
, £"
"

r;,'

(I Jt.' , OS tl U i: ,

~ n !I ~ ~ ~~~ 2 ~~ ~ ~~'U fl In t~ <;: ,~
d :1 \J c' ~. ~J r:·\J'

~J.S. [)fPAiHMErH Of]~SnC[

lAW H~fO~CEMHfr ASSISTANCE ADrv1j~4ISnH~ no~~
NAnO~~Al CRIMINAL JUSTICE REfERENCE SERVICE
WASHnHHO~~, D.C. 20531

Ji

, ~'i I

·11 e d

If you have issues viewing or accessing this file contact us at NCJRS.gov.

NATIONAL BUREAU OF STANDARDS

The National Bureau of Stiwdards 1 Was established by an act of Congress March 3, 1901.
The Bureau's overall goal j<, to strengthen and advance the Nation's science and technology
and facilitate their effccii\'e application for public benefit. To this end, the Bureau conducts
rc\carch and providc,: (I) it basis for the Nation's phy,ical l11ellsurement sy~tem, (2) scientific
and technological services for indu\lry ,md government, (3) a technical hasis for equity in trade,
and (4) technical 'ierviccs to promote public ,,,rely, The Bureau consi'its of lhe Imtitute for
Ba'ih.: Standards, the Institute for r-.faterials Re'ican:h, the In.,tilute for Applied Tcchnology,
the In<;titule for Computer Sciences and Technology, and the Offke for Informati(ln Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central babj., within the United
Statc<; of a complete and consistent .,y<;tem of physical measurement: coordinates that sy,;tem
\\jth mca,urcmcnt systems of other nations: and furnbhcs essential services leading to accurate
and uniform physical measurements throughout the Nation's scientific community, indllstr~,

and commerce. The Institute consbts of the Office llf Measurement Services, the Office of
Radiation Measurement and the following Center and divisions:

Applied Mathematics - Electricity -- Meclmnics --- lieat -- Optical Physics .- Center
for Radiation Re,e'lfch: Nuclear Sckn.:es; Applied Radi<lIion - Laboratory Astrophys[c<,'
--. Cryogenics C __ Electromagneti<.:s" .. '- Time and Frequency".

TIm INSTITUTE FOR MATERIALS RESEARCH' conducts materials research leading to
improved methods of measurement, standards. and datil on Ihe propertic, of well-characterized
fllatcri;i1s needed hy industry, commer.:e. educational in\titutions. ,lUd Government: provides
advi~()ry and res~an;h service~ to other Government agencies: and develops, produces, and
dbtribute~ standnrd ref.:rencc materials. The ln~tjtllte consi·;ts of th:! Office of Standard
Rcferen.:e Materiah. the Office of Air nnd Wat~r Mea~urel11ent. and the foll{)wing divisions:

Analytical Chemi,try - Polymers - Metallurgy ~-. Inorganic Materials - Reactor
Radiation - Physical Chemistry.

1 HE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote
the use of available technology and to facilitate technological innovation in indUstry and
Government: cooperate, with public and private organizations j(:,lding to the development of
technological standards (induding mandatory \afety stanthlrds), ~odes and methods 'If test;
and provide~ technical advice and \ervices to Government ,lgencie, upon request. The In'iti
tute con~ists of the following divisions and Cemers;

Sumdards Ap(llkation and Analysis - Electronic Technology - Center for Consnmer
Product Technology: Product Systel11~ Analy>i'i; Product Engineering - Center for Building
Technology; Structnres. Materials, and Life Safety; Building Environment: Technical Evalua
tion and Application -- Ccnlel' for Fir.: Re~ei\rch: Fire Science: Fire Safety Engineering.

THE l~STITUTE FOR COl\1I'tJTER SCIENCES AND TECHNOLOGY conducts research
and provide~ technical services designed to aid Government agencies in. improving cost efff'c
tivenc~s in the conduct of their progral1\~ through the ~election. acquisition. and effective
utilization of automatic duta proce~sin!!. equipment; and serves as the principal focus within
the execntive branch for the development of Fedeml standards for automatic data procc\sing
eqnipment, techniques, and computer langll<lges. The Institute consbts of the followinf(
divisions:

Computer Services - System., and Software - Computer Systems Engineering - Informa
tion Technology.

THE OFFICE FOR INFOR!\IA TION PROGRAMS promotes optimum dissemination and
ac~es~ihility of scientific information generated within NBS and other agencies of the Federal
Government; promole~ the development of the National Standard Reference Data System and
a system of information analysis center~ denling with the broader aspects of the National
Mea~lIre11lent System: provjde~ appropriate services to ensure that the NUS staff has optimum
accessibility to the scientific inf(lrmation of the world. The Office consists of the following
organizational units:

Oftlce of Standard Reference Data - OfTice of Information Activities - Office of Technical
Puhlications - Library - Onke of International Relations - OtTice of Tnternational
SllIndards.

1 Headquarters and Laboratories ul Gaithersburg. Maryland, Unless otherwise noted; mailing address
W,,,hillllton. DC' .• 0234.

'l.o""tcd III noulder. C'ol<lr~do 80302.

~I "

<Iii

t

Operating System Structures to Support
Security and Reliable Software

Theodore A. Linden

Institute for Computer Sciences and Technology
National Bureau of Standards
Washington, D, C. 20234

U,S, DEPARTMENT OF COMMERCE, Elliot l. Richardson, Secretary

Edward O. Vetter, Under Secretary

Dr. Betsy Ancker.Johnson, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Issued August 1976

,---------------------~------------.-----------,

National Bureau of Standards Technical Note 919
Nat. Bur. Stand. (U.S.). Tech. Note 919, .51 pages (Aug. 1976)

CODEN: NBTNAE

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1976

For sllle by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
(Order by SD Catalog No. C13.46:919). Stock No. 003·003·01658·6 Price $1.25

(Add 25 percent additional for other than U.S. mailing).

h

------------------------------.----.----.. ------:'----------. -----"-.. --.----.,-~

TABLE OF CONTENTS

ABSTRACT .•........•...............•..•......... '"

1 . INTRODUCT ION•.......•...........•..........•...•....••.•.............
1.1 Security and Reliability ,. .. t ~......................... 2
1.2 Ovprview... 2
1.3 Intl'oduction to Basic Terms.. 4

2. SYSTEN SECURITY AND REL IABLE SOFTHARE... 5
2.1 System Security Requirements... 5
2.2 Reliable Software•.•.........•.....•.......•....••......•........ 6
2.3 Reliable Software for System Security.................................... 7

3. SYSTEM PROTECTION MECHANISt~S... 7
3.1 Protection Models and Protection Domain~•...•....•........... 7
3.2 Small Protection Domains •......•.......•................• , .•..•.......... is
3.3 Protection Domain Switching.. 9

4. PROTECTION FOR RELIABLE SOFTWARE .. ".... l(
4.1 The Decomposition of Complex Systems 12
4.2 Protection Should Be Distinct From Functionality 13
4.3 Protection Information in System Design and Documentation 14
4.4 Value of Small Protection Domains•......•......•.•.•............•.. 14

5. SMALL PROTECTION DOMAINS FOR SECURITy "............................ 1 ~,
5.1 Flexibility vs. Security .. 1:)
5.2 The Trojan Horse Problem •........•.........•........•..........•......... 16
5.3 Intermediaries ...•......•.....•........•.•...•....................•...•.. 17

6. CAPABILITY-BASED ADDRESSING ... 18
6.1 The General Concept of Capabilities .••.••..••.•..•...•...•............•.. 19
6.2 The Use of Capabilities and Capability-Based Addressing•.••..•..•. 19
6.3 Implementations for Capability-Based Addressing•.... ' .•••..•....•... 20

7. IMPLEMENTING St·IALL PROTECTION DOMAINS ... 22
7.1 Capability-Based Implementation of Efficient Domain Switching 23
7.2 Directories for the Storage and Sharing of Cdpabil ities 24
7.3 Correct Implementation of Protection 25
7.4 Controls Over the Movement and Storage of CapabilHies 26

8. FLEXIBLE SHARING••.......•....•..••......•...•..•...•..•.••.••.......••... 27
9. EXTENDED-TYPE OBJECTS .•....••.•....•.............•.•..•...•.••.•...•.•...••.•• 29

9.1 8ackground on Typed Objects .. 29
9.2 Nature of Extended-Type Objects .. 30
9.3 The Implementation and Protection of Extended-Type Objects 31

10. TYPED OBJECTS AND PROGRAM MODULARITy .. 32
10.1 Background--Horizontal al1d Vertical Modularity 33
10.2 Programming Language Support for Modularity•...•....••.•...•....•.. 34
10.3 Extended Types as Modules for Rel iabil ity............................... 35

11. CONTROLLING AND MONITORING ACCESS TO OBJECTS•..•.......••..•..••. 36
11.1 Non-Discretionary Controls•••..•...•...•....•............•.....•.. 36
11.2 Security Classification Systems ..••...•.••.•.•.•.•.....•....•........... 37

12. CONCLUSION. • . . . • • • • • • • . . • • • . • . • • . • . . • . .. 39
ACKNOWLEDGMENTS. • • . • • • . • . . . • • • • •. 40
REFERENCES .•....•.....•.•...••....•..•••.•••..•••.•...••..•....•........• , •..••• " 41

iii

--_ ... ="' ... ""w• ... '%""'f7'"'1 ___ .· '.'.-...... - - --------------------------.--<~ ,~J~."

:;'"

, L

Clrrr;ATI'iI~ SYSTH1 ;jTRUCiURES TO SUPPORT
<cECUH 11 Y ANn REI. IMLE SUFTl4ARl:

. ;.'(!cdtitv has iJacarde dll important MIO challr'nging goal in the design of computer systems.
nIl', SLli'Vf~\1 focuses on tl,/O;YS tem s tructuri n9 concepts that support socurity; name 1y , small
pl'0te,;titlf1 domains and ('xtEHlO~d=type objects. ThE'se bi~ concepts are especiaily promising
LeCuli:,{' tne.v also SUP~Q(t rpllaiilr~ software by encouraging and enforcing highly modular
soft~dre structureS=-ln ~oth systems softwar0 and in applications programs. Small protection
dOtralns allow ('i1Ch SUbcHllt or lilodull' of d program to be executed in a I'estdeted environment
thilt .can prev~nt Llnant:icipah'd or undesirable .l:::tinns by that module. Extended-type objects
pt'\)Vlde a vehlc~e for data db~traction by allnvdng objects of new types to be manipulated in
t81'rr;s 0: I)pc:ratlOHs that are nilt.lIri1~ fnr these objects. This provides r1 way to extend system
protectl!)n featllt'E's so that PY'otl"c;t.lon can be Hlforr::ed in terms of appl ieations-oriented
operations on ohject<; Thh survey aLo explains one ilpprodch toward implementing these
COt!(epts thot'ou~Jhly ilnd effie. iently--an dp[Jt'o(;ch bilsed on the concept of capabil ities in
cOl'porat.f'd into the addn~s<;ing structure of the computer. Capability-based addreSSing is
seen as it rn-actir:al I'iay f;1J suppor't futlH'P. I'l')quiren;ent:; for sec.urity and rel iable software
without ,;acrifir:ing)'pqurn?fl1ents fOI' pc; :lJrlllanCe, flexibility, and 'iharing .

. ~(? W.or1>_dwlEhrci5P~;: (L1pabil i ty, cilp,i;;ilitv-hased addressing, computer security,
c,,,f<t~!ldf·tj-typt' OD,lGctc', operating system structurE's, pr'otection,
,p1 j"b1r> softWdre, n'l iClbi1ity, security, small pt'otection
dUl!n in", types.

1. INTRODUCTION

Fo)" th,: yoar 197,:, on>: SOUI'CE' l!dS idu1tified 339 cases of computer-related crime. 11
The .ii.YYJ:.a.9£ loss in the <3:19 incidents was $~;44,OOO. This average is not distorted by a
few el(ceptional se(>-the mediar, 10% vMS very close to the average. Most of the in-
cidents involved :;impie fraud by an Qmployee who had access to computerized financial
records. In 85' of th(' cases, mana']ement di d not report the i nei dent to the pol i <;e-
often because publicity about it would have been embarrassing.

The fraud is usually possible because of some oversight in an applications system.
A simple oversight. for example, Illay allow il clerk to feed data to an accounts payable
system in such a way that no one notices WhAll checks are diverted to a dUlTllllY corpor~
ation.

If toe amount of computGr-related fraud is to be controlled, then it is necessary to
automate the concepts of segregated duties, independent checking, and accountability for
actions that are typical in manual accounting systems. These concepts are often much
less rigorously applied when financial records are computerized. While the structure
of current comput~r systems may not be to b1ame for this neglect of sound accounting
practices, current aperati ng syste"ls do 1 itth to encouroge the segregati on and inde
pendence that is desirahle I"lhen pl'ocessing tillflllcial)'ecords. New operating system
structures could make it much easier and les~ "xpensive to enforce these basic principles
of sound accounting practice. Furthermore, ~!~le current instances of computer-related
fraud have not exploited security weaknesser.. in the underlying operating system, it ;5
well-known that such weaknesses exist and thid a programmer could exploit them to bypass
the controls in applications programs. Thll !'ovements to security that do not con~
sider the security of the underlying opera H .,< ystem may only deter the small-time

TTTKrs=-lilforriiaTl0nlsbased on conversa t ions with Robert Courtney. Courtney reports tha t
- details on these cases are in his possession, but that they cannot be made public.

The work of [Parker 75J, based on public reports, supports a similar conclusion about
the average loss in computer-related crime.

criminals. The increasing amount of valuable and private information pror:essed by
computers implies a long-term need for much more rigorous security controls in the
operating system. Those responsible for protecting information affecting the National
Defense have been facing this problem for some titTle,

1.1 Securitx and Reliability

In the attempt to design computer systems that support more rigorous security, a
narrow focus on the security problem alone is not advisable. While the cost of inadequate
security controls may be several hundred mil1ion dol1ars a year 2/, these costs dre
only a sOlal1 fraction of the total costs attributable to faulty and unreliable software.
Furthermore, from the vie\~po;nt of computer design, a technical breakthrough on both
the security and the software reliability problems appears to be as feasible as a
breakthrough on the security problem alone. Whil e we are s triv; ng for secu~"e computers>
we should also strive for more reliable computers and for computers that make it easier
to implement reliable programs--including but not limited to, the programs that do
accounting and auditing for security,

Many security controls might not be cost-effective if similar controls were not also
needed to improve th2 re 1 i abil ity and the overa 11 performance of the sys tern. In parti
cular:

o The complexity and disorganization of most existing. operating systems
make it very diffi cu1t to ach; eve securi ty. To guarantee security--
and especially to maintain security over the lifetime of the system-
operating systems must be structured so that interactions bet\'~een system
modules are more clearly defined and more closely controlled. This same
control over the interaction of modules ;s also needed for reliability.
Furthermore, a well-structured system ;0:; easier to maintain and modify;
and in a well-structured system it is likely that overall performance
can be improved.

o The protection mechanisms needed for security can also be used to enforce
software modularity, Such modularity would improve the reliability and
correctness of the software. In particular, debugging and testing would
be easier to the extent that the effects of an error can be conined within
the module where the error occurs. Since debugging and testing often account
for half of a program's cost, these protection mechanisms might help reduce
pl'ogramming costs.

o In some applications a system crash ;:5 a security problem. In any case,
an operating system that is built to provide secUl"ity must eliminate
most of the sources of software-induced system crashes. Furthermore,
hardware malfunction and inadequate fault recovery strategies (~"'e po
tential sources of many forms of security violations. Thus. there is
enough overlap between the requirements for security and the requirements
for high system availability so that it is reasonable to attempt to solve
bClt:h problems at the same timeD

1.2 Overvie\~.

It is an ambitious goal to desion a computer system that satisfies rigorous security
requirements. supports reliable software ?nd at the same time meets the performance.
flexibility, sharing. and compatibility re.,uHements that are needed to make a computer
competitive in the marketplace. Decreasin', hardware costs are making these goals much
more feasible. This sur\,i?Y focuses on tWCl ;,ystem structuring concepts that promise
to help solve some or the remaining softw'li'e problems. These two concepts are iden
tified as:

~! The cost of the frauds identified by Courtney was almost $200 million for the one year.
The total cost of all computer'-related fraud may be far higher. Furthermore, the
increased computer processing costs needed to protect classified defense information
has been estimated at $100 million a year [Anderson 72J.

2

I
l

(1) small protection domains, and
(2) extended-type objects,

The survey also COV8rs capability-based addressing as a way of implementing these
tl10 concepts.

SMALL PROTECTION

/ DINS
CAPABILITY-BASED __ ----4) lXTENDED-TYPE

ADDRESSING OBJECTS

FLEXIBLE SHARING

FiguY'e 1 - Overview

____ ~ SYSTEf'1 >< SETTY

---4) RELI ABLE
SOFTWARE

Figure 1 shows ~he inte~actions between the principal ideas covered in this survey.
Arr~\'!s . b~ tween terms 1 n the f1 gure a re to be read as mean; ng II supports" at' II faci 1 ita tes. "
(Deb n1 tlOn!; of ~he t.erms are gi ven in Secti on 1.3,) Fi gure 1 wi 11 be l'epeated tht'ough
out the surve~ wlth,boldface term" and arrows 1ndicating topics for current discussion,
and terms ent1"'ely 1n lower case and dashed arro\,ls indicating topiCS covered previously.

. Figure 1 is not me~nt to i~dicate that capability-~ased addreSSing is the only way
to support small protect10n dOIl1i.llr1£i and extended-type objects. It is the ll10st frequently
?dvocated way for a, sys t~m to support these concepts thoroughly and effi ci ent ly; and it .
IS the ,one cov~red In thIS survey. Research on compile-time support for these con-
cepts 1S also In progress, but it is not covered in this survey.

T~e arrows in Pi gure 1 mus t not be i nterpr~tet:l to mean "guarantees." Securi ty
and r~11ab1e software are both dependent on many other ideas that fall outside tha scope
of thIS survey and are not listed 1n this figure. Nevertheless. the ideas discussed
here would go a long way toward bUIlding an environment where it would be realistic to
expect that both security and very reliable software could be achieved.

S~ctions 3 to 5 of this survey cover small protection domains and their usefulness
fo~ rellable softw~re and sec~rity: Sections 9 ~o 11 cov~r,tryf: uses of extended~type
obJects: In the m1ddle. SectIons band 7 deal WIth capabIlItIes and capability-based
addreSSIng. The,two sections on capability-based addressing give a brief survey of a
very cOf!1P 1 e~ subJ ect. The reader who -j s i nteres ted in more details on capabil i tv-based
addr~sslng IS r~fert'ed to [Fabry 74] and [Saltzer 75]. Section 8 indicates that
flex1~le sharing is not on~y compatible with the other ideas listed in Figure 1 but
even wtel'acts fa~orably wI th some of them. Readers who are interested in reliable
software but not 1~ se~lJrityma,V skip Sections,S and 11. Readers vlho are only con
cerned about secur! ty 1 n a niH't'OW sense may oml t Sect; cns 4, 8, and 10.

, Reader'S should be aware that the ideas discussed in this survey are quite contl'o
ve~s1al. 1·1any of my c~lleague~ would disagr'ee with one or more aspects of Figure 1.
Whlle r feel that the lnteractlon of all of these ideas is crucial in order to attain
the broad $oa1s beirg ~ddre~sed> man~ other approaches have been proposed which omit
parts of Flgure 1 or glVe dlfferent lnterprp'*'atlons to some of its terms. In par'ticular,

3

system security is often p~Jr~ued in a way which is much les~ (.losely linked \'/ith}C
liable soft~lare. Less an,bltlOus apprcidches 1:0 systefil sf"C'unty may be adequate H data
sharing is rertricted and security l'f1qllireFlt'nts are rJdrt'ov;1y defint~J.

1 , 3Ip !!Osty..c.Jj5~1,.10_.J1..a_sjs_) eIn0,

This section provides introducwry defini110ns tor tl1P tel'I'lS alpeat'in9 in Figure 1
and for srJll1r reldtE'd terms. ihese definltions may be skipped by readers who.a:e generally
tatni l'j il f' 11i til the subjects t'.!i !II] t)Ven~d" UHler' redt,fers c~n u~e these u;f~ III t lOn~ tG
obtain iHl initial undl?rstand';tl~j of the re:aUO!1S de[.ilCI~ct if' F!;,ltlrf' 1. .IllS SCCt10!1
IIIdY iliso be USN! uS d q 1 (lSScH'/ v;hi h' rt.:adHI(j til'! YPL'·l1 no ... l' ,'r,llt <,ut",/t'y.

