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This work describes: (If the development of a systematic 
procedure for the design of optimal multishift proport~onal 
rotating (PR) schedules which provide a given distribution of 
manpower by shift and day of the week; (2) the .identi;ficiil,tion 
of preferred schedule attributes and quantitative mea:~urt~s f-or 
each that can be used in a multi-criteria decision model to 
discriminate between alternative schedulesi (3) the incorpora
tion of the design procedures into a set of computer programs 
capable of constructing optimal and near-optimal multi shift PR 
schedules based on a given set of required and preferred sched-
ule properties; and· (4) the use of the computerized procedures 
to design manpower schedules for several units of the 8'1";.. Louis 
1'1etropoli tan Police Department. 

The sequential process for the des~gn of one-shift PE 
schedules, first proposed by Heller, consists of: (1) the 
aggregation of recreation days into recreation)! periods of 
acceptable J.engthsi (2) th·e distribution of each recreation 
period set over the days of the ''leek to match the required 
manpower allocation; (3) the identification of the work 
period length defined by each ordered pair of recreation periods; 
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and (4) the selection of sequences of recreation periods which 
yield schedules with the, required number of work days. 

The clustering of reCreation days into periods is a variant 
of the combinatoric problem of representing a positive integer n 

,as the sum of two Dr more positive integers. A simple enumera
tion scheme is described for generating all discinct partitions. 

"The distribution of recreation periods over the days of the week 
is schematically represented as a cyclic graph and a branching 
procedure is developed for enumerating all graphs for ea,ch parti
tion. Using the information contained in a separation matrix 
associated with each graph, a branch-and-bound algorithm is used 
to enumerate all sequences of recreation periods which correspond 
to feasible one-shift schedules. 

Multishift PR schedules are formeci by designing a small SE:1t 
of dominating one-shift schedules for each shift tour, selecting 
one schedule from each set, and placing the schedules in proper 
rotation sequence. An "artificial" recreation period is used to 
control the placement of recreation periods at the beginning and 
end of each shift schedule. A simple branching process is used 
to enume~t:'ate optimal and near-optimal mul tishift scheq'l.lles from 
the set of dominating schedules for each shift tour. 

A survey of 21 police agencies and a review of scheduling 
literature is used to identify schedule attributes which can be 
used ,to characterize individual schedules. Quantitative mea
sures for each attribute are used to desiqn optimal schedules 
in t!wo ways: acce.ptability measures are used' to screen out 
schedules which fail to satisfy minimum requirements, and 
prf'~ference measu:r.'es are used to determine preferable sche~'I.ules 
from among acceptable candidates. 

Acceptable; schedules are those which: (1) preserve a given 
manpower allocation by shift and day of 'the week, (2) satisfy 

'upper andlowf~r limits on the lengths of all work and recreation 
periods, and (3) have a recreation period of acceptable length 
a1:. each shift changeover point. Preference measu:r.'es utilized 
iilclude: (1) the number and frequency of weekend recreation 
pE~riods, (2) the size and frequency of maximum length work 
pe\riods, (3) the range between maximum and minimum length work 
periods, and (4) the number of preferable recreation periods 
(where preferability is determined by period length and days of 
the week covered). 

Applications of the computerized design procedures are pre
sented for two units of the st. Louis Metropolitan Police Depart
ment:, the Evidence Technician Unit, and the Radar-Vascar and 
Motorcycle subunits of the Traffic Safety Unit. Comparisons of 
the e6mputer designed schedules with work patterns designed by 
police personnel indicate the superiority of the computer designed 
sch(-;dules in terms of several important schedule prop(:!rties. 
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OPTIMAL MULTI SHIFT PROPORTIONAL ROTATING SCHEDULES 

1. INTRODUCTION 

1.1 PROBLEM BACKGROUND 

In recent years, increasing attention has been devoted 

to the development and use of new varieties of manpower 

schedules. In place of the tradi~ional work pattern of 

eight hours per day, Monday through Friday, an increasing 

number of private companies and public agencies are 

experimenting with four-day work weekG (1,2,3,4,5)*, 

three-day work weeks (5,6,7,8), split and part-time shifts 

(9,10,11,12), variable starting and stopping work hours (13), 

rotating and cyclic schedules (14,15,16,17,18,19,20,21,22, 

23,24,25,26,17), and proportional schedules (9,10,12.,14,15, 

16,17,18,19,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38, 

39,40,41) • 

Many factors have contributed to increased interest in 

new kinds of manpower schedules. One of the most important 

has been the significant increa': ~ in the number of persons 

employed in service-oriented i~uBtries where the demand 

for ,service, even if predictable, cannot be modified to fit 

employee work patterns. In the public sector, the most 

*The numbers in parentheses in the text indicate 
references in the Bibliography. 
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notable examples of services which cannot be backlogged or 

inventoried are the delivery of emergency police (1,16,17,18, 

28,29), fire, and medical services. In the private sector, 

services which are tied to customer demand include those 

provided by telephone operators (9,30,31,39,40), taxi drivers, 

toll booth attendants (10,26,34,42), baggage handlers (27), 

airline reservationists, bus drivers (11), refuse collectors 

(19), air line crews (43,44,45), nurses (20,21,22,23,24,35,36, 

37,38), and in some cases, retail clerks. 

Pressure for new and better manpower schedules has origi-

nated from both management and worker groups. With spiraling 

labor costs, administrators have sought to improve productivity 

by rearranging work patterns to provide the same level of per

formance with a reduced number of personnel r and by improving 

individual service levels. At the same time, WOrk\3rS both in 

public and private agencies are demanding benefits that are 

not exclusively tied to economic issues, but rather relate to 

employee satisfaction and. morale. In many instances these 

demands are for new kinds of manpower schedules which (1) 

require less time on monotonous jobs, (2) require less 

scheduled overtime, (3) reduce the amount of commuting, and 

(4) provide more leisure time for family activities. 

The impetus for the development and use of new kinds 

of manpower schedules is not limited to service industries. 
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Manufacturing industries which require continuous 1ltilization 

of valuable machines and equipment often operate six or 

seven days a week and the kinds of manpower schedules used 

are often an important labor-management issue; examples 

include the steel, chemical, and petroleum industries plus 

many computer installations. 

The development of new schedule design methodologies 

to replace rule-of-thumb procedures has progressed slowly 

however. This has been due, in part, to the increasing 

awareness that the development of new methods for designing 

schedules whidh can adequately satisfy both labor and 

management constraints is a complicated task. Barriers to 

the successful implementation of new kinds of schedules have 

included (1) a myriad of Federal laws, state regulations, 

city ordinances, and union agreements which regulate 

overtime, undertime, starting hours, stopping hours, lunch 

and break times, split shifts, and the use of full- and 

part-time workers*; (2) the resistance of management and 

* As an example of increasing Federal involvement in 
lCGal scheduling practices, the scheduling of municipal 
employees such as police officers and firemen would have 
become even more difficult if the United States Supreme 
Court had upheld the new provisions of the. Fair Labor 
Standards Act adopted by Congress in 1974. A suit challeng~ 
ing the constitutionality of the law was brought before the 
Court by the International City Managers Association, the 
National League of Cities, the National Conference of 
Governors, and 18 states during the 1975-1976 terin of the 
Court. The new provisions were ruled unconstitutional in 
June 1976. If upheld, the provisions would have required 
overtime payment to municipal employees who worked more 
than a specified number of hours per pay period. 
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employee groups to changes in work patterns which are per

ceived as detrimental; and (3) the inertia of tradition. In 

addition, changing work patterns for large numbers of persons 

may require adjustments to work schedules for support personnel 

such as. c:;tfeteria workers, maintenance staff, and transportation 

and traffic related workers (such as bus drivers and police 

personnel). Understandably, both management and employee 

organizations, aware that new schedules may have economic and 

social impacts that are not immediately obvious, have tencled 

to take a cautious, ,'mit-and-see attitude when new work 

patterns are proposed. 

Within the last decade, an increasing number of efforts 

have been made to develop systematic approaches to the design 

of acceptable manpower schedules. A variety of heuristic 

and algorithmic procedures have been proposed; a review of 

these efforts is presented in section 1.5 of this chapter. 

This thesis discusses the construction and design of one 

kind of manpower schedule: proportional rotating schedules 

(hereafter referred to as PR schedules) which can satisfy many 

of the scheduling problems cited above. The procedures de

scribed in this work have been successfully used to design 

schedules for the St. Louis Metropolitan Police Department, 

among other applications in the police area, and much of the 

discussion 'in this thesis will be within the context of 

scheduling police manpower. The basic concepts of sch~dule 

design and most of the schedule attributes discussed, however, 

[\" 
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are applicable to other Ii;ervice agencies in both the 

public and private sector. 

1.2 POLICE MANPOWER SCHEDULING 

Scheduling manpower for police services is a multifaceted 

planning activity which includes measuring the demand fO.r 

services, determining the distribution of available manpower 

which best meets the demand, and finally constructing personnel 

work rosters or schedule sheets (hereafter called schedules) 

which achieve the desired manning through acceptable patterns 

of work days and days off f:or each police officer. 

In some areas of police work, the services demanded are 

not urgent and can be conveniently postponed. For these cases, 

simple schedules such as the common 8 A.M. to 5 P.M. five-day 

work week can be used. For emergency service demands, however, 

manpower scheduling is more difficult'. Most such services 

require an immediate response and requests for such services 

arrive around the clock, seven days a week. A wide variety of 

work schedules has been devised by police agencies to properly 

staff the watches* of the week. 

1.2.1 The Demand for Police Service by Day and Shift 

Although the demand for police services is a random 

phenomenon, the pattern of call arrivals exhibits regular 

* ; "Watch II can be used interchangeably with "shifi:". Watch 
is the more commonlyus-ed expression to describe police man
power schedules, and refers either to a particular. set of con
secutive hours for each day of the week (e.g., the day, after
noon, and night watches) or to the set of work shifts for the 
entire week (e.g., "The week consists of 21 watches. 11) • 

/ 
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cycles on a daily, weekly, and even seasonal basis. These 

cycles permit police agencies to compute reasonably accurate 

forecasts of the number of calls for each day of the week 

and each shift. Table 1.1 shows the distribution of calls 

for police service by day and shift of the week in St. Louis 

during 1971. Almost half of the calls (45.8 percent) occurred 

during the afternoon shift, and approximately one-third of the 

calls (33.6 percent) ocurred on Friday and Saturday. The most 

dramatic change in daily workload occurs on the night shift 

where the daily average of the watch workload is only 11.4 

percent for Sunday through Thursday, but increases to an 

average of 21.5 percent for Friday and Saturday. 

Police statistics from other cities show a si.milar distri-

bution of call activity by day and shift. Table 1.2, taken fr6m 

a 1972 survey conducted by the author indicates the distribution 

of workload by shift for 10 United States cities. 

1.2.2 Commonly Used Police Schedules 

Most police d9partments use some form of a three-shift 

schedule. In rural areas or for specialized services such as 

traffic enforcement, two-shift schedules may be used. Schedules 

with more than three shifts are used by some agencies to 

achieve a distribution of manpower more closely resembling 

the actual demand for service. 

The type of service required as well as the volume of 

requests vary with the time of day. Late afternoon and night 

\\ 
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Table 1.1 

Percentage Distribution of Cal1s-For-Service by Shift and 
Day of the Week, St. Louis Metropolitan Police 

Department, 1971* 

Shift 
---

Day Afternoon Night 
{7 A.M.- (3 P.M.- (11 P.M.-

Day 3 P.M.) 11 P.M.} 7 A.M.) Daily 

Monday 14.2% 14.3% 11.7% I 13.6% 
Tuesday 14.0 14.2 11.5 13.5 
Wednesday 14.0 14.1 11.5 13.4 
Thursday 14.8 14.8 13.1 14.4 
Friday 14.5 15.4 21.8 16.7 
Saturday 15.6 15.4 21.3 16.9 
Sunday 12.9 11.8 9.1 11.5 

'Total 100.0% 100.0% 100.0% 100.0% 

Percentage 
by shift 29.6 45.8 24.6 100.0 

Source: Computer Division, St. Louis Metropolitan 
Police Department, St. Louis, Missouri. 

*Based on 439,716 radio calls (both directed incident 
and directed assist calls) from January 1, 1971 through 
December 31, 1971. 
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Table 1.2 

Percentage Distribution of Police Workload by Shift for 
Ten United States cities 

Shift* 

city Day Afternoon . Night 

Norman, Oklahoma 25% 50% 25% 
Rockville, Maryland 38 46 16 
Fort Lauderdale, Florida 30 50 20 
Bethlehem! Pennsylvania 39 37 24 
Kalamazoo, Michigan 25 60 15 
Ocean City, Maryland 21 46 33 
Waterbury, Connecticut 25 35 40 
Kansas City, Missouri 33 39 28 
Millersville, Maryland 35 45 20 
Hartford, Connecticut 35 50 15 

Unweighted Average 30.6% 45.8% 23.6% 

Note: Survey conducted by the author of police 
officials attending a planning seminar at Northwestern 
University in June 1972 (see appendix 10.2). 

*Starting hours for the three shifts differ slightly 
among the departments. Generally, the day shift begins 
between 6 A.M. and 8 A.M., the afternoon shift begins 
between 2 P.M. and 4 P.M., and the nigrht shift begins 
between 10 P.M. and midnight. 
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assignments are considered by many police officers to be less 

desirable for work assignments since they interfere with 

normal social and family life. Police administrators differ 

as to whe~her these circumstances imply a need for officers 

to rotate periodically through the shifts or to be permanently 

assigned to a particular shift. 

Shift rotating or multishift schedules are the most 

common type of police schedule in use today*. Officers 

generally spend an equal amount of time, called a "tour", 

on each shift, although the exact length of the time varies 

considerably from department to department -- from one week 

to several months. Since changing shifts requires adjustment 

of personal habits for each officer and his family, frequent 

changes are usually considered undesirable. Extended periods 

on the same shift, however, are also considered undesirable, 

particularly during the summer months when crime and calls 

for service increase. Hence the length of time spent on 

each shift usually represents a compromise between these 

two unattractive features. 

A schedule which is manned solely by tours of equal 

length on each shift will produce equal marm;ing levels on 

each shift., a distinct disadvantage for most departments. 

Despite this, such schedules are widely used because of 

their simplicity and the lack of readily available and 

acceptable alternatives. 

* , Sixteen of the 21 departments surveyed by the author 
indicated that officers rotate through the shifts on a 
regulatb~sis (see appendix 10.1).' 
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The workload imbalance between different shifts and 

.days of the week has motivated some departments to use 

permanent shift assignments for all officers, with the 

number of officers assigned to each shift proportional to 

the workload. Shift assignments ar(~ made by seniority in 

some cases and by officer choice in others; officers change 

shifts only by promotion, assignment: to a special detail on 

another shift, or by special request (e.g., to accommodate 

part-time college programs). Some qr,epartments employ both 

fixed and rotating assignments: for1example, San Francisco 

and Boston both reported in 1968 that. they used fixed" assign~ 

ments for the day watch and rotating assignments for the 

afternoon and night watches (46)*. 

The ma teh between manpO\ller and '17orkload may be improved 

by scheduling overlapping shifts so 1:hat officers assigned to 

different shifts are on-duty at the same time during the 

busier hours of the day. Two p'Opula]~ versions of this type 

Of schedule are the four-shift or overlay schedule, and the 

"4-10" plan. The four-shift schedule employs the usual three 
, 

shifts plus a fourth shift which usually begins midway through 

the afternoon shift and ends halfway f:hrou,gh the night· shift; 

This plan provides extra manpower durIng the peak demand 

petiod of each day (usually from 7 P.M. to 3 A.M.). In the ~ 

* Seven of the 16 departments surveyed by the author 
that reported use of rotating shift a~~signrnents also 
indicated that some officers are permclnently assigned to 
specific shifts. 

Ii 
"" 
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4-10 plan, officers work four 10-hour days each week instead 

of five a-hour days. This plan produces a total overlap 

time of six hours per day which can be placed at the peak 

demand period at the expense of manpower reductions during 

other hours (i. e., since tlie total number of manhours to 

be allocated per week is fixed, longer shift hours result 

in fewer men on duty per shift) (1,2). Both four-shift and 

4-10 schedules can be bas~a on either fixed or rotating 

shift assignments or on a combination of both. 

Many systems are used to schedule officers' days off.* 

In a few departments, officers are permanently assigned 

certain days of the week as recreation days, but in most 

departments a revolving or cyclic pattern of recreation and 

work days is used. Some departments schedule fewer men off 

duty on busier days, but since this complicates the scheduling 

process and also usually reduces the number of weekends off, 

many departments settle for equal manning levels for each 

day of the week. 

1.2.3 Desirable Police Schedule Features 

In addition to the sometimes felt need for providing 

police manning levels that are proportional to the demand 

for service by shift and day of the week, police manpower 

schedules must also often satisfy a variety of statutory 

* The term "days-off" will be used interchangeably with 
the expression "recreation days," the latter being more 
commonly used to describe police schedules. Consecutive 
recreation days are defined as recreqtion periods • 

.. ------------------------------~ .. ~-.----~~--------
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and administrative constraints. Also, there are a number 

of schedule attributes that, although not required, are 

usually considered desirable by police administrators. 

These attributes include: 

(i) identical (or equivalent) schedules for all 
officers, 

(2) shift tours of acceptable length, 

(3) the scheduling of a recreation period 
whenever an officer rotates to a new 
shift assignment, 

(4) acceptable work and recreation period 
lengths (i.e., elimination of very short 
or long periods) , 

(5) the presence of an adequate number of 
weekend recreation periods distributed 
evenly over the schedule to minimize the 
number of consecutive working weekends'?\', 

(6) the ability to schedule holiday recreation 
days at the beginning or end of regularly 
scheduled recreation periods (police 
officers routinely receive time off for 
holidays on days other than the actual 
holiday date), 

(7) the design of vacation schedules which 
maximize officer cDoice and minimize 
manning level disruptions, and 

(8) the design of supervisory schedules which 
maximize the "unity of command II between each 
officer and his supervisor. 

In most police departments today, police schedule 

designers have no systematic way of incorporating these 

* A weekend recreation period is a recreation period that 
includes both Saturday and Sunday. A working weekend is a 
weekend in which an officer must work either Saturday or 
Sunday or both days. 

" 
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features into the schedules that are being used. Further, 

research efforts to date into the design and construction 

of new varieties of manpower schedules have frequently 

ignored or have been unable to include them. The schedule 

design procedures described in this thesis represent,· in 

some cases, the first syst:ematic inclusion of the attributes 

listed above into an algorithmic approach to schedule design. 

1.3 TYPES OF Iv'.!.ANPOWER SCHEDULES 

Two broad categories of schedule design problems exist: 

shift scheduling and days-off scheduling. 

1.301 Shift Scheduling 

In shift scheduling problems, service demands are 

G determined for small units of time (usually one hour periods) 

and then used to find the best shift times for each day of 

i:he week given the requirement that each shift must consist 

of a specific number of consecutive time units (e.g., eight 

hours). This type of scheduling is often posed as an alloca

tion problem in which the objective is to determine, by 

specifying the shift hours, the minimum number of officers 

required to provide adequate manning levels for each hour 

of the day or week. Among the variables that may be specified in 

a shift scheduling solution are shift starting times, shift 

length, lunch times, break periods, and the number of men 

for ead~ shift. Many variations of this problem exist and 

a variety of analytical and heuristic te(r;1:udqtQE:~~L have been 



-14-

used to find adequate shift des~gns. (See section 1.S for 

a review of previous research efforts.) The important fact 

to be noted about shift scheduling problems is that they 

deal only with the allocation of the entire workforce 

rather than vlith the scheduling of individual officers i the 

solutions to these problems specify when and how many officers 

should be on-duty, but do not indicate the day-to-day work 

patterns of individual officers. The resolution of this 

latter problem is called days-off sched':uling. 

1.3.2 Days-Off Scheduling 

Days-o.ff scheduling is the primary topic of this 

thesis. To describe this type of scheduling problem, it 

is useful to define some basic elements of manpower scheduling. 

A schedule bracket is a.sequence or pattern of work and 

recreation days; the length of a bracket is equal to the 

total number of days in the sequence. A group of men is a 

subset of the workforce defined by the fact that all of the 

men within the group work the same bracket (or pattern of 

work and recreation days). A group of men may contain only 

one man. All of the schedules derived in this thesis are 

based on schedule brackets that are one week long.* The 

common Monday tr~ough Friday work schedule, if repeated 

every week, is a seven-day one-bracket schedule that can 

be represented as: 

*This thesis also uses the: convention that e~ch 
seven-day schedule bracket begins on Monday. " 

-- --±- ' 
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MGN. TUE. WED. THUR. FRI. SAT. SUN. 

R R 

where each flR" represents an off-duty or recreation day and 

each blank represents a work day_ 

Schedules containing two or more brackets can be used 

to provide manning on all seven days of the week. For 

example, a uniform manning level for each day of the week 

can be achieved with the seven-bracket schedule shown in 

f~gure 1.1. Each bracket represents a different pattern of 

work and. recreation days. This schedule is used by assigning 

a. group of men to each schedule bracket. Five groups of men 

are on duty each day of the week (indicated by the five 

blanks or on-duty days in each column of the schedule 

M T W T F S S 

1 R R 

2 R R 

Bracket 3 R R 
or 

Week 4 , 
R R 

5 R R 

6 R R 

7 R ;R 

Figure 1.1 

Sample Seven-Bracket Schedule 
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chart}. As a result, if an equal number of men is assigned 

to each group, an equal number of men will be on duty each 

day of the week. 

Multibracket schedules can be used in two ways: 

either each group of men can be permanently assigned to 

one schedule bracket (i.e., each group works the same 

seven-day pattern every week), or the groups of men can be 

rotated through all of the brackets. Each of these procedures 

is discussed below. 

1.3.2.1 Fixed Schedules 

A manpower schedule is said to be used as a fixed 

schedule if each group of men work the same schedule bracket 

every week: for example, if the schedule in figure 1.1 is 

used as a fixed schedule, the men in bracket 3 receive 

Wednesday aud Thursday off every week, while the men in 

bracket 6 receive Saturday and Sunday off each week. By 

placing different numbers of men in each bracket, fixed 

schedules can approximate variations in daily demand: for 

example, if two men are assigned to each bracket in figure 1.1, 

then 10 of the 14 men assigned to the schedule will be on-duty 

each day of the week (2 men for each of the five brackets) , 

but if these 14 men are reassigned so that five men work 

bracket 7, two men work brackets 1, 2, and 3 each, and only 

one man works brackets 4, 5, and 6 each, the number of me~, 

on-duty each day of the week becomes: 
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Mon. Tue. Wed. Thu. Fri. Sat. SUn. 

7 10 10 11 12 12 B 

This daily manpower distribution may be useful if the service 

demands are greater on Friday and Saturday, and lighter on 

Sunday and Monday. Baker (12,25,33,41), Tibrewala et ale (32), 

Guha (34), and Guha and Browne (26) have all developed algo

rithms for determining the number of men to assign to each 

bracket in order to meet daily manning requirements. 

The advantages of fixed schedules are their relative 

simplicity, and their ability to approximate variable daily 

service demands. The most serious drawback, however, is the 

inequity of the days off schedules for individual officers; 

in figure 1.1, for example, men assign'ed to brackets I, 2, 

3, or 4 never receive a recreation day on either Saturday 

or Sunday while men assigned to bracket 6 receive both of 

these days off every week. 

1.3.2.2 Cyclic Schedules 

A manpower schedule is said to be used as a cyclic. 

schedule if each group of men works each schedule bracket 

in sequence. This can be illustrated using the schedule 

in figure 1.1 as a cyclic schedule: if an officer works 

bracket 1 during the first week of the schedule, instead 

of returning to Monday of the same bracket, he rotates 

to the Monday of schedule bracket 2 for the second week, 

rotates to the Monday of schedule bracket 3 for the third 
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week, and so o~; after working bracket 7 in the seventh 

week, the officer rotates back to bracket 1 for the 

eighth week. More precisely, a schedule i.s defined to be . 

cyclic if in the j~ week the ith group of men (identified 

as the group of men who wnf}~~.-:--~Facket i during week 1) 

work the same schedule as did the i+j-lst group of men 

(modulo the number of brackets) during week 1 (14). 

In a cyclic schedule with m brackets, each group of 

officers spends one week on each bracket during each 

m-week period. The number of weeks required for one 

complete cycle through all of the brackets is defined as 

the schedule period (e.g., the schedule in figure 1.1 has a 

seven-week period). Cyclic schedules have the advantage that 

during each period of the schedule, every officer works the 

same pattern of work and recreation days. As an example, 

if the schedule in figure 1.1 is used as a cyclic schedule, 

each officer receives one weekend off during each seven 

week period. Cyclic schedules are usually more complicated 

than fixed schedules, and as a result, are more difficult 

to design. 

When a cyclic schedule is used, equal (or nearly 

equal) numbers of men are \:I,sually assigned to each group. 

As a result, each schedule bracket has the same number of 

men assigned to it. each week; this causes the number of 

men off-duty each day of the week to remain constant during 

" (~ 
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each week of the schedule. If unequal numbers of men are 

assigned to each group, the number of men off duty each 

day changes from week to week. For cyclic schedules with 

equally manned groups, the proportion of total manpower 

off-duty any day of the week is indicated by the fraction 

of brackets that contain recreation days on that day of 

the week. For each day of the week in figure 1.1, two of 

the seven brackets contain recreation days, indicating 

that two-sevenths of the workforce will be off duty each 

day*. Unless otherwise indicated, it is assumed throughout 

the remainder of this thesis that equal numbers of men are 

assigned to each group. 

1.3.2.3 Multishift Schedules 

Shift rotating or multishift schedules can be con-

structed by combining cyclic schedules designed for each 

shift. As an example, consider the multishift schedule in 

figure 1.2. The scheduls consists of 13 brackets, seven 
:. . .:, 

.. ;~ 

on shift A and six on shift B. Since the multishift 

schedule is used a cyclic schedule, as each group of men 

completes one week on each bracket, it rotates down to the 

next bracket and the group completing the last bracket 

rotates back to bracket 1. Two groups of men change shifts 

each ~eek: the men completing bracket 7 (on shift A) 

* If the number of men assigned to each group varies, 
the fraction of men on recreation each day of the week will 
average, over the schedule period, the fraction obtained 
with equally manned groups, but will vary from week to 
week -- usually an undesirable schedule feature. 
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Figure 1.2 

Two-Shift Multishi£t Schedule 
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rotate to bracket 8 (on shift B), and the men completlng 

bracket 13 (on shift B) rotate to bracket 1 (on shift A) • 

The period of the multishift schedule is 13 weeks; and 

each officer spends seven weeks on shift A and six weeks 

on shift B during each l3-week period. 

Since one group of men rotates to and one group of 

men rotates from each shift during each week of the schedule, 

the number of groups assigned to schedule brackets within 

each shift remains constant (e.g. 1 in figure 1.2, during 

each week seven groups are assigned to shift A and six 

groups are assigned to shift B). In general, the fraction 

of the workforce (assuming equally manned groups) assigned 

to schedule brackets within a shift equals the fraction of 

schedule brackets for the shift within the entire schedule; 

hence, in figure 1.2, 7/13 of the total workforce is assigned 

to shift A and 6/13 of the workforce is assigned to shift B. 

The fraction of manpower on duty for each shift each 

day of the week equals the fraction of all groups used in 

the schedule that are on duty within a shift each day (e.g., 

5/13 of the workforce is on duty on shift A and 4/13 of the 

workforce is on duty on shift B each Tuesday). In general, 

as the fraction of the workforce assigned to (i.e., the 

fraction of schedule brackets within) a shift increases, the 

fraction of manpower on duty on that shift each day of the 

week also increases. 



~-~~".----.,.....,.:-- ---- ---- ~ ---~------, -, 

-22-

The multishift schedule in figure 1.2 can be viewed as 

the combination of two cyclic schedules: schedule A 

consisting of the seven brackets for shift A, and schedule 

B consisting of the six brackets for shift B. Each can be 

used as a cyclic schedule by itself: at the end of each 

week in schedule A the men in bracket 7 cycle back to 
1\ 

1,\ 

bracket 1, and at the end of each week in s~~hedule B the 
" 

Ii 
men in bracket 13 cycle back to bracket 8. I; Schedule A 

1i 

ill • 
has a seven-week period and schedule B has Cll s~x-week 

period. When used together in a multishift schedule, 

however, schedules A and B are not used as cyclic sohedules. 

Rather, they are said to be used as non-cyclic schedules 

to denote the fact that although groups of men rotate 

through each schedule bracket, they do not cycle within 

each shift (i. e., at the end of each week in the mul tishift 

schedule, the men in braoket 7 rotate to bracket 8 instead 

of bracket 1, and the men in bracket 13 rotate to bracket 1 

instead of bracket 8). 

A basic constraint imposed on all of the schedules 

derived in this thesis is the requirement that all on-duty 

days in a schedule braoket represent the same shift. This 

requirement, combined with the conditiqp that all schedule 

brackets are seven days long and begin on Monday, has two 

effects: 

(1) every schedule derived in this thesis, 
whether fixed, cyclic, non-cyclic, or' 
m~ltishift consists of an integral 
nUmber of weeks, and 

(~ 
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(2) every shift changeover point in 
multishift sched~les used in this thesis 
occurs after the last Sunday of each 
non-cyclic sch~dule. 

Some research on the design of mul tishift schedules in whiq~h 

shift tours are not constrained to an integral number of 

weeks has been reported by Bodin (IS), Ignall et al. (19), 

Smith (23), Baker (25), and Guha and Browne (26). 

1.4 OBJECTIVES AND OUTLINE OF THE THESIS 

1.4.1 Proportional Rotating Schedules 

This thesis concerns the design of manpower schedules 

which may possess any or all of the following basic 

properties: 

(1) manning levels that are proportional to 
service demands by day of the week; 

(2) manning levels that are proportional to 
service demands by shift; and 

(3) equitable schedules for all officers. 

These properties can be achieved with rotating multishift 

schedules (described in section 1.3). Equality of schedules 

for individual officers is achieved by using cyclic schedules! 

proportional manning by day of the week is achieved by 

arrangement of the recreation days; and proportional manning 

by shift is accomplished by assigning a greater number of 

brackets to busier shifts. Such schedules are called 

proportional rotating schedules by Heller (16), and this 

terminology will be followed in this thesis*. When 

* As noted earlier, the abbreviation "PR schedules" is 
also frequently used. 
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discussing one-shift schedules, a PR schedule is a cyclic 

schedule which distributes manpower according to daily 

service demand, and has a schedule period equal to the 

number of brackets in the schedule. Multishift PR schedules 

provide manning levels proportional to the service demands. 

by shift. The period of a mult.ishift PR schedule is equal 

to the sum of the lengths (i.e., number of brackets) of all 

shift schedules included. 

To illustrate these concepts, consider the task of 

designing a PR schedule for 19 police officers which matches 

the manpower allocation shown in table 1.3. This allocation 

provides for 92 on-duty manshifGs per week. A PR schedule 

to match these manning levels is shown in figure 1.3. One 

man is assigned to each group, and shift rotation is used, 

resulting in a schedule period of 19 weeks. To achieve 

proportionality by shift, six brackets have been used for the 

night and day shifts each, and seven brackets have been used 

for the afternoon shift. As a result, during the 19 week 

period each officer spends six weeks on the day shift, si:1<: 

weeks on the night shift, and seven weeks on the afternoon 

shift. Three men change shifts at the end of each week. 

Note that the total number of officers assigned to each 

shift remains constant each week. 

More difficult to detect in this schedule is the fact 

that the numbers of officers on-duty each day of the week 

on each shift match the manning level requiremen:ts shown 

in table 1.3. As an example, in the day shift schedule, 

o , 



Table 1.3 

Required On-Duty Manpower Levels By Shift and Day of the Week 

Start 
Shift Hour Mon. Tue. Wed. Thu. Fri. Sat. Sun. Total (% ) 

Day 7 A.M. 5 4 4 4 5 4 4 30 (32.4) 

Afternoon 3 P.M. 5 5 5 5 5 5 4 34 (41.1) 

Night 11 P.M~ 4 4 4 4 4 4 4 28 (26.5) 

Total -- 14 13 13 13 14 13 12 92 (100.0) 

Note: This manning level distribution was used to schedule 19 officers in 
the Evidence Technician unit of the St. Louis Metropolitan Police Department 
in 1973 (see section 8.3.1). 

