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ABSTRACT

Various types of crime data, such as reported crime, are normally N
collected over time by police departments, These data are used in a variety
of forms for various purposes. The most significant thing about such data is
that they form a series of values developing in time rather than a collection
of values specified at a particular time. The time varying nature of crime \y
data is often overlooked or minimized with the result that erroneous or mis-
leading observations may be made. This report describes various levels of
mathematical detail for addressing the study of time series, particularly
reported crime. The methodology is described and illustrated. Illustrations
are based on real crime data as well as synthetic time series specifically
generated for the purpose of this study.

The report includes discussion of one of the most complete methodo-
logical approaches to time series analysis: the Autoregressive Integrated
Moving Average (ARIMA) method. It also discusses the widely used Census
X-11 program. Technical problems related to the relatively complex programs
(software) required for some of the methodology are discussed.

This report is not intended as a text on the mathematical statistics of

time series but rather as a bridge from that body of knowledge to its actual
implementation in crime analysis.
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Introduction
Tiy the field of crime analysis one encounters a number of records con-
sis’cing to/data that occur at different times. Such data records are called time
series and in one form or another they form a part of many descriptions or
analyses of crime activity. The study of time series can range from a direct
presentation of the data to highly sophisticated statistical analysis,

The purpose of this report is to provide practical guidance to planners
and analysts who have sufficient mathematical and statistical background to
read and understand clearly written materials concerning time series analysis
techniques, even though they are not specifically acquainted in or experienced
with the particular techniques being discussed.

There is increasing availability and visibility of these methods, and an
LEAA research program is now testing the use of stochastic analysis of re-
ported crime data in a number of cities. Thus it is likely that the techniques
will be used with increasing frequency. Therefore it is desirable for LEAA
to have materials available to minimize the misuse of the more advanced
expensive methods and the possibility of misinterpreting results of time series
analysis, .

This report is not meant to be a basic textbook, but rather a supplement
to such readily available texts. It is especially meant for use by those likely
to employ available canned computer programs without adequate study of basic
texts or formal training in the use of the method. It is also intended to have
utility for monitors of studies employing time series analysis, to 2id them in .
judgments about the appropriate use of such sophisticated methods.

: The range of uses remains a primary purpose of LEAA regarding this
report. To that end it is intended to acquaint many potential users with the
report through courses developed by LEAA for advanced analysis of crime data
as well as to distribute it to a general user audience.

The report consists of eleven sections covering a wide range of statistical
approaches to the analysis of time series.

Sections 1 through 4 cover material of an elementary and basic nature
stopping short of considerations leading to the development of mathematical
models representing time series. In these four sections some of the possible
statistical tests for comparison of time periods within one time series or across
two time series are given. Methods of presentation and interpretation are also
discussed. The statistical methods are of the '"parametric" variety though in
many cases appropriate non- parametr1c techniques could be employed as well.
Since a major goal of the report is to deal with the less widely known, more
advanced, techniques, the sections on elementary methods do not atternpt to give
broad coverage of many possibilities but rather present and illustrate some
methods of demonstrated utility.

Sections 5 through 11 discuss the development of mathematical models
that may be used to represent time series. There are a number of reasons for
wishing to create such models, one of the most important being the possibility of
forecasting subsequent values in the series. Because of the relatively advanced
nature of the mathemematical model building technique it is presented and illus-
trated in detail. In addition the implementation of the technique, utilizing '
computer programs is descrlbed in such a way as to identify a number of
potential problem areas.

iv
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Section 1 Basic Consideration In Using Reported Crime Data,

Crimes reported to the police are recorded as a standard procedure.
The type of crime, locale, date and time of occurrence are among the informa-
tion recorded. Various other information may also be noted, depending on the
standard police procedures used in a particular jurisdiction. However, the
type, location, and time (including date) are universally recorded providing a
kind of data common to all police jurisdictions. The form in which these data
are kept or might be available differs, ranging from reports filed by officers
to computerized data bases., Reported crime data are discussed in this section
to identify the basic features of what such data are like, how they can be obtained
for study, and what types of methodologies may be effective for operational data
analyses,

From the point of view of data analysis the most fundamental properties
of reported crime data are that they are found data and that they occur over time.

Properties of Found Data

Found data are distinct from data obtained as the result of special
surveys or data gathering activity, They are data collected as part of the regular
operations and are not sPec1f1cally designed for a specific analysis, There are
advantages and disadvantages in using found data as distinct from survey data.

MaJor advantages follow.from the relative availability of found data re-
sulting in a great savings in cost over survey data. Found data are also likely
to have good reliability because of the ongoing nature of the collection process.
However, a major caution in employing found data is to understand and check the
data collection and processing system. Such systems are subject to change over
time and also to errors that can enter and be undetected for some time unless an
explicit effort is made at checking. .

Another disadvantage of found data is that they may not be available in
the form desired for analysis. In such a case the possibility of conversion to
appropriate form must be determined and the cost of such act1v1ty weighed
against the benefits expected from the intended study.

Found data must also be approprlate to the objectives of an investigation.
In fact the major argument for using survey or developed data, with the costs
and problems involved, is that no found data exist that are appropriate for a
particular study. Arguments close to this point of view are presented relative
to the use of reported crime data. These data may be contrasted with victim-
ization data obtained by survey methods at considerable effort (cost). It is
argued that victimization data give a much truer picture of actual crime activity
than does reported crime. There seems to be considerable evidence for this view
and it need not be considered further here. The point in the present context is
that found data, such as reported crime, may have shortcomings for some studies
while being entirely suitable for others. A prime example of this is the use of
reported crime data to compare different situations_involving police activity that
responds to reports of crime, rather than as an accurate description of all crime
activity in a single situation.

Care must be exercised in adapting found data to specific analysis but
there is no reason to believe a priori that such data cannot lead to reliable and
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useful results., Further discussion of the found data.aspects of reported crime
data are given in (1) and will not be pursued here except as they arise within the
context of related matters.

Time Series Nature of Reported Crime Data

The time series nature of reported crimes is a theoretically more
important aspect than the found data quality. While the latter imposes various
cautions and potential limitations on the use of the data it is their time series
nature that governs the kind of analyses that should be employed. There is a
very real difference between a collection of data values that are independent of
time and a collection in which the values are obtained at various times.

To appreciate the significance of time series data, it is necessary to
consider the concept of a random sample as used in mathematical statistics.

Random Sample

Many of the widely used statistical tests depend on the concept of a
random sample. In such a sample each data point is supposed to assume a value
independently of all other data points and the probability law governing the values
assumed is the same for each data point. If either of these attributes are not
satisified the sample does not properly fit into many of the commonly used statis-
tical procedures. However, it is often difficult to determine the extent to which
a sample is, in fact, random. )

Statistical procedures can be devised for testing a sample but such test-
ing increases the complexity (and cost) of a statistical study. '

‘ In addition it may be that the sample is not random, What should be done
then? The widely used practice is to employ standard tests even though the
assumption of a random sample is not satisfied (or has not been checked). In
many cases this procedure leads to meaningful results because of the strength
of the tests as indicators of statistical variation.

Dependence of Data

If the sample data are in fact dependent to some extent so that the sample

is not truly random incorrect results can be obtained. Moreover, the extent of

dependence may not be known so that the confidence one might want to have in
making statistical tests cannot be established,

This situation can be present in any statistical sample but is particularly
likely in time series data where a value at one time has an opportunity to affect
subsequent values. '

The concept of dependence may be illustrated by the number of sales
recorded at a store., Two kinds of samples can be considered: the sales by item
classes in a single day for comparison with a similar sample at another store,
or the number of sales of a particular item recorded each day for several weeks.
The former is not dependent on time and it may be very reasonable to assume
that the sales level of items do not affect each other (of course they may). In
that case the sales picture at the two stores can be studied by normal statistical
tests assuming random samples, -



M N R I

= ok om dn o

J'é _.e_ -e-

1

Time Series

In the second case however, a time series is involved and the sales level
of a particular item, such as raincoats, may depend on previous sales levels.
The sale of raincoats depends on random effects such as present weather condi-
tions and possibly recent past values as well, Heavy rain a few days past may
cause raincoat sales to have been high with the result that many people have
raincoats when, a few days later, it rains again, The sales level will go up due
to the rain but not as much as if the earlier period had recorded lower saleslevels.

Reported crime, being a time series, may not provide random sample
data for use in standard statistical tests, On the other hand, such tests are
relatively simple to apply and understand. It is worthwhile to consider a range
of possible levels for the statistical analysis of time series ranging from the
most elementary and direct to advanced considerations in which the possibility
of interaction effects between values is measured and described.

Four Classes of Statistical Procedures

The full range of methodological possibilities can be covered by dividing
it into four distinct, though related, procedural classes: Elementary Statistical
Methods, Preliminary Time Series Analysis, Detailed Statistical Analysis, and
Stochastic Models. This report will describe each of these approaches as they
apply to the study of reported crime data. Concepts will be illustrated using
actual reported crime data and other numerical examples as described later.
The general ideas of each class of analysis is presented here to orient the reader
regarding the following sections of the report.

1. Elementary Statistical Methods treat a collection of time series data
values as though it were a random sample. Simple statistical quantities related
to the sample mean and variance are calculated and used to test for differences
in crime activity. Such methods are simple to apply and are widely known for
ease in communication of ideas. They may indicate valid effects or they may
not if the sample points are not independent There is no possibility to make
forecasts of future values so that in any evaluation application one must wait until
a reasonable size sample of data points has been obtained. This kind of situation
can be thought of as static evaluation as opposed to dynamic evaluation where,
after an initial data generation period, effects can be evaluated in an on-going
way by using forecast values.

2, Preliminary Time Series A.nalysm consists of qualitative and simple
numerical study of the reported crime data for some time period. The data
values are plotted as functions of time and the general character of the seriesis
observed. The sample mean and standard deviation values, for various lengths
of time, are computed and may be shown on the time series plot to assist in
making observations about the nature of the data. Trends and cyclic variation
can often be observed directly from the plot, Some of the variation in data values
can be represented by specific graphs (such as linear trend or some periodic
variation), The fitting of such specific variations with time yielding determin-
istic curves (by judement alone or using techniques of regression analysis) can
be undertaken as part of preliminary analysis and gives a rough forecasting
ability. The main features of preliminary analysis are to see if the data seem
to have special trends and to qualitatively estimate the statistical variation present




~

3. Detailed Statistical Analysis uses the data values to compute quantities
called autocorrelations (and partial autocorrelations) which fully characterize a
time series. These values can be used directly to represent and study time series
or they may be used as a basis for constructing a mathematical model representa-
tion of the time series. The autocorrelations are more difficult to compute than
the simple elementary statistics but do not require nearly the effort that model
construction does. However, the detailed statistics alone can not forecast, and
their use is limited to static type comparisons between time series.

4, Stochastic Models are mathematical formula representations of a
time series, There are several approaches to such mathematical models, one
giving a high level of generality is the so called autoregressive integrated moving
average model (ARIMA) described in a later section. This method was developed
by G.E.P. Box and G.M. Jenkins (4) and is alternatively referred to as the
Box/Jenkins technique. These models are difficult to form because the numerical
parameters must be estimated from the data by means of an extensive numerical
calculation procedure. It is completely out of the question to attempt such calcu-
lations without the use of a computer and appropriate software programs, The
value of such models is their ability to forecast which holds the potential for
dynamic evaluation.

Selection of the Proper Method

The important thing in applying any of the above types of analysis is to
understand the level of effort required and what can be expected from the expendi-
ture of that effort. In all cases the need to communicate useful information to
others should be emphasized. Simple plots and tables are most often useful for
this purpose as described in subsequent sections. Table 1.1 gives a summary of
the four types of analysis methodology.

EF T R R S R T Y Y " Y T,

Methodology Level of Effort | Amount of Level of Ability to
(Cost) Information Theoretical
Used from the | Ability to
data represent the
series data ’ X

Elementary Low Minimal Variable None
Statistical
Methods
Pfeliminary Low-Moderate Minimal Variable Possible,
Analysis (depending on Reliability

detail) Unknown
Detailed Moderate All Good None
Analysis TN

7
Stochastic / Great ) All Good Possible.
Models ,‘ - / A Reliability
N T - measurable
Table 1.1

Comparison of Methodologies

4
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No matter what type of methodology is to be applied the time series
data, must be formed into an operational data base. This means that usable
raw data must be available and it must be possible to put those data into the
form desired for use, There are many aspects of this requirement as described .
in (1). One major set of considerations is how to select various aggregations o
data. Time location, and crime type (classification) are the three quantities to \
be aggregated in the analysis of reported crime. \g)

Aggregation by Time

The most likely time units are days, weeks, and months. Though
reported crime is recorded by day it is most often only available by month as
historical data. In deciding upon a level of aggregation one must balance between
having too little data and having too long a historical record. For most statistical
analyses one needs a fair number of data values and for stochastic models the
complex estimation requires a relatively large sample for meamngful results,

Time Period

\\

Months therefore lead to long historical records which tend to mask out

. that can also mislead analysis. On the other hand days tend to vary too much

%

A

-

/
" or daily data in supporting studies. | §

and have little statistical regularity., Thus, weeks seem to be desirable as the |

effects one wishes to study. Months have different compositions of type of day ﬁ g

level of time aggregation in reported crime analysis with some use of monthly \\

Geographic Area

The level of geographic aggregation depends on the specific analysis
provided there are enough data values to yield meaningful statistical results.
However, too large a region, such as an entire city, may combine too many dif- ’
ferent effects and fail to indicate useful information. Thus one selects some %\

region, large enough to provide data appropriate to a particular study, but not

so large as to allow a washing out of statistical effects, ¢

s

Classification of Crime Types

Reported crime can be classified in a number of ways. Even following
the uniform crime reporting system (FBI's UCR) different aggregation of crime
types can be made. The same general rules apply: aggregation should be at a
level appropriate to the analysis with large aggregates avoided on the basis of
their lack of meaning because of interaction effects. A !

In applications of the various time series models to crime data one might
do well to consider the sensitivity of the analysis to variations in two parameters
that are usually not recognized as parameters, geographic bounds and crime type
classification, Problems may arise from the preliminary specification of a very
fuzzy system. The preliminary specification accepts the existing political bound-
aries and the existing crime categories without giving much thought to what real |
effect this may have on the models derived. If the models are sensitive to these '
parameters; the conclusions, evaluations, and recommendations resulting from £
these studies will also be sensitive to these parameters. ( -
i
Studies to date yield no empirical proof of the sensitivity of the statistica’

o
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l-*These cautions in forming aggragations are due to-Philip McGuire, Director

!
W
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techniques to boundaries or aggregation of crime types but experience produce ﬁ V\;\ ‘\}
some feeling that the systems under examination can be specified in alternate \S:\\\‘ 3‘;
ways which seem at least as reasonable as accepting the existing boundaries or\}\ J
classifications. A sociologically defined boundary such as ""neighborhood" may

be more appropriate than precinct boundary; even bounding by land use may be 3
more effective a control than precinct. There is also some indication that .
criminals are essentially opportunistic and switch easily between crime cate- i
gories possibly making a time series model composed of certain types of N
Larceny plus Burglary amore reasonable series for modelin \ than either

Larceny or Burglary along,* Use of modified regional aggra ition may be imple-
mented by the Census Bur€au geocoding procedures being established throughout
the country. A recent reference to current developments related to this meth-
odology is given in (12).

¥

\

=

An Analogous Physical Example

This section will conclude with an example of actual reported crime data
used to illustrate the methodological procedures in the following sections; but
first another example will be described. This example illustrates a physical
situation rather than a social one such as reported crime. In this way the pro-
cedures to be described are illustrated by two distinct kinds of examples, one
based on a physical system and the other based on actual social type data. '

The physical system used is a water supply for a steam driven turbine.
The purpose of the water supply, called a sump, is to maintain a fixed level of
water to the steam system. During the operation, some water evaporates, some
condenses, and some is added or drawn off in a deterministic way at fixed times
each day. The water level in the sump can be denoted by L(t) where t denotes
the time at which L is recorded. For the example used in this report, L will
be recorded on the hour so that each day provides a time series containing 24 points.

Numerical values used in the example are generated from a mathematical
model of the sump level. This procedure is similar to that described for genera-
ting synthetic time series in Section 11. ™~

This model expresses L(t) as a combination of a specific function of time
F(t) and a random change R(t) that accounts for the net change in water level due
to evaporation, condensation, and steam system demand. The expression F(t)
shows how much water is drawn off or added at specified times. Figure 1.1
shows a typical time plot for the example series L(t).

of Crime Analysis, New York City Police Department. L

- - & - - - -
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Figure 1.1 Typical Example Time Series (Physical Data)

Crime Data Examples

In the following sections similar numerical examples will be used to
illustrate the respective procedures described in each section of the Report,
Procedures will be illustrated using reported crime data from Cincinnati that
were available in operational data bases generated for other studies (as discussed
in (1), (2), and (3) ).

For illustrative purposes, certain crime types were selected on the
basis of good data, representation of various types of statistical data, and rela-
tive interest for crime analysis, The cases used are: Rape (as an example of
almost purely random type series), Burglary (both complicated statistically and
important for analysis), Robbery, Auto Larceny, and Aggravated Assault. The
geographic region for aggregation is the Police District level of which Cincinnati
has six. Time is aggregated by week in most cases as this is felt to provide the
best combination of statistical variability, length of historical record, and
number of data points. Monthly data are also used for some examples because
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of their general interest and wide availability. Data used in the examples are
taken from a data base in which each time series is 217 weeks long (starting in
27th week of 1971 and going through the 35th week of 1975). The collection and
management of these data is a significant part of any time series study and is
discussed in detail in (1). The present report will simply use the time series to
illustrate methodology and procedures.
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Section 2 Elementary Statiétic.al_ Techniques

Elementary statistical techniques utilize collections of data for which
numerical indices are calculated. These indices are called statistics and may
be used either directly or in combination to measure differences between
collections of data, In applications to studies of time series such as reported
crime, a collection of data is defined by the crime type and reporting region
(location) to which the data values belong. The number of data values in the
collection depends on the length of time covered and the interval of time by
which the reported crime data are grouped. For example, with weekly data a
six-month (26 week) period might be used. The techniques in this section will be
illustrated by examples using particular crime types (e.g., robbery) and locations
(e.g., District 1) for several 26-week long time series,

Let the time series under study consist of n data values (e.g., n may be
26 weeks or 36 months), The actual data values can be specified by means of a
subscripted variable Xi where the subscript i takes values 1 through n to

denote each of the n data values contained in the time series, It is difficult to
work directly with all the time series values, each of which represents a distinct
measurement of the same kind of quantity, such as the number of robberies in a
police district in a distinct week. The values differ for a variety of reasons,

and it is difficult to tell very much about the nature of the quantity under study
(e.g., robbery) from the numbers alone. The most elementary statistic one

can consider is the numerical average value. This is called the (sample) mean
for a collection and is denoted by X, The formula for numerical calculation of
X is given below,

Computation of the Mean Value, Variance, and Standard Deviation

The mean value, of a collection of data, by itself may say very little about
the quantity under study. The mean must be viewed in terms of the variability
that is present in the data. If the variation is great, the mean will not say much
about the individual values., However, if the variation is small, the mean value
is indicative of (close to) actual sample values that may be expected.

Variation is measured about the mean value a$ the average sum of squares
of differences from the mean. This measure of variation, called the variance,

and denoted by SZ, is computed by the formula given below. Since values are
squared to compute the variance, it does not have the same dimension as the
data points themselves. Thus, the variation is measured by taking the square
root of the variance yielding a quantity called the standard deviation,

Elementary sample statistics are computed as follows:

- 1 -
mean X = — ¥ X, where Xi are the sample values and n
n

is the sample size,

. 2 1
variance S = Y

standard deviation S =,/ SZ. _

8
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'36.9, 44,7, 34,3, 39.7, 24.2, 38.6, 41.2, 41,7, 43.0

The sample mean and standard deviation values are computed by using
the above formulas, illustrated below for a typical time series arising from the
sump example described in Section 1.

A typical time series consisting of 96 data values, which shall be
called SUMP 1 has the values: 25,0, 36. 50, 34,6, 40.2, 39.2, 29. 1,. 38.0, ¢

44,4, 33,8, 38.6, 43.5, 30,6, 40.5, 38.5, 38,9, 40. 1, 36.7, 37.2, 41.6,

, 45.9, 29.6, 42.7

»

34.3, 37.6, 38,3, 34.5, 37.0, 39.5, 31,1, 45,0, 32.3, 34.3, 38.5, 32.8,

47.6, 37.4, 30.3, 40.8, 34.2, 36.4, 40,3, 38,4, 33.4, 27.2, 30.7, 40.8,

39.5, 41.5, 40,4, 40,5, 42.5, 29.5, 41,3, 40.9, 40.3, 30.1, 33.8, 43.7

’

30.0, 37.8, 44.9, 35.7, 32,2, 44,2, 30.7, 45.6, 36.6, 39.8, 31.5, 38,1

33.5, 44.0, 36.9, 42.3, 36.7, 37.9, 26.6, 41.2, 44.7, 35.4, 32.4, 26.5,

’

42.9, 40.2, 36.8, 29.0, 36.2, For this series the sample mean is 37. 2,

the sample standard deviation is 5. 18, and the range is 24,2 to 47.6.

Reported crime data can also be used to illustrate the calculation ° .
procedure for mean and standard deviation values. Weekly data for a typical
26 week period showing robberies in a police district are given by the following
time series, '

Reported Crime Example

4, 8, 8, 7, 12, 10, 6, 10, 8, 10, 4, 8, 7, 9, 7, 15, 12, 7, 11, 8, 14, 7, 13,
9, 11. For this series the sample mean and standard deviation are 8.9 and
2.8 respectively. The range is 4 to 15,

Comparison of Time Series

For evaluation or other operational purposes, it is often desirable to
compare two different time series. The series may represent different time
periods, different geographic regions, or other kinds of difference. Because
of the variability present in data it is confusing to attempt to compare collections
in terms of their component data points. Such comparisons can be attempted,
e.g., by plotting individual points for each collection as a graph over time and
making visual comparison. Though time series plots can suggest a variety of
results and serve to guide various considerations, their interpretation is too
subjective and qualitative for direct use in characterizing time series data,

Thus one is led to compare the average values of the two series. This
idea leads to the use of concepts from elementary mathematical statistics which
derive from the concept of a random sample as described in Section 1. Each
data point is assumed to be subject to the same probabilistic process and to be
unaffected by the other data values., In time series the data points are associated

e 9
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with distinct time periods in sequence. In every time series, the time points
may encompass one or more time periods. Differences between time periods
can be studied within one series or between two time series. To study indica-
tions of change between time periods, one assumes the n sample points in
both time periods as representing a random sample from a population compris-
ing a theoretical set of events characteristic of both time periods. If the time
series values are not unrelated, this assumption is not satisfied, and the
elementary statistical techniques may not give reliable results.

On the assumption of random samples from each time period, one may
compare the periods for indications of difference. To do so one uses a test
of the hypothesis that each period has the same (theoretical) mean value, so
that sample means are, within statistical variation, the same. In testing
such an hypothesis one must not compare only the sample mean values. To
do so ignores the random fluctuations present in the data. It is necessary to
compare values in terms of units specified by the amount of variation present,
as measured by sample variance values. For this reason a sample statistic
z is employed. In this section z, defined by the formula given below, is
considered to have a standard normal distribution. Such a procedure is based
on the view that samples are large enough so that the sample mean values are
approximately normally distributed.

In comparison of two populations, subscripts or change of letter denote
the populations, X and Y are-used here.

The normal statistic z on the hypothesis that M= uy (theoretical means

are equal) is given by the following formula:
X-Y
Z = n and ny denote the number of cases

in the X and Y populations respectively

In order to provide an example of basic statistical analyses, five
six-month time period employing reported crime data are given, Two of these
are immediately prior to initiation of a new team policing activity called
COMSEC and the other three follow its implementation on March 4, 1973. The
periods are designated as I, 1I, III, IV, and V; and cover the following time
intervals: '

I. 26 weeks: 197210-197235
March 5, 1972, (Sunday) through September 2, 1972 (Saturday).

II. 26 weeks: 1972346-197309
September 3, 1972, (Sunday) through March 3, 1973, (Saturday).

111, 26 Weeks: 197310-197335
March 4, 1973, (Sunday) through September 1, 1973, (Saturday).

IV, 26 weeks: 197336-197409
September 2, 1973, (Sunday) through March 2, 1974, (Saturday).

10



. system must be considered in all comparisons.
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V. 26 weeks: 197410-197435
March 3, 1974, (Sunday) through August 31, 1974, (Saturday).

Statistical analyses are presented here for all six police districts,
denoted by D1, D3, D4, D5, D6 and D7, They are also presented for the city
as a whole and for the city except for District !, denoted by CITY and CD1
(complement of District 1), respectively. There are, therefore, a consider-
able number of statistics to contemplate. As a help in such considerations,
statistical significance is indicated on the data tables.

Basic statistical data are presented for each crime type and each location
by period. The sample mean and sample standard deviation are shown in each
case, and are denoted by X and S respectively. Sample statistics are based
on a 26 -week time period in every case. Table 2.1 presents the mean and
standard deviation values.

