs as required bet
memories) that allows addressing as if a very large executable memory

and secondar,
e memory : is generally much smaller than the

existed, although the executable memory ava1lab1e to the processor
range of’ addressing which may be referenced by a program.

Worklng set i : ;) ; - =
hat is referenced frequently. Generally, th}s is

The axea.of a procasses's virtual storage t
A uire presence in primary memoTy.
maken to be the portion that is referenced enough to req P

.58

o
i

>

Bibliography

AUDITING

Krauss, L. I., SAFE: Security Audit and Field Evaluation for Computer Fac111t1es and Informat:on
Systems. . (Firebrand, Krauss and Co., East Brumswick, N. J., 1972},)

An auditing handbook that has several hundred checkpoints of security related items for compute:
fdacilities, The beok is désigned to aid in & do-it-yourself field investigation of security measures
and safeguards. The user estimates the importance of each item and his facllltles compl:ance, and then
calculates a security index value (a weighted average). The eight classifications of checkpoints are:
personnéfé physicai; data, programs, and documentation; operational; backup; development; insurance;
and security program.

Computer Control Guidelines, Canadian Institute of Chartered Accountants, (Auerbach Publishers,
Princeton, N. J., 1971).

A book presenting the results of a study performed by the Canadian Institute of Chartered Ac-
countants, The book deals with 25 control objectives, giving the minimum control standards and specific
control techniques.

Kuong, J. F., Computer Security, Auditing and Controls, — A Blbllography, Management Advisory Publi—
cations, Wellesley Hills, Mass., 1973,

This non-annotated bibliography covers several hundrea‘publications in the interrelated areas of
4uditing, controls, and security. The bibliography is classified into six main subheadings and numerous
subclassificafi?hsi The main Shbheadiﬁgs gre: EDP Auditing and Controls, computer security and
privacy, EDP planning and operations control, EDP management review and evaluation,.online and‘reai-
time systems, and checklists and guidelines.

‘. L $IBLIOGRAPHY o S _—

Abhstt, R. P., et al., A,Blbllography on Computer Qperat1ng System Securxty, Lawrence leermcre
Laboratory, Rept UCRLﬂSlSS (1974). : St

This bibliography has over 750 entries on the subject of computer security. The emphasis is on
software and, in particular, operating system security. The flrst part of the b1b11ography 15 a key
word out of context (KWOC) index and the sacond part a master listing of each entry.

. GENERAL SECURITY R B

AFIPS System Rev1ew Manual on Security, American Federatlon of Informat1on Proc9551ng Soaxetles, Inc.,
Montvale, N. J,, 1974. '

This manual is the first AFIPS System Review Manual. It is inténded to be used as a guide for

1 v . bl > ‘
reviewing existing systems and as a checklist during system development,. The intended audience in- -
cludes managers, EDP auditors, and systems designers. The chapter topics ‘include: personnel, physical

security, opérating systems, access controls, programs, communiications, storage, and inpput/output. Each

chapter contains "General Principles" to e followed and a checklist of related questions.

59

e e AT i X

‘‘‘‘‘ BB S i R S O
!
i
i

Vam Tassel, D., Computer Secumty Management (Prentice-Hall, Inc., Englewood Cl1ffs N. J.
! Molho, L. M., "Hardware Aspects of Secure Computing," AFIPS Conference Proceedings, Spring Joint Com-

P April 1972.) . E
; | puter Conference, Vol. 36, 1970, Pp. 135-141.
This book is a good examination of numercus computer Security topics., These topics include: ! ’ :
/’ﬁ&:\\ﬁ&imes and disasters, company security, embezzlement, EDP controls, auditability, program secu- | This paper reports the findings of a study of the hardware aspects of controlled access time-
Kriﬂ}i, cryptographic techniques, disaster protection, insurance, service bureau relations, and time- ' shared computing. It deals with the storage protection system and.the. Problem/Supervisor state con~
trol system of an IBM System 360 Model 50 computer. Methods of enhancing securityare discussed,

shigmidp security, The book deals with management controls and operating procedures and has a séries e

of checklist questions, 1
: PRIVACY +~ CONFIDENTIALITY - ~

Date Security and Data Processing; Vols, 1 to 6 (G320-1370 to G320-1376).
Machine Co;;p., White Plains, N. Y., 1974.) .

{International Business

o

Renninger, C. R. and D. K, Branstad, Ed,, Government Looks at Privacy and Security in Computer Systems,
National Buresu of Standards Technical Note 8089, National Bureau of\\Standards Washmgton, D.C., 1974,

&

i ! ‘ These six volumes report the findings of & program initiated in 1972 by IBM to strengthen data '
security research and technology, and to identify user requirements. A wide range of specific topics i This publication summarizes the proceedings of a conference held for the purpose of highlighting e

are covered and presented at different levels of detail. Volume 1 is written for management and
Volumé 2 summarizes the findings of the study. Volumes 3 through protecting confidential data contained in computex systems from 1oss or misuse. The conference was

the Massachusetts Institute of Technology, the sponsored by the National Bureau of Standards in November 1973. Major needs and the cost implications

the needs and problems of Federal, State, and local governmints in safeguardmg Andividual privacy -and

. discusses data security in general.
¢ 6 present in detsil the findings of the four sites:
State of Yllinois, TRW Systems, Inc., and the IBM Federal Systems Center at Gaithersburg, Maryland.

o A e e st bt B i o o e s e e et

of providing security measures are discussed.