I 
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Shift M T w T F S s 
-

1 R R R R 

2 R R R 

Night 3 R 

4 R R 

5 R R 

6 R R 

7 R 

8 R R 

Afternoon 9 R R 

10 R R R 

11 R 

12 R R R 

13 R R R 

14 R 

15 R R R 

16 R R 
Day 

17 

18 R R R 
, 

19 R R R 

Figure 1.3 

Nineteen-Week Multishift PR Schedule 
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five on-duty brackets are used on Monday and F~iday and four 

on-duty brackets are used for each of the remaining days 

of the week. The work periods in this schedule vary in 

length from six to eight days, and the recreation periods 

vary in length from two to four days, except for one seven-

day period that begins in week 19 and ends '~n week 1*. 

The PR schedule of figure 1.3 is not the only multishift 

schedule that satisfies the manning requirements. A second 

PR schedule that also matches the manpower allocation is 

shown in figure 1.4; each shift schedule in this alternate 

schedule is different from the corresponding shift schedule 

shown in figure 1.3. (The seven-day mini-vacation is now 

in weeks 6 and 7.) Still another PR schedule that satisfies 

the manning requirements is shown in figure 1.5. This PR 

schedule differs from the first two shown in that each shift 

tour has been divided into two subtours. As a result, the 

maximum number of consecutive weeks worked on any shift is 

only four weeks •. 

1.4.2 Thesis Objectives 

Despite the ability of PR schedules to provide equitable" 

manpower schedules that also preserve proportional manning 

levels, their adoption and use by police departments or 

other public and private agencies to date has been minimal. 

* This long recreation period was designed into the 
schedule to provide one II mini ..... vacati on If every 19 weeks. 

\\ 
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M T w T F s s 

1 r R .. 
2 R R R 

3 R R R 

4 R 

5 R R 

6 R R R R 

7 R R R 

8 R R 

9 R R 

10 R 

11 R R R 

12 R R R R 

13 

14 R R 

15 R R 

16 R R 

17 
-

18 R R R 

19 R R R 

Figure 1.4 

Nineteen-Week Multishift PR Schedule 
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Shift M T W T F S s 

1 R R R 

Night A 2 R R 

3 R R 

4 R 

Afternoon A 5 R 

6 R R 

7 R R R R 

8 

Day A 9 R R R 

10 R R 

11 R R 

Night B 12 R R 

13 R R R 

14 R 

Afternoon B 15 R R R 

16 R R R 

17 R 

Day B 18 R R 

19 R R R R 

Figure 1.5 

Nineteen-Week,Multitour, Multishift PR Schedule 
I' 
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The technical deficiencies that have contributed to a lack 

of experimentation with PR schedules by police administrators 

have included the following: 

(1) No algorithmic procedures have existed for 
constructing optimal PR schedules. (Hel1er t s 
earlier work (16) defines the elements of the 
construction process, but does not describe a 
procedure for designing optimal schedules.) 

(2) The number of solutions (schedules) that may 
exist for a given manning distribution and 
set of constraints is not easily determined -
there may be none, or hundreds of alternatives 
to select from. 

(3) Very little work has been done to identify and 
systematize the attributes and features that 
make one schedule preferable to another. As a 
result, no procedures have existed to focus schedule 
design efforts on the most preferable schedules 
when large numbers of al ternati ve solutions 
are available. 

These deficiencies were the problems addressed 

in this work. Specifically, the objectives of this thesis 

were: 

(1) the development of a systematic procedure for the 
design of multishift PR schedules which match a 
specified distribution of manpower by shift and 
day of the week; 

(2) the identification of preferred schedule 
attributes and specific quantitative measures for 
each that can be used to discriminate net",een 
alternate PR schedules satisfying all given 
constraints; and 

(3) the incorporation of the schedule design 
procedures into a set of computer programs 
capable of finding "optimal" (most preferred) 
PR schedules based on the required manning 
levels, and a given set of required and 
preferred schedule attributes. 

'f 
i' 
\ 
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1.4.3 Basic Assumptions and Conditions 

This section identifies the major assumptions and 

condi"tions that are used throughout this thesis. (Some 

of these conditions have been noted above, but are 

identified again for completeness.) 

with regard to the design of PR schedules, it is 

assumed in this thesis that: 

(I) all officers work under the same set of work 
rules (i.e., the rules governing hours 
worked per week, number of recreation days, 
etc. ) ; 

(2) each officer can perform all required duties 
(i.e., the men are interchangeable); and 

(3) the total number of men included in the 
schedule remains constant. 

In addition, it is assumed that the following informa-

tion is available to the schedule designer: 

(1) the total number of men to be assigned to 
each shift; and 

(2) the required manning levels for each shift 
by day of the week. 

Finally, the following conditions apply to every PR 

schedule designed with the procedures described in this 

thesis: 

(I) each schedule'consists of a sequence of 
seven-day brackets with an equal number of 
men assigned to each; 

(2) each schedule consists of an integral 
numDer of brackets (weeks); 

(3) in multishift schedules, a shift changeover 
occurs after the last Sunday in each 
non-cyclic schedule; 

II 
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(4) -che II optimal!! schedule is the PR schedule 
which is judged to be "most preferable" 
based on its attributes; 

(5) thE: schedules can be designed to automatically 
include paid holidays as additional recreation 
days; and 

(6) any accounting for random losses of manpow'er 
due to illness, special assignments, compen
satory time-off 1 etc., is accomplished through 
adjustment of the manning requirements (e.g.~ 
keeping them high enough so that operations 
can continue adequately when losses occur). 

1.4.4 Thesis Outline 

The thesis is divided into eight chapters. The remainder 

of this one reviews previous research in manpower scheduling. 

Chapter 2 identifies schedule attributes that can be used to 

distinguish alternative PR schedules, specifies operational 

preference measures which assess these attributes, and dis-

cusses the use of a multiple criteria decision model for 

determining the optimal schedule. 

Chapter 3 outlines the methodology for constructing 

PR schedules. The measures identified in chapter 2 are used 

in constraints which screen out unacceptable schedules, and 

in preference cri t::.eria to identify the most desirable 

schedule. 

Chapters 4 t.hrough 7 describe enumeration algorithms 

used in the sequential design process to construct PR 

schedules. An algorithm used to cluster recreation days 

into periods of acceptable length is described in chapter 4. 

A procedure for enumerating all unique distributions of the 
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recreation periods over the days of the week is described 

in chapter 5; and a branch-and-bound procedure for enumerating 

optimal one-shift cyclic schedules is presented in chapter 6. 

The design and construction of optimal and near-optimal 

multishift schedules is described in chapter 7. 

Several PR schedules, designed using computer programs 

based on the algorithms described in this thesis, are 

illustrated in chapter 8. The illustrative schedules shown 

were developed for the St. Louis Metropolitan Police Depart

ment. Appendix 10.1 contai.ns detailed information relating 

to a survey of 21 police agencies conducted in the summer 

of 1972. Included in the a.ppendix are the survey instrument, 

a list of participating departments, and a summary of the 

survey results. A comprehensive list of previous research 

in manpower scheduling is presented in the Bibliography. 

1.S PREVIOUS RESEARCH ON MANPOWER SCHEDULING 

1.5.1 Introduction 

Manpower scheduling problems represent one segment of 

a large body of literature that deals with probl,ems of 

scheduling events, veh~cles, and men. The methoctologies 

used to attack these problems relate to their inte,grality 
\ 

constraints: combinatorics, integer programming, dynamic 

programming, network theory! and implicit enumeration. 
,I 
,\ 
\\ 

Grouped under the general heading of scheduling one cP.n 
" I 

find such diverse problems as: ,the proper seguencingpf 

events, the identification of specific routes for vehic.;I.es, 
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the allocation of equipment and manpower, and the design 

of work schedules for individual employees. Although tnis 

thesis deals only with manpower scheduling (specifically 

tidays-off" scheduling), it is useful to review briefly the 

kinds of problems included in and the characteristics of 

event and vehicle scheduling. This review, in turn, will 

\'\ serve as an introduction to the features and difficulties 

that characterize manpower scheduling. 

1.5.2 :[&v,,;>;nt Scheduling 

Event scheduling problems are characterized by a 

specific task or set of tasks which either must be accom

plished once, or repeated continuously_ For problems with 

multiple tasks such as project scheduling and job shop 

problems, the solutions (schedules) indicate the proper 

sequence in which each event should occur or each task 

should be performedr the timing or scheduling of the events 

is determined by the sequential relationship of one event 

to another. The objective of such problems usually is to 

minimize either the total time (or cost) required to complete 

all tasks, or the total delay ti~e from a given due date to 

completion of the entire project or of each task (47). 

For event scheduling problems with a repeating or 

continuing task, the critical variable to be determined is 

usually the proper time for performing the task relativ'e 

to a predictable demand; examples of this type of scheduling 

include inventory control, and equipment maintenance problems. 
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For inventory control problems, the task to be performed 

is the reorder decision (the unknown is when to reorder), 

and the demand is the rate of inventory depletion. (See 

Hadley and Whitin (48), and Hillier and Lieberman (49).) 

In equipment maintenance problems, the task to be scheduled 

is the replacement or maintenance of a specific piece of 

equipment, and the demand is the deterioration rate of the 

item {see Sasiemi, Yaspan, Friedman (50». For both problems, 

the objective is to determine an optimal balance between the 

cost of performing the task and the cost associated with 

unmet demand if the inventory is depleted or equipment fails. 

In this class of problems, the schedule timing is determined. 

by the relationship between each occurrence of the task and 

the state of the inventory (or equipment). 

In summary, event scheduling problems are characterized 

by relatively simple objective functions that usually depend 

on well-defined quantifiable variables (e.g., project time, 

delay time, cost, etc.), and by relatively few constraints 

on the solution variables. As a result, feasible solutions!! 

are usually easily found, often by observation or with 

simple manual techniques. The methodological difficulties 

associated with event scheduling problems arise when the 

optimal solution is sought from among the feasible solutions. 

These general concepts can be .illustrated by a classic 

constrained optimization problem not usually considered as 

a scheduling problem: the travelling salesman problem. 
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The salesman's tour through each city can be interpreted 

as a schedule of events or tasks in which the object. is 

to minimize the total travel time required for the trip; 

the schedule is defined by the sequence of cities visited. 

Finding a feasible solution to a travelling salesman problem 

is trivial, determining the optimal solution obviously is not. 

1.5.3 Vehicle Scheduling 

Vehicle scheduling problems are an extension of repeating 

event problems with additional constraints imposed primarily 

by the characteristics of a service vehicle. Typical problems 

in this Gategory of scheduling research include the determina

tion of "schedules" for city buses, refuse collection trucks 

{51), street sweepers (52,53), airlines (54), and school 

buses (55). Common to all of these applications is the need 

to determine a set of routes for the vehicles which satisfy 

both the demand for service and the constraints imposed by 

the quantity and performance characteristics of the vehicles. 

The objective functions and constraint sets associated with 

vehicle scheduling problems are frequently more difficult 

to Iormulate than those for event scheduling problems 

because of the existence of mUltiple goals which are often 

conflicting and difficult to quantify. 

As an example, the design of a satisfactory school bus 

schedule depends on the number of children to be transported, 

the location of home and school for each child, the school 

schedule for each child, the street patterns within the 
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area of interest (e.g., the existence of one-way streets, 

dead-end streets, etc.), the capacity of each bus, and the 

average bus travel speed. This information must be used to 

determine bus schedules (routes and timetables) in response 

to a variety of objectives which include: limiting the 

maximum travel time for each child, minimizing the number 

of busses required, and maximizing the utilization of each 

bus (55). 

Vehicle scheduling problems are usually solved in 

response to daily or weekly service demand cycles. The 

length of the demand cycle determinas the number of distinct 

schedules that must be found. If the basic unit of time for 

each schedule is one day and the demand cycle repeats daily" 

then only one schedule is needed since it can be used 

repetitively. If the demand cycle is weekly, however, a 

different schedule may be needed for each day of the week. 

A critical point, in relation to manpower scheduling, is 

that the vehicles are usually not constrained by "work 

rules" which limit the number of hours they may be used 

each day or the. number of days they may be used each week. 

Sometimes such constraints are imposed by maintenance 

requirements. The usual absence of such rules simplifies 

the vehicle scheduling problem (as compared to manpower 

scheduling) ;in two ways: 

~ ,,1 ~. 

II 
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(1) the demand for service can be separated into 
small time blocks (e.g., a day) and a schedule 
can be obtained for each block without regard 
to demand for service or schedules for other 
time blocks; and 

(2) once schedules are obtained for each time block, 
they can be joined together to form a vehicle 
schedule for the entire demand cycle; this is 
possible because vehicle shift assignments may 
be changed as needed and few limits are placed 
on the number of consecutive days the vehicle 
is in service. 

Employee work rules cause manpower scheduling to be 

significantly more complex than vehicle scheduling. These 

rules relate mainly to the kinds of work and recreation 

patterns which may be assigned to individual workers (i.e., 

statutory and physical restrictions on the number of hours 

worked per day, the number of consecutive days worked, the 

frequency c£ shift changes, etc.). Previous research on 

this type of scheduling is discussed in the following section. 

1.5.4 Manpower Scheduling 

Procedures for designing proportional manpower schedules 

which indicate the work and recreation patterns for individual 

officers may be analyzed as consisting of four steps: 

(1) analysis of the demand for service for time 
units that are equal to or shorter than the 
length of the work shifts to be used; 

(2) analysis of the constraints on the level of 
manpower that must be available for each 
time unit; 

(3) aggregation of individual time units into 
shifts or work patterns, and allocation of 
available manpower to the shifts based on 
manning requirements for each time unit; and 
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(4) design of days-off schedules consistant with 
the manpower allocation by shift and day of 
the week. 

LS.4.1 Measuring the Demand for Service and Setting 
Minimum Manning Requirements 

This section is concerned with the first two steps 

identified above. The discussion is limited to service-on-

demand environments in which neither the demand for or the 

availability of service can be inventoried without incurring 

serious costs such as loss of revenue., property, or life 

(e.g.; the situations experienced by toll collectors, 

firemen, and police officers). 

An analysis of the demand for service for schedul~ng 

purposes requires (1) a measure of the demand; (2) a 

historical record of demand sufficiently detailed to permit 

reliable forecasts of future demand cycles, and (3) a 

procedure for determining the manning level required for 

each time unit in order to satisfy the demand. 

Measurement of the demand for service and its transla-

tion into manning requirements has been investigated for a 

variety of applications. Edie (42) analyzed the flow of 

vehicular traffic through toll stations operated by the 

New York Port Authority. Using data on the numbers of 

autos serviced in 15 minute intervals and on the numbers 

of autos waiting for service every lS minutes, he constructed 

a queuing model of delay time (the time )between arrival and 
. It . 

service) based on the traffic rate ano.the nuniber of toll 
r 
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collectors available. He then used the delay model to 

compute the nU~jer of toll collectors required for a given 

traffic volume, to minimize the fraction of arrivals that 

would be delayed more than 11 seconds. 

Ignall, Kolesar and Walker (19) studied the demand for 

refuse collection service in New York City. The amount of 

x<efuse to be collected follows a weekly cycle with more 

refuse appearing on Monday and Tuesday then on the other 

days of the week. The demand measure was then used to 

schedule refuse trucks and collectors. 

In designing schedules for police manpower, the appro

priate measure of ser,rice demand depends upon the type of 

police unit. Butterworth and Howard (28) used the number 

of reported accidents in ffie- KOiH:erey area of California to 

allocate units of the California Stnte Highway Patrol. 

Heller (17) used the same measure to design schedules for 

the Traffic Safety unit of the St. Louis 1-1etropolitan Police 

Department. In the same report, Heller used calls for 

evidence service to schedule officers in the Evidence 

Technician Unit. Heller (56) also suggested that the 

seriousness of called-for-service incidents might be used 

to measure the demand for patrol manpower. Kulesar et ale 

(29) used hourly calls for police service as input to a 

queueing model of New York City police operations which 

treats each patrol unit as a server. The model was used to 

estimate the number of patrol units needed each hour to 
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insure that no more than a specified fraction of the calls 

would be queued. 

Discussions of the design of cycli.c schedules for 

nurses are given by Maier--Rothe and Wolfe (24), and Warner 

\37,38). Warner presents a mixed-integer quadratic program

ming model for allocating nursing care by ward, shift, and 

skill category. The quality of the allocation is measured 

by how well it matches the demand for service,.~cwhich is 

estimated using a Markovian model based on the number of 

patients (classified according to their nursing needs) and 

the amount of time each patient class requires from each 

type of nurse. 

1.5.4.2 Shift Scheduling 

Once the desired manpower levels for each time period 

have been determined it i a necessary to ide~t?t.ify ~ 1) 

specific work patterns or shifts to be used and (2),the 

:mmber of men to be assigned to each (step 3 in the :.fop.r 
:::'-, 

step procedure for designing proportional manpower schedules). 

The term work pattern or shift is used to describe a collec-

tion of consecutive time periods worked by the same person 

(e.g., B A.M. to 4 P.M. is a work pattern consisting of 

eight one-hour time periods; if no constraints are placed 

on. start hours, there are 24 different /~ight-hour work 
~. 

patterns in a day). Work rules may govern shift starting 

times, shift lengths, the use of lunch and other relief 

periods within each shift, and the use of split shifts. ;; 
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Additional rules may apply to part-time workers. The. 

objective of the shift scheduling problem is to find the 

set of shifts which satisfies the manning and work rule 

requirements with the minimum number of men. An alternate 

form of the problem deals with a fixed number of men and 
, 

seeks the set of shifts which best matches the allocated 

manpower and the desired manning levels. 

Mathematically, shift scheduling problems can be 

expressed as one of two forres of the set covering problem. 

The first was suggested by Dantzig (57) in connection 

with Edie's analysis of toll station traffic patterns (42): 

PI: min Z :::: c'x 
X 

subject to Ax > r 

X > 0 

where: 

all x j , j == 1,2, ••• ,s integer 

A':::: tx s matrix, where raws cor~:espond 

to time units, and columns correspond 

to distinct work patterns; if a .. = 1, 
~J 

shift J' covers time unit i; if a., == 0, •. ~J 

shift j does not cover time unit i. 

r :::: txl vector, where component r i equals 

the minimal manning requirement (i.e., 

number of men) for time unit i. 
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x = sxl vector, where 

equals the number 
to shift j. 

componen t x. , J 
of men assigned 

c = sxl vector, where c j equals the 
cost of assigning one man to shift j. 

The total number of men on duty during time unit i, wi' is 

given by 

," 
'VI. = A.x 
~ ~ 

where A. is the ith row of the A matrix. The value of r 
~ 

" , 

is obtained from the ~lnalysis of the service demand for 

each time unit. If c is set equal to 1 (the unity vector) 

the objective reduces to a minimization of the total number 

of men required to satisfy the constraints. 

The second form of the shift scheduling problem is 

used when the total number of men (M) to be allocated 

is known, 

P2: 

subject 

where 

min z = f{r,w) 
x 

to: Ax = w 

Ix = M 

x> 0 
;... 

all x. , j = 1,2, ••• ,s 
J 

integer 

f{r,w) = objective function based on the 

required manning (r) and allocated 
manpower (w) for each time unit. 

II 
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w = txl vector, where component wi 

equals the total number of men 

on duty during the i!£ time unit. 

A,r,x = defined above for Pl. 

The difficulties encountered in finding optimal solutions 

to either PI or P2 arise from the integrality of the x. values 
] 

and the size of the ~ matrix. The number of columns in A 

(and hence the number of components in x) can become enormous 

as more work rules are considered and more distinct shift 

patterns are created. To illustrate, Guha and Browne (26) 

describe the following case for toll collectors for the 

New York Port Authority: 

If employees can start work at any ten 
minute period from 6 A.M. to Midnight ••• this 
would mean 6 start times for each of 18 hours, 
7 days per week or 756 possible starting times. 

For each starting time, there are a variety 
of possible work patterns. A personal break 1 to 
3 hours after the start would yield 12 possibilities 
and a meal break starting in a two hour band, e.g., 
4th or 5th hour, another 12 possibilities for over 
100,000 variables (756x12x12) ignoring a possible 
second short break that might be required in some 
cases. 

The nunilier of variables (or columns in the A matrix) can 

became even larger if split shifts or part-time workers 

are used. Consequently, direct analytical approaches based 

on current integer programming codes are not feasible. To 

overcome these problems I a varie·ty of heuristic and analytic 

procedures hav~ heen attempted; several of these are 

described below. 
r 
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Kolesar et ale (29) analyzed the shift assignments of 

police patrol units by solving problem PI with a reduced 

A matrix: shifts were constrained to begin on the hou~ 

and starting times for lunch were limited to four points 

during each shift. By utilizing the special structure of 

the resulting constraint matrix, they were able to solve 

PI as a mixed-integer problem in which only a small number 

of the variables were forced to be integers. Using data on 

hourly calls for service for one day from a New York City 

police precinct, they first determined the minimum number 

of units required to meet hourly manning levels r by permit

ting the 8-hour shifts to begin at any hour. (The solution, 

used only as a benchmark, involved 24 units starting at 16 

different starting times -- an administrator's nightmare.) 

This optimal but impractical solution was then used to 

evaluate alternative solutions which were further restricted 

to having no more than five shift starting hours. Interest

ingly, they were still able to find a solution that required 

only 24 patrol units. Working with the three standard shifts 

used by the New York Police Department, the minimum number 

of units increased to 29. They were able to demonstrate 

that with the addition of two extra shifts, the n~er of 

patrol units could be reduced from 29 to 24, a 17 • .2 percent 

reduction, without a significant loss in performance. 

Byrne and Potts (10) described an eight-step algorithm 

for finding daily shift schedules for toll collectors. ~he 
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A matrix used is extremely large, since it is necessary to 

include lunch and relief periods, and part-time shifts. The 

initial problem (PI) is solved as a linear programming problem 

ignoring the integrality requirements. Beginning with this 

solution, the numbers of full and part-time workers are 

examined and integer values are selected for each which 

satisf.y the requirement that the number of part-time workers 

must not exceed a specified proportion of the·full-time 

workers. The problem is solved again with these additional 

constraints. Additional non-integer variables are examined 

and modified. This process continues until integer values 

are obtained for all of the variables. While optimality is 

not claimed, the authors document the use of the procedure 

on 70 test problems and indicate that shift schedules derived 

with this algorithm have been implemented by the Adelaide 

Bus Company in Sidney, Australia for both bus drivers and 

toll collectors. 

Also working with the problem of scheduling toll 

collectors, Guha and Browne (26) developed an algorithm 

for solving problem PI when each column of the A matrix 

defines a shift covering exactly m consecutive time units 

(i~e., each work pattern has the same length and ignores 

time-off for lunch or breaks). Optimality is proven for 

this method. 

Segal (31) obtains solutions to PI by interpreting it 

in terms of a network flow problem. He describes a three

phase algorithm for obtaining acceptable shift schedules 
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for telephone operators. In the initial phase, a out-of

kilter algorithm is used to find solutions to a simplified 

version of PI which ignores lunch and break times in each 

shift (thereby significantly reducing the size of the A 

matrix). In the next phase, a new problem is defined based 

on the "demand" for lunch and break periods within each 

tour. As much of this demand as possible is first satisfied 

by manpower exceeding the minimum requirements, using the 

manning levels indicated by the "ideal" solution of phase l. 

In the final phase, unfilled demand is smoothed over adjacent 

time units to reduce demand "peaks", and the reduced problem 

is formulated as a network flow. An "ideal ll solution is 

obtained, and the new shifts are added to those already 

generated in phases 1 and 2. Phases 2 and 3 are repeated 

until a lunch and break period is defined for each shift. 

Segal does not claim that the algorithm will always find the 

optimal solution, but reports that comparison of results 

obtained from a computerized version of this procedure with 

manual methods used in the past showed that the algorithm 

(1) reduced the total cost of producing schedules, (2) 

reduced the number of operators required, and (3) improved 

the quality of .the schedules. 

Henderson and Berry (39,40) also examined a variety of 

heuristic methods for determining shift schedules for 

telephone operators. The heuristics include several methods 

for selecting a small subset of column vectors Ajfrom the 

I( 



-48-

A matrix which are used to create a reduced A matrix in 

problem Pl. Two vector selection procedures were found 

to be most useful: random selection and maximal difference 

(defined below). If more than 40 columns were selected, 

Henderson and Berry found that reduced A matrices constructed 

with randomly selected columns yielded the best soltuions to 

Pl. If fewer than 40 columns were selected, the authors 

found the following method to be most eff,ective: after the 

first column is selected randomly, each subsequent column is 

chosen on the basis that it is maximally different from the 

set of colurrms already selected (i.e., if Al,Az, •• ,A j _ l have 

previously been selected, A
J
. is selected from among all un

j=l 
selected columns Ak if .it maximizes max I !A.-Akl 01). 

. k i=l ~ 
The solution to Pl (with the reduced A matrix) is 

obtained using a two-step procedure: (1) the linear program-

ming solution to Pl is obtained and all non-integer Xj are 

rounded up; and (2) several heuristic procedures are used 

to identify x. that can be reduced (i.e., to identify 
J 

operators on shift j that can be eliminated). The authors 

also investigated the use of a random solution in place of 

the LP solution in step 1. The LP solution to PI with the 

complete A matrix is a lower bound on the optimal value of 

z. Henderson and Berry studied the two-step procedure on 

99 different prohl.ems involving A matrices constructed with 

different nUml:>~rs of columns and based on various column 

selection strategies. They report that near-optimal 
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solutions can be obtained when the A matrix cont.ains 100 

or more columns, and that the procedure used to select 

the initial solution should depend primarily on the 

nature of the requirements vector r: for low manning 

levels, randomly selected solut~ons produced superior 

results, and for high manning levels, the LP solution was 

preferred. In (39), Henderson and Berry replaced the heu

ristic two-step procedure with a branch-and-bound algorithm 

to find the optimal solution. They report solving the PI 

pr.oblem with A matrices contai~ing 100 shift patterns and 

72 20-minute time periods covering the 24 hour day_ 

Luce (9) examined PI with an objective function of 

the form: 

min Z = 
x 

t 
2 Ir. - w·1 . 1 ~ ~ 

~= 

where r i and Wi equal the preferred and actual manning 

levels for time unit i (wi = AiX) _ This objective function 

yields the value of x that provides the best match of 

allocated manpower to preferred levels. Luce describes 

a heuristic sequential procedure for finding this value of 

x by adding one manshift at a time to a partial solution 

(i.e., 'identifying shift j and incrementing Xj by one). 

The next manshift to be included at each step is the work 

pattern that produces thegreates1: decrease in z; the 
t t 

'process stops when I w. equ9:ls I r.. Luce also 
i=l ~ i=l ~ 

examined an objective function based on the percentage 



-

-50-

difference between each r. and w. (i.e., min 1. 1. x ( 

t W.)2 
Z = L 1--2:. 

. 1 r. 1.= 1. 

Although the procedure does not yield optimal results, Luce 

argues for its usc on the basis of computional simplicity 

and efficiency: an integer solution is always obtained in 

only one iteration. 

Luce's algorithm is easily adopted for use on a fixed 

manpower problem (P2 above) by replacing the termination 

rule, rw. = rr., with the constraint rx. = M. In this 1. 1. 1. 

form, Luce's heuristic becomes methodologically identical 

to an earlier formulation of this same problem by Heller 

(16). Heller uses an objective function of the form 

min Z = 
x 

t 2 

L (f: - f':') 
i=l 1. 1 

r where fi equal the fraction of the manpower required for 

w time units i, and f1 equals the fraction of the manpower 

allocated to time unit i. (The optimal value of z rarely 

equals zero because of the integrality constraints on x.) 

Heller devises a simple constructive procedure (similar to 

that later proposed by Luce) to find an optimal solution: 

one officer is added at a time·on the basis of the maximum 

decrease in the complete derivative of z at each step. In 

(17), Heller and Stenzel extend this algorithm by introduc1.ng 

upper and lower limits on the number of officers assigned to 

each shift (i.e., L. < x. < U.). 1.- 1- 1. 
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More recently, Butterfield and Hov~?.rd (28) have solved 

the P2 problem using an objective function of the form: 

where 

min z :::: 
X 

f(r.,w.} = 
1 1 

t 

L 
i=l 

f (r. ,w. ) 
1 1 

2 
f':') 

1 

otherwise 

Also, rather than fix the total nU~Jer of men to be used, 

they replace the constraint l'x = M with l'x = 100 and 

redefine x. to be the percentage of manpower on duty during 
1 

time unit i. As a result, the integrality requirements on 

X can be dropped and non-integer values of w. = A.x exist. 
1 1 

Optimal solutions are obtained using Rosen's gradient 

projection method. 

1.5.4.3 Days-Off Scheduling 

The final step in the design of manpower schedules is 

the specification of work and recreation patterns for 

individual workers which match the designated manning levels 

by shift and day of the week. As noted earlier, the principal 

constraints on the characteristics of individual schedules 

(and hence on the solutions to the schedule design problem) 

are personnel work rules. 
i\ 

The problem of designi~g days-off schedules for fi~ed 

schedules can be stated analytically in a form identical to 

t" 
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problem Pl above. 

P3: min z = c'x 
x 

subject to Ax 2: r 

:It ~ 0 

where: 

all x., j = 1,2, ••• ,b integer 
J 

A = dxb matrix, where each row Ai represents 

one day of the week (i.e., d = 1,2, ••• ,7) 

and each column Aj represents a distinct 

seven day pattern of work and recreation 
days (aij = 1 indicates that day i is a 

work day for pattern j, a ij = 0 indicates 

a recreation day) i each column can be 

used as a bracket in a fixed schedule. 

x = bxl vector, where component Xj equals 
the number of men assigned to bracket j. 

r = dxl vector, where component ri equals the 

minimum number of men required for day i. 

c = bxl vector, where component c j equals the 

cost of assigning one man to bracket j. 

As in PI, if c = 1, the problem is reduced to minimizing 

the total number of men assigned to the b brackets of the 

schedule. ~ormulation P3 incorporates work and recreation 

period constraints into the columns of the A matrix (period 

lengths are indicated by consecutive ones and zeroes in 

each column)" To illustrate using a simple example, assume 

.;' that each officer must receive two consecutive days off 

.) . 
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each week. The A matrix for this caset assuming no restric-

tions on which two days are used, is: 

work patterns 

1 0 0 0 0 0 1 Monday 
1 1 0 0 0 0 0 'ruesday 
0 1 1 0 0 0 0 Wednesday 

A = 0 0 1 1 0 0 0 Thursday 
0 0 0 1 1 0 0 Friday 
0 0 0 0 1 1 0 Saturday 
0 0 0 0 0 1 1 Sunday 

The first column corresponds to a work pattern with Monday 

and Tuesday off, the second column uses Tuesday and Wednesday, 

and so ox,\; a total of seven distinct: work patterns (brackets) 

TiprewtUCi, Philippe, and Browne (32) presented a manual 
" , 

procedur;?~>b1j solving P3 with the A matrix illustrated above. 

Furthe£-wark on this problem has been reported by Baker (33); 

Baker, Crabill, and Magazine (41); Rothstein (58), using an 

LP approach; and Guha and Browne (26), who adapted the initial 

work done by Tibrewala et al. to find shift schedules for 

problem PI. 

As discussed earlier, fixed schedules having different 

worle patterns in ea,ch bracket may provide good schedules 

for some officers and poor schedules for others. Some 

authors have attempted to produce more equitable schedules 

by having officers cycle through the brackets. Although 

this eliminates some inequities, it introduces another 

problem, since recreation and work periods are no longer 



• 
-54-

defined completely within each bracket and may be of 

unacceptable length. 

Two survey papers on manpower scheduling, Bodin (14,15), 

and Baker (25) discussed the state of the art in days-off 

schedUling. Both papers indicate that. no adequate mathe
I 

matical statement or formulation of the problem yet exists. 