<;[CIIRlTY - Thl! iHotecl,;Ofl Of n";<.,'.P'((':; : il.l.i·"',.1": :!.';" ,,111.\

malicious lTIodif'icatioli, lle';tY',!lti"!~,, ~.r tli Lli) I,"',
SYSHM S[:CURlTY " Th" :,t.iltl' ni '1 ronl,'td.!;' :,"t",l ih;lr;i'i,ln~!··d't'tt.·Ji,t'p) til,," makes it p05~
sible tu provid~: rPd~Gnat:lp 'l'.;w·an'>' Lf C'!'LUt'ity, ';,·ni"'1t.y prr·.illpror.;e:, thC1t
appropridtl: steps ijY'P T.1l'~er. 1('1' I'lY" ,:.')1 r'I,,,,,j1O[1 ,'~O!U}:'utl!!, I'DI' 'lper';tinq tHid
maintanling thp SySl,(·m, ilnd f()T idcpLiticatir,n dnd iiUitl''IltH.i1ft(1I' i'" lis,;>r'~ ot the "y:;tem.

RELIAtiU 'jUFTWflHF ~ SoHwan; tna t 'lI'()V i dr.'!~
(1) tru;;t\-wrthy, <\fId (I~) uv,;i'!atlc OIl Jl:!l1Idl1i ,

PROTECTION r'h:GHANlSM~ - Sy,t<.ili i'Jat I,e" thai an· dFsiqr.-.'J
or undesirable <lec(!s:; tu d.lt.fl.

OB.HY·IS - Irlentifi<lblt; l·tS()1!'~t:C, Qi' "ntj'ci'.!,. :" ',h\: ~,;rr~\'i":,'tlr",n,, t~'; u,-:"h.;es su"h
a:; tilt~S, prrJgri.lDi!.; .. ~,0i:lctphO~"t.~.r;, and dh-"'c~Lor~le.j (~~t. ;:'~J .)'., :1 t;·~~('d~';,.~!\0 rt>:.~nqr·(t'~s
{;uch ,1S mt~i~l(H'~y b1oc:k:l .. d'lt;y ~'r;~(k~,"t tJ~n1flnal~.~ (f;ntrnl i-;r':"J :/u I,C;yt~:, (Hid t·:t!/(l;.

NOD['; OF f\CC;[S:~ - The ;",1. of dist'tnr.i nperdi it>!!:', tlt~lt. thE' ;w/·tt'l.ti'lIl I:lht,,;u',:l\,; ret.ocmizr: il'';
p(Js~iblt' opPY'atiorrs on an ob,jpci:. "Rr:ad," "W";'C('," ant! "ilpppnn," ,1rE' ;';1::':,1r.,1 1! mbH"; of
,1cces~ to a prOf; pdun·. dIll] "dt!bit 'l("corlntH 1 '; " pO~ s i h 1 fl(ldt:;1 <leu:;:;::; til iii> ob]!'(t ()f tipe
"bdnk accolHlt. n~curd. H

PROfLcnON [)OWIIN .• An c!l':vi YOn"I':!'1 or:u:,rl!i!: tn,,', i,L fiN"" til,;:",; ,,:":'I,;;S r"ii,ht,; that
.! st1Lj(.lCL h .. t:, ~I> ~jtljl~)~t(~ \1f t,hf! ;",j,,,ttf.i:.

'J'1ALL PROnef l'it; lJ(tMAW'= Prot(l(~ 1 en ,:Cliklll'

ri qht <; lIF U" h tho:;(' u:Jje,· ft: th;j t i: rf' t'i'o<"":" t,:. t

fF,,+; i,~'~, ~~ ,ub~t,,_ t. to dGCC:5S

7:->~ ·'\,tYrTn t

TYPE nhi, .. 1 ",'rr ':: ,1 '.'~; "''','d t'." t 'II"'?'
typec; (1f -(;t~,if:I':V, r.. t,yl',' i" dr!fil;;!r1 !>v
.it'd': of that tYrJl'. Two objPct", ;!n· f,t

oujc'd" :H'£: ni·"fprnlt.

Thp ~>,~,·t:';~.lr. .~ Hot, 11 ~1 i 1i<·.f,r'r'1'U; d"iff(~rent
fiSi d1~r~"~ i,~1:! t;":(:'~ iYr'" QPf·~f·,.tir.~n" d~.,;d'if·~lb·l·~ tJ ob ...
d i tf,:!!("t1t tvrH' It''lp :,1 1'\,"lh 1 /J (',:"1'01 ti ons ~!1 the

LXTENDUJ-'fVPE Ot:,lECT~; .. It ';'he ".yster\; ,·nO~;>j;'1r;: 1cr.,J:iC!l::;
to crpatE' Obji!CtS of ttl':"Sf' rWI'Il'! '!efit.(,.j : • HI;'!] ,.,iJ;~11
objet;ts. The P(;ltf'ct.1or' i!lP.jl<llii',llIs '~[lOlI'l ,:or.Cj·(.i i\\.C!'·

tm'n\5 ot t Iw Ol'f3'\J t i Oll~: def'i neo IJ} ttl':, \!xtcnol,'d typ~'.

;JI",l<jl'dl:!" to del :'1': liml type", dnd
Ilbj"' .. i', iHI,. -:,,1', 1(·1 txtr.:l)(,hl<:-t'fpe
t.u ·,:i~:':rt", 01 (~)!,\dl(ie(j j~yp:' in

U. VEl,S OF ASSTHi\C1 ION .. COIH!Juter i Ccltf SU I v(· ~"l.ilctn pro~); H;:~ t 'rl' .J,'."']!] :hen, ('It",: ti'vi';"
cil'euits only manipulate bits. The gilp between the hWIIJn proLlf~I1l'; tind the blt'> I', bndged
by muny corH.:epts starting from concept:. such .:1$ data base mode 1 s and query 1 nngu?geS that
ili'P implemented in terms of other' concepts such as stileks, seg;nent'>, c:nll ..,~~uenc'!nq oper:
ations that are ultimatnly illlp1t~ment8d as machine words dnd then,as bltS. ,loe conce~t 15
said to bp tit .1 highet' lpvcl of dbc;trilctiun than utile>' concepts If thR concnpt oy'ganlZes

ins~ances of the lower-level ~oncepts so that they can be manipulated effectively without
havlng to understand the detalls of how the lower-level concepts interact. Levels of ab
straction can be realized as types. The isolation of different levels of abstraction is a
current goal of much work on programming methods and on system design.

CAPABILITY - A token used as an identifier for an object such that possession of the token
c~nfe~s access righ~s ,for the object. A capability can be thought of as a ticket; Mou'l
flc~tlOn of a capabll~ty (except to re~uce its access rights) is not allo\'/able; however,
unllke the case for tlckets, reproductlon of a capability is legal.

CA~ABILITY-BASED ADDRESSING - The use of capabilities to address and control access to
obJects even when the objects are stored in the primary memory of a computer system.

USER - An individual who interfaces with the computer system and can be held accountable
for his actions .. The term covers all uses of the system whether to submit data, queries,
or other transactlons; to execute programs; or to operate or maintain the system.

USER JOB - Used here as a general term for a unit of processing services performed on
behalf of an identifiable user.

2. SYSTEM SECURITY AND RELIABLE SOFTWARE

Figure 2 indicates that this section introduces the terms system security and re
liable software, and it covers the relation between them.

SMALL PROTECT I ON) SYSTEM

/

DOMAINS X SECURITV

1 t·,"
i

/.>
CAPABILITy-BASED ----4)

ADDRESSING
EXTENDED-TYPE

OBJECTS

FLEXIBLE SHARING

Figure 2 - System Security and Reliable Software

2.1 ?ystem Security Reguirements

) RELIABLE
SOfTWARE

Corporate financial records, personal information as defined by privacy legislation,
and classified military information are examples of information which must be protected
during computer processing. It is hard to give a precise definition of computer
securi ty because speci fi c security reqU'i rernents depend so strongly on the 1 arger human,
social, and financial systems that are .;~rved by the computer processing. In general,
security is concerned with any unauthorized or undesirable modification, disclosure,
or destruction of information" In some situations (e.g., air traffic control), it
is even concerned with a potential loss of service that would make critical information
una va il abl e. ~ For many i nsta 11 ati ons, the unauthori zed modifi cat; on of informati on
is the most serious security threat.

~ Typically, computer security is also concerned with protecting the investment in the
computer itself; however, this is mostly a matter of physical protection and is not
discussed in this survey.

5

Security must be concemed with any path by which information could be modified, dis
closed, or lost. For example, security requires that the system's operator interface be
design€d so that users Cilnnot easily spoof the operator by sending him a cou~terfeit mes~
Sil(j€ that appears to be a system messa]e. Security mus tal so be concen'ed Wl th the
(.{Jrrectness of pro~edures fOI' system initialization and for fault recovery and restart.
For example, on somf~ current systems jo,~,p. checkpoint/restart facility is a secul'ity
weakness because the checkpoint data is not adequately protected fr'om modification by
tHiN'S.

Whlle security must be concerned with all paths which might provide unauthorized
acc<!';~ to inforTliation, some asppcts of the overall security problem are clearly beyond
the control of rt central computer system and can be regarded as separate problems.
Generally speaking, communication security, identification of users. and physical pt'o~
tecticn of the c.omputer site are distinct problems. Other pt'oblems fall on the border
nn(>. For axanlple, th(! security of most systems can easily be broken if an operator
can be bribed. This might seem to be oQtside the contro1 of the hardware/software
system. However, if a system is desiqned for sec.uritv, it is reasonable to expect that
it should be designed so that the operator's command language provides a prot~ction
(mvironment that carefully limits his privi1eges. Clearly this implies a ma,ior re
thinkinq of tht> role of the operatOt' with respect'to the system. Nevertheless, it
wi)l be necessarv tv have some Gontrol over th!:' damage that carl be don(~ by i1 cor'l'upt
opera tor--ot' an 'i n(;OJ"~ <>tpnt one. S imil ar ,;omrnHnts app ly to sys tern programmers and
systr!\l1 administ"ators.

1hi~ survey does not describe specific solutions to the above security problems;
raUwr it; dec;c;ribes opetatintj system structures that support effective and efficient
"olutlons to a wide variety of security problems. Other' surveys and tutorials con
tain morf:' details on specific SEcurity prohlems [::altzer 74, 7~1, Popek 14b).

t';) r~!:LiE!~t!'. _~~ ft wa rl~

Reliable softy/are rlays d dual role in figurE' 2. It. is d means to secudty,
'illd it is dfi end in itself. SeClwity depends in part. nn tht' ft: 1 i abi] ity of sortl-Idl'e,
hO~J('vt'r, tht~ (jenerdl prob1eIlI of wlt'pliable :,oftwar'f; is much broJder than the ~,e(ill'1ty
p rob 1 £:1Ii,

t!pliiJt;h~ ':,Oft\'ldY'f.' ~;rtJvidtH, service'; that an! adf!Qui'\tc' fot' the intcmd(?d uiJP",icat"lon
Wit~, n's!wl:t. to b(~iml:

(I) usable,
(2) (:urrt'ct,
(3) tru::;two~othy, ilnd
(4} <Ivailable on demand,

R!'cent. rpsedt'l.h on 1'01 iable hanil~are has been able to focus on the find1 aspect of
t'eliahi 1 ity; nal!lely. the constant availability of services. viith rasped to softwan.>
services, a broader meaning tur h re liable" is needed because it is still pot rea1~5tic
to presuppose thdt soft\~ijre services are uSdble, correct, and trustworthy, y~ means
that the u';et' l'eceives services that are effective for his application. &orrect means
that the software meets its functional specifications. If the specifications are in
cCl!11plete, then correct softwat'o may not he usable. Irustwor:t:.!1Y. means that there is d

minimum level of services that is provided correctly. and there is an effective way to
pvaluiltE! or' mt'asurn thl~ performance of the 30ftware "lith respect to this minimum level
of set'vit:o. SOft\'idl'C: may be correct. even if there is no effectivf~ way to demonstrate
its ~lllTectl1i's<;; hOl'/ever, trustl10rthy snftware must bi.! sty'uctured so that t(~sting,
dud it j nq, andNr proofs of corrl'l:t.ness can bf' used to ach i eve a reasonable level of
c\ln t h!encp in thc! softwut't!.

There is much current research aimed at relieving the problem of unrelidble soft
ware. This survey concentrates Oil protedion llI~chanisms and other operating system
~ tructures that enhance the re 1 i abn ity of soft\'lare~-both system:, soft~1dre and app li-
cations softwar£? Nevertheless, \~ork on operating system structures to support reliable
software is almost inseparable from r.ecent work on de,,;igning modular, wel1~structured

6

H' y==

prog~ams. Furthermore, appropriatf; operating system structures can improve the results
obtalnable froM many other softl'lure dE'velopment techniques--including techniques for
program management, testing, validatio~, proof, and maintenance.

2.3 g§'J i abJ.§_.s_of_i:!I2..!].J.Q.r __ ~1.s.tell!_Jecuri1.Y_

,Relidble,softwar~ is not only an end in itself, it is also a means to support system
securlty. T~plfa!ly, security depends on the reliability of much of the system 5ofb/are,
and that rellabl1lty must be preserved through many versions and modifications of the
s?ft~are. Faulty s~stem software is the system security prob1em that ha:, beEm most
dlfflcu1t to deal wlth.

Security's dependence on the reliability of softl'ldre can be Y'educed if the hardware
and software are s~ructured s? as to reduce the size and complexity of the softWi~re needed
!o guarantee securl~Y. ~e~urlty kernels that concentrate all the security-relevant code
1nt~ a..,smal1~ wel1-1dentlfled part 9f t~e system have been prc-posed [Schiller 73,
Pop_k ,4a, Llpner 74]. Yet, even With ldeal hardware and software many security
concer~s are dependent on a subs tanti a 1 amount of software. Thi s ~urvey deser; bes
~perat~ng system ~tr~c!ures that support security 1irectly--and also indirectly by
Improvlng the rellabl11ty of the security-rnlevant software.

3. S'iSTE~l PROTECTION M[r.HANIS~lS

While securitY,and l·elia~i1it.y requireme~ts yary gi'eatly from one application to
another, the Pt'otpctlOn mer:hamsms that ar'e bUllt 1nto the hudware and basic software
~f ~he co~putet' system cannot be redesigned to meet the needs of each application. Thus
It 15 deSll'able to have a basic set of protection mechanisms that are versatile enouqh
to meet,the requirt>ments of many diverse computer applications, Even a single in- '
stallatlOn usually has a wide vol'iety of security and reliability requ J ;'ements.

, The protection mechanisllls of most third-generation computers were designed to
c0nflne user programming errors in order to prevent such errors from damaging either the
~;ystmn or other :Isers. These protection mechanisms are based on a ciistinction between
J privileged supErvisor state and a non-privileged problem state (instru~tions that
ha 1 t the mach; ne or modif,Y c.::rta in reg i s ters cannot be executed from the non-pri vil eged
problern state). Th~s b~sic protection mechanism improves the reliability of system
software.by protectwg It from,tM most obyious source of unreliability; namely, user
~l"ogrammH1g errors, However, lt does nothlng to help the system protect itself against
l~S own er:ors. FUj'th~r'1T\ore,.whl1e tQis protection mechanism could theoretically P)'O
v1l1e a basls for secunty aga1nst de11berate subversion of the system, in prdctice
the problems of securing a computer system are so complex that many reseal'chers have
concl~ded that more sophisticat~d protection mechanisms are needed before rigorous
securlty can be expected at a reasonable cost. 11

j,l PI'otection Models apd Pr.9..,tection Domains

The versatil ity of a sys tem I s protect; on mechani sms can be characteri zed abs t;'actly
in terms of a protection model. A protection model views the computer as a set of active
entities called subjects ar,d a set of passi ve entities called objects. The protection
model defines the access rights of each subject to each object. This protection nlodel

4}~ varietY"}JTotfler protection features such (IS passwords and activity logging have been
lncluded 1n ~ost computer systems. A combination of such protection features can be
used. to orOVl de deterence aga 'j nst ,some secu~ity thre~ ts; however j these other pro
tect~on features, can be bypassed If the basle protectHln mechanisms are <':i!:werted,
Desplte many ser1o~s ~ffor~s to correct flaws in the protection mechanhrns of curt'ent
computer systems, ~t 1~ stlll true t~at no computer system has withstood determined
e~fortsto bypass ,ts lnternal securlty controls by someone who is given user program
nl:ng access to the sy~tem. Su~h penetratio~ efforts have been successful against
vlrtually all commel'cially-aval1able operatlng systems.

7

can be represented in the for':l of a prQ~ection ~atrix ~Lampson 71. Gr~hanl 72J as ex
emplified in Figure 3. In th1S protect1on matrlx, subJects are asso~lated ~lth ro~s
of the matrix and objects are associated with columns. For each subJect-obJect pa1r,
the corresponding entry in the matrix defines the set of access rights that t~e sub
ject has to the object. Figdre 3 shows that subject C may read or execute aDJect X.

u
[3
j

C
T
S

""-

C

DB,lECTS

X

execute
read

--
Figure 3 - A Protection Matrix

Access ri ghts represented in the protecti on i:ldtri x a 1 so control changes ~o the
protection matrix itself; fOt' eXdmple,.a subje~t vilth ':delete" access to an o~Ject ~an
el iminate that object f)'om the protectlOn matnx. SubJects also appear as obJ~cts 10
the protection model so that one subject can have access rights to another,subJect •.
For example, one subject may be allowed to transfer control to another subJect by USlng
an "enter" access right to the other subject.

A protection domain defines the set of acceSS rights that one subject has to.the
ob"ects of the system. A protection domain is represented as a row of the prot~ctl?n,
malrix The term "?rotection environment" is used as a more general word that ls,slm1lar
to a p~otection domain except that a protect1on environment a1so includes everythlng ~hat

b'ect mi ht cause to be done on its behalf by another subJect., A protectlon domalO.
~ss~ ~ore re~tricted concept and includes only access rights to obJects that are accesslble
by the subject.

Most thi rd-genera ti on computer sys tems support a protecti on tn9de1 in whi ch ~he sub
jects are basically the authorized users of the system. The superv~sor o~ operat1ng
system is another subject that typically has total access tO,all obJects 1n the, system. ,
I n these sys tems every subunit of a use~ I s program exe~utes 1 n the same protectlon domal ~.
and that protection domain has access r1ghts to ~1~ objects that ~he user ever,n~eds. W1th
this protection model, there is no easy way to l1m1t the access nghts of spec1 r'c ,
subprograms executed on behalf of a user. While the ac~ess rights of a prot~ctlv~ doma1n
can be increased or jecreased, any such change is relat1vely pe:manent; an? 1f access
rights are deleted before calling a subprogram, they cannot eas1ly be retr1eved when
the subprogram terminate~.

Multics introduced th~ concept of protection rings ~hich allow e~ch use~ to ~xecute
in a linearly ordered set of protection domains. In Mult1cs a protec~lon subJect 1S th~
combination of the user 10 and a ring number. Each user ~an exec~te 1n as ~any protectlon
domains as there are ring numbers. The different protect10n domalns,of a slngle user are
linearly ordered in that the protection ?o~ain,of a lower r~ng conta1ns all ~h~ access,
rights of any higher ring. Hardware modlf1cat10ns for Mult1CS that would el1m1nat~ th1S
ordering of a user's protection domains are describ~d by [Sch~oeder 7~a, 72b] .. Thl~
modified hardware should support the concept of small protectlon doma1ns descr1bed 1n
the next subsection.

3.2 Small Protection Domains

The phrase "small protection domains H is used ~s a qu~litative,descr!p~ion of ~
certain class of protection models. The word small 1S not lntended 1n a r1g1d quant1- ,
tative sense. The basic idea is that the protection domains should b~ a~ small as poss1ble
while still allowing programs to access what ti'2Y need to access. ThlS 1dea has been
called the "principle of least privilege."

8 I

- I

A small subunit of a program typical1y only needs access to a small number of
objects. If small subunits of a program execute tn their own protection domains. then
the protection domains can be kept small. A large program usually needs access to many
objects. Thus. protection domains can be kept small only if a large program executes in
many different protection domains and constantly switches between these protection domains
during its execution.

The flexibility, ease. and efficiency of domain switching is the primary factor in
determining whether protection domains can be kept small and closely tailored to actual
needs. However. other factors are also important; namely:

(1)
(2)

The size of the protectable objects in the system.
The different ways in which the protection matrix is allowed
to change with time, and the ease of setting up new protection
·omains.

(3) The flexibility for defining different modes of access to objects.

Small protection domains characterize pro~ect~on mode~s ~hat are ver~ flexible. The
protection matrix is large and sparse. The prorect10n matr1x 1S large because t~e ~ro
tection system recognizes many distinct subjects (protection domains) and many d1st1nct
objects, The protection matrix ;s sparse because subjects have access to relatively few
objects and with relatively limited modes of access.

Figure 4 indicates the role of small protection domains with respect to the other
concepts covered in this survey.

SMALL PROTECTiON

CAPABILITy-BASED __ ~)
ADDRESSING

DOMAINS

1
EXTENDED-TYPE

OBJECTS

~
FLEXIBLE SHARING

x
)

Figure 4 - The Role of Small Protection Domains

SYSTEM

SECURITY

1-
I
I

RELIABLE
SOFTWARE

The usefulness of small protection domains for reliable software is discussed in Section g.
A way of implementing small protection domains with efficient switching between them is
sketched in Section 7. The remainder of this section discusses some of the complexities
that are involved in the concept of protection domain switching.