It is possible to make a total of ten comparisons between the five time
periods, each comparison being made between two related periods. The total
of ten comparisons gives such extensive material that it is extremely difficult
to appreciate. Three of the possible comparisons are selected as examples
here., These are:

. Comparison 1--Period I and Period II. Both periods are prior to
COMSEC, Period I covers the same range of dates as does the post-
COMSEC Period III, one year later. Period Il is just prior to
COMSEC, Comparison of these two periods helps to indicate trends
and seasonal variations that might have an effect on other com-
parisons involving before-and after -COMSEC periods.

. Comparison 2--Period I and Périod III. These give a comparison
of two periods falling in exactly the same calendar range, one
before and one after COMSEC,

. Comparison 3--Period II and Period III, These give a comparison
of two periods falling immediately before and after COMSEC's
initiation,

These three comparisons illustrate some of the more meaningful com-
parlsons for evaluation purposes between periods having similar seasonal
positions. Such comparisons do not incorporate seasonal variation and are more
likely to indicate actual changes. )

In multiple comparisons there is a possible loss of statistical signifi-
cance due to the use of the same data in more than one comparison. A number
of statisticians have addressed this issue. However, it is felt to be of minor
value here and is not considered in this report.

Analysis of comparisons during Period I and Period III must consider

trends and other gross changes over a year .separation. Analysis of comparisons’

in Period II and Period IIl must consider activities taking place.at the time in
addition to the COMSEC activity. Such activity as changes in the reporting

In each of the comparison situations, the later time period mean is
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subtracted from the earlier period mean, Thus positive values of z indicate a
decrease, shown as an arrow down in Tables 2.2, 2.3 and 2.4. A negative
value for z indicates an increase, shown as an arrow up. Since values may
increase or decrease, the significance levels of statistical values must be
based on a two-tail (test) significance number. For the normal statistic z, the
significant value at the (two tail) 5 percent level is 1, 96 and at the 1 percent
level is 2.58, In the table, arrows are shown for significant values, i.e., for
values equal to or greater than 1,96, Highly significant values are indicated
by an H when the statistic exceeds the 2,58 value, i.e. at the 1 percent level.

Of course, significant and highly significant relate only to the numbers
and the true significance is hard to say because of "other' factors, such as
trends, seasonal effects, poor data, etc., The statistical results suggest
situations but do not prove them.

A number of observations and interpretations may be drawn based
on the statistics given in the Tables. These are intended primarily to guide
and stimulate readers in developing their own analyses. It must be stressed
that these remarks provide, at most, indications of possible situations and do
not carry the force of statistical significance due to the time series nature of
the data,

Because of the large number of cases, it is helpful to summarize the
significant situations in order to recognize more easily indications of change
or other possible results. Comparison 3 was not covered in this way because
of the likelihood of seasonal effects contributing to these cases.

Table 2.5 gives a summary of the significant and highly significant
cases for the two comparisons involving pre- and post-COMSEC
periods,

Table 2.2 shows very few significant increases, Thus there may be
a trend or seasonal effect that results in less reported crime in
Period II than in Period 1. In comparison between Period III and
these periods, this should be kept in mind.

Table 2.5 shows that many indications of significant difference are

the same for the two comparisons, These cases, therefore, suggesta
certain strength of effect that may indeed signal a post-COMSEC
change.



REPORTED CRIME BY T YPE AND REGION SHOWING SAMPLE MEANS AND STANDARD DEVIATIONS

_ Region
Crime Type ( Dl CDl City D3 D4 Dsg D6 D7 ]
X| s| X| s |l s | X| s| X |lsI X|ls| X| s] X| s
Rape 1.2 | 1.1]4.8 | 2.2|6.0 [2.5/.73| .98| .77|.93| 1.3/1.0[.77| .93]1.2] .97
Robbery 8.9 | 2.822.9| 7:1]31.8{ 7.6|2.0| 1.6| 6.2|2.8] 5.4]3.2|3.3] 2.1 6.0] 2.3
Perli"d Aggravated Assault 5.0 | 2.8/ 10.2] 3.9]15.2|5.5/1.6 | 1.6| 2.2|1.5] 2.2;2.2[1.4] 1.4]2.8] 1.6
Burglary 35, 3| 8.0|164.7 16.8/200.q4 19.7|32. 6] 7.2| 328|5.9| 34.89.0[3L7 6.1} 327] 7.6
Auto Theft - 12.1]| 4,8/51,8| 12.163,9|135/9.1| 3.5| 9.6|4.2| 1346,2|8.3] 3,9111.4f 4.4
Rape .96 | .85/2.6 | 1.7]3.5 | 2.0(.27 | .44| .58|.93| .42|.74|.27{ .s2[1.0] 1.1
Robbery 9.7 | 3.1/ 23.9| 7.0[33.7|7.8{2.7| 1.5| 5.1{2.8] 6.5/ 2.4[3.1] 1.9/ 6.5| 2.8
Period { aggravated Assault 4.0 2.28.8|3.5/12.8{4.7{1.3]| 1.3 2.0{1.3] 2.0/1.4[1.2] .89 2.3] 1.5
Burglary 30.0( 8.2] 1560 | 22.7180| 273(33.8] 6.3 30.16.4| 364]8.9|265 8.3[29.2] 6.3
Auto Theft 12.2| 3.8/ 42.8]| 9.3(55.0{ 9.2{7.7| 2.9] 7.3]3.1] 1144.9/7.5] 2.9/8.5| 3.6
Rape .88 | .85(3.7 | 2.0|4.6 | 2.5[.38] .62| .65/.87| 1.0/1.1]|.58 .74].1.1] .96
Period Robbery 8.613.91684.4{255|6.2{1.9] 1.4] 4.5|1.9| 3.5/ 1.4|/2.3] 1.4 4.7 2.6
111 Aggravated Assault 4.8 | 2.8/ 11.5] 5. 1{16.4] 6.4|2.2| 1.4]| 2.9]1.9] 2.0/ 1.2[1.5] 1.6 3.0| 2.0
_ Burglary 24.7] 5.0 1756 18.4200.3] 19.3380]| 6.5 39.29.6| 394 8.5/30.2 ¢.3288] 6.2
Auto Theft | 10,2 3.9/ 43.5] 6.9[53.6| 8.5 9.3 2.6{ 9.9/3.5| 10.43.1{6.3] 3.3 7.3| 3.2

Table 2.1

el



SHOWING TEST STATISTIC 2z

(Comparison Time Periods I-II)

TABLE 2.2 REPORTED CRIME BY TYPE AND REGION

.{I Region
Tl : Crime Type '
g D1 CD1 City D3 D4 D5 D6 D7
- -
; H H s u S
! "Rape .72| 4.0% | 4,0%) 2.0+4| .80 3.8, 2.51 ] .69
-
|zl&obbery -.98) -.50 -89 | -1.7 1.4 j-1.4 .36 1 -.70
° .
; Jpegravated Assault 1.4 1.4 1.7 .69 | .51 39 .61 L2
., s S H
""" Burmglary 2.44] 1,6 2,1+ ] -.64 [1.6 | -.64 2.6% 1.8
N
@ H H S .~ H
| Futo Theft -.081 3,04 2.8+ 15 (2.2t L2 | .84} 2.64
TABLE 2.3 REPORTED CRIME BY TYPE AND REGION
l SHOWING TEST STATISTIC z
(Comparison Time Periods I-III)
1 . . Region
Crime Type _
I D1 cDl| city D3 D4| D5 D6 D7
o, S S
l Rape 1,1 1,94 2.0 1.3 .40 1 1.0 . 89 .37
H H H H S S
I Robbery .32 3,734 3.34 14 12,648 2.8 2.0¢ 1.94
® Aggravated Assault .26 -1.0 -.73 -1.5 |-1.5 .41 -. 24 -. 40
' H S H H s s
Burglary 5,74 -2,2T| -, 06 -2.8%-29t-1.97 . 87 2.0¢4
' l H H S S H
Auto Theft 1,6 3.0 3.3¢ - 35 -.28 2.1+ ¢ 2.0¢ 3.8:
. l 14
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TABLE 2.4 REPORTED CRIME BY TYPE AND REGION
SHOWING TEST STATISTIC z

(Comparison Time Periods II-III)

Region
Crime Type
Dl CDl City D3 D4 D5 D6 D7
S| S
Rape .40 | -2,1* [-1,8 -.71 }-.40 -2.3+}|-1.8 ] -.34
H H S H S
Robbery 1.1 4,43 | 4.2+ 2.0+ .90 5.54| 1.8 | 2.4+
.S S S S :
Aggravated Assault|-1.1 ~2.2%1-2.37 | -2.4112.01 0.0 -.831 -1.4
' H H S S H
Burglary 2.8¢ | -3.47[-2.27 | -2.4%]-4.07|-1,2 -1.8 .23
S S H
Auto Theft 1.94 | -.31 .57 -2.11-2.87 .79 1.4} 1.3
15




TABLE 2.5 SUMMARY OF SIGNIFICANT CASES

(Comparison 1 of Period I-III)
(Comparison 2 of Period II-III)

Comparisons 1 and 2 by Region

Crime Typel Dl CD! City D3 D4 D5 D6 D7
1{ 2|1 }2|1 {241 |2 (12 ]1}j2]1 1 |2
Rape Si| st sé St}
Robbery HY| H4 H| HY S+ HY |H|H4s+ S+ | s¢
Aggravated Assault ‘ st ST st ST
Burglary JH|HY|ST| & St Ht| St HHH+} S+ S¢
Auto Theft ¥S | HY H¢ st| [HYS* S+ Hi

SYMBOLS

S = Significant value.
H
* = Increase in crime,
4 = Decrease in crime,

difference.
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Highly significant value.

Blank Cell = No significant




In the applications of statistical analysis, there is widespread use of
the so-called t-test. In many cases there may be no reason for using t-tests,
and in fact their use may have little theoretical foundations. For these reasons,
the normal z statistic is often the most appropriate one to use., Due to the
interest many people have in the t statistic, it is discussed and illustrated
after the following general discussion of elementary statistical procedures.

There are three elementary procedures that may be considered for
comparing two collections of data to test the hypothesis discussed above. These
are described below and considered in terms of the basic assumptions operating
when each is used. ‘

--Large sample theory was used with the Z-statistic above. In this
approach one assumes that the sample values constitute a random
sample (1ndependent and from the same distribution) and that the
sample size is large enough so that the sample mean has an approxi-
mately normal distribution,

In comparisons of two popula.tmns e.g. time series, there is
no need to assume equal variance of populations when us1ng the
Normal statistic. . Variances are estimated by sample variance
values.

When the population variances are known, the statistics are very
accurate, They become somewhat less accurate when variances
must be estimated. '

When the sample population is normal, the method is exact. For
nonnormal populations, the method becomes inexact.

The sample size required for necessary accuracy depends upon
the characteristics of the sampled population. As these deviate
from normality larger size samples are required. For skewed
and biased data, fairly large samples may be required, but in
many cases more than ten items will result in accurate enough
measures of the characteristics for the sample mean distribution.

In the above examples with 26 sample points and no special skew
properties, the normal approximation is considered to be very
good. :

--Small sample theory using the t-statistic. In order to overcome !
problems with using a sample variance when the true variance is
not known and the sample is too small for a good sample estimate,
one may use the t-static., In this method, one also assumes a
"random sample but there are two other as su.rnptmns required:
the population is assumed to be normal and in comparing two
populations, both are assumed to have the same variance. Neither
of these assumptions are needed in the large sample theory which _
is one strong reason for using it, o

A widespread practice is to employ the t-statistic because of con- o
cern with ""small samples' and to have little. concern with the three s
assumptions underlying the use of this statistic. In many cases

- 17 —_—



the samples are, in fact, large enough so that the central limit
theory is in effect and the sample means are acting as though they
are normal., Thus, use of the t-statistic does no harm since it
yields essentially the same results as the large sample procedure
in such situations, However, the use of the t-statistic is not
improving on large sample theory in such cases and it should be
avoided on the grounds of misleading sophistication. Numerical
examples of the t-statistic are given and compared with some Z
statistic results.

--The modified t-statistic when two populations do not have the same
variance, It was pointed out above that in using the t-statistic to
compare two populations, one had to assume equal variance. In
considering the modified t approach one must first determine
when the population variances are not the same. The F statistic
given below is used for this purpose. It is illustrated for some
cases of data in this study. In such cases where the hypothesis
of equal variance is rejected (significant F value) the modified
t-statistic is appropriate. That statistic is called T here and its
formula is given below,

To use the T statistic, a complicated formula must be employed

to compute the appropriate degrees of freedom (DF), This formula

is given below and some illustrative DF values have been calculated.
One obtains significant values by using t values with the calculated

DFI

It has been argued above that the z statistic is often the most approp-
riate one in the study of reported crime data using 26-weeks or longer time
periods. Since many people are interested in the utility of the t statistic, it
was introduced above and the associated formulas for both the t and modified
t statistic (T) are given below. The F statistic, defined by the formulas below,
is used to test the hypothesis that two collections (time series) represent
populations with the same theoretical variance (standard deviation). It must
be employed if one wishes to test for the necessity of using a modified t-statistic.
The following formulas are given in general form for two_sample populations
X and Y. The special forms used with sample sizes both equal to 26 are also
given since these are used in the illustrative examples,

The t-statistic on the hypothesis HU_= ,Lly

X-Y n_n
t = . X y(n+n =-2) .
XV , with n_+ nY -2 degrees of

fn s 2+ n s 2 : nx+ny freedom,
X X Yy

In the 26 week time period case n, = ny =n so that

X-Y X-Y
t = : ,,/6-1 ="

sz+s2 [sz+sz
X y X, y

18
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The F statistic on the hypothesis o =o¢
X

}f
°/ tn -1)
F = > " Whenn_=n_the formunla simplifies
: X
n s [/ (n -1)
y Vv y
2
s
to F = x2 with n -1 and ny -1 degrees of freedom, which
S “ H

Yy
are both 25 in the illustrations,

The modified t-statistic under the hvpothesis u =u

X-Y ]
T= , and whenn_=n = 26 yields
2 2 B
S, s
n -1 + -
Y
X-Y
T =

For the modified t-statistic the formula for degrecs of freedom is

2
2 2
SX 3
(n Tt
2 + DF = —= Y ,
- ' 2
2 2 .
s (s _
(n -1 \n -1 _ /

n+1 ‘n+1

-Withn =n this becomes
X y .

(n + 1) wheren + 1 = 27 :

e T e e

19
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in the case of 26 week long series, Note that the degrees of freedom are
equal to the right side of the equation minus 2, In the reported crime study
from which the illustrations are taken (3) most of the cases had a DF value
about 50 and there was no particular need for considering the modified
t-statistic. In crime analysis one would most often employ Normal statistics
or go to more advanced methodologies such as are presented in subsequent
sections.

The use of the t-statistic is illustrated in Tables 2.6, 2.7, and 2.8
which present t-statistic values for some cases in the reported crime study
previously used to illustrate the z-statistic. It can be seen thay they have
essentially the same numerical values as the z-statistic. In fact the formulas
show that one formula uses »/25 and the other 426 and this is the only numerical
difference between them. Of course, one must refer to different numbers for
identifying the levels of significance values. For the t-statistic the significance
level values are given by the t random variable with 24 degrees of freedom. For
two-tailed tests at the five percent and one percent levels, the significance
values are 2,06 and 2. 80 respectively,

The modified t-statistic may also be illustrated by considering the
associated F test which is required to determine when the modification is called
for, This test provides an indication of different variances between two samples
(time periods)., Table 2.9 gives some examples of the F statistic values. Sig-
nificant cases corresponding to F values of 1.95 or 2.61 are indicated in these
tables and it can be observed that relatively few such cases occurred.

Because of the similarity of the t and z statistics in values and the lack
of any theoretical reason for using any form of t-test, it is often desirable to
use the ''large sample theory' z statistic approach.

All formulas in this Section are ta'ken from Reference (6).



SHOWING TEST STATISTIC t

(Comparison Time Periods I-II)

TABLE 2.6 REPORTED CRIME BY TYPE AND REGION

e b e’ d e bhbhsc s s dm b

Region
Crime Type

Dl CDl1 City D3 D4 D5 D6 D7
Rape .70 4,0 | 3.9 | L9 | .79 | 3.7 | 2.4 |.67
Robbery -. 96 -.50 | -.87 | -1.7 |1.4 -1. 4 .35 |- 69
Aggravated Assault 1.4 1.3 1.7 .68 | .50 . 38 .60 1.1
Burglary 2.3 1.5 2.1 - 631 1.6 -.63 | 2.5 1.8
Auto Theft -.08 2.9 2.7 1.4 2.2 1.2 . 82 2.6

TABLE 2.7 REPORTED CRIME BY TYPE AND REGION
SHOWING TEST STATISTIC t
(Comparison Time Periods I-III)
Region
Crime Type :

Dl CDhl1 City ‘D3 D4 D5 D6 D7
Rape 1.1 1.8 2.0 1.3 .39 1.0 . 88 .35
Robbery .31 3.7 3.2 .14 | 2.5 2.7 2.0 1.9
Aggravated Assault . 25 -1.0 -.71}-1.5 |-1,4 .40 -.24 -. 39
Burglary 5.6 -2.2 -.05|-2.8 {-2.8 | -1.9. .86 | 2.0
Auto Theft 1.6 3.0 3.2 -.34 | ;.27 2.0 2,0 3.8

21
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"TABLE

2.8 REPORTED CRIME BY TYPE AND REGION
SHOWING TEST STATISTIC t

(Comparison Time Periods II-III)

Region
. Crime Type
0' Dl CD1 | City D3 D4 D5 D6 D7
Rape .39 2.1 1,7 | .69 | -39 [-2.3 | -1.7 .34
.l Robbery 1.1 4,3 4,1 1.9 . 89 5.4 1.7 2.4
ﬂ Aggravated Assault -1.1 -2.2 |-2.3 2.4 | -2.0 0.0 -.82| -1.4
.l Burglary 2.8 | 3.3 | 2.1 | -2.3| 3.9 | 4.2 | 1.8} .23
l Auto Theft 1.8 -. 30 56 | 2.1 \_-2.8 .78 1.4 1.2
J TABLE 2.9 REPORTED CRIME BY TYPE AND REGION
SHOWING TEST STATISTIC F
l (Comparison Time Periods I-II)
l Region
Crime Type )
.ﬂ DI | cDl |city | D3 | D4 D5 | D6 D7
l Rape 1.5 1.7 | 1.6 | 6.3%x| 1,0 | 2.0% | 3.2%x(.83
o Robbery . 82 1.0 .95 1.1 1.0 1.8 1.2 .67
' Aggravated Assault 1.6 1.2 1.4 1.5 1.3 2.5 2.4% [1.1
j Burglary . 95 .55 .52 | 1.3 .85 | 1.0 .54 |1.5
Auto Theft 1.6 1.7 | 2.2%| 1,5 |[1.8 | 1.6 |1.8 [L.5
l * Significant value.
#% Highly significant value.
‘ 22 :
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In the elementary procedures discussed and illustrated above a major
assumption is that the sample is random. This means that each value.is
independent and drawn from the same probability distribution as every other
value, However, the general approach to time series analysis takes a
completely opposite point of view from the one reflected by an as sumption of
random sampling. The time series viewpoint is that the data may be related
rather than independent (that they are, in fact, correlated) and that each time
point has its own particular probability distribution. Thus arguments based on
a random sample may not apply to time series.

The assumptions upon which general time series models are constructed
are very basic. Therefore, those are the most general models, and analyses
of any other kind must be compatible with them when applied to time series
data. If that is not the case, the basic assumption, random sample, upon
which the hypothesis testing is based (for normal or t-statistic procedure s)
is not valid. Time series models often assume stationary data which means
each point in time has the same distribution, however, in general, the points
are not independent. It is the general lack of independencé that makes time
series data samples nonrandom samples.

Time series models are discussed in other sections of this report.
They require larger samples than the 26-week series used for the numerical
illustrations in this section.- A major objective of time series studies is to
employ such models (e.g., autoregressive integrated moving average) to give
theoretically justified statistical analyses of data that might allow one to
discover indications of changes. Such models do not only address levels, but
may provide an insight into the nature of the time series. :

It should be noted that the simple statistical analyses described in this
Section may be particularly useful in two ways: :

--Effects can be so strong that they will be truly indicated by the
elementary analyses even though there are theoretical objections to
the procedures. Thus, if one looks upon such analyses as
indications and views them in.connection with other information,
they can be useful. They should not be viewed as having the same
kind of statistical significance as analyses in which the theoretical
assumptions are shown to be satisfied. )

--The nature of some crime types, such as rape, is such that the
time points are likely to constitute a random sample. In such cases
the elementary analyses are valid in the full statistical sense. One
value of more general time series analysis is that it helps to
establish which crime types are of purely random character,

An alternative to using statistical comparison of sample statistics
such as those discussed above is to present the variation in graph form. For
time series data such as reported crime, each time period is assigned a
position on the horizontal axis. For example if there are seven time periods
available, then seven, equally spaced positions are assigned on the time
(horizontal) axis and given the labels of the corresponding periods. Above each
period, the mean value of the sample for that period is indicated by a point.
This assigns the dimension of "'number of reported crimes'' to the veritical
axis. The variability that is present in the data at each time period is indicated

23
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by showing a short line one standard deviation above the mean value and
another the same amount below the mean., Such a diagram gives direct visual
appreciation of the upward and downward changes in the mean values for
different time periods. In addition, it shows how meaningful the changes in
mean are by indicating the strength of variability present. If the one standard
deviation above and below the mean results in large intervals, the means do
not well represent the data and their movement up and down does not necessarily
show time changes in data levels. On the other hand if the variation spread

is relatively small the mean does represent the data and changes in the mean
value are likely to be statistically significant. Actual significance for crime
analysis in such cases would depend on the magnitude of the difference.

Figure 2.1 shows the alternative method for observing statistical
variation for selected crime types. The five time periods (each six months
long) are indicated as points on the horizontal axis. For a selected crime
type, such as robbery in D1, a line segment two standard deviations long,
centered at the sample mean value is drawn above each period.

By considering plots, such as those shown in Figure 2.1 one can observe
the changes in mean value directly. Since the standard deviations are also
shown, one can see how representative the mean is likely to be. One can also
get an impression of how the random occurrence of events is operating. A N
large value indicates a ''loss of control'". That is, some kind of extreme
change in the situation. Smaller values of the standard deviation indicate
some level of statistical stability, allowing more reliable interpretations
of data and derived statistical analyses.

Figure 2.1 indicates that the variability in robbery increased in
Period V resulting in a lower degree of statistical control for this crime type.
This was not the case for aggravated assault which kept about the same variability
in all periods. Burglary shows a marked decrease in mean values which is
particularly meaningful because of the relatively constant level of variability.
Of course the variability is in fact fairly large in all these cases as one must
expect from social as distinct from engineering type data.

7
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Section 3 Preliminary Analysis of Time Series

Before any kind of quantitative statistical analysis of time series data
is undertaken it is advisable to carry out some amount of preliminary analysis.
The details and extent of such analysis depends on the kind of subsequent inves-
tigations that are intended and the magnitude of the entire statistical effort. In
the case of a small effort the preliminary type analysis may form essentially
the complete study or at least represent a major part of it. When extended
investigations are carried out including detailed statistical calculations and
stochastic modeling, the preliminary analysis will represent only a small frac-
tion of the overall effort.

~ The purpose of preliminary anlysis is to understand the time series
data under investigation. During this phase of study one becomes familiar
with the kind of reliability and underlying statistical variability that are present
in the data. This understanding is qualitative in nature, sometimes assisted
by numberical measurements. It may suggest subsequent quantitative analysis
and lead to useful conclusions about the data. : '

In this Section the following features of preliminary analysis of time
series will be described and illustrated: .

o Qualitative nature of time series data relative to its reliability, and
utility for various levels of statistical analysis. Component models.

o Investigation of non-stationary character and cyclic trends.

o Investigation of homogenity of the data and advisability of data trans-
formation.

Qualitative Analysis

The most direct approach to begin any study of time series data is to
make a plot of the data values against time. Even such a basic tool of analysis
requires several decisions for its implementation. The kind of data values
must be selected. In analysis of reported crime this means selecting the geo-
graphic region and crime type; for example robberies in District 1 might be
selected. The time scale must also be selected, for example the plot might be
by day, or week, or month. Aggregation of data by region, crime type, and time
period can affect the nature of the plot and also of subsequent statistical analysis.

Another problem with time series plots is simply the effort required
to produce them. To be useful time series should contain a fairly large number
of data values leading to rather long plots. Many different cases of series data
may be desired; for example one may wish to study some ten crime types for six
police districts. One can very soon be faced with plotting between 70 and 100
graphs, each with over 70 data points. This is a substantial task if undertaken
by hand.

Fortunately if the data are developed into a computerized data base the
plots can be done by most computer centers on a digital plotter. It is-also pos-
ssible to form plots with the printer but these are not nearly as satisfying as plots
produced on a plotter. If one has the option of using a plotter it should certainly
be used. Many plots of high quality can be produced at low cost (plotters operate
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.