In (15), Bodin used the results of four previous research 

efforts in days-off scheduling to develop a generalized 

model of manpower scheduling. Bodin's model consists of 

four submodels which he labels (1) the allocation model, 

(2) the grouping model (to determine the specific recreation 

periods to be used), (3) the pattern model (to determine 

the sequence of work and recreation periods), and (4) the 

shift model. Almost all of the literature to date on the 

design of cyclic days-off schedules is based on heuristic 

and analytical techniques which are dependent on the 

special characteristics or features associated with the 

service (occupation) of interest to the authors. 

Maier-Rothe and Wolfe (24) present an excellent review 

of the difficulties encountered in designing acceptable 

cyclic days-off schedules for nurses. Although the authors 

explicitly identify (in mathematical form) many of the. basic 

constraints that define the nursing scheduling problem, they 

could not find a direct solution; rather they produced 

cyclic schedules with a five-week period by trading off 

the constraints heuristically to identify preferred solutions. 
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More recently, Smith (23) reported finding suitable 

cyclical days-off schedules for nurses using a five-phase 

algorithm coded for interactive use on a time-share computer. 

The five phases are (1) determination of staff requirements 

by day of week and shift~ (2) determination of a feasible 

set of two-day recreation periods by solving a set of 

simultaneous linear equations (an approach first used by 

Monroe (27» with adjustments to staff requirements if 
! 

needed to solve the equations; (3) use of an heuristic 

procedure to designate the sequence of recreation periods; 
n, // 

(4) designation of shift assignments for each work day; and··· 

(5) "fine tuning" the schedule using a series of heuristics 

to eliminate work rule violations. 

Other heuristic procedures for designing cyclical 

schedules are reported by Altman (59), who studied scheduling 

refuse collectors in New York City; Guha q~d Browne (26), 

who studied scheduling toll collectors for the New York City 

Port Authority; and Bennet and Potts (60), who studied 

scheduling conductors for the Adelaide Bus Company in 

Australia. 

The most extensive development of a systematic design 

procedure capable of incorporating a variety of work rules 

has been done by Heller (16). He describes a sequential 

process for the design of police schedu1es~ The basic 

steps of the process are: 

Ij 
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(I) determination of specific manning levels 
for each shift tour for a fixed number of 
men assigned to the operation; 

(2) use of "cyclic graphsll to determine acceptable 
distributions of recreation periods for each 
shift (i.e., determining sets of recreation 
periods which preserve the designated manpower 
allocation); each cyclic graph is found by 
trial and error; and 

(3) use of a "separation matrix" for determini.ng 
the proper sequence of recreation and work 
periods. 

This thesis builds on Heller's findings by contributing 

more sophisticated and comprehensive algorithmic procedures 

for enlxmerating the sets of acceptable recreation periods 

and cyclic graphs, and for deriving optimal schedules using 

the separation matrix. Optimality is extended beyond 

~Ieller I s original formulation to include additional schedule 

attributes of interest to police administrators, ,.,.. .... d. seemingly 

applicable in other scheduling contexts. 
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2. THE MEASUREMENT OF PR SCHEDULES 

2.1 INTRODUCTION 

As indicated in Chapter 1 the basic design process 

for the construction of PR schedules was first identified 

by Heller (16). Use of Heller's procedure, however, does 

not insure (1) that any schedules exist for a given alloca

tion of manpower, or (2) that a solution will be found 8 even 

if one or more schedules exist. Despite these limitations, 

when the presence 0::: one or more PR schedules can be reason-

ably assumed, Heller's procedure has proven to be quite 

effective for enumerating small numbers of schedules*. In 

addition, the procedure can be readily understood and used 

by persons without technical backgrounds after a brief 

training period. 

Limitations of the method, however, includeth~ 

following: 

(I) the procedure has no na.tural termination 
poin t (i. e., the user has no way of k~\owing 
when he has exhausted all possibilities); 
and 

(2) the procedure provides the user with only 
limited capability to find preferred scheduleS 
when many alternate solutions exist. 

* Computational experience acquired during thi.s rese.arch 
suggests that the good results obtained using Heller's 
procedure are due, in part, to the fact that for manpower 
allocations associated with many practical scheduling 
problems, large numbers of feasible schedules usually ·~):xist. 
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With the algorithms developed in this thesis (and 

described in chapters 4 through 7), it is possible to 

examine all feasible PR schedules for any given manpower 

alIQcation*. This capability insures that a feasible 

schedule, if any exists, will always be found. It also 

introduces the need for additional mechanisms to screen 

out large numbers of feasible schedules that may exist so 

that the enumeration procedure can be used as efficiently 

as possible to find PR schedules which are both feasible 

and, in some sense, the most preferred. 

In this chapter, a procedure is described for screening 

out "unacceptable" (defined below) schedules and for discrim-

inating between alternate acceptable schedules in terms of 

relevant schedule properties. To state this more precisely, 

let al and az each represent an acceptable PR schedule from 

the set A of all acceptable schedules for a given manpower 

~llocation. (Acceptable schedules are, by definition, 

feasible.) Let m(al) and m(az) represent measure vectors 

based on the properties of schedules al and az respectively. 

The principal questions addressed in this chapter are: 

(1) What schedule attributes and measures should 
be used to construct m(al) and m(az)? and 

(2) What decision process can be used to determine 
whether schedule al is "better" (i .. e., superior, 
preferred, more desirable, etc.) than schedule 
az? 

* "Feasible" schedules are ,those which satisfy the 
required manning levels by shift and day of the week~ 
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It is a basic assumption of this thesis that no one 

criterion exists which adequately measures the desirability 

of all manpower schedules. This assumption follows directly 

from the observation that each alternative schedule is 

characterized by a variety of attributes and that the relative 

importance of each depends upon the environment in which the 

schedule is implemented and the preferences of individual 

officers. T.he objective of this chapter is to identify 

relevant schedule measures which, when used collectively, 

will indicate, in a valid and consistent manner, the prefer-

ability of one PR schedule over another. 

In the following sections, three schedule attributes are 

introduced and quantitative measures are identified for 

each. Each measure is categorized in'to one of two groups. 

The first group consists of measures which are used only to 

determine whether a schedule is acceptable. As an example, 

manpower schedules are almost always designed with specific 

limits, both upper and lower, on the length of individual 

work periods. The upper and lower limits are quantitative 

measures which can be used to classify feasible schedules 

as either acceptable or unacceptable; feasiblePR schedules 

which contain one or more work periods tha t e~j:6eed either of 

these limits are defined to be unacceptable. 

The measures in the first group are used collectively 

to define a subset: of acceptable schedules. The measures 

in the second group are used to\guantify the "preferability" 
\\ 

.' .. -
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of each acceptable schedule in the subset; thesE' measures 

serve as the components in the measure (or preference) 

vector m(a.) associated with each acceptable schedule. 
~ 

The simultaneous use of several measures to determine 

preferable schedules reqUires a multicriteria decision model. 

Such a model, a sequential lexicographic decision process 

based on the preference vector associated with each schedule, 

is described in the final section of this chapter. 

2.2 PR SCHEDULE ATTRIBUTES 

2.2.1 Introduction 

As' indicated in the review of manpower scheduling 

research, many authors have identified schedule attributes 

that reflect the preferences, policies, and requirements 

for a variety of implementation environments. Although 

varying slightly in form depending upon the implementing 

agency, most preference criteria are related to one of the 

following schedule attributes: 

(1) the nature of weekend recreation peri.ods; 

(2) the nature of all recreation periods, and 

(3) the nature of the work periods. 

These attributes and quantitative measures for each are 

discussed below. 

2.2.2 Weekend Recreation Periods 

Consecutive days off on the weekend (Saturday and 

Sunday) are almost always viewed as an important schedule 

property. Weekend days are often the only time when 
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leisure activities involving several family members can 

be arranged. For workers in occupations which routinely 

require some weekend work, the regular scheduling of weekend 

recreation periods (i.e., recreation periods which include 

both Saturday and Sunday) is also considered an important 

schedule attribute. In police departments in which only a 

limited number of weekend periods can be scheduled, officers 

prefer to have these ~~~iods distributed as uniformly as 

possible. This may be particularly important for younger 

officers who are unable to obtain sUImnertime vacations 

because of senority rules governing vacation selection. 

In this thesis, two measures are used to distinguish 

PR schedules in terms of their weekend recreation periods. 

These are: 

(1) the number of woekend periods, and 

(2) the maximum number of consecutive working 
weekends. 

The first measure is the number of weekend recreation periods 

contained in one rotation period of a schedule. This measure 

is independent of the nature or "quality" of the weekend 

periods themselves (i.e., the length of the other days of 

the week included in each weekend period are not considered); 

the only requirement for a recreation period to be counted 

is that it must include both Saturday and Sunday*. 

* To avoid the complications introduced by long recreation 
periods that cover consecutive weekends, it is assumed in the 
remainder of this thesis that recreation periods are always 
less than seven days in 1eng·l:h. 
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If Wf denotes the number of weekend recreation periods in 

a schedule; the preference rule used in this thesis is that 

the greater the number of weekend periods (i.e., the higher 

" the Wf value)! the "better" the schedule~ (In chapter 5, 

a methoa is described for de.termining the maximum value of 

Wf,for any schedule based on a given allocation of manpower 

by day of the week.) 

The second measure is used to quantify the distribution 

of weekend recreation periods over each rotation period of 

the schedule. The preference for uniformly distributed 

weekend recreation periods is equivalent to a preference for 

minimizing the maximum number of consecutive working weekends 

(denoted as CWW). (Any weekend not covered by a weekend 

recreation period is defined as a working weekend.) The 

preference rule used in this thesis is that the lower the 

cww value, the better the schedule. 

2.2.3 Recreation Periods 

Alternative schedules that are "equal" :in -t.erms of the 

number and distribution of their weekend recreation periods 

(i.e., they have equal values for both Wf and CWW) may be 

considerably "unequal" in terms of the lengths of their 

respective weekend recreation periods, and in terms of the 

lengths and days of the week covered by their non-weekend 

periods. 

As an example, a schedule with four-day weekend recrea-

tion periods would be considered more preferable than a 
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schedule containing an equal number of two-day weekend 

'periods. ~s another example, suppose two schedules are 

identical in all respects except for the placement of one 

three-day recr~ation period; if one schedule has the period 

covering Thursday-Friday-Saturday, and the second schedule 

has the period covering ~uesday-WednesdaY-Thursday, it is 

likely that the first schedule would be ~referred because 

of the particular tl:lree days covered* • 

. It is important to note that for both of thesee~zamplesl 

the schedu1e selected would depend upon the preferences of 

the individual schedule designer, and that the purpose in 

this discussion is not to determine what these preferences 

should be, but rather to make explicit the schedule attributes 

and measures on which such decisions can be based. 

Two measures of the recreation periods contained within 

a schedule (whether weekend periods or not) are used in this 

tJlesis. These are: 

(1) upper and lov'ler limits on the lengths of 
recreation periods; and : 

(2) a set of pref,erence ratings for periods 
with acceptable lengths based on the 
length and position or each period 
wi thin the weE\k. 

The first measure is a bounding criterion used to define 

the subset of ac.ceptable schedules. The second measure is 

* It should be noted that these two schedules would not .. 
produce the same manpower allocation by day of the week. 



-64-

based on a preference rating of the recreation periods that 

can appear in acceptable schedules. The preference rating 

for each recreation period is based on its length (i.e., the 

number of recreation days in the period) and it.s position 

within the week, (i.e., on which day of the week the period 

begins). 

To illustrate, let UR = 4 and LR = 2 where UR and LR 

are the upper and lower limits respectively on recreation 

period lengths; hence, for the example limits, only schedules 

with recreation periods that are two, three, or four days 

long would be acceptable. The number of distinguishable 

recreation periods that can appear in an acceptable schadu1e 

equals 7k where k is the number of distinct period lengths 

(i.e" k = UR - LR + 1). In this example, k = 3 and a 

total of 21 distinct recreation periods (see table 2.1) 

can be used to measure the preference of each acceptable 

schedule. 

Two seven-week schedules, both satisfying the daily 

manpower allocation in table 2.2 are shown in figures 2.1 

and 2.2. Both schedules are acceptable in terms of their 

recreation periods (i.e., all of the periods in both 

schedules satisfy the DR = 4 and LR = 2 limits), and both 

schedules have the same number and distribution of weekend 

periods (i.e., Wf = 1 and CWW = 3). These schedules do 

differ, however, in the nature of their recreation periods, 

both in length and days of the week covered. A comparative 
• 

,', 

,\ ' 



-65-

Table 2.1 

Twenty-One Recreation Periods Classified by 
Length and Starting Day of the Week with 

UR=4 and LR=2 

Period 
Period Length Starting Day 
Number (Days) of the Week 

\ 

1. 4 Monday 
2. 4 Tuesday 
3. 4 Wednesday 
4. 4 Thursday 
5. 4 Friday 
6. 4 Saturday 
7. 4 Sunday 
8. 3 Monday 
9. 3 Tuesday 

10. 3 Wednesday 
11. 3 Thursday 
12. 3 Friday 
13. 3 Saturday 
1~. 3 Sunday 
15. 2 Monday 
16. 2 Tuesday 
17. 2 Wednesday 
18. 2 Thursday 
19. 2 Friday 
20. 2 Saturday 
21. 2 Sunday 

--

( 

'\ 
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Table 2.2 

Daily ""'Manpower Allocation for a Seven-Week Schedule 

Number 
of Men Mon. Tue. Wed. Thu. Fri. Sat. Sun. 

On Duty 5 5 5 5 5 5 4 

On Recreation 2 2 2 2 2 2 3 

Total 7 7 7 7 7 7 7 

assessment of these schedules can be based, in part, on the 

number of each type of distinct recreation period that 

exists in each schedule. To illustrate, both schedules 

contain five recreation periods (see table 2.3) i two periods 

are common to both: a four-day period beginning on Thursday 

and a two-day period beginning on Tuesday. The remaining 

three periods in each schedule are different: the four-day 

period ·that starts on Friday in f~gure 2.1 begins on Sunday 

in figure 2.2; the three-day period that starts on Tuesday 

in the first schedule, begins on Saturday in the second 

schedule; and finally, the two-day period that starts on 

Sunday in figure 2.1 begins on Thursday in figure 2.2. A 
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Figure 2.1 

Sample Schedule Based on the Manpower 
Allocation in Table 2.2 
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Figure 2.2 

Sample Schedule Based on the Manpower 
, Allocation in Table 2.2 
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Table 2.3 

Number of Recreation Period Types in the 
PR Schedules in Figures 2.1 and 2.2 

Number of 

Period Period 
Number Length Start Figure 

(Table 2.1) (Days) Day 2.1 

4. 4 Thursday 1 
5. 4 Friday 1 
7. 4 Sunday 0 
9. 3 Thursday 1 

13. 3 Saturday 0 
16. 2 Tuesday 1 
18. 2 Thursday 0 
21. 2 Sunday 1 

Periods 

Figure 
2.2 

1 
0 
1 
0 
1 
1 
1 
0 

decision model to select the preferable sche9ule based on 

the number of each type of recreation period is presented 

in section 2.3. 

2.2.4 Work Periods 

Another attribute that is important in selecting one 

schedule over another is the nature of the work periods 

within each schedule. In environments where manpower 

allocations are driven by demand levels that vary by shift 

and day of the week, manpO\\7er work schedules often contain 

work periods that are longer and shq;r-ter than the "normal!1 

five-day period. As indicated in the survey of police 

officers conducted for this thesis (see appendix 10.1) I 

some departments use schedules that require officers to 
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work as many as ten consecutive days (the average maximum 

work period length reported was 6.5 days). As recently 

as 1973, the st. Louis Metropolitan Police Department used 

a manpower schedule for field operations that required 

officers to work 13 consecutive days at least once during 

the year (61). Not surprisingly, police officers who work 

such schedules complain that their performance deteriorates 

during the last day of such periods. 

In contrast, very short work periods (e.g., only one 

or two days) are also considered unattractive because officers 

have little opportunity to adjust to the work routine; such 

periods may be perceived as interruptions to the preceding 

and following recreation periods. 

This discussion suggests another bounding measure to 

determine the subset of acceptable schedules, uppe~ and 

lower limits on work period lehgths. 

A number of additional preference measures based on 

work periods are also used in this thesis to characterize 

individual schedules. They include: 

(I) the maximum length work period; 

(2) the number of times the maxi1mum length work 
period appears in one rotatiltm period of the 
schedule; 

(3) the uniformity of the work p~~riod lengths as 
measured by tbe' 'rah'ge of the, lengths (i. e. , 
the difference between the m(~ximum and 
minimum length periods); 
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(4) the distribution of long and short work 
periods as measured by the maximum number 
of work days in consecutive work periods; 
and 

(5) the number of times the consecutive period 
maximum appears in one rotation period of 
the schedule. 

The first two measures are used to identify PR schedules 

which minimize both the length of the longest work period and 

the number of time it appears in the schedule. The third 

measure reflects the preference for uniformity in work 

period lengths. (If all of the periods have the same length, 

the range equals zero.) The fourth and fifth mea'sures 

reflect the preference for alternating long and short work 

periods when the range of the work periods does not equal 

zero. The measures are used to identify schedules which 

minimize both the maximum number of days that appear in 

consecutive work periods and the nuzr.ber of times the 

maximum value occurs. 

To illustrate these measures, consider the schedule in 

figure 2.1. The sequence of work period lengths is 

·{7,7,7,7,6}. The maximum length period is seven days 

(measure 1) and the maximum value occurs four times (measure 

2). The range of the schedule is one day (measure 3), and 

the maximum two-period total is 14 days (measure 4) which 

occurs three times (measure 5). The PR schedule in figure 

2.2 has exactly the same sequence of work period lengths and 

hence with regard to work periods, is identical to the 

schedule in figure 2.1. 
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2.2.5 Other Schedule Features 

Two additional schedule features exist which are not 

conveniently classified under any of the attributes discussed 

above. These features, however, are important schedule 

characteristics, and are incorporated into the PR schedule 

design methodology described in this thesis. The first 

characteristic is applicable only to multishift PR schedules; 

the second is based on a schedule property defined by the 

sequence of lengths of the work and recreation periods in 

a schedule. 

Rotating multishift schedules require each officer to 

rotate periodically from one shift to another; such rotations 

force each officer to readjust his personal off-duty schedule 

to accommodate his new shift assignment. Some departments 

which use shift rotating schedules are not able to schedule 

changeover recreation periods for each shift changeover 

point in the schedule (i.e., a recreation period that 

separates the last work day on the old shift from the first 

work day on the new shift). To compensate for the absence 

of such scheduled time-off, most departments use a "backward" 

rotation through the shifts (i.e., night to afternoon to 

day) to insure that each officer receives a minimum of 

eight hours off between work assignments (see table 2.4). 

(See table 2.5 for the consequences of a "forward" shift 

rotation with no intervening recreation periods.) 
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Table 2.4 

Time Of:E Between Shift Assignments for 
"BaGkward" Rotating Schedules* 

Shift 
Rot.ation 

Night to afternoon 

Afternoon to day 

Day to night 

Time Off Between 
Assignments 

(Hours) 

8 

8 

32 

*Based on a three-shift schedule for 
a "police day" beginning with the day shift. 

Table 2.5 

Time Off Between Shift Assignments for 
"Forward" Rotating Schedules* 

Shift 
Rotation 

Day to afternoon 

Afternoon to night 

Night to day 

Time Off Between 
Assignments 

(Hours) 

24 

24 

o 

*Based on a three-shift schedule for 
a "police day" beginning with the day shift. 
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The presence of a recreation period between shift 

assignments can minimize or eliminate many of the diffi

culties associated with shift changeover: personal adjust

ments can be more easily made, short change-over times are 

eliminated, and each officer begins his new assignment by 

coming off a recreation period instead of experiencing the 

fatiguing effects of working "straight through." 

Expressed as a preference measure, this attribute can 

be quantified by noting the fraction of shif-t:. changeovers 

that are covered by changeover recreation periods. (A 

fraction of 1. 0 would indicate tha't:. every changeover point 

in the schedule was covered.) As a bounding nleasure, 

acceptable multishift schedules can be defined as those 

schedules which have a changeover recreation period for at 

least a specified minimum fraction of all changeover points. 

The desirability of this attribute lead to the decision 

early in this study, to investigate the feasibility of using 

the most stringent measure: that is, a bounding condition 

that required the presence of a changeover recreation period 

at every shift changeover point. Computational experience 

has verified the feasibility ,,;:>f this decision. It is 

possible, for most application:'.:;, to find multishift schedules 

which satisfy this req~irement; and when schedules cannot be 

found, it is almost aiways due to another attribute. 
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The second schedule feature concerns the relative 

positions of the work and recreation periods within each 

schedule. The importance of this feature lies in the fact 

that officers prefer schedules which place long recreation 

periods aftel: long \~ork periods (i. e., schedules which are 

"orderly"). The measu:r:e adopted in this study to quantify 

this characteristic is based on the set of ratios formed 

by dividing the length of each work period by the length 

of the recreation period irrrrnediately following it. The 

standard deviation of these ratios is used as the "order

liness" m€Jasure for each schedule. Although the specific 

numeric value obtained for a schedule is not in itself 

significc:mt, the measure enab1.es comparisons to be made 

with other sch~dules. 

The ratios and standard deviations for the schedules 

in figures 2.1 and 2.2 are shown in table 2.6. The lower 

standard deviation for the:? schedule in figure 2.1 reflects 

the slight superiority of this schedule in terms of the 

sequence of work and recreation periods. The schedule in 

figure 2.1 has both of its four-day r8creation periods 

following seven-day work periods; the schedule in figure 

2.2 has its two four-day periods following seven and 

six-day work periods. 
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Table 2.6 

standard Deviations of the Work to Recreation 
Period Length Ratios for the Schedules in 

Figures 2.1 and 2~2 

Work 
Period Length 

(Days) 
(1) 

7 
7 
7 
7 
6 

7 
7 
7 
7 
6 

Following 
Recreation 

Period Length 
(Days) 

(2) 

Figure 2.1 

3 
4 
2 
4 
2 

Figure 2.2 

2 
3 
2 
4 
4 

Ratio 
(1)/ (2) 

2.33 
1. 75 
3.50 
1. 75 
3.00 

3.50 
2.33 
3.50 
1. 75 
1.50 

2.2.6 Summary of PR Schedule Measures 

Standard 
Deviation 
of Ratios 

0.69 

0.84 

This section summarizes the schedule attributes and 

measures that are used in this thesis to design optimal PR 

schedul~s. To more clearly indicate how these measures are 

used in the design process that begins with a manpower 

allocation by shift and day of the week, and concludes 

with a PR schedule that matches that allocation, it is 

convenient to consider the design process in terms of three 
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sets of schedules. (The discussion that follows is 

schematically represented in figure 2.3.)* 

Given any manpower allocation, the set of feasible 

schedules contains all cyclic schedules which match the 

required allocation. Although the number of feasible 

schedules that exists for any allocation is indeterminate 

(there may be none), for most applications, multiple 

feasible schedules exist. (With no constraints on the 

lengths of either the work or recre~tion periods, it is 

usually possible to produce a feasible schedule by hand in 

only a short time using trial and error methods.) 

The second set of schedules is a subset of the collec-

tion of all feasible schedules for a given manpower alloca-

ti.on. The subset of acceptable schedules includ~s only 

feasible schedules which possess each of the following 

characteristics: 

(1) a recreation period of acceptable length 
at every shift changeover point (only 
applicable to multishift schedules) ~ 

(2) a set of work periods each of which 
satisfies the upper and lower limits 
on work period lengths; and 

(3) a set of recreation periods each of which 
satisfies the upper and lower limits on 
recreation period lengths. 

A feasible schedule that does not possess each of these 

fe,atur.e.s, .is. ,defin.ed to be unacceptable. 

* Figure 2.3 is a conceptual model of the design process 
which is useful in explaining the application of individual 
schedule measures.. It is not, however, an accurate represen
tation of the actu.al computational process by which preferable 
PR schedules are obtained. 
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Defining Criteria 

Cyclic schedules which match a 
given manpower allocation by 
shift and day of the week. 

Feasible schedules which possess 
each of the following: 

(1) a recreation period at every 
shift changeover point (if 
applicable); 

(2) a set of work periods, each 
of which satisfies the 
upper and lower limits on 
work period lengths; and 

(3) a set of recreation periods 
each of which satisfies the 
upper and lower limits on 
recreation period lengths. 

Acceptable schedules which are 
ranked according to the following 
preference criteria: 

(1) number of weekend 
recreation periods, 

(2) maximum number of 
consecutive working 
weekends, 

(3) maximum work period 
length, 

(4) number of maximum 
length work periods, 

(5) work period range, 
(6) number of ea<:h type of 

recreation period, 
(7) maximum number of days 

in consecutive work periods, 
(8) number of maximum length 

work period pairs, and 
(9) standard deviation of 

Figure 2 .. 3 

the work to recreation 
period length ratios. 

Defining Criteria for Feasible, Acceptable, and 
Preferable Sets of PR Schedules 
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After the set of acceptable schedules has been 

identified, preference measures for weekend recreation 

periods, work periods, and all other recreation periods 

are used to establish the preferability of each schedule. 

The ordering of the acceptable schedules according to a 

preference function produces a set of Ereferable PR 

schedules. (This third set of schedules is formed, not by 

eliminating acceptable schedules, but rather by quantifying 

the desirability of each in terms of its attributes.) 

To illustrate the differences that can exist between 

acceptable schedules, consider the four multishift PR 

schedules in figures 2.4 through 2.7. Each schedule 

satisfies the same manpower allocation (i.e., each is 

feasible); and each schedule also possesses (1) a recreation 

period at evexy changeover point, (2) acceptable work periods 

(the limits set in this case were that every period be between 

three and nine days long), and (3) acceptahle recreation 

periods (every period was required to be either two, three, 

or four days long). Despite these similarities, these 

schedules differ in a number of ways. The values for nine 

preference measures for each schedule are shown in table 2.7. 

To determine which of the four PR multishift schedules 

is the most desirable requires a multicriteria decision 

model that incorporates the preference measures shown in 

table 2.7. The decision model used in this thesis.is , 
discussed in the following section. 



--,---~----

,~. I 



Shift M T W T F S S 
1 R R R 
2 R R 

Night 3 R R 
4 
5 R R R 
6 R R 
7 R R 

Aft~ 8 R R R 
9 

10 R R R R 
11 R R 
12 R R 
13 R R 

Day 14 R R R 
15 R R 
16 R R 
17 R R R 

Figure 2.4 

Sample Multishift Schedule I 

Shift M T W T 1? S S 
1 R R R 
2 R R 

Night 3 R R 
4 
5 R R R 
6 R R 
7 R R 

Aft. 8 R R R R 
9 

10 R R 
11 R R R - 12 R 
13 R R 

Day 14 R R R R 
15 R R 
16 R R 
1.7 R R R 

Figure· 2.5 

Sample Multishift Schedule II 

I 
-...J 
~ 
I 
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Shift M T W T F S S 

1 R R R 
2 R R 

Night 3 R R 
4 
5 R R R 
6 R R R 
7 R R 

Aft. 8 R R R 
9 

10 R R R 
11 R R 
12 R R 
13 R R 

Day 14 R R R 
15 R R 
1.6 R R 
17 R R R 

~ 

Figure 2.6 

Sample Mu1tishift Schedule III 

Shift M T }v T F S S 
1 R R R 
2 R R 

Night 3 R R 
4 
5 R R R 
6 R R R R 
7 R R 

Aft. 8 R R R 
9 

10 R R 
11 R R 
12 R 
13 R R 

Day 14 R R R R 
15 . R R 
16 R R 
17 R R R 

Figure 2.7 

Sample Mu1tishift Schedule IV 

I 
00 
o 
I 



1. 

2. 

3. 

4. 

5. 

6. 
7. 

8. 

9. 

, 
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Table 2.7 

Preference Measure Values for Mu1tishift 
Schedules I, II, III and IV in 
Figures 2.4, 2.5, 2.6, and 2.7 

Mu1tishift Schedule 
(Figure Number) 

I II III IV 
Preference Measure (2.4) (2.5) (2.6) (2.7) 

Number of weekend 
recreation periods 5 5 5 5 

Maximum number of 
consecutive working 
weekends 4 4 4 4 

Maximum length work 
period (days) 8 8 8 9 

Number of maximum length 
work periods 2 3 3 1 

Number of recreation periods 
of each type: 
Length (days)/Start Da:y 

4/Fri. 0 1 0 0 
4/Thu. 0 2 0 1 
4/Sat. 1 0 1 0 
3/Fri. 2 0 2 1 
3/Sat. 0 0 0 1 
2/Sat. 2 2 2 2 
4/Wed. 0 0 0 0 
3/Thu. 0 0 0 0 
4/Sun. 1 1 1 1 
3/Sun. 0 0 0 0 
2/Fri. 0 0 0 0 
2/Sun. 0 0 0 0 

Work period range {days} 5 5 5 6 
Maximum number of days 

in consecutive work periods 15 16 16 17 
Number of maximum length 

work period pairs 3 1 1 1 
Standard deviation of 

the work to recreation 
period length ratios 0.87 1.00 0.91 1.02 
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2.3 SEQUENTIAL LEXICOGRAPHIC COMPARISON OF PR SCHEDULES 

2.3.1 Introduction 

In the preceding section, several preferential schedule 

measures were introduced. This section presents a decision 

process for determining whether schedule al is "more 

preferred", "equal to", or "less preferred" than schedule az 

in terms of these preference measures. The selection of a 

decision process is difficult because of the diverse nature 

of the schedule attributes to be compared. As an example, 

suppose that in comparing schedules al and az, it is found 

that al has more weekend recreation periods than a21 but 

also contains work periods that are longer than any work 

periods in a2. The tradeoff between the number of weekend 

recreation periods and the maximum length work period 

cannot be resolved by purely analytic procedures but should, 

in some manner, reflect the relative importance of these 

attributes to the schedule designer. 

2.3.2 Sequential Lexicographic Elimination 

To utilize the individual preferential schedule measures 

discussed above and to incorporate the relative importance 

assigned to each measure by schedule designers, a sequential 

elimination procedure using a lexicographic ordering of the 

schedule measures is used in this thesis. The lexicographic 

method requires that the schedule measures (i.e., the compo

nents of the measure vector) be ranked in terms of importance, 

and that the values of each measure be placed, at a minimum, 
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on an ordinal scale. Once the most important measure is 

selected, the schedule(s) having the best value for this 

measure is(are) determined. If a single such schedule 

exists, it is selected as the best; if multiple schedules 

have the best value for the specified measure, these 

schedules are then compared with respect to the second most 

important measure. This process is continued on a measure

by-measure basis until either a single schedUle emerges or 

two or more schedules, equal among all measures, are found. 

Repeating this process on the set of sch~dules not already 

ranked, eventually yields a ranking order for all of the 

a,lternative schedules. As indicated, the lexicographic 

procedure only requires that the components of the measure 

vt~ctor be ranked in order of their importance. Hence the 

inter-component measurement scale is ordinal and the only 

input required from the schedule designer is a set of 

preference rankings for the schedule measures to be considered. 

To implement this procedure, nine preference measures 

were identified and used as components in the measure vector; 

the nine measures and their relative importance as used i£ 

this thesis are indicated in table 2.8. Each of these 

measures has been discussed above, and the use of each is 

self-explanatory except for the measure of the recreation 

period set (preference ranking number 5 in table 2.8). 

This measure is formulated as a subvector whose components 

represents the number of times each type of recreation 

\, 



-84-

Table 2.8 

Preference Rankings of the Nine Schedule Measures 
Used to Design PR Schedules 

Preference 
Rank 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Schedule Measure 

Number of weekend recreation 
periods 

Maximum number of consecutive 
working weekends 

Maximum length work 
period (days) 

Number of maximum length 
work periods 

Recreation period measure 
based on the number of 
each type of recreation 
period* 

Work period range (days) 

Maximum number of days in 
consecutive work periods 

Number of maximum length 
work period pairs 

Standard deviation of the 
work to recreation period 
length ratios 

*See table 2.9 for the preference rankings used to 
measure each set of recreation periods. 
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period (defined by length and start day) appears in the 

schedule. The ordering of the components in the subvector 

is determined by the relative importance given to each 

period type. The importance rankings used in this thesis 

axe shown in table 2.9. 