3.3 Protection Domain SI1itching

It is natural to integrate protection domain switching with the ca.lling of a procedure.
This means that each procedure could have its own protection domain, although every pro
cedure call does not necessarily involve a domain switch. The phrase "protected procedure u

is used when it is necessary to emphasize that the procedure call does involve a domain
switch.

A protected procedure has its own protection domain associated with it. Thus, the
right to access certain objects may be available during the execution of that procedure-
and possibly only during executions of that procedure. Furthermore, each execution of
that proc.dure possesses these access rights ind~pendent of the calling environment.

9

This is analogous to the concept of an own variable from ALGOL. It also means that a
protected procedure can have a state which is preserved between calls to the procedure-~
and that state is independent of the call~ng environments. In this sense a protected
procedure has a char4cteristic which has commonly been associated with the word process.
Nevertheless. in this survey the word pro~ess is being used for a th:ead of sequential
execution. A single process ;s allowed to execute in many different protection domains,
and multiple processes are necessary only when there is the possibility of parallel
execution.

A protected procedure appears as both a subject and arl object in a protection matrix.
It is an object because other subjects may have tne right to call it. The right to call
the procedure requi res a spec; a1 access ri ght such as an "enter" ri ght to the procedure.
The protected procedure ;s also a subject in the protection matrix because it executes in
its own protection domain.

A switch to a different protection domain involves a call to a protected procedure.
If there are no access rights passed as parameters in the call. then everything is quite
simple. If the ~aller has the r1$ht to call this protected procedure, then the call takes
place and execution begins in the'protection domain of the called procedure. A return in
struction triggers a return to the previous protection domain. . .

The protection matrix in Figure 5 illustrates this situation. User A, executing in
his basic domain, can call the editor. A dictionary (wh;ch may be a proprietary file) can
only be read whil~ executing in the editor's domain. The user can read or write files X
and Y either from his basi'c domain or after caning the editor; however. he can use the
dictionary to check the files for apparent spelling mistakes only when he has transferred
control to the editor. .

~ SUBJECTS
EDITOR FILE X FILE Y DICTIONARY

()

G

READ READ
USER A ENTER WRITE HRITE

READ READ
EDITOR HRITE HRITE READ

0
C:l

Figure 5 - Simple Domain Switch

-

The domain switch i$ more complex if access rights to objects are to be passed as
parameters and if the protected procedure is to be reentrant. In this case the call of
the protected procedure results in the creation of a ne\~ protection domain--conceptually
this means that a new row is created in the protection matrix. The new protection domain
contains both the permanent access rights of the protected procedure (these are defined by
a template domain associated with the procedure) and the access rights that are passed as
parameters in the call. The new protection domain is destroyed by the return from the pro
tected procedm-e. This situation is illustrated by Figures 6 and 7. In Figure 6 the user
is executing in his basic domain, and the editor's template domain only has the right to
read the dictionary. If the user then calls the editor in o~'der to edit file X. he passes
access rights for file X to the editor. This creates a new domain labeled "instance of
editor" in Figure 7. Note that other users may be editing other files using other in
stances of the same editor.

10

~ SUBJECTS
EDITOR FILE X FILE Y DICTIONARY

e
I

READ READ .
USER A ENTER WRITE' YlR ITE

EDITOR
TEMPLATE REA')

0

"
Figure 6 - Protection Matrix Before Call to Editor

~ EDITOR FILE X FILE Y DICTIONARY

SUBJECTS
0
0 _. -

READ READ
USER A ENTER HRITE HRITE

EDITOR
TEMPLATE READ

INSTANCE OF READ
EDITOR VJRITE READ

til
Q

Figure 7 - Protection Matrix During Call to Editor

The example in Figures 6 and 7 illustrates a situation involving mutual suspicion.
If,file Y is sensitive, the user does not have to allow the editor access to it, and the
edlto~ ca~ pr~tect the dictionary.from direc~ access by the ~ser. Implementation of donlain
changlng 15 slmpler when the domaln changes lnvolve only an lncrease in access rights
(e.g., a system call) or a decrease in access rights (e,g., a testing program that calls
the programs to be tested). The more general form of domain changing, ~Ihere some new
access rights are obtained while others are lost. is needed if the principle of least
privilege is to be enforced.

11

-

-------------_ ------------_

1he donl,,;n change for are-entrant. prot.ected p(OCedure sounds cumbersome Ivhen it
is ~xpldinpd in terms of a~ ab~tra~t protection model, Section 7 suggests an implemen
tatlCHl that allows protPct)on domdlW to be Cfhit!'d and Jestroyed easily Qnd efficiently,

If d procedure has permanent d~cess rights to an object, and if access to that pro
cf:dure 15 shared by asycnronous proC(~<,<;es, thf:O jj~ ',tinct ar.tivations of the procedure
could lead to syncht'onizil.t;on pI'oblems. In this case It 1'lOuld be the responsibility of
the procedure code to handle thE? synchron;ziltion pt'oblem. The c.oncept. of a monitor
[HoarA 74J ~an be viewed as a li1ultirle-entl'Y procedure f}f this SOt't which is invoked
pr'ec:i$(~ly to handlf! synchronizati{m problems,

PRon::cnON fOR RlLIAULE S0FTt~i\RE

It is far more difficult tv build a r,o,uou lint! !,Y'onl'anl t.hail it is tty Ivrite 1,000
pfoqrams thilt drc each 50 lines long. This phenomenon ledds to rafJidly (:t;.cdlating costs
for the developn1!:~rtt and maintenance ot lal'qe S{.'ft\~3:·(' systems, and it If'ild3 to serious
roliabnity problenls due to the difficulty of adHtlUatt·ly dcbu9Qinci dnd testing a l~r~lc
progr • .lfn. Both the re 1 i db; 1 i ty dnd the co') t of (,d t",anc CPU 1 d h? 'jreu t 1 Y lmpj'(wed 1 f th"
complexity of lilrqe progral11s cmlld be kept morL- Hl 1 illP with the size of the pr09y'afll.
Small nrntec;tion domains arc one of ti'e most !Jt'Ulliising I'ICiyS to achieve C\ bredkthrough in
l'fcduc. ifl\1 the complexity of ldr(jc ',ofti1are :,ystCIl1::> ,

The t'lliphasis of this s(·ction is on VIP n'1iilLi1it
prutection domains vii 11 not 'lr:>dtly 11l1pri)\".! till: ,'(:,,1 i
\It L ,\\1 UilfOltl1t,ate fPt !E,ctiuL Gil the stilt·,: (,
hundred 1 ines Cilll tah, ()!f thE! tI)drilct(rj-;tie; (It 1<1)'('8

uf larqe softw~r0 systems. Smdl1
1 ity Of' 'dnll!" '-,r.ill1 proqr'dl11.

IJCl t!~at fH'(.)(jY'i.\I!:::o of a ff'lv
(.~-llilJ.i 1 t!)', !"Y') tPfll$ A}

il.l Th"_JJeco!:!.p.9s Ui021.,"O.t~~~:..o.::1J~LE0...~5Je!i'.2.

The complexity of any 'tan]e system is Ilion' d!andCjhlblc tltren It is dt:CDTllposect into
relatively stable subsystems, The"'e subsystem!, intet'act Ilith c:;~ch ct.h('y', and ('ael) ,;ub
system is' itself made up of parts wt1ich interact; htMeVt'I', to d.;oid eX(,t::is;ve complexity,
3 part of one sybsystem mu<;t have nug1 igible inter'actions with part:: of distinct sub-
sys terns. Thi s decompo:> it, i on of the :'iys tem can ttlen br., itf't'd tJ,d on each of the <;ubsy', tPIllS
to t'e<;ult in'r1 hierarchically structured sy',tem. Sin!un [SiE;on 69] h\~s sugqpsted that
this is il COlliinon organizing principip of all COlTltJltlX systuns, and thilt. it can be observed
thr'Ouqh:1ut the physical, biol!)(l1ca1. and social Sc1 r'nceS.

Hierarchical decompo~itioll or a cOilrlnx sY'.tem hd:; fi'cqur:ntly been advocated by
proyrammers--both unde), the name of pY'(lqram mod1l1 drl ty and of stl'uctured pl'ogralt!mi ng
[Oijkstra 68, 72, Par'nas 72b]. While much pr'oqress Ms been iiidde in recent years, the
programming profession tlas had d difficult timE decomflOsing 1arg0. programs in such n.
way that the intel'action of distinct subprogram" cJn be defined and anticipated. This
problem has two aspects!

(1)

(2)

It has been very difficult to stnJt:tul'e larqe programs in such a
way that the decomposition does not n:sult in 10ngel' and sub
stantially less efficient programs.

There is no way of knO\~ing that distinct subsystems are inter
acting only as planned. The usefulness of program decomposition
is greatest when there are errors in the system, and it is pt'e
cisely these errors that are likely to cause distinct subsystems
to interact in unanticipated ways.

Some recent ideas with respect to the first point wil1 be discussed in Section 10.
The second point is the prill'ary reason why a protection system will make a major contri
bution to more reliable and less costly software,

12

• 7 -

4. 2 PTotecJi..Q!:,ll19_~Id.J3£LIJ_i .'>,t,JnflJr.9iiIJun,c,t:J,oJ,l.i!Ui;y

~h\:n a large ~ystelil i~ deco(jlpOSt~d intu intHr'acting subsystems, it is important to
have l1lT1l,ts ,on ~the :nt~rrH;t~Qn ot. ~he subsystem". These lir~it<; should not be dependent
on the (noper t~m,tlonlnCJ u; ,Ill of the subsystems. Ot.her\~lSe, the subsyste"l interactions
rn(~y chdn~le pn~~lselY I'lht!n on,: fJf thesub:,y~tHls fails, thus causing the 111101e systel!1
to degenerate lnto chaos. SHll(H1 fSl!IIOn 69j notes that in physical and bioloQical
5y" t~m<;, e~traneous interac ti ons i\lIiong subsystems a t'e of ten 1 imi ted by phys i ca 1 di stance.
Physlcal dlstance also [Jrovides reason(lble isolation of computer hardware modules. In the
:ase of large soft\,l~t'e s'yst~ms, th~~re has been no equivalent of physica1 distance to he1p
\.ontrol extl'aneous lnte\'~ctlCJ!\S bf.'tween subsystems, The result is that malfunctions in a
softwcre module IdOt'e eas11y propagate throughout the \'/hol(~ '>yst(,m.

It is not ~easible to eliminate al1 mi,lfunctionc:, from softwai'p. subsystems. On a
case-by-~ase basls, ctlrpful dt.'ft'fl~,ive pro~;riunnting can limit the effect·; of potential
rTla!functlO~s •. A more qeneral solution ;" possible by introducipg a protection mechanism
WhlCh b d1stlnct f~om the pr~pt'r .design ,and functionality of the subsystems. The
role of the ptotectlo11 r,lechal11sm 15 preClsely to pt'event malfunctions from spreading
beyond the subsystem where the~ occurred. To achieve the desh'ed protection, almost
every.procedure should L,:' rur! 111 ,<I pr?tect;on dom~in that gives it acc.ess to exactly
w~at lt nee~s.to acc0mpllsh ltS tunctlon and noth1ng more. 1his is called the principle
ot least pr1Vl1egt", Furthermol'(!~ p:o~ection domain switching must be easy and efficient
because the protectHltl must not 1l1hd)1i. the desirable interactions between subsystem~;.

A protection mechar';',m wi 11 not ptevent l'Vf!ry error fr'om pfoptlgating outside of the
Oft'OlleoUS module. Many f~r'roneOllS results fJf a Jilodule will appear to be normal results,
and the pmtectiull IJ!;chtlnisHl \~i 11 ha'Je no way of distinguishing these from correct l'esults.
However, I'/ith good sys tU:I des i gn, enoneous ro'>ults that look 1 i ke expected results shoul d
n?t. cause other modulos to behave in unpredictable WdyS. As long as other modules con
tl1lU8 to be~ave in ::lre~ict.~ble \,IaYs" thet'~ is a Illuch better chance of finding the origin
of the error. The pr0~ectlon mechanlsrn wl1l guard mostly against the errors that result
from unexpected interactions ot the modflles. These are the el'Y'ors that are usually the
ha;--des t to trace. '

, ' Much t'e~ent 1 i t~rat~n: ,)ll p~o?rdn;mi fig SWjgc5 ts various I.,eam; of prevent; n9 program
modules from lnteract1!lQ In undntll1pated ways. These generally fall into three categories.

{1 } .95~fe!1,s.i.v.~~..prJ)';l.:r:~I~iln.9...Pl'act ices - Pi'ogrammers can inc 1 ude extra
code that is designed to detect errors and to check whether modu18s
are intel'acting as planne~, For example, parameter<; and global
data structures can sometlmes be checked for consistency and
reasonableness Defore they are used. The value of defensive
prograrrming is now well recognized; however, it must be used
with discretion for it ca:1 inCI'eaSf:! tne complexity of a program
as well aslts execution time.

(2) Language-enforced .Erot_~<:...1;..'um - The procedure, as it exi sts in many
current programming languages, 15 a unit of modularity and it can
p~event some. unwanted interactions between modules, Other compil e
t1me protectlon features have been advocated in [Marris 73,
Palme 7Q, Liskov 74, Wulf 74b, 7611] and elsewhere. Much pro
tection against unanticipated interactions between modules can
be enforced at the time of compilation and linking. Other pro
tection features--especial1y tho:T dea1ing with access to shared
data structures~-are very difficult to implement at compile time.

(3) Protect~on mechani..?!ll~ support_~:LI..~_gJli:,.Laj:j.!lJ:L2.i:'2J:_e.!.'! - Small
protectlOn domains with the system enforcing protection at run
time have been advocated in [Lampson 69, Needham 72, Price 73,
Wulf 74a, England 74, Spier 73] and els~i1here. Sections 6 and
7 sketch the argument that protection checking for small pro
tection domains can be enforced efficiently at run time.
Efficient system enforcement of small protection domains requires

13

redesig'1 of very fundamental parts of the computer system in
cluding the addressing mechanism.

tt.3 ProtEctio.n..Jnf~ti~_in .. ~~.Uem.JLELs5.gn .. 2:nd.gQ9l[llEnt~n

Most current provramming practices do not require that the access rights of each
module of a system be explicitly defined. While the definition of this access control
information would be an additional programming requirement, this redundant informatio~
waul d be very useful as part of a formal system design document since it defines all the
allowable interactions between modules. The definition of the access rights should be re
garded as an important step of tha system design, it would constitute an important system
dpsign document, and it would be executable in the sense that the protection mechanisms
would enforce these controls at run ti!:le.

4. 4 yjJjl!,,".9} __ ~~n..i!.LLE!,otec t i_olL.D0nli!.i!l.~

Small protection domains will be of the most value for the following aspects of the
programming process:

oQ.(:!>,u..95Ltn.,[PrOtjl'amming errors will be easier to find because eYTOl'S
in (me module are less 1 ikely to manifest themselves by anolnalou$
tJehavior of a different Illodule. The cOl'l'ection of one f!rrOY' is dlso
less likely to cause other modules to begin to malfunction. .

o T(:st51liL Testing one module at a time will be easier since the exe
cution environment of the module is more rigorously defined. Further
more, since that environment is enforced at run time. module int(~r
actions that were not antiCipated in the tests should be prevented.

o Fa~t detection, recovery, and retLl It will be easier to contain
the effects of either hardware or software errors within the exe
cution environment where the error occurred. Since the exe~ution
environment is rigol'ously defined it will be easier to incorporate
additional redundancy or run-time tests to protect against thp re
ma i ni lig potential sources of et'ror. Recovery and retl'Y proced';res
are cri tiea 11y dependent on di scovery of the errOl' before thi ngs
have gotten out of control.

o Maintenance and modification Protection information defines the
setofniodl,ifes-whlch--coufdbe affected by a modification to the
system. This identi1'ies the modules which have to be examined
to guarantee t.hat any modification will not have unexpected
side-effncts.

o r~J1.Y.illiL.PI.QPgrt i eS __ Q.Urogr<gl1~~ The or; gi n of the author lsi nteres t
in protection was partially to make it feasible to prove properties
of moderate size programs. The length and complexHy of a proof
typically grows much faster than th~ length of the program. This
is because each subunit of the program makes many assumptions
about its executi on env; ronment. Typi ca 11y, much of the res t of
the program has to be used in order to prove that these assumptions
are always valid every time the s~bunit is entered. If proofs are
to be simplified, it is clear thot ways must be found to prove the
viilidity of these assumptions without using large amounts of other
wise irrelevant code. Protection mechanisms can provide a simple
basis for this.

Small protection domains cannot be used effectively without some substantial modi
fication~ to most existing programming languages. Programs written in existing languages
could stlll be run on such a system. but they would generally be compiled to execute in a
few large protection domains. To take advantage of the small protection domains, pro
gramming langua<;Jes would have to incorporate additional features that make it possible to
define and control the protection domains.

14

-mz - s

5. SMALL PROTECTION Dm~AINS FOR SECURITY

~he ~conomics of ?uilding large computer "ystems is such that the basic pr'otection
mechamsm lncorporated 10 the system must ?e able to satisfy many diverse security re
quirements. Smal1 protE:ction domains provlde a f1exible basi", for implementinn many
different 5ecurity requi rements.

5.1 Dexibi1it:t YS. Securik

. ~lexibility is not necessarily desirable for security, In general, security
provl~lons filUSt be as simple and rigid as pOSSible in order t.o minim;!.e the danger of
over'~l~h~s and of human erro:, Neve!"the!eSS, ~t.lr security in a computer system, the
flexlhl11ty of small protectl0n dOlnalnS 15 deswab1e for the fol1owing reasons:

(1) System security will be attacked at its Iveakest point. It makes
little sense to build extr!mely rigorous security barriers if there
is a back door into the system that is left open. Some common
security problems are very difficult to solve without a flexible
protection mechanism; for example, small protection domains are
useful if there are to be any software controls to protect against
a fraudulent system programmer Qr operator, and they at'e often needed
to handle the Trojan Horse problem described later in this section.

(2) A sel'iou5 danger to security arises I~henever the need for flexible
protection is underestimated. If protection mechanisms are so
rigid that they prevent efficient processing of information, then
the protection is usually circumvented. A single general protection
mechanism that is used without exception is better than a rigid
one that has many exc~pticns.

(3) ~ound accounting and auditing principles require a system of
lndependent checking where each individual is accountable for his
actions and no individual is able to modify information in such a
way that the modifications are not detected. Small protection
domains would provide a good base for restoring the segregation
of duties and the independent checking that is often bypassed
during computerized record handlinq. '

(4) Flexible and efficient switching between protection dOlirains
lllClkes it mare feasible to build redull·::ant security contt'ols.
As long as the basic protection mechanism itself is extremely
reliab;e, l'edundant security checks incorporated in software"
'~an provide very rigorous security control. The use of redundant
security contro1s is discussed ;n subsection 5.3 on intermediaries.
Extended type". provide 11 natul'al way of implementing this "edun
dancy and are discussed in Section 11.

(5) Even though the general Hy of small protection domains may be
hard to understand. specific security controls can still be simple
and easy to understand. In particular, a flexible protection
systt>m shOUld make it easier to build user interfaces thdt arl:l
tailored to the specific needs of the user. Thus, users of a
sjl.~cjJic. security system should see a $imple security system.

(6) In the overview (Figui'e 1 or 4) there are arrows leading indirectly
from SHlnl1 pr'otection domains to system security via reliable
softlvare and extended-type objects. These inoi rect paths require
very flexible protection mechanisms. and theY'are as significant
for overall security as the direct path. For ~ jmple, the pro
tection mechanisms that support reliable software make it easier
to build reliable software to monitor security.

15

5.2 TIllL1r0ja!l..l!Q.c,;~ Pr9JlJem

Mas t access control s on 1y gua rantee that one use," s informilti on i s p\'otet~ted f\'(lll1
access by othel' users. LJnfortunate1y, it is often not realistic for a user to ti'ust ~11
the programs that execute as part of his Gvm proces',in~l. Mo~,t li~e)'s make cal1s to a Iaf';Je
number of service routines and other [H'ogrdIHs that thc' user ha::; not written himself. On
most systems, all these routines and p)~gt'ams execute with the full access privileges of
the user. It is possible for these programs to p~rfoim actions totany unrelated to the
caller's intent; for example, they may access any file accessible by the usei', and on
many systems they can even givE' away ,'Jccess l'ights to these files. Daniel Edl'/ards
has given this general class of problems the very d!'scriptive name "Trojan Horse"
b(~cause it involves a fnreian Of .9.iJJ:, program that is brnunht \1ith"in the ~'!..aJJ~" of a
protection domain [l3ranstiid 73]. The gift prcgrau, CiH1 tllPn "lltJvprt the security of
everythi,1g accessible from that protection dOn1<lin.