' statistical studies with some initial feeling about the data., This plays the

"off line" from tape produced by the central computer). The computer produced
time series plots provide a powerful tool for pr climinary analysis, particularly
when many plots are desired.

Figures 3.1 and 3.2 illustrate computer produced plots of reported crime
data. In the plot of Ficure 3.2 the overall mean value and sample standard devia-
tion values are shown by three horizontal lines. The lines on either side of the

mean show an amount equal to one standard deviation. Though these values are

for the entire series and thus do not represent information about short segments
of the series, they do indicate something about the overall level and extent of
statistical variation present in the data. '

Even when more detailed studies intend to use weekly data it may be of
value to consider time series plots of monthly data as a step in preliminary
analysis. Reported crime in particular succests such an approach. Such data
are more likely to be available as monthly time scries than by week., There-
fore analysis of data can start sooner if monthly data are used and the value of
going after weekly data can be assessed. ~K the monthly data seems to be in
good shape and further analyses are co gplated weekly data can be requested.
The details of data selection are described in Reference (1).

Monthly data are more likely to indicate certain seasonal trends and
overall properties of some time series. In some ways their underlying structure
is simpler than for weekly series and can be more easily developed into a pre-
liminary component type of mocel. By considering a simple components model
one can gain some feeling for the statistical variation present in the data. This
is illustrated by Figure 3.3 showing robbery in District 1 for a 54 month time
series. R
A simple analysis of this kind of data is shown in Figure 3.4 which
divides the full time series into three distinct periods. The first is a rather
stable series from January 1968 to March 1970 then a transition region exists
during which the level of the series increcazes to a new stable series with a
mean about 12 robberies a month greater than for the earlier period. The tran-
sition region can be revresented by a varying mean curve as shown. These
simple analyses may employ regression to fit underlying-trend curves or
combine the use of visual fits and calculated mean and standard deviation values.

The lines for the transition region were found as regression lines for
regions determined visually as being distinct in a qualitative way (by subjective
judgment). Thc upper and lower lites represent one standard deviation dif-
ference for each region being considered. The December values show a strong
seasonal effect for robbery. They distort the other data and should not be
included in calculations of the mean and standard deviations. Such points are
out-lyers for which a specific justification should be sought rather than mixing
them in with the nominal statistical data. '

By considering data plots, imposing sample mean and standard deviation
values, identifying changing regions and special characteristics one gains an
important familarity with the time series under consideration,  Making some
simple model forms, with or without re¢ression techniques serves to increase
and sharpen this familarity to a point where the analyst can embark on detailed

N Ny

27 . ‘ R k



WFEerrs

‘-h,_.-'--’- J~-h-h—'-—“—in'b

£s.¢e

S.0

.2

... —t .—:‘- — o-«|- -

[ e et SR B ] .——}-—o—o-»l«o;-b——..«l—,pvo:-g-‘_{

!

—
=
e

S

DYBURGLARY C - )

-

IRRR!

IRARS TTTIIIlFTTIIITTIIIIIIIIIIIIITIIITI_IIIIII_IIT[IIIIYIIIIln(lllilllrl]'llf'lllYYIIIY]YYYlIlI]TTITIIXII1’7111l’(lllll!IlllllllllllIlllll[llI[IIITITTT;rIr*TXIIIIIIT

A AT MYV TTTe T TTY
'\M\kh\fx'\ﬁh\{\\.\{\ “W”Q&A@M"’KkmﬂﬁﬂﬂﬂEKﬁm‘CE(‘Cﬂr\n\r\i'\’ﬁnmmmmmm\Nx“\\\-\\M.\.\.\.\~\\~ [N

KN Y [aal ey TINE N QO NATVINC OO Iy Qe NAITVNINDOO - (mbgh} AN e NATVLRTLSD Qe NTASN
.x.n?v‘:c.Qviw?..wmnwcnwﬁ:‘:‘t’:&’f’:i’té’.&&‘ﬁ équwanggnni‘ngnv;rtvvvvvvun.n.,-Nnnwhmo.-.-r"-.-..-.Mw AN SRS

~ Q-ev
vvvvvvv"t VJ-M\III—NHMOBQC\—FFOr——rv—‘\i\. S

FIGURE 3.1 _
BURGLARY IN DISTRICT 1 BY WEEK

28



domboeoveesdoabeoBe’ncdandesh

DIELRGLARY ’ : _ Y = 28.03, . . -
o ' s= 2.79
Vi . .

ss.0 + \ < ‘-\

i[ | "
se.o +}

il
.2 4

A W o L

15.8

1.0

3 Vv 4 R , ’U | ' \/ ) —
R W | \/\r\, VAN |
T , ; R | T N 7 } R WVUVW&

AR AR 'IIIIII-lllllllllllll\'l'lllllllllllll[!lllllIXIl(IIIIIIII1IT—TIIIIII.IIYII'l!lllllllIITTIIY'ITIIITT'IIITIIIIIInlllllllll’l.llIlIlllflllYlllllllTTFIYITIIYIIIIIII

-

' r::"\‘F;:(:\'\r\'\l\l\hl\[\h\\b.\[\f\\[\[\\f\ &f\l\r\l\\ ﬂ QR’Q}\I\M\PR& \.Qp F N&mpr\l\l\f\f\ﬁl\hr \f\i\m\kk}d\‘i\?\k\'\7\?\k’\\H\\}\\‘K}\q\“\?\"\?\?\’(\"\uh‘k\1\}\7\?\7\7\1\}\'\1\1\'\ !\l\l\l\;\{hlikt‘(&:\l\l\\l\hl\\l\\h\ REQENRONTIN

i 2, - N ~ N
LINAANASASRERY 39‘:5'3'3'3—*vammwunvmonmoo:gt‘:‘-‘-‘f:‘feg’&ngm\w.\( SIS SR 2 TN TR RaS - an rnenoa SE VYOI 2D PO R NN GERRRAARRRSR AR T RO ',}.’1.\. B enonaal e SO TRENT RNt Ea CN T N T,

FIGURE 3,2

BURGLARY IN DISTRICT 1
SHOWING MEAN AND STANDARD DEVIATION

29



[$
~.

Rl -,".- m'e e e e’ el ®

Tﬁ:&s#f{?ﬁ"-l/vuu'13-34—3'6'771/01/;;51#74—5‘-(75’7/9/1113!/114-;-(7/~]:oll113.'13+;‘(__'

g . - \‘]2[1 L. A Y420 [ . an . .. AN . u-t‘/_’ A

s ) 7 197/ 1472 wiz
FIGURE 3.3

ROBBERY IN DISTRICT 1 BY MONTH

30



ﬁ-h-'-i-‘-d.-ﬁ-h-'-ﬂninb.‘

707
°
o
v
.
Lo
)
, (% . s
! ’ . .
I L]
H - . o .
.
i .
d
‘1‘; e e ¢ 8
* g P -
A4 L2
.
]
}C" ) D. '
d
i L ®
e A4
L)
b 4 [ )
v b LJ
.
151:. . . . hd . o
1 L]
i? 1 )
i
T &£ 5 & 5§ 6§ 7 # 3 10 u k 1 4 3 45 8 72 ¥ 9 12 23 4 5.6 7 @€ ¢ waiwlea 3456 7T 82 0 u,;l,a.,4;-‘7g4,.,,(1lc_3
Fea Tan Jan Jan Qi Sy 2t R
Tee : 1959 N e g !P s 1 1104 1
150 . < I . 12 13 . Feo

FIGURE 3.4

ROBBERY IN DISTRICT 1
SIMPLE PRELIMINARY ANALYSIS

31



F N RN N Nk N W B WA W W W

‘ ' b
role, for analysis, that real@d/experience with the phenomena under study
plays for the potential custonier of the analysis, Therefore preliminary analysis
of the kind indicated above helps in communication between the analyst'and the
customer as well as providing a basis upon which to continue into more detailed
studies.

Investigation of Trends

There are two major kinds of trends that may be present in time series
data. One is a change in level resulting in a non-stationarity of the underlying
statistical nature of the data. The other is cyclic variations which occur
regularly in a series. These are stationary in nature but can distort interpreta-
tions of the data if not identified and measured.

Stochastic models require stationarity of the data. They can accommodate
cyclic trends if these are properly identified. Both kinds of trends can be identi-
fied by means of detailed statistical analysis as discussed in Section 4. However
it is often an advantage to study time series plots with particular attention paid
to the existence of trends. By making qualitative identification of trends in the
preliminary analysis stage one can consider appropriate modifications of the
data (such as differencing to reduce non-stationarity) and more easily understand
the nature of detailed statistical calculations (autocorrelation values).

Figure 3.5 shows a time series plot for the Sump water level example.

In Figure 3.5 the existence of a trend is clearly indicated. Since the
data for this example were generated by a synthetic procedure it is known
that the trend line has slop .2. Such a line is shown in the figure with a
starting value equal to the mean of the same series without the trend (Sump 1
example) plus a shift of 2 units which was also introduced into the trend line.
The deterministic removal and addition of water to the sump can also be
observed though there is enough random variation to somewhat mask the
various deterministic factors.

Investigation of Homogenity

If one wishes to develop 2 mathematical model of a time series it is
desirable to have about the same amount of variation over the length of the
series. This property is called homogenity. By observing a plot of the data one
can often judge the degree to which the series is homogeneous. When the series
is not homogeneous the data can be transformed by raising it to some power k.

If the best power to use seems to be k=0 a natural log transformation is used.
The particular power to use is based on judgment and tested by checking the
transformed data for homogenity. One can gain some initial experience by
forming two or three transformed series and noting the effect of the powers used.

It is often useful to use one fractional and one integer power as a start.

Sometimes a semi-quantitative approach can be used to test time series
data for homogenity. This is known as the range-mean plot. Such a plot is
based on a set of time series values {z,}. A spacing value S is selected and

. the terms {zt_ks}are collecged into a set S0 the terms {Zt—l-k‘s]mto a set S1

and so forth, where .k = 1,..., m and m is determined by the amount of
available data (length of the time series zt).
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Suppose that p such sets of data are obtained in this way, where p is
determined by the amount of available data. The values m and p are selected
so as to use most of the data values, give the sets Sj' j=1,..., p reasonable

content (each contain m values), and have enough sets so as to get a reasonable
number of points on the scatter plot. For each of the sets S,, one obtains the

range R, of data values (largest value minus smallest value) and the mean value
Mj of the data points. Each such pair (RJ., Mj) forms a point on the scatter plot

of range R vs. mean M. If the range does not depend on the mean, then no
transformation of data is indicated. Otherwise, the dependencey observed may
suggest a useful transformation.

There are two ways in which the scatter plot can indicate a lack of
functional dependence between the range and the mean: One way is to have the
p points fall in very general positions. The other is to have them fall in an
almost horizontal pattern. It may be appreciated that this analysis of data
transformation is highly subjective in most cases; but it is felt to be of value
as a general guide and might be useful in analysis of reported crime.

The range-mean analysis for homogenity can be illustrated for robbery.
data as shown in Figure 3.6 for police District 1 in Cincinnati. The data series
was divided into seven subsets each covering six months of weekly data. Though
robbery data have been modeled directly the plot in Figure 3.6 indicates that a
transformation mlght yield more easily analyzed data. A log transformation is
suggested by the 45° line through the data. For lines having less slope a
positive power between zero and unity is suggested; for greater slopes negative
powers are more apprpriate. ThlS may be explained by considering the case of
a slope of 20° (less than the 45° slope corresponding to 0) which might suggest
a power like .5. For this transformation relatively small values are not
changed too much while larger values are changed by a greater amount thus
tending to bring the variation of data values to the same level.
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Section 4. Detailed Statistical Techniques

The sample mean and sample standard deviation of a time series are
two numerical characteristics of a series but fall far short of complete
characterization of the time series as represented by data.

In the study of time series the mean and standard deviations should
be considered. However, there are two major reasons for developing a
methodology for constructing detailed representational statistics in addition.
When there is a strong effect that is reflected by changing mean values more
detailed statistics will provide greater appreciation of the kinds of _
differences present. Alternatively the change in time series samples may
occur in fundamental aspects of the time series rather than in the levels
indicated by the sample mean. The mean values may fail to indicate change
when, in fact, the two time series are different. In such a case simple
statistical procedures would indicate no change, possibly missing important
changes that are, in fact, present. :

The case in which two time series can be completely different without
an indication of that difference being shown by the mean value or standard
deviation can be illustrated by easily constructed examples designed for that
purpose. However, Figure 4.1 shows an illustration using actual time series
data. In Figure 4.1 both timie series have a mean value of 14 and standard
deviation of five (to the nearest integer). The plots certainly look quite
different (the peaks and valleys ‘generally having very different magnitudes
and falling in different positions) and in fact one is for auto theft and the
other is for total nonindex crimes by week in police District 1 of Cincinnati
(from mid-1971 through 1972). Thus the use of mean and standard deviation
values can completely miss significant differences between time series.

Because of the random nature of time series such as crime data, the
difference in appearance of the two plots does not necessarily imply a true
difference between these time series. For example, they might look like
Figure 4.1 and both graphs represent different time series of the. same crime
type. A more critical test of difference, rot based on the appearance of the
graphs, is to look at a number of detailed statistical values computed for
each series. These autocorrelation values are discussed below. Figure 4.2
shows 20 such values specified as lag values for the autocorrelation of each
crime type. These values do indeed indicate a considerable difference between
auto larceny and nonindex crime.

‘Sample correlation values give a more complete characterization of
a time series by providing additonal numerical quantities derived from the
data. These values express the degree to which data at various time intervals
(e.g. weeks) called lags, are correlated. A lag of zero corresponds to the
sample variance. Increasing the. lag corresponds to measuring the extent,
over time periods, to which series values are similar, i.e., correlated.
Since the sample values are all for one time series, correlation is between
different time data values of the same series. Thus, the sample statistics are
called autocorrelations,. denoted by acf (autocorrelation function). Figure 4.2
shows 20 autocorrelation values for the reported crime series given in Figure
4.1.
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Autocorrelation values are computed from the time series data by
using formulas from mathematical statistics, These formulas produce values
of desirable form which also have an associated statistical thory so that in
appropriate cases statistical tests of significance can be applied. The method
for computing autocorrelation values follows:

™M B

1

- T w.,

n, i
i

n is the number of data points in the time series. Then the autocorrelation
of lag k is ry = ck/c0 for k=0, 1, ..., K where K is the maximum lag con-

Denote the time series by {Wi }and its mean by w where w =

sidered and the autocovariance values ¢, are defined by the formula:
n-k

1
c, =—
n

K -w)

T (Wi -w) (wi

for k=0, 1, ..., K. Note that c, is the sample variance and r, is always
. e 0 0
unity (by definition). .

Autocorrelations can be presented in either numerical form as tables
or in graphical form as shown in Figure 4.2. The numerical values are useful
when the exact values are needed whereas the graphical form is most useful
in giving a picture of the general nature of the autocorrelations associated with
a time series. For many purposes of analysis, such as the formulation of
mathematical models of the time series, the pattern of autocorrelation values
plays a major role. Such patterns are best seen by means of the graphical
presentation. In the examples both tables and plots of autocorrelations will be
illustrated.

An artificial time series represeﬁting the water level at 96 time units

(hour) for the sump example yields the autocorrelations listed in Table 4.1 and
shows in the plot of Figure 4. 3. -

Log 1 2 3 4 |5 |6 |-7 |8 1| 9 10

-
Autocorrelation |-.26 | -,03 |-, 11| -,01 .03 |,14 |-,17 |.18 |-.26 0.0

ng . 11 12 13 14 15 16 17 18 19 20

Autocorrelation .04 .06 .12 -.14 [ ,01 |-,03(-.09 [.17 |-.01 |-,14

Table 4.1, Autocorrelations for Sump 1

Since the Sump 1 time series has 96 data points and 1/J96 = .1, only autocor-
relations greater than .1 in magnitude have any possible significance. These
correspond to lgg values of 1, 3,6,7,8,9,13,14,18,20. Of these the values at
3,13,14, and 20 are near .1 and likely to have little meaning. The values at 6
and 18 seem to reflect the deterministic in phase changes being made to the
water level at six hour separations. This is also true of the relatively strong
autocorrelations at 1 and 9 due to the combination of 3 hour and 6 hour deter-

"ministic changes in water level.

- . . 39 .
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. be purely random in character. The term random may be used in a number of
‘ways, usually implying the opposite of deterministic. A random occurrence

‘-h m'e ' d b e’ s

If the time interval for the data is weeks, then the lag is measured in.
weeks, The autocovariance values Ck measure the variability about the

full series mean W due to terms in the series separated by k weeks (lag k).
When k=0, this is the sample variance resulting from the full series of n
data values. Autocorrelations are measured in units of the variance Co and

must take on numerical values between -1 and +1. A high positive

(e.g., .8) value for an autocorrelation of lag k indicates that values separated
by k weeks are similar in that if one data point is high the data point k weeks
away will be high and if one is low both will be low. Large negative values
(e.g., -.75) indicates the opposite effect. The weekly values k weeks apart

are related but in an inverse way so that when one value is high the other is

low. Of course, these are statistical indications only and represent a likely
general behavior of the series data. Particular values may not actually conform
to the likely behavior indicated by the series autocorrelations. When the
autocorrelation Ck is near zero (positively or negatively), data values separated

by k weeks are not likely to have a significant relationship to each other.

Autocorrelation values may indicate a number of things about a time series.
If the sample data points do not reflect changing levels of crime or other major
changes in the data collection system, the series is said to be stationary. In
such cases, the autocorrelation values would be expected to decrease in magnitude
(disregarding the positive or negative nature of the data). This is because
values should become less related as they become separated in time except for
three kinds of situations. One situation in which the autocorrelation values do
not decrease quickly as lag value increases is the non-stationary series mentioned
above. In such cases, there is some real effect operating to produce data that
are correlated., A trend line is a typical indication of such an effect. For
example, if burglary increases due to the pressures of a bad economy, there
can be a general increasing trend rendering the time series of burglaries
non-stationary. Autocorrelations can be used to indicate the presence of
such trends. ' -

Another situation that causes large autocorrelation values at various
lag amounts is a so-called seasonal or periodic effect, If robberies are
high in the third week of every month, then some indication of this will be
shown by rather large autocorrelation values for lag value 4 (the approximate
weekly separation). Autocorrelation values can, therefore, be used to indicate
the presence of periodic effects. For reported crime data, periodic effects
are not likely to occur in weekly time series. They are more likely to show
up, if they exist at all, in monthly data. Some aspects of a periodic effects )
study are given in Section 9. |

The third situation which may yield relatively large autocorrelation
values-in various patterns is when the time series data have some degree of
statistical structure leading to the possibility of representation as a mathemati-
cal model. The autocorrelation values can be used to indicate the most likely
such model form and show how it should be developed. This is the approach
to stochastic models discussed in Section 6.

When there are no autocorrelation effects, the time series is said to
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is one that depends on some kind of probabilistic framework which may be
supposed to be acting, which governs the occurrence. In this report, random
is used in this sense and more particularly to denote a lack of correlation
effects between joint events which taken together are subject to probabilistic

laws, such as the time series values of reported crime. These examples present

autocorrelations for Police District 1 Cincinnati (D1), all of Cincinnati except
D1 (CD1), and for the city. A maximum lag value of 20 is used. Auto-
correlations were computed for the 87-week pre-COMSEC and a 78-week
post-COMSEC period in each of the regions D1, CDI and city.

The autocorrelations may be presented as tabulated data or as graphs.
In either case, there must be some measure of purly random difference
from zero autocorrelation. One wishes to use the acf values to characterize
and interpret the time series. In such applications, ''significant' numerical
acf values are employed. However, it may be that some nonzero values
(at various lags) have no real significance, but occur only from purely random
data effects, ''small" sample sizes and numerical round off. This situation
is dealt with by stipulating a value measuring the sample vaiability of the
sample acf quantities. If n is the number of values in the time series (size
of the time series sample), then 1/4/n is considered to represent a single
standard deviation of randomness in acf values. In many studies of time
series 2/+/n is used as the critical value, only greater values being taken
to have nonrandom significance. In the examples 1/4/n was used to prevent
loss of information. It may be noted that for the 78 and 87 week series the
quantity 1/+/n is .11 to the nearest hundredth and this value is used in all
case€s.

The graph presentation of acf values is extremely useful and can serve
as a guide in series comparisons and in the basic structure stage of stochastic
modeling. Examples of autocorrelation plots will be given following the
numerical table.

Detailed comparison of time series requires consideration of the
numerical acf values. These are illustrated in Table 4.2 which shows all
acf values greater than .11 magnitude, up to lags of 20. For reference the
table also gives sample mean, x, and sample standard deviations, s, for all
cases. -

Figures 4.4, 4.5, and 4.6 give autocorrelation plots for Rape, Robbery,
and Burglary corresponding to the numerical data of Table 4. 2.

42



l.m‘_ ] 4 _ : .
“ ! . . U ,
oo m | . | ! \
. I ;
T T T i I I
1 ! ¢
“ . [ t * } ] i * B -

- ]
[T Y

N * : . .
! i _ !
: D i o
fy B ] ..m “m _ ﬂ “
i . T Ty b e e B
i A _:.T P ~ i .,w_
b e _ R
, P 1 - ] A . . ! . &
- Ao PRSUE SR S e — .
. HJ_- ‘ S i ' : : mm
m n ~ R ,l'. . > N ; R
S b 1 N B
1 T | | 4. «
ﬂ.”. t “H ' Snmvesmmm——— | “ _ <+ Al
H ' uw T_ - RN R g o 23]
= , . e tvl.-x I et B Rt 24
S oLt IR “ . =
. _ I T SO S a— P O
t i R |m : . | ) [ =
Y - L LL 1 .- eee— - —_— e} I IS S PN T
[ i | . " I
IR Cod Co
SR e SRR R RN AR
1 P ' v ¢ | .

s N R :
[ ! i
_u I ’ “ ! o i i
R SR N
M”, 1 i | _ : ! m._n t
BEREE EuBEs C g A R
T T “ R A AT AR B T T ;
; _ e . T : _ IR
' T S S . : o s
: i o m o ; N B w
ISP NS T U SN SRS LSRR S S N HUR S B
| | N e . N
_ . B T } P
: ..ﬁuw : _ A ome——— | ! i _"
TR I P SN R N
| i ; ; A i

RS
4

' : . [ 9 X} —

J"l1lol lol"ql_ol lo.l - e g



I b R e “
W b , ._ o b L !
, Lo Syt .__ . : !
ERERE BRI RO SR
- T T Coae =3 ! ' »
[ . ,T,_»__. , - . Y| [ ! C oy ..
. - P Ee \ _H . ] T
i Vo m * m.m. V. _ .“ ; IS .
s T s e EE——— — - - - N e — e
o _.. m.,* ..ln.ln .w, e B _~ . w. . .m
- _,___ . b S . ; .
SR RN _fm.m.._,ﬂL.._w_: : _._ R
] L . ' h N
RERUREESHNURRE EEREEENENY hoaN DURSY DU § AR S
: o C . : | A_ " i '
- , i v P = , - !
. ; ' I BN : P !
! te i b | - ."
. — s R el D oY — et —_—
[ 1 H “ T
_ . - . 5 , ; R
BN R E RS R Y O A
4 . Lot o : _ .
! o Cea
SR :

|
%
1
|
1
o B
I
|

44

|
FIGURE 4.5 ROBBERY
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BURGLARY
CRIME TYPE RAPE _ ROBBERY AGGRAVATED ASSAULT - BURGLARY
REGION Dl CD1 City D1 ‘€Dl City, D1 CDl - City D1 CcDl1 City
FLERIOD Pre | Post |Pre |Post [Pre | Post|Pre | Post |Pre | Post {[Pre | Post|Pre | Post{Pre |Post{Pre | Post{Pre | Post Pre Post|Pre | Post
X Lo 11| 35{36 {4.54.7]9.4|8.6 |24.2/118.9(35.6/27.5| 4.9 5.3 ]9.8)13.4 14,7 [ 18.7(33.0, 22.5{163,9 |175.9 {196.9} 193.4
S 1.0 L1 |2.0[2.2 {2.3]2.6 3.113.8 | 6.6| s.0| 7.8 6.7 2.6{2.9|3.5]5.9|4.7{ 7.5] 7.9 5.8} 20.6] 2L.7| 23.8} 222
ACF LAG
1 .12 .21 .21 .17 .34 .36] .29 L3l .33 .28 .32
2 . .23 L2y .14 21 .25 29 .13k 12| L29-.22] .250-.25
3 .36 .22 L1¢ .14 .22(.20 .21 .42 1.15] .39 .23 .17 .13
4 ) .23 .121.20 L17 . 13] .30 .12 .12
5 .20 . 23 .16 Ll b 12 ) .44 . 44 .23 . 24
6 -.13] .17 -.1a]| .16 .20}.12 .38 13 ].31 .21
7 -. 14 .21 .14 .13 - 14 .17 |.15 |.12 .19 -.18 L. 14 - 12
8 171,25 .24 .39
9 _ L14l-.14 1 .24 . .16 .22 .25 .36
10 -.15 -, 12 .12 .19 .26
11 .16 L17 , L. 12 .24 .19 L. 12
12 L170.23 L5 |- 161,26 .23 .33 -, 13 -.12
13 sl ) L1216 .20 .25 -.14
14 .18 .17 .15 - 17}-.19 .16 L. 12 : L16 p. 12019 | .
15 .17 .18 .15 L151-.20 -. 22
16 -.25 -.21 -. 24 - 18 J12
17 ' - 16 -17 ' .14 .15 .13 -.15 .13
18 L17]-016) -, 17 -.15 -.13 -. 14 -, 17 1-. 23 L2 |-.23].14
19 ' L 12] -, 16 -.19]-,18 -.23 -.23
20 -. 12 -.13 -.30 -.22 .14

Pre =87 week period before altered operahon SYMBOLS

= 1" —
: Post =78 week period after - Sample Mean

S - Sample Standard Deviation
46 Blank Cell - ACF Smaller than /0 -
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By considering the acf values in Table 4.2 and Figures 4.4, 4.5, and
4,6 a number of observations can be made indicating representational and
evaluative information. Such observations are illustrated by examples given
below by crime types. The interpretation of acf values requires some
familiarity with autocorrelational analysis; however, some indication of how
such interpretations are made is given in each case below, details may be

found in Reference 4.