Table 2.9 

Preference Rankings for Individual Recreation Periods 
Used to Design PR Schedules 

Preference Period Length 
Rank (Days) Start Day 

1. 4 Friday 
2. 4 Thursday 
3. 4 Saturday 
4. 3 Friday 
5. 3 Saturday 
6. 2 Saturday 
7. 4 Wednesday 
8. 3 Thursday 
9. 4 Sunday 

10. 3 Sunday 
11. 2 Friday 
12. 2 Sunday " 
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These rankings are used for all of the schedules 

discussed in this thesis and are applicable for schedules 

that limit the recreation period lengths to two, three, or 

four days. (The method is easily extended to periods with 

other lengths.) The use of these rankings parallels the 

lexicographic process described above. If two schedules 

have equal values for the first four components of their 

measure vectors, their respective recreation period sub

vectors are compared. The comparison is done component-by

component (in the order indicated in table 2.9) until a 

difference between like-ordered oomponents is found; the 

schedule with the higher value for this component is defined 

as the preferred schedule. If th~_subvectors are equal 

(i.e., the like-ordered components are equal for all 12 

components), the comparison continues with the sixth ranked 

measure {work period range) in the measure vector. 

To illustrate the use of the sequential process, 

consider the comparison of the four PR schedules in figures 

2.4 through 2.7. The complete measure vector for each 

schedule is shown in table 2.7. (The components for each 

schedule are read from top to bottom in order of decreasing 

importance.) All four schedules have identic~l values for 

the first two measures: each schedule contains exactly 

five weekend recreation periods and a maximum of four 

consecutive working weekends • For the next Illost important 

measure (i.ee, maximum work period length), schedules I, 

r 
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II, and III are still equal, but schedule IV is less 

preferable by virtue of its nine-day work period. Exam

ination of the next measure (i.e., t~e number of maximum 

length work periods) for schedules I, II, and III indicates 

that schedules II and III both contain three eight-day 

work periods while schedule I contains only two. Hence 

both schedules II and III are judged to be less preferable 

than schedule I. As the only remaining schedule of the 

original four, schedule I is defined as the most preferred. 

To determine the second. preferred schedule l the measure 

vector components for schedules II and III are compared. 

Based upon the measure vectors in table 2.7, schedule II 

is preferred to schedule III because it contains one four

day recreation period beginning on Friday while schedule III 

contains none. (Schedule II, in fact, possesses the most 

preferable set of recreation periods of the four schedules, 

but is ranked below schedule I because of less attractive 

work period properties.) 

2.4 MULTIPLE CRITERIA DECISION MAKING PROCEDURES 

.~ .4. 1 Introduction 

The design and selection of an lloptima1" schedule, 

like many social and political de.cisions often cannot be 

'realistically based on only one criterion. Rather, as 

seen in the discussion above for comparing schedules, a 

variety of factors must be considered which usually are not 

directly comparable (e.g., which is more important: one 
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additional recreation weekend period or one less day in 

the maximum length work period?). In response to the 

growing demand for more sophisticated decision tools, a 

variety of multiple criteria decision making procedures 

have been developed. This section presents a brief 

review of these procedures in order to identify the 

specific advantages of the sequential elimination procedure 

used in this thesis. 

Multiple criteria decision methods can be divided into 

two categories: collective procedures whichass~~e that 

the individual components of the measure vector ',::an be 

unified either explicitly or implicitly into a one· ... dimensional 

measure for each alternative schedule, and component methods 

which compare schedules strictly on a component-by"component 

basis.* Both of these methods are discussed below. 

2.4.2 Collective Procedures 

Explicit collective procedures are characterized by the 

requirement that an explicit compensatory objective function 

must be defined which numerically relates all of the compon

ents of the measure vector. All weighting schemes, regardless 

of how diverse they appearl fall into this category. Despite 

their individual differences, all weighting procedures 

possess the following characteristics: 

(I) a set of available alternatives with 
specified measures and measure values; 

----~*r-~-----------
The discus.sion that follows is based to a large extent 

on an excellent survey paper by Kenneth R.MacCrimmon entitled: 
\IAn Overview of Multiple Objective Decision Making". (62) 
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(2) a process for obtaining numeric values for 
each measure and numeric weights across 
measures; 

(3) a well-specified objective function for 
aggregati.ng the numerically scaled pref
erences into a single number for e~ch 
alternative; and 

(4) a rule for selecting the alternatives on 
the basis of the highest (or best) value. 

Weighting methods can be grouped into two subcategories 

according to the method used for determining the preferences 

of the decision-maker. Preferences can be obtained by: 

(1) inference based on statistical analysis of 
past choices~ or 

(2) direct questioning of the decision-maker 
about each component. 

Inferential methods include both linear regression 

(63,64), and analysis of variance (64,65,66). Direct 

questioning methods have the advantage of not requiring 

a history of past decisions made under similar circum-

stances, and the disadvantage of requiring the decision-

maker to verbalize his preference. A variety of weighting 

models based upon direct questioning exist. Some of the 

more commonly utilized include trade-offs (67), simple 

additive weighting (56,68,69), and modified weighting 

schemes (67,70,71,72,73,74,7'5). 

More advanced among explicit collective procedures 

are mathematical programming schemes which incorporate 

constraints on individual or groups of attributes and are 

able to handle measure,vectors with large numbers of 
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components. These methods include linear programming, goal 

programming (76;77,78), and interactive programming (79,80). 

Implicit collective procedures do not externalize a 

specific function to relate the components of each measure 

vector, but assume that such a function can be operationally 

defined by the preferences of the decision-maker. These 

methods are characterized by the manner in which preferences 

are obtained and utilized to find the best decision; Delphi 

methods and the Churchman-Ackoff pair-by-pair decision 

procedure(s} are both implicit collective methods. 

2.4.3 Component Procedures 

Compon(,mt procedures seek to avoid the difficulties 

frequently cited with collective procedures. with explicit 

collective methods, it is necessary to establish numeric<;ll 

relationships between components which often conceptually 

defy such comparisons; implicit collective methods assume 

that the decision-maker possesses a consistent set of pref

erences which can be, in some manner, extrapted, and 

frequently require that the decision·-maker be available 

for direct participation in the resolution process. 

Component procedures are characterized by comparisons 

which are made exclusively between like ,components of the 

measure vectors of two alternatives. Included among these 

methods are conjunctive and disjunctive constraints, 

dominance, and the method used in this study, lexicog:raphic 

sequential elimination. 
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2.4.3.1 Conjunctive and Disjunctive Constraints 

In this method, the decision-maker establishes 

standards for the values of certain components. In a 

conjunctive form, all of the standards must be satisfied 

for the alternative to be judged acceptable. (The 

acceptability or b0unding measures described earlier 

in this chapter are used as conjunctive constraints.) 

In the disjunctive form, only one standard of a specified 

group must be met for an alternative to be acceptable. 

Since each alternative must satisfy a number of 

standards in the conjunctive method, the procedure serves 

primarily as a filtering device to screen out all but the 

most desirable alternatives. Kleinmuntz (81) utilizes 

conjunctive and disjunctive decision models to describe 

the decision process expert clinicians use to categorize 

persons into "adjusted ll and "maladjusted" categories on 

the basis of the MMPI profiles. Other applications of 

constraint usage are given by Clarkson (82) for portfolio 

decisions, by Smith and Greenlaw (83) for personnel 

selection decisions, and by Bettmen (84, for consumer 

choices. Combs (85) and Dawes (86) present theoretical 

consideration about the method. 

2.4.3.2 Dominance 

In conjunctive and disjunctive constraint procedures, 

each alternative is compared to a minimal set of standards 

for some or all of the components. Dominance methods 
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provide for direct comparisons between pairs of alterna-
" 

tive schedules. If one alternative has component values 

that are at least as good as those of another alternative 

for all of the components ~nd if it has one or more values 

that are better, the- first altern.ative is said to "dominate" 

the second and the second alternative can be eliminated. 

Although this procedure is one of the least controversial 

decision methods, it Qften fails to eliminate many alter-

natives. Most decision--makers use dominance whenever 

appropriate as an initial filtering device to reduce the 

set of viable alternatives. 

2.4.3.3 Lexicography 

Although lexicography is also" a form of sequential 

elimination, the method differs from both constraint and 

dominance methods; the comparison of alternatives is 

accompl,ished by comparing the values of like components 

in a specified order. As a result, the lexicographic 

procedure requires that the decision-maker rank the 

components of the measure vector in terms of importance, 

and that the values for each componen.t be placed, at 

least, on an ordinal scale. A complete ranking for all 

alternatives is achieved using the pr~cess described in 

section 2.3.2. 

Extensions of this method include allowing for bands 

of imperfect discrimination so that one alternative will 

not be judged better than another because of a slightly 
/( 

! 

-
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better value for one attribute. This "semiorder ll 

processing is described by Luce (87) and 'rvel.sky (88). The 

theoretical aspects of lexicography are discussed by Luce 

(87), Shepard (89), and Fishburn (90). 

The most important condition associated with the use 

of the lexicographic method is the requirement tl'Iat a strict 

and cOnsistent hierarchical ordering of the components 

exists which can be externalized by the decision-maker. In 

addition, the method also imposes the constraint that if 

component a is judged to be more important than component b 

and if b is judged to be more important than compcnent c, 

then it is assumed that component a is also more important than 

all possible combinations of components band c. In fact, 

component a is assumed to be more important than the 

c~~ulative value of all components that are individually 

less important than a. 

The lexicographic method does, however, possess 

several distinct advantages as a decis~:on tool for determining 

preferable PR schedules. These include: 

1. The method requires the direct comparison 
of only like components (e.g., the number 
of weekend recreation periods for a schedule 
is compared only with the corresponding 
number in alternative schedules). The 
method avoids entirely the necessity of 
determining, either implicitly or explicitly, 
compensatory relationships between unlike 
component.s . 
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The me'thod permits the decision-maker to 
indicate which attributes he values and the 
relative importance he assigns to each. 

3. The component-by-component decision process 
is particularly well-suited for the sequen
tial construction methods used in this 
thesis to design PR schedules. Partially 
designed schedules available at each stage 
of the design process can be ranked according 
to the component values that are known; this 
ranking in turn can be used to discard sets 
of partially designed schedules which can only 
produce complete schedules that are less 
preferable. 

4. The use of the bounding measures (conjuntive 
constraints) serves to minimize the negative 
aspects of the hierarchical ordering of the 
components imposed by the lexicographic 
procedure (i.e., the method is only used to 
rank schedules which already satisfy accept
ability constraints) . 

5. The method is easily understood by schedule 
designers who must (1) identify the schedule 
attributes and measures they wish to use, 
(2) provide a preference rating for each 

measure, and (3) specify the constraint 
values for the bounding measures. 

The use of the lexicographic decision method for the 

design of op,timal PR schedules is described in chapt.er 3. 
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3. THE DESIGN OF OPTIMAL PR SCHEDULES 

3.1 INTRODUCTION 

Although the feasibility of constructing acceptable 

PR schedules by hand for relatively small schedules (e.g., 

four or five weeks long) has been demonstrated by Heller (16), 

improved design methods are needed to provide schedule 

designers with more systematic and reliable procedures 

for constructing schedules which satisfy given manpower 

~llocations and are preferred in terms of relevant schedule 

properties. without such methods, the design of PR schedules 

is highly dependent upon the skills, resources, and experience 

of individual schedule designers. Improved design methods, 

such as those described in this thesis, can contribute to 

the process of shifting the effort required for the design 

of manpower schedules from one of IIfinding" feasible 

schedules (which, hopefully, also possess desirable features) 

to the more fruitful area of identifying important schedule 

properties and using them to "design" the best schedules 

possible. 

This chapter describes each major step in the design 

and construction of PR schedules. This overview of the 

design process serves as an introduction to the material 

presented in the n€",xt four chapters which describe the 

algorithms used for each step of the process. The 

remainder of this chapter is divided into three sections: 
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the first describes the data requirements for the design 

process; the next describes a four-step procedure for the 

design of optimal one-shift PR schedules; and the final 

section describes the process for the design of optimal 

multishift PR schedules. 

3.2 SCHEDULE DESIGN DATA REQUIREMENTS 

3.2.1 Manpower Allocation 

The schedule design procedures begin with an allocation, 

by shift and day of the week, of the total number of work 

tours (or manshifts) per week for a specified number of 

officers. Cyclic schedules which preserve this weekly 

allocation are defined to be feasible. To indicate the 

elements of a manpower allocation more clearly (and also to 

introduce notation which will be used throughout this 

chapter), we define the following quantities: 

N = number of officers*; 

s = number of shifts; 

N. = number of men assigned to each shift (i=l, 
J. 2, ••. ,s); 

f = the average number of work days expected from 
each officer per week; 

*In designing PR schedules, it is more precise to 
speak of the number of schedule brackets to be allocated 
to each shift rather than the number of officers. For 
convenience, however, the presentations in this and 
subsequent chapters are based on the assumption that one 
man is assigned to each bracket. This causes no loss of 
meaning or generality, and permits the use of the more 
commonly used terms "men" and "manshifts" in place of 
"brackets" and "bracketshifts". 
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= number of manshifts (i.e., on-duty tours), 
each week over s shifts for N officers; 

= number of manshifts each week on shift i 
for N. officers; 

~ 

= number of manshifts (officers) assigned to 
work shift i on day ji 

= number of recreation days each week over s 
shifts for N officers; 

= number of recreation days each week on shift 
i for N. officers; and 

~ 

= number of officers on recreation from shift 
i on day j. 

The following relationships hold between these quantities: 

(1) the number of officers, 

N = 

(2) the 

W = 

s 
I 

i=l 
N. 

1. 

number 

s 
L w. 

i==l ~ 

1 s 
="7 I (W. +R.) 

i=l 1. ~ 

1 s 7 
== -7 L I (w';J.+r~J') ~ 

i==l j==l ..... .... 

of on-duty manshifts per week, 

s 7 
L I w .. - fN*; == -

i=l j==l ~J 

-(3) the number of recreation days per week, 

s s 7 
R == 7N-W = L R. == Y. I r .. ; 

. 1 ~ . 1 . 1 ~J 
~== ~= J== 

(4) the number of on-duty manshifts for shift i 
per 

W. 
1. 

week, 
7 

== I 
j=l 

w .. 
~J 

~ fN .. i and 
1. 

*Since the number of manshifts expected from each officer 
per week is usually not equal to an integral number of shifts 
(due to the "amortization" of time off for holidays, if 
included, over each week of the schedule), the product fN 
is usually not an integer. 
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(5) the number of recreation days for shift i 
per w~ek, 

R. = 7N. - W. = 
~ ~ ~ 

7 
I 

j=l 
r .. 
~J 

(3.1) 

As an example, consider a work force of 20 men (N=20) 

in which each officer works an average of 4.75 days per 

week (f=4.75). These values indicate that the 20 officers 

work 95 on-duty manshifts each week (i.e., W = fN = 
(4.75)x(20) = 95). A sample allocation of these 95 

manshifts over three shifts (s = 3) and seven days of the 

week is illustrated in table 3.1. The distribution of the 

corresponding 45 recreation days per week (R = 7N = W = 
(7) x (20) - 95 =: 140 - 95 = 45) is shown in table 3.2. 

A PR schedule designed to preserve the allocations shown 

in tables 3.1 and 3.2 would have a 20-week rotation period 

in which each officer would be assigned to shift 1 for 

seven weeks, to shift 2 for eight weeks, and to shift 3 

for five weeks. Over the 20 week period, each officer 

has 95 work days and 45 recreation days. 

The allocation problem and the algorithmic procedures 

used ·to obtain satisfactory manpower distributions have 

been reviewed in chapter 1 (section 1.5.4). All of the 

methods discussed in chapter 1 focus on the derivation of 

the w .. values (i.e., the number of officers on-duty for 
~J ' 

each shift and day of t.he week). Determination of the 

\ 
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Table 3.1 

Allocation of 95 Manshifts OVer Three Shifts and 
Seven Days of the Week 

Number Number of Men On Duty (wij) 
of Men 

Assigned 
~ 

to Shift Mon. Tue. Wed. Thu. Fri. Sat. Sun. 
(Ni=) (j=l) (j=2) (j=3) (j=4) (j=5) (j=6) (j=7) 

7 4 4 5 5 6 6 3 

8 5 5 5 5 7 7 4 

5 3 3 3 4 4 4 3 

N=20 

Table 3.2 

Total 
Number 

of 
Manshifts 

33 

38 

24 

W=95 

Distribution of the Recreation Days Corresponding to the 
Manpower Allocation in Table 3.1 by Shift and 

Day of the Week 

Number Number of Men on Recreation (rij) 
of Men 

Assigned 
to Shift Mon. Tue. Wed. Thu. Fri. Sat. Sun. 

(N .=) 
~ 

(j=l) (j=2) (j=3) (j=4) (j=5) (j=6) (j=7) Total 

7 3 3 2 2 1 1 4 16 

8 3 3 3 3 1 1 4 18 
, 

5 2 2 2 1 1 1 2 11 

N=20 R=45 
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w .. 's, however, does not define a unique set of N. values 
~J 1 

(i.e., the number of officers assigned to each shift). To 

illustrate, consider the manpower allocation shown in 

table 3.1. The w .. values for shift 1 indicate that a 
~J 

minimum of six on-duty officers must be assigned to that 

shift in order to satisfy the manpower requirements for 

Friday and Saturday. Similarly, the maximum values for 

shift 2 and 3 indicate that a minimum of seven officers 

must be assigned to the second shift (to work on Friday 

and Saturday) and a minimum of four officers must be 

assigned to the third shift (for Thursday, Friday and 

Saturday). The sum of these three minimum values'equals 

17, leaving three of the 20 officers unassigned. 

In (16) Heller determines shift designations for 

unassigned officers by using their shift assignment to 

minimize the quantity .r (~_:~)2 where W!R equals the 
1=1 ~ 

ratio of work to recreation days for the entire schedule. 

The motivation for this objective function is to equalize, 

as nearly as possible, the ratio of work to recreation days 

(W./R.) for each shift. The W. values, determined from the 
~ ~" 1 

w .. values, are fixed,but the R. value for each shift is 
~ ~ 

a function of both W. and N.; and the final N. value for each 
~ 1 1 

shift is dependent on the placement of "unassigned" officers. 

Hence, using result (3.1), the objective function can be 

written as: 

.';., . 
. 11 

t;:.' 

If 



-- -~--------------:-;;~ 

min 
N. 
~ 

Z =( I W _ Wi)2 _ 
i=l R Ri. 
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In tables 3.1 and 3.2, the Rand W. values are 
~ 

R - 95/45= 2.11, 

WI = 33, W2 = 38, W3 = 24, and 

(3.2) 

the objective function is minimized when one unassigned 

officer is placed on each shift; i.e., 

N3 = 5, W3/R3 = 2.1818; and 

Z = .007. 

Determination of the Ni values completes specifica

tion of the manpower allocation. The PR schedule design 

process described in the following s·ections uses the N. 
~ 

and w .. values computed in this way to identify the 
~J 

manpower allocation that must be preserved by feasible 

PR schequles. 

3~2.2 Schedule Design Features 

The schedule attributes used in the design procedures 

described in this thesis were discussed in detail in 

chapter 2 (5~e section. 2.2.6)i the specific preference 

structure utilized was shown in table 2.8. This structure 

has been incorporated into the comput.er code developed 
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for this thesis and used for all of the schedules 

presented herein. 

In addition to the manpower allocation data discussed 

above, the data required for use of the computerized 

procedure are: 

(1) upper (Uw) and lower (LW) limits on work 

per.iod lengths; and 

(2) upper (UR) and lower (LR) limits on 

recreation period lengths. 

For multishift PR schedules, the design data required are: 

(1) a set of candidate. schedules for each shift 
tour to be included in the multishift 
schedule ·(this set is described in . 
section 3.5.1), and 

(2) upper (UCR) and lower (LCR) limits on 

changeover recreation period lengths. 

3.3 THE DESIGN OF OPTIMAL ONE-SHIFT PR SCHEDULES 

The sequential design of one-shift PR schedules 

consists of the following steps: 

(1) the specification of distinct sets of 
recreation periods of acceptable length; 

(2) the distribution of each recreation 
period set over the days of the weeki 

(3) the specification of work periods of 
acceptable length; and 

(4) the enumeration of feasible sequences of 
work and recreation periods. 

Each of these steps is discussed below. 
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3.3.1 Specification of Sets of Recreation Periods of 
Acceptable Length 

The total number of recreation days which each officer 

receives during his Ni weeks on shift i is given by 

7 
R. = L r ..• To produce days-off schedules for individual 
~ j=l ~J 

officers, these Ri days must be aggregated into recreation 

periods of lengths which satisfy the upper and lower 

limits set by the schedule designer. Determining a set 

of recreation periods, each of which satisfies these 

limits, is equivalent to finding an unordered partition 

P of Ri such that each member {P~} of the kth partition 

satisfies the requirement: LR ~ P~ ~ UR, and that all 

members of pk sum to R. (i.e., L pkq = R.). 
~ q ~ 

To illustrate, consider a manpower allocation for 

a five-week shift tour containing 11 recreation days 

(see shift 3 in table 3.2). If the recreation period 

length limits are LR = 2 and UR = 4 respectively, then only 

four distinct sets (or partitions) of the 11 recreation 

days exist which satisfy the requirement that ~ pk = 11, 
k q q 

and 2 < P < 4 for each member. The four sets are: q-

Partition (k=) 
Member Period Lengths(p~=) 

1 (4, 4, 3) 
2 (4, 3, 2, 2) 
3 (3, 3, 3, 2) 
4 (3, 2, 2, 2, 2) 
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Although 56 distinct partitions can be created from the 11 

recreation days (assuming only that each member is a positive 

integer less than or equal to 11), only four partitions 

satisfy the acceptability criteria imposed by the upper and 

lower limits on period lengths. As a result, each acceptable 

five-week PR sched;ule that matches t.hespecified manpower 

allocat.ions in table 3.2 must USE'.l one of these four sets of 

recreation periods. 

The algorithmic enumeration of all partitions for a 

given Ri value .anda specified set of limits, LR and UR, 

is presented in chapter 4. 

3.3.2 The Distribution of Recreation Periods Over Days 
of the Week 

After the recreation days have been aggregated into 

periods of acceptable length, each set of periods must be 

distributed over the days of the week in a way which matches 

the required daily allocation of recreation days. This 

distribution must specify the day of the week on which each 

recreation period will begin. 

As an example, consider the second partition derived 

above which consists of four recreation periods with lengths: 

{4,3,2,2}; and assume that these four periods must be dis-

tributed over the days of the week according to the recrea-

tion day allocation shown for shift 3 in table 3.2 (i .. e. , 

over the five-week tour, each off$lcer receives a total of 

11 recreation days: two each on Monday, Tuesday, Wednesday, 
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and Sunday, and one each on Thursday, Friday and 

Saturday.). 

Following the procedure developed by Heller, the 

required daily allocation for the 11 recreation days can 

be schematically represented in a star dia.gram (see 

figure 3.1). Each day of the week is represented by a 

ray, and the number of nodes on each ray corresponds to 

-, 

the number of recreation days each officer receives on that 

day during the five-week schedule. Recreation periods can 

be represented by drawing lines to connect nodes on adjacent 

rays. A star diagram which has its nodes connected into a 

set of recreation periods is called a. cyclic graph. The 

cyclic graph in figure 3.2 is based on the star diagram in 

figure 3.1, and consists of one four-day period (Thursday

Friday-Saturday-Sunday), one three-day period (Monday->' 

Wed. 

Tue. 

Mon. --_Gt--e---->jI Fri. 

Sun. 

Figure 3.1 

Star Diagram with Eleven Nodes 
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Wed .• 

Tue. 

Mon. -----4'l~...4f--~~ __ ---- Fr i_ 

Sun. 

Figure 3.2 

Cyclic Graph Based on the Star 
Diagram in Figure 3.1 

Tuesday-Wednesday), and two two-day periods (Tuesday

Wednesday and Sunday-Monday); these four periods correspond 

to the second partition derived above. This cyclic graph 

d.efines one distribution of the recreation periods which 

matches the required daily allocation. 

The cyclic graph in figure 3.2, however, may not be 

the o~iy distribution of the {4,3,2,2} partition that can 

be formed on the 11-node star diagram in figure 3.1. The 

exact number of distinct cyclic graphs that can be enumerated 

from each partition is indeterminate: there may be several 

or none at all. An enumeration algorithm forgeneratiu.g 

all dis:tinct cyclic graphs for a given 'dai1y allocation of . 

recreat:ion :days and a specific partition of recreation 

days i~; described in chapter 5. 
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3.3.3 Specification of Work Periods of Acceptable Length 

Again follototing Heller, associated vTith each cyclic 

graph is a square matrix S (called an el~mentary separation 

matrix) whose entries' {s. ,,} indicate the minimum number of 
~:J 

work days that can occur between each ordered pair of 

recreation periods, i and j, defined in the graph. The 

number of rows and columns in the matrix equals the number 

of recreation per.iods in the gJ_~aph, and each matrix entry 

is determined by the graph. 

As an example, t~e elementary separation matrix, 

associated with the cyclic graph in figure 3.2 is shown in 

figure 3. :,~" Since there are four recrea'cion periods in the 

graph, the matrix has four rows and columns. The (1,4) 

matrix entry indicates that a minimum of three work days 

Recreation Period 

1 2 3 4 

1 - 5 0 3 
Eecreation 
Period 2 4 - 0 3 

3 0 1 - 6 
~ 

4 6 0 2 -
'-------I' 

Figure 3.3 

Elementary Separation Matrix Based on the 
Cyclic Graph in Figure 3.2 



-108-

must separate the end of period 1 (Monday-Tuesday-Wednesday) and 

the beginning of period 4 (Sunday-Monday); the three on-duty 

days correspond to the three rays in the graph which separate 

the last day "of period 1 (Wednesday) and the first day of 

period 4 (Sunday). All of the matrix entries can be .. obtained 

in a similar manner. The entries on the main diagonal of the 

matrix are not defined. For cyclic graphs with seven rays, 

all matrix entries in the elementary matrix lie between 

zero and six. 

An infinite number of modified matrices can be generated 

from each elementary matrix by using the fact that if ordered 

periods (i,j) can be placed s .. days apart, they can also 
1J 

be placed s .. + 7k, k = 1,2,... days apart {e. g., periods 1 
1J 

and 4 in figure 3.2 can be 3 days apart, or 3 days plus one 

week apart (10 days), or 3 days plus two weeks apart (17 

days), etc.). 

The selection of one value for each matrix entry (and 

hence the selection of one separation matrix) is accomplished 

us_" J the upper and lower limits on work period lengths 

(i.e., each matrix entry is restricted to the, interval, 

L < s.. < W ) *. To illustrate, assume that the work 
w.- 1J - w 

period limits, Lw = 4 and Uw == 8, are applied to the 

* Since consecutive values for each s .. differ by seven 
. 1J 1 days, the interval [L ,U ] will def1ne on y one s .. 

value, at most, if w w U .-L <6 e r"t may happen 1.J 
that no s .. value lies withiW tne interval. 

1J 

{] 
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elementary matrix in figure 3.3. The modified matrix 

obtained with these limits is shown in figure 3.4. Three 

possibilities exist for each entry in the transition from 

figure 3.3 to figure 3.4: (I) the entry is unchanged 

since it lies within the interval [4,8J (e.g., entries 

(1,2), (2,1), (3,4), and (4.1»; (2) the entry must be 

increased by seven to fall within the interval [4,8] 

(e.g., entries (1,3), (2,3), (3,1), (3,2), and (4,2); 

or (3) the entry is voided because none of the values, 

s .. + 7k lie in [4,8] (e.g., entries (1,4) I (2,4) 1 and 
~J 

(4 , 3». 

Recreation Period 

1 2 3 4 
--

1 - 5 7 -
Recreation 
Period 2 4 - 7 -

3 7 8 - 6 

4 6 7 - -

Figure 3.4 

Modified Separation Matrix Based on the 
Cyclic Graph in Figure 3.2 
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The significance of the modified separation matrix is 

that it indicates the length of the acceptable work period, 

if one exists, separating each ordered pair of recreation 

periods in the cyclic graph. Hence, the modified separation 

matrix of figure 3.4 identifies the only nine work pe~~~~~ 

that can be used to produce PR schedules based on the four 

recreation periods of figure 3.2 and the upper and lower 

limits on work period lengths, Uw and Lw' A more thorough 

discussion of separation matrices and their use in the final 

step of designing optimal one-shift PR schedules is presented 

in chapter 6. 

3.3.4 Enumeration of Acceptable Sequences of Work and 
Recreation Periods 

The final step suggested by Heller for 1::he design of 

optimal one-shift schedules is the specificat:ion of accept-

able sequences of work and recreation periodsl based on 

information contained in a modified separation matrix. 

Since each schedule produced must include each recreation 

period exactly once, each distinct sequence (or permutation) 

of the recreation periods defines a schedule candidate. 

As an example, consider the four recreation periods 

used to construct the matrix of figure 3.4; these four 

periods define the following six sequences:* 

'k The first period selected for cyclic SChE~dules is 
arbitrary~ hence n periods produce, at most, (Ij\-l)! 
sequences. The presence of identical recreatiqn periods 
(i.e., periods with the same length and starting day) 
further reduces the number of distinct sequence.s (see 
chapter 6 and appendix 10.2). 
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Seque'nce No. Seguence 

1 {l, 2, 3, 4} 
2 {l, 2, 4, 3} 
3 {l, 3, 2, 4} 
4 fl ~ , 3, 4, 2} 
5 {I, 4, 2, 3} 
6 {I, 4, 3, 2} 

Each sequence of recreation periods defines a sequence of 

ordered pairs which identify specific matrix entries; for 

example, the sequence {1,2,3,4} corresponds to the sequence 

of ordered pairs: {(1,2) I (2,3), (3,4), (4,1)} which 

identifies the four work period lengths {S,7,6,6}. This 

particular combination of recreation and work periods 

produces the five-week PR schedule shown in figure 3.S. 

The first recreation period in the sequence, period 1, 

covers Monday, Tuesday, and Wednesday of week 1 followed 

by the five-day work period that separates periods 1 and 2 

Week 

Number of 
officers on duty 

1 

2 

3 

4 

5 

M 

lR 
_., 

R 

3 

T w T F S S 
~~. 

R R 

2R R 

3 R R R R 

4R 

3 3 4 4 4 3 

Figure 3.5, 

Five-Week, One-Shift PR Schedule Based on the 
Recreation Period Sequence {l,2,3,4} 
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(matrix entry (1,2})*. Period 2 covers Tuesday and Wednesday, 

and is followed by the seven-day work period that separates 

recreation periods 2 and 3 (matrix entry (2,3)). This 

process is continued until all four rec:ref,l.tion periods 

have been used as de;ei..ned by the sequence {1,2,3,4}. 

It is useful at this point to note the properties of 

the schedule in figure 3.5: 

(1) the schedule contains 24 ~ork days aggregated 
into four wol::-k periods of acceptable lengths 
which match the required daily allocation (see 
table 3.1, shift 3) ~ and 

(2) the schedule contain 11 recreation days aggregated 
into four recreation periods of acceptable lengths 
which match the required daily allocation (see 
table 3.2, shift 3). 

It is also important to note that the sequence of 

recreation periods {1,2,3,4} produces the schedule in 

figure 3.5 for the f.ollowing reasons: 
, 

(1) each order~\d pair of recreation periods defined 
by the sequ'ence specifies an acceptable work 
period (i.e. , each pair of recreation periods 
identifies a valid entry in the separation 
matrix); and 

(2) the sum of the lengths of the four work periods 
defined by the sequence equals the number of 
work days (i.e., 24) required in the manpower 
allocation. 

If either of these conditions are not satisfied by the 

s.chedule produc.ed from a 8equence of recreation periods, 
* . 

The first recreation period in the sequence is by 
definition always placed in week 1; any week can be used, 
however, since the speci~fic labelling of the '\veeks is 
arbitrary in a cyclic schedule. 

r:' 
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an acceptable PR schedule does not exist for that sequence 

In fact, of the six sequences of recreation periods originally 

identified for the matrix in figure 3.4, only two produce 

acceptable schedules: sequence 1 (schedule shown in 

fiaure 3.5) and sequence 4 (schedule shown in figure 3.6); 

each of the other sequences includes one or more matrix 

entries which do not define an acceptable work period 

length (i.e., the sequence contains a voided matrix entry). 