Many dist.:ussinns of computer security helve pdid as HHICh dttf'rltion to the Trojan. Horse
problmn as the Trojans did. \'ihen bU; Idil1\l thick ~~t:c.t<l"ity vhll1s, itis convenient Hl fOi'~Jet
about this prob1em; howev(',', it ,~il1 do littlp qvod LO build a neVi !jl'nemti(Jn of l. <,eClIr€; '.

computers if their security can easi 1:1 be bYP0:,secl by d Trojan HOl'se attack.

The TroJdn H01'Sf! pl"oblelll ;:; an extremely ~;~'nQI'ill emil diffh:,llt. pl'ob1en l • Pi'uqrams
tha t CClul d have subver,;i ve)'out1nf.>:;jn th?I~\ <1 H~ ,y,I'd (';ons t:1!1t 1.';'. l't"_Ji.Ai',HllmeY"i iJnd
systl;n\s personnel routinf!ly tryout new pt'oq),':l!n" th,\t plr,iV q;lmeS, print piltw'e5, or' ('id
in the development of bettet' proqrai"s. Th(~ most ';I.ut'.' claWlf't' fl'(J!H thf' Tfnji1n HorsE' pr'oblem
occurs when someone eXf'cuting with c,ystem rl'ivih~'Jes ,'un:, J f,rogY'dll! given to him by "a
friend"; however, the TrOjan Ilorse problem (!ri ses fen' \111 Pt'CH]Y'ams th;H ,)rl'l f:1xecutect ()ll

the system. This includes support pro~}I'Clms c,'Jch i.\£' ("iitors, compi1et",~ .:Hld librat'y
rout i nes. A u<;~~r may choose to bel; eve that UfO'll'illllll Sll;jP 1 i f.'d wi til the sy~, tem arc un-
1 ike1y to act like a" Tt'ojan Ilor::e--but thi,; ,;rF,tdd bt;' 'eCJ~j!li:ud as a CdlclJld:pc/ ['15k.

It l;light scem that the Tt'o,1an HoT".!: pl'obIP\), ';l\()uhl lif:' ~.<}lv',"d by adll:ini:,txatiw CtJf1-
tro 15. ~.iS tPI\\S per'30nnr 1 and ;:ul,Yone \'~h() tid", w'ry S',!,:,: ~ t: v,, '1:1 >1 shOt! 1<'j fl("V('r' run (\ pr0\ll'ili;)
in their Pi'otc:ction environment wl1e::.s th"y tnJst it. UnfmtwlJt01i. thh ddmini'itrotiv p

solution is often not pNcticdl unh~"'s thp :\\I:tAi!i liId~"f": it: (,asy t(; n,ltl lllltl'Il:,b~d prot,ll"i,ms
in a rt'stricted protection enviroTllc:nt \'lhe)'G ti!uy C')fl do lIt:,),. hiJf'it. Find:ng.,)'lilson.::'J!D

solution to thE: TY'ojan l\twse problem 1') pr'obatJly the I\,(j<,t ',h,111f~w\in~! ",;per:t of j(:vel0,)j":j

an adequ,1tp set of sys.:.t'ln "ecurity cl)ntroL.

Thref; di:;tin,;t, dsrects of HI': Tn)jan HUf':!) ;,:n)Lil"Ei ;li'j'

foreiqn Qt' Ul\tru!'.tf:'d pY'f')qram is to be run 1)11 ,} ;'iC,it~I,I:

(l) The foreign pl'o']t'am is expectl,d to ,;pdi'r"/lsi U 'J(,hta. In thL
Gil 5P th!' forei gn program l,iLl:, t 1.1(' t.htH'ouqh 1 y eXdllli nt'" thin: it ':it!1 be
tt'usted. If th'~ proql'ilfll is to ill !;N' dati'!. ti:t'fl i" it(/'} h,., ti'n',tc"li viii,h
rt:5p,~ct to that dato--at 1t>J'it vlith fes!,ect tf) thl' (,Mt:;,:!dM t:JfJP<' M
modifications it is expected to make.

U) The fOI't;igfl pl'oqr'al11 is pypected to r'.~l,d ,,(Jl!:;ifiv(~ c1Jtil but not disclose!
its contonts exc&pt to thr cal1inq p'~gl'am. This Is ~allpd the confine
ment problem [lamps011 73]. It is. diff'icu1t enough to prevent a program
h'om hidin'l the infol'm:ltion 'in a fi 1i~ Or' i)thf'l' fO;-I:, ,-.f st(.)'i,j·Ir:: hO\'i~''Jet',
it is eVrm-mOrE' difficult to pr-event it fl'um Cdliii':mrictiting th·, ~nfo,'"
Illation via a C0vf;rt channel. C.wert communications channel'; Cdi' b(:
cn:atect by mlcudin9 the infot'filatlon in the progral'llS resC\JI'c!: llUl-
1iziltion. FOi' ('xamrlr:, a pru(jt\l!H :lri'·lht cormll'lwicdtp on:: bit t,
another program by us i nCj 10 i]1i nute::. of CPU 7; im2 i j' the hl tis 1, and
on 1y us i ng a f)'act i on of il second if the bit i~; O. ThH other pt'ogral11
has to be tlble to dlltPct or estimdte the (:X(~clltion tiwl; of tilt:! fil'st
prograrn--p0ssibly by Simply obse)'ving th~' petformnm;e of the 5y:.tem,
Much higher data rates can be achieved by encodinn the information in
paging rates, disk utilization, or in the locking and unlocking of

16

- it m s

fi1es. A formal way t?f approa~hing this problem is proposed by
[L1Pn~r 75], and part1al solutHHls appear to be feasible. The partial
Solutlonswould reduce the data ratE: of the communications channels
that a pr'ogram can use to disclose the information, and they would
lncrease th:> probabil ity th(1t various forms of monitOt'ing (eitht?t'
of the system or of the progralll) could df,tect the communication.

(3) The foreign program is run on behalf of a user who has access to
sensitivA. data, but the untt'usted program i:; not expected to access
dny sensitive datil. This problem should be easy to solve' ho\~ev('r'
the solution is difficult to enfOl'ce with the I!l'ott~eti()n n'IEchanisHi~
avai1able on most existincl computer systems.

, Security always involves trusting 0)' believing sOllwtldnq. A "solution" to th(~
TroJan HOl'se probll'm means thut the anlount of trusted softwa)'€! ;s minimized. FOl' a
secure systerr. s?lutions to the third aspect of the TrOjan HOI";e problem should be
natural ,and routlne. A solution to the second aspect--tl1e confinement problem-~shou1d
b~ posslble and a matter of system tradeoffs. Some help can be py'ovidect with the
fltst,aspect of the problem by making it possible to distinguish diffel'ent modes
of I'Ir1te access tt) the data. Tht' ilmount uf software that still has to be tl'ust,ed
depends on the process i ntJ and secud ty l'equi l"ements; however, I'lhen th(' amount of
~ruste~ qoftware is minimized, it may be fea~ible to audit, certify. or prove the
lntegnty of that soft\~are \~hich is to be trust"d. '

The~'e at'(~ ~wo ap{Jroaches that ha v~ b,""n tilken to thE! Trojan Hm'sQ problem. The fi l'st
approach 15 dPP 11 cab 1 e when the pl'illld ry secul'i t requi foment is to prevent ullauthori zed
disclosY1:e., outside of fixed, i'elatively broad secul'ity classifications. In this case
the first aspect of the Trojan Horse problem is not relevant, and tIlE! third can be elimi
nated by running each user proce,;s in a fixed but limited environment. Efforts can thus
be concentrated on so1ving the confinement proble!.] for thQ pi'ocess "as a \'ihole.

, T~e second approach ~oward so1,ving tim !r'o:jan Hi)r.se problem is mort: genel'a1, but
1t requH'e~ fl'(>~uent chanYlng betl1een prote-.tlon dom~1'jns •.. Whenever a par't'ial1y untl'usted
l})'ocedure)5 ,ca 11~d, that procedm'e ~;hould be (!)(eclJt,;d in an environment that gives it
<1 minirnull! number. 'of access privi 18ges-- vlhi 1e still al lowing it to carry out its dssigned
tasks. This apPt'oacil to solving the Tl''ljan lIorse pl'oblem'is based on trw prinCiple of .
least privilegf1. and is attl'1butaiJl€, t() Dilniel Edwards [Bi'anstad 73).

Note that the TrOjan HoI'S£.! problem diffe;rs fl'om the genE!i'al softw,,\re reliability
problem only over the qUf!stion of whether the cill1eJ proqram may be malicious or whether
~t may be incorroct. Thus it should not be slll'prising thH solutions to the two problems
1nvolve the same feature--frequent sv .. it(hi!l~ he tween pr'ot0ction domains to enforce the
"principle of least privilegp."

5.3 In.t£rm.~iari~

A large class of S"CI1t1ty problems C<in be solved by putting d level of indirection
bet~een a s~bj?ct and thE: object it is seekin!) to access. Protected procedures that act
as lntermedlanes can be pt'ogrammed t.l. control access. t.o an object by checking the calling
process's ide~tificatiorl, by checking for special capabilities \~hich indicate authorization,
or by perfor':11ng any othet' pronrammable operation [Hoffr.lan 70, COnl'lay nt 0.1. 72]. ror
example, an lntermediary can implement any of the following security contl'ols:

(1) Redundant controls. Assuming that. access to the intermediary is already
controlled, the intermediai'Y can implement a second and redundant check
to guarantee that all access to the Object is authorized. Redundant con~
tr01s, are ~specia11y ~s~ful to r;o~tain the effect of enol'S made by those
admlnlstenng. malntalO1ng, or uS1ng the system. Of COllrse, redundant
controls are useful only if no single act can bypass both controls [Fabt'Y 73J.

17

..

(2) Restricted access. The intermediary can restric~ access to parts of
t~ObJect~-~ield and record level securitY'controls could be handled
in this way.

('>') D t d v_2...Jl..~d_fjlj?.!lY.!l!...S2ntr..9l?_. The intermediary can check the contents of the
object before deciding what information to return to the caller.

(4) Auditin~~~2rinJL. The intermediary can create an audit trail ~r
log of all ac';esses to the object, Ot' it can try to idemtify suspicious
or undesirab12 patterns of access to the object.

. AI! these forms of indirect or mediated access are easy to implement as long as the
1nt(:rriiedlaf~ can (:x~cute in its own prote~tion do~ain and as long as there is no way to
bypass the lntermedlary. Of course, the lntermedlary does result in some additional
ovel'head. Extended types as discussed in Sections 9 and 11 provide a convenient and
natural \~ay of implementing intermediaries.

6. CP,PAIHLITY-BASEO ADDRESSING

Systom SUPPOf't for limited forms of pi'otaction domain switching has been implementec
by the ring structure of Multics and hy a pl'otection feature in UNIX that allows the
effective user.;de~tification ~o b~ changed to that of the owner of a program file when
that program flle l~ called [Rltc~le 74]. Otryer approaches.to implement domain switching
have been pro~osed 10 [Schroeder 12a~ nb, Pnce 73, and Sp,er 73J; however, capabi1ity~
based addresslng appears to be the slmplest, most thorough, and most frequently proposed
way to pnforce small protection domains while a program is executing.

~'uch can .I1so be done at compi1e time to enforce the concept of small protection
dOHla;no.--;n particular, !,luch of the modularity needed for rel iable software can be
enforced at compl1e time. Tile 1 imitations on compiler-enforced protection appear to be
the fo 11 01'1; nq:

(1) Compilers Cunnot handle many of th£! problems involved in real~time
shal'i ng of datil between independent programs.

(2) Protection enforced at compile time would not help to detect
and recover from failures in the hardware or in the system.

(3) The compiler could only handle part of the protection needed for
security. Isolation of users and some control over resource
shat'; n9 woul d still have to be handl ed by the system. 5)

Must of the limitations on compiler-enforced protection can be avoided in a network
~f ~Qal1 computer~ if th~re is r~latively little resource sharing and if most data sharing
1S h~ndled by maklng coples of the data. In such a network, compilers can enforce pro
tectlon between.program modules, an9 ~he r~duced amount of resource sharing avoids many
(not all) securlty problems. Capab111ty-based addressing should be most effective for
largo, closely-coupled systems-~especially for systems designed to support centl'alized
data management sel'vices or large software development activities.

5T~(n~a(fdrtlon';ff-se6j'i';Hy depends in part on the compHers, then the compilers would
also have to be validated for security. While it may be easier to validate a compiler
than to validate an operating system, the validation of several compilers in addition
to the validation of parts of the operating system would make security validation more
difficult. Note, however, that compiler correctness cannot be completely eliminated
as a security concern. If the operating system is written in a high level language,
then the correctness of the compiler for that language is a security concern. Further
more, the Trojan Horse problem applies to any compiler that ;s used by anyone with
sensitive information.

18

7

.•.. Th!S sect~on introduces th~.c?ncep~ of capabi1itY-based addressing, and the next
se~tl?n ~overs lts us~ for an eft!Clent lmplementatlon of small protection domains. Figure
R lndlca.es the relatlon of capabl1ity-based addressing to other terms yet to be covered.

SMALL PROTECTION
----~ / DTNS

~
SYSifEN

SECURITY

CAPABJlITY~BASED) EXTENDED-TYPE 7
ADDRESSING

.~ OBJECTS ~

FLEXIBLE SHARING ~
Figur~ 8 - Capability-Based Addressing

fi. 1 T_hE?_Gp.n_e!~.LC2!1'<:f'2.t .QL i.aQ.Ci.9JUJJ_e.s

RELIABLE

SOFTWARE

A capability tllay be thought of as a protected name for an object. Hhile different
~.y,;tmlls use. capahi 1 Hies in quite different \'lays, capabil i ti es genera lly have the fo 11 ow-
1 r~fl pnJpert 1 e'::

(l) Capabilities are system-wide names for an object. A subject has
aCCl"~)S to an object only if it possesses a capability for that
object. 6/

{?) A p.wt of the capabi lHy determ; nps the access l'ights that the
I:dPiibil ity <1110\'/5 to the obJect that it names.

(3) Capabilities can be Ct'eated only by a special low-level part
of the c;y'>tcm, and modification of a capability (except to reduce
its ili.;ce53 rhlhts) is not al1m·lable. Nevertheless, any subject
in poss<)ssioll of a capability has some freedom to move it, to
copy it. or to PdSS it as a parameter.

Ht\(!tl dn object is created, a capability for that object is also created. This initial
capHbn ity inc 1 tides all dGCeSS rights to the ne~~ly-crea ted object. The creator of the
object may give a copy of the capability to other subjects. Recipients of a COpy of a
cdpabil'ity fi1ay u<;e it to access the object, or they may make other copies of it to give to
oth(:r c,ubjp.t. ts. Hhen a capabil Hy is g; ven to another subject, the access ri ghts of the
capability ma.'! be) rpc;tricted. Thus each copy of a capabi1ity may allow differing access
ri9hts to the objE~ct. Except for the idea of amplification as discussed in Section 9.3,
it capdbi 1 ity th,) tis passed to another subj ect cannot have HIOre access ri ghts than the
capdhil ity from which it was copied.

ti. 2 Th!:1.~U:sft.J2t~Pl)abi 1 i}j§2_an9.SE.pll~jJiJy~B~2-e.d AdEY'es,,; ng

Capdbilities as a general addressing and protection mechanism were first proposed
by nennis and Van Horn [Dennis 66J. Since then some version of capabilities has been
used in the CAL-TSS system [Gray 72, Lampson 76], the BCC 5000 of the Berkeley Computer
Corporation [Lampson 69], the SUE system for the 360 at the University of Toronto
LSevick 7:>J, the HYDRA system [Hulf 74a, Cohen 75J, the Cambridge Capability System
[fleedhar,l 72, 74J, and the Plessey System 250 [Cosserat 72, 74, England 74J. The reader
should note that most of theSe systems are experimental in nature, several of them are no

6/ In--n,-e-Caitibrldgirt'apabi1ity System [Needham 74], capabilities are interpreted
Y'~lative to the capabilities in superior processes; and hence. they are not system
Wlde names for an Object.

19

longer in use, ana none has yet developed into a successful com~ercial produc~. Neverthe
less the idea of a capability has enough appeal so that many dlfferent experlmenters
continue to develop and use it. Furthermore, capabilities are similar to descriptors as
implemented in systems such as ~lultics [Organick 72] and the larger Burroughs systems
[Organick 73J.

Several systems have used capabilities to facilitate sharing and protection of
objects that are not loaded in primary memory. In these systems, interpretation of
capabilities is done by software, and the primary memory is addressed ~nd controlled by
whatever means is ava; 1 abl e. ea 11 s to the sys tem software are needed 111 order to
use a capabi 1 ity or switch to a different protection domain. Typically these calls reqlllt'e
a millisecond or more, ?J

Other systems have integrated capabil iti es into the memory address; n9 mec~ani sms of
the hal'dware. In this case a capability is interpreted on each refe',oence to prmary
memory_ This is called capability"based addressing.

The fol1owing explanation of capability-based addressing assumes that memory is
organized into segments where a segment is, a vari~ble ~e~gth sequence of memory words.
A word in a segment is addressed by SupplYlng an ,ldentlfle: fo~ ~he se~ment ~nd an 9ffset
that specifies the particular word of the segment. (For slmpl1clty, flxed~s1Ze paglnq
is being omitted from the present discussion since it is easy to add into any of the
addl'essing schemes discussed.) A descrirtor, as implemented in Mult~cs and the Burroughs
systems, is a rrotected identifier,that points tO,a,segment (or pos~1bly to another object
such as an I/O device). The descrlptor also speclfles the acc~ss,r19hts t~at a:e allowed
to the segment. An instruction references a memory word ?y pOlntlng to a aescrlptor for
the segment and by providing an offset to specify the deslred.word of the segment. The
access rights of the descriptor are used to prevent any undeslred access to the senment.

Capabilities used for the purpose of addreSSing segments .of mento~y at~ a~most
indistinguishable from descriptors. They serve the same functlQ~S of l~entlfYlng the
segment and specify; ng the access ri ghts to the segment. The prlmary dl fference ~eH~e~n
capabilities and descriptors arises because descriptor-based systems usually provlde l1ttle
freedom to man; pul ate the descriptors t ~nd the hardwa~e. and low 1eve 1 s of the sys tem. soft~
ware control all movements of the descnptors. Capabll1ty-based systems allow thE' capa
bilities to be moved and copied. This freedom to manipulate capabi1ities grea~ly simpli~
fies the implementation of parameter passing during a domain switch~ hal-lever. It;dl~o
c)'eates some security problems that must be handled b.Y approaches dlscussed in Sectl(lns
7 and 11.

The Pl essey System 250 [Engl and 7?,.14 J and the Camb:i dge Capabil ity Sy~ tern
[Needham 72, 74] have implemented capablllty-based addresSlng, and system deslg~s
using capability-based addressing are ,"eported in [Fabry 66J and [Neumann 74. 15},

0.3 ~lemen~ations for Capability-Bas~~AddreS5ing

Implementations of capabilities differ co~siderably! however! a capa~i:ity usually
consists of an identifier that can be used to fwd the obJect, a fleld def1n1ng the type
of the object, and a fie1d defining the acce~s rights. A capab;li~y that.allo~s onl~
redd access to a segnlfmt is illustrated in rlgure g" ,The access .1'lghts fleld ~s prooably
a set of bits~-one bit for each mode of access. The 1rlterpretat10n of these blts depends
on the type of the object. In som~ ;r1~lementatio~s the type fiel? ~ndJor tr,e access
ri ghts fi el d can be dete~'mined d!Jrll1g 1 nterpretatl on of the capabl11 ty, and they are not
stored as part of the capability itself [Redell 74a. Neumann 75].

7/ This statement is supported in [Spier 75] and through verbal comments by B. Lampson
~- about CAL-TSS, by K. Sevick about the Unive)'sity of Toronto SUE system, and by

W. Wu1f about HYDR!' ..

20

TYPE OF ARC CESS
IDENTIFIER THE OBJECT IGHTS

[~POINTER TO_T_H_E __ S_EG_M_E_N_T __ ~ ___ S_EG_M_E_N_T ____ ~ ____ R_E_A_D __ ~

Fiqut'e 9 - IntE'rnal Structure of a Capatlil ity

Cuntrol over calhlbi1it;~es is nrcessat'Y to prevent a user fl'om creating a capability
that he then could usa tu gal" unauthorized access to an object. There are two approaches
to achieve this cont1'01:

(1) Always have the capabilities stored in special locations such as
capability segments and cap~jility registers.

(2) IncLde an ext.ra tag bit with eacn memory \'lord, The tag bit must
b0 inaccessiLle to the U~0r. It identifies whether the word
contains (part of) a capabilit,Y, and the hardvldre then controls
the modification of \'lOrds thilt an' identified as capabilities.