RAPE

Rape is considered to be essentially random with possibly some seasonal
effects. The autocorrelations for rape do indicate a rather random type of time
series. They do not indicate long lag seasonal effects. Weekly data are not
likely to show such effects. There is some lack of pure randomness at lags
that may relate to monthly {three to five weeks) effects. In DI there seems to
be an effect after COMSEC at lags three and 12 that were not present before.

No clear differences are indicated in CDl or city.

"ROBBERY

Robbery seems largely random in DC1 and city for both time periods.
In D1 it has gone from largely random to some indication of autocorrelation after
COMSEC, indicated by the first three lag values. There are no very strong
indications of change or effects for robbery.

AGGRAVATED ASSULT

In this case there are striking changes in the autocorrelation patterns
in CDI and city. In each case aggravated assault has gone from an essentially
random type time series to a series showing highly autocorrelated character-
istics. By contrast, there was no such change in D1, both the before and after
series are essentlally random. Because of the difference in D1 and CD1
behavior, changes in classification or reporting procedures are not likely to
have produced changes of the type shown for aggravated assault.. Following
are the most likely causes of such changes:

. Instability of the time series due to trends developing which
may destroy the so-called stationarity of a time series and
produce extensive autocorrelation values (for many lags).
Which is the situation in the example data.

. Some pattern of aggravated assault that is unusual; related -
to changes in the reasons for such crimes. An extreme example
of this situation would be the emergence of guerrilla warfare out
of what was previously (random) civil crime of the aggravated
assault type. This would be likely to also produce a trend effect.

BURGLARY

In CDI1 and city, burglary seems to be similar before and after COMSEC
It seems to be an autocorrelated process as discussed in Section 6. However,
it is more strongly autocorrelated, indicated by more lag values, before

" COMSEC. The autocorrelated nature of burglary ir D1 before COMSEC is ;
diminished, for small lags, after COMSEC. However, some monthly variation
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(lags 9 and 12) may have come in after COMSEC in D1, Such effects may be due
to reporting procedurds, non-stationarities in the time series, or actual effects

in the crime pattern.

A problem with detailed statistical comparison of time series using auto-

correlations (or partial autocorrelations) is the essentially qualitative and
subjective nature of the comparison. This is compounded by having to deal
with a large number (in the example, 20) of statistical values. Stochastic
models provide one method of characterizing a time series by means of a
structure type and a few parameters as discussed in Section 5. The structure
type is selected on the basis of autocorrelation (and partial autocorrelation)

patterns, a subjective procedure. Thus the autocorrelations form an important

set of statistical data to be used by themselves for analysis or as part of the
more complex procedure of stochastic model building.

Another set of detailed statistical values that may be computed from
the data is the partial autocorrelations. These are more complicated than
autocorrelations, both to compute and to understand. They do not add much
information to direct detailed statistical analysis but may be helpful in formu-
lating stochastic models. Their use in such applications depends on the
fact that, like autocorrelations, partial autocorrelations have patterns
characteristic of particular forms of time series structure. By employing
both autocorrelation and partial autocorrelation patterns, the underlying form
of a time series may be indicated.

The partial autocorrelation is an involved quantity to compute. It is
numerically equal to the estimated value of the last term in an autoregressive
model of order k (as defined in Section 6). Thus, for each k one considers
an autoregressive model of order k for the series and computes the last
(highest power) coefficient of the autoregressive operator polynomial. For
such a calculation, it is necessary to sequentially compute some other terms
of the autoregressive model as well. If L. is the highest lag value to be con-
sidered in forming the partial autocorrelation function (PACF), then L <K
and the formulas for computing the PACF value Qmm are:

r , if m=1
m-1 ~ '
"m __Zl ém-l,jrm-l ifm=2,3,...,L
3 = 2= ' .
mm m-1
1- %
5=1 m-1,jj

where gmj - 9rn-l,j_'mrr'xo'zrn-l,m-j

for j=1,2,...,m-1

As in the case of autocorrelations derived from actual time series,
the PACF will contain a number of values that are not really significant for
model structure considerations. It is shown in Reference 4 that one can
omit consideration of values lying less than 1/4/n from the zero value, where
n is the number of data points. It is common practice to use the less critical
value 2/4/n in this way. However, in many cases of reported crime it has
been found that the stricter condition was able to be met in model formulation,
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Figure 4.7 shows a typical partial autocorrelation plot. It gives values

to lqg 15 for Robbery in a police district based on 87 weeks of data.
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In practice seasonal variations will also disturb the ACF and PACF
patterns by producing values greater than 1/.4/n that are not part of the major
model pattern indicators. This can be dealt with by incorporating seasonal
effects in the model, or by ignoring such features in the basic model and
dealing with them by other methods (e. g., components models).

When considering the detailed statistics methodology itself, as distinct
from its role in the stochastic modeling process, the autocorrelation values
are used to represent the time series and indicate information about it as
illustrated by the examples given above. Such information can relate to trend
effects, periodic (seasonal) effects, or underlying correlations between data
values separated by various lag (weekly) amounts. By studying sets of auto-
correlation values for different time series, one can test the series for dif-
ferences in any of these characteristics. In the context of an evaluation,
comparisons of interest may be made between pre- and post- series and between
test regions and other regions in which changes under evaluation were not in
operation.
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Section 5. Basic Ideas of Time Series Models

A mathematical model of a time series consists of a combination of
formulas and procedures for describing the time series. In an ideal situation
the model would produce, for each time value, the numerical data point in the
time series, Because of the non-deterministic nature of statistical time series
actual models do not give the same values as a particular series. However if
the model is a good representation of the time 'series it will yield values that
are as likely as the actual values within the degree of statistical variation

~ (randomness) present,

This property of the model allows its use in forecasting and also gives
a specific mathematical expression characteristic of a time series, For some
applications this is more desirable than collections of numerical indices
(statistics). Shortcomings of mathematical models lie in the difficulties in their
construction, the role of subjective reasoning required in some approaches,
and the distinct possibility that good representations may not be possible for
certain time series.

When one wishes to develop a mathematical model for a time series,
the approach to dealing with the random character or stochastic aspects of the
model must be selected, There are essentially three basic approaches to the
development of stochastic models for time series, They have features in com-
mon, but are held by their major proponents to differ widely in philosophy.
They certainly differ in details.

1. COMPONENTS MODEL

The components model is the most direct and is widely used in varying
degrees of sophistication, Careful consideration of such models is supported
by a number of statistical analysts. Components models play a role in many
analyses and should be considered to some extent in any study (e.g., they are
basic to the Census Two method for seasonal variation analysis, discussed in
Section 9). Models of this type represent a time series in terms of several
parts including a trend component, a seasonal variation and a residual random
part. In product form the parts are considered to be multiplied together. In
additive form the parts are added to represent the time series. This basic
model approach can be carried to considerable detail but involves a high degree
of subjective reasoning, guided by impressions of the data more than by quan-
titative analysis of the data (though this is by no means absent). In a sense
very simple approaches to time series fall into this general category. When
a trend or other deterministic effect is strongly indicated by an initial study
of time series plots, such effects should be removed before carrying out other
types of model formulation. To this extent, some form of component analysis
should play a role in any time series study, often as part of the preliminary
analysis as already discussed and illustrated in Section 3.

Components models are developed in terms of three (or more) parts:
a trend component denoted by H(t), a periodic (cyclic) component C(t) and a
random variation R(t). In the product type of model the series z(t) has the
form: :

7(t) = H(t) C(t) R(t),

and in the additive model it has the form:
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z(t) = H(t) + C(t) + R(t).

It may be observed that one need only consider additive models, since a log
transformation of product model data will put those data into additive model

form.

The components H, C and R can be developed with various levels of

sophistication. A simple direct procedure, that often yields a useful model,

is to fit H and C by subjective study of a plot of z(t). The residuals,

resulting from the selected H and C, comprise sample points of the process
R(t). One can obtain more sophisticated models of this type by fitting some
postulated forms of H and C to the data by regression analysis methods

(that minimize the square error or residual value). This technique is employed
in order to reduce the variance of the R(t) component.

Figure 5.1 shows data for a synthetic time series called SUMP 3,
There is a strong degree of randomness indicated but it is not too variable.
Most data points lie within one sample standard deviation of the mean line as
indicated by the parallel lines above and below the mean. There does seem
to be a tendency for particularly low values at intervals of six time units as
indicated by the circled data points. This can be thought of as a cyclic com-
ponent C with period of six, The presence of this term tends to lower the
mean so far as the remaining, more nearly random points, are concerned.
By removing the extra low points (placing them in the term C) the mean will
be shifted upwards and the random part will account very well for the data
within one standard deviation. There seems to be no trend component present
(series is stationary). To find more detailed model forms the autocorrelations
must be considered, these are shown in Figure 5.2 at the end of this Section.
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falls, such as a week), Then the first difference series is Vz_= 2z, - z

o s m®esm w e’ f m b —h

2. EXPONENTIAL SMOOTHING

The second major approach to time series is commonly called '"expo-
nential smoothing' and is presented in detail in Reference (5). This approach
is logically developed by applying methodology of systems engineering to time
series, It draws on the mathematical techniques of transform and spectral
analysis as they apply to the assumed stochastic structure postulated as a
model form. Exponential smoothing assigns weights to probabilisticly occurring
past data and uses a combination of such values to forecast time series values.
It has had notable success as a forecasting method and is widely used.

Advocates of the method point to its relative directness of approach,
utilization of the data to assist in model formulation and decrease in sub-
jectivity over the components approach. On the other hand, detractors from
the method indicate that it is very much of an ad hoc methodology. The model
having little or nothing to say about the stochastic process being modeled, how-
ever good it may be at forecasting. Moreover, for some of its more widely
used forms, it can be considered as a subcase of the general stochastic model
and "falls out'" of that more comprehensive approach in appropriate cases.

, Its strength lies in its relative simplicity where it works (i.e., forecasts
well), In the use of reported crime data it may be desirable to have good '
representational models for baseline and subsequent time series so that signifi-
cant changes in the character of the series, implying possible changes in
operational effectiveness, could be detected. This consideration, together

with the observation that the general method will often yield an exponential
smoothing type model where appropriate, directs consideration toward a third,
more comprehensive methodolagy for time series analysis.,

3. ARIMA METHOD

The third approach is called the Autoregressive Integrated Moving
Average (ARIMA) method. It is also known as the Box/Jenkins technique after
its major proponents, G.E.P, Box and Gwilym Jenkins., (Reference 4). This
method begins with a preliminary study of the time series and possibly some
number of differenced (or transformed) series. This phase of study considers
the possible utility of transforming the series data (or data from some differenced
series) to make the resulting data more amenable to stochastic model formulation.
Typical transformations are the logarithm (base e) and square root (or other
exponential),

After one selects a form for expressing the data, it is desirable to have
the series as ''stationary' as possible, Stationarity means that the random be-
havior of the series does not depend on the particular time origin so that the model
will apply to the series independently of special aspects of the times at which data
are recorded. In practical terms a stationary series does not have trend effects.
If the original series is not stationary, the first or second difference series may
become more stationary as may higher degree difference series. Thus it is the
desire for stationarity that causes one to study differenced series.

(4

The original series may be denoted by (zt) where t is the time at which ¢
data value z, was recorded (or indicates an aggregate time interval in which z, .
t t t-1°
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Similarly the second difference is szt ¢.1 t 24_p- Though

higher degrees of d1fferenc1ng can be used in produc1ng stat10nar1ty, reason-
able models based on the ARIMA technique should not require (or employ)
more than second-order differencing. Use of higher orders implies a com-
plicated time series for which a reliable sophisticated model will be very hard
to formulate.. Should one succeed in such a formulation, it would be difficult
to interpret and in particular to use as a basis for indicating change. Station-
arity is desirable for the development of particular stochastic models (e.g.,
in parameter estimation). The properties of the series and its differenced
series can be used to indicate stationarity or its absence.

= v(z 1) =2, -2z

After preliminary study, the ARIMA technique distinguishes three
distinct phases of stochastic model construction: the identification phase, para-
meter estimation and diagnostic checking.

Identification

In the identification phase, the general form of model is selected. The
identification phase is carried out by studying autocorrelation and partial auto-
correlation data in either graphical or numerical form. As discussed in Section
4, these statistical values indicate the nature of a time series and point out ‘
special features that may be present (such as seasonal effects or correlations
between series values), Theoretical studies of autocorrelation and partial
autocorrelation values show distinct patterns corre sponding to different kinds of
ARIMA model forms. Thus by comparison of actual autocorrelation and partial
autocorrelation data with standard patterns, some indication of the most appro-
priate model form can be obtained., Of course, the real data are often compli-
cated and truly typical patterns are seldom found though there is usually enough
effect of one form or another to allow a reasonable identification. :

-

The model's structural form (in terms of mathematical expressions)
combines autoregressive terms representing previous values of the series and
moving average terms representing weighted contributions of purely random
past inputs (random shocks) to the series. In most cases the level of sophistica-
tion for models will be up to, at most, second order in both the autoregressive
and moving average parts, Higher order models seem to result in overly com-
plicated models for most purposes. Some details of ARIMA model form are
given below and in Section 6 and are fully exponded in Reference (4).

When the model form has been determined, the series data are used

to estimate parameter values sPecifying a particular stochastic model. Such
estimation is based on minimizing the expected sum of squares of the residuals
that represent the difference between the actual series and the series resulting
from the model. This procedure can result in very good estimates for the
parameters, particularly when appropriate statistical hypotheses are satisfied.
However, the minimization procedure is rather complicated and requires the
development of considerable computer software for its general implementation.

The last major step in the ARIMA technique'is called diagnostic check-
ing. In this step the residual values, not accounted for by the mathematical
expressions of the model, are generated and studied in various ways to
determine how well the model represents the actual time series. The ideal
situation is when the residuals form what is known as a white noise process
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of small variability (the major feature being no autocorrelation) about a zero
mean, A white noise process is a time series where autocorrelation values
are essentially zero (except for the nominal or zero lag value which is always
unity). This means that there is no correlation effect between the time series
data values, Technically white noise also implies that each data value is a
sample point governed by the same probability form, called the Normal
probability, However, the significant feature is the lack of correlation rather
than the assumed form of the underlying probability law. Of course, the ideal
situation is seldom achieved in practice and one judges how satisfactory the
model is from how closely the residual series approximates the white noise
characteristics,

The statistical significance of stochastic models depends to some
extent on the number of data values available for testing model structure and
estimating model parameter values, For simple processes, relatively few
points may give satisfactory results. In complicated cases or when seasonal
variations make large contributions to the series, many data points are
needed for satisfactory model building. '

The autoregressive Integzlated Moving Average (ARIMA) model stipulates

‘a detailed mathematical expression for the time series z(t). Itis supposed that

z, = z(t) depends on previous values of the time series and also on previous (and

present) values of a random residual denoted by a_ at time t. The general

form of the model is t
$(B) (l-B)dz = 8(B)a, + 8 ' (1)
t t o )
where B is the shift operator, defined by th =2z, 1 $(B) and 6(B) are

polynomial operators, (1-B) = Y is the differencing operator, defined by

Vzt =2 -2 1, and d is the degree of differencing applied to the data., The

polynomial operators are of the form ¢B)=1 - QIB - @ZBZ - @po, and
8(B)=1- 8 B - 0,8

considered. . .

The model structure may account for such effects satisfactorilly: if

not, additional formulation is required. The general ARIMA model, as developed

by Box and Jenkins (see Reference 4), deals with seasonal models by introducing
a seasonal shift operator s into the general form shown in equation 1 above.

Seasonal operators are denoted by H(B) = 1 - hlB - eee- han and
R(B)=1 - rlB ceee- rmBm. If s is the period of seasonality and D is the
degree of seasonal differencing, the general ARIMA form is:
d s s,D ) s 8
$(B) (1-B) H(B") (1-B") z, = (B) R(B )at+ o
Details will only be given for the non-seasonal form in this Section.
Considering the differenced series W, = (l-B)dzt, one finds that it has

two parts: an autoregressive part ‘§(B)wt depending only on previous values
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of W, and a moving average part Q(B)at depending only on previous shocks of

purely random process a,. In theory the a, process is described as white

t'
noise; that is, a series of normal random variables with zero mean, all

having the same variance, uncorrelated overtime. These a, random variables

have been referred to as random shocks, indicating that they account for random
variations in the time series not attributed to (accounted for by) the previous
terms in the W, series itself,

The term Q(B)wt is called the autoregressive part of the series since

it expresses the present value z_ in terms of a weighed sum of previous values.

t

(The weights are the coefficients in the polynomial #(B).) A purely autoregressive

process has the model from Q(B)wt = a.

The term S(B)at is called the moving average part of the series. It

expresses a sum of weighed contributions due to past random shocks. (The
weights are the coefficients in the polynomial 8(B).) A pure moving average
process has model form w, = e(B)a,t. Box and Jenkins call this an integrated

moving average since it includes a contribution of many individual moving
averages,

Some appreciation of what the moving average model means can be
gained by considering the simple case -

w, = (1 - rB)a.t

which may be written as

-1
(1 - rB) w, =2,

or
1‘2 ;
t-l - Wt_z - I Wt_3 e s e y;

Wt=at-rW

This formulation expresses the present value w_ as the present random shock

t

minus contributions from past values of the w, series, When 0 <r <1, the

contributions from the past are reduced by weights that vary exponentially.
Hence this type of model is often called exponential smoothing (see Brown in
Reference 5). Some additional aspects of the modeling process including
considerations of stationarity and transformation of data are discussed in
Section 6.

Parameter Estimation '

Once a model form has been selected from the considerations of the
identification phase, the parameters of the model must be estimated from the
time-series data. These parameters are the coefficients in the two operators
$(B) and 9(B) and when seasonal variation is considered one also includes the
parameters of the seasonal operators.
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Diagnostic Checking

The third phase of the ARIMA technique is called diagnostic checking.
In this phase the mathematical model form is used to compute a residual
stochastic process from the numerical time-series values. The residual
process is theoretically the same as the series of the past shocks {at}. If

the model is an exact representation of the series, the residual series will be
a white noise process. Thatis, an uncorrelated normal process with zero
mean value function and constant variance. The diagnostic check considers
how closely the actual residuals are to forming a white noise process. The
autocorrelation function of {at} is computed., Small values indicate that the

residual series is uncorrelated. If, in addition, the mean is close to zero
and the standard deviation is of reasonable size, the model is accepted as a
satisfactory representational model. It should be noted that the size of the
residual standard deviation has no connection with the accuracy of the model.
It only relates to potential use of the model as discussed elsewhere in this

report.

An additional feature of the diagnostic checking phase is calculation of
forecasted values for the time series under study. Forecasted values can be
compared with series values that occur subsequently. In addition, the general ’
character of the predicted values can be considered. Reasonable results from
such considerations will indicate operational utility of the model as a fore-
casting device. They also contribute to a general feeling of reliability of the
model as a representation of the actual time series. However, it may be
that a good representational model will not yield particularly good forecasts
In such a case the model may still prove useful for evaluative study.

‘ In all cases it should be observed that the forecasts are expected to
become less reliable as they move further forward in time from the point of
evaluation. In making the forecasts, past values of the series and the random
shocks are used in the model form. When new values are required, computed
values (forecasts) are used for the time-series values and zero is used for
the unknown future shocks (as in Reference 4, one can show that this gives the
best estimate for future shocks in the sense of minimum mean square error
estimation). Forecasting is discussed and illustrated in Section 8.

Seasonal variation or other cyclic type trends can be important in
time series models., These are discussed in Sections 6, 7, and 9,

The SUMP 3 example data is shown in Figure 5.1 and given a pre-
liminary type of analysis in the beginning of this Section, Figure 5,2 shows
the autocorrelation plot for SUMP 3 data. It'clearly indicates the strong
deterministic correlation separated at intervals of six time units (note strong
autocorrelation at lag of 6, 12, and 18). The correlation in opposite sense
is indicated by the values separated by 6 time intervals, starting at lag 3.
This synthetic model was constructed as an ARIMA type (1, 1) with two deter-
ministic terms added so that its form was

- = -0 ] inist
(1 9, B)zt (1 l)at + 0 + Deterministic Terms

The values used were ¥, = .25, 91 = 1.5, 90 = 28. The deterministic terms

57



- en’en ol - b o i

- e ek e e g e areer lli ..w- . - 1 | »»0“'-v ¢
[ s | ' [ S SN S | ! L : | 1) Lo g d — N i b : g
h T T t =+ T T T 1t —— t—+—* =ttt \

Lot —— e — - — - ‘ - e e — - - - A e - -———— - - -t
O G e b e —— e e - e e S

- —— P s s e e e SmTORTDT —— e e —— — . —————— e

BTN O Y U OO UV USRS U VUUE P SOICOUUUoUunp [ GO ORI (A S S EUN S S St - SO R

M.Itu:HHmMMN-.Ha SR S Y MU B TS SRR !-.!mlll-lm:. ey

[ | N \ N § } AN WS RO DA ; (ST
=ttt T e e - st :

T ? 7T T 1 T R e T T T e T Ty e { ™ Y
— e -~
- ———— — e e s — - - - - - - - - ko - .- — - - -  — i —— ~
.ﬁﬂnl BRI i H - i _ R S I . . . :
B e e el R
TI!.!.[-} - ; A, B L A e e
: —
t T T ¥ Vo~
-t ™1 T T t ¥ ¥ - 7 7 T ¥ ST ¥ v T
L

b meem = = - - A N e - POp— O e

-.|lt.il1]|.II!;0.,...!:Ioll.l‘f.-lii.yl.lil.llf!-
T T i — e T
| IR ERP N I ! ST I R NS S SO I MRS ML WA B A IR Py

LA B B A T A A Ty H ..7“,4a_4_,_..m.___m_a_w.qw._

T T L [ N T 7T : v 1 [ R T

L . ; P T ) R
-- . - - e e . e e )

[ A R R B e A T R H T S e N L T S S S B R RS I R R
P .- e L ool b . [ VUL AR AU S Lot LR -t
I - - —— s s s v e EUTCEY . _— - ——— a—— — —— . ——— —o——— —

'L o e [ S N W e e e ——— -
e o e e e e - e e e = = - - ——— - e

i bl

1. —— S S U —— - S — . PR

{ ) K

ﬁ. - — e e e g - S - e = [

. —— - o e oan e JRSECUIR e —— o —— e i e o e
U O
b i N [ W AU N U [, - i - —

; ; : i

T T L e - —_— . [ [
s ——— ; - -
N - - e e e [ r SO - - . - ———— .

o - . - [ - .o - — - -

b e . — - - U —_ - - - ——— ————— - -

G - - e — - -

T.l d i : bt ) s ! N PR . ——t —

e e | e e + — R - et e e e me ———

i _ : - ;
prmeem .- e ! _— S - P - O QP A O
— s — R [ e —— - - — - e - OO - —_————— .
!
W‘\Ilv\ .- — e R I e e e e ot e ——— e R — —— er = - = - I\_ - —— o me— - \ - - - -
[= — - mT T :
b e v e e e e e e e e e e e e e e e e e e e . . e
i ( T : ; m i
- - SO PO B B T e ———- ——— R ~
_ - - TTTTT T T e ey T s - - T - -
e e e o mm 4 e e e — e et e - e IR S N U - . P

e L L B e [N St et (N R S A N A s A N |
. H L ]
4

[SR—— B s L S P et e a e - f e e RPN -
gt L [ . - b e -

[ - [ P - S S S e e e - - - - - —

! - - - deme e R At - -

. - = [ T - T - - -

e e ! —— - - - - -

. ' - R . . - . -

i —_—— - - e e e . e v.n.

- - e - . |- S . .- . - S -

| — - e e ST e b e . - e} S

i _ ~ I _ 1 _ . {

_1 - - T - - ~1 -~ e I .- - - e 4 .= - R it - t .
— e e e e . - e . _—

| ‘ —L —6;- -'-D s o & -

ACF

FIGURE 5.2 SUMP 3
59




d m b e et nm'me’sm e h owm i

Section 6. Methodology of ARIMA Models

The methodology employed for the study of time series data by formu-
lating ARIMA type models consists of several distinct tasks and requires
computer software for carrying them out. These tasks, or modeling steps,

include:

- -Plot time series and plots of transformed or differenced series
as required.