The use of the modified separation matrix to enumerate 

sequences of recreation per:Lods which yield acceptable sched-

ules is discussed in chapter 6. An analogy between the 

generation of acceptable PR schedules from a separation 

matrix and thi enumeration of tours for the travelling 

sales~an problem is used to develop an implicit enumeration 

scheme to systematically search for optimal PR schedules. 

Week 

Number of 
officers on duty 

1 

2 

3 

4 

5 

M 

lR 

R 

3 

T W T 

R R 

3 R 

2R R 

3 3 4 

Figure 3.6 

F s s 

R R R 

4 R 

4 4 3 

Five-Week, One-Shift PR Schedule Based on the 
Recreation Period Sequence {1,3,4,2} 
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3.4 OVERVIEW OF THE COMPUTER PROGRAM LOGIC FOR DESIGNING 
OPTIMAL ONE-SHIFT PR SCHEDULES 

A computer program, entitled EXEC and written by the 

author, incorporates and extends each of the algorithms 

discussed above for the sequential design of one-shift 

PR schedules. A flow diagram illustrating the logic of 

the program is shown in figure 3.7. The four steps iden-

tified in the flow diagram correspond to the four procedures 

discussed above: the partitioning of recreation days into 

periods (step 1), the generation of cyclic graphs for each 

partition (step 2), the construction of a modified separation 

matrix for each graph (step 3), and the use of each matrix 

to enumerate acceptable PR schedules (step 4). The logic of 

the EXEC program utilizes the preference structure indicated 

in table 2.8. The current version of the program does not 

permit the user to reorder the preference rankings or in any 

way to modify the preference measures themselves*. 

The computer program, written in FORTRAN IV, was 

originally tested on an IBM 7040 computer and later modified-

for use on an IBM 360/65 system. The code has been exten

sively tested and has been used to design one-shift PR 

schedules up to nine weeks long. Examples of the program 

printout are presented in chapter 8. 

*such a generalized program would have necessitated 
a greater programming effort than was deemed necessary since 
the primary objective of this thesis was to demonstrate the 
feasibility of computerized design procedures using a 
specified preference structure. 



stago 1 

fartitiolling Algoritba 

StAge 1 

Cyclic G~Apb Algoritba 

stAge l 

IlrfU,ch-"m:I-llound Algoritba 

-115-

En ..... rat. fir." (Dnt) partition 
ot Ute J:'ecrea t.ion d.ya 

Figure 3.7 

Ba.ed OQ tll. total nW&ber of 
recreation doy., ancS the 
upp • .- aDd lower 11a1 t. 
on rocreation period lenqtha 

P,Uled on the dally allocation 
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the nwubor ill wDckend 
racreation period. and 
t.h. number ot eAch rBcreAtioA 
period type 

N~Jc 1. tho nWAber of wee'kWld 
recreation period. in the beat 
8cbadllle enwoouted, ll"k 10 
the number ot period. Ul the 
cyclic graph. baing examined 
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Flow Diagram for the Computerized Design of 
Optimal· One-Shift PR Schedules 

(EXEC Compu t.er Code) 
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3.5 THE DESIGN OF OPTIMAL MULTISHIFT PR SCHEDULES 

A procedure for the design of mu1tishift PR schedules 

has been developed by the author. It involves a two-step 

process. First, a small set of non-cyclic, one-shift 

schedules are designed for each shift tour to be included 

in the mu1tishift schedule. The non-cyclic, one-shift 

schedules are constructed by solving a modified. cyclic 

scheduling problem using the design procedures described 

in section 3.3. In the second step, combinations of the 

one-shift schedules are systematically examined to determine 

the most preferable mu1tishift schedule. Each of these 

steps is discussed below. 

3.5.1 Optimal Non-Cyclic, One-Shift PR Sched'.lles 

Cyclic schedules, by definition, have no natural begin-

ning and ending point; although the sequence or order of the 

brackets is important, which bracket is identified as week 1 

is riOt. After each n weeks (the rotation period of the 

schedule), each officer has rotated through each bracket 

once, .and none of the characteristics or measures of the 

schedule are dependent upon bracket labels. 

Multishift PR schedules are cyclic over all shift tours 

{i.e., after m weeks, the mu1tishift schedule period, each 

officer has been assigned to each bracket of the schedule 

fo):" one week}, and the labeling of the "firstll week of the 

mu1tishift schedule is arbitrary. The individual shift 

schedules, however, are ~ cyclic. Each shift schedule 
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has a specific beginning and ending bracket; the first or 

initial week of each shift schedule is defined as the first 

bracket worked in that schedule after rotating from the 

previous shift. Similarly, the last or final week of each 

shift schedule is defined as the last bracket worked before 

rotating to the next shift. The characteristics of the 

multishift schedule are deEendent upon the specific brackets 

within each shift schedule which are used to begin and end 

the shift tour'. Ch'anging the first and last brackets of one 

shift schedule (e.g., by rotating the brackets within that 

shift tour) may alter the preferability of the multishift 

schedule. 

To illustrate, consider the two one-shift schedules 

shown ip figures 3. 8 and 3.9. If used as cyclic schedules, 
" 

these.JJR schedules are equivalent; (Le., have identical 

properties); the only difference between them is that 

different labels have been used on the brackets. Each 

bracket in figure 3.8 can be ro'tated backwards one week 

to obtain the schedule in figure 3.9 (bracket 1 becomes 

bracket 4). These two schedules, however, may not produce 

equivalent multishift schedules. This may occur because 

the properties of a multishift schedule are dependent upon 

the characteristics of the first and last weeks of each 

shift schedule. As an example, in figures 3.10 and 3.11~ 

the two one-shift schedules are each used for shift A in 



Week 

Week 

1 

2 

3 

4 

1 

2 

3 

4 

M 
r--

R 

M 

R 

.~---------------......,.....-,:-
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T W T F S S 

R 

R R 

R R 

R R 

Figure 3.8 

Four-Week PR Schedule 

T W T F S S 

R R 

R R 

R R 

R 

Figure 3.9 

Four-Week PR Schedule 
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M T W T F S s 

1 R R 

Shift A 2 R R 
(figure 3.8) 

3 R R 

4 R R 

Shift B 5 R R 
(identical to 
shift B ";-n- 6 R R 
figure 3.;",-1) . 

7 R R 

Figure 3.10 

Seven-Week Mu1tishift Schedule Commencing with 
the P.our-Week Schedule in Figure 3.8 

T W T F S s 

1 R R 

Shift A 2 R R 
(figure 3.9) 

3 R R 

4 R R 

Shift B 5 R R 
(identical to 
shi.ft B in 6 R R 
figure 3.10) 

7 R R 

Figure 3.11 

Seven-Week Multishift Schedule Commencing with 
the Four-Week Schedule in Figure 3.9 
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a multishift~chedule with the same three-week schedule 

for- shift B. Examination of t.hese multishift schedules 

indicates seve.r:al differences; the schedule in figure 3.10 

has a recreation period at each shift changeover point and 

contains no work periods that are longer than seven days 

while 'the schedule in figure 3.11 does not have a recreation 

period at either changeover point, and contains one ten-day 

work period. 

The differences between the multishift schedules in 

figure 3.10 and 3.11 can be more clearly explained if three 

classes of recreation periods are defined for non-cyclic, 
\ . ~. 

one:"'shift schedules: 

(1) a beginning peJ:"iod that precedes the first 
work day of a shift; 

(2) an ending period that follows the last work 
day of a shift; and 

(3) interior periods ltlhich lie between the first 
work day and last work day of the shift. 

Let b i and e i equal the lengths of the beginning and ending 

recreation periods for shift i (i.e., these lengths indicate 

the number of recreation days at the beginning and end of a 

non-cyclic schedule)*. 

The requirement that a recreation period of acceptable 

length separate the last work. day on shift i and the first 

* If the first day of the shift schedul~ (MonQ.ay) is a 
work day, the begi.nning reG,reat.ion period is defined to have 
length zero (1. e., b. =0) • "::!Similarly, if the last day of the 
shift schedule (Sund§:y) is~' a wo;ck day, the ending recreation 
period is defined to have length ze:-o(i.e:, ei~O). If both 
b. and e. equal zero, every recreatl.on perl.od l.n the schedule 
i§ an interior period. . 



-121-

work day on shift i+l can be stated in terms of the 

lengths of the ending and beginning recreation periods for 

shift i and i+l; i.e., 

LCR ~ ei + b i +l < UCR' LCR,UCR > 0 and integer 
(3.3) 

where UCR and LCR represent the upper and lower limits on 

the length of the changeover recreation periods. (These 

limits are not necessarily the same as the limits, UR and 

LR, imposed on the lengths of interior periods.) The limits 

in (3.3) further imply that 

e i , b i +l integer (3.4) 

If, for convenience, the same upper and limit limits UCR and 

LCR are used for all changeover and interior recreation 

periods in a multishift schedule (i.e., UR = UCR and LR = LcR) 1 

then result (3.4) holds for all beginning and ending recrea-

tion periods in the schedule. Hence, a complete statement of 

the limits on the lengths of all recreation periods in each 

non-cycle shift schedule is: 

(1) beginning period, 

o ~ b i ~ UCR 

(2) ending period, 

o < e. < UCR 
- 1-

i = 1,2,.~.,s 
b. integer 

1 

i = l,2, ••• ,s 
e. integer 

1 

(3.5) 

(3.6) 
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(3) interior period(s) I 

i = 1,2, ••• ,s 
.Q.ij integer 

(3.7) 

where .Q. .. represents the jth interior period in the ith 
~J 

shift tour. 

Since each non-cyclic shift schedule contains, by 

definition, only one beginning and one ending recreation 

period, the lengths of these periods can be used to classify 

each non-cyclic schedule: that is, let (b. ,e.) represent 
~ ~ 

the collection of all non-cyclic schedules for shift i that 

have a beginning period equal to length b. and ending period 
~ 

equal to length e i • The only non-cyclic schedules of interest, 

however, are those which satisfy conditions (3.5) and (3.6J 

above: these are the only schedules which can be used in a 

multishift schedule with limits UCR and LCRo The number of 

such (bi,ei ) sets equals (UcR+l)2. The corresponding set 

of two-number pairs is {(O,O), (0,1) , ••• , (O,Uca)' (1,0), 

(1 , 1) , ••• , (U CR ' U CR -1) , (U CR ' U CR) }. 

In chapter 7, a procedure for determining the optimal 

schedule for each set of non-cyclic schedules having the 

same b. and e. values is presented, based on the one-shift 
~ ~ 

design algo~ithm described in chapter 6. The optimal 

schedule for each set is detexmined using the following 

procedure: 

\ 

o 
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(1) a corresponding set of cyclic schedules is 
defined in which each schedule has a one-to-one 
correspondence to a schedule in the set 
(b. Ie. ) ; 

~ ~ 

(2) the optimal cyclic schedule in the corresponding 
set is found using the algorithm described in 
chapter 6 (and outlined above in section 3.3) i and 

(3) the optimal, non-cyclic schedule is defined by 
the properties of the optimal cyclic schedule 
obtained from the corresponding set. 

The one-to-one correspona.{mce between.cyclic schedules 

in the' corresponding set and non-clTclic schedules in each 

(bi,ei ) set is achieved with the addition of an "artificial" 

recreation period of length zero to each cyclic graph that 

contains a b. length period beginning on Monday and an e. 
~ ~ 

length period ending on Sunday. Each augmented graph, in 

turn, produces an expanded separa'cion matrix which possesses 

one additional row and column. The artificial recreation 

period represents the off-shift time between the last Sunday 

and the first Monday of a non-cyclic shift schedule. The 

placement of the beginning and ending recreation periods 

is accomplished by IIdedicatingll selected matrix entries, 

which forces these recreation periods to appear immediately 

after and before the artificial period in each schedule 

enumerated from the separation matrix. 

To illustrate the procedures outlined above, consider 

the problem of finding the optimal non-cyclic, one-shift 
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schedule for the (bi,ei ) = (1,1) set based on the manpower 

.allocation in table 3.3. (This is the same allocation used 

in the examples in section 3.3 and corresponds to shift 3 

in tables 3.1 and 3.2). The procedure involves the following 

four steps .. 

1. Specification of All Sets of Acceptable Schedules 

Since the optimal schedule must contain two one-day 

recreation periods (one at the beginning of the shift and 

one at the end of the shift), two recreation days are 

removed from the recreation days to be partitioned. The 

remaining recreation days are then aggregated into sets or 

partitions of acceptable lengths for interior recreation 

Table 3.3 

Daily Manpower Allocation for a Five-Week Schep,ule 

Number 
of Men Mon. Tue. Wed. Thu. Fri. Sat. Sun. Total 

On Duty 3 3 3 4 4 4 3 24 

On Recreation 2 2 2 1 1 1 2 11 

Total 5 5 5 5 5 5 5 35 
, 
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periods. Full partitions are formed by adding the 'two 

one-day periods to each set. To illustrate, the nine 

recreation days to be partitioned from the allocation 

shown in table 3.3 can be grouped into three sets: 

Partition Period Len9:ths 

1 {4, 3, 2} 

2 {3, 3, 3} 

3 {3, 2, 3, 2} 

Adding the two one-day periods to each set yields three 

full partitions of the 11 recreation days: 

Partition Period Lengths 

1 {4, 3, 2, 1, I} 

2 {3, 3, 3, 1, I} 

3 {3, 2, 2, 2, 1, I} 

2. Distribution of the Recreation Periods OVer 
the Days of the Week 

As discussed in section 3.3.2, there may be several 

distinct cyclic graphs associated with each partition; to 

continue the current example, consider the first partition 

above; {4,3,2,1,1}. The enumeration of every cyclic graph 

for this partition (and for every other partition) is 

simplified by the fact that two of the periods (the two 

one-day periods) must appear on particular days of the 

week. As a result, the remaining three periods {4,3,2} 

must be arranged over the nine nodes that remain in the 

star diagram after one Sunday and one Monday node have 

been used. This reduced star diagram is illustrated in 
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figure 3.12. The two one-day periods are added to each 

cyclic graph formed on the reduced star diagram to 

produce each complete graph. One graph for the first parti

tion is shown in figure 3.13. 

The dashed line in figure 3.13 represents an artificial 

recreation period which indicates time spent on other shifts. 

The artificial period always begins on Monday (the first 

day of the first week off a shift schedule) and always ends 

on Sunday (the last day before the beginning of a shift 

schedule). Regardless of the actual number of off-shift 

weeks in the schedule (which equals the period of the 

multishift schedule minus the length of the shift schedule 

being designed), the artificial period has length zero 

since it represents time spent on other shifts and does 

not contribute recreation days to the s4ift of interest. 

(The zero length of an artificial recreation period is 

indicated by the fact that the period does not use or 

connect any nodes in the graph.) 

3. Specification of Acceptable Work Periods 

The elementary separation matrix associated with the 

augmented cyclic graph in figure 3.13 is constructed 

following the procedures described in section 3.3.3. The 

expanded matrix, containing an additional row cmd column 

corresponding to the artificial period, is ShOWll in 

figure 3.14. 
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Wed. 

Tue. 

Mon. Fri. 

Sun. 

Figure 3.12 

Reduced Star Diagram, Nine Nodes 

a 
Mon. 

Wed. 

Figure 3.13 

Fri. 

Cyclic Graph Based on the {4,3,2,1,1} Partition 
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Recreation Period 

1 2 3 4 5 a 

1 - 6 0 2 5 6 

Recreation 2 4 - 5 0 3 4 
Period 

3 4 4 - 0 3 4 

4 0 0 1 - 6 0 

5 0 0 1 3 - 0 

a 0 0 1 , 3 6 0 

Figure 3.14 

Expanded Elementary Separation Matrix Based 
on the Cyclic Graph in Figure 3.13 

Since the artificial period represents off-shift time, 

it is used as a reference period for positioning the begin-

ning and ending recreation periods. The beginning recreation 

period (period 1) in figure 3.13 must start on the Monday 

of the first week of the shift schedule; this requirement 

can be met by placing the beginning period "next toll the 

end of the artificial period by placing a zero le~gth work 

period between them (1. e., by setting entry (a,l) = 0). In 

a similar manner, the ending period (period 5 in figure 3.13) 

can be placed on the last Sunday of the shift schedule by 

putting a zero length work period bet'veen the end of period 5 

and the beginning of the artificial period (1. e., by setting 

entry (5,a) = 0). 
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With these entry values, every sequence of recreation 

periods that defines an acceptable schedule and uses the 

entries (a,l) and (5(a) will produce a non-cyclic schedule 

with b i = 1 and e i = 1. The inclusion of these two matrix 

entries in every sequence can be insured by dedicating the 

(a,l) and (5,a) entries*. The modified separation matrix 

obtained by dedicating the (a,l) and (5,a} entries, and 

using the work period length limits Uw = 8 and Lw = 4 on 

all other entries is shown in figure 3.15. The dedicated 

entries are circled, and all voided entries are indicated 

with a dash. 

* 

Recreation Period 

1 2 3 4 5 a 

1 - 6 7 - 5 -

2 - - 5 7 - -
Recreation 
Period 3 - 4 - 7 - -

4 - 7 8 - 6 -

5 - - - - - 0 
a 0 - - - - -

Figure 3.15 

Modified Separation Matrix with Two Dedicated 
Entries Based on the Cyclic Graph in 

Figure 3.13 

Entry s .. is said to be d'edi'c'a'ted if every other entry 
in row i and 1J column j is voided; this insures the use of 
Sij in e~ery schedule since each sequen~e of periods must 

conta1n one entry from each row and column of the 
separation matrix. 
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4. Enumeration of Acceptable Sequences of Wor:k 
and Recreation Periods . 

Each ,sequence of periods enumerated from the modified 

matrix in figure 3.lS must satisfy the properties described 

in section 3.3.4 in order to produce an acceptable schedule. 

These properties are: 

(1) each matrix entry defined in the sequence must 
represent a work period of acceptable length 
(excepting dedicated entries); and 

(2) the sum of all work period lengths must equal 
the total number of required work days for the 
shift. 

Only two sequences of periods from the matrix in 

figure 3.lS satisfy both of these conditions: {a,1,2,3,4,S}, 

and {a,l,3,2,4,sL* The five-:week schedules associated with 

these sequences are shown in figures 3.16 and 3.17; these 

schedules not only satisfy the daily manpower allocation 

specified in table 3.3, and the upper and lower limits 

imposed on work and recreation periods (interior periods 

only), but also possess one-day recreation periods at 

both the beginning and end of the schedule. 

The complete enumeration of all non-cyclic schedules 

with b. = 1 and e. = 1 for a given manpower a.Llocation can 
~ ~ 

be obtained by using the procedures described above on each 

cyclic graph produced from each partition of the recreation 

*The first recreation period following the artificial 
period is, by convention, the first period in the schedule. 
As a result, every sequence of periods begins with period a. 
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T W T 

R R 

3 R R 

4R 

3 3 4 

Figure 3.16 

F S S 

R R R 

5 R 

4 4 3 

Non-Cyclic PR Schedule Based on the 
Recreation Period Sequence {a,1,2,3,4,5} 

Week 

Number of 
officers on duty 

1 

2 

3 

4 

5 

M T 

lR 

3 R 

2R R 

3 3 

w T F S S 

R 

R 

4R R R R 

5 R 

3 4 4 4 3 

Figure 3.17 

Non-Cyclic PR Schedule Based on the 
Recreation Period Sequence {a,l,3,2,4,5} 
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days. Such an enumeration permits identification of the 

optimal or dominating schedule for the (1,1) set.* Repeating 

this process for each of the (UCR+1)2 sets for shift i 

produces, at most, {UCR+1)2 schedules, each optimal over a 

Particular set (b.,e.). . ~ ~ 
(Some sets may not contain any 

schedules.) Repeating this procedure for each shift 

yields a pool of optimal non-cyclic, one-shift schedules 

from which optimal multishift schedules can be constructed. 

3.5.2 Optimal Mu1tishift Schedules 

Mu1tishift schedules are constructed by selecting one 

non-cyclic schedule for each shift tour and arranging these 

schedules in the desired shift rotation sequence. The only. 

acceptability requirement that must be satisfied between each 

pair of shift schedules, i and i+1 is: 

(3.8) 

which insures tha,t a recreation period of acceptable length 

exists at the sh:j,ft changeover point between shift tours i 

and i+l. Each s/aquence of one-shift schedules that satisfies 

condition (3.8) at e",ery shift changeover is defined to be 

an acceptable mu1tishift PR schedule. 

The total number of sequences of one-shift schedules 

that must be examined depends upon the number of schedules 

S .g.ene.ra.t.e.c; .for .. ea.ch shif:t and the number of shift tours T 

* Optimal non-cyclic schedules are determined with the 
same basic measure vector components and preference structure 
used to determine optimal cyclic schedules. 
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in each rotation period. The maximum number of sequences 

to be examined is ST, which assumes that a non-cyclic 

schedule is found for every set (b.,e.) for each shift. 
1 1 

Using S = (UcR+1)2, the maximum number of sequences, Sm 

becomes: 

(3.9) 

Result (3.9) indicatE~s that f except for small values of 

UCR and T, complete enumeration is not reasonable (e.g., 

a three-shift, one-tour multishift schedule (T = 3) with 

UCR = 4 produces (4+1)6 = 56 = 15,625 sequences to be 

examined; while a three-shift, two-tour schedule (T = 3x2 = 

6) produce as many as 51 2 :: 2. 4x 10 8 sequences). 

The enumeration of all sequences of non-cyclic schedules 

is avoided by using a st:t:'ategy of constructing each sequence 

one shift schedule at a time. The properties of each partial 

sequence can be used to identify implicity large sets of 

multishift schedules which are either unacceptable or 

undesirable. As a result, only sequences for the most 

preferable schedules are completely enumerated. 

The implicit examination and elimination of both 

unacceptable and undesirable multishift schedules are 

achieved by the requirement that before each shift schedule 

can be added to a partial sequence, three conditions must 

be satisfied: 
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(1) acceptability - the shift schedule to be added 
must be compatible with the shift schedule 
that precedes it (i.e., there must be a 
changeover recreation period of acceptable 
length); * 

(2) weekend recreation ~erioils - the new shift 
schedule must contrlbute a sufficient number 
of weekend recreation periods; and 

(3) consecutive working weekends - the new shift 
schedule must not produce an unacceptable 
number of consecutive working weekends. 

If the shift schedule to be added fails any of these 

conditions, it is rejected, and an alternate schedule is 

sought for that tour. If none exists, the process returns 

to the previous shift tour and replaces that schedule; Each 

time a shift schedule satisfying all three conditions is 

found, the schedule is added to the ourrent sequence, and an 

acceptable schedule is sought for the next shift tour. 

Each multishift schedule enumerated is ranked with the 

preference measures and structure described in chapter 2. 

A complete description of the enumeration process is 

presented in chapter 7. Several illustrative multishift 

schedules are presented in chapter B. 

3.6 OVERVIEW OF THE COMPUTER PROGRAM LOGIC FOR ENUMERATING 
OPTIMAL MULTISHIFT PR SCHEDULES 

The enumeration of optimal non-cyclic, one-shift 

schedules is accomplished with the EXEC program described 

.in .se.ct.ion .3.4. . .To enumerate roul tishift schedules I' a 

*Since the completed multishift schedule is cyclic, the 
last shift schedule added to the sequence must be compatible, 
with the preceding shift schedule and following shift 
schedule (i.e., the first schedule in the sequence). 

.~ 
if 
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second program, entitled MERGE, is used. A flow diagram 

indicating the major logic steps of the MERGE program is 

sh~:m in figure 3 .. 18.. Coded in FORTRAN IV and implemented 

on an IBM 360/65 system, the MERGE program has been 

successfully used to construct multishift schedules that 

are 20 weeks long and contain as many as six shift tours. 

Examples of the computer printout are presented in chapter 8 • 
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4. THE ENUMERATION OF ACCEPTABLE RECREATION' PERIODS 

4.1 INTRODUCTION 

This chapter describes an enumeration algorithm to 

determine distinct partitions of the recreation days 

allocated to a shift. Each partition consists of clusters 

of recreation days which can be u~ed as periods of consecutive 

recreation days in the design of work schedules. The 

enumeration scheme presented determines all partitions 

consisting of a given set of period lengths. As an example, 

eight recreation days can be divided into four unique 

partitions consisting of periods of only two, three or four 

days in length; i.e., 

8 = 4 + 4 

8 = 4 + 2 + 2 

8 = 3 + 3 + 2 

8 = 2 + 2 + 2 + 2. 

Determining all distinct partitions for a total number 

of recreation days R is equivalent to finding all vectors 

(nl,n 2 , ••• ,nk ) such that 

where 

R = nIt! + n 2 t 2 + •.• + nktk 

integer n. > 0, i = l,2, ••• ,k 
]. 

t· ]. = number of days in recreation period 

length i; i = 1,2, •.. ,k; there are 

k distinct lengths, t. > O. 
]. 

. " 

(4.1) 
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n. = number of periods of length ~ .• 
~ ~ 

Without loss of generality, the set of lengths can be 

arranged in decreasing order; i.e., 

~l > 12 > ••• > 1k > 0. 

In the example above, k = 3 and 11 = 4, 12 = 3 and ~3 = 2. 

The four partitions presented in the example can be presented 

as the vectors: (2,0,0) f (1,0,2), (0,2,1) and (0,0,4). 

The set of partitions which satisfies equation (4.1) for 

k lengths can be considered as a subset of all permutations 

of the components of the k-dimensional row vector N = 
(nl,n2, •• ,nk ). In addition, associated with each permutation 

of the components is a nonnegative number d defined as 

d = IR-si = IR-NL'I > ° (4.2) 

where 

L = ( 1 1 , 1 2 , ••• , 1k ) • 

s = equals the number of recreation 
days given by the vector product 
of permutation N and length L. 

Let P represent the set of all permutations of N and let 

P
j 

represent,the subset of permutations with d = j. 

the set of all permutations can be expressed as 

00 

p = U Pd • 
d=O 

o 

Hence 
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Each permutation which satisfies equation (4.1) 

represents a partition, which by definition implies that 

R = NL' or equivalently that d = 0, and hence all partitions 

of R for a given set of period lengths are members of the 

subset Po. The converse is also true; i.e., all members of 

Po are partitions of R. As a result, determining the set 

of partitions which satisfy equation (4.1) is equivalent 

to finding all members of the subset Po. 

The enumeration algorithm described below restricts 

the search for partitions of R, to a small number of Pi 

subsets which always includes the subset Po. This character

istic of the algorithm ensures its relative efficiency in 

enumerating all partitions for a given number of recreation 

days and a specified set of period lengths. 

The remainder of this chapter is divided into four 

sections. The first introduces the basic definitions and 

procedures on which the partitioning'algorithm is based; 

the important properties of each concept are identified 

and non-trivial results are proven. The next section 

outlines each step of the algorithm, presents a detailed 

example, and describes computational experience with a 

variety of problems. In the next section, several results 

from number theory are used to discuss the relative 

efficiency of the algorithm. In the concluding section, 

the relationships between several schedule attributes and 
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various parameters and procedures of the algorithm are 

identified. 

4.2 BASIC CONCEPTS OF THE PARTITIONING ALGORITHM 

The algorithm described in this chapt.er for the 

enumeration of all partitions for a given number of recrea-

tion .days and a specified set of period ~engths relies upon 

the following concepts: 

(I) a ranking definition which defines a unique 
ordering for all permutations of the compqnents 
of N, and 

(2) a step-wise procedure for the systematic, 
implicit examination of each permutation. 

Each of these concepts are discussed below. 

4.2.1 Ranking Definition 

The ordering of all k-dimensional permutations is 

easily accomplished with the use of the following definition: 

Ranking Definition. Given a specific length 

, + + + +) , vector .L, permutat~on N = (nl ,n2 , ••• ,nk ,~s 

d f ' d t b t th N* (* * n *) e 1ne 0 e grea er an = nl,n2"'" k 

if there exists an if such that nt = n~ for 
1 1 

i = 1,2,.,.,i'-1 and n i + > ni* for i = 1'. For 

values of i :> i', the relationships .between ni* 

+ + and n i are unconstrained. If ni= ni* for 

all ~r, then N+ is said to be equal to N*. 

- . 

'-' 
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As an example, using this ranking definition, the four 

partitions identified above for eight recreation days would 

have the following order: 

N1 = (2,0,0) grTest 
N2 = (1,0,2) 

N3 = (0,2,1) 

N 4 = (0,0,4) least 

It should be noted that the ranking definition does 

not require that the elements of the length vector L be 

arranged in any specific order; and in fact, a change in 

the order of the elements of L in the example above would 

produce a new ordering of the four partitionso Regardless, 

however, of which order of period lengths is used the ranking 

definition will always produce an unique ordering of all 

permutations. 

The partitioning algorithm enumerates all partitions 

for a given value of R and specific L vector by initiating 

its search with a permutation which is greater than or equal 

to the highest ranking permutation which is also a partition. 

The algorithm then systematically examines a series of 

permutations, each lower in rank than the one before it, 

until a permutation is found which is lower in rank than 

the lowest ranking partition. This systematic or st:ep-wise 

procedure and the properties of the procedure which insure 

that all partitions will be found (without the explicit 

enumeration of all permutations) are described below. 
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4.2.2 Step-Wise Search Prooedure 

The step-wise procedure for the implicit e!lumeration 

of all permutations involves the alternate use of two 

distinct operations: 

(1) a "filII! procedure to determine a unique 
permutation from any given partial 
'permutation (defined below) I and 

(2) a backtrack procedure which uses a 
complete permutation as the basis 
from which to construct". a new part.ial 
permutation. 

4.2.2.1 Fill Procedure 

Given any k-dimensiona1 partial permutation of N 

(i.e., a permutation designated as (n1,n2, ... ,n ,.,., .... ,.), 
p 

in which only the first p elements (where p is any non-negative 

integer less than k) are specified), a unique complete per-

mutation can be found by "fillingll the remaining k~p elements, 

n = k {lR-S. 1] 1 max .11.:-,0 i = p+ 1 , p+ 2 , .'. • I k 

where, as previously '8efined, 

R = total number of recreation days 
to be partitioned 

.11.. 
1. 

= ith el~ment of the length vector L 

i-I 

Si-i = jII 
£.n. = IIi-I partial sum" 

J J 

greatest integer < 
R-S .. 1 

1.-

,R,. 
1. 

(4.3) 

" 
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As an e~ample, let R = 14 and L = (4,3,2). If a 

partial permutation is given with nI = 1, represented as 

(I,·,·), the fill procedure produces 

and 

The resulting permutation (1,3,0) is a member of the subset 

PI {i.e., d = IR-si = 114-131 = 1) and, as a result, is not 

a partition of R. 

The fill procedure has two important properties~ 

(1) it can be used to determine an initial 
permutation for the stepwise procedure 
which is greater than or equal to the 
highest ranking partition for a given 
R and L~ and 

(2) used with the proper class of partial 
permutations, the procedure will produce 
only permutations which belong to P. 
subsets which satisfy 0 ~ i ~ ~k-l ~ 
(i.e., the procedure will 
explicitly enumerate only partitions 
and "near partitions"). 

Both of these properties are discussed below. 

Fill Property 1 

If the fill procedure is used to complete 
the k-dimensional partial permutation with 
p = 0, the resulting permutation is greater 
than or equal to the highest ranking partition 
for a given Rand L. 
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Proof: 

The proof is by contradiction. Let N' represent the 

completed permutation determined from the p = 0 partial 

permutation, with equation (4.3), and let N* represent 

a partition that is greater than Nt (i.e., that has a 

higher rank). Beginning with i = 1, examine the corre-

sponding n i components for both permutations. Since 

N* > NI , n~ must either be greater than or equal to ni. 

The following argument will show that ni = The n~ 

component, determined from equation (4.3) implies that 

[
R-SOl R-So 

ni = -r;:-J':: ~ < ni+l • 

If n~ is greater than ni, then nt ~ ni+l 

and 

hence 

and 

or 

R-So 

R.l 

R-So 
- < n*l .Q,1 

R < S* 1 

Since N* is a partition (i.e., S~ = R), and since 

(4.4) 

S * < S * < ••• _< Sk*' result (4. 4) is a contradiction. Hence o - 0-

nf cannot. be, greater than ni. Repeating this argument for 

i = 2,3, ••• ,k indicates that nI must equal n i for all i, 

and hence N* cannot be greater than N1 • This result, 
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however, contradicts the initial assumption that N* > Nl 

and the property is proven. 