The cldvdl1taues of each approach ilre discussed in [Fabry 74J, The second implementation
avoid,; any t'igid restrictions on ho\'! capcloilities can be stored, moved, or copied.

(1) The idflntifiel" may be a pointer to tile object--lt may contain the
address and a bounds fur the cbject, or it may point to the object
indirectly through an indirection table or a page table.

(?) The 1Itentifi(;t' may be a unique COt}, trwt i" permanently associated
\~ith the objEict. This is CJll,~d il unique identifier,

The poi nte.t' clpproach make~ it 5 il.lp 1 Ct' tu use the capabi1 ity to reach the object;
hOl'levet, it means that the capabilities hdve to be updated periodically. If the identi~
fiE:'l' points directly to thf~ object, then t II:U<;t be updated vihenevel' the object is moved;
if it points indirectly then some of this overttead is reduced, but tile capability still
must be updated when the entry in the indirection table is changed. If the capabilities
are not updated pY'operly, then a capability for one object may end up pointing to a
different object.

The second approilch, based on uniqut' identifiers, makHs it unnecessary to keep track
of capabi1ities and to update them, A uni:Jue identifier cannot be reused unless all
Lapabiiit'ie:, for the previous object have i)een destroyed. It is usually best not to re
lise identifiers. This lIleans that the uniqle identifiers must be about 50 bits long.
(Fifty bits allows the system to generate ,1 new identifif'r every mict'osE-cond for about
3~, years,)

The unique identifier approach requil~5 that the current address of the object must
be determined from the unique identifier e;;,ch time the capability is used to address the
object. This would be implemented by maintaining d larqe hash table to associate the
current address of objects I'lith the unifjue identifiers uf the capabilities, Associative
n?qisters would be used to bypass the hash table search for subsequent accesses to the
same object,

The disadvantages 0f the unique identifiers are the obvious space and time ineffi
ciencies that are inherent in the searching and mdlntenollce of the hash table. With proper
hal'dware to optimize thi s, it appears that the:,e disadvantages can be nl1'n;mi zed. In ex
change, the system is relieved of any need to modify the contents of capabilities (except
to reduce its access rights), and shared access to objects is simplified.

Unique identifiers have been used ;n most software-based implementations of capa
bi1ities. The capability-based addressing used in the Plessey System 250 and the Cambridge

21

--------------------7-----___________________ 1 -----

Capability System do not use unique identifiers. Appropriate hardware to support the unique
identifier approach to capability-based addressing has not yet been built. 8/ For further
discussion on the efficiency of capability-based addressing and on the use of unique identi
fiers in particular, the reader is referred to [Fabry 74, Neumann 75].

7. IMPLEMENTING SNALL PROTECTION DOMAINS

Capabilities provide one reasonable VldY to implement very f1exible protection models.
A (.apabil ity corresponds to a set of access rights for a single object in the protection
model. A protection domain, which is a row of the protE'ction matrix, ;s l'ealized as the
set of capabilities that are accessible to the subject. This is illustrated in Figure 10
vlhel'e part of a protection matrix is given on the left and its realization in terms of
capabilities is depicted on the right. Note that User A can call the editor and pass
access rights for Fill' X by passing a copy of the capabii i ty for Fil eX.

10 for Editor 'Proc. enter

'10 for File X File freati,write 1
t·· ~--'.-"'~'--~-- ---...- ~_""."'. __ " __
, I l If) for File Y IFile ! read,write :

£A'pJlJ31J..u}I~ 9£. EDITOR TEMPLATE

I

Figure 10 - P"otectiun Matrix Stored as Capabil ities

If capabilities are used to address all objects in the system, then the concept of
,1 [It'otecti on dOH/il in corrp.sponds tv an address--:;pace or a name space. Any object that is
not accessible to a subject cannot even be addressed by the subject.

j

This section desCt'ibes the implementatiGn of two aspects of small protection domains;
namely:

(1) Efficient svdtching b';ble{>n \Jrotection domains.

(2) Tho storaqp and maintenance! of protection domains in a way
that d 11 ow'> them to be es tab 1 i shed and cl1dnged eas ily--yet
under strict controls.

Tho potential rel 1abi] ity anti correctness uf a capabil ity-based implementation of
protection is discussed in subsection 7.3, and possible restrictions on the movement of
capabilities are given in sUDsection 7.4.

~TTl1the~BCC· b-ooo'-cOmputer, unique identifier~ I'/ere used in capabi1ities fOl" pages.

22

Wi
r

7.1 Capability-Based Implementation of Efficient Domain Switching

With capability-based addressing it is reasonably straightforward to implement domain
switching as part of the hardware implementation of the call and return operations. With
appropriate hardware support, the overhead to swit~~ orotection domains could be comparable
to that of a simple procedure call in existing computer systems. Furthermore, cail-by
reference parameters can be included in these cross-domain calls by including capabilities
as parameters. The called domain does not need any additional addressing information or
access authorization in order to use the passed capability. Since the capability is a
system-wide address for the object, there is no danger that the called domain can misin
terpret the capability. The capability also automatically provides access authorization
to the object and enforces limitations on the authorized access.

The most efficient implementation for domain switching is probably achieved by using
stacks [Neumann 75]. The process stack is divided into frames. At any pOint in its
execution, the process only has access to the stack frame associated with the most recent
protected procedure activation. In calling another protected procedure, parameters for
the call are pushed onto the stack, and the call instruction del imits the new stack framl~
to be used by the called procedure. Figure 11 illustrates this by using the example of
a call to an editor. For this illustration, stack frame markers are used to delimit the
stack frames. After the call to the editor, only that part of the stack above the highest
stack frame ~drker would be accessible. Note that parameters may be either capabilities
or data.

STATE OF THE STACK BEFORE
CALL TO THE EDITOR

CAPABILITY TO ENTER THE EDITOR

CAPABILITY FOR FILE Y

AFTER CALL TO THE EDITOR

CAPABILITY FOR FILE X
g STACK FRAME MARKER I~

CAPAB 1 LITY FOR FILE X CAPABILITY TO ENTER THE EDITOR

~ 'b

TEMPORARY DATA AND CAPABILITY FOR FILE Y
OTHER CAPABILITIES

STACK FRAME MARKER i CAPABI LITY FOR FILE X
TEMPORARY DATA AND
OTHER CAPABILITIES

~ STACK FRAME MARKER

Figure 11 - State of the Stack Before and
After a Protected Procedure Call

Nhen the editor issues a return instruction, the editor's stack frame is deleted-
except for any return data or capabilities. The return data is left on the top of the
stack (see Figure 12). If the editor has copied a capability for the dictionary onto
the stack, then this copy of that capability is automatica1ly deleted by the return
instruction.

23

_I

"····~"'··-=~·~~.,~·~~------------------------------1111Pili, ------------------------------:----...... --...... ,,..... ----=

RETURN DATA AND
CAPAB I LI TI ES

CAPABILITY TO ENTER THE EDITOR

CAPAB I LITY FOR FILE Y
CAPAB I LITY FOR FILE X

TEMPORARY DATA AND
OTHER CAPABILITIES

~ STACK FRAME MARKER j! ,,'
';.",

The prot"ct ion doma i n of the ca 11 ed prucedure is defi ned by the (dpahi 1 it i es that
are:

(1) passed to it on the stack;
(2) embedded in the procedure code; ,
(3) available to the procedure from a directory systen! (see next subsectlon);
(4) otht:rwise acrpssible to the procedure; .:.g., if they are stored in d seglilent

that is .lccess i b 1 e to the procedut'e.

Thus, when viewed in terms of its capubility-based implementation, the cre~tion.of a,new
protection domain for each activation of a I'e-entrant {Jrotected procedure 1S qUltt' slmple.

7 ') pir.e..c~tg~r.i.(~Lf.gI, t.he ~.Q!aye Al}d St:La,!'jll..9..0rJ:!!pdjJjJ .i.ti_e..?

In a protection system which allows a large number of independent protedion,domains,
the protection domains must be stored and maintained efficient~y. ~f ~ach protectlOn sub
ject had to store large l~sts of capabilities--one for each,obJect 1t lS allowed to ~ccess-
then the maintenance of all this infot'Piation could be a senous problem.

There must also be provisions for controlled sharing of capabilities between distinct
users of the system. If capabilities are stored in data segments, th~n .a~y segment can be
used to store and share capabilities. To maintdin control ?ver ca~abl11tles, most ~o~g
term storage and sharing should be handled by a system of dlrectorles that are speclflcally
designed for these purposes.

A di rectoryi 5 bas i ca 11y <1 tab 1" (If ~'ntd('., that associate user-chpserl nJll!e', vri th
capabil ities. Directories can haw threi~ distinct roles in a capaoi 1 fty-bas(~rJ ::.ysten::

(1) They simplify the $tora~1B iHld fllaintel1ilnCP of the information ~egu~red
to implement a protection matrix, and they preserve the cdpahl Ilt1P.~
of inactive users.

24

(::) They a 11 ow objects to be addressed by user-chosen names rather than
by the system-generated capabilities. They also make it possible
to alter the association between a name and an object.

(3) They can be used to solve the lost object problem. If it were
possiblu to erase the last capability for an existing object,
then that object could never be accessed or deleted. The directory
system could guarantee the existence of at least one capability for
every existing object [Neumann 75J.

II subject with access to a given directory is allowed to request the capability
associated with a given name. To facilitate controlled sharing, it is desirable
to haVE: a mt'!ans of a 11 ow; ng subj ects access to some af the capabil iti 83 stared in
a directory without necessarily al1o~ling them access to all the capabilities in
tile di,ectory. In Multics, this was accomplished by using access control lists
[Saltzer 74]. For a system where each program activation of e~ch user may be a distinct
subject, a generalization of this approach has been suggested based on the idea of locks
and keys [Lampson 71]. A reques t to the directory system requires both a capabil i ty for
that directory and a key. The request is fulfilled only if the key matches a lock that
has been associated v!ith the named entry in the directory. The key can be implemented
as a capability. In this case, the capability is simply a non-forgeable identifier which
is not meaningful to the addressing mechanism. It would be meaningful only to the programs
that implement directories.

Directories themselves are protected objects of the system, and a specific directory
c'-In bt:! ar.cessed only by a subject possessing a capability for that directory. Capa
bilities for directories can be stored in other directories, thus creating a network
structure among the directories. The network structure is usually restricted to be
partially ordered.

Di reL tori es are the primary I'epos i tory for long-term storage of capabi 1 iti es. Thus
dil'ectorius playa key role in storing and maintaining protection domains. (Each sub
ject l

:; protection domain includes all the capabi1ities that the subject can retrieve
from the directory system.) Directories are also useful as a way of modifying pro
lfKtion d0l1ld1ns \vt\en users shat'e access to objects. The stack handles the relatively
:;hort-teY'm modifications to protf'ction domains that occur when capabilities are passed
<1S pal'ameters duri ng doma in switches.

7.} Correct Implementation of Protection

Much of the computer security problem is due to ouy' inability to design and implement
ldrge computer systems that are correct. Correct implementation of the basic protection
mechanism is clearly c!'itical to all security. I-Jhile different objects may be given
different degrees of pro tecti on accOt'di ng to thei r re 1 at; ve sens iti vi ty, no obj ect
in the sys tern can be more seCUI'e than the bas i c protect; on mechani sm. Even objects
that are protected by redundant security controls are not safe if the basi c protecti on
and addressing mechanisms can be bt'oken or bypassed. Thus the correctress of the
protection mechanisms must be guaranteed with a very high degree of confidence.

The implementation of d very flexib 1e protection system is more complex and more
difficult than the implementation of a more rigid and limited protection system. In a
capab; 1 ity-based system the amount of hardware and software that supports the protection
mechanism is greater than that needed to implement a security kernel. However, capa
bility-based addreSSing simplifies some of the system software, and the small protection
domains make it easier to control the interactions between different system modules.
Furthermore, capability~based addreSSing automatically avoids many of the common in
tegrity flaws that have been found in existing computer systems. Fot' example, a
common integrity f1aw OCCUI'S when an address that is passed to a system routine is
changed between the time the system routine checks it for validity and the time it is
used. Similarly, the integrity of several systems has been broken because the system
gives special privileges to anything with a certain name, such as FORTRAN COMPILER.
Capdbil i ti es prevent t.hese types of i ntegt'i ty compromi ses from occurri ng.

25

_______________________________________ lIt _______________________ .-__ .. ________________ .''''~,~~=~~ ... ~"~,~.~''-"''

The implementation of capabilities using unique identifiers can also handle the
danger that a hardware error might alter a few bits in an address so that the addres~ can
now be used to access a different object. Such a change would USUd 11y be deter: ted by the
error-detecting codes that can be expected on any larger future systems. However. ~n a
system usinrJ unique identifiers for capability-based addressing, even if the harctwcH'("
does not detect an error, the probabil Hy that i' capabil Hy would be trdllsfol'med into
capability fgr anoth("r existing object could easily be made exceedinqly sillall--pr'obably
less than 2- 30 if the unique identifier is 50 bits long. 9j

It iss ti 11 a diffi cult task to implement il carabi 1 ity-based sys i;em with the
degree of reliability and integrity that ;5 de::,irable for'security. Nev8rtheless, if
the modularization and t'eHabil ity techniques disctJs',ed in Sf'ction<; 4 and iO are used
in the deSign of the system itsel f. then a very high level of cor,fidenre in the in
tegrity and correctness of the protection systems should be possible, This confL1ence
might be based in part on proofs of properties of the system. A system dt}sign that
uses capaMlity-bClsed addressing and is structured so that pt'oufs about it an,
feaSible, is reported in Neumann [75].

7.4 ControlLQytLJEe Movement dnd StOl::~~Le_gL.c2F.EliJi!:jes

If the addressing of all objects in the system is based un ~apabilities, dnd if
the protection mechanisms associated with this addressinq dre C(11 nect and rel idb~p, then
the restrictions of d protection matrix can be gUMantePd if each subject has aeec!s':. only
to those capabi li ties that COt'respond to entl'ies in th(l protection matni';, This h:PI'('~
S(lnts a major step toward being able to handle secudty flt'oblems. It !.ieans that. one only
has to control the movements of capabilities. This is illuch betteer than havin9 d vdi'iety
of poorly defi ned concerns about a lmos t everythi fig that hdPPE'tlS I·;i Uli n ttw comput.e (
system. Neverthuless. the problem of contr'olling the movement (wu copyin:J tjf capa
bilities is far fl'om trivial--especially since cdpabilitie~; dl'e d('siqm!d to he n!oveJ
and copied easily in order to support small prot(,ctic,r, ,1I)Irlctino;.

With a tagged ilrchHecturc~ Ivhere extra "tal]" flit', lJn (,deh 11,emol'Y \'Inn; are u:;cu !:~i
distinguish capabilities from data, it would bt: po,;,;lbl t,i intennix capatdl itij~s ilnd
data freely. This ha<; somE' advant<3ges for implemellt'inrl Il1ll1ti'''>egmC'l1t datil ,;t.l'uctw'<,;
with the capabilities used fnr cross-segment pointer">, N.>vH,thcles"., t,) lilaintain lUll

trol over capabilities, it may ce necessal".'J to pruvrnt capJtri1itl!,S from beillf] ::,tored
in HIOSt us~~r data segments. If (,rlough specific f:jl~i1itie5 iire; provided for indirpctly
rnanipuliltin';;l capabilities, thl'1; direct LliHl1f,tuli.ltiCitt nt' stor'~!9(' of thi~1:1 mav liot Lt'
necE";sary by most users of the '~ystem, I'lc stael' that hdn,n,>':, ·;:,wabil Hh:s l}:j;;,~,(~d ,:lS

f,laY'iilnetrrs, the directory Systt'Hl, il linkage rnanC19f;r, Cild die Ic:\tc'nded-tvpe .iianage)' (',m'
Section 9) may nldkf! direct manipulatior; of <.:rljJilbilities clnrv'CeS5Jr'y rOl' I::U",'. user'S.

For secul'ity it \'/ould t,f.; useful if ih~ <yStenl tourr! ql..,,1"ilitpc~ t 1lat tn:.- dirpc!,ur',Y
system is the only means to share cap<ill! 1 i tiP'> betl'w,:,p di:: li,,,;t uSer':', I!l' to ;,tun: theiL
for relatively looq period~ of tiTtle. Thi~, WOuld 'r'iV-p it flilJi:h :::";c~il't' tu liioni tor Ul"

~Jecurity status of the syst.em. It wouid lJe (hdu1 ,'Vt,'l1 if it Dilly iiPI~1il'd '~o Cd.Pil
bilities for especially sensitive: oiJju:t::o /\ddltbnill v,tc,,;tion ff?.'ltUrl'S that mi.ll.t
be used for this purpose are:

27->·-;th-{s~~a-ssurilDS--~th-at·Ct1i-e-rp ar(; less than f~-2[J t~xttln1' ;bjt~ct~) cit A.t~'y onn timE!. It alf.;(l
assumes that unique identifiers ilrp scattered thr'O\l~-lh()ut ':hl7 SPilC':; of po:;sibl~! tdt
patterns; for example, they could he genf'rated by u',irl'! .H! ,1ppr')~H'iatel ineilr con
gruent; ,11 sHquence (see [Knuth 69 J. pages 9-19.) ilote (\ 1 so that if the un i que
identifiers ilre generated u<;inq a 1inear' cOlll1l'uenti;11 S,)qUCilU:, tht'rl Ull' hdSh cHidl'ess
for d unique identifier IHdY be: taken as SOntC' subset of the tnt<; in the 'ident.ifiet'.
Furtherlliore, the requlat' pJUm'lls that O(Cul' in th~' findl ili r,':: o. \·urds Ijf!nerated by d
1 inear conyr-uential relation might allow O:;O!l1P Qptir;dzilt:ion it! di';tributing the unique
identifiers among hash buckf.~tS.

:'.6

a Capabilities restricted to the stack - Situations arise fairly
frequently where access rights must be passed to an activation
of some service routine, but the service routine should not be
able to preserve those access rights for later use. An option
probably should be available so that specific capabilities
passed as paramete:rs on the stack can be restricted from being
copied off the stack. This would not be so restrictive as to
prevent the capabil ity from being passed as a parameter in a
further procedure call; however, it would guarantee that no copy
of the passed capability could exist after the service routine
t'eturns. The right to move the capabil ity off the stack could
bo controlled as an access right of the capability.

o Restriction on luading or storing capabilities - If direct manipulation
of <;apabilities by users is allowed, then the right to load a capa
bility from a segment or store one into a segment should be distinct
from the right to read or write data in the segment. This distinction
is useful to implement provisions of the security classification models
[It'oposeci in [Bell 73J dnd [Halter 75].

o Interprocess conmunication channels - It must be possible to impose
restrictions on the direct passage of capabilities between processes
via interprocess communications channels.

o Revocation of capabilities - For some security problems it is necessary
to revoke access rights which have previously been given to another
subject. If all relatively long-term storage of capabilities is handled
by the directory system, then the directories might be able to handle
this problem. If not, then selective revocation of an access right
requires special features because the capabilities that represent
the access rights may have been copied many times. Access rights to
an object can always be-: revoked by deleting the object (after making
a copy of it); but thi s may des troy the access ri ghts of other subj ects.
It may be desirable to revoke the access rights of a single subject-
and of any other subject that received the access rights from that
subject. Selective revocation of capabilities can be implemented
by creating revocable capabilities that point to an object indirectly
through the main capabi lity for the object. The revocable capability
can thus be distributed to other subjects who can use it to access
the sha red obj ect. Access vi a the revocable capabil i ty can be effi ci ent
since associative registers can bypass the indirection on all .but the
first reference-: to the object. The revocable capability can later be
made i neffect i ve ~Ii thout disturbi ng the access r; ghts of thos~ subj ects
11ho possess either the main capabil ity or an independent revocable
capability. For a full discussion on the revocation of capabilities,
see [Redell 74a, 74b, Neumann 75J.

8. FLEXIBLE SHARING

In this survey, the discussion of capabilities haS focused on their usefulness to
promote security and reliable software. Nevertheless, one of the primary motivations for
capabil ity-based address ing is to faci 1 itat~ shari ng. .Til; s o~he~ mati vati on for ca~abi 1 ~ ty
based addl'essing is not covered here. (It 1S covered ln detall 1n [Fabry 74J.) ThlS bnef
section is intended to indicate that the approaches to security and reliable software
discussed in the rest of this survey are not only compatible with flexible sharing but also
enhance it.

Figure 13 indicates that capabil ity-based addressing supports f~ex;ble s~al';ng and
that flexible sharing supports reliable software. The arrow from flexlble.sharl~g to
j'eliable software is based on the argument tha7. software would be more rellable lf
programmers coul d more easi ly buil d on the work of other programmers rather th~n con
stantly reinventing thp ~~~el. (Reinvented wheels often turn cut to be not qUlte round.)