--Compute sample mean and standard deviation for a series of data
values.

--Compute sample autocorrelations and partial autocorrelations to
specified number of lag values.

-_Make a set of estimates for the parameters of a selected mathemati-
cal model of the time series. Estimates are most often based on a
‘minimum mean square estimation program as discussed below.

_-Calculate residual time series not accounted for by the model.

- _Test the model to see how well it represents the time series.
This involves testing the residual-series for white noise character- .
istics, observing smoothing ability of the model and making short- :

range forecasts.

Much of the above process is commonly known as the ARIMA technique
as previously discus sed. Various alternatives are possible for carrying out
the ARIMA model formulation of a time series such as with reported crime
data, In particular, the usual ARIMA procedure employs an identification
and decision step in which the autocorrelations and partial autocorrelations
for various lag values are studied. From these, one attempts to gain character-
istic patterns that suggest an appropriate model form. Then the form is selected

and model parameters are e stimated.

However, the overall point of view is to get a good model, which is
defined as one having certain residual characteristics., How sucha model is
obtained is not important. Thus, in cases where a large number of time
series are to be considered, a more direct approach is de sirable, To proceed
in such cases it may be possible to assume that relatively simple models will
be satisfactory. Several simple model types can then be chosen for study and
an attempt made to produce each of these models for every series. This
involves estimating the desired parameters. :

In some cases useful models may not be obtained because the data do not
lead to useful estimates of the parameters. This situation enforces the view-
point that only simple models could be obtained on the basis of the assumption
of elementary series models. By.attempting to produce candidate models for
each series, a large number of models can be constructed. To carry out the
more usual ARIMA procedure would take a great amount of time, and computer
use. Once the candidates are produced, 2 study of each allows selection of the
best model for each time series. DBestis determined from properties of the
residual. (Some commercial procedures are becoming available that seem to
follow similar pragmatic methods to obtain useful ARIMA models.)

For careful development of a time series model an ideal procedure is
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to conduct preliminary analysis of the kind discussed in Section 3 together with
the basic identification phase of ARIMA modeling. The autocorrelation can
suggest things like lack of stationarity and seasonal variations which can also
be considered by means of the plots and simple statistical studies employed in
preliminary analysis, Transformation of data or differencing of the series
prior to detailed model formulation are often suggested on the basis of pre-

liminary analysis or part of the ARIMA identification phase. These preliminary

considerations are discussed in Section 3.

The procedure described above will be illustrated in detail for two
cases: one showing a good model and one showing a poor model. Properties
determining a good model will be indicated as part of the illustration rather
than being given in more abstract formulation. They are, to some extent,
subjective, but do provide operational guidelines for selecting mathematical
models of time series,

Before presenting the illustrations, the model form will be discussed
somewhat further to provide a background for discussion of the illustrations
and also to allow definition of a possible new level of crime measure based on
the stochastic model concept. The measure may be called the residual crime

level and may prove to be more meaningful than the sample means as a scalar

(i.e., single numerical) indicator of crime level., Detailed study of the re-
sidual crime level is beyond the scope of work described in this report.

The time series may be denoted by a collection of values z, which

equals the value of the series at time t. Thus, in the study of reported crime
if the time series for burglary in District 1 is being considered, Zg would

denote the number of burglaries reported in District 1 during week number 5
(which would correspond to some calendar week in the time series). The
nonseasonal mathematical models express the value z, in tems of previous

series values such as z purely random amounts a, (called random shocks)

t-1’
that cannot be accounted for by the previous series values, and a nonrandom
constant term. If thé model uses p previous series values and q previous
shocks, then the value of zy is expressed in the form: :

Mo

+0

82p1 T3 - 2e it Yo

1 i=1

N
)
1 ™Mo

i

To specify such a model the p+q+1 parameters éi, 60, Gi must be estimated

from the data. Selection of the model type is accomplished by choosing the
value of p and q to be used. The notation (p, q) is widely used to specify the
model type. Basic candidate model types that may be used are (2,2), (1,1),
(1.0), and (0,1). (In some cases other models and seasonal forms may be
required.) It should be noted that the form (0, 1) is best when the series
itself is purely random (as is often the case.for such crimes as homicide or
rape). This model type includes a form of the so-called exponential smooth-
ing model. ‘

Estimation of the parameters to be used in the ARIMA model is a
major part of the actual calculation required. One way to estimate the
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parameters is based on the method of moments widely used to develop esti-
mates in statistics. These are called Yule-Walker estimates. They '
insure that the model will yield some number of moment values equal to

the corresponding sample moments obtained from the data. The required
calculations are reasonable but the estimates are not considered as good

as those obtained by minimizing the mean square error between model
values and actual values. However this minimization is a major problem of

- numerical analysis. Sometimes the Yule-Walker values are used as initial

points from which to start the optimization process. If this is considered too
extensive a calculation the optimization is started from selected initial values.
Since the difference function being minimized depends on all N values in a
series of length N a complicated function of the estimators is involved. This
will be discussed a little more in Section 10,

If one takes expected values in the model form shown above, the
following result is obtained:

p
E(z,) = T 6.E[z, .1+ 6
1=

This occurs because the at random variables are assumed to have zero

expected value (mean), Denoting E(Zt) by the series mean M one obtains:

eo: (1- .
i

N ™Mo
H
o
!

p 1
The quantity 90 is what has been designéted above as the residual crime

level. When the amount of crime at time t does not depend directly on pre-
vious values, the parameters ‘?i are all zero. In this case the time series

of reported crime is a pure moving average form of model, and’ eo is the

average value M, estimated as the sample mean. When‘a good model can be
produced in which no éi terms are present, the residual crime level 90 is

the same as the mean crime level 4. However, for those cases in which the
better model employs some previous time series values (@i not all zero),

the residual crime level differs from the mean crime level. This occurs
because in such cases more of the incidence of crime is accounted for by the
model terms corresponding to previous series values. There is a residual
crime level unaccounted for by either the influence of previous levels of
crime or any purely random (shock) terms. The level may be less or greater
than the sample mean, depending on the numerical values of the parameters
<I>i (which may be positive or negative).

One may denote the three parts of the model as the
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o purely random (white noise) part R=a, - @i
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A model is considered to be good if R has the properties of white noise, as
illustrated in the sample cases discussed below, The effect of each of the
three parts does not relate to model correctness (i.e., goodness or suit-
ability). However, they may well relate to model utility. In some cases a
good model may be a useful operational tool while in other cases an equally
good model (judged on the basis of the white noise characteristic of R) may
be less useful. Model utility depends on the relative strength of each of the
three parts, Since the application of time series model analysis to offense
crime data is only beginning, there presently does not exist any body of
information as to how to utilize such models. For applying such models in
evaluation work there is interest in considering what the three parts of the
model may contribute regarding measurement of change in crime level or
pattern. For this purpose one can conjecture the following aspects of the
three parts, with a caution that there is no evidence at this time that these
conjectures are correct:

© There is relatively little that one can do to alter the purely
random part R; contributions to crime governed by this process
show the least response to changing police activity.

© The residual crime level 8, depends most strongly on the crime
environment rather than on changes in police activity; if it is to
be changed, rather general measures must be taken to alter the
total environment. -

e The correlated part C is most likely to change as a result o
altered police activity, changes being indicated in parameter
values and/or p, the order of the process.

These are preliminary considerations, stated here to indicate some of
the ways in which time series models of reported crime might be expected to
contribute to evaluation of change due to altered police activity, Several dif-
ficulties can be identified with these concepts. The residual crime level eo

depends on the same parameters as C does so that both should reflect the
same kind of changes; however, it is reasonable to suppose that 90 may be

less sensitive than C .to changes in the parameter values ‘I’i. Another diffi-
culty is the considerable variation in 90 values over candidate models (and

on techniques used for parameter estimation), This is a weakness of the
residual crime level, in that it can have rather different values for models
that are almost equally good so far as their white noise characteristics are
concerned.
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Time series may have some cyclic or seasonal variation that contrib-
utes tgwiil‘lia;znagnitude of the series values, Retail sales have peaks before
Christmén And electricity use is high in August due to air conditioning demand.
Reported-¢rime does not show strong seasonal effects such as those that stand
out for retail sales. However it is possible that some type of cyclic variation
is present for certain crime types. This is discussed more fully in Section 9.

The ARIMA methodology can produce a stochastic model that includes
cyclic variation (seasonal trends) by using higher order difference terms. These
may be either autoregressive or moving average type terms. In the examples
of autocorrelations the presence of cyclic effects was described. When study
indicates the presence of effects and identifies the appropriate lqg value the
ARIMA methodology includes the difference factors in constructing the model.

Of course the introduction of such cyclic factors complicates the model,
requiring additional parameter estimation. Thus longer series are required
to provide the necessary data for estimation,

It is important to balance the potential improvement in a model that
might be provided by cyclic factors against the added complexity and possible
downgrading of parameter estimation, When there are strong indications of
cyclic trend they must be accounted for but with most crime data such indica-
tions are slight and it is very much a matter of judgment how they should be
dealt with, -

The following two model-formulations illustrate how models are
selected and tested for goodness., Both a good and a bad model will be described
in practice the bad model would not be used. Additional models selected from
candidate models of various crime types are given in Section 7, Details such as
those given below are not presented for the other illustration cases.

An example of a good model is the (1, 1) model for burglary in
District 1, for the 87-week pre-COMSEC period. The (1, 1) model has the
following mathematical form:

z =% 2z

- 8
¢ 1 +90+a a

t-1 t 17t-1°

s

Data for this case give estimates for the three parémeters @1 =.4, 90 = 19,57,
91 = .1 and the sample mean and standard deviation are W = 32, 76 and 0 = 7,97,
Note that the residual burglary level 90 is considerably less than the sample

mean., Thus the model form is accounting for a number of instances of burglary
that do not have to be lumped into the residual crime level.

The major purpose of this, and the next, example is to clarify how a
model is judged to be good or not good, thereby illustrating the diagnostic
phase of ARIMA. The most important features of the model are the white
noise properties of the random residual. This is the part of the time series
that is not attribufed to correlated or fixed levels, it is the estimated a,

series, White noise should have zero mean value and zero autocorrelation
values, Of course, one only obtains estimates of all these quantities, based

on the data and the model structure. These estimates must be used to test ,

the white noise property of the residual. An autocorrelation estimate is
assumed to be not significantly different from zero if it lies within one standard
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deviation, of its distribution, from zero (positive or negative). The sample
distributions are rather complicated, but for far-size samples the standard
deviation is taken to be about 1//n where n is the length of the time series
(in the present example n=87 and 1//n = .11).

For the (1, 1) model of burglary in District 1, the residual mean is
-.05 which is close enough to zero to be acceptable (though smaller values
are commonly obtained). The properties of the residual autocorrelation are
shown in Figure 6.1 where the plus and minus 1/J/n values indicate the signifi-
cant region, Only autocorrelation estimates falling outside these levels are
of any significance at all. In this case only five out of a total of 20 values
fall into the significance region and none fall very far into that region. This
is a very acceptable sample white noise autocorrelation spectrum. In
Figure 6.1, '"lag' refers to how much separation is taken between time series
values in computing the corresponding autocorrelation estimate. No auto-
correlation value falls beyond two standard deviations (2/n) from zero
which would be a highly significant occurrence as illustrated in the next
example.

Though the white noise property is essential for a good model, there
are some other, more subjective criteria that one may also consider. One
of these is seeing how well the model forecasts for a few weeks ahead. A
bad model is often indicated by strange (e.g., negative) forecast values. On
the other hand a good model gives values near the sample mean and usually
becomes constant in a very few weeks (two or three). Though possibly not a
useful forecast (because of the relatively simple form of models being used
here), such reasonable behavior indicates a sound model representation,

Another criterion is the contrast between the original time series
and that series with the random residual (white noise in a good model) sub-
tracted out. In a good model the result is a much smoother series than the
original, It represents the part of the time series that is not purely random,
combining a constant level with a correlated (one value affecting future values)
random series. As has been remarked above, this remaining part may well
represent the levels 'of crime for which various activities can produce change.
The purely random part cannot be affected in the same way (e.g., one cannot
forecast that part at all on the basis of other data). Thus smoothing seems
like a good model feature; however, too smooth a result would possibly indi-
cate an inability to produce changes, at least by certain methods (of course, a
police state' can strongly affect even the purely random part).

Figure 6.2 shows the series for burglary in District 1 and the smoothed
series after removal of the random residual, which has been seen to be close
to white noise for the (1, 1) model. Considerable smoothing occurs indicating
a good model. However, variation still exists indicating that there is more
to burglary than purely random effects and that actions can be taken to use
information contained in the burglary time series in efforts to reduce burglary.
Thus, not only is the model a good one in theoretical terms, but it is poten-
tially useful as an operational aid.

A final consideration is the standard deviation of the random residual
7.55 in the present example, The standard deviation has nothing to do with
goodness of the model, but relates to its potential usefulness. Since the ran-
dom residual, once identified by a good model form, is an instrinsic part of
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the complete time series, one has to deal with it, If the purely random
residual has large variability, ‘then there is a strong uncorrelated effect that
may be difficult to reduce. At least it seems likely that different procedures
may be required in attacking the purely random part from those that are shown
to be useful in attacking the correlated and constant parts. Certainly our
interest here in identifying the different parts is to have an evaluation tool

that can address those aspects of change that may be expected to be affected
by a program without having to demand that a program also produce changes

in processes over which it could not be expected to have the same effect.

In contrast to the good and potentially useful model (1, 1) for burglary
discussed above, it may be noted that rape is essentially a purely random
series. A good model for rape is of the form (0, 1) with 91 = 0 so that

z, = 90 +a The residual is essentially the series itself shifted from a mean

t t*

of eo to a mean of zero, Removal of the a, series gives perfect smoothing

t
(constant 90 value) and the white noise spectrum is ideal (all autocorrelations

are zero). However, this very good model seems to have little potential
utility because it only bounds the occurrences of rape by sample standard
deviation values,

Another comparison with the burglary model is provided by a bad
model for petty larceny in D1 for the 87-week pre-COMSEC period (in this
period the definition of petty larceny was based on $50 value). It is a (0,1)
model with eo = 38.98 and 91 = - ,59, In this model the residual crime level

90 equals the sample mean 4. Sample standard deviation for the larceny )

series is 10, 24,

The random residual has mean .01 which is satisfactory but has a
very poor autocorrelation spectrum as shown in Figure 6.3, Two values are
more than two standard deviation limits. This is completely unsatisfactory
autocorrelation and the residual cannot be considered as representing a white
noise process. Thus the model is not good (unacceptable). For this case one
can consider the series remaining after removal of the residual as shown in
Figure 6.4, There is nothing like the smoothing effect seen before in Figure
6.2; in fact, there is very little smoothing.

When the random residual has a poor autocorrelation spectrum, the
significant peaks may be due to poor model selection (or parameter estimation).
However, they may also be due to periodic trends in the data, When this is the
case, one can often identify similar (i.e., same lag values) peaks in the
original series autocorrelation. This is one method for identification of
periodic (seasonal) effects,

Cther difficulties in the model may result from attempting to model a
nonstationary series or a series that should be transformed in order to yield
better model representation.
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Section 7. Illustrations of ARIMA Models

This section illustrates the mathematical model approach to statistical
analysis of time series comparisons, for example as employed in the study of
reported crime for evaluation purposes, An ARIMA model may be developed
for each crime type and region of interest both before and after a program
initiation for which evaluation is desired. Due to the relative effort in pro-
ducing good stochastic models, examples may be restricted., The illustrations
are for representative crime types in District 1 (D1) and the rest of the city
(CD1). The models given were produced without extensive preliminary meodel
formulation studies. Thus, the examples do not include such things as data
transformation, differencing for improving stationarity, or the detailed study
of autocorrelation and partial autocorrelation statistics. These are illustrated
elsewhere in the report. Instead of the detailed preliminary procedures, a
number of candidate models having simple form were made and their residual
properties noted. If a good model could not be found, a more careful study
was made and some additional candidates were formed for that case. From
this collection of models, it was possible to obtain a good model in most
cases under consideration for this illustration. The selected model for each
case is shown in Tables 7.1 through 7.5 -- one table for each of the five
crime types considered. The notation employed in these tables is explained
below,

Model type describes the level of autoregressive terms p and moving
average terms q by an ordered-pair (p,q). Seasonal variation is indicated
as autoregressive lag or moving average lag values, written after the ordered
pair. Parameter values are given below the type description. The order is
indicated by a subscript, autoregressive values are denoted by ? and moving
average values are denoted by 8. The mean value estimated by the ARIMA
software is denoted by M. Each such value is followed by the sample mean
X in parentheses which is used as an indication of '"proper convergence'' as
discussed below. The quantity called ""trend' in the tables is a constant
parameter value which is included as part of the operational software. Itis
not the 90 value included in the model forms given previously. The relation

between ""trend'! and 90 is discussed below.

Description of the residual gives indications of how good the model is,
In an ideal model the residual is uncorrelated and has a zero mean value.
The standard deviation does not relate to goodness of the model, but rather
to its utility as a descriptor of the random process. Large standard devia-
tions in a good residual (uncorrelated, zero mean) indicate considerable
purely random effects difficult to ""control" or predict. The tables show
residual mean and standard deviation values. They also show autocorrelation
values of the residual which are greater than 1/+/n, taken to be a measure
similar to one standard deviation of purely random variation (in autocorrela-
tion values). In practice it is common to use 2/vn as the measure of sig-
nificant residual autocorrelation, values exceeding this measure are indicated
by an asterisk (*).on the tables, There are a number of factors that con-
tribute to the residual autocorrelation values, keeping them from zero, other
than actual autoregressive effects, It is for this reason that only rather
strong (large) values should be considered significant in evaluating the
'"goodness" of a particular model.

In many cases the model selected as best from among the candidate
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TABLE 7.1 BEST MODELS FOR REPORTED RAPE BY REGION

RIEGION D1 CDl1
PERIOD Pre-COMSEC Post-COMSEC Pre-COMSEC Post-COMSEC
(0, 1) (0, 1) (1, 1) (0, 1)
BEST MODEL M=,9(1.0) =1.0(1.1) %) =, 82 M=3.5(3.6)
TYPE PARAMETERS 1, .4 = .11 trend = .11 W=3.0(3.5) trend - .13
81=.08 61——.07 trend = .11 elz—.ll
61 =.72
RESIDUAL MEAN . 002 001 -.002 001
STANDARD
DEVIATION .97 1.1 2.0 2.1
AUTOCORRELATION: |-+ 12 (11) - 36 (3)% -- 14 (1) -. 23 (4)*
o S IGNIFICANT +.15 (12) .23 (12)= .14 (3) -. 15 (6)
g .18 (14) -.16 (18) -. 17 (4) .22 (T)*
Vr’\l‘UES
WITH LAGS .16 (18) .14 (5) .16 (15)
" -.16 (10) -.16 (17)
.18 (14) -
COMMIENTS Good Model Marginal Model Good Model Satisfactory Model
the .36 Value at some autocorrela-
Lag 3 is high. tions are high.

* Indicates a significant residual autocorrelation > 2/vn
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TABLE 7.2 BEST MODELS FOR REPORTED ROBBERY BY REGION

REGION D1 ‘ CD!
PILRIOD , Pre-COMSEC Post-COMSEC Pre-COMSEC Post-COMSEC
(1, 0) autoregres- |(1, 0) (1, 1) (1, 0)
sive lag 4
@1=.012 ¢1=.21 ¢1=.80 @1=.18~
(4) = .10 M= 8.4 (8.6) M= 20.4 (24.2) M=19,2(18.9)
u=9.4(9.4) trend = . 11 trend = . 11 trend = -. 03
trend =, 10 . 91 =.75
RESIDUAL MEAN |.0009 . 0000 2.6 . 0002
~3
w STANDARD
DE VIA TION 3.2 3.6 6.8 . 5.1
AUTOCORRELATION: -.16 (10) .18 (3) .17 (3) -. 15 (19)J’
.18 (11) -.19 (14) -.18 (7) -.29 (20)*
SIGNIFICANT
] -. 18 (13) -.19 (16)
. VALUES 22 (16):-:
WITH LAGS T '
COMMENTS - |Satisfactory Model |Good Model Good Model Satisfactory Model
: however the lag 20
value is high. .

Indicates a significant residual autocorrelation > 2/Jn



éahasu’gd—h-’---d-‘—ﬁ

¥L

TABLE 7.3 BEST MODELS FOR REPORTED AGGRAVATED ASSAULT BY REGION

REGION CD1
PERIOD Pre-COMSEC Post-COMSEC Pre-COMSEC Post-COMSEC
(1, 1) (1, 1) (1, 1) (1, 1)
3, = .71 ) =.24 3 =.22 3, = .82
W= 4,4 (4.9) w=5,1(5.3) H=9,6(9.8) W= 13.3 (13.4)
trend = .13 trend = .10 trend = ,12 trend = ,01
6, = .65 6, = -.06 8, = .25 6, = .54
RESIDUAL MEAN |.05 002 -.01 -.14
STANDARD
DI VIATION 2.7 2.8 3.5 5.3
AUTOCORRELATION:| -17 (6) .18 (4) -.15(12) - 20 (3)
SIG .17 (8) .23 (8)% -.17 (4)
NIFICANT
.17 (9) .16 (10) .27 (5)%
VALUES
WITH LAGS -.21 (18) -.14 (11) .20 (6)
' .16 (12) -.15 (7)
.14 (17) .14 (17)
-. 14 (20) .16 (18)

(0, 1) is accept-

(0, 1) is accept-

(0, 1) is accept-

(0, 1) unsatisfac-

able able able tory has auto-
n=4.7 M=5,1 H=9.6 correlation values
trend = , 15 trend = .15 trend = .19 as high as .37
91=—.003 e, =-.05 8, =.037

. -1 1

Largest residual Largest residual Largest residual
autocorrelation autocorrelation autocorrelation
-.23 (18) .24 (8) -.17 (12)

(1, 1) Good Model

(1, 1) Good Model-

(1,1) Good Model

(1,1) Satisfactory

. Indicates a signilicant residual autocorrelation > 2/./n
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TABLE 7.4 BEST MODELS FOR REPORTED BURGLARY BY REGION

REGION D1 CD1

PERIOD Pre-COMSEC Post-COMSEC Pre-COMSEC Post-COMSEC
(1, 0) (1, 0) (0, 1) (0, 1)
3. =.30 b, =.048 B=173.3 (163.9)

BEST MODIEL

TYPE PARAMETERS

1
W= 32,8 (33,0)

1
W= 22,3 (22.5)

trend = -9. 4

M=226.6 (175.9)

trend = -50,6

trend = .12 trend = ,12 61 = -,23 81 = .61
RESIDUAL MEAN . 0001 . 0001 -.01 .42
STANDARD
DEVIATION 7.8 5.7 20.4 18.3
-.15 (8) -. 14 (2) .27 (2)% -. 17 (2)
-.14 (19) .22 (3)* .22 (5)* -. 15 (7)
-.19 (20) .21 (6) -.20 (15) -.14 (13)
-. 18 (7) ~.18 (17) -.22 (19)*
.37 (9)*
.30 (12)%
.14 (15)
-. 19 (16)
-.18 (19)
Unsatisfactory Satisfactory Model ;
Model, but the Marginal Model so far as autocor-
Good Model best obtained from | Mean value is not relation goes. The
COMMENTS candidates. Sev- too good. mean and trend val{
eral lag values ues indicate prob-
are high, lems with the

model.

% Indicates significant residual autocorrelation > 2/Jn
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TABLE 7.5 BEST MODELS FOR REPOARTED AUTO THEFT BY REGION

REGION D1 CDl
PERIOD Pre-COMSEC Post-COMSEC Pre-COMSEC Post-COMSEC
(1, 1y (1, 1) (1, 1) (1, 1)
3, = .89 3, =.19 3, =.97 E
U= 10.5 (13, 6) M=9,7 (9.8) u=109.9 (52.0) =516 (43.9)
trend = .29 trend = , 12 trend = -2.0 trend = -1.6
8, = .71 8, = .06 8, = .87 6, = .60
RESIDUAL MEAN | . 065 001 -.04 .16
STANDARD
PDEVIATION 4,2 3.7 10. 6 7.8
-.14 (15) -, 17 (5) .15 (9) .19 (2)
-.14 (1) .16 (16) .17 (11)
-.15 (10) -. 17 (12)
-.23 (14)% .14 (16)
-.18 (16) -. 14 (20)
.24 (18)%
-. 14 (20)

Good Model. Mean

value is not too
good

Satisfactory Model

Good Model for
autocorrelations,
however the mean
value is not satis-

factory.

Good Model. Mean

value is marginal.

x Indicates a significant residual autocorrelation > 2/
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models was either simpler in form or only slightly better than other candi-
dates., There are no absolute rules for such selection and the procedure is
to attempt to get a good model. The ARIMA model approach is entirely
satisfactory for making forecasting models, However, it can decrease the
value of such models for evaluation purposes because a ''changed" model need
not reflect significant changes in the time series, Strong changes can be dis-
covered very well, Other cases lead to indications and measures of possible
change, The work reported here illustrates an initial investigation of the use
of ARIMA models for use in evaluation of police operations. A number of
questions arise relative to such use.