Fill Property 2 

If the fill procedure is used to complete 
a k-dimensional partial permutation (p components 
specified) with partial sum S < R, then the sum 
Sk of the components of the p complete partition 

satisfies the condition 

Proo:ff.: 

The proof is divided into two parts. The first part 

establishes that 0 ~ R-Sk and the second verifies that 

R-Sk < min{R-S '~k-l} • ....,. P 

(1) First show that 0 ~ R-Sp+l • 
R-S 

Let n' = ---E, where n'p+l > 0 
p+l ~p+l 

and may be non-integer. 

Hence 

R-S = n' ~ p p+l p+l 

R = Sp + n'p+l~p+l 

Now by definition 

or np+1 < n'p+l -
np+l~p+l < n'p+l~p+l'~p+l -

sp+np+l~p+l < S +n' p 

sp+np+l~p+l .:::.·R 

Sp+l < R 

p+l~p+l 

and o ~ R-Sp+1 • 

> 0 -
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(a) 

(b) 

\ ,I 
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establish that R-Sk :5. min{R-sp,tk_1} 

By definition 

k 
I k 

Sk = I n.t. = 11 • ,L + I n.t. 
j=l J J j=l J J j=p+1 J J 

k 
Sk = S +- I n.t. p j=p+1 J J 

Hence 

Sk ~ S since n.t. > 0 for p J J -
j = p+l,p+2, ••• ,k and 

R-Sk <: R-S • - p 

Again by definition 

nk + Ik = nk ' (nk ' may be non-integer) 

nktk + Iktk = nk'tk 

Sk-1 + nktk + Iktk = Sk_1 + nk'tk 

Sk + Iktk = R 

R - Sk = Iktk 

R - Sk < tk 

Since both Rand Sk are integers 

R-Sk ~ tk - 1. 

Hence the,results of (a) and (b) produce 

R-Sk ~ min{R-sp ,tk-1}. 
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Property 2 is particularly important because d = R-Sk , 

and hence when any partial permutation with S < R is p-

filled using the procedure described above, the final 

permutation belongs to a subset of permutation with 

o ~ d ~ ~k-l. For ~xample, if ~k = 2, every complete 

permutation (obtained from a partial permutation with 

S < R) belongs to either the Po or PI subsets. If p-

~k = 1, every filled permutation which starts from a partial 

permutation with R-Sp ~ 0 belongs to Po and is a partition. 

4.2.2.2 Backtrack Procedure 

Given any full permutation N I , this procedure uses 

N I to find a new partial permutation which when completed, 

as described above, yields a new permutation N2 , with tll'lO 

important properties: 

(1) N2 is lower in rank than N l , and 

(2) no permutationN3 belonging to the set 
Po exists which satisfi.es the condition 
N I > N 3 > N 2

; i.e., no partition will 
have been passed over in stepping from 
N I to N2 • 

Using any permutation NI = (n ,n f ••• ,nk), a new 

permutation N2 r:atisfying the conditions above can be 

obtained in the following manner: 

(1) Examine the components of WI in reverse 
order (i.e., nk,nk-l,nk-2'.'.)' If all 
n. = 0, stop. (NI is already the minimum 

J. 
ranking permutation.) If one or more 
n i ~ 0, continue with step (2). 
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(2) Find i = p for the first non-zero entry 
such that n > 0 and n. = 0 for p 1. 
i = p+l,p+2, ••• ;k. 

(3) Define a partial permutation with p 
components specified from N1 by using 
n. for i = 1,2, ••• ,p-l, and n -1 for 

1. th p 
the p entry. 

(4) . Find the Nt permutation by filling the 
partial permutation produced in step (3) 
using the fill procedure described above. 

Both backtrack properties are discussed below. 

Backtrack ProEerty 1 

Given any complete permutation Nf , use of the 

backtrack and fill procedures will produce a second per

mutation Nf +l which is lower in rank than Nf • 

Proof: 

B t t 4 Nf d Nf +1 h 'd . 1 . Y cons ruc 1.on an ave 1. entl.ca entr1.es 

for n., i = 1,2,o •• ,p-l. Also by construction nf +1 
1. p 

f = n -1 p 

which by the ranking definition implies that Nf +1 < Nf 
k 

regardless of what values are assigned to the remaining 
f+1 f+1 f+2 f+l 

k-p components of N ~np+l,np+2, ••• ,nk ). 

Backtrack Property 2 

Given any permutation N1 and the next lower ranking 

permutation N2 determined with the backtrack and fill 

procedures described above, no permutation N3 exists which 

is a member of the set Po (i.e., a parti-tion) and satisfies 

the condition Nl > NS > N2
• 

) 

' •. ,1 
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Proof: 

To verify that no partition exists between NI and 

N~, assume that such a permutation N3 can exist and consider 

its construction on a componen{; by component basis: 

(a) Since the first p-l terms of N l and N 2 

are identical (i.e., n! = n~ for 
1. 1. 

i = 1,2, ••• ,p-l), in order for the 

inequality N1 > N3 > N2 to hold, the 

first p-l terms of N3 must be n~ = ~1 = 1. ~i 

n~, i = 1,2, ••• ,p-l. 
1. 

(b) For the n~ component, the entry must be 

n3 = n 2 = n l since p p p-l 
(i) if n 3 > n l then N3 would be p p' 

(ii) 

(iii) 

greater than Nl., which would 

contradict the initial assump

tion N l > N3 
, 

if n3 = n l N3 will never be less p p' 

than N l since n~ = 0 for 
1. 

i = p+l,p+2, ••• ,k, and 

if nS < n l Ng would be less p p-l' 

than N2 since by construction 

n 2 = nl whicn would contradict p p-l 

the initial assumption N3 > N2
• 
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(c) The specification of the first p entries 

in N3 insures that N3 < N1 since n3
• = n~ 

1 1 

for i = l,2, ••• ,p-l and n3 < n~. No p 1 

relative ranking can be determined yet 

for N2 and N3 since n~ = n~ for 
1 1 

i = 1,2, ••• ,p. In determining the value 

for each remaining component of 1'13
., 

beginning with n~+l' each term must be 

set equal to either n~ = n~ or n~ > n~. 
1 1 1 1 

Once the first ni > ni assignment can be 

made, the ranking N3 > N2 is insured. 

Cd) A restriction on the construction of the 

N3 
. partition, however, is the requirement 

that S. < R for all i in N3
• If S. > R 

1 - 1 

for any i, a valid partition (i.e., Sk = R) 

cannot be obtained; e.g., if S. > R, then 
1 

S'I + 1 

S. > S., (R.. >0, n. >0, all i) 
1 - 1 1 1-

and Sk > R, i1.:ldica ting that Na is not a 

partition. 
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(e) First consider the assignment n~+l > n~+l; 
3 . 2 

i.e., np+l = rlp+l + h (h = 1,2, ••• ). To 

show that this assignment leads to a 

contradiction for any h requires the 

following inequality based on N2: 

R - S;+ 1 - .Q,p+ 1 < o. 
(i) Since every term in N2 ·was derived using 

the fill procedure, each S sum must p 

satisfy 

R-S2 
-.J~ 
R.p+1 ~[~J .Q,p+l 

~ = [~] + I 0 < 
R. +1 £ +1 p+l' P p_ 

2 , 
+ I +1 (n +1 may be non-integer) p p 

n
2
+l .Q, +1 + I +1.Q, +1 P P P P 

S2 + n 21 t = S2 + 
P p+l p+l P n~+lR.p+l + Ip+lR.p+l 

R = S~+l + I +1.Q, +1 P P 

R - S~+l = Ip+lR.p+l 

R - S~+l < .Q,p+l 

and 

R - S~+l - R.p+l < O. (4.5) 
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(ii) Now examine the result of setting 

n~+l = n~+l+h. 

n~+ltp+1 = n~+ltp+1 + htp+1 

(h = 1,2, ••• ) 

S; + n~+ltp+1 = S~ + np+1 t p+1 

+ htp+1 ' (S~ equals S~ 

by construction) 

S3 - S2 + h n 
p+1 - p+1 N p+1 

R - S~+l = R - S~+l - hR'p+1 (4.6) 

Using inequality (4'.5) from above, on 

the right side of (4.6) 

R - S~+l - htp+l < R - S;+l - tp+l < 0 

(h > 0, t. > 0) 
~ 

which leads to 

R - S3 < 0 p+l 

or . 
3 

Sp+l > R. 

This result violates the requirement that 

S. < R for all i (see (d) above). Hence 
~ -
3 ' 2' np+l must be set equal to np+l " Repeat~ng 

this same argument for i = p+2,p+3, ••• ,k 

indicates that n~ must equal n~ for 
~ , ~ 

i = p+l,p+2, ••• ,k which leads to N3 = N2, 

a contradiction of the initial condition 

that N3 '> N2. Hepce, no partition N3 exists 

such that Nl > N2 > N3 • 



-153-

4.3 PARTI'IIIONING ALGORITHM LOGIC 

The basic concepts introduced above are usec'i'in an 

enumeration algorithm to generate all partitions for a 

, given number of recreation days R and a fixed set of 

period lengths L. The basic steps of the algorithm are: 

Stee 1. Arrange the components of the length vector 

L in decreasing order. 

Step 2. Find the first permutation using the fill 

procedure for the p = 0 partial permutation. 

If the initial permutation is a partition, 

Step 3 .. 

save the result. 

Use the backtrack procedure to find a new 

partial permutation. Begin the search for 

the first non-zero entry at i = k-l. (The 

i = k term can be ignored since Sk ~ R for 

all filled permutations, and reducing nk by 

1 cannot produce a new Sk = R.) If no non

zero entries exist for i = k-l,k-2, ••• ,l 

the process is terminated. 

Step 4. Fill the partial permutation. If the 

result is a partition, save the answer. 

Return to step 3. 
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. As an example, consider partitioning eight recreation 

days (R = 8) into p,eriods of length four, three, or two 

'days (L = (4 If 3,2) ) • 

1. 

2. 

St'eE..l:.. 

Ste}?~. 

nl 

n2 

and ng 

Order the t.'s, L = (4,3,2). 
~ 

.Find the first permutation: 

R-So 
= 8-0 2, _. 

~ -:r = 

R-Sl 8-8 0; -- -r;- = -r = 

R-Sz. 8-8 o. -- Q.g = -r = 

Hence, N1 = (2,0,0). Since d = R-Sg = 

8-8 = n for this example, N l is a member 

of Po and a partition of R. (Note that 

if Sj =. R,for j < k, then n i = 0, for 

i = j+l,j+2, ••• ,k.) 

3. Step 3. Use the backtrack procedure on 

Nl to find a partij~l permutation. Since the 

first non-zero en'cry is nl' it is reduced by 

one to create the partial permutation 

(I,.,·). 

4. SteE 4. Fill the partial permutation to 

obtain N2 = (1,1,0). Since S3 = 7 ~ R, 

N2 is not a partition. 

5. S·tep 5. The next partial permutation is 

(1,0,·). 
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6. -Step· 4. The fill pr,ocedure produces a 

a . • 
third permutation N = (1,0,2) wh1ch is 

a partition (Sa .= 1(4)+0(3)+2(2) = 8 = R). 

Steps 3 and 4 are continued until permutation 

N2 = (0,0,4) is obtained. Since no non-zero entries 

exist for i = k-l,k-2, ••• ,1, the algorithm is terminated. 

A summary of this example is presented in table 4.1. 

Table 4.1 

Permutations Enumerated to Partition Eight Recreation 
Days (R=8) ihto Periods of Four, Three, and 

Two Days in Length (L=(4,3,2» 

Permutation Partial Full Subset Pd 
Number Permutation Permutation (d=R- S3)* 

1. (.,.,.) (2,0,0) j Po 
2. (I,·,·) (1,1,0) PI 

3. (1,0,·) (1,0,2) Po 

4. (0,·,·) (0,2,1) Po 

5. (0,1,·) (0,1,2) PI 

6. (0,0,·) (0~0,4) Po 

*S3~4nl+3n2+2n3 where n. equals the number of 
recreat10n per10ds of lengtE ~i. 
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Table 4.2 summarizes the results of applying the 

algorithm to several problems.with different values for Rand 

L. The efficiency factor noted in the table is discussed 

in section 4.4 .. 

4.4 EFFICIENCY OF THE PARTITIONING ALGORITHM 

The partitioning algorithm described in section 4.3 

can be used to enumerate all partitions for a given number-

of recreation days and a fixed set of recreation period 

lengths. Whether it is desirable or feasible to enumerate 

all parti t,~ons depends upon the rela ti ve efficiency of the 

algori thm c;\nd the total number of parti ti01iS that exist 

for a given set of initial conditions~ If t.he effort 

required to produce each partition is very high or if the 

total m.mlber of partitions is extremely large, it may be 

necessary to introduce a screening process which can 

isolate partitions which yield prefer.able schedules .. 

4.4.1 ~leasure of Relative Efficiency 

One measure of the relative efficiency of the 

parti tioning algorithm is shown in table 4.2. The eff:i,ciency 

measure is defined to be the ratio of the total number C\f 

partitions found to the total number of permutations 

generated by the algorithm.. The ratio serves as a direct 

measure of the relative effort. required to -find each 

partition. A high ratio itLdicates that most of the 

permutations generated are partitions. In table 4.2, the 

o 
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Table 4.2 

Performance S~atistics £or Several Examples of the 
Partitioning Algorithm 

Total Number of Recreation Days 

8 26 52 104 

Length Vector L=(4,3,2) 

Total number o£ ". 

partitions (class PO) 4 10 21 70 252 

Total number of 
permutations 6 17 37 131 486 
'-; , ' 

--(classes P 0 and PI) 

Efficiency=(1)/(2) .667 .588 .568 .534 .519 

Length Vector L=(6,5,4,3) 

Total number of 
partitions (class PO) 2 7 19 104 666 

Total number o£ 
permutations 5 19 54 299 1,949 
(classes PO' PI' and P2) 

Efficiency=(1}/(2) 1. 400 .368 .352 .348 .342 
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efficiency measure for L = (4,3,2) declines from .667 for R = 8 

to only .519 for R = 104. For L = (6,5,4,3), the efficiency 

measure declines from .400 to .342 as R is increased 

from 8 to 104. These results indicate that the algorithm 

is more efficient for low values of i k .* 

4.4.2 Upper Bounds on the Total NUInber of Partitions 

To determine the ~otal number of partitions for a 

given set of initial conditions, several results from 
, 

combinatorics are useful~ In number theory a partition 

of a positive integer R is a representation of R as a 

sum of positive integers, i.e., 

R = Xl + X2 + ~}, X ••• .' 'T t I 

i = 1,2, ••. ,.1/,. 

X. > 0 
~ 

To discuss the nurr~er of partitions, it is necessary 

to distinguish between ordered and unordered partitions. 

The number of unordered partitions refers to the number 

of distinct sets of positive integers which sum to a 

given positive integer. The arrangement or order of the 

integers within each set is not distingUishabli/.' The 

number of ordered partitions refers to the 'sum of the~ 
_., 1\ 

number of distinct arrringements that can'be made wi~ 

each set of positive inteqersthat sum<to a given 





! 
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positive. integer. As an example, there are five 

unordered partitions (or sets of integers) which sum 

to four: {4},{3,1},{2,2},{2,1,1},{1,1,1,1}. These five 

sets, however, can be used in eight distinct arrangements 

(i. e., eight ordered partitions); the eight are: 

4 = 4 

4 = 3+1 = 1+3 

-4 = 2+2 

4 = 2+1+1 = 1+2+1 = 1+1+2 

4 = 1+1+1+1 

The number of ordered partitions is easily found; i.e., 

to divide R into 2 ordered parts is equivalent to the 

number of ways of puting (2-l) markers into the (R-l) 

spaces between R dots (91). This number is (~=i).* For 

the total number of ordered partitions, (i.e., into any 

number of parts), a marker mayor may not be placed in 

each of the R-l spaces. This yields a total of 2R- 1 

ordered partitions. 

Considerable work has been done on the problem of 

counting the number of unordered partitions. Let P2(R) 

designate the number of unordered partitions of R into 

2 parts. To determine P2{R) for small values of 2 and 

any value of R, the following recursive formula can be 

used (.92).: 

* As an example, the integer 6 can be represented with 
5 ordered partitions, each containing exactly two parts; 
'. 6-1 
~.e .. , (2-1) = 5: 5+1, 4+2, 3+3, 2+4, and 1+5. There 
are only three unordered partitions of 6 with exactly 
two parts: {5,1},{4,2}, and {3,3}. 
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The initial conditions are p~(R) = 0 for R < ~ and p 

p~ (~) = 1 since the only way to represent R, .as a sum of 
.. 

~ positive integers is to write it as the sum of ~ l's. 

Formula (4.7) can be used to derive a table p~(R) 's as 

shown in table 4.3. 

TabJe 4.3 

Values of P ~ (R) 

Number Integer Value (R) 
of 

Parts 
(~) 1 2 3 4 5 6 7 8 

! 

1 1 1 1 "! 1 1 1 1 ... 
2 0 1 1 2 2 3 3 4 

3 0 0 1 1 2 3 4 5 

4 0 0 0 1 1 2 3 5 

5 0 0 0 0 1 1 2 3 

6 0 0 0 O· 0 1 1 2 

7 0 0 0 0 0 0 1 1 

8 0 0 0 0 0 0 1 1 

" .. " 
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Each partition of R can be schematically illustrated 

with a diagram consisting of a row of dots for each part, . 

,putting the largest part. at the top and the rest in 

decreasing size below it. Hence 15 = 5+5+3+2 can be 

diagrammed 

• 5 

+ 5 

+ 3 
~. + 2 

4 + 4 + 3 + 2 + 2 = 15 

Associated with each diagram is another partition consisting 

of parts represented by the columns rather than the rows. 

In~;h.e diagram above, the second partition consists of 

15 = 4+4+3+2+2. Two partitions related in this manner are 

called conj2:gate~ of each other. It is easily seen that a 

one-to-one correspondence exists between each pair of 

conjugate partitions. This property leads to the following 

result: 

Theorem 4.1 

The number of partitions of an integer R into 
~ parts is equal to the number of partitions 
of R into parts the greatest of which is ~. 

Proof: 

The conjugate of each partition with ~ parts 
isa partition whose greatest part is~. The 
one-to-one correspondence between each pair 
of conjugates establishes the theorem (92). 
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This theorem adds a dual mean,ing to each P2(R). In 

addition to representing the,number of unordered partitions 

of R into 2 parts, it also equals the number of unordered 

partitions of R in which the greatest.is 2. As an example, 

in table 4.3JP2(7) indicates that there are four partitions 

of 7 with exactly three parts; i.e., 

It also 

3 as the 

7 = 5 + I + I 
7 = 4 + 2 + I 

7 = 3 + 3 + I 

7 = 3 + 2 + 2 

indicates that there are 

greatest part; i.e., 

7 = 3 + 3 + I 

7 = 3 + 2 + 2 

7 = 3 + 2 + I + I 

7 = 3 + I + I + I 

four partitions of 7 with 

+1. 

This second meaning for each p~(R) can be used to 

establish upper bounds on the number of ways that R recrea

tion days can be partitioned into recreation periods of 

lengths L = (~1,22, ••• ,2k)' Let each unordered partition 

of R be placed in set RG2 if the greatest part of the 

partition equals 2; as a result, the set of all partitions 

of R can be expressed as the sum of the sets RG2 for 

~ = 21,22, ••• ,2k' The maximum number of partitions in each 

set RG2 is given by P2(R), and the maximum total number of 

partitions of R for all values of 2 equals L p~(R). 
all 2i 
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Hence an upper bound B{R,L) on the total number of ways 

that R recreation days can be divided into the lengths 

in L -- (R,l,R,2,t o o,R,k) is given by 

B(R,L) = I p (R) . (4.8) 
all R,i 

As an example, if R = 8 and L = (4,3,2) 

B = Pit (8) + pa (8) + p 2 (8) 

= 5 + 5 + 4 (from table 4.3) 

B = 14. 

The actual number of partitions for R = 8 and L = (4 .. 3,2) 

is four (see table 4.2). The pR,(R} value for the number 

of partitions for each set RGR, assumes -that all lengths 

less than or equal to R, are available for use in the 

partitions. If the L vector does not contain every length 

less than R" each PR,(R) value used will overestimate the 

actual number of partitions and as a result, the B(R,L) 

value will be~ overestimate. In the special case when the 

k-dimensional vector L does contain all lengths from 1 to 

k, each PR,(R) value indicates the exact number of partitions 

and the resulting B(R,L) value yields an exact count of 

the total number of partitions. 

Since one-day recreation periods are frequently not 

used, it is also useful to derive an estimating procedure 

to determine the number of partitions of R with parts that 
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are less than or equal to t and greater. than one. Let 

Pt(R) represent the number of such partitions for a given 

Rand t. The determination of p~(R) is quite simple with 

the help of the following result: 

Theorem 4'.2 

Proof: 

Divide all the partitions of p~(R) into two mutually 

exclusive groups: I and II. Let group I consist of all 

partitions which contain one or more parts that are equal 

to one, and let group II contain all partitions which do 

not belong to group I (i.e., which do not contain? part 

equal to one). Hence 

Pt (R)I . =Nr + NII 

where NI and NII indicabe the number of partitions in I 

and II. By definition p~(R) = NII , hence 

p* (R) 
t 

NI + P~ (R) 

= p~(R) - Nr 

It will be established that there l~ a one-to-one corre-

spondence between each partition in gr-~up I and each 

partition in the set R-lG~. 

I 
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(a) By definintion each partition in 

group I is a member of the set RG~ and 

contains at least one part equal to unity. 

Removing one part equal to unity produces 

a member of R_lG~(i.e., the parts of the 

new partition sum to R-l and the greatest 

part remains ~). 

(b) Adding one part equal to unity to 

each member of R-lG~ produces a member of 

RG~ and a partition in group I (i.e., the 

new sum of the parts is R and the greatest 

part remains 9.,). 

Hence the total number of partitions in group I equals the 

total number of partitions in R-lG~. Therefore NI = p~(R-l) 

and 

With this result, if the length vector L does not 

contain ~k = 1, each p~(R) in (4.8) can be replaced with 

p~(R) to obtain a more accurate estimate B*(R,L) of the 

maximum number of partitions: 

B*(R,L) = I p*(R) = 
all ~i 

(4.9) 

Using the B*(R,L) bound for R = 8 and L -- (4,3,2) 

produces 
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B*(R,L) = Pt (8) + P: (8) + P~ (8) 

= P,+ (8) 

= 5 - 3 + 

P,+ (7) + Pa (8) - Pa (7) + P2 (8) - P2 (7) 

5 - 4 + 4 - 3 

= 2 + 1 + 1 

B*(R,L) = 4 

The B*(R,L) value for this example yields an exact count 

of the total number of partitions. In fact, the B*(R,L) 

value will be exact whenever the k-dimensiona1 vector L 

contains all integers from 2 through k. 

4.4.3 Upper Bounds on the Total Number of Permutations 

It was shown in section 4.2 that the enumerating 

algorithm will produce only permutations which belong to 

one of the subsets {PO,Pl,P2/ ••• ,Pi -I} where ~k is the kth 
k 

entry in the length vector L. This result followed 

directly from the fact that all of the permutations 

enumerated satisfy the condition 0 ~d ~ ~k-l. This 

same condition can be used to determine the range on the 

sum, Sk' of the parts of each permutation~ i.e., 

o < d ~ ~k-1 

o < R-Sk < ~k-l 

R-~k+l 2. Sk < R (4.10) 

The inequalities in (4.10) can be used to obtain upper 

bounds, BT (R,L) I on the number of per:mutations generated 

by the algorithm based on the B(R,L) limits observed 

above; i. e., 

I 
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R 
BT(R,L) = I B(Sk,L) 

sk=R-R.k+1 

or 
R 

BT(R,L) = I I PR. (Sk) (4.11 ) 
Sk=R-R.k+1 all R.. 

1. 

For R = 8 and L = (4,3,2), BT(R,L) becomes 

BT(R,L) = 

= 

8 
I B(Sk,L) 

Sk=8-2+1 

s 
I B(Sk,L) 

Sk=7 

= B(7,L) + B(a,L) 

= Pit (7) +Pa (7) +p 2 (7) +p It (8) +Pa (8) +p 2 (8) 

= 3 + 4 + 3 + 5 + 5 + 4 

BT(R,L) = 24. 

If the length vector L contains R.k = 1, then 

R 
. 1: B (Sk,L) 

Sk=R-1+1 

B (R. L) = B(R,L) 
T ' 
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and the upper bound on the number of permutations equals 

the upper bound on the number of partitions. This result 

is not unexpected since as noted above, if unity is included 

in L, every permutation enumerated is a partition. 

If L does not contain ~k = 1, theorem 4.2 can be used 

to obt.ain a more accurate estimate for BT(R,L) by replacing 

each B(Sk,L) with B*(Sk,L); i.e., 

R r 
Sk=R-~k+l 

or 

(4.12) 

Paralleling the characteristics of the upper bound 

B*(R,L) for the number of partitions, B;(R,L) will yield 

an exact count of the number of permutations if the length 

vector consists of L = (k+l,k,k-l, ••• ,2). 

Table 4.4 presents upper bounds on the number of 

partitions and permutations enumerated for several combina-

tions of length vectors and recreation days. The upper 

bounds presented in table 4.4 indicate the relative 

efficiency of the p~rtitioning algorithm for a variety of 

period lengths and recreation days. 
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Table 4.4 

Upper Bounds on the Total Numb~r of Partitions, B(R,L), and 
Permutations, BT(R,L), Enumerated by the Partitioning Algorithm 

Total Number of Recreation Days (R) 
Length 
Vector Equation 

(L) Number 8 16 26 52 104 

(3,2,1)** (4.8) 10* 30 70 252 954 
(4.11) 10 30 1'0 252 954 

(4,3,2,1)** (4.8) 15 64 2016 1(285 8,991 
(4.11) 15 64 2016 1,285 8,991 

(3,2) u (4.9) 2 3 5 9 18 
(4.12) 3 6 9 18 35 

(4;3,2)** (4.9) 4 10 21 70 252 
(4.12) 6 17 37 131 486 

(5,4,3,2)** (4.9) 5 17 50 286 1,901 
(4.12) 8 31 94 654 3,944 

(4 t 3) (4.9) 3 9 20 69 251 
(4.12) 7 23 54 194 727 

(5,4,3) (4.9) 4 16 49 285 1,900 
(4.12) 9 42 134 810 5,582 

(6,5,4,3) (4.9) 5 25 96 853 9,773 
(4.12) 11 63 253 2,385 28,287 

*Top number equals upper bound on the number of partitions; bottom number 
equals the upper bound on the number of permutations. 

**Bounds equal the exact number of partitions and permutations produced 
for this length vector. 
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If an average of two recreation days per week is 

~ssumedf the results in table 4.4 are applicable for 

schedules varying in length from 4 to 52 weeks. The 

upper bounds on the numbers of permutations and parti-

tions are well within the computational and printing 

capabilities of modern high-speed computer equipment. 

4.5 USE OF THE PARTITIONING ALGORITHM TO CONTROL SOME 
PR SCHEDULE ATTRIBUTES 

The enumeration of accep·table sets of recreation 

periods is the initial step in the sequential procedure 

for the design of one-shift PR schedules. This section 

identifies PR schedule attributes which can be controlled 

by manipulating the parameters and procedures of the 

partitioning algorithm. These attributes include: 

1. Upper and ;hower limits on recreation period 
lengths 

This limiting condition is equivalent to 

specifying the first and last entries in the length 

vector L (where ~l > t2 > ••• ~k). 

2. §pecific lengths for the recreation periods 

This condition is merely an extension of setting 

upper and lower limits on period lengths. Specifying 

each valid length is equivalent to specifying each 

component in the length vector. 

1 
'I 
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Upper and l'oW'e'r limit's on the tota'l number , 
of p'er'lods. 

This condition is equivalent to bounding the sum 
k 
I n. 

i=l ~ 
and can be easily incorporated into the basic partitioning 

algorithm. As each n. in a partial permutation is determined, 
~ 

the aggregate number of periods is compared with the upper 

limit. If the total number of periods, n l through ni' 

exceeds 'che limit, n i and n i +l , ••• ,nk are set equal to zero 

and a neM partial permutation is determined. If a complete 

enumeration has too few periods, it is excluded. 

4.. Upper and lower l'imi ts on the number of periods 
of each length. 

This limiting condition is easily incorporated into the 

enumeration algorithm. As each n. is computed, either with 

[R-S. IJ ~ 

n. = t~- in the fill procedure or with n. = n.-l in the 
~ ~ ~ 

~ 

backtrack procedure, the new result is compared with the 

bounds for that length. If n i exceeds its upper limit, it is 

reduced to that limit and the fill procedure is completed. 

If n i falls below the lower limit, ni and ni+l, ••• ,nk are 

set equal to zero and a new partial permutation is 

determined. 

5. EX'act numbe'rs 'of 'pe'ri'odsfo'rspecific lengths. 

This condition, equivalent to setting the upper and 

lower limits on the number of periods for each specified 

length equal to each other, can be incorporated into the 

partitioning algorithm oS described in 4 above. A more 
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direct procedure, however, can be used based on a modifica-

tion of the original problem defined by Rand L. 

Each partition J? for the original problem can be 

considered as the union of two subpartitions: Pl and Pz. 

The two subpartitions are distinguishable by the length 

vector used for each. The length vector Ll for the Pl 

subpartition consists only of period lengths for which the 

exact number of periods has been specified (i~e., 

Ll = {~. I~· ELand n~ is known}). The length vector L2 
J. ~ .... 

for each P 2 subpartit:ion consists of all periods lengths 

in L not included in Ll (i.e., L2 ~ {~il~i ELand t Ll}' 

The n i values for each R-i E L2 are unspecified. 

Since the ni values for the LI vector are specified, 

only one PI subpartition exists. In addition, the 

numbar of recreation days, Rl and R2, partitioned by PI 

and P2 respectively is constant for every partition, i.e., 

~.n. 
J. J" 

and 

As a result, the t~sk of determining each partition Pz 

is equivalent to finding each subpartition Pz a~d':Joining 
I 

it with Pl' Determining all Pz subpartitions is!! eguivalent 

to a reduced problem defined by Rz and L2 " 
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As an example, consider the problem defined by ~."= 15 

and L = (4,3,2) .If exactly one 4-day period is desJ:!ced 

(Le., nl :::: 1) i then Ll = (4), Rl =,4, Lz := (3,2), and 

Rz := 11. Application of the partitioning algorithm to the 

problem defuled by Rz and L2 yields two P2 partitions: 

(3,1) and (1,4) .. Adding the Pl partition to each yields 

two complete partitions of R, each with exactly one 4-day 

period: (1,3,1) and (1,1,4). 

, ': 
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'S. ALLOCATION" 'OF "'IND"IVIDUAL RECREATION' PERIODS 

!9' DAYS' 'OF" THE WEEK 

5.1 INTRODUCTION 

After individual recreation periods ha~e been determined 

by the partitioning algorithm, each period must be assigned 

to specific days of the week in a way that matches the 

allocation of recreation days by day of the week. To 

illustrate, consider the schematic representation in 

figure 5.1 of an allocated daily distribution of recreation 

days for one shift. Each ray in the star diagram represents 

one day of the week. The number of nodes on each ray 

corresponds to the number of recreation days allocated to 

Tue. / Thu. 

Mon. ---tlI---e-~~ __ - ___ -- Fri. 

Sun. Sat. 

Figure 5.1 

Star Diagram with Eleven Nodes 
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that day of the week. The star diagram indicates that 

each man will receive a total of 11 recreation days while 

on the shift: one day off on Tuesday, Saturday 6 and 

Sunday, and two days off on Monday, Wednesday, Thursday, 

and Friday. The star diagram also indicates the number of 

men assigned to this shift who will be off duty each day of 

the week: one man will be off duty each Tuesday, Saturday, 

and Sunday; and two men will be off duty each Monday, 

Wednesday, Thursday and Friday. 