27

t
l
i

~~~~~~~~.-----------------.... -... --------------------'--"'--------..~ ... =~,.=~ ... ~.- .. -,_.",-,,,--_. 



CAPABILITY-BASED 
ADDRESSING 

SMALL PROTECTION 
DOMAINS 

1 
--~) EXTENDED-TYPE 

OBJECTS 

------~ 

, 
~ 

flEXIBLE SHARING 

Figure 13 - Flexible Sharing 

SYSTEM 
SECURITY 

.-1' 
r , 
I 

RELIABLE 
SOFTWARE 

In general, sharing is opposed to both security and reliability--it is especially 
opposed to security. The simplest way to improve system security is to reduce the amount 
of sharing. For example, an especia~ly sensitive applications program can be run on its 
own dedicated computer. Unfortunately, shal'ing and security are often concurrent require
ments. Indeed, if there is no requirement for any form of sharing--not even resource 
sharing--then there ;s no need for internal system security. In many situations--especially 
situations involving privacy concerns--security is needed in the presence of very flexible 
sharing of both resources and data. 

Reliable software is also more difficult wnen there is extensive sharing; in partic
ular, time-critical sharing of data can result in deadlocks or inconsistent data. On the 
other hand, the sharing of program modules could lead tJ more reliable software. The idea 
of building programs by piecing together modules from a program library is not new; however, 
it has always been difficult to make this idea work unles~ the modules perform isolated and 
eas ily definable functi ons. The diffi culty occurs vlhen one tri es to integrate the different 
modules. In particular, it has been difficult to develop useful library modules that deal 
with complex data structures. 

Despite the above difficulties, a building block approach to reliable software may 
soon become feasible. Recent evolution of the concept of extended types is leading toward 
a unit of modularity that is more general and easier to integrate as part of a larger 
prograrn. Furthermore, these modules can be used to specify and irnplement common data 
structures such as stacks, queues, trees, and symbol tables. Such a module can be quite 
general; for example, a single module that implements trees may be used to obtain a tree 
of integers, a tree of stacks, or a tree of any other data structure. Furthermore, the con
cept of a generator, as is proposed in [Wulf 76b], allows another module to iterate over 
the el ements of any of these trees wi thout olaking the other modul e dependent on the i nterna 1 
workings of the tree module. Two other concepts interact with this approach to program 
modularity and re-enforce it. First, very flexible protection ;s useful to keep one module 
from becoming dependent on the internal workings of other modules. Second, specification 
and proving techniques are more effective in conjunction with this new approach to modular
ity [Wulf 76a]. To achieve reliable software, it is clearly important that modules obtained 
from a library be fully specified and verified. 

The description of extended-type objects in the following two sections may give the 
reader som~ additional insight into why the building block approach to reliable software 
coul d become a real ity. For a more thorough treatment of some of the supporti ng ideas, 
the reader is referred especially to [Wulf 76a, 76b, 76cJ. It should be noted that this 
approach to reliable software is arising mostly from research on programming languages; 
and the )'equi red support for these new concepts can be handl ed 1 arge ly by a compil er; 
however, capability-based addressing would extend the usefulness of these concepts and 
facilitatE their implementation. 

28 

9. EXTENDED~TYPE OBJECTS 

As indicated by Figure 14, this section introduces the final concept covered by this 
slJrvey. It also explains hol'l small protection domains and capability-based addressing 
support the implementation of extended-type objects. 

SMALL PROTECTION 
-----~ 

SYSTEM 
DOMAINS SECURITY 

",'?f 

l >< l' 
'" I '" :~ 

'" '" *' 
CAPABILITY-BASED ~C'i'~ EXTENDED-TYPE ) RELIABLE 

OBJECTS SOFTWARE ADDRESSING 
..... ~1 .... 

"" ..... ."" 
"- ."" ..... 3 ... 

."" 

FLEXIBLE SHARING 

Figure 14 - Overview on Role of Extended-Type Objects 

9.1 ~ackground on Typed Objects 

The previous discussion of capabilities focused on the addressing and protection of 
information in memory. A protection system is simplified if I/O devices are ~ddressed 
and protected in the same way as memory. For exampl e, in the PDP-ll, 110 devl ces are . 
addressed as if they were words of memory, and they can be pr9tected by memory protectl0n 
reoisters. This simplifies and unifies the protection mechanlsms; however, 1n t~e P~P-ll 
the flexibility of this protection ;s limited since the protection of an I/O devlce 1S 
not independent of the devi ces with nei ghbori ng addresses. 

A capabil ity can easily be used to ad~ress and protect ~ndividual 110 dev~c~s. 
When a capabi1 ity is used to address I/O devl ces, the access rl ghts of the capabll1 ty 
are interpreted differently for each different type of I/O device. For example, a capa
bility for an object of type "tape drive" might have "rewind".as one.of its modes.of 
access, while a capability for a card reader would not recognlze rewlnd as a posslble 
access right. lQI 

Capabil iti es can be used in an even rnore general way to addre<;s and protect all 
objects in the system--not ~nly memory and I/O ~evices ,but ~lso software-cI'eated 
vi rtua 1 obj ects. For examp, r~, procedures and dl rectones may both be lmpl emented as 
segments of m(:t11ory; ilowever', they are different f)'om oY'dinary.se~lments because.t~e pro
tectable modes of acc('s!' tt.' them are different. Procedure obJects have an a~dlt19n~1 
mode of access not applica~de to data segments; namely, uen~el." access: It 1~ crltlcal 
to security that this operation be separately protected. Slmr1arly, ,dlt'ectones must 
Le recognized by the protection mechanisms as a different type of object. even though 

LQ/ Many systems wilT'do strange things in response to requests for undefined actions suc~ 
as "rewind the card reader!" Such requests can frequently be used to break the secur1ty 
of a system [Edwards 73J. In a system based o~ capabilities and ~y~ed objects, it is 
not even possible to formulate such a request 1n terms of a capablllty. 

29 



the hardware does not distinguish directory segments from data segments. Operations such 
as add an entry, delete an entry, and change the protection of an entry should all be 
5i"pariltf.dy pr'otectable opet'ations on a directory. These operations on a directory are not 
reduci~le to the usual operations of read, write, append and delete for a data segment, and 
the prutection systems must be prepared to handle these different operations on dit'ectories. 

In 1II0'>t systems thE! operatiolls on directories are protected by ifllplementinq t;~i:;m 
d'; part of the operating system. In this case the operations on dh'ectories are systow 
cdll:;, and the directories themselves are implemented as system data. T!1US, the imple
llJ·'ntation and protection of directories is accomplished entirely by the system software, 
Di n:ctOt'ies are a 'wod example of the way additions to thL' system software are often used 
to ':.><tpr,(j the protpctiOri system and ,nake it more flexible; howevl:lt', directories could a1<;0 
bp implp"~nted a~ one instance of extended-type objects. 

A syst.em Uli.lt directly supports many different object types \'Jould be baroque arid 
cPi'lplpx, Before asking how many different object types a system should support, one 
shuuld first ask whethpr there has to be d fixed set of object types and whether different 
type', 'Idve to be supported and protected directly by the system. Possibly the 'System 
';hoI11d just provide a mechanislii foy' creating, dt~fining, and protecting new types, Such 
d IlIcchdni :;,m has two pri nci pa 1 advantages: 

(I) 

( '" t.; 

It ",1 ir,dnates th~i need to incorporate into the system tht' code 
and data which support different types of objects. Even the code 
and data which implement the directory systems could then be inde~ 
pendent of the r0st of the system. In fact, there would no longer 
be a cle,n' Jistinction bet\,ief~n "the system" and app!icr1tion~. 

lhe protection system can he extended to support applications pro
grams directly. If applications programmers can create new object 
type~, then they can extend the protection system and protect 
ubjects in \</ays thdt are tailored to a specific application. This 
would greatly increase the flexibility of the protection system, 
and it \'lOuld provide d vel'Y natutdl sGlution to il I'iide t'anq2 of 
protection pY'Oblem£>. 

(Jbjects of a type that are not directly implementt:d by the system an,' called e::tended·<type 
ob.it:r:ts [Gray 12, JOlles 73, Hulf 74a, r.(~ITie 74, Neumann 75J. 

\~ulf et a1. [~lu1f 74a] give an example of a system for creating, flluintaining 
dnd accessing ~peci~l bibliographic files. They describe a set of reliability and 
5Pcurity con~erns that arise nat~rally, and they argue that these concerns can most 
oClsily be solvl~d by cr'eating cl new extended type and then having bibliographic files 
be ()llj8cts of that extended type. As another example. in a payroll system it might 
bf' desirable to pt'ovide distinct access controls for operations such as: modifying 
saldry, ;-'eadinq salary, changing an address, and totaling all salaries. These 
access controls can he ~tovided easily if the payroll files are declared to be objects 
of a new extended type. . 

Much cut't'ent t'esealt:.h on operilting systems stl'uctUt'es iH!d un pro9t'dri,lilin~j tanBud:Je'S 
is focusing 011 general1zations of the concept of a data type. :hp term "cxtend9d M tYPf 
ob,;ects" is taken ftom work on operating system strllcturf's. ihc: \'!;wd "extendui" is adJect 
to elllphdsize th, t new typ,,:; clt'e definable and that the protectirn systelil can be extended 
to ihltldle ihl'SIl Ilevil.v defim~d tYPt's. Hhen it is 110t needed for' el'lpf1<lsis, the w,ml "ext~nded' 
can be dt'opp'!d \"Jith no change in meaninq. As discussed in :SectWt1 10, t'cc(mt l'eS(liH'cil on 
proVI'anuli; fly I t1n0udgf~<; tHiS 1 ed to il 5 imil ar concept, but ,wite d 1 f{:Ci'f.=nl; ternli nol 0Y.Y is ottep 
u,>pd. 

From the viewpoint of this survey, a type is defined by the set of opel'ations thdt 
are dllowed on objects of tha+ type. This vi el'l is consistent with most research on 
qentH\11iL<.){j data types. Thus, se!4li1ents anel dil'ectories dre different types of objects 
becausl! diffet'Cmt opetations are pus:;ible on them. (These operations often correspond to 

30 

----------------.~-------~ 

the,modes of acc(~ss to the object; although many operations could be associated with 
il ,,1 n\J1 e protectab 1 e mode of access.) 

An f)~t.ended type is df)fined by specifying and implementin9 a set of operatioll~; appli
cable to ?bJect~ of that type. These operations should include operations for r::redtinq 
dnd deletlng obJects of the type All these operations could be implemented as softwa\'(! 
prOCedllri.:s. These operations Ilormally have a parametel' that indicates the obir:ct on 
whiLh the operdtion is to be performed. ' 

. Obje~t5, of a n8l1 type can be created once the type has been defined. nH~St) ob-
JPcts, a:e. dlstln~t. from the type itse~ L III The objects may he viewed abstrac:ly Silliply 
dS pnn:1tl~e entltl:s thilt can be marllpulated only by the operations of the type For e;<~ 
ample, a dlrectory lS (h~fined as an entity that a1lows thf! oper'ations of addinq ilnd de-
letill[j entries, chanyiny the accessibility of iHi entry, ('tc. '. 

Obj~cts must alsc> hay£! (lrlilnp1ellientation 0)' an undf:rlying representation \'/hich is 
di:fint=d in ,erms of other" objects. The representation of a directory may bp a linked 
1 ist :n a se~men~. n.le implementations of the operations on a directory ll1anipu1iltr" 
the llnked llst HI thlS segment. Ideally, the subject that initiates this oper.ltinrl 
does not need to know how the dil'ectory is represented and can take an abstract V;01'J 

of it. rurthermore, if the operations on the typed object are to be ind;vidu(\11y Pt'o
tectc?d, then the subje~t that initiates the operation to add an entry to a direct.o!",
must not be allowed wrlte access to the segment that implements the directory. lin t.(' 
access to the segment must be available only during execution of the proLedu!'e rnat 
implements the add opel'ation. 

Extended-type objects <ire implemented or represented in terms of flIOr'<" pr-imitiw! 
objec ts""seglllent~, I/O devi ces, at' objects of other previ oU5ly-defi !led types. The 
t'xtended-type obJect should be thought of as distinct from the objects USCl t,~ 'c:~'~ 
i'f:Sent it--the representation exists at a different "level of abstraction. IJ In 
particular, subjects that initiate operations on an extended-type object should 
norma lly not ha~e di ~ect access. to the representa ti on. The va I ue of protecti ng 
the rep~esentatlOns 15 not just for security; as discussed in Section 10, the 
ptotectlon also separates distinct levels of abstraction and protects the repre
sentation from undesirable modifications by the code of other modules. 

9.3 T_~ Ill1pJernentjtio~.£..n..s!.J:!..9.lectio!!...-of Extended-Type Objects 

Only the opet'ations of an extended-type object are to have access to the objects 
that are used to imp!Gment or represent the extended-type object. Thus, each call 
to one of the operat10ns requires a domain switch. This domain switch is straight
forwa!'d I-Ihen there is only une underlying object that contains the representations 
of the extended-type objects. In this case, the operations of the extended-type Illay 
~ave t~e ~ccess right~ for the underlying representation, and all that is !'equired 
1S a smpte domaln sWltch. In the more general case there may be many objects of the 
ex!ended typ~ (e. g., many di rectod es) and each may be represented by its own under-
1 y1 119 object \ s) (e. g., a segment that represents a s i ngl e di rectory). An ins tance 
of an operat; on does not need access to the underlyi ng representa ti on for a 11 the 
objects of the type, it only needs access to the representation of the object that 
it is to opel'ate on. If each ins tance of the operati ons had access to the represen
tation of all the objects, then the entire burden of selecting the riqht represen
tation would be placed on the code of the operation, This might be dangerous for 
security. It is preferable if the access rights for the object that contains the 
representation object are passed to the operation as a parameter. The problem l'iith 
this is that the caller does not have the right to access the representation either; 
the caller only has the right to call the operations on the extended~type object. 
Three methods to handle this problem have been proposed in the literature: 

IF The new type-liiii}7be--treated as a distinct object of the protection system. This allows 
the Silme protection matrix to control access to the type itself; in particular it can 
control modifications to the operations of the type. The type itself then has a type 
l'ihich may be taken as a special system-suppOl'ted primitive type called TYPE [Wulf 74a]. 

31 



(1) Ampl ification - The HYDRA system [Jones 73, Hulf 74aJ allows a 
called procedure to amplify the access rights of certain 
capabilities. Amplification allows extended-type objects such as 
directories to be handled along the lines of the following example. 
A subject that has a capability with "add" access to a specific 
di rectory, ca 11 s the "add" operati on and passes the capabil ity for 
the directoryo The add operation has a special "template" capa
bility that allows it to amplify the access rights of capabilities 
for objects of type "directory." In this case the template capa
bi1ity would allow the add operation to obtain read and write 
access to the directory. (Amplification of access rights ;s actually 
more general than just what is needed just to implement extended-type 
objects.) In HYDRA, domain switching and amplification are done 
entirely in software; ideas for a hardware supported implementation 
of amplification are discussed ;n [Ferrie 74J. 

(2) Indirection - The Plessey System 250 [Cosserat 74J allows a procedure 
to be called indirectly through another object. This provides most 
of the features of extended types. To perform an operation on an 
extended type object, the caller wquld use an indirect "enter" right 
for the object. This transfers control to a procedure that implements 
the operations on the object. Using this indirection facility, 
directories could be implemented as follows. Stored at special 
locations in each directory are pointers to the code that implements 
operations such as the operation of adding an entry to a directory. 
To add an entry to a directory, a subject can use a capability with 
indirect "enterll access for the di rectory, and control is trans ferred 
to the procedure indicated by the pointer in the directory. This 
approach does not provide separate controls over the rights to add, 
delete, or read an entryc 

(3) Extended-tyee manager - In the system designed by Neumann et al. 
[Neumann 75J, there are different capabilities for an extended-type 
object and for its representation. The mappings from capabilities 
for obj ects of extended type to capabi 1 iti es for thei r representati on 
are maintained by a special module in the system called the Extended
Type Manager. This module returns a capability for the representation 
object if it is passed a capabllity for an object of extended type 
and if the request is made by an operation defined for that type. 

An efficient implementation of extended-type objects clearly requires small pro
tection domains with very efficient switching between protection domains. A domain 
switch is required with each call to an operation on an extended-type object. Capa
bility-based addressing is useful for implementing extended-types because it pro-
vides a uniform and general way of naming and addressing all objects in the system. 
With capability-based addressing, extended-type objects can be addressed and pro
tected as if they were primitive objects. 

10. TYPED OBJECTS AND PROGRA~l MODULARITY 

The general concept of a typed object can be used as a primary means to decompose and 
modularize software. Section 4 discussed the value of protection in a well-structured 
and modularized program. This section discusses the use of typed objects to obtain that 
structure and modul arity. Many recent approaches to structured programmi ng i nvo 1 ve a 
generalization of the concept of typed objects. An operating system with an efficient 
extended-type mechanism would facilitate these approaches to structured programming. 
Indeed, the assembly language of such a system would have many of the data structuring 
features that are desirable in a high level language [Cosserat 74J. 

32 

,j 

The role of this section with respect to the general terms of the overview is indi
cated by Figure 15. Sin~e small protection domains are such an integral part of extended
types, many of the discussions in this section also apply to the arfOW from small :,I\'otection 
domains to reliable software. 

StvlALL PROTECTION - - - - - -7 
//~ DO~1~INSx -... 

/ / I -... 

// ~ ";-} 

CAPAB I LI TY-BASED _______ -7 EXTENDED-TYPE 

ADDRESS I NG ... OBJ ECTS 
..... ..... , 

'.:::\ 
FLEXIBLE SHARING 

Ml,%,N;: h«' ''':;:1> 

~ 

SYSTEM 

SECURITY 

l' 
I 
I 
I 

RELIABLE 

SOFTWARE 

Figure 15 - Extended-Type Objects to Support Reliable Software 

10.1 ~ack9round--Horizontal and Vertical Nodularity 

A careful statement of a programming problem usually leads to a decomposition of the 
problem into a number of separate tasks. The decomposition of a p)'ogram into distinct 
problem-level tasks is called horizontal modularization. Unfortunately, horizontal 
modularity alone does not lead to an adequately modularized program for the following 
reasons: 

o The decomposition into problem-level tasks usually does not divide 
the progrant into small modules. When the problem is described in 
user terminology, the smallest units or tasks which are meaningful; 
often turn into quite large programs. An input module, an input 
validation module, or an update module are meaningful in user terms, 
but they are only a first step toward dividing the program into small, 
independent moduleso 

o Different problem-level tasks or modules often need access'to common 
information. If the data structures for this information are declared 
as g1 oba 1 to the enti re sys tem, then there ; s 1 ittl e hope that modul es 
can be independent of each other or that the interactions between 
modul es can be cl early dl'lfi ned [Wulf 73J. 

o Ideally, a module should only deal with one level of abstraction. A 
module may implement operations that are meaningful at the user 
level, or it may deal with the idiosyncracies of the ,i'il;'.hine, or it 