The quantity 50 specified in Section 6 may be considered as a possible

indicator of crime level as discussed there. The '"trend" term present in the
operational ARIMA software indicates actual change or nonstationarity in the
process. This term should be small in the models because stationarity is a
basic requirement for ARIMA model methodology. In most of the '"selected"
models, the trend term is in fact small., When this is not so, a major change
(nonstationarity) is indicated. The crime level expression also includes the
trend term and must be considered to be changing when the trend is not small.
These level measures are related as follows:

P
8 =(1-%
(o] .

)M+ T
i=1 b

where T is the 'trend' term., This relation only applies to nonseasonal models.
A full study of 90 for seasonal models and application to interpretation of data

falls beyond the scope of this study.
Some conclusions and discussions following from the examples are:

1. REPORTED CRIME CAN PROVIDE GOOD ARIMA MODELS

Reported crime does lend itself to the formulation of ARIMA models.

Reference to the previous tables shows that many satisfactory models
may be obtained. One model is considered unsatisfactory, This is the model
for burglary in DIl for the post-COMSEC period (for which data are probably
nonstationary).

Considering the complexity of the ARIMA methodology and the limited
analyses employed (no transformations or differencing), this seems to be a
positive result. There are two factors that are likely to be contributing to the
occurrence -of the less than good cases: The 78-week post-COMSEC period is
definitely marginal in sample size for computations of this complexity; better
results are very likely to be obtained from large time series runs, and the
parameter estimation procedure itself is a complex numerical analysis problem,

Convergence of the parameter estimation procedure is determined by
imposing control values on variables; in some cases these produced models in
which the mean value was not properly estimated (as seen by its differing from
the sample mean). In such cases one cannot be confident that.good model
parameters (in the sense of minimum mean square error) have been obtained.
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2. ARIMA MODELS INDICATE PROBLEMS OR CHANGES IN
REPCRTED CRIME

ARIMA models of reported crime indicate problems or changes in
reported crime. In many cases this reflects effects identified by detailed
statistical studies of series autocorrelations as discussed in Section 4, How-
ever, in some cases the model complements or lends additional insights to the
autocorrelation studies. Examples:

= -

The failure to achieve good models for rape in the post-COMSEC periods
in both D1 and CD1 indicates some causative effect. It may be the 78-week
sample size. However, there is also a difference in this effect between DI
and CD1 with D1 yielding a somewhat worse model. The poor residual auto-
correlation for rape cannot be overcome by simple changes in the model that
incorporate seasonal effects because such models were among the candidate
models and gave even poorer results, It seems that rape may not be a simple
(0, 1) model (random) though such a model is very intuitively acceptable. It is
close to being such a model but further considerations are in order to deter-
mine why the (0, 1) model is not better.

Robbery is well represented by simple autoregressive models. There-
fore, it has relatively little purely random effects and may be expected to
yield to various actions, It seems to be a statistically well-behaved (under
control) type of random process.

Burglary gives some problems in model formulation indicating a lack
of stationarity in this crime type. More detailed (transformation or differencing)
studies would be required to develop truly satisfactory models for burglary. It
is likely (but not assured) that such methods would be successful, but they were
beyond the scope of the COMSEC study.

Auto theft shows some problems with model formulation, particularly
with estimation of the mean values. It is known that the auto data were in
rather poor shape compared to data for other crime types (e.g. missing or
improperly reported data). This would present difficulty to the parameter
estimation program resulting in termination before convergence to proper
minimum mean square error values for parameters. -

3. ARIMA MODELS MAY CONTRIBUTE TO EVALUATION

ARIMA models contribute to evaluation when compared with each other
within a particular crime type. . /

It is felt that the ARIMA models are most useful in static evaluation as
complementary indicators used together with simple and detailed statistical
studies. The models are relatively sophisticated tools and can only be properly
used when one has some idea about the case under study. Such additional knowl-
edge is provided by the other statistical studies. Part of the reason for the
complementary character of ARIMA models is their newness as evaluation tools,
characterizing reported crime, ’

Reference (2) establishes the potential ufility of stochastic models ‘
. illustrated by the examples of this report. It demonstrates their use as com-
‘plements to other studies (e.g., detailed statistics) and provides a background
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of methodology and examples upon which to develop further, more detailed
analyses of reported crime as stochastic processes.

The forecasting ability of ARIMA models was not utilized in (2) or the
evaluation studies illustrated above, only their representational character was
used. However, it is likely that once a good ARIMA (or other stochastic)
model has been developed, for a particular crime type and region, it could be
used to forecast future crime values with reasonable accuracy. Such forecasts
would probably be meaningful for only a few time units into the future. This
capability suggests the utilization of stochastic models in various operational
applications, in particular as a quick evaluation technique that could indicate
changes from ''expected'' values (as forecast) which might be due to altered
police operations. This is discussed further in Section 8.

79



1 = o= =

Section 8. Utilizing the Forecasting Ability of-Stochastic Models

Three distinct levels of statistical analysis have been identified and
described in this report for the study of time series data, The most advanced
of these levels is the formulation of stochastic models which represent the
series data. A stochastic model ideally contains all the information present
in the data used for its formulation, Actually any model will be less than ideal
but should well represent the data if it is a good model. Thus a model tells as
much or more about the data than simple or even detailed statistics do by them-
selves, On the other hand models require considerable additional effort for
their formulation and for many purposes are not as useful in communicating
results as the simpler methodologies.

Forecasting is the one aspect of time series analysis for which some
kind of mathematical model is required. In order to forecast, the series must
be represented by a model which can produce values corresponding to future
time periods. If there exists no theory or deterministic model components the
best forecasting is based on the data themselves as in an ARIMA type model.
The concept of forecasting data such as reported crime must be taken in a
proper perspective. It is very different than forecasting the exact position of
a space satellite for example. For the satellite a close approximation to its
position can be obtained by solving detailed equations of motion derived from
physical laws. The exact position then requires a statistical forecast in the form
of a correction time series. There is no similar underlying theory for reported
crime and the full value must be forecast from the data alone. Moreover crime
data are likely to have a much greater degree of purely random components
than is normally found in engineering data. In such a situation even a theoretically
good model will yield values of considerable variation often missing the true
values by a substantial amount. This is in the nature of the data and not a fault.
of the model (provided it is, indeed, a good model). .

Under these conditions one may consider whether or not it is useful to
apply the forecasting ability of stochastic models to reported crime or similar
data, This will depend on the quality of data available, the methodology avail-
able, and the extent and goals of the proposed study. Forecasting is often felt
to be desirable but one should clearly understand the effort involved and the
amount of uncertainty that is likely to be present. When a good forecasting
model can be constructed, the forecast values can be useful in a number of
operational activities including planning and evaluation,

In particular the possibility of what may be called dynamic evaluation
becomes possible with forecasting. By contrast the usual, static, evaluation
makes coniparisons between time data collected over rather extended periods.
Two major shortcomings with this normal procedure are the necessity for
waiting a considerable period before making any meaningful comparison, and
the possibilitv of all sorts of additional effects entering in over such periods.

If a good modcl of the time series can be constructed than future values can be
forecast., As actual values occur they can be compared with the forecast to see
what changes may be taking place for.evaluation indicators.

Any particular situation must be studied on its own to determine how
feasible the construction of forecasting models might be. OCn the basis of the
time series analvses used as examples in this report and described more fully
in Reference (2) it seems likely that reported crime data can sometimes be
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developed into useful forecasting models. The values of such models will

depend on the quality of the data, the crime type, available methodology, and
often the experience of the analyst as well. It is important to stress that

even good models may not provide useful forecasts if it is in the nature of the
data to be highly random as in the case of homicide or aggravated assault. How-
ever even in such cases one can forecast nominal levels and variations which are
extremely unlikely to be exceeded., This kind of "control chart! indication of
expected random activity, though potentially useful, is not the kind of forecasting
under consideration in this section,

The kind of results that may be encountered in applying ARIMA method-
ology to various types of data is illustrated in the remainder of this section,
First three cases of the artificial Sump example data will be discussed then
several examples of actual reported crime will be open.

Examples Sump 1 and Sump 2 have been previously used to illustrate
concepts in other sections. They differ in that Sump 2 has a linear trend with
a slope of .2 and a deterministic increase in level of 2 units. In each of the
illustrations two time origins are used, one at 80 and one at 96. The value 80
is within the series allowing forecast values to be compared with actual. The
time origin at 96 does not allow any such comparison because each series is
96 values long. Since all the ARIMA models used for illustrations in this report
are simple in structure the forecasts quickly obtain a steady state value near
the series mean. In fact this happens after three or four time periods. Such
behavior is common for forecasting models of this type and in practice one
tries to update forecasts every two or three periods. The models and forecasts
discussed here are for purpose of illustration so that extensive forecasting
methodology has not been employed.

Sump 1 is a (1,1) ARIMA series generated using parameters .25 and 1.5
for the autoregressive and moving average coefficients respectively with a series
mean of 32.3. The ARIMA model estimated (and used) parameter values of . 31
and 1,7 respectively with an estimated mean of 35.9. It seems rather close to
the actual series. Table 8,1 shows the forecast values for the two time origins
and the actual values when known,

Periods ahead 1 2 3 T4 5
T = 80 time origin :
Forecast 39,24 37.95 37.56 37.44 37.40
Actual 44,02 36, 88 12, 30 36.68 | 37.91

96 time origin

Forecast 40.29 | 38.28 | 37.66 | 37.47 | 37.41

=3
1

Table 8.1, Sump 1 Forecasts

Sump 2 was generated in the same way as Sump 1 using the same auto-
regressive and moving average parameters. However, it had a definite trend
line build in as well as the deterministic increase in level. The mean of Sump
2 data is 52.6, The (1,1) ARIMA model estimated the parameters as . 95 and
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1.8 with an estimated mean of 39,72. Because of the non-stationarity intro-
duced by the trend the model is not expected to be too good. Table 8.2 shows
the forecasts that it produced.

Periods ahead 1 2 3 4 5

T = 80 time origin
Forecast 59, 31 59.30 '( 59,30 59. 30 59, 30
Actual 68.19 61,32 67.01 61,60 63.15

i
1

96 time origin
Forecast 61.82 | 61.78 61.56 61,44 61,32

Table 8.2, Sump 2 Forecasts

The data of Sump 2 can be subjected to a difference operation to reduce
the effect of the non-stationary trend. When this is done the resulting series,
Sump 2D has a somewhat improved forecasts as shown in Table 8. 3.

Periods ahead 1 2 3 4 5

T = 80 time origin
Forecast 62,01 61, 80 62,13 62.41 62,68
Actual 68.19 | 61.32 | 67.01 | 61.66 | 63.15

=
n

96 time origin

Forecast 65.51 65, 69 65. 98 66.26 66,54

Table 8.3. Sump 2D Forecasts "’

Comparison’of Tables 8.2 and 8. 3 shows that the differencing does help pro-
duce a2 model with improved forecasting capability. In both cases the series
mean is not well defined because of the non-stationary nature of the data (due
to the presence of the linear trend). Thus the forecast does not go to the
series mean as it did in the case of the stationary data of Sump 1. The models
are not very satisfactory and should have the trend removed before the

ARIMA process is applied to produce a good forecasting model.

Some forecast model results for reported crime data are given in
Table 8. 4. All of the cases shown made use of the models illustrated in
Section 7 and judged to be good representational models in that they estimated

‘to mean values closely (indicating satisfactory parameter estimation) and had

good white noise properties, However in each case the variance present in the
random residual was fairly high as one must expect in such data. The residual
variances are: 2.7, .97, 3.3, 7.8, and 4,2 for Aggravated Assault, Rape,
Robbery, Burglary, and Auto Theft respectively. '

Table 8.4 is an illustration of how simple ARIMA models forecast
when applied to reported crime data. The forecasts are not particularly
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encouraging since they tend to simply give values close to the series mean,
However there are several things to observe about the forecasting of reported

crime data:

o The effect of purely random variation is great in all crime types
and this will 1limit the ability of an ARIMA model to track actual values,

e Though the ARIMA forecasts do about the same as a simple mean
extrapolation bounded by standard deviation ranges, the forecasts are not
bad. Within statistical variation, induced by the purely random component,
they are satisfactory. '

o Forecasting of reported crime data needs an enlargement of
methodology beyond the strictly ARIMA approach. The ARIMA forecasts
are most successful when the series data have correlated structure. To
forecast reported crime additional structure must be developed by using other
(leading indicator) time series or some other theory of crime generation.

o The forecasting of reported crime is only now starting to be

investigated. The examples show that some reasonable level of forecast is
possible, It remains to improve on the ARIMA approach.
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TIME ORIGIN

50 . 60 70 80

Cﬁ;g{g ‘ PTEII%gD . Forecast | Actual . Forecast ‘ Actual .Forecast ' Actual .Forecast Actual
AGGRAVATED I 4.99 . 5.0 4.88 7.0 5.09 2,0 4,50 3.0
ASSAULT 2 4.96 2.0 4,88 6.0 5.03 4.0 4,61 4.0
3 4.94 11.0 4.88 6.0 4.99 7.0 4.69 5.0
4 4.92 7.0 4.88 8.0 4.96 4.0 4,74 1.0
5 4.91 2.0 4,88 3.0 4.94 4.0 4.78 1.0
RAPE 1 .78 0.0 1.10 1.0 1.03 2.0 1.02 2.0
2 1.02 1.0 1.02 1.0 1,02 0.0 1,02 1.0
3 1.02 2.0 1.02 3.0 1.02 1.0 1.02 1.0
4 1.02 1.0 1.02 3.0 1.02 0.0 1.02 0.0
5 1.02 1.0 1.02 2.0 1.02 0.0 1.02 0.0
ROBBERY 1 8.94 7.0 9.95 11,0 9. 86 6.0 9.31 11.0
% 2 9.35 15,0 9.25 11.0 9.15 11.0 9. 85 9.0
3 9.25 12.0 9.86 9.0 8.84 8.0 9.45 8.0
4 9.45 7.0 9.45 14.0 9.55 15.0 9.15 9.0
5 9.44 11.0 9.55 5.0 9.54 12.0 9.48 11.0
BURGLARY 1 32.3 44,0 31.5 26.0 27.9 21,0 29.7 39.0
2 32.8 40.0 32.5 37.0 31.4 25.0 31.9 34.0
3 32.9 32.0 32.8 19.0 32.5 32.0 32.6 45.0
4 32.9 - 31.0 32.9 34.0 32.8 33.0 32.8 33.0
5 32.9 - 42.0 32.9 42.0 32.9 17.0 32.9 39.0
AUTO 1 11,7 11.0 9.8 18.0 12.9 16.0 13.2 15.0
THEFT 2 11,8 11.0 10.2 7.0 12.9 13.0 13.2 6.0
3 12.0 6.0 10.5 10.0 13.0 14,0 13.2 12,0
4 12,1 12.0 10. 8 11.0 13.0 18.0 13,2 14.0
5 12.2 13.0 11,1 7.0 13.0 15.0 13,2 8.0

Table 8.4. Reported Crime Forecasts
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Section 9. Additional Considerations for Cyclic Trends

In any stochastic model of time series one aspect that has not been
discussed in detail is the so-called seasonal variation. Use of this term may
include cyclic, periodic or repeating variation in the time series. Such vari-
ation can cause misleading interpretations of time series since one may think
a change in values is due to a deterministic or random effect, when in actuality,
it only reflects a change due to some cyclic effect. (Clothing and toy sales are
typical examples.) Detection of such variations can be extremely difficult and
establishing them on significant statistical grounds can be even more difficult.

Subjective observers are prone to ''see'' cyclic variations in time series
plots and often the presence of cycles is reported on the basis of such observation.
This is unsatisfactory because of the lack of quantitative evidence in many
cases, As a substitute for such evidence, one often cites ""reasons'' for the
variation, but such justification has no real statistical validity and cannot stand
up against quantitatively based criticism, On the other hand, as previously
indicated in this report it is possible to accommodate seasonal (cyclic) varia-
tions in analytic models. -

To do so in the ARIMA technique increases the complexity of the model,
requires computation of more parameter estimates and, therefore, requires
longer timie series to supply the amount of data necessary for parameter estima-
tion, Large difference operations, acting over many time units, are the mathe-
matical expression of seasonal variation. They can be useful in theoretical
modeéls, but introduce some problems in practice. In particular, the reported
crime series of length 87 used for illustrations are rather short for seasonal
variation models, However, in some cases, improved models have been obtained
by including seasonal variation (indicated by a study of the autocorrelation lag
values),

Seasonal variation is further complicated by the presence of spurious
data (which should be identified and removed), special events (like major
holidays), trading day effects (that give a different number of workdays to
special weeks or months), combination of cyclic variations, etc, Various
methods have been developed for the analysis of seasonal (cyclic) variation,
One of the most widely used is the Census Bureau method known as Census
Two. This method and some other work on seasonal variation is discussed in
this Sec‘cion.l

In discussing periodic variation, the possibility of so-called spectral
analysis comes to mind. Its applicability is mostly to fairly well-behaved
stochastic processes such as are encountered in the communications and
engineering control fields. Indeed the major discussions of such methods are
found in books and articles dealing with such time series., It is a widely held
view among time series analysts that spectral analysis will not yield satis-
factory models of time series representing economic, social or similar data,
It seems that the stochastic features of such series cannot be represented by
any reasonable form of spectral model.

It is interesting to note that the spectral analysis method has been
employed in another way by Rosenblatt, (Reference 7.) Rather than being used
as a basis for model formulation, it is used as an evaluation method to test the
effectiveness of Census Two and an alternative Bureau of Labor Statistics
procedure for the determination of seasonal variation.
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One should note that much of the extensive work on seasonal variation
is directed toward developing good representational models. In that work
there is essentially no concern with forecasting. This is compatible with static
evaluation needs. However, if one desired a forecasting capability, the basic
Census Two methodology would require modification, (This has been done by
several groups.)

Weekly crime data do not show strong cyclic characteristics. For
this reason monthly data may be investigated in order to look for seasonal
effects, Though monthly crime data are not very satisfactory for detailed
analysis of reported crime they do provide a data base for cyclic studies. The
remainder of this section describes the Census (Method) Two, version X-eleven
(X-11) program and illustrates its use on reported crime data,

THE CENSUS BUREAU X-11 PROGRAM

Over the past twenty years the Bureau of the Census has developed a
number of approaches for detecting and adjusting seasonal variation in time
series data. Their major approach is widely known as Census II (Method Two).
It has been implemented by a number of computer program versions since 1955,
The current version, developed by the Census Bureau is called X-11 (X-eleven).
This program is designed to detect and adjust for seasonal variation and trend.
it is most widely used in analysis of economic time series. Such use is pre-
sently under the auspices of the Bureau of Economic Analysis (Department of
Commerce) and is carried out by the Bureau (often for outside '‘customers'’)
or by others who have obtained the software from the Bureau, “at nominal
cost. The Bureau of Economic Analysis supports use of the X-11 by making
available expert advice on the use and interpretation of the program. ™

The X-11 program is designed for use with monthly data (it can deal
with quarterly data by means of three month aggregates) and such series are
the only type of time series that can be employed (e.g., weekly series cannot
be dealt with by X-11), This is not a trivial limitation that one can easily
circumvent, the details of the program assume monthly data and built-in
operations act accordingly. -

The program considers time series to have three basic components:
seasonal (S), trend cycle (C), and irregular (I). It allows, as an option,
consideration of a fourth component: trading day (D).

One can use a multiplicative or additive type model to represent the
original series data (0) yielding the following two pos sible forms: (1) Multi-
plicative 0 = CSID; Additive 0 = C+S+I+D, -

This section gives a brief description of what X-11 does and illustrates
how its output can be used on reported crime data. A great deal of output can
be obtained from the program, but, in fact, only a few of the available tables
and charts are used by most time series analysts, Input and operation of the

" The applications'described in this report employed X-11 software obtained
from the Bureau, operating at the Polytechnic Institute of New York

alesle
"~

The present section owes a greét deal to Morton Somer of the Bureau who

gave the author advice and encouragement in the use and interpretation of X-11,

86



' om uh oom e mm m'm e m =i

- e s = s

program is also described here so that the Section updates, summarizes, and
complements the basic document describing X-11, Reference (8).

Use of X-11 is illustrated by study of four crime types: Robbery,
Burglary, Aggravated Assault, and Rape for District 1 in Cincinnati over a
seven-year period (1968-1974) during which that District was employed in
testing an innovative change in police operations known as the Community
Sector Team Policing (COMSEC) program.

There are two distinct choices one must make in using X-11: multipli-
cative or additive model and trading day adjustment or not. How to do this is
described subsequently. Output is similar in all cases and is described below,
Only those parts of the Standard Output commonly used are discussed. Table
designations do not follow the normal numbering of this report. Instead they
reflect standard X-11 usage as described in Reference (8).

1, OUTPUT WHERE THERE IS NO TRADING DAY ADJUSTMENT

--Table Bl., Lists the original data by month and year, it gives yearly
totals, monthly averages, table total, overall average and overall
standard deviation (basic sample statistics).

--Table Cl7. Unusual (extreme) values in the irregular (random) part
of the data are identified and assigned weights by which they are
modified in subsequent calculations (rather than disregarding them as
an alternative). This employs a 12 month moving average technique
as described in Reference A (under Bl7 page 13). This table is the
same for both multiplicative and additive models.

--Table D8, Gives comparisons of season (s) to irregular (I) components.
In the multiplicative model S-I ratio's are given with 100 percent the
nominal value., In the additive model S-I differences are given with 0
(value) the nominal value. These measure the relative strength of sea-
sonal effect to purely random (irregular) values. Unmodified values
are used with regard to the extreme weights shown in Table C17,

This table is one place to look for seasonal effects. One considers the
column for a particular month, If essentially every year entry is above or below
nominal values there is a strong indication that that month has a seasonal effect.
Hypotheses can be made and tested on these statistics in an analysis of variance
(F-test) type table which is included. A statement about seasonality is also
given by the program (one can question the statistical validity of such statements,
relative to given data, however they do supply some level of quantification in the’
indication of seasonal effect).

. --Table D9. Shows replacement values used for extreme SI ratios or
diffcrences. Table DYA is not used. This table indicates the effect on
calculations of the extreme identification and weighting process. It has
no direct role in analysis of the data. '

--Table DI0. This is an improved version of Table D8 which uses rec-
placed values for extremes, smooths over total (years), and forces
ratio to average 100 (over months of the year) in multiplicative models. -
It forces differences to average 0 over mdnths in additive models, '
This forcing renders the above and below nominal values more mean-
ingful and allows one to interpret their significance. It would be

z
.
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difficult to do so if the average (nominal) was different from the
nominal (recalling the very basic assumption of seasonality which
states that above normal values will balance below normal values
over a complete year).

--Table DIOA, Produces seasonal factors for each month, one year
ahead. This is done by taking one half the difference between the
last two values and adding this to the last value (if negative of course
it is subtractzd).

--Table D11, Gives data with the seasonal component removed., Itis
divided out in the multiplicative model and subtracted out in the additive
model, These values still include the trend cycle and irregular com-
ponents,

--Table D12, Gives data with both the seasonal and irregular components
removed, These values represent the trend cycle part of the time
series data, '

--Table D13, Gives the irregular component without seasonal or trend
cycle effects. For multiplicative models it expresses the irregular as
a weight factor with nominal value of 100. For additive models it gives
random values with nominal value of 0.

--Table E4, Is useful as a check on the validity of work done by the X-11
program. Values of 100 for the multiplicative and 0 for the additive
indicate meaning results. The second column of printout is redundant .
and should be omitted.

--Table FF1, Gives moving average based on the number of months for
cyclical dominance (MCD) value, discussed under Table F2. Some
analysts find these values useful. They require a rather detailed appre-
ciation of the MCD concept.

--Table F2, Is a rather complicated table which may be used by experts
in X-11 type analyses but need not concern others, The MCD value is
computed within this table. It represents the number of months (span
in months) required to produce a change over in influence between I and
C. For some span of months I has a greater effect than C. Then C
becomes more significant., It is the transition span that determines MCD
(used in Table F1l), The second part of Table F2 is similar but uses
variance comparison rather than percent change. A changeover effect is
also to be found in this table., The I/C ratio also shows a transition from
greater than to less than unity, When MCD is indicated as more than 6
the vaelue 6 is used because a greater span is assumed to lose too much
information, The MCD can be used to estimate the trend cycle. A
Henderson curve may also be used, but it loses some value at end points.
This material is {further developed in Reference 10,

--Chart Gl. Gives a useful visual display of the seasonally. adjusted serics,
and the (Henderson) trend cycle,

--Chart G2, Gives several things, particularly the seasonal factors.
There is one chart for each month, By study of these charts one can
cet an impression of the presence of seasonal factors (by month) and of -
their effect {increase or decrcase),
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2. OUTPUT WHEN TRADING DAY ADJUSTMENT IS PRESENT

When the trading day adjustment is active the number of days in each
month is considered in relation to the position they occupy in the week (Monday,
Tuesday, etc.). When this option is used many of the tables reflect appropriate
consideration of the trading day effect D. It is a factor in the multiplicative
model and a term of the additive model. In addition the standard output includes
three additional tables: -

--Table Cl4. Indicates any extreme value (associated with component I)
to be excluded from the trading day considerations.