Assigni~g recreation periods to specific days of the 

week is equivalent to joining adjacent nodes in a star 
, 

diag~am into clusters. As an example, if the 11 nodes of 

the star diagram in figure 5.1 are partitioned into three 

3-day periods Qnd one 2-day period (11 = 3+3+3+2), the 

s·tar diagram in figure 5.2 indicates one distribution of 

these four periods over the days of the week. The 3-day 

periods start on Monday, Wednesday, and Saturday while the 

2'-day period begins on Thursday. 

A star diagram which has its days clustered together 

into recreation periods is called a cyclic g·raph., In the 

degenerate case in which all recreation periods are one 

day long, the cyclic graph and its star diagram are 

identical. As outlined in chapter 3, cyclic graphs can 

be used to construct separation ma~T.ices which indicate the 

number of consecutive work days between each ordered pair 

of recreation periods. Each separation matrix, in turn, 
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Wed. 

Tue. 

Mon. Fri. 

Sun. Sat. 

Figure 5.2 

Cyclic Graph ·with Four Recreation Periods 
Based on the Star Diagram in Figure 5.1 

is used to determine one-shift schedules for the recreation 

periods represented in the cyclic graph. A detailed dis-

cussion of the construction and use of separation matrices 

is presented in chapter 6. 

The problem of determining all distributions of a given 

set of recreation periods over the allocated recreation days 

for each day of the week is equivalent to the problem of 

enumerati~g all cyclic. graphs for a given star diagram and 

set of recreation periods. No formula for determining :the 

number of cyclic graphs that exist for a given star diagram 

and set of recreation periods is known. Experience has 

shown that there may be no graphs in some cases, while 

.$ 
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in others" many exist. As an example, figure 5.3 illustrates 

a second cyclic graph for the recreation periods and star 

diagram used in the cyclic graph in figure 5.2. In this 

second graph, the 2-day period begins on Monday instead of 

Thursday and the 3~day period which begins on Monday in 

figure 5.2 now begins on Wednesday. It is important to 

note that the only differences between the cyclic graphs 

in figures 5 .. 2 and 5.3 are the start days for two of the 

recrea"tion periods; the total number and lengths of the 

periods used and the allocation of the individual recreation 

days over the days of the week are identical in both graphs. 

Wed. 

Tue. Thu. 

Mon. Fri. 

Sun. Sat. 

Figure 5.3 

Alternate Cyclic Graph Based on the Same 
Recreation Period Lengths and Star Diagram 

As the Cyclic Graph in Figure 5.2 
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The following sections describe an algorithm which. 

enumerates all cyclic graphs for a given star diagram and 

set of recreation periods by systematically eXfu~ining all 

feasible start arrangements of the recreation periods over 

all days of the week. The algorithm described in this 

chapter was first proposed by Dr. Philip 2:wart while a 

faculty member in the Department of Applie~d Mathematics 

and Computer Science at Washington University, and a 

consultant to the scheduling research project in which the 

author developed many of the results presented here. The 

algorithm was subsequently programmed and implemented by 

the author. 

5.2 OVERVIEW OF THE CYCLIC GRAPH ENUMERATION ALGORITHM 

This section desc~ibes the basic logic of the algorithm 

for the enumeration of all cyclic graphs for a given star 

diagram and set of recreation periods. ThE~ algbri thm 

identifies each cyclic graph by specifying the starting 

day of the week for each recreation period. 

5.2.1 Tabular Representation of Cyclic Gra.phs 

All of the information contained in a cyclic graph 

can be represented in tabular form by speci.fying the length 

and start day of the week for each recreation period. For 

example, table 5.1 describes the cyclic graph shown in 

figure 5.2. The table indicates 'there are 'three 3-day 

recrea'tion periods with one each beginning on Monday, 
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Table 5.1 

Tabular Representation of the Cyclic Graph in Figure 5.2 

Number of Starts 
Period Number 
Length of 
(Days) Periods Mon. Tue. Wed. Thu. Fri. Sat. Sun. 

3 3 1 0 1 0 0 1 

2 1 0 0 0 1 0 0 

Wednesday, and Saturday, and one 2-day period beginning 

on Thursday. Construction of the cyclic graph from the 

information in table 5.1 would reveal the number of 

0 

0 

recreation days allocated to each day of the week i.e., 

the underlying star diagram. 

As a second example, table 5.2 presents the tabular 

representation of the cyclic graph in figure 5.3. This 

second cyclic graph is based on the same star diagram 

and recreation periods used in the cyclic graph described 

in table 5.1. Comparison of tables 5.1 and 5.2 indicates 

that the only differences between the two cyclic, graphs 

are the 'start ass~gnments of the individual recreation 

periods; in table 5.2, the2-day period b~gins on Monday 

instead of Thursday and two 3-day periods begin on Wednesday 

instead of one on Wednesday and one on Monday. 
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Table 5.2 

Tabular Representation of the Cyclic Graph in Figure 5.3 
,.. 

Number of.Starts 
Period Number 
Length of 
(Days) Periods Mon. Tue. Wed. Thu. Fri. Sat. Sun. 

3 3 0 0 2 0 0 1 0 

2 I I 0 0 0 0 0 0 

Since both cyclic, graphs use the same star diagram and 

recreation periods, the only variables needed to identify 

distinct cyclic graphs are the start days for the individual 

recreation periods. The algorithm described in this chapter 

is a systematic procedure for implicitly examining all start 

arrangements of the recreation periods over all days of the 

week. 

5,2.2 Cyclic Graph Enumeration Logic 

Branching processes have been successfully used to 

enumerate solutions for a wide variety of problems and 

applications which require the implicit ex'amination of a 

large, but finite number of possible values for each 

variable of the problerci (93;94). Such processes beg'in with 

a single set which contains all Jceasible solu.tions to the 
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problem and an indeterminate number of infeasible solutions. 

This initial set is subdivided into two or more mutually 

exclusively subsets by s.pecifyi~g a different value for the 

same variable for each subset: the number of subsets created 

equals the number of distinct values that the variable can 

assume. Each subset represents a more restricted problem 

since all of the solutions within each subset have the 

additional constraint imposed by the specific value assigned 

to one variable. Each subset is divided again into two or 

more subsets with the introduction of a second constraint 

defined by the assignment of a specific value to another 

variable. All of the solutions within each second subset 

must now satisfy two constraints. 

This process of creating new subsets with the specifica-

tion of a value for one variable at each division continues 

until either: 

(1) one or more infeasibility conditions are 
encountered which indicate tha·~:. regardless 
of what values are assigned to t.he remaining 
variables I no feasible solutiom~\ will be 
found: or 

(2) all of the variables are given specific 
'Values and a feasible solution is\ obtained .. 

When either an infeasibility condition is erwountered or a 

solution is found, the value of the most rec~~ntly specified 

variable is changed and a new solution is sO\I.ght.. If all 

possible values for the most recently specifi(\~d variable 
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have been examined, the variable is left unassigned and the 

algori thm returns to the next most recently seIee'ted 

variable. This process continues until all subsets of 

solutions have been examined. 

The efficiency of such branching algorithms relies on 

the recognition and use of infeasibility conditions which 

permit early identification of large subsets {i.e., with 

few specified variables} which contain no feasible solutions. 

If an objective function is used which attaches a value to 

each feasible solution, bounds can be computed for each 

subset which can also be used to identify and discard 

subsets of solutions which can not possess the optimal 

solution. 

The algorithm used to enumerate all cyclic graphs 

for a given star diagram and set of recreation periods is 

a branching process which uses a set of variables indexed 

by day of the week and type of recreation period. The 

"value" assigned to each variable is the number of starts 

of its corresponding recreation period type on a. specified ' 

day of the weeki the "typeU of recreation period refers to 

its length; e.g., all 2-day periods are considered the same 

type. Let S .. represent the number of i type periods which 
1.J 

\ 

begin on d.ay j (j == 1 represents Monday, j == 2 represents 

Tuesday, ••• ,j == 7 represents Sunday); and let Sj represent 

a k-dimensional row vector which indicates the number of 



-183-

each type of recreation period assigned to day j; i.e., 

where k represents the number of types of recreation 

periods. (The k period types in this chapter are equivalent 

to the k lengths defined for the partitioning algorithm in 

chapter 4.) In table 5.1, k = 2 and the Sj vector or start 

arrangement for each day of the week is 81 = (1,0), 

S 2 = (0,0) I Sa = (1 f 0), S 4 = (0,1), s 5 = (0,0), S 6 = (1,0), 

and S7 = (0,0). 

Let S be the matrix defined by S = (Sl,S~, ••• ,S~.). 

Then for table 5.1, 

[ 1 0 1 0 0 1 OJ 
S = 0 0 0 1 0 0 0 • (5.1) 

The S matrix is merely an alternative statement of the 

tabular format introduced above to identify distinct cyclic 

graphs. The matrix contains seven columns, one for each 

day of the week and for table 5.1, two rows, one for each 

recreation period type (length). The total number of 

recreation periods which begin on day j is given by the sum 

of the entries in column j in the S matrix. The total number 

of recreation periods of length ~i is given by the sum of 

the entries in row i. Let N = (nl,n2/ ••• ,nk ) represent a 

partition where n. indicates the number of periods of length 
~ 

R-i' then it can be shown that 
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wherB 1 is the seven-dimensional unity vector. As an 

example, using the matrix in (5.1), 

1 
1 

(~ 0 1 0 0 1 ~). 1 (i) , Nt = 0 1 1 = 0 0 a 1 
1 
1 

which indicates that the start arrangement in the S matrix 

for table 5.1 has three starts for the i = 1 type period 

(3-day periods, ~l = 3) and one start for the i = 2 type 

period (2-day periods, ~2 = 2). 

These results also confirm the observation that the 

tabular format introduced above for the representation of 

cyclic graphs is an alternative notation for presenting 

the information contained within each graph; i.e., both 

identify the recreation period lengths L; the number of 

each period type N; and the specific start arrangement 

for each day of the week S .• 
.J 

The branchi~g process d(~scribed in this chapter uses 

the Land N vectors as constraints, and identifies each 

cyclic graph by specifying each Sj vector within the ·S 

matrix associated with each graph. The branching algorithm 

determines each cyclic graph by assigning, in step-wise' 
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fashion, specific values to the components of S .• The 
J 

number of distinctsta'rt 'arrangements that must be 

examined for each day Sj is the product of the number of 

distinct values that can be assigned to each component of 

S .• Each possible start arrangement for a day represents 
J 

a different subset of cyclic graphs. 

The generalized branching process is schematically 

illustrated in figure 5.4.. From the set of all solutions, 

day J (i.e., j = J) is selected as the first day for 

examination. Hence, the first constraint used to subdivide 

the set of all solutions is based on the assignment of 

specific values to the components of the S! coltmm of the 
J 

S matrix. The number of distinct values or start arrange-

ments that can be assigned to SJ determines the number of 

subdivisions that can be made of the original set. For 

the generalized diagram in figure 5.4, four start arrange-

ments (JI,J2,J3, and J4) are shown for day J. The procedure 

for systematically enumerating all start arrangements for 

eaoh day is described below. 

The circled number above each· node indicates the actual 

sequence in which the nodes are generated by the enumeration 

algorithm; each start arrangement or node for day J is 

fathomed by the algorithm before the next start arrange-

ment for day J is examined. Node 1 represents the subset 

of all solutions with start arrangement JI assigned to day 
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CD 

Day 
j=JJJ 

\ 

Dayr-. _________ ~ ___ ~ 
j=JJ ~ 

" / " / "/ 

I 

Figure 5.4 

Schematic Representation of the Branching Process for 
the Cyclic Graph Enumeration Algorithm 
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J (i. e., assigned to S j of the S matrix). The absence of 

any branches from node 1 indicates that an infeasibility 

condition exists and that node 1 contains no feasible 

solutions.. Infeasible conditions are defined below. Node 
~ 

2is crea-eed by assigning the next start arrangement to 

day J; again no feasible solutions are found. When start 

arrangement J3 is assigned, creating node 3, however, no 

infeasibility conditions are encountered and this subset is 

examined further. The next day is selected (JJ may be any 

day of the week other than J), and each distinct start 

arrangement for day JJ (there are five) are examined. 

Nodes 4, nand m produce subsets with no feasible solutions; 

nodes 5 and n+1, however, are examined further. A new day 

(JJJ) is selected for each node (the JJJ day from node 5 

need not be the same day selected for the JJJ day for node 

n+l) and the branching process continues (first from node 

5 and then node n+l) until either an infeasibility conditio£ 

is encountered. or a feasible Solution is obtainea~ The 

node number for the JJ3. start arrangement for day JJ,is 

specified with the literal "n" since the algoritlun will 

first eb'<plore ar~' dS yet to be determined number· of paths 

from node 5 before returning to node ,n .. 

It is important to recognize that each node in the 

branching diagram represents a subset of cyclic graphs 
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which satisfy each of the constraints which lie on the 

path from that node back to node 0; e.g., all cyclic 

graphs defined by node 5 satisfy two constraints: day.JJ 

with start arrangement JJ2 and day J with start arrangement 

J3. An acceptable cyclic graph is determined each time a 

path from node 0 has been constructed which specifies a 

start arrangement for each day of the week. The branching 

process terminates when the last start arrangement for day 
., 

J has been examined. 

5.3 BASIC CONCEPTS OF THE CYCLIC GRAPH ENUMERATION ALGORITHM 

This section introduces three concepts which are .. 

fundamental to the cylic graph enumeration algorithm. 

5.3.1 ~he Number of Recreation Period Starts for Each Day 
of the Week 

Given any star diagram and set of recreation periods 

to be assigned, it is possible to establish upper and 

lower bounds on the total number of recreation periods 

that can start from each day of the week (Le., limit~i 
k 

the sum 2: sijfor each . \ Let T be the total number J;7 
i=l 

of periods to be assigned and let </>j be the number of 

recreation days allocated to day j (i.e. the number of 

on 

nodes on ray j of the star diagram). Further, let B. J max 

and Bj min represent the maximum: and minimum number of 

period starts on day j. It is easily shown that 

.. 
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j = 1,2, ••• ,7 (5.2) 

j = 1,2, ... ,7 (5.3) 

Equation (5.2) sets the maximum J<'l,umber of period 

starts from day j equal to the number of recreation days 

,allocated to day j (4)j).* The minimum number of starts for 

day j is zero unless there are more recreation days allocated 

to day j than to day j .... l r i.e., unless cf>j-cf>j-l > O. 

As an example, the number of recreation days allocated 

to each day of the week, and the maximum and minimum starts 

for each day in the star diagram in figure 5.1 based on 

four period starts, T = 4, are presented in table 5.3. The 

maximum number of starts for each day equals the number of 

recreaticn days allocated to that day. For Monday and 

Wednesday, the minimum na~er of starts is one since for 

both days the number of nodes on the preceding day is one 

less than the number of nodes on Monc1ay and Wednesday each. 

5.3.2 Enumeration of All start Arrangements for Each 
Day of the Week 

As each day of the week is selected in the enumeration 

scheme, all distinct values (or start arrangements) which 

, can be assigned to that day must be examined~ Each start 

* '" Equation (5.2)is applicable if recreation period 
lengths do not exceed the number of rays in a star diagram. 
If .period lengths are unrestricted, equation (5.2) becomes 
B. . = min{T, cf>.}, j = 1,2,~ •• ,7. Jmax ,J' 
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Table 5.3 

Maximum and Minimum Number of Starts for 
Each Day of the Week for the Star Diagram 

in Figure 5.1* 

Mon. Tue. Wed. '1'hu. Fri 
j= 1 2 3 4 5 

Number of recreation 
days on node i ¢j= 2 1 2 2 2 

Maximum nUmber of 
period starts, B· ] max= 2 1 2 2 2 

Minimum number of 
period starts, B. = 1 0 1 0 0 

] min 

*Four recreation periods to be assigned (T=4). 

Sat. 
6 

1 

1 

0 

arrangement can be found with the followi~g information: 

(1) the upper and lower limits on the total 
number of period starts which can be 
assigned to that day, and 

(2) the total number of starts to be assigned 
for each recreation period type. 

As an example, suppose that Wednesday is selected as 

the first day (i.e., J = 3) to be examined from the star 

diagram in figure 5.1. From the bounds calculated above 

(see table 5.3), it is known that either one or two 

Sun. 
7 

, 
). 

1 
-

0 

recr(:ation periods' must begin on Wednesday. Consider first 

the assignment of exactly two period starts. (There are 

four recreation periods available: one 2-day period and 
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three 3-day periods, denoted by L = (3,2) and N = (3,1).) 

Only two start arrarg'ements are pos sible; either one 2-day 

period and one 3-day period (SJ = (l,l)) or two 3-day 

periods (SJ = (2,0». A start arrangement consistirg of 

two 2-day periods (SJ =(0,2» is not included since only 

one 2-day period is available for assignment. If only one 

period start is assigned to Wednesday, there are two 

possibilities: one 2-day period (SJ = (0,1» or one 3-day 

period (SJ = (1,0». The four start arrangements for 

Wednesday are summarized in table 5.4. 

Table 5.4 

Distinct Start Arrangements for Wednesday 
Selected as the First Day from the 

Star Diagram in Figure 5.1 

Start Number of 
t 

Number of 
Arrangement Three-Day Two-Day 

Number Starts Starts S3 

1. 1 1 (1,1) 

2. 2 0 (2 I 0) 

3. 1 0 (1,0) 

4. 0 
., 

(0 II} .l.. 
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The enumeration of all s~art arrangements for each d~y 

of the week can be accomplished with the partitioning 

algorithm described in chapter 4. Let T. represent the 
JS 

set of start arrangements for day j with exactly s starts. 

The set of all start arrangements for day j, T., can be 
J 

represented as 

The partitioning algorithm can be used to enumerate all of 

the start arrangements within each set T. with the following 
]S 

constraints: 

(1) the total number of days to be partitioned 
(R) equals the total number of starts; 
i.e~, R = aU and 

(2) the unity v~ctor with k elements is used in 
place of the k-dimensional length vector L; 
i.e., L = 1. 

As an example, the constraints for the use of the 

partitioning algorithm for enumeration of the start arrange-

ments shown in table 5.4 are k = 2 (the number of recreation 

period types), L = (1,1) (the two-dimensional unity length 

vector), and for T32 ,R = 2, and for T31 ,R = 1 (the number 

of period starts to be assigned). Beginning with R = 2, 

the algorithm produces the three permutations shown in 

table 5.5. For R :: It the partitioning algorithm produces 

the two permutations shown in table 5.6. Permutations 2 

and 3 in table 5.5, and 1 and 2 in table 5.6 correspond to 
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Table 5.5 

Start Arra.ngernents for Two Recreation Periods 
Enurnarat:ed by the Part';.tioning Algorithm 

for l'1ednesday of the Star Diagram 
in Figure 5.1 

Feasible 
Permutation Partial.! Full Start 

Number Permutation Permutation Arrangement 

l. ( . , . ) (2,0) Yes 

2. (1, .) (1,1) Yes 

3. (0, • ) (0,2) No 

Table 5.6 

Start .Arrangements for One Recreation Period 
Enumerated. by the Partitioning Algorithm 

for Wednesday of the Star Diagram 
in Figure 5.1 

Feasible 
Permutation Partial Full Start 

Number Permutation Permutation Arrangement 

1- ( . , . ) (1,0) Yes 

2. (0, • ) (0 ,1~ Yes 
.-

the four start arra!lgements shown in table 5.4. Permutation 

3 in table 5.5 is not a feasible start arrangement since it 

requires two 2-day periods. The screening of the permuta-

tions generated by the partitioning algorithm to identify 

feasible start arrangements is based on the Nand Sj vectors. 

Let N = (nl1nZI".'Pk ) represent the vector of the numbers 
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of recreation periods of each length, (where n. is the 
l. 

number of periods of length t.) and let 8. = (sl.,s2., ••. ,sk') 
l. J J J ] 

represent a specific start. arrangemen't generated by the 

partitioni~g algorithm for day j (sij represents the numbelr 

of periods of length ti assigned to start on day j). The 

start arrangement Sj is a feasible start arrangement if 

8. < N i i. e. I {s.. < n. I i = 1,2, .•• , k} • This condition 
J - 1J - 1 

insures that the number of assigned periods of each length 

(8ij ) does not exceed the number of periods of that length 

available for assignment (ni ). In the example illu$trated 

in table 5.5, N = (3,1) and for permutation 3,8. = (0,2); 
J 

since 8 j i N, the permutation is not feasible. 

If a lower bound of zero starts had been indicated 

for Wednel3day in table 5.3, one additional feasible start 

arrangement would have been generated in the example above: 

83 ,= (0,10) (L e.! the assignment of no period starts to 

Wednesday) • 

In s'ummary, all start arrangements for each day of the 

week can :be enumerated based on the following information: 

(1) the upper and lower bounds on the total 
number of starts that can be assigned to 
each day, and 

(2) the number and lengths of the recreation 
periods to be assigned. 

The start: arrangements for each day can be parti ti,oned 

into mutually exclusive sets based on the number of starts 
(j 
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in each arrangement. The nUmber of sets is determined 

directly ,from the upper and lower limits tB. and 
J max 

B. . )on the number of starts that can be assigned to 
J ml.n 

each day. Beginning with the set containing arrangements 

with the greatest number of starts (Le., B
j 

max) the 

partitioning algorithm can be used to enumerate each 

feasible start arrangement. After all feasible arrangements 

for the firgt set have been determined, the set of arrange-

ments with one less start is examined. The process continues 

until all arrangements within each set have been ~nu:r:nerated. 

5.3.3 Reduced Star Diagram 

particularly useful to understanding the enumeration 

algorithm described in this chapter is the concept of a 

reduced star diagram. As indicated above, each start 

arrangement creates a new subset of cyclic graphs. Associ~ 

ated with each subset is a reduced star diagram which contains 

only those nodes (recreation days) which have not been included 

in any assigned recreation period. 

As an example, assume that Wednes~ay 'is the first day 

examined for the star diagram in figure 5.1i· and that the 

first start assignment considered is Sa ::: (0,1) (i.e'l one 

2-day period, arra~gement 4 in table 5.4); the recreation 

period uses one node on Wednesday and one node on Thursday. 

The res'ulting redu~C!d star diagram is shown in figure 5.5; 



~--- ------

-196-

one node has been removed from both the Wednesday and 

Thursday rays of the diagram in figure 5. J." 

Wed. 

Tue. 

Fri. 

Sun. 

Figure 5.5 

Reduced Star Diagram, One Wednesday Node and 
One Thursday Node Removed from the 

Star Diagram in Figure S.l 

This reduced star diagram ana. the reduced number of 

recreation periods to be assigned can be treated as a new 

subproblem with the additional constraint that no additional 

period starts can be assigned to Wednesday. The subproblem 

is defined by: 

(1) the reduced star diagram in figure 5.5, 

(2) the reduced set of unassigned recreation 
periods, N

J
• (N

J 
represents the set of 

unassigned periods after day J has been 
specified.) In the example above, NJ = 
N-S

J 
= (3,1)-(0,1)= (3,0) indicating that 

three 3-day periods must still be assigned; 
and -
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(3) the constraint that Wednesday cannot be 
assigned additional recreation period 
starts. This condition does not prohibit 
the use of Wednesday in recreation periods 
which begin on other days. In fact, as 
evident in figure 5.5, the Wednesday ray 
contains one node which will have to be 
included in a period beginning on a different 
day of the week. 

5.4 CYCLIC GRAPH ENUMERATIO~ ALGORITHM LOGIC 

This section draws upon the concepts introduced above 

to describe the procedures and logic of the cyclic graph 

enumeration algorithm. After describing the basic iterative 

pattern of the algorithm, a detailed example is presented 

which illustrates the branching process. 

5.4.1 Iterative Process 

As each new node is examined in the branching process, 

the cyclic graph algorithm repeats the steps outlined in 

figure 5.6. The value j = 0 represents the set of solutions 

that can be obtained by enumeration of all start arrangements 

for all seven days of the week. The information associated 

with j = 0 is the original star diagram, denoted by SDo, and 

the complete set of recreation periods to be assigned to the 

cyclic graph, represented by the vector No. For every other 

value of j the information available consists of a reduced 

star diagram SD. and a reduced vector of unassigned recreation 
J 

periods N.. The four basic steps in the process of moving 
J 

from one value of j (day) to another are: 
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Set of solutions for day j 
Information available: 

star diagram, SD·, and a 
vector of unassianed periods N' J 

~ 
, . 

Determine the upper and lower 
bounds on the number of starts 
for each day using SDj and Nj' 

, r 
Select the first (next) day using 
the bounds determined in step 1. 

., r 
Select the first (next) start 
arrangement for the day selected 
in step 2 using the bounds on 
the number of starts and Njo 

. 
~ 
, 

Start arrangement creates a new 
subset of solutions. Determine the 
new reduced star diagram SDj+l 
and the new set of unassigned 
periods Nj+l' 

Figure 5.6 

Basic Logic Flow for the Cyclic Graph 
Enumeration Algorithm 

..dill ..... 
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Step 1. Calculation of the minimmu and maximum 

number of period starts (B j min and 

B. J for each day of the week. 
J max 

To select the first day to be examined from j = 0 the 

upper and lower bounds on the number of period starts for 

ea,ch day of the week are calculated based on the complete 

stclr diagram denoted by SD 0 • When j > 0, the upper and 

lower bounds are calculated based on the reduced star 

diagram SD j associated with day j. 

§..tep 2. Selection of the first (next) day to 

be assigned a specific start arrangement. 

Al·though any sequence of the seven days of the week can 

be used in the enumeration algorithm, careful selection of 

the next day to be examined can reduce the computational 

effort required to find all solutions. The day selection 

criterion utilized in this work is motivated by the fact 

that to specify a complete graph it is only necessary to 

indicate which days of the week have one or more period 

starts since once all of the periods in No have been 

assigned, any remaining days of the week must have zero 

starts. 

Hence, if days with non-zero start arrangements are 

examined as early as possible in the branching process, 

subsets of solutions requiring examination of fewer than 

seven days can be obtained for which no recreation periods 
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remain to be assigned. For each such subset, no further 

branching is necessary since all of the remaining days 

must receive zero starts.* 

In this thesis, the "next" day selected jl from each 

node is the day with the greatest number ofr'equired 

starts; i. e q 

day j' = {day jlmax B. for all j E J} 
j J min 

where J = (set of j indices associated with 

unassigned days of the week). 

If two or more days have the same maximum number of required 

starts, the day with the lowest j value is selected. 

f?.:!:.ep 3. Selection of the first (next) start 

arrangement for the current day under 

consideration. 

As described in section 5.3.2, the upper and lower 

bounds on the number of starts, and the current set of 

unassigned recreation periods associated with each selected. 

day are used as input data for the partitioning algorithm 

to enumerate all possible start arrangements for that· day_ 

Beg'inning with the set of start arrangements with the 

maximum number of starts, B. ,the partitioning algorithm J max . . 

.enumE'...r.ate.s .. each arr.angement. After all start arrangements 

* Each subset completed in this mannel.~ produces one 
cyclic graph. 
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in the initial set have been found,the algorithm is used 

to enumerate all arrangements with one less period start, 

i.e., B.- 1. This process continues until all of the. ] max 
arrangements from the set with the minimum numb ! of 

required startsB. 'n have been enumerated. .. ] m~ 

If the minimumnuinber of required starts Bj min for 

the selected day is zero, the last start arrangement 

examined for that day consists of zero starts and the 

reduced star diagram and set of' unassigned periods remain 

unchanged .. 

~~. Construction of the reduced star diagram 

an~ ~ector of unassigned periods. 

Once the first (next) start arrangement has been 

assigned, a new reduced star diagram can be constructed. 

This is done by removing the nodes from the current star 

diagram which are used in the periods just assigned. The 

new vector of unassigned periqds equals Nj +l = Nj - Sj+l' 

The new star diagram and reduced vector now serve 

as .par~ of the. initial information for another iteration 

of the algorithm. 

5.4.2 Two Example Problems 

Repeated application of the four-step cycle described 

above will lead eventually to either the enumeration of a 

feasible cyclic graph or to one of several infeasibility 

conditions which indicate that the current subset of solu-

tions does not contain any feasible graphs. Two examples 
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of the a~gorithm are presented in this section to illustrate 

the iterative process described above and also to identify 

conditions which indicate when: 

(1) the current subset contains only infeasible 
solutions, 

(2) a feasible cyclic graph has been obtained, 
and 

(3) the enumeration process should be terminated. 

To simplify the example to be presented; consider a 

four-day !tweek" consisting of days A, B, C, and D for which 

a three-week (i.e., 12 day) schedule is to be designed 

which contains seven recreation days. Further, assume that 

the seven recreation days have been allocated to the f.our 

days of the week as illustrated in the star diagram in 

figure 5.7, and that for this example, cyclic graphq will 

be enumerated for a partition of the recreation days con-' 

sisting of one 3-day period and two 2-day periods~ i.e., 

L = (3,2) and No = (1,2). 

To determine the first day to be examined, the upper 

and lower t Inds on each day of the week must be determined 

based on the star diagram in figure 5.7 and the total number 

of periods to be assigned; these bounds,based on formulas 

(5.2) and (5.3) t are shown in table 5.7. Day C with the 

highest lower bound is selected as the first day to be 

examined. The partitioning a1gol?ithm is used first to 
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A B 

D C 

Fi~u:r:e 5.7 

Initial Star Diagram for the Cyclic 
Graph :;;numeration Example 

Table 5.7 

Upper and Lower Bounds on the Number of Period 
Starts for Each Day Based on the Star 

Diagram in Figure 5.7 

Day of the Week 

A B C D 
~ 

Number of nodes 2 1 2 2 

Maximum number of 
period starts l B· max , 2 1 2 2 J , 

Minimum number of 
period starts, B' J min 0 0 1 0 
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enumerate all start arrangements for day C that contain 

exactly two period starts (the maximum number of starts 

for C); after all two-start arrangements have been 

enumerated, all one-start arrangements are generated. 

The tree structure generated by the branching algorithm 

for this e~camp1e is shown in figure 5. 8. The circled 

numbers at each node indicates the sequence of steps taken 

by the algorithm -- from step 0 (START) to step 27 (TERMINATE). 

From START, the first day selected is C; the right superscript 

on the C node: (2/1), indicates the upper and lower bounds on 

the number of starts that can be assigned to day C. Each 

branch from this node represents a specific start arrange

ment for C; the corresponding Sc vector associated with each 

arrangement is shown on each branch in the diagram. The 

initial start arrangement assigned to each day is represented 

by a horizontal branch directed to the left of each node; 

subsequent branches for each day are read in a counter

clockwise direction about the node. For example, the first 

arrangement assigned to day C is Sc == (2,0), i.e., two 

3-day periods a.nd no 2-day periods. The .last arrangement 

assigned to day C is Sc == (0,1). Following the last start 

assignment for C, the branchi!lg proce.ss is terminated. 

With the .assignment of e~ach specific start arrangel!lent, 

0Tlle~ ·oftwo possibilities can occur, either 
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@ (2,0) 
.... ------"1 

INFl* 
TERMINATE 

@ 
CiI ...... ~---·--, (2/1) (0,1) 2 INFI 

©. .... ---~ INFI 

(1,0) 3~ ____ -I 

INFI 

* l·NFl indicates infeasih,ili ty condition i 

Figure 5.8 

Tree Structure for the Cyclic Graph 
Enumeration Example 
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(1) one or more infeasibility conditions are 
encountered which indicate that the subset 
of solutions created with this arrangement 
does not contain any feasible graphs; or 

(2) no infeasibility conditions are encountered 
which indicates that the new subset may contain 
feasible graphs. 

If no infeasibility conditic~.s are encountered, the new 

subset contains exactly one feasible graph if 

(1) one start arrangement has been specified 
for each day of the week, and 

(2) all of the periods in No have been 
assigned. 

Each of these possibilities is discussed below with the 

development of the example. 

As noted above, the first start arrangement for day C 

is Sc = (2,0). This assignment leads to infeasibility 

condition 1 (INFI in figure 5.8) since the number of 

recreation periods assigned exceeds the number of periods 

available for at least one of the period types; i.e., 

Sc IN((2,0) 1 (1,2». The next start arrangement for 

C is Sc = (l,l), one 3-day period and one 2-day period. 