may handle some intermediate concepts or data structure~; but it shou1d 
not implement concepts frcm different levels of abstraction. A module 
is very difficult to comprehend if one program statement implements 
a problem requirement and the next statement handles some subtle 
efficiency concern arising from pecularities of the hardware. 

33 

___ ' ___________ ~'__=~~ ______________ ... __ __.. __________ _'__' __ ~~=~===~===~.~ ........... = _ __= "_c,~-"'''·,'':'':..'".· 

" 



The division of a program into modules according to different levels of abstraction 
is called vertical modularity. Both horizontal and vertical modularity are needed if 
modules are to be small and clearly defined, and if significant benefits are to be obtained 
from protection between modules. Vertical modularity is closely related to the concept of 
hierarchical structure; however, the latter term has been used with many different specific 
connotations [Parnas 74]. The term vertical modularity is used here as a general term that 
does not connote a specific approach. 

10.2 !Xogramming Language Support for Modularity 

Verti ca 1 modul a ri ty of programs is ha rd to achi eve because CUl'rent computer sys tems 
and programming languages do not support an appropriate unit of program modularity. 
The procedure is the most common uni t of program modul arity and is supported by mos t 
computer systems and programming languages; however, as a unit for vertical modularity 
it is often inadequate because: 

(1) The A 1 go 1 scope of va ri ab 1 es ru 1 e is wrong when pl'Ocedures a re used 
as the unit of vertical modularity. Var'lables generally do not need 
to be global across different levels of abstraction, A unit of ver
tical modularity should not automatically have access to variables 
declared at higher levels of abstraction. 

(2) A procedure cannot easily preserve i nformati on between SUCl.l'SS iva 
ca 11 s, and trlus it canrlot be used as a unit of modul arity to 2n
capsulate a data base. Furthermore, it is, at best, difficult fOl' 
D procedure to gather statistics about its use, or to incorporate 
redundancy checks based on the consistency of succf~ssive calls to 
the procedure. 

(3) A unit of modularPy often needs many entry points. It is alvkward 
to use a parameter to obtain the effect M wany ('ntry pO'ints. 

Rr;cent research on programming languages has addressed the problem of providing 
a ilIore fjenerally useful unit of program modularity; for example: 

o The class concept was introduced into Simula 67 [Dahl 68] as an 
aid to modularity. The main features of a class are: (1) it 
can deft ne datu objects that are normal 1 y preserved between Gil: 11 s, 
and (2) a class consists of several procedutes cr entry points. 
Thus, a class defines a set of operations each of which lliay 
operate on data objects. The original version of a class did 
not protect its data objects from direct access by other parts 
of the program; however, more recent vers ions do i nc1 udE! pro
tection [Palme 74J. 

o Liskov and Zilles have developed the language CLU which im
plements a concept called function clusters [Liskov 74, 75]. 
These clusters are similar to classes except that the represen
tation of the cluster1s data objects is not accessible from 
outside the cluster. Clusters implement the same idea of typed 
objects that was discussed in Section 9. Enforcement of the 
access restrictions is done by the compiler. 

o The language Alphard has incorporated a concept called a form 
[Wulf 74, 76a, 76c]. It provides the featul'es of a clu5ter 
described above, but is more general. For example, a form can 
accept parameters that allow only linrited acces~ rights to the 
object passed. Alphard also introduced the concept of abstract 
sequencing operations that allow a program to iterate through 
a data object without making the calling program dependent on 
the length or structure of data object [Wulf 76bJ. 

34 

11 Pa rn~s . hdS proposed a i;l(}thr,j for decomposi ng progl'ams into ri gorous ly 
speclfwd ~odules [Parnas 72a. 72b, 72cJ. He suggests that a module' 
Cdn be def1ned in terms of a set of operations and a set of value 
functions '>upported by the module. (Value functions return a value 
but do not change the state of the module.) Parnas makes sure that 
the representation of the modulels state (or its data) is hidden 
from Ot)lCl' lilodules At the level of specifications he accomplishes 
this by not. defininq the repl'csentation at alL The module is de
firwd dbstr'olctly by defining tho fdfect of all the operations on the 
value-returnil!(J functions and by defining all error conditions, 

The search for the lfIO';t effective unit for program liIodularity is still goinll on; 
however, fnsed on rl'CI'nt. case,ltch trpnd';, it seems sdfe to conclude that a unit of 
11lOdularit~ "hauld hd',e the tllree proper'tins lhtect belO\>I. Thes(, three properties cor
respond (HI reverse >Jlde:!') to tll'~ tht'ce r(~asons vlhy a urucodure is not adequate as a 
unit of vertical modularity. 

A modulu can have many operations or ent.I" points which can 
be called froIl! other modulo:;, 

A module Cim have i1 "p1; nt data ob.}ects (or a state) I'lhich 
1'; presnrw!d betwN'tl S~l\:;ce:;: ive OP£H"ltlol1s. 

(.j) Interactions between mudules can be explicitly defined ilnd 
ri~lOr'()!lsly cuntroHed. In pal'ticular. the j"erJresentation of 
tliQ Udtd objf~l..:ts illaintained by the modulQ ;5 not dil'ectl.y or 
i1lJttJl1~d t kal1 y rlCC('::;:~ i b 1 e by othet' 1110du 1 es . 

Lilnw units ot fTIOdularit,y have all-lays had the fin,t tl"lO of these properties. The 
clflss cr:n~:~~pt: from SH:1ULA extended those two pn)perties to smal1 units of modularity 
by Pl'lJVlll1l!(j pro\jI'dltlll11 nq lilngudge ;:;UPPOl't fo\' "hem. The th; rod property adds protection 
tt) these units of modularity so that interactions bet\~een modules can be explicitly 
defin~d and controlled. 

Tf'l'n:inoloqy--and th~~ undfll'lyinq r:oncepts~-in tt:is subject area 15 still in a state 
of nux, Tho tet'llt "·::.··tend0d tYPi:!" arc..sc· from work on operating systems. The term 
"ilb~;traGt data t:/pe" is a fail'ly jemeral tenll that is nOl'I widely but not universally 
u',ed by the PY'oqriu,;niin'J hn9U<l'j!: CCf'~nuni t:y. Furthermore, th;> following terms h'::;vB all 
been used ,:,itli an oqu1vlIc;Lt iiI' <; i!I;'ilUl' lllleClning: class, cluster, form, opaque type, 
type, 3paC0. HlodG, m()(Jll1c, aL';tral .. t li.3Chi'lI:!, vi\'tual Ilirj.;hinH, and procedure. 

t-lOdlll iH'ity achi ("it'd r;y (!/ t'2nd'.:d tYiJes is usehd for sQft\~are l'I:? 1 i abi 1 i ty in several 
\-Wi:; tfJat hilve not ,yf't [)"f'[l :IIPntioned: 

(I Pr'()of:; - Tlw ·j!l:~.lenl'tl;.d1.ion of d pt'o~jral1l as J hierarchy of typed objects 
SililPlifil:'; J rH'Il~lf l,t correctness [HuH 74, "16a, Robin;,un "15J. 
r·1w;h (1f t.he c;il'1piiflcdtion comes because assumptions about the content 
and s::t'uctUl'e elf' tht l,,~pr'esentation of a typed object depend only on the 
COI"ru:tne55 of ttl? opel'Jti on~ of that type--they atE' not dependent on 
the a~tions of any oth~r modules. 

(j R0dundancy - The tYPQ is a natul'a1 unit in which to incol'porate redundancy 
check",. The ability to preserve information netween successive operations 
is important t;) iraph,ment thi s redundancy. 

o EI'ror detection and recovery ~ The definition of error conditions is 
r~latively easy when it is done as part of the specifications for a 
type. Recovery techni ques can be structured by defi ni ng appropri ate 
err'or calls and error r'cturns as pay't of the external interface of 
the modules [Pamas 72aJ. 

35 



o Modifications and maintenance - Since the representation of typed rb
j ec ts is hi dden from other modul es, the representa t i on can tJe cha;,ged 
without affecting other modules. Programs can be implemented quickly 
as a hierarchy of types, and then the more critical types can be tuned 
for eff; ci oney [L i nden 76J. The filct that the dd ta s tr'uctu\'es cati be 
modified I'lithout affecting any modulI' except the one that maintains 
that data structure is criticdl to making this optimization work. 

o Security - The exten<Jed type is a useful unit foy' security as discussed 
in the n~xt sectio~. 

11. CONTROLLING Arm MorH lORING ACCESS TO OBJEC is 

In orcier to enCOut'a~le ~Jl)od pt'OHI'dl!1!lIing practices and to SUpPDI't the conu:r,t of 5i,1<111 
protection domains, protection mechanisms :;houl.~ not ;lrevent a progt'am from delegatinq 
subtasks to other protected procedures. lhus, a progt'a~ should be able to pass al~ Of its 
own access rights to another protected pr'ocfldw'p. On the other hllnd, there (1)'e ,:,ituatiotls 
where one user of the systE'nl must be prevented .from H1okin9 access riqhts avai la.b1ew 
another user. 

Capabilities make it ed~y for one subject to pass dCL8S5 rights tu any othrr jubjPc. 
They directly implement a reasonably complete set of dis"t'etion,)ry Pl'otc.'ction tl1~>rhilnism.>. 
Discretionary protection mechanisms a110w each subject, at its own discretion, t['l deci,je 
which of its own access l'ight~ at'~ to be given to other subjects. There is also a n~ect fur 
non-discretionary controls so that ccrtain security f-cl1,:ies eMt be (>nfi)n.:ed without dp
pendin£) on the discretion of other user" of tho system. Extended types prt1vide " <.:onvC!!lient 
way to implement many non-discretionary controls. FigUlf: If} indicdtes that this ~ection 
deals with the relation between exter,ded··type ubjects and <;ystem ,,(~curity. t'lore "pt~cif1t!lly, 
it discusses non-discretionar'Y protection mechonisms--'incluuing classification sY'items. It 
discusses bO~.h (!xtendej types and other means to support (,,),,-1); su'd i (lrldl'Y Lontro 1s. 

CAPABILITY-BASED 
ADDRESSING 

.... .... ..... 

SMALL PROTECTION 

DO~iAI NS 
I 
! 

w 
_ ~ EXTENDED-Tnr: 

. OBJECTS 

'~ 
FLEXIBLE SHARING 

... 

SYSTE~'l 

SECUR lTV 
~ 
I 
! 

RELIABLE 

SQF1,'iARE 

Figure 16 - [;:t.ended-Type Objects to SUpp0t't Sy·;t.ems St:lulity 

11 . 1 tj~:t!l:p.i~.geJJo-"'@!J'.j:ontn) l.~, 

The most basic way to enforce non-discretionary controls is to I'estl'ict the users' 
access rights for objects; however, simple restriction of access rights does not provide 
all the desired controls. Fo!' example, it is often desirable to monitor the wayan object 
is being used. SilJilar1y, it may be desirable to prevent one user f!'om giving his access 
l'iljhts to ,1nother user. These examples can be handled easily by using extended types. To 
monitor' and control access to certain objects, a new extended type is created for the 
obj(lcts and thp operations of the type are programmed to enforce Ivhatever controls are to 

36 

" 

be main~a1ned. If accesses ~o t~e objects are to be monftored and audited, the monitoring 
~nd aud1t1n~ co~tro1s are bU1lt 1nto the operations of the new type. If redundant control 
1S t~ b~ ma1~ta1ned over the set of authDrized users of the objects, then a check on the 
user s 1dentlty ~an be prograr:lmed into the operations of the type. Thus, as long as the 
users are only glven access r1ghts to the extended-type object, control can be maintained 
over ~h!c~ users can access the object even if some of the users give away copies of their 
capab111t1es for the extended-t~pe objects. In general, extended-types provide a natural 
way to enforce the forms of medldted acces" discussed in Section 5.3. ' 

Hith the extended type mechanism, u:;ers can be given very limited access rights that 
a 11 ow them to pe~for~l on 1 y prepro~ram~led operati ons on objects. Furthermore, addi tiona 1 
controls and.moTl1tonng can be bU1lt lnto the programmed operations that are allowed by 
the access r1ght: I~ most cases, d new type does not have to be created just to handle the 
con~rc! 1 ~ and monl ton n9. They can be embedded in the opel'ati ons of an ex; s ti n9 type 
def1nlt10n. . 

Hon-discretionary contr'ols implemented by using extended types involve some additional 
ov~r~e~d to ~arry ~ut t~e programmed checking. Unless tne object to be protected is a 
pr1m1~lve obJect w1th slmple operations, the additional time required for the protection 
check1~g should not.cause an unreasonable increase in the time required to carry out an 
operat10n on the.obJec~. If n~ny rel~tively primitive objects, such as segments, have to 
be protected aga 1115 t nn s use by author] zed users, then it may be necessary to use a more 
centra hzed system of non-discretionary controls involving a security classification system 
as \'Iell as system monitor'iny and auditin9. 

11. 2 ~es~jJ'y"j:J2si.!J.fat1.Q.!l§~.telni 

. When non:d~scr~tionary controls are to be imposed in a centralized way, they usually 
~nvolve a class1flcat!On system. In a classification system, all users and all objects 
1n the system are ass1gned a classification. A classification may be thought of as a 
security tag. The classifications may have d partial ordering relation between themselves 
so th~t they t~k~ on a l~t~ice.str~ctu~e. Then any user is allowed access to an object 
only 1f the user s class1f1catlOn 1S elther the same as the classification of the object 
or else is higher according to the ordering of the classifications. 

~ The ~asic l~li1itary classificati~n system forms a very simple lattice with all points 
or t~o lattlc~ be1ng ordered along ~ slngle.lin~ (see Figure 17). In this system, a user 
who 15 author1zed access to secret 1nformat1on 15 also authorized access to confidential 
and unclassified information, but not to top secret information. A corporation that wanted 
to separ'ate information according to different departments might use a very broad classi
fication lattice such as that in Fiqure 18. In practice, the classification lattice would 
have a more complex structure. 

Fiqure 17 - Simple Military Classification Lattice 

37 



FUTURE 
PRODUCT 
PLANNING 

ACCOUNTING 

MANAGEMENT 

PERSONNEL 

OPEN 
INFORMATION 

INTERNAL 
AUDIT 

Figure 18 ~ A simple Classification Lattice for d Corporation 

PAYROLL 

The problem of enforcing a non-discretionary classification system is more complex 
than it might seem at first. It is not enough to control the access rights that are 
passed from one user to another. If one user (A) has access rights for an object, and 
if the classification system is to pr~v~nt another user (B) from accessing the object, 
then it may do little good just to prevent A from giving the access rights to B. If A 
wants to subvert the classification system and allovi B to access the object, then A can 
bypass restrictions on passing the access rights if he simply agrees to access the ob
jPct on behalf of B; that is, A can set up a service whereby A carries out operations 
on the object whenever B requests them. 

In general, if A has access to an object, and if B is to be prevented from accessing 
it, then either A must be trusted, or else all communication between A and B must be 
forbidden,. If A, and all the programs executing on behalf of A, is trusted, then we 
are back to a discretionary system. If one is only concerned aboJt inadvertant error 
on A's part, then it may be useful to prevent A from giving access rights to B; 
however, in order to implement rigorous non-discretionary controls, it is necessary to 
control all the potential communication channels between A and B. If the security con
cern is only that information from the object must not be disclosed to B, then only 
communications from A to B must be forbidden; and, conversely, if the object only needs 
to be protected from modifications originated by B, then only communication from B to 
A must be cut. 

Classification systems are used primarily to protect information from being disclosed. 
It follows that, as long as users (or their programs) al'e not trusted, a user job should not 
be allowed to write Or modify an object with a classification lower than the classification 
of any object previously read. The problem is that such objects could be used to disclose 
information of the higher classification. A non-discretionary classification system was 
incorporated in the ADEPT-50 system [Weissman 68], and classification systems have been 
formally defined in [Bell 73J and [Walter 75J. 

In a capability~based system that supports extended-type objects there are several 
possible approaches to implement a non-discretionary classification system. 

In the first place, the protection matrix can enforce a classification system if the 
protection matrix ;s initialized so that users have access only to objects of appropriate 
classifications and have no way to obtain access to objects of another classification. 
(This does not handle the problem of covert communication channels as discussed in 
section 5.2.) In a capability-based system, this means the initial distribution of 

38 

',1 

capabilities to users would have to be done very carefully. If used by itself, this 
approach probably would not lead to very high confidence that the desired classification 
system was being enforced. A minor mistake in distributing capabilities couid have 
unpredictable effects on the classification policy since seemingly unimportant access 
rights might enable users of different classifications to set up a communications 
channel between them. FUrthermore, since the capabilities would be disbursed through
out the system, it would be hard to reevaluate whether the current dissemination of 
capabilities enforces the desired security policies. 

A second approach is to maintain a much tighter control over the dispersion of capa
bilities. For example, all users might be forced to obtain their capabilities from the 
directory system, and they might be prevented from using any other means to preserve 
capabilities for more than short periods of time. With all permanent capabilities stored 
in the directory system, it would be relatively easy to determine who has access to any 
given object; however, small changes in the directory system might still have disasterous 
effects on the classification policy and would have to be very carefully controlled. 

A third approach uses the extended type mechanism to enforce a classification system. 
All access to classified objects are explicitly controlled by a classified document 
manager that is implemented as an extended type [Neumann 75J. This approach need not be 
as inefficient as it might appear; however, it might work best when only a small fraction 
of the users are accessing classified objects. 

The final approach is to build classification controls into the central part of the 
hardware and software as a second, independent protection mechanism. The need for some 
form of classification system seems to be sufficiently general so that it could legiti
mately be incorporated into the basic design of the system. This means that each user 
job and each object in the system would be tagged with a classification. These classi
fications could be checked each time a new object is made accessible to a user job. 
Note that this check on classifications would be in addition to the access controls 
built into the capability~based addressing. 

12. CONCLUSION 

Research has now progressed to the point where it is possible to discern the rough 
outlines of a potential breakthrough on both security and reliable software.' No one 
idea wi11 lead to such a breakthrough, but the proper combination of ideas that are 
now emerging could revolutionize both of these areas. The changes in computer systems 
that would help bring these ideas to fruition \,wre outlined in this survey. 

The reader should be a\~are that many of the ideas covered in this survey are still 
the subject of basic research, and before they can be put into practice they need a more 
rigorous examination than they have been given either here or elsewhere in the literature. 
However, further basic research is probably not the fi~st important element on the critical 
path toward a bl'eakthrough. The most important problem is to overcome the inertia which 
makes it easier to continue doing things as they have been done in the past. 

The ideas discussed in this survey involve a substantial amount of discontinuity 
with the past. The basic addressing mechanisms of computer systems must be changed) and 
new structures for protect; on and modul arity mus t be introduced into programming 1 anguages. 
These new ideas are not likely t(\ t;e introduced into common practi ce unless there is a 
very strong economic incentive to do so and unless the ideas can be introduced in evo-
lutionary stages: • 

(1) Econooric incentive - Improved reliability and security usually involve 
higher costs. The new ideas promise:to promote security and lead 
to substantially more reliable software while at the same time 
reducing costs--especially soft\~are development costs. Hard 
evidence to support this promise of decreased costs would go a 
long way toward overcoming inertia. Unfortunately, this evidence 
is very difficult to obtain without building a complete computer 
system that incorporates the new featues. 