--Table C15. Summarizes statistical analysis of trading day effect.
--Table Cl6. Gives the adjustment factors for trading day effects.

These tables are rather technical and need not be considered when using
the trading day option. The other tables are properly modified by trading day
effects when this option is used and provide the analyst with ""corrected" values.

Tllustrations Using Reported Crime Data

As part of the evaluation of COMSEC, an innovative police operation in
Cincinnati, some examples of X-11 operation on reported crime data were
developed. These are discussed in this section to illustrate use of X-11 output
and to record the results of those examples.,

Data used were for District 1 in Cincinnati, Monthly data for the period
January 1968 through December 1974 were used (the COMSEC program started
in March 1972). Four crime types were selected on the basis of interest and
available data. Types selected were: Robbery (RB), Burglary (BU), an aggre-
gate of four reported classes of burglary, Aggravated Assault (AA), and Rape
(RA). Rape was selected because it is generally felt to be purely random
(irregular) but some people feel it may contain some seasonal variation. Thus
it acted as a test case with some possibility of side interest as well.

In order to find out as much as possible about the four crime types in
an X-11 study methodology the X-11 was used in four different analysis modes
in each case, This also provides a full range of output examples and guidelines
for use of the X-11 program.,

Cases are distinguished by letter designation added to the basic letter
designations for crime types. Cases considered are shown in the following
table in which their letter designations are specified for easy reference. “

" Inclusion of trading day effect studies was suggested by Morton Somer of
the Bureau of Economic Analysis. This effect is often important in economic
or social scientific time series analyses,
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TABLE 1: CASES CONSIDERED

MULTIPLICATIVE MODEL ADDITIVE MODEL
Without With Without With
Trading Trading Trading Trading
Day Day. Day
Robbery DIRBP DIRBPT DIRBS DIRBST
Burglary D1IBUP DIBUPT DIBUS DIBUST
Aggravated Assault D1AAP DIAAPT DIAAS DIAAST
Rape DIRAP DIRAPT DIRAS DI1RAST

Letter designation D1 in each case refers to the use of District 1 data. The
designators are used as titles in X-11 runs; they are not used for series iden-
tification. Series identification must agree between control (option) card
(instructions) and data cards specification as described in the next section.
Thus use of the above titles as identifiers would require four sets of the same
data to be used. In fact each crime type had one set of data, identified by
crime type designators only. Each was used in turn for the four distinct X-11
type runs (P, PT, S, ST).

Output illustrations will be discussed by crime type. However several
observations can be made which apply equally well to every case, In addition
the more important tables and charts can be illustrated for a particular case
so as to serve as guides to the reader., The case of Aggravated Assault (AA)
will be used for this purpose. Output for that case is shown in the following
set of tables and charts with accompanying comments of a general nature.
Chart Gl is discussed briefly for each crime type case and one example is
shown, for Aggravated Assault.

Tables D8 and D10 are major places to look for seasonal variation. In
the AA example they are shown for a multiplicative model with nominal value
100 percent, Additive models have nominal values of zero in the tables.

Table D10 is the more reliable since it reflects appropriate modifications for
extreme values carried out by the X-11 program. To interpret these tables
one looks for months which consistently, over the span of years, have higher
or lower values than nominal. For example AA Table D10 shows low values
for January and high values for September, while March shows no indication of
any seasonal effect (some values are high while others are low), Table D8
gives a statistical test for indication of a seasonal effect at a confidence level
of one percent. Table D10 gives one year ahead seasonal factors. This is not
a forecast (the Bureau is not allowed under the law to do forecasting) but does
indicate reasonable factors, based upon the available historical data.

Table D13 shows the irregular component, Examples for both the
multiplicative and additive models are shown for AA to illustrate how they
differ. One is based on a nominal value of 100, the other on zero. A reason-
able irregular component should roughly divide the number of cases evenly
between those below and those above the nominal value. One observes this to
be true for the tables shown, '

Table E4 indicates how well the program corrections and analyses are

operating., Nominal values should be obtained for each year. Typical examples
are shown for both the multiplicative and additive models.
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Tables F1l and F2 are not illustrated here or used in the present set of
analyses. They do not contribute to these studies but are often useful in analy-
sis of economic time series.

Charts G2 are illustrated for AA by two examples. There is one chart
for each month and the plots show indications of high, low, and transition
effects. In the examples shown February indicates a low effect, consistent
over seven years, By contrast June shows a high effect increasing over the
years, Charts G2 together with Tables D8 and D10 are the major indicators of
seasonal effect. Chart Gl, shown with the crime case, is a major representa-
tion of trend effects,

Before considering-the results for specific crime types, some general
results which apply to each of the four types are given:

‘o o m o w b

--In each crime type case the seasonal effects and trend values were
essentially the same for multiplicative and additive models. One
must interpret the two models from a different point of view and use
different nominal values, However the basic conclusions do not
depend on the model form.

--Trading day component had no effect on any case for either model.
There was certainly no effect for the case of Rape. In the other
cases there were slight effects to be found (most noticeable for
Burglary). But these were mere hints of effect only, they never had
any real effect on the seasonal factors or the trend component (or

the irregular component), .

Illustrative results for each crime type will now be considered. In
each case, chart Gl will be summarized showing the trend effect and the seasonally
adjusted series, it will be shown for Aggravated Assault only.
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TABLE D-8
DlAA ‘ * SERIES DIAA
D8, Final Unmodified SI Ratios : _

YEAR JAN FEB MAR APR MAY JUN JUL - AUG SEP OoCT NOV DEC AVGE
1668 g81.0- 67.1 112.7 86,1 83.6 123,7 82.9 152.5 134,4 110.8 55,2 73.7 97.0
1969 71.5 149, 2 112.7 61.0 161.8 95.0 96, 2 218.7 128.0 107.0 103.8 76.3 115.1
1970 56.2 86.0 123.6 128.4 76.0 87.4 143, 6 101.6 105, 3 114,11 115.0 121.0 104.9
1971 91,3 60.7 71,6 11,7  156.7 92,8 106.0 85,3 139.3 128.1 95.2 117.6 104.7
1972 86.3 91.1 59.6 83.0 69.8 122,4 138.4 106.6 142,8 110.5 97. 4 68.5 98.0
1973 86.6 44,8 115,4 130,1 84.1 132.6 83.9 175.4 95.9 112.4 55.5 108.2 102.1
1974 ~ 9L.9 81.3 99.2 86.8 128.5 100.9 92.0 119.5 136.9 116.6 94. 4 65.8 101.1
AVGE 80.7 82.9 99. 2 98.1 108.6 107.8 106,1 137.1 126.1 114.2 88.1 90.2

TABLE TOTAL- 8673.9

STABLE SEASONALITY TEST

SUM OF DGRS. OF MEAN
SQUARES FREEDOM SQUARE F
, . BETWEEN MONTHS 22508, 813 11 2046, 256 2. 784%%
' : RESIDUAL 52922, 000 72 . 735,028 .
TOTAL 75430, 813 83
**STABLE SEASONALITY PRESENT AT THE 1 PER CENT LEVEL
\o LY .
[4%]
' TABLE D-10
. DI1AA
D10, Final Seasonal Factors SERIES D1AA
, YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC AVEG
: 1968 72.4 ~ 74.8 108.9 104.6 88.5 100.0 100.3 119.6 124,4 112.8 99, 8 94, 2 100.0
1969 74.4 75.3 104.5 103.7 87.7 101.3 103.1 117.2 126.5 113.5 99.3 93.5 100.0
" 1970 76.5 75.2 100.1 105.9 . 87.1 103.2 105.9 111,5 125.9 114.3 98. 4 95, 4 100.0
1971 79.0 75,9 96.7 106.3 86.6 105.8 108.1 107.4 125,2 114.9 97.1 95,0 99. 8
1972 £3.0 74,9 93.8 107.0 88.6 108.7 107.1 104.2 125.0 116.2 94,7 94,9 99. 8
1973 86,6 75.0 91.6 103.8 90.2 112.1 105.9 105.6 126.9 116.5 92. 4 90. 6 99,8
1974 - 88.9- 75.2 90.6 101.9 91.4 "' 115.3 104.8 - 107.3 128,0 116.0 90. 4 86.8 99,7
TABLE TOTAL- 8389.3 MEAN- 99.9 STD. DEVIATION- 14,4
D10A. SEASONAL FACTORS, ONE YEAR AHEAD
YEAR JAN FEB MAR APR ., MAY JUN JuL AUG SEP - OCT NOV ° DEC AVGE

1975 90. 1 75.3 90.1 100.9 91.9 117.0 104.3 108.1 128.5 115.8 89. 4 84.9 99.7
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TABLES D-13

. D1AA - SERIES pl1AA
D13, FINAL IRREGULAR SERIES
YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC S. D.
1968 110.8 88.7 - 102.5 81.6 93.7 123,11 82,5 128.1 109.1 99. 4 56. 1 79.3 19,8
1969 97.1 199.1 108.0 58.7 183.9 93,6 93.0 186.2 101, 2 94,4 104, 6 81,6 47.0
1970 73.3 114, 1 123.1 121, 0 87.1 84.5 134, 9 90. 6 82.9 98. 8 115.5 125.6 20.0
1971 114, 8 79.7 74.2 105.8 182, 8 88.5 98. 4 79.3 110.4 110.1 96.6 121.9 28.1
1972 102.6 120.5 63,2 77.4 78.9 113, 0 129.7 102.6 114, 3 95.0 102, 5 71.7 20.1
1973 99,4 59. 4 125, 4 125.0 93.2 118.7 79.8 167.9 76.3 97.0 60.0 118.4 . 30.0
1974 101, 9 106, 2 107. 6 83.8 138.8 86. 8 87.7 111,8 107.9 101.7 106.1 77.1 15,7
s.D.  12.3 42.6 21.8 23.6 47.9 15,3 20.8 43. 9 13,7 5.0 23.4 22.6 .
TABLE TOTAL- 8679.1 MEAN- 103.3 STD. DEVIATION- 27.4
D1AAS SERIES DlAA
D13, FINAL IRREGULAR SERIES ’
YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC S.C.
o 1968 © 0. -3. 1, -3. -1. 0. -4, 7. 2. -0. -9. -4, 4,
w 1969 0. 15, 2. =5, 14, -0, -0. 15, -1, -2, 1, -4, 8.
1970 -4, 3. 4, 6. -2, -4, 9. -2. -4, 0. 4, 5. 4,
1971 2. -3, -5, - 2. . 15. -3, -0, -5. - 3. 3. -0. 4, 5.
1972 © -0, 4, -1, -5, -3. . 3. 7. -0. 3. -1, 2, -6. 4,
1973 -0. -5. 4, 4, 1, 3. -3. 12, -6, -0. -5. 4, 5.
1974 1. 2. 3. -3. 12, -2. -3. 3. 4, 0. -1, -13, 6.
S.D. 1,7 6.4 4.3 4,0 9,2 3.1 4.8 8.0 3.6 1.3 4,0 6.4
TABLE TOTAL- 60, MEAN- 1, STD. DEVIATION- 5.
TABLES E-4
Dl1AA D1AAS
E 4, RATIOS OF ANNUAL TOTALS, E 4. . ... .... DIFFERENCES OF ANNUAL TOTALS
YEAR : UNMODIFIED " YEAR UNMODIFIED
1968 100.0 1968 . 0.1
1969 ' 98.0 1969 ' 0.0
1670 100.7 .1970 . -0.2
1971 99.3 C 1971 -0.4
1972 © 99,9 . - 1972 -0.5
1973 ) "100. 2 ' 1973 -0.6

1974 100.3 ‘ - 1974 -0.7



CHARTS G-2

G 2. CHART " DI1AA
(x) - D 8. FINAL UNMODIFIED SI RATIOS
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1. ROBBERY

e Table D8. Indicated seasonal effect present at one percent level.
March had low values, July-and December high values., December
was particularly high (consistently over the seven year period).

e Table D10, Agrees with D8 and hence adds to the strength of the
effect indicated there.

e Table D13, Shows a reasonable irregular part, The multiplicative
model has +1 values below nominal (100 percent) and 43 above. The
additive model has 41 negative and 43 positive values (about a nominal
zero value), This indicates a good analysis by X-11 into the various
model components,

® Table E4. Shows values close to nominal, hence indicates reasonable
analysis procedure.

e Chart Gl. The graph of the trend cycle is of major interest on this
chart. The trend is steady for January 1968 through December 1969
then rises sharply till January 1970 where it remains steady until
March 1973, dropping to a minimum in February 1974, The trend then
undergoes a rise to the previous high level and remains through December
1974, From this chart there does not seem to be any significant change in
the trend cycle component of Robbery after March 1972 (COMSEC initiation
period). The dip in February 1974 is not likely to be an indication of true
changes in level since it is followed by a rather steep rise to previous high
levels,

e Chart G2. Shows February as irregular going from low to no effect
over the seven year period. March shows some low effect, July some
high effect, December shows a strong high effect.

Tables D8 .and D10 together with Chart G2 indicate a high_seésonal effect
for December. A much smaller seasonal effect is indicated for July (somewhat
high) and March (somewhat low).

Chart G1 indicates two major levels of the trend component, a steady,
rather low level prior to December 1969 and a higher level since August 1970
(with a rapid steady rise between these periods). The second period is rather
steady with a few low dips which seem to be a rather insignificant fluctuation
with the exceptior. of February 1974 which is rather low.

2. BURGLARY
e Table D8, Gives no evidence of seasonal effect at the one percent level.

o Table D10, Agrees with D8.

Al -
e Table D13, Shows a reasonable irregular component. The multiplcative
model shows 51 values below and 33 values above normal. The additive
model shows 46 negative, 5 zero, and 33 positive values,.

e Table E4., Indicates a reasonable analysis with all values close to

nominal,
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e Chart G1. The trend cycle shows a change in level starting in
Cctober -November 1969 which reaches a high by May 1971. It
remains high until August 1972, drops to a low in April 1974, then
increases until the end of the study period in December 1974,

¢ Chart G2. Shows scme variation effects, There are no consistent high
or low cases so there is no indication of seasonal effects. The most
interesting variation over the seven year period shows change over in
1972, October goes from low to high, November goes from high to low,
and December goes from high to no effect.

No seasonal effects are indicated. The trend cycle underwent a definite
downward movement after March 1972 which started to reverse in April 1974,
This may be associated with real changes in the nature of Burglary (displace-
ment effects, shifts to other crime types, etc.) which in turn may be due to
COMSEC activity, The upward trend may indicate an accommodation (or
learning process) by criminals to the new police operations. It may also be a
reflection that displaced burglary is not as desirable (to the criminal) outside
of District 1. In this sense the rise may be a reverse displacement effect.

Chart G2 indicates some changes in monthly effects about the 1972
value, No real seasonal pattern is indicated in any case.

Though no strong trading day effects were found in any of the studies
reported on here, the case of Burglary came near to having some trading day
variation. Values in some cases did differ between models with or without the
trading day component, However, such variation was not large enough to pro-
duce significant effects.

3. AGGRAVATED ASSAULT

¢ Tables D8 and D10, Show evidence of seasonal effect at the one percent
Tevel. January is low, February is also low but not as consistently as
January., August and September are high with the exception of one year
each. October is consistently high.

o Table D13, Indicates a reasonable irregular cc;mponent. The multipli-
cative model has 41 values below nominal and 43 above. The additive
model has 33 negative values, 13 zero, and 38 positive values,

e Table E4, Shows all values near nominal indicating a reasonable
analysis,

o Chart Gl, Shows the trend cycle to be an irregular cycle moving above
and below a value of about 24 incidents (recall this is only the trend
component and does not relate directly to the reported crime values).
About January 1974 the trend cycle started to increase, reac..ng what
appears to be a new, high level by September 1974, where it remained
to the end of the study period in December 1974.

e Chart GZ.- Shows a number of seasonal effects. Low months are:

January, February, March, and to some degree December. High
months are: June, August, September, and to some degree October:
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There is a seasonal effect indicated for Aggravated Assault, low in
January, rather higher in August and September, remaining high in October.

The trend cycle shows a significant increase in the 1974 period.

4, RAPE

This crime type was included in the present study as a check comparison
on the other cases. Itis widely felt to be essentially random in nature, How-
ever some studies have indicated a measure of seasonal effect and a number of
people have expressed the view that there may be such an effect.

~ Actual data for Rape includes zero values so that a multiplicative model
cannot be used with such data. In this study a multiplicative model was run
using data with each value increased by unity. The additive model used actual
data. Both models agreed so far as seasonal effect study and general nature
of the trend cycle were concerned. .

o Table D8. Gives no evidence of seasonal effect at the one percent level.

o Table D10. Shows a rather different situation than Table D8, Though
there are no very strong effects one can distinguish some months:
very high (May), high (January, June, October), low (February, July,
September, and November). '

o Table D3, Shows a reasonable irregular component, The multiplicative
model has 42 values below and 42 values above nominal. The additive
model has 33 negative, 18 zero, and 33 positive values. This is a strong
indication of the rather random nature of Rape which results in a particu-
larly good irregular part (the major part for this crime type).

o Table E4., Gives all cases near nominal indicating a reasonable analysis.

o Chart Gl. The trend cycle is irregular showing a very low rise of
about one or two incidents per year added to the level value. Variation
about that value also shows increase. There is some indication that as
a random statistical quantity Rape is going '"out of control" so that
extreme values may occur more often than otherwise expected. This is
seen by contrasting the early period up to January 1971 with the period
following that date.

Of course one should consider the complete composition of Rape rather
than the trend cycle only to gain a full appreciation of possible changes,

o Chart G2. Indicates a number of high and low values with a great deal
of variation. May is very high consistently over the seven-year period
June is rather high, July is low. October and December change from
high to low over the years of study.

The trend cycle may indicate some changes in the levels of rape that can
be expected to occur, -

Though no strong seasonal effect is indicated there is evidence of a high
tendency in May carrying over to some degree into June. This lends evidence
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from the data to the view that spring is a time of year in which a crime such as
Rape might be expected to be unusuvally high.

For Rape the trading day effect was particularly absent, having@%tially
no effect at all in analyses (as one would expect).
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Section 10, Software for Statistical Analysis of Time Series

One reason for the relatively restricted use of statistical analysis until
recent times was the extensive calculations required in order to apply theory
that has long been available. The advent of computers has greatly changed
this situation. By using computers extensive calculations become feasible,
However some aspects of time series analysis are so involved that the neces-
sary computer programs, called software, require considerable effort in
their development. This has limited the use of ARIMA type model analysis
until the last three or four years during which several versions of appropriate
software have become available and various commercial suppliers of computer
service are making proprietary software available at a fee,

All aspects of time series analysis either require or are greatly sim-
plified by using computers and appropriate software, provided the available
data are establishzd in a data base useful to computer operation. Data plots
form an important introduction to any time series study and they are very
tedious to do by hand, particularly if many cases are under study. Computers
can make time series plots as illustrated in Ssction 3. They can also calculate
means, standard deviations, and simple comparison statistics. The calcula-
tions of autocorrelations almost requires a computer. Though the calculations
can be done '"by hand" (using a calculator), the work is time consuming and
chances of error are high. :

All of these applications of computers to time series analysis require
only standard software, available at any computer facility in various forms.
Therefore such software need not be given any further consideration here.
Implementation of the concepts of ARIMA modeling are much more involved,
The major effort is in calculation of the estimates of the model parameter using
minimization of the mean square error function,

This section will describe how some available software may be tested
for use with one's computer facility and data. It will aslo indicate some of the
comimercial services available, ” o :

THE AVAILABILITY AND RELIABILIT_Y_O&F‘ ARIMA SOFTWARE

The ARIMA methodology requires rather complicated computer pro-
grams, .called software, for its implementation. A nonseasonal version of
ARIMA software was written and used by the author in reported crime time
series analysis, This version used the method of moments (Yule/Walker)
for computing estimates of model parameters. A number of satisfactory )
baseline models were obtained by using this software and it provided some ’
insights into ARIMA methodology. Those models are described in Reference 9;
the software will be called the Marshall version in subsequent discussion,

Subsequent considerations indicated that it would be useful to have the
ability to include seasonal differences in the ARIMA model. Furthermore,
parameter estimation based on a minimum mean square error procedure is

The services included are only some of the available services. Their inclu- { '’

sion dozs not imply any judgments about the services and is meant only to guide
proszpactive uses regarding the kind of commercial service available at the
present time.
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considered to be better than the Yule/Walker method, This is due to the very
pragmatic nature of ARIMA model formulation. The goal is to get a good
model according to stipulated criteria, particularly with white noise residual.

Minimum mean square techniques use the model structure itself, together
with the data, to generate estimates of modsl parameters. The price one must
pay for the more dstailed estimates, over the relatively simple Yule/Walker
estimates, is increase of compatational complexity., The mean square error
expression is generated by what is called back forecasting and is minimized by
numerical procedures known as gradient search methods. This is a rather
extensive computational task which will be discussed further below.

To employ a seasonal version of ARIMA methodology that uses minimum
mean square estimation requires one of the following approaches:

--develop a complete version of ARIMA software

--obtain appropriate software from some other source, or

--make use of a commercial system having the desired version of
ARIMA software,

A reason for dﬁvelop1nd one's own version of ARIMA software is the
shortage of working versions of ARIMA scftware available at acceptable cost.
But considerable effort is required and it may be most effective to use existing
software. A version is available from the University of Wisconsin Computing
Center as Number 517 of its Supplementary Program Series. At nominal cost,
the center supplies a report, ""Computer Programs for the Analysis of Univariate
Time Series Using the Methods of Box and Jenkins.' This report included
listings of all associated programs., The resulting software will be called the
Wisconsin version in the following discussion.

Though it is often not a simple matter to utilize ""other people's pro-
grams," the maznitude of the task required in modifying the Marshall version
resulted in a decision to make use of the Wisconsin version for the reported
crime examples. This was done for all the time series analyses and modsls
used as examples in this report (given in Sections 7 and 8). It may become
costly to use a commercial system having ARIMA software when many models
are to be daveloped, as in the COMSEC study. This is because commercail
systems charge for each model, Moreover, there are problems with input of
data to commercial systems that are no! part of the major system in which one
has data base storage. One use of the third option is as a check on "in-house"
software by using several software forms for a few cases. The availability of
two commercial systems, both of which were considered for the COMSEC
studies, will be described below, ‘

1. NATIONAL CCMPUTER SCFTWARE SYSTEMS

National Computer Software Systems, Inc. " (NCSS) is a commercial
supplier of computer time and software systems, Their services are widely
used in business and industry in a variety of ways. In the spring of 1973,
NCSS added a software 1mp1ementat10n of the ARIMA technique to their line of
services. NCSS introduced this service in a series of three seminars con-
ducted by Box and Jenkins in May 1973, The initial presentation was in New

300 Westport Avenue, Norwalk, Conn, 06851

101



oo’ debheceoersadesdms

York City on May 14-17, 1973. At that presentation, two days were devoted
to lectures in which Box and Jenkins developed a number of the concepts dis-
cussed in References 6 and 11, The final two days were used to allow poten-
tial users of the NCSS system, called SPX/Time, to learn about that system
using their own data on computer terminals.

The SPX/Time system is based on proprietary products of ISCOL,
Ltd. (UK) and is copyrighted by NCSS (in 1973). There are indications that
the software will operate reasonably well to carry out the three major phases
of the ARIMA technique as described in Section 6., It also includes transform-
ing and differencing of data for preliminary analysis. Aspects of seasonal
modeling are also available as part of the system. The subjective aspects of
the technique must be supplied by the user and this may limit the general
commercial use of the system.

Many people with the training required for making proper subjective
judgments will also be able to produce their own software implementation
and are likely to prefer to do so rather than work with a commercial system.
This is the point of view that was taken for the COMSEC evaluation studies
and has been expressed by several other groups, both users and nonusers of
commercial services. There are a number of reasons for this viewpoint: One
has greater understanding of self-developed systems and can introduce features
that are particularly appropriate to problems under study, it is convenient and,
in most situations, will be less costly to use a self-developed system when
many time series models are required. (These observations also apply to soft-
ware developed by others, such as the Wisconsin program.) Though the cost
of developing such a system might seem to indicate that one should employ a
service such as NCSS, the situation under which the system is developed can
greatly affect such a consideration.

Some details on the background of the ARIMA technique and on SPX/
Time are given in Reference (10), The software system will be referred to as
the NCSS version of the ARIMA methodology in the following discussion.

It should be observed that the NCSS-system includes software imple-
mentation of'the so-called transfer function methods dealing with the study of
several time series as they relate to each other. These methods (discussed
in References 4 and 10) show great promise for use in the study of societal
systems, :

2, COMNET IL\/IPLEL\/IENTATION

COMNET is another computer services company which can provide
ARIMA software. This is a version developed as part of the '"Econometric
Software Package' (ESP) and will be called the ESP version of ARIMA software,
This version does not seem to be as general as the NCSS version nor the
"in-house' version represented by the Wisconsin version. However, it was
used as a check and for special problems.