0

Renninger, C. R., Ed., _gproaches to Privacy and Security in C»omputer Systems. National Bureau of

OPERATING SYSTEM SECURITY '
Standayds Special Publication 404, National Bureau of S*andards, Washington, D.C., 1974,
o M ity in a Multi-User Computer Environment,' Advances in Computers . s .
Anderson, J. P., “Information Security in i-User Computer Environment, P) This publicatitn summarizes the proceedings of a second ‘National Bureau of Standards conference
(Morris Robinoff editor, Academic Press, Inc., New York, 1972), pp. 1-35, held in March 1974 to continue the dial
inue the dialog in search of ways to protect confldentlal information in com-
this ‘short ‘rticle desls with nethods of eploliing Flau o wesknesses in opetating sysbets of puter sys tems. Proposals are presented for meeting governmental needs in safeguardmg individual
N privacy and data confidentiality as 1dentif1ed in the prior NBS conferefice,

Some hardware snd software enhancements are suggested;
\\'

Westin, A F. and M. A, Baker, Databanks In. a Free Society (Quadrangle Books, New York, 1972).

milti-user systems. to illegally access data.
however, the article is quite technich.,

Conway, R. W., W. L. Maxweli, and H. L. Morgan, "On the Implementation of Security Measures in Infor- This book reports the results of a 3-year Study of computer databanks and civil Libesti 'm v
: . ; ies. e
mation System;,l' Communications of the ACM, April 1972, pp. 211-220. study was commissioned by the National Academy of Sciences. The book includes: 1) airofue of 14
. : organiz |
‘This paper discusses the nature of flexibility in a secure system and to relate the costs of , 8 . :tlons that use computers for record keeping, 2) a description of changes both in organizational S
X) record-keepi:) / -
implementation and enforcement to. that flexibility. A security matrix model is presented and used to i g ng pat:;\{ns and in civil-liberties protections that were believed to be taking place but ° /7
. were not observe £
explain ‘security features of several existing systems. . served, |_%, description of those changes that were observed taking place, and 4) the flndmgs
: st : about accuracy and security problems in computerized record systems.
. PHYSICAL SECURITY ' ; - ’ ;
~“ . .‘ . R . . . & . . \\
“Guidelines for Automatic D,aia Processing .Physi‘éal Security and Risk Management, National Bureau of :
Standards, Federal Information Processing Standards Publication, FIPS PUB 31, Jun"e 1974. . . . : -
N N - R 1

1
i\ This document is part of the Federal Infarmation Processing Standards Publication Series. The
publication provides guidelines to be used by organizations in structurmg physical security, programs.
! It includes the follomng topicst security analys;.s natural dlsasters supporting utilities, system
! reliability, procedural measures and contrdls, off-site fac111t1es contingency plans, security q\vare—

ness, and security audit. It also contains statistics and 1nformat10n relevant to physxcal securlty

¢

and gives references to other, more detalled publications.

Q

J

@

61

60

¥
b
i

|

1]

; (2]
g

(4]

i [5)
[6]
(7]
(8]

9]

R.AC/l!;/la

| JSCOMM-NBS-DC 62

Ref ererices

Adams, D. L. and Mullarky, J. F., UA Survey of Audit Softwsre,“ The Journal of Accountancy, 39~ 66

(September 1972), o i\

The Federal Register, Monday, March 17, 1975, Washington, D.C., VoLm 40, No. 52, pp 12134-~12139.

Konxgsford W. L., A Taxonomy of Integrity Problems, Lawrence L:.vemore Laboratory Rept.. ('I'o be f]
published) . i "

IBM SHARE GUIDE, 1620 Users Group, Appendix F, Report of Systems Objections and Requ1rements
Committee, Rept. No. 55D 123 (June 1964) , :
pata Security and Data Processing, Vols. I- 6, IBM, White Plains, NY, Rept, Nos. 6320 1370 through }L
-1376 (June 1974). :
McPhee, W. S., "Operating System Integrity in OS/VSZ " The IBM Systems Joumal No. 3, IBM,

. Armonk, NY (1975). :
decsystemlO assembly language handbook, Software ID1str1but10n Cen*er, DEC, Maynard ; MA 01754,

Rept. No. DEC’.J}IONRZC ~-D (1973).

Saltzer, J., "Ongomg Research and Development ori information Protection,! g:exatmg System Rev:u.w R
8-24 (July 1974).

Glossary of Terminology for Computer Systems Secunty, Federal Infomatlon Processing Standards,
Task Group 15: Computer Systems Security, National Bureau of Standards 2 September 2, 1975, e iy

i7

L

3
i

a, PP et

ne 3 &
oF o

NO‘,I‘ICE B “ Lo

“This report was prepared as an sceount of work

sponsored by the United States, Government,

i “ Neithar ike" United States nor the Um(ed Smea
& E Energy Research & D

Y H S fior. aay“of thelr employees,) or any oftheir

W . « * gantractons, subcontrictors, o7 thelrgemployees,

il T e makes By warranty, express of implied, of

- e asumés any legal liability or sesponsihility fos the

i l:curncy, complel:nenool psefuffm of; any

. . lufpt AOF process

disclosed, of ée;vuan(l; that m use wan!d no!

7 ln(rlnge yr!vulelnowned Jights." - .

N TR Lt S E3]

PE T

Q- .

0

Gi

7

(g/