39 

-------"===.=-.. =--~-' 



(2) Evolutionary stages - The current investment in computer systems and 
software precludes the development of large computer systems that are 
not compatible with older systems. Basic changes to a computer1s 
addressing and protection mechanisms inevitably result in a sUbstan
tially different computer. Nevertheless. the new addressing and 
protection mechanisms might make it easier to support multiple 
external interfaces. Compatibility with old systems could then be 
maintained by providing an external interface which simulates the 
interface of the old sys tem. 

A breakthrough on security and reliable software I'/ill not be easy to achieve. 
S(;veral new ideas must be put into practice--and anyone of the ideas may not succeed 
if it is not properly supported by other equa l1y ne\~ i dfhlS. It wi 11 Le d major under
taking to achieve an effective combination of these ideas. Nevertheless, such a . 
breakthrough must be sought. Ever more criti<:al software applications, skyrocketwg 
software costs, and the growing requirement for computer privacy all demand the 
development of computer systems vlhiGh an~ at least as new and diffel'f=nt as those 
di'icussed in this survey. 

ACl(fH)WLEDG~lE:NTS 

Thfl author twcame famil iar \'lith many of the ideas in ttli s survey dut'lrJg the 
course of discussions with Peter Neumann, Robert Fabry, Lawrence Robinson, Karl Levitt 
and Daniel Edwards. When possible. their ideas have been referenced; however', many 
of their ideas are such an integral part of the overall approach that they can no 
longer be isolated from iT. Suggestions that have helped to improve the accuY'dCy and 
c1arity of tht' document have also been received from Jerome Saltzer, Butler Lampson, 
Steven Lipner, Stuart Katzke, Thomas Lowe, and the editor and referees. Nevertheless, 
the author is solely res~onsible for any inaccuracies or lack of clarity that remain. 
t~y thanks to the above and to my wife, Betty, whose patience has been outstanding and 
whose editing was Y'uth 1 ess. Thanks a 150 to Ka thl een Durant and Anne Shreve for many 
long hours spent typing various drafts of the manu5cript. 

40 

lib 

REFERENCES 

[Anderson 72) AnJerson, J., Computer security technology planning study. 
Air Force Elect. Systems Div., ESD-'rR-73-51, (Oct. 1972). 

[Bell 73) Bell, D., LaPadula, L., Secure computer systems. Air Force 
Elec. Systems Div., ESD-'rR-73-278, (Nov. 1973). 

[Bcanstad 73J 
syste.lls. 

8ranstad, U. K., privacy and protection in operating 
Computet'., Vol. 6, (Jan. 1973) pages 43-46. 

[Cohen 7S] Cohen, E., Jefferson, D., protection in the Hydra Operating 
System. Proc. of the Fifth Symposium on Operating Systems 
principles., ACM Operating System Review, Vol. 9, No.5, (Nov. 
1975) pages 14l-16~. 

(Conway 72] Conway, R. W •• Maxwell, W. L., Morgan, H. L., On the 
implementation of security measures in information systems. ~. 
ACM, Vol. 15, No.4, (Apr. 1972) pages 211-220. 

(Cosserat 74J Cosserat, D. C., A data model based on the capabi~ity. 
protection mechanism. IRIA Internat. workshop on Protectlon 1n 
Operatinq Systems, Rocquencourt, trance. (August 1974) pages 
35-54. 

(Dahl bS) Dahl, O.-J., Myhrhaug, B., Nygaard, K., The Simula 67 Common 
Base Language. Norwegian Computlng Center, Oslo, (1968). 

IOennis 66) Dennis, J. B., Van Hor~, E. C., Programming semantics for 
multiprogrammed computations. Comm. ACM, vol. 9, No.3, (March 
1966) 143-155. 

[Dijkstra Ga] 
$ystem. 

Dijkstra, B. W. t The Structure of the THE Multiprogramming 
Com~. ACM, Vol. 11, No.5, (May 1968) pages 341-346. 

(Dljkstra 72J Dijkstra. E. W., Notes on structured programming. 
Structured programming, Dahl, D.-J., Dijkstra, E. W., Hoare, C. 
A. k., Acadelnic press. (1972). 

[t:dW8Cds 131 8dwacds, D., private communication, (1973). 

[Bnqland 721 England. D. M., Architectural features of System 250. 
. International switching Symposium, Cambridge, MA, (June 1972). 

[Bngland 74} EnqlanJ, D. M., Capability concept mechanis~ an~ structu~e 
in System 250. IRIA Internat. Workshop on protect10n 1n Operatlng 
Systems, Rocguencourt, France, (August 1974) pages 63-82. 

IFahr~ 681 ?abry, R. S •• preliminary description of a supervisor for a 
qarbine orie"t~~ around ~apabilities. ICR Quart. Rpt. 18, Univ. 
ot '.:tlicaqo. (in1'4L0t l!i63l. 

liabry 731 iabry. R. C~namic verification of operatlnq system decisions. 
~E!!!ll!' !!S~~. \.1:']1. .. 6. NO. 11 , (Nov. 1973) pages 659~66~. 

Itabry 14) ~abry. R. S •• Capability-based addressing. Comm. ACM, Vol. 
17, NO •• r (July 1974) pages 41:'13-412. 

[~e[rie 741 terrie, J., Kaiser, D., tanciaux, Do: Mar~in, B., An 
extensible structure for protected systems des1gn. IRIA 
Internat. workshop on protection in Operating Systems, 
Rocquencourt, france. (August 1974). 

41 



(Graham 72J Graham, G. S., Denning, P. J., protection--principle and 
practice. AFIPS ConE. Proc. 1972, SJCC, A~lPS Press, Montvale, 
NJ, (1972) pages 417-42-4-. - -- --

(Gray 72] Gray, J., Lampson, B. W., Lindsay, B., Sturgis, H., The control 
structure at an operating system. Research report, IBM Watson 
Research Center, (July 1972). 

Structured [Hoare 72) Hoare, C. A. R., Notes on data structuring. 
pro3rammin9' Dahl. O.-,T., Dijkstru, E. W .. Hoare, C. 
Aca emir: Press, (1972). 

A. R., 

[Hoare 74) Hoare, C. A. H. t Monitors: an operatinq system structuring 
concept. £9.~. ~~. 1/01. 17, No. 10, (Oct. 1974) pages 549-557. 

[Hoffman 711 Hoffman, L. J., The tormulary model tor access control. 
A~IPS cant. ~. 1971 fJC~., A~lPS Press, Montvale, NJ, (1971) 
"58'7=6 Br.-

(Jones 731 Jones, A. J •• Protection in programmed systems. Ph.D. 
Dissertation, Carneqie-Mellon Univ., Pittsburgh, FA •• (June 1973) 
139 pages, 

(Knuth 691 Knuth, D. E., !!!;. ~ £f. Computer programmin;J. vol. 1, 
Seminumerical Algorlth~s. Addison-wesley publ. Co •• (196~). 

(Lampson 69] Lampson, B. W •• Dynamic protection structures. A[<'lPS £~. 
~. 1969, FJCC, AF!?S press. Montvale, NJ. (1969) pages 27-3d. 

(Lampson 71] Lampson, B. W., Protection. Proe. of the fifth Annual 
Princeton Cont. on Information Sciences and dystems., peinceton 
univ., (March 1971) pages 437-443, (Reprintpd in ACM Operating 
Systems Review, Jan. 1974) •• 

[Lampson 73J Lampson. B. W., A notp on the cuntinement proble~. Comm. 
~. vol. 10, N\). 10, (Oct. 1')73) paqes 613-61:,. 

[Lampson 761 Lampson, B. wo , Sturgis. H. B., Reflections on an operating 
system Jesiqn. Comtn.~, vol. 19, No.5, (May 1':17(;) pages 
2':>1-266. 

(Linden 761 rJind~nrr. A •• 'l'fJ!> use of abstract data types to simplify 
proqram modifications. Ptoc. of Conference on Uata: Abstraction, 
Definition and Structure, SIGPLAN Notices, Vol. 8, No.2, (March 
1976) psaes 12-23. 

(Lipner 74] Lipner, 8., Chm., A panel session--security kernels. ABIPS 
Conf. Proc. 112i ~, ABIPS press, Montvale, NJ, Vol. 43, pages--
993=999:--

[Llpner 7~1 Lipner. S. B., A comnent on the confin~ment probl~ru. ACM 
Operating System Keview, Vol. 9, No.5. (Nov. 1975) pages 
192-196. 

(Liskov 74] Liskov, ti., lilIes. S., An approach to abtitraction. Proc. of 
a ~ympoRium on very High Level Languages, SIG~~AN Notices, vol. 9, 
No.4, (Apr 11 J.974). 

{Liskov t5J IJu;kov, d., lilies, S., Specification techniques [or Jata 
abstri"lctiolls. H:BI': 'l'eans. on Software 8ngineerlng., \/01. 1, No. 
1, (March 1975)-pages 7-18. 

.'12 

& 

[Morris 73a] Morris, J. H •• protection in programming languages. Comm. 
ACN, Vol. 16, No.1, (Jan. 1973) pages 15-21. 

[Morris 73b] Morris, J. H., Types are noe sets. ACM symposium on 
principles of Programming Languaqes, Boston, MA, (1973) pages 
1211-124. 

[Needham 72] Needham, R., Protection systems and protection 
implementations. AfIPS Cont. Proc. 1972 fJCC, ABIPS press, 
l'lontvale, NJ, vol..~pages 5'7X='578:---

(NeeJham 74] Needham, R. M., Walker, R. D. H' f protection and process 
management in the CAP computer. lRIA Internat. Workshop on 
Protection in Operating Systems, RocquencQurt, trance, (August 
1974) pages 155-160. 

[Neumann 741 Neumann, P. G., ~'abry, R. S., Levitt, K. N., Robinson, L., 
Wensley, J. H., On the design of a provably.sec~re opeca~ing 
system. lRIA Internat. Workshop on Protectlon 1n Operatlng 
Systems, Kocquencourt, trance, (August 1974) pages 161-170. 

{Neumann 75J Neumann, P. G •• Robinson, L •• Levitt, K. N., Boy\~., h< :1" 

Saxena, A. R. t A provably secure operatinq system. Stanford 
Research Institute final Repor~t Menlo Park, CA, (June 1915). 

[orqanick ",2] Orqanicl<., 8. 1., 'r~E. t-lul~ Sy~: ~ Exa,uinatiori ot its 
Structure. MIT press, CamhriJqe, MA. (19721. 

{Orqanick 73J OcqaniCk; l!:. I., Computer systeU! Or:ganizat.i21--:~:'~ 
~/~ ~ies. Academic Press, New Yor~, (1973). 

{palme 73] palme, J. t i:'rotectej pro<1camnodulQ!O in Simu1a 67. R,"s;:>arch 
Inst. ot National Defense, Stockholm !:II} Swn.eden, (July 1973) 25 
pages. 

(parker 75] Parker, D. do. Computer abuse assessment. Stanford Research 
Institute, Menlo park, CA, (Dec. 1975) 33 naqes. 

[~arnas 72sJ Parnas, D. L., A technique tor sottware maodule 
speCIfication with examples. Comm.~, VoL 1~. No.5, (11ay 
1972) 3311-336. 

{Parnas 72bl Parnas, D. L •• On tho criteria to be used in decomposing 
systems into ,nodules. Vol. IS. No. 12, (Dec. 1::172) lU53-11l5d. 

[J:',Hnds 12c! Parnas, D. L., Some conclusions tram an experiment in 
soft'dare en'Jineering techniques. AC'IPS ConL peoc. 1972 .D!.£S. 
AeiPS press, Montvale, NJ, (1972) pages 325-32::1. 

[parnas 741 J:'arnas, O. L., On a "buzzword-: hierarchical structure. 
Information Processing 74 - Software., IfiP Congress 14. North 
Holland publ.co.,(T9ii1) pages 336-339. 

(popek 14a] popek, G. J., Cline, C. S., ~erifiable secure operating system 
softv/are. Ant'S Cont. Proc. 1:J?4 NeC, AerpS l:'ress, Montvale, NJ, 
(1974) pages 14S-TST:'" --

(popek 740J Popek, G. J. t protection structures. computer" Vol. 7, No. 
6, (June 1974)' pages 22-31. 

43 

." 



[Price 73) Price. R. W., Implications of a Virtual Memory Mechanism for 
Implementing protection in a family of Operating Systems. Ph.D. 
dissertation, Carnegie-Mellon Univ., (June 1973) 244 pages. 

[.Redell 74aJ Redell, D. R., fabry, R. S •• Selective revocation of 
capabilities. IRIA Internat. workshop on Protection in Operating 
systems, Rocquencourt, Prance, (August 1974) pages 197-210. 

[Redell 74b] Redell, D. D., Naming and protection in Extendible Operating 
Systems. (Ph.D. Thesis Univ. of Calif. Berkeley) MAC TR-140, MIr, 
Cambridge, MAl (Nov. 1974). 

(Ritchie 74J Ritchie, D. M., Thompson, K., The UNIX time-sharing system. 
~. ACM. Vol. 17, No.7, (July 1974) pages 365-376. 

[Robinson 751 Robinson. L., Levitt. K. N., Neumann, P. G., Saxena. A. R •• 
On attaining reliable software for a secure operating system. 
Inter. Conf. on Reliable Software, SIGPLAN Notices, Vol. 10. No. 
6, (June 1975). 

(Saltzer 741 Saltzer, J. H., Protection and the control of information 
sharing in Multics. Comma ACM, Vol. 17, No.7. (July 1974) pages 
388-402. -- --

(Saltzer 75) Saltzer, J. H., Schroeder. M. D., The protection of 
information in computer systems. Proc. of the ~., Val. 63, No. 
9, (Sept. 1975) pages 1278-1308. 

[Schiller 731 Schiller, W., Design of a security kernel for the 
PDP-ll/45. Air force Elect. Systems Div •• ESD-TR-73-294, (Dec. 
1973) • 

[Schroeder 72a) Schroeder. M •• Saltzer, J., A hardware architecture for 
implementing protection rinqs. Comm.~, vol. 15, No.3, (March 
1972) 143-147. 

[Schroeder 72bj Schroeder, M •• Cooperation of mutually suspicious 
subsystems in a computer utility. Ph.D. dissertation, MIT, 
Cambridge, MA, (1972). 

[Sevick 72) Sevick, K. C., project SUB as a learning experience. A~IPS 
ConE. Proc. ~ fJCC, AfIPS Press, Montvale, NJ, (1972) pages---
571-57a:-

[Simon 691 Simon, H. A., The Sciences of the Artificial. MIT press, 
Cambridge MAr (1969r:-

[Spier 73) Spier, M. J., Hastings, T. N., Cutler, D. N., An experimental 
implementation of the kernel/domain architecture. ACM Operating 
Systems Review, Vol. 7, NO.4, (October 1973) pages 8-21. 

[Walter 75) ~alter, K. et al., Structured specification of a sec~rity 
kernel. Inter. Conf. on Reliable Software, SIG2LAN Notice~, Vol. 
10, NO.6, (Apr. 1975) pages 285-293. 

[Weissman 69J Weissman, C. , Security controls in the ADEPt-50 time
sharing system. AfIPS Conf. Proc., 1969 fJCC, AFIPS Press. 
Montvale, NJ, (19~01~5. pages II9=1~ 

[Wulf 73) Wulf, W. A., Shaw, M., Global variables considered ha~mful. 
SIGPLAN Notices, VoL 8, No.2, (t?eb. 1973) pages 28"34. 

44 

[Wulf 74a] Wulf, W. A., et al., HYDRA: the k'ernel of a mu1tiprocessoc 
opecating system. ~.~, vol. 17, No.5, (June 1974) pages 
337-345. 

[Wulf 74b] Wulf, W. A., Toward a language to suppoct structured progcams. 
Computer Science Dept., Carnegie-Mellon Univ., pittsburg, PA, 
(Apr. 1974). 

(Wulf 75a) Wulf, W. A., London, R. L., Shaw, M., Abstraction and 
verification in Aiphard: Intro. to language and methotioloqy. 
Tech. Report, carnegie-Mellon Univ., (June 1976). 

[wulf 76b) wulf, w. A., LonJon, R. L., Shaw, M., Abstraction and 
verification in Alphard: Iteration and qenerators. ~ech. Report, 
Carnegie-Mellon Uniy., (June 1976). 

[Wulf 76cl WUlf, W. A •• London, R. L., Shaw, M., Abstraction and 
verification in Alphard: A symbol table example. fech. Report, 
Carnegie-Mellon Univ., (June 1976). 

". 

45 



GoBor In oW' lJail!! UV();; 
;) !'lOW n.ll1GWlwr hoohl<::y; 
from the National SUn-1m! 
St,mdardr;, tui<es HH? f(}utit)f 
,)top iJy step ~hrollgh UHf 
~iJn'l;"lm\':nt,,1 principlcm 
t,i (,010; and IIg!lt 1<lfl1IIiH!:i 
\}9 ,,:dor illfiu(~nCO of colors 
L!lJ.:m \)ther COiOYS aiH:1 
!,I,Iim ~IQrm(mv,nllS iuli· 
'~OIOf :j~)·pagf? illustrated 
bo\)fdet hll;;hhghts 
nr<le:tH;al ~pplicatlOns 
Of tolor. Hlciucling; 
o Yom personal 

,-oler plan 
o Yom color 

onvm:mmant. 
o Color plans 

fO! the horne-
o Using color to drama· 

aze or to hide. 
o Color ;lncl iIIuminati,)n. 
o Experimenting with color 
This new basic guide can 
serve as your hondboolt in 
helping you mal(e decisions 
about how to use color to your 
life and mal((~ it work for you. 
Order Color in Our Dallv Lives 
prepaid for $1.70 from the 
Superintendent of Oocllmen~s, 
U.S. Government Printing 
Office, Washington D.C 20402 
Use SD Catalog No. C13.53;6, 



--------------------..... ~ 
NBS TECHNICAL PUBLICATIONS 

PEfllOf.lICALS 
JOURNAL, OF RESEARCH reports National Bureau 

of Standard!! research and development in phyaics, 
mathematics, and chemistry, It is published in two sec
tions, available aeparately: 

tl Physics and Chemiatry (Section A) 

Papers of interest primarily to scientists working in 
thes~ fields, This section .::overs a broad range of physi
cal and chemical reBenrch, with major emphasis on 
standards of physka\ mel\aur~ment, fundamental con
stants, and properties of matt!'r. Issued six times a 
year. Annual subscription: Domeotic, $17.00; Foreign, 
$21.2&. 

o Mnthematical Sciences (Section B) 
Studies and c(.mpilation5 designed mainly for the math
enllltil'i4n and theoretical phYSicist. Topics in mathe
mati,'al statistics, theory of experiment design. numer!
.'al ana.lysis, theoretical physics and chemistry, logical 
design and programming of computers and computer 
Hystems. Short numerical tables. Issued qua.rterly. An
nual subscription: DomestIC. $\1.00; Foreign, $11.25. 

DlMENSION~/NBS (formerly Technical News Bul
letin)-~This monthly magazine is published to inform 
sl'ientists, ~ngineers. businessmen, industry, teachers, 
students, and consumers of the latest advances in 
llcit'nce and technology, with primary emphallis on the 
work at NBS. The magazine highlights and reviews sueh 
Issues as energy research, fire protection, building tech
nology. mph'ie conversion, pollution abatement, health 
and !lafety. and consumer product performance. In addi
tidt. It reportR the results of Bureau programs in 
nlf';,$Urement standards and techniques, properties of 
ll\uttH and matprialll, engineering standards and serv
keg, instrumentation, and automatic data proceasing. 

Annual 'lubsrriptitm: Domestic, $9.45: Foreign, $11.85. 

UONP£RlDmCAlS 

~I()nMm~ph8-~Major contributions tt} the tt'chnicaJ liter
tltuw on variOUEl subjects related tu the Bureau's scien
Wii.' and t,!chnicsl activiti!!!!. 

Handbooks--Rl·commended codes of engineering and 
industrial pl'actice (including safety (~odeB) developed 
in ('ooperation with interested industries, profeSSional 
Hrgnnizations, snd regulatory bodies. 

~pecia\ Publica tiona-Include pro~('edings of confer
ences sponsored by NBS, NBS annual reports, and other 
spedal publications appropriate to this grOUping such 
as wall charts, pocket cards, lind bibliographies. 

Applied Mathematics Series-Mathematical tables, 
manuals, and studies of special interest to physicists, 
engineers, chemists, biologists, mathematicians, com
puter programmers, and otherJI engaged in scientific 
and technical work. 

Nntional Standard Relerence Data Series-Provides 
quantitative data on the phY8iolll and chemical proper
ties of materials, compiled from the world's literature 
and critically evaluated. Developed under a world-wide 

lJfogrnm coordinated by NBS. Program under authority 
of Nntionn] Sta'ldard Data Act {Public Law ()(I.396). 

NOTE: At present the principal publication 'lutlet for 
these data is the Journal of Physical and Chemical 
Reference Data (JPCRD) published qunrterly l;:,r NBS 
by the American Chemical Society (ACS) and the Amer. 
ican Institute of Physics (AlP). Subscriptions, reprints, 
and supplements available from ACS, 1155 Sixteenth 
St. N. W., Wash. D. C. 20056. 

Building Science Series-Disseminates technical infor
mation developed at the Bureau on building materials, 
componf.!nts, systems, and Whole structures. The Sel;'iell 
presents research results, test methods, and pel.'form. 
ance criteria related to the structural and environmen· 
tal functions and the durability and safety character
isth's of bUilding elements and systems. 

Technical Notes-Studies or reports which are complete 
in themselves but restrictive in their treatmen~ of II 
subject, Analogous to monographs but not 80 compre
hensive in scope or definitive in treatment of the sub
ject area. Often serve as 1\ vehicle for final reports of 
work performed at NBS under the sponsorship of other· 
government agendes, 

Voluntary Product Standards-Developed under pro
cedures published by the Department of Commerce in 
Part 10, Title 15, of the Code of Federal Regulationll. 
The purpose of the standards is to establish nationally 
recognized requirement!! for products, and to provide 
all con('crned interests with a basia for c:ommon under
standing <If the characteristics of the products. NBS 
administers this program as a supplement to the IIcth'i
ties of the private sector standardizing organizations, 

Federal Information Procl'8sing Standardn Publicatioll.ll 
(FIPS PVBS)-PublicatioilB in this series collectively 
constitute the Federal Informatiol) Processing Stand
ards R~gistl't'. Register. serves as the official source of 
inf';rnllltion in the Federal Government regarding stand. 
ards issued by NBS pursuant to the Federa! Property 
and Admimstrative Services Act of 1949 as amended, 
Public Law 89-306 (79 Stat, 1127), and as implemented 
by Executive Order 11717 (38 FR 12315, dated May 11, 
1(73) and Part 6 of Title 15 CFR (Code or Federal 
Regulations) . 

Consumer Information Series-Practical information. 
based on NBS \'l'5eal'ch and experience, covering- areas 
of interest to the consumer. Easily understandable 
language and illustrations provide useful buckground 
knowledge for shopping in today's technological 
marketplace. 

NBS Interagency Reports (NBSlR)-A special series of 
interim or final reports on work performed by NBS for 
outside sponsors (both government and non-govern
ment). In gener .!, initial distribution is halldled by the 
sponsor; public distribution i~ by the National Technical 
Information Service (Springfield, Va. 22161) in paper 
copy or microfiche form. 

Ord(!r NBS publications (except NBSIR's and Biblio
gl'aphi(' Subscription Services) from: SUperintendent of 
Documents, Government Printing Office, Washington, 
D.C. 20402. 

lUBLIOGRAPHIC SUBSCRIPTION SERVICES 
The following current-IIWnreneSB and lItercture-Durvey 
bibHogra\lhica are laaue<! periO(\icaliy by the Bureau: 
Cryogenic Data Center CUrrent Awareness Service 

A literature survey issued biweekly. Annual sub
scription: Domestic, $20.00; foreign, $25.00. 

Liquefied Natural Gas, A literature Hurvey lasued quar
terly. Annunl subscription: $20.00. 

Supercondueting Device!l and Materials. A Ilternture 

surv(!y issu('d qUlll'tel'ly. Annual subscription: $20.00. 
St'nci f;uhst'ription orders and remittances for the 
pl'cl'cding bibliographic $('l'vices to National Bu~ 
reau of Standards. Cryogenit' Data C('nter (275.02) 
Bould('f, Colorado RO:W2. 



;~..."..-.-.. "" 
l 

ifl 

,-.~-.: ............ ~ . .~~ __ ~~~~~~~ ____ ~~~~~~ __ ~~~ ____ ~~~ ______________ ~ __ ~-.~ __ ~~ ... ,~,,~,~,~e~~ 