The major disadvantages of both the NCSS and ESP versions are the

transfer of input data (the time series) and cost for large numbers of time
series. They are useful systems when studying a few series..
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Another commercial version is provided by Dialogue Inc. " as part of
their PLATO system. The ARIMA aspects of this system are described in
Reference (11). In this system the subjective step of model identification is
done by the software resulting in what is called automatic ARIMA model build-
ing., This is an important feature, to the extent that it works, because the
identification step requires skill.and knowledge that are not often found in
groups otherwise able to utilize ARIMA technology. The success of PLATO
has been observed in a few simple cases but should be investigated by prospec-
tive users on their own,

The Wisconsin version was 1mplemented for a PDP-10 computer requiring
considerable modification of the version supplied. It was used in various sites.
Due to a number of technical problems, = changes had to be made in the version
as supplied by The University of Wisconsin., Since these were done at the Urban
Institute the operational system is referred to as the Ul (Wisconsin) version.

George Washington University (GWU) also has implemented the
Wisconsin version. Material supplied by GWU implies that the Wisconsin
version is used directly as given. However, this is unlikely to be the case due
to technical problems similar to those encountered in the Ul implementation.
The actual operational version is referred to as the GW (Wisconsin) version.

No other versions of the ARIMA software were considered for this study.
Of course, other versions exist, and more are being developed as the ARIMA
procedure becomes widely known and applied. A summary of ARIMA software
and its role in reported crime studies is given below to illustrate how several
versions of complex software may be used to check each other and gain an
impression of the reliability present in the main operational version (UI Wisconsin
in the illustration cases).

--Marshall Version: No seasonal'ca.pability, crude estimation method.
Used for baseline studies in early work, Not used in fmal analyses
given as examples in this report,

--NCSS Version: Very general but.relatively expensive to use, Method-
ology helpful as background material. System not used in COMSEC
studies, -

--ESP Version: Fairly general, but expensive for large-scale use.
Used as a check on several test cases in COMSEC studies.

--GW (Wisconsin) Version: Used as a check on several test cases. May/
have some problems related to software implementation. ‘

--UlI (Wisconcin) Version: Used for all COMSEC time series model work.
Has full (seasonal) capability and uses minimum mean square error
estimates. .May have a few (technical) problems still, but was taken to
be operational in its present form for development of ARIMA models.

1 R ; )
" 233 Broadway, Room 809, New York, N.Y. 10007 S
" Due primarily to the fact that the Wisconsin version was written for a com- L

puter having very different characteristics (e.g., word length) than the PDP-1 |

[
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The ARIMA software is sufficiently complicated to require some kind of
testing before one can have a reasonable degree of confidence in the results. A
full-scale testing effort of the UI (Wisconsin) version was beyond the scope of
work that produced the examples of Section 7. However, a number of tests were
made as described below. In these tests, it is necessary to understand two
major aspects of the software reliability issue:

--Detailed involvement with software implementation; including making
changes and debug test runs, leads to an informed appreciation of what
the programs are doing and how they are operating.

--Numerical aspects of matrix inversion and gradient search, particularly
the latter, are not trivial and can have significant effects on the model
results,

The minimum mean square error is sought by means of a gradient
method of a particularly effective kind (Marquardt Algorithm). In practice,
the minimum is never found. One specifies when the computation should stop
by employing one of three rules:

--stipulate the number of iterations,
--stipulate minimal cutoff change in the mean square, or
--stipulate minimal cutoff change in parameter values.

Thus, one does not know that a !"best'"" solution (minimum mean square error)
has been obtained, but only that a solution satisfied the stipulated criteria,
Residual medn square values are obtained but these do not give a very good
measure of how well the parameter estimates have been in minimizing the
error expression,

In terms of the background material above, the following will indicate
how the present Ul (Wisconsin) version was tested and why it was felt to be
operational, )

Considerable work was done in implementing the version. In the pro-
cess, a number of changes were made in the Wisconsin version. One major
change was made in the matrix inversion subroutine which was felt to be a
true error in the original, (Thus, anyone using the original without detailed
study might have errors.) Such detailed association with the software lends
a measure of reliability to its operation.

Four tests cases were run using UI (Wisconsin) version, GW (Wisconsin)
version, and ESP version. In each case rather different results were obtained
for model parameters, General characteristics were sometimes similar and
sometimes not. The Ul (Wisconsin) version was judged to be the most opera-
tionally correct for the following reasons.

ESP version does not compute mean values as part of the estimation
process. Such computation provides an internal check on the estimation
procedure and in particular on its convergence to the minimum mean square
value as shown by numerical values in the tables of Section 7 and discussed there,

Both GW and Ul versions compute the mean, but the GW values do not
always give correct values (mean values are known from other, elementary,
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calculations). In most cases the Ul version does give a good estimate of the
mean., Poor values indicate that convergence has not occurred and indeed
the GW version stopped its c[élucla,‘tions well before the Ul version in most

cases, N

As another operational check, some values were compared with the
Marshall version which was a completely different set of software., Values
were in reasonable agreement. '

In addition to the checks discussed above, a computer program was
developed to produce simulated time series with known properties, Such
series data were subjected to the ARIMA software to see how well the result-
ing model represented the known input series, This approach is discussed in
Section 11,

It was judged likely, on the basis of the above tests, that the Ul
(Wisconsin) version was reasonably good for developing ARIMA models. This
illustrates an approach to establishing the reliability of complex software.
Such considerations should be made whenever software of comparable com-
plexity is employed in analysis.,
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Section 11, Synthetic Time Series

There are several rcasons for generating synthetic time series with
specified characteristics. They can be used to form examples such as the
water level in the boiler sump used throughout this report. When the basic
form of a reported crime series is established from data, or assumed,
simulated series can be produced for training purposes. Time series of
known form can illustrate various statistical characteristics, particularly
in autocorrelations and partial autocorrelations. Special features of seasonzl
variations and non-stationary trend can be directly related to specific aspects
of the synthetic data. An additional usec of simulated time series of known
form is as test cases for complex soitware to see how well it carries out
such functions as parameter estimation since the parameter values are known
for the simulated series,

A synthetic time series is a set of values that can be thought of as
representing values occurring at distinct times and that have been generated
by some completely described deterministic process. Such a series is dis-
tinct from real time series that are obtained by recording actual values
occurring in prescribed time intervals such as the number of robberies in a
police district by week. The major distinction is that the synthetic series is
artificial rather than ""natural" and is reproducible, being based on determin-
istic generation procedures. - One could generate a series that was not repro-
ducible by employing some form of natural random generation (such as radio-
active emission or second-hand position on a clock at arbitrary times). Such
series may be felt to be more realistic as simulations of naturally occurring
series, However, it is necessary for the scientific use of simulated series
that they be reproducible while at the same tirne having features that act like
true randomness,

Such series employ so-called random number generators which are,
in fact, pseudorandom. They have the statistical form of purely random
number but are completely reproducible,

As indicated above there are various applications for synthetic time
series including:

e as input to broader simulation studies;

o to assist in the general study of time series types and how
various effects in series generation relate to values obtained
in the series; and

e in operational testing of computer software designed for analysis
of time series,

The simulated series reported on here were developed for the second
and third of these applications and used in this report to generate the boiler
sump data. Major interest in having such series was to test software for
autoregressive calculations and parameter estimation in Autoregressive
Integrated Moving Average (ARIMA) models of time series and provide
examples to illustrate the various parts of this report.

This section describes the way in which time series may be simulated
and reports on the use of such series in testing ARIMA software. It gives
clusions and recommendations for the use of ARII\/[A software bascd on a
11m1’m d number of simulation studies.

SRR ' 106



e e debhecesadaed e

s

It is beyond the scope of present work to use simulated series in
extensive testing of ARIMA software or in theoretical features of stochastic
model forms. However, such studies would contribute significant knowledge
to time series model formulation, The work reported here forms an intro-
duction to the basic methodology for such extended study.

Time series of interest for this study are assumed to be of the ARIMA
form. Simulated series were not produced for seasonal or other special
variation. ¥ The nonseasonal mathematical series employed here express the

value z, in terms of previous series values such as 21 purely random

amounts a, (called random shocks) that cannot be accounted for by the pre-

vious series values, and a non-random constant term. If the model uses p
previous series values and q previous shocks, then the value of z, is expressed

in the form:

>~la

8.a, . (1)

i t-1
1

z. = /] 0.z .+ 0 +a, -
: 1 o) t

i=1 i

To define such a series, then p + q + 1 parameters @, 90, Si must be specified.

Selection of the series type is accomplished by choosing the value of p and g
to be used. The notation (p, q) is used here for series type.

Terms arising from previous z values are autoregressive and the o

are autoregressive parameters. Terms depending on the random shocks are
moving average with ei the moving average parameters. The parameter 90

represents the mean level of the series corrected for autoregressive effects.
It is referred to as the mean in this section. In fact, it may include a trend
‘ P
term and be modified by a factor 1 - X P, .
. i=1

From the above formulation, it is seen that the desired time series may
be generated using a formula in the form of Equation 1. Input to be supplied
are the parameters @i’ ei’ and the series of random shocks a,. Both the z,

values and the a, series must be generated sequentially, A simple computer
program will generate (Z’c) following Equation 1 if one provides for generation
of the random imput series (at).

The a, values are produced by a standard (built-in) random number

generator function. These give values in the range zero to unity. Since one
usually wants larger random values, a scale factor B is included as input to

“For the boiler sump examples the synthetic series generation programs were
modified so as to include the fixed subtraction and addition of water at cyclic
intervals as used in the previously discussed illustrations. Trend effects were
also included.
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effectively enlarge the random interval to (O, B). It is also desirable to have

both positive and negative random values. The algebraic sign of a, can be

assigned in various ways. In the simulation studies reported on here, the
sign was determined by giving positive and negative equal likelihood of occur-
rence. A second random number is used in each case to determine the sign

of at.

PROGRAM DESCRIPTIONS

The computer programs used to carry out the formulation of (Zt) fol-

lowing Equation 1 are designated SER.F4 and a subroutine version denoted by
GSR.F4 (subroutine GNSER) to be used with various calling programs. These
are used as follows (listings are supplied at the end).

1. PRCGRAM SER.F4

This program is designed for terminal use., It generates a simulated
time series of the form shown by Equation 1. Output is printed out term by
term. Input is requested as needed. There is an option to supply integer data
output (in floating point form).

e Input: NC--number of cases (series to be generated (if negative,
only get one)); NP--number of autoregressive terms: NQ-number
of moving average terms; PH(I)--autoregressive parameters;
TH(I)--moving average parameters; B--scale factor for random
numbers; A--starting value (z,); XM--mean; N--length of series
(maximum of 200); and SEITCF][-—Y or N (integer data or not).

2. PROGRAM GSR.,F4.

This program is a subroutine version of SER.F4, for terminal use
with various calling programs. It generates a simulated time series of the
form shown by Equation 1. Output is the series returned to the calling pro-
gram, Call is to: SUBROUTINE GNSER (X, N, INF, OUTF) where X is a
one dimensional array of dimension N (dimension limit 200), N is the length
of series to be generated (maximum of 200), INF and OUTF are specified in
the calling program as the input and output devices.

o Input: NP--number of autoregressive terms; NQ--number of
moving average terms: PH(I)--autoregressive parameters;
TH(I)--moving average parameters; B--scale factor for random
-numbers; A--starting values (zl); XM--mean, and SWITCH--Y or
N (integer data or not). '

EXAMPLE CF USE OF THE ABOVE PROGRAMS

o Input: NP=1, NQ=1, PH=.05, TH=.2, B=3, A= 30,
XN[ = 25; SWITCH = Y to give integer data, N = 80. .

o The resultiné series has the following initial 30 terms; 30, 27,

24, 26, 26, 24, 24, 27, 23, 24, 26, 24, 25, 25, 24, 25, 23, 25,
26, 25, 28, 25, 27, 23, 24, 25, 25, 23, 27, and 24.

108



FE R E NN E T E T Y " T YY" YY" "y e -

|

Greater fluctuation can be introduced by increasing the size of the scale
factor B. This is illustrated by another example with all input the same as the
above except that the scale factor B = 8. The first 30 terms are: 30, 28, 21,
26, 26, 21, 21, 30, 18, 20, 27. 20, 24, 23, 21, 23, 19, 23, 26, 23, 31, 25, 30,
18, 21, 24, 25, 18, 20, and 22 which show greater fluctuation than the prveious
series with a B value of 3.

The time series of water levels for the boiler sump examples employed
the synthetic time series program with NP =1, NQ=1, PH=,25, TH= 1.5,
B=5, A=30, and XM = 28, The series were all 96 values long. Modifications
were made to the series which allowed addition or subtraction of fixed amounts
at intervals six units apart by amounts AA and BB respectively, A trend with
fixed intercept at AT and slope of CC was also provided. The cases used as
illustrations employed the values:

SUMP 1 SUMP 2 SUMP 3 SUMP 4
AA -5 .5 -10 -10
BB 2 ) 2 2
AT 0 2 0 0
ccC 0 L2 0 .1

OPERATIONAL TESTING OF ARIMA SOFTWARE

ARIMA software consists of programs to calculate autocorrelation and
partial autocorrelation values for time series data. Such values are used to
select appropriate model forms and to test the resulting residual series for
white noise characteristics, The ARIMA software alsc employes a minimiza-
tion of the mean square error to estimate parameters., This is a relatively
complicated and potentially sensitive type of calculation. Though there are a
number of operational tests, one may carry out on ARIMA software (including
careful analysis of the computer codes, comparison with other software system
results, and convergence to known parameters such as the mean), it is desir-
able to subject it to the common procedure of testing with a known input. Due
to the recursive nature of the input (as shown by Equation 1), one must use a
simulated time series for this purpose. The parameters and type of series
are known for such input. One can then test the software by noting how well it
functions in specifying series characteristics and most particularly in estima-
tion of model parameter values (which are known for simulated series input).

Extensive testing of this kind is beyond the scope of the present study.
However, some tests have been made which illustrate the use and value of such
techniques, These are described below,

Because of its complexity (size), the ARIMA software is contained in a
collection of subroutines known collectively on our system as BOX, F4, de-
signed for terminal use, To test such software by using simulated time series
(generated from SUBROUTINE GNSER), some form of call program is required.
These are described below,. '

Two call programs have been employed for terminal operation of the
UI-ARIMA (Modified Wisconsin Version discussed in Section 10) software
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package BOC,F4., One, designated ACT.F4, provides autocorrelation and
partial autocorrelation values only, The other, designated ARMT. ¥4, gives
model parameters and information regarding the residual series and other
aspects of the model,

1. PRCGRAM ACT.F4

This is a call program that uses GNSER for series input. It is used
for simulated series input. It calls parts of BOX, F4 to produce autocorrelation
and partial autccorrelation values. Input is GNSER input together with BOX, F+
input (briefly specified at the end of this sub-section). ACT, F4 is for terminal
operation., It can also derive input series from a binary file created by appro-
priate software systems.™ Thus it also requires the following input:

NOB is_the number of observations
"Generate'' or '""Read" 0 or 1 for GNRD.,
Series name for identification--BOX, F4 input as required,

2. PROGRAM ARMT. F4

This program has the option of calling GNSER to generate a simulated
input series for which parameter estimation is made. It is for terminal opera-
tion and uses BOX, F4 subroutines. :

¢ Input: NOB--number of observations; ''generate' or ''read' series
- Input option; list input or not option; series name; BOX. F4 input as
required,. .

o

EXAMPLE

To test the ARIMA software five simulated series were used with input
situations and results as reported below., Even this small number of cases
provided useful information about the ARIMA software that one would never
have without employing simulated series input.

The convergence process to estimate parameters seems to need a
number of iterations. One must take care not to limit the number of iterations
when specifying MIT or by giving a condition on EPSI which terminates due to
small changes in the mean square error while parameter values are still
changing. This was the situation for Case 5 above and it resulted in a poor
estimate for PH, ‘

Starting values for the parameters do not seem critical. In fact, there
was no difference between Case 1 and Case 2 even though the actual parameter
values were used as initial values in Case 1, However, due to the high dimen-
sion of the minimization problem local minima and similar difficulties may
give trouble,

The length of the series (sample size) is felt to be impoi’tant and the

0 N ¢

“Such systems should be part of any computer center that provides terminal
operation, The work illustrated in this report was done on the Brookings :
Institution (Washington, D.C.) computer where the software is called PLANET

4
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TABLE 11,1 ARIMA ME THODOLOGY APPLIED TO SIMULATED INPUT

Input Case 1 Case 2 Case 3 Case 4 Case 5
ts : 80 80 60 100 120
&
NP 1 X X X X
! 1 X X X X
.05 X X X X
.2 X X X X
ﬁ ' X X X X
A 30 X X X X
lfl 25 X X X X
ITCH Y X - X X X
.i:ies Name Simulate 7 Simulate 8 Simulate 9 Simulate 10 Simulate 11
LOG, NRD 0,0,0,0 X X X X
NDS, NSEA)
C 1,0,1,1,1,0 X X X X
PA 1,0,0,1 X X X X
PA .05,.1,.1,.2 .1,.1,.1,.1 X X X
PS1, EPS2Z, 0.0,.001, X X X . 00001, .001,
T, IPDEST, 60,0,0 60,0,0
IPRES)
AC, NPAC, 20,15,0,1, X X X b-4
DAC, MCSE, 12,0, -1 .
NAPL, IWTPA,
CHI) .
F, NTO, NU,ICI, 3,1,0,4,0,0 X X X X
DEST, IWTPF)
iT'- 80 X 60 100 120
mments on Floating Floating Square root Floating Floating,
runs underflow, underflow, of negative underflow, underflow,
one case, one case, number, two 7 one case, one case,
Square root cases, Square root
of negative of negative
® number, two number, two
t cases, cases.
Estimated .09 .09 .21 .07 - 17
rameters 25.16 25.16 25,17 25,36 25,35
11 .12 .11 .12 J12
P .23 .23 .24 .18 .24
[pro.xim%ie 51 50 38 58 47
srations

n X means that the same value was used as for the case to the left,

jSome iterations have many more substeps than others so these figures do not indicate exact differences in

computational effort.

i
4

: _ All cases except Case 5 terminated because parameter value changes became too small.
n Case 5, termination was due to too small a change in the sum of square value (the test value was ., 00001 in
his case and 0.0 in other cases).
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above cases illustrate this fact. For the simple cases considered, to only one
level in each parameter type, the series of length 60 gave very poor results
for PH and the series of length 100 gave improved results over the 80 points
in Cases 1 and 2. The extra length (120) of Case 5 should have given further
improvement in PH; however, the change in termination criteria resulted in

a worse result.

Thus, even the restricted study of only five cases provides the follow-
ing conclusions:

e The operational ARIMA software used for COMSEC evaluation studies
and as illustrations in this report seems to be working as desired.

¢ Termination of estimation too early is a major source of poor
model parameter values.

e Series should be as long as possible and be increased for more
complicated model types requiring estimation of several parameters.

PROGRAM LISTINGS AND ARIMA INPUT

The programs, SER.F4, ACT.F4, and ARMT.F4, are listed here to ’
illustrate the nature of such programs. It can be seen that they are relatively
simple in form. This adds to the desirability of using similar programs for
helping to test complicated ARIMA software.

The listings are followed by a statement of the input requirements for
the operational ARIMA software. This will depend on the version used but the
UI-Wisconsin version, given here, is typical of the nature of input requirements
to do ARIMA model building.
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For completeness of illustration, the following gives the input requirements
involved in the ARIMA SOF TWARE (UI version):

SUMMARY OF BOX.F4 INPUT NEEDS

Inpu;c values are requested by call prﬁgrams and used by BOX, F4 subroutines,
| { NOB--Number of data points in the series.

{ Z({I) 1=1, NOB--Series data,

{ SERIES(J) J=1, l4-_Name of the series data.

NLOG--0 original data used # 0 log of data used,
NRD--number of regular differences (d in (l-B)d).d
NSD--number of seasonal differences (d; in (1-BS)"1.

NSEA--order of seasonal diiferences if any (S in (1-BS)).

{ INC(J) J=1, 6--number of each of the six possible parameters
regular autoregressive (p in number) INC(1) = p
seasonal autoregressive (pl in number) INC(2) = P
mean of the series, INC(3) =0 or 1 -

deterministic trend constant, INC(4) = 0 or 1
regular moving average (q in number) INC(5) = q
seasonal moving average (qj in number) INC(6) = qj.

IOPA(J) J = 1, NP--(computed from INC) powers of B for each nonzero
parameter (0 value for '"constants') in order left
to right in the general model; i,e., as listed
above for INC input (nonzero values only).

{ PA(J) J =1, NP--.initial values of parameters for estimation (values
must be nonzero), one for each specified as an
entry for IOPA,

EPSI--maximum relative change in residual sum of squares.
EPSZ2--maximum relative change in each parameter.
MIT--maximum number of iterations allowed.
IPDEST--0 to suppress plot of data <--plot.
IPRES--0 to suppress plot of residual <--plot. '
)
f NAC--number of autocorrelations of residuals, !
NPAC--number of partial autocorrelations of residuals (maximum of NAC).
NRDAC - -nuraber of diiferences of residuals for which autocorrelations
calculated. .
ﬂ MCSE--0 if no standard error of residual autocorrelation,
NAPL--number of residual autocorrelations per line.
IWTPA--0 s ippress plots of residual autocorrelation <--plot. .
NCHI--numkt:r of autocorrelation to compute X° statistic <0 if not w::' ted.
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NF - -number of forecasts desired.

- NTO--number of time origins.
" NU--number of new observations for updating.

ICI--width of confidence limits:

1 2 3 4 5 values for ICI
50 75 20 95 99 percent confidence internal.

IPDFST--0 to suppress plotting of series data <--plot.
IWTPF--0 to suppress plotting of forecasts <--plot.

NT(I) I=1, NTO--forecast time origins.

ZN(J) J = 1, NU--new data for update of forecasts, omit if NU = 0.

A, PROGRAM SER.F4

DIMENSION X(200), TH(6), PH(6), RA(200)
INTEGER INF,OQUTF

INTEGER SWITCH, YES

DATA YES/'Y'/

INF=5

OUTF=5 :

WRITE(OUTF, 147)

READ(INF, 135) NC
_ WRITE(OUTF, 148)

READ(INF, 135) NP

WRITE(OU TF, 149)

READ(INF, 135) NQ

IF(NP.EQ. 0O) GO TO 55

WRITE(OUTF, 150)

READ(INF, 130) (PH(I), 1=1, NP)

IF(NQ. EQ. O) GO TO 56

WRITE(OUTF, 151)

READ(INF, 130) (TH(I),I=1, NQ)

WRITE(OUTF, 136)

READ(INF, 130) B -

WRITE(OUTF, 140)

READ(INF, 130) A
WRITE(OUTF, 152)
READ(INF, 130) XM
WRITE(OUTF, 145)

READ(INF, 135) N
WRITE(OQUTF, 153)

READ(INF, 154) SWITCH

X(1) = A

RA(1)=0.0

DO 100 I = 1,N
IF(SWITCH. EQ. YES) X(I)=FLOAT(INT(X(I)))
WRITE(CUTF, 155) I, X() :

R=R*RAN(D)

R1=RAN(D)

IF(R1.LE.0,5) R=-R
RA(I+1)=R
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ZT=0.0 .
Z25=0G,0
IF(NP.EQ.O) GO TO 85
IF(I. GE.NP) GO TO 75
DO 72 Jj=1,1 .
ZT=ZT+PH(JT)*X(I-JJ+1)
72 CONTINUE
GO TO 85
75 DO 80 J=I,NP
ZT=Z2T+PH(J)*X(I-J+1)
80 CONTINUE
85 IF(NQ. EQ.O) GO TO 95
IF(I.GE.NQ) GO TO 88
DO 86 KK=1,I
Z2S=ZS+TH(KK)*RA(I-KK+1)
86 CONTINUE
GO TO 95
88 DO 90 K=!,NQ
2S=ZS+ TH(K)*RA(I-K+1)
90 CONTINUE
95 X(I+1)=ZT-ZS+R+XM
Y=X(I+1)
J=1+1
WRITE(OUTF, 120) RI1,R
. WRITE(CUTF,110) J,Y
100 - CONTINUE
IF(NC.GT.0) GO TO 50
CONTINUE Sl
110 FORMAT(L, 10X, F)
120 FORMAT(2X, 'R1’,2X,F,2X, 'R’, 2X, F)
130 FORMAT(6F)
135 FORMAT(6I)
136 FORMAT(2X, 'B: ’,9) .
140 FORMAT(2X, A ',$)
145 FORMAT(2X, 'N: $)
147 FORMAT(1H-,2X, 'CASE :', §)
148 FORMAT(2X, NP L "0 9)
149 FORMAT(2X, NQ 0 $)
150  FORMAT(2X, 'PH:’,$)
151  FORMAT(2X, 'TH:’, $)
152 FORMAT(2X, 'XM: ', $)
153 FORMAT(2X, INTEGER SERIES (Y/N)? ', $)
154 FORMAT(AL)
155 FORMAT(2X, '1=',1,10X, 'X(1) = ', F)
END
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