Since Sc satisfies Sc ~ NQ «1,1) ~ (1,2», the arrangement 

is feasible and the reduced star diagram andreduoed vector 

of unassigned periods can be constructed. The reduced 

diagram, SDC' shown in f:tgure '5.9, is .obtained by removing 

the nodes which are used in the periods for Sc = (l,lt from 

the original star diagram. The reduced se'c of unassigned 

Ii -
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periods is given by NC = No - Sc = (1,2) - (1,1) ~ (0,1); 

i.e~1 only one 2-day period remains to be assigned. 

A B 

D c 

Figure 5.9 

Reduced Star Diagram Corresponding to the 
Assignment of Two Period Starts (One 

Three-Day Period and One Two-Day 
Period) to Day C 

With the creation of the reduced star diagram and the 

reduced vector of unassigned periods, a new subprogram is 

defined and anqther iteration of the four-step cycle 

described in section 5.4.1 is initiated. The upper and 

lower bounds on the number of period starts for each day 

are calculated and used to select the next day (see table 

5.8). Day A is selected since it has the, greatest number 

(B. .) of requ'ired starts. 
J m~n 
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Table 5.8 

Upper and Lower Bounds on the Number of Period 
Starts for Each Day Based on the Reduced 

Star Diagram in Figure 5.9 

Day of the Week 

A B C D 

Number of nodes 1 1 0 0 

Maximum number of 
period starts, B. 1 1 0 0 

J max 

Minimum number of 
period starts, B· 

J min 1 0 0 0 

.~ 

Two infeasibility conditions can arise when upper and 

lower bounds on the number of period starts are calculateda 

The first, identified as INF2 in figure 5.8, only occurs 

wh~n bounds are calculated based on a reduced star diagram5 

The existence of a reduced diagram implies that one or more 

days have already been assigned specific start arrangements 

and as a result, cannot be assigned further period starts 

in subsequent iberations of the a~gorithm alo~g its current 

branch. Consequently, .thelower bound on the number of 

period starts for each previously sel'ected days" must be 

zero (day C satisfies this requirement in table 5".8). If 
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the lower bound for a previously selected day is greater 

than zero, all solutions in the current subset are infeasible. 

The INF2 infeasibility condition occurs twice in the example 

problem -- at steps 9 and 26. 

The second infeasibility condition (iden~ified as INF3 

in figure 5.8), which can also be recognized when the upper 

and lower bounds on the number of period starts are determined, 

occurs when the number of required starts for a day exceeds 

the maximum number of starts fc~ the same day; i.e., when 

B. . > B. • This condition can arise when a dispro-
J m~n J max 

portionate number of nodes exist on one ray of either an 

initial or reduced star diagram. This infeasibility con-

dition occurs twice in the example problem -- at steps 6 

and 17 in figure 5.8. 

Since neither infeasibility condition 2 or 3 exists in 

table 5.8, the algorithm continues with the enumeration of 

specific start arrangements for day A. Only two start 

arrangements are possible: (1,0) and (0,1). The first 

arrangement is rejected because SA ~ NCr i.e., (1,0) i 
(0,1) (infeasibility condition 1 at step 4). The second 

arrangement, (0,1) is feasible and one 2-day period is 

assigned to start on dirty A. 

The new reduced star diagram SDA is obtained by remov

ing the, two nodes correspondi~g to the2~day period beginning 
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on day A from the star diagram in figure 5.9. The resulting 

null star di~gram (i.e., zero nodes on all the rays) 

indicates that all of the allocated r~creation days have 

been used in the three periods assigned to start on days A 

and C; and hence, the, subset of solutions at step 5 in 

figure 5.8 contains a feasible cyclic, grapho Each of the 

remaining days that have not been examined (i.e., 13 and'D) 

are assigned zero starts. 

The first solution is shown in tabular form in table 

5.9 and as a cyclic graph in figure 5.10; the columns under 

days A and C in table 5.9 identify the start arrangement 

vectors indicated on the branches for those days in figure 

5.8. 

Table 5.9 

Tabular Representation of the First Solution for the 
Cyclic Graph Enumeration Example 

(Step 5 in Figure 5.8) 

Number of Starts 
Period Number 
Length of 
(Days) Periods A B C D 

3 1 0 0 1 0 

2 2 1 0 I 0 
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A B 

D C 

Figure 5.10 

First Cyclic Graph Solution 
(Step 5 in Figure 5.8) 

With the determination of a feasible. graph, the algorithm 

continues by seeking the next start arrangement for day A. 

Since (0,1) is the last start arrangement possible for day A, 

the algorithm backtracks to day C to determine the next start 

arrangement (if any) for C. The next arrangement for d~y C 

is (0,2); i.e., no 3-day periods and two 2-day periods. 

Since Se .::. No « 0,2) ~ (1,2», the arrangement is feasible 

and the reduced star diagram (see figure 5.11) and reduced 

vector of unassigned periods can be determined. The vector 

of unass~gned periods becomes NC = No - Se = (1,2)-(0,2) = (1,0); 
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i.e., only one 3-day period remains unassigned. The upper 

and lower bounds for each day based on NC and the star 

diagram in figure 5.11 are shown in table 5.10. The bounds 

for day A indicate infeas.ibility condition 3 (INF3 in 

figure 5.8); i.e" the lower bound on the number of starts 

on day A exceeds its upper bound. As a consequence, the 

(0,2) start arrangement produces an infeasible subset of 

solutions. 

A B 

D c 

Figure 5.11 

Reduced Star Diagram Corresponding to the 
Assignment of Two 2-day Recreation 

Periods to Day C 

Table S.lO 

Upper and Lower Bounds on the Number of Period 
Starts for Each Day Based on the Reduced 

Star Diagram in Figure 5.11 

Day of the Week 

A B C D 

Number of nodes 2 1 0 0 

Maximum number of 
period starts, Bj max 1 1 0 0 

" Minilnum number of 
period starts, Bj min 2 0 0 0 
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The (0,2) arrangement for day C is the last arrangement 

with two period starts. Next, all arrangements with one 

start are enumerated beginning with the (1,0) arrangement 

(step 7 in figure 5~8). The arrangement is feasible,and 

based upon the upper and lower bounds on the number of 

period starts for each day determined from the reduced 

star diagram and vector of unassigned periods, day Ais 

selected next. Base,r',:m upper and lower limits of one and 

zero starts respectively, three start arrangements are 

examined: (1,0), (0,1) and (0,0). The (1,0) and (0,1) 

arrangements each produce infeasibility conditions (steps 

·8 and 9 in figure 5.8). 

No infeasibility conditio~s, however, are encountered 

with the assignment of the (0,0) arramge:ment in step 10. 

Construction of the reduced star diagram SDA and the vector 

of unassigned periods NA is quite simple since no nodes are 

removed from the current star diagram SDc and no periods 

are used from the set NC• Hence, the same bounds on the 

number of starts for each day that were used to select day 

A can be used again with only one exception: in selecting 

the day for step lOt both days C and A are excluded since 

both have already been assigned a specific start arrangement. 

Day B is selected as the next day and a set::ond solution 

is eventually found at step 14 (see table 5.11 and figure 

5.12). In the second solution, the 3-day period begins on 

day C and the two 2-day periods begin on 
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Table 5.11 

Tabular Representation of the Second Solution for the 
Cyclic Graph Enumeration Example 

~ 

Period 
Length 
(Days) 

3 

2 

(Step 14 in Figure 5.8) 

Number of Starts 
Number 

'of 
Periods A B C 

1 0 0 1 

2 0 1 0 

A B 

D C 

Figure 5.12 

Second Cyclic Graph Solution 
(Step 14 in Figure 5.8) 

-

D 

0 

1 
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dayse and D. The third and final cyclic graph for this 

example, found at:;,;tep 25, is presented in table 5.12 and 

figure 5.13. ~he complete branching proceSs terminates 

at step 27 afi::er the examination of\'the last start arrange-

ment for day C. 

This sample problem also illustrates two additional 

infeasibility conditions which can be used to recognize 

subsets of sol,utions which do not contain feasible cyclic 

graphs. Bothcondi tions are discussed belm.;. 

At step 2i in figure 5.8, the (1,1) start arrangement 

is assigned to day A. Since the SA = (1,1) arrangement 

appears to be :\ceasible, the algorithm proceeds to the 

construction of the reduced star diagram SDA• In removing 

the two periods in the (1,1) arrangement from SDC (see 

figure 5.11), however, an infeasibllity condition arises on 

ray B; both periods assigned to start on day A use a recrea

tion node on day B, and hence, to construct the reduced 

di8-gram associated with the (1,1) arrangement, more nodes 

must. be removed froIn the B ray than exist on SDcw Since 

the number of nodes Oll any ray of the reduced star diagram 

cannot become less than zero, the (1,1) start arrangement 

in step 21 is not feasible (identified as INF4 in figure 5.8) •. 

The final infeasibility condition occurs at step 18. 

A£ter day D is assigned the (0,0) start arra!lgement, all 

four days of the week have been assigned specific arrangements .. 



'\ 

---~-- -- -- --

-216-

Table 5.12 

Tabular Representation of the Third Solution for the 
Cyclic Graph Enumeration Example 

Period 
Leng.th 
(D3.Ys) 

3 

2 

(Step 25 in Figure 5.8) . 

Number of Starts 
Number 

of 
Periods A B C 

1 1 0 0 

2 0 0 1 

A B 

D C 

Figure 5.13 

Third Cyclic Graph Solution 
(Step 25 in Figure 5.8) 

o 

D 

0 

1 

\ -

(j 

c·: 
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Despite this, there are still two unassigned recreation 

p~riods: i .. e~ r at step 18, Np = NQ ,- Sc - SA - SB - SD = 

(1,2) - (1,0) - (O,O) - (0,0) w (O,O) = (0,2). The exam

ination of all days of the week without the assignment of 

all recreation periods is infeasibility condition 5 (INF5 

in figure 5.8). 

"As a second example of the cyclic graph enumeration 

algorithm, consider the staF diagram in figure 5.14. This 

diagram contains 12 recreation days distributed over the 

seven days of the week. Consider t.he problem of determining 

all cyclic, graphs for this diagram if the 12 recreation days 

are partitioned into five clusters consisting of two 3-day 

Wed. 

Tue. 

Mon. -----.~~~~-* ____ ---- Fri. 

Sun. 

Figure 5.14 

Star Diagram with Twelve Nodes 
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periods and thr€!e 2-day periods: i.e~, if L = (3,2) and 

No = (2,3). The cyclic graph a~gorit1un enUmerates the 

13 solutions to this problem (see figure 5=.15) in only 

126 steps. Each solution represents a unique distribution 

of the five recreation periods over the 12 recreation nodes. 

5.4.3 Enumeration Algorithm Performance Characteristics 

The performanc.e characteristics of the cyclic graph 

algorithm for several sample problems are presented in 

tables 5.13 and 5.14.* ln each table, three star diagrams 

containing 8, 16, and 26 recreation days respectively are 

examined. In table 5.13, the recreation days are allocated 

as uniformly as possible over all seven days of the week1 

in table 5.14, the rec.reation days are distributed as if 

Friday and Saturday are busy days requiring more men on 

duty (and conversely permitting fewer men on recreation). 

Several recreation period partitions are used with each 

star diagram to provide comparative performance statistics. 
1/ 

Several observations are suggested by the data in 

tables 5.13and 5.14: 

(1) The amount of comput:er execution time required 
for a problem is proportional to the number of 
cyclic graphs to be enUmerated. 

* The data presen'ted in" columns 5 and 6 refer to the 
llumber and distribution of weekend redrea;tion periods in 
schedules constructed from the" cyclic graphs. A di'scussion 
of these properties is presented below in section 5.5. 



w w w w w 
T T T T 

M-4I-"'*~--F 

S S s S S S S S S S 
solution 1 Solution 2 Solution 3 Solution 4 Solution 5 

w w W T T T T T T T T 

M F M F ·M F M F 
I 
N' 
I-' S S S S S S S S \0 
I 

Solution G Solution 7 Sol.ution: 8 Solution 9 

W 'w W W T T T T T T 

M F M F F F 

S S -5 ·S 5 5 S 

Solution 10 Solutioll 11 Solution 12 SOlutionl3 

Fi~ure 5.15 
() 

Thirteen Cyclic Graphs Enumerated for the Star Diagram 
in Figure 5.14 (L= (3,2) and' P=(2,3» 

I' .1 

,.,;:;-



• 
Table 5.13 

Performance Characteristics of the Cyclic Graph Enumeration Algorithm for 
Ten Sample Problems with Uniform Recreation Day Distributions 

Recreat.l.·:m Number Maximum 
Period of Number Computer No. of 
Length Recreation of CPU Weekend 

Problem Vector Periods cyclic Time Recreation 
Star Diagram No. L= P= Graphs (Seas) * Periods 

8 xecreation days 

" 1- (3,2) (2,1) 3 1 1 

.*, 2. (4,2) (1,2) 3 1 1 

--s S 
16 xecxeation days 

" 3. (3,2) (4,2) 13 1 2 

* 
4. (3,2) (2,5) 28 2 2 

tI F 5. (4,3,2) (l,2,3) 66 3 2 

6. (4,3,2) (2,2,1) 44 2 2 
s s 

26 xecxeation days 
If 7. (3,2) (6,4) 77 3 3 

* 
B. (3,2) (4,7) 140 6 3 

H P 
(4,3,2) (2,4,3) 393 20 3 9. 

s s 10. (4.3.2) (3.2,4) 454 25 3 

NO. of 
Solutions 

with 
Max. No. of 

Weekend 
Reo. Periods 

3 

3 

7 

10 

30 

27 

19 

40 

191 

184 

*Execution time only, based 6n a computer code written in FORTRAN IV'and compiled 
with a E'ORTRAN G level compiler on an IBM 360/155 system. 

u 
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Table 5.14 

Performance Characteristics of the Cyclic Graph Enumeration Algorithm for 
Ten Sample Problems with Non-Uniform Recreation Day Distributions 

Recreation Number Maximum . 
Period of Number Computer No. of 
Length Recreation of CPU Weekend 

Problem Vector Periods cyclic Time Recreation 
Star Diagram No. L= P= Graphs (Sees} * Periods 

8 recreation day. 
II 1- (3,2) (2,1) 2 1 0 

* 
2. (4,2) (1,2) 0 1 0 H r 

s s .• 
16 recreaiion days 3. (3,2) (4,2) 7 1 1 

* 
4. (3,2) (~ ,5) 13 1 1 

H !' 5. (4,3,2) (1,2 1 3) 29 1 1 

6. (4,3,2) (2,2,1) 16 1 1 
s s 

26 recreation days 
7. (3,2) (6,4) 31 1 2 " 

* 
8. (3,2) (4,7) 70 3 2 

H F 9. (4,3,2) (2,4,3) 133 5 2 

10. (4,3 .. 2) (3,2,4) 109 4 2 
!; !l 

No. of 
Solutions 

with 
Max. No. of 

Weekend 
Rec. Periods 

2 

0 

7 

8 

22 

12 

17 

30 

2 

79 

"Execution time only, based on a computer code written in FORTRAN IV and compiled 
with a FORTRAN G level compiler on an IBM 360/65 ays~em. 

------~ -'--

• 

I 
N 
N 
I-' 
I 
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(2) The nnmber of graphs found for a star diagram 
is dependent on the nature of both the length 
vector L and the partition vector N. 

(3) The number of gra'phs for a star diagram and 
a given length vector L increases as the 
number of recreation periods increases (i.e., 
as the average period length decreases). 

(4) The number of cyclic graphs for a given 
length vector L increases as the number of 
recreation days R increases or as the total 
number of recreation periods increases. 

(5) For a given number of recreation days R, the 
number of graphs decreases as the days become 
less uniformly distributed over the days of 
the week. 

5.4.4 Enumeration Algorithm Logic Summary 

This section presents a summary of the algorithm to 

enumerate all cyclic graphs for a given star diagram and 

set of recreation periods. The following notation is 

utilized: 

'{j} - set of indices which identify each day of the 

week; j = 1,2, ••• ,7 (e.g., j = 1 for Monday, 

j = 2 for Tuesday, •.• ,j = 7 for Sunday) 

{i} - set of indices "Ylhich identify the sequence in 
which the d days are examined in order to find 

each graph; i = 1,2, ... ,7. 

Di - name of the ith selected day (e.g., if Tuesday 

is the first day examined Dl = 2) 

A - set of days Di which have been assigned specific 

start arra!lgenients; initially set A is empty 

(L e., A = CP). 
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U - set of days D. which have not been assigned 
,1-

specific start arrangements 

SD j - reduced star diagram obtained when day j is 
assigned a specific arrangement (original 
star diagram is SDQ) 

S. = (Sl .,S2 ., .... ,s .. , ••• ,s,;,..) - the s .. component 
J J J ~J ~J ~J 

in the Sj vector identifies the number of 

periods of length i which have been assigned 

to start on day j. The S. v-ector identifies 
J 

a specific start arrangeme:(lt for day j 

Nj = (nlj,n2.j, ••• ,nij,.··,nkj) - the nij component 
in the N. vector identifies the number of 

J 
periods of length i which remain unassigned 
after a specific arrangement has been assigned 
to day j. No is the vector of the original 

set of recreation periods to be assigned, 

N. = No - l 
J all j=DicA 

s .. 
J 

B. ,B. - upper and lower bounds on the total 
J max J min 

number of period starts which can be assigned 

to day j .. 

~I'he enumeration algorithm consists of the fo1J.mlling 

steps: 

1. Initialization: Set i = 0, j - 0, A = ~, 

2. 

u ='{jla11 j} 

Determine 

'ea.ch day. 

using SD. 
J 

1imitson'the number of' 'star't's' fer 

Calculate'{B. ,B .. Ij = l,2, ••• ,7} 
J max J m~n 

and Nj 



-------c~----,,.._.------~----

, (i) If B. 
J min > B. 

J max for i;ihy j, go to 3 

(infeasibility condition 3). 

(ii) If B. 
J min > 0 for any j E Af go to 3 

(infeasibility condition 2). 
(iii) Go to 4. 

3. BaCktrack. 
(i) If i ;::: 0 or 11 terminate. 

(ii) If i > 1, move j ;::: D. 
l. 

from A to U, let 
i ;::: i-l, go to 5. 

4. Select day for stepi in the sequence. Select 

day j t using {j I Im~X{Bj min}' j;::: Di E U} 

(i) If U is empfy, go to 3 (infeasibility 

condition 5). 
(ii) Let i = i+l, Di ;::: jl, move j ;::: Di from 

U to A, go to 6. 

5. Determine next start arrangement for day j. 

Determine next S. for D. using partitioning J l. . 

algorithm (note j ;::: Di ). 

(i) If no Sj exist~, go to 3. 

(ii) If Sj 1 Nj _ l , go to 5 (infeasibility 
condition 1). 

(iii) Go to 6. 

6. Determine reduced star diagr.§!m and lJ.nassigned 
Qeriod vector 'for day j. Determine SDj and Nj 
(Use N. = N. 1 - s.). 

J J- J 
(i) If SD j = ~(no nodes), go to 7. 

(ii) If SD. requires negative number of nodes, 
J ' 

. go to 5 (infeasibility condition 4). 

(iii} Go to 2. 

,. \ 
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Record solution. Complete solution obtained. 

Set {So = Olall j E U}, record solution, 
J 

go to 5. 

~i. 5 WEEKEND RECREATION PERIODS 

The cyclic graph enumeration algorithm described above 

can be used to determine all cyclic graphs for a given star 

diagram and set of recreation periods. Among the graphs 

obtained, however, some may be considerably more desirable 

than others for use in the design of schedules. Although 

no formula i6 known for calculating the exact number of 

schedules that can be designed from each cyclic graph, it 

is possible to iden'tify specific properties which every 

schedule derived from the same graph will possess. These 

properties can be used to identify (!yclic graphs which 

yield more desirable schedules. 

The computE~r design models described in this thesis 

use two preference measures which can be determined directly 

from each cyclic graph; these are (1) the number of weekend 

recreation periods, and (2) the number of recreation periods 

of each length that begin on each day of the week. The 

following discussion of these properties is presented in 

two parts. The first examines the relationship between the 

number of weekend recreation periods in a graph, and the 

distribution of recreation days on the Saturday and Sunday 

rays of the cyclic graph; the second describes the use of 
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the number of weekend redreation periods to acce1eratf.; 

the schedule design process. 

5.5.1 We~~end Classification of Recreation Periods 

An important schedule property which is governed by 

the distribution of recreation periods over the days of the 

week is the number of weekend recreation periods. Each 

recreation period in a seven-day cyclic graph can be 

classified as one of three types: 

·,fu1l weekend recreation period (f) - a 

recreation period which includes 
consecutive recreation days on Saturday 
and Sunday; 

·partia,;t week~nd recreation period (p) - a 
recreation period which is not a full 

weekend period; and either begins on 
Sunday or ends on Saturday~ or a 

-non-weekend recreation period {n} - a 

recreation period which is not a full 
or partial we.ekend period (i.e., 
contains neither a Saturday or a Sunday)~ 

The weekend-related characteristics of recreation periods 

having lertgths of from one to six days are shown in table 5.15. 

The number of full and partial weekend recreation 

periods which can be constructed from a star diagram is 

determined by the number of recreation days which have been 

allocated to Saturday and Sunday~ i.e., by the number of 

nodes on the Saturday and Sunday rays, n6 and n7. It 
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Table 5.15 

Weekend Classification for Recreation Periods from 
One to Six Days in Length and Beginning on 

Each Day of the Week 

Start Day of the Period 
Period ., 
Length 
(Day) l.fon. Tue. Wed. Thu. Fri. Sat. Sun. 

1 n n n n n p 'p 

2 n n n n p f p 

3 n n n p f f p 

4 n n p f f f P 

5 n p f f f f P 

6 P f f f f f P 

Note: f=full weekend recreation period, p==partia1-
weekend recreation period, and n==non-weekend recreation 
period. 

follows G1irectly from the definitions above that the maximum 

number of full weekend periods, Wf' for any star diag~am 

is given by: 

(5.4) 

The maximum numbers of full weekend recreation periodn 

possible for the sample problems illustrated in tables 5.13 

and. 5.14 are listed in column 5 of each table. It isimpor-

tant to note that the maximum number of full weekend periods 

is dependent only on the number of the rec'reation days 
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allocated to Saturday and Sunday, and is independent of 

the partition (i.e., vectors Land P) of recreation periods 

used to enumerate the cyclic graph. As a result, the 

ma~imum number of full weekend periods which a cyclic. graph 

can possess can be "read" directly from 1;,he original alloca

tion of recreation days. Hence, if the number of full weekend 

recreation periods is a valued schedule attribute, a schedule 

designer may decide to rea1~ocate recreation days in order 

to increase the potential number of full weekend periods 

that can be scheduled, even at the e~pense of achieving 

a less "optimal" manpower allocation. 

To illustrate, consider the manpower allocation for a 

10-week schedule in table 5.16. Despite the presence of 

five recreation days on Sunday (n7 = 5), a maximum of only 

one full weekend recreation period can be scheduled during 

the entire 10 weeks because of the single recreation day 

allocated to Saturday (ns = 1). Table 5.17 shows a realloca

tion of the recreation watches (one recreation day has been 

shifted from Sunday to Saturday) which allows up to two full 

weekend periods to be scheduled. Other redistributions of 

th~ recreation days in table 5.16 could also be used which. 

would permit more than two full weekend periods to be 

constructed. Any of these reallocations, however, would 

be achieved at the expense of a slight departure from the 

original U optima1" manpower allocation. It should also 



Table 5.16 

Manpower Allocation for a Ten-Week PR Schedule 
with a Maximum of One Full Weekend 

Recreation Period per Rotation Period 

Number 
of Men .Mon. Tue. Wed. ~bu. Fri. Sat. Sun. Total 

On Duty 6 7 

On Recreation 4 3 

7 

3 

8 

2 

Table 5.17 

8 

2 

9 

1 

5 

5 

Manpower Allocation for a Ten-Week PR Schedule 
with a Maximum of Two Full Weekend 

Recreation Periods per Rotation Period 

50 

20 

Number 
of Men Mon. Tue. Wed. Thu. Fri. Sat. Sun. Total· 

On Duty 6 

On Recreation 4 

7 

3 

7 

3 

8 8 

2 2 

8 

2 

6 

4 

50 

20 

be noted that formula {5. 4} indicates only the' 'theOrE:ftical 

upperp limit on the number of full weekend periods: the 

actual number of weekend periods for which feasible schedules 

can be des;igned may be les·s. 

Although the number of full weekend recreation periods 

is an important schedule attribute, it cannot by itself be 

used successfully to provide an'adequate ranking for the 
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cyclic graphs which can be enumerated from a single star 

diagram. As an example, consider the 20 sample cases 

presented in tables 5.13 and 5.l4i column 6 in each table 

indicates the number of cycli,c graphs enumerated that 

possess the maximum number pf full weekend periods; in 

some cases well over half of all of the graphs obtained 

possess the maximum number of weekend periods. 

The number of partial weekend recreation periods, Wp ' 

does not provide additional evaluative information about 

each graph once the numQer of full weekend recreation periods, 

Wf , is known because th(~ number of full and partial. weekend 

periods are not independent measures. That is, for any 

seven-ray cyclic graph containing only recreation periods 

which are less than seven days in length, the following 

identity relating Wf and Wp holds: 

(5.5) 

Result (5.5) is easily shown. Every full weekend period 

must by definition use two weekend recreation days and 

since each period is less than seven days in length, no 

more than two weekend days are used. All recreation days 

on Saturday and Sunday which are not used in a full weekend 

period must by definition be part of a partial weekend 

period. Since every partial weekend period is also less 

that! seven days long, each uses exactly one weekend recrea
J 

" 

tion day and formula (5.~t follows. 
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Since both ns and n7 are known from the oF'iginal star 

diagram~ onceWf has been specified, Wp is determined. As 

a result all cyclic graphs which have the maximum number ~f 

full weekend recreation periods also have identical numbers 

of partial weekend recreation periods. Result (5.5) also 

indicates that if the maximum number of full ~ partial 

weekend periods is desired the schedule should contain no 

full weekend periods; i.e., 

Formulas (S.4) and (5.5) also suggest that the number 

of classes of cyclic graphs, when classified in terms of 

the number of full and partial weekend recreation periods, 

produced from any star diagram is relatively small. 
,'j 

As an. 

example, consider the daily recreation allocation in table 

5.17.. The maximum number of .full weekend periods for any 

cyclic graph based on t~is allocation is two (Wf = min{2,4}= 

2); and every such graph also possesses two partial weekend 

periods (Wp = n6+n7-2Wf = 2+4-2 (2)"= 2). Only t.:woother 

distinct weekend-related classes of cyclic graphs are 

possible for this allocation: one class consisting ·of graphs 

with one full weekend period and four partial weekend periods 

(2Wf +Wp = 2(1}+4 = 2+4), and another.class consisting of 

c 

" 

\ 
\\ \', 
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cyclic graphs with no full weekend periods and six partial 

weekend periods. As a result, every cyolic, graph produced 

for the allocation in table '5.17 belo~gs to one of only 

three distinct weekend-related classes. This example also 

illustrates that the number of weekend-related classifications, 

CW11', is given by, 

(5.6) 

The l\~bility to classify graphs into Cw olasses aocording to 

their Wf values is the basis for the acceleration techniques 

discus.sed below. 

5.5.2 Aoceleration of the Design Process Based on the 
Number of Full Weekend Recreation Periods 

Schedule properties whioh can be identified in cyclic 

graphs can be used to accelerate the enumeration procedures 

used to design optimal one-shift PR schedUles in two ways; 

first by identifying cyclic graphs that can not yield 

optimal schedules, and as a result, need not be used in 

subsequent steps of the design process, and second, by 

determining the most efficient order in which the remaining 

graphs shonld be examined (i. e. I by identifying, graphs 

wpich are most likely to produce an optimal schedule). 

The usefulness of the cyclic, graph properties discussed 

in earlier sections of this ohapter in acoelerati!lg the 

schedule design process is dependent upon the relative 

-, 
I 
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importance ass~gned to each property (i.e., the higher 

the preference rating given to a schedule property, the 

more effective is the acceleration procedures that utilizes 

tha t property) • 

All of the manpower schedules described in this thesis 

were designed using the number of full weekend recreation 

periods (hereafter referred t:o as WRP) as the most important 

schedule attribute. The other schedule attribute that can 

be obtained from cyclic graphs (i.e., the number of recreation 

periods of each length that begin on each day of the wee~) 

was used in the lexicographic decision model only to distin

guish between schedules which had identical values for 

(1) the number of weekend recreation periods, (2) the 

maximum number of consecutive working weekends, (3) the 

maximum lens-th work period, and (4) the number of maximum 

length work periods (see section 2.3). 

The remainder of this section describes the use of the 

number of WRPs to accelerate the schedule design procedure. 

Two techniques are pres~nted. The first uses the following 

logic: as each cyclic graph is enumerated, it is used to 

construct a separation matrix. This matrix is then used 

with a branch-and-bound algorithm to enumerate feasible 

one~shift PR schedules. The design logic does not enumerate 
• ~ • 1\ 

another cyclic_ graph until all feasi1;lleschedUles' associated 

with the first graph have been found. 'l'his process continues 

until all cyclic graphs have been examined. 
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As each schedule is enumerated, it is compared with 

the current optimal (CO) schedule using the lexicographic 

decision model. The first attribute for comparison between 

each schedule and the CO is the number of WRPs. Let wf
CO 

and Wf represent the number of WRPs for the CO and latest 
CO schedule respectively. If Wf > Wfl the latest schedule is 

rejected; if wf
CO = Wf ' other schedule attributes must be 

compared; and finally, if Wf > wf
CO , the latest schedule 

becomes the new current optimal schedule. 

The usefulness of r.his procedure lies in the fact that 

the Wf value for a schedule can be determined directly from 

its generating cyclic graph wi'1::.hout the necessity of con-

structing the separation matrix and using the branch-and-

bound algorithm. To illustrate, if a cyclic graph is 

produced with a Wf value which is strictly less than wf
CO , 

then none of the schedules which can be generated from this 

graph can replace the CO schedule, and the graph need not 

be e*~mined further. Hence, the wf
CO value can be used to 

screen all schedules generated from the same cyclic graph 

merely by comparing Wf CO \d th the W£ value of the graph. 

Stated in another way, a cyclic graph is examined further 

if and only if its Wf satisfies the inequality~ Wi ~ wf
CO • 

In summary, the acceleration procedure consists of the 

following steps: 
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Set W CO 
f := -1 

Generate cyclic graph C: 
a. if none exist, stop. 
b. . go to step 3. 

Examine W CO. f • 
a. if W CO > 0 

f - , go to step 4. 

b. go to step 5. 

Compare Wf 
CO 

and ~6 : 
a. if Wf < Wf ' go to step 2. 

b. if W CO to step 5. > Wf ' go f -
Construct the separation matrix for C~ 

use the branch-and-bound algorithm, and 
for each schedule produced compare Wf with 
W CO. 

f . 
CO . CO a. if Wf < Wf ' reta1n Wf ' 
CO b. if Wf = Wf ' compare current 

schedule and wf
CO schedule on other 

schedule attributes, 
. CO CO c. ~f Wf > Wf ' replace Wf schedule 
with current schedule. 

6. Go to st~p 2. 

This acceleration technique can be further enhanced if 

the order in which the cyclic graphs are examined is manipulated 

S9 that a schedule with a high Wf value is likely to be found 

early in the desigl} process.. This strategy has been tested 

in the following manner. InstDad of examinfhg each cyclic 

graph as it is produced; all of the, graphs are first enumerated 

an.d,s,t,or.e.Ci •. *. , As.~,ach, graph 'is produced, it is ass'~gned to 

* This is not as difficult as it may appear. Star diagrams 
with 20 or fewer nodes usually produce fewer than 200 graphs 
(assuming all recreation periods are at least two days long). 

j .\\ 
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one of Cw classes based on its Wf value (Cw = l+min{n6,n7}). 

The classes a.rethen rank ordered beginning with the highest 

Wf value (i.e., 

{C~,C2""'CC } 
W 

all classes are represented by the set 
, th 

where C. represents the i- ranked set of 
, ~ 

graphs) • 

The graphs are now examined in sequence according to 

their class until the first schedule is found (i.e., all 

graphs in class Cl are examined first -- if a schedule is 

found, stop; if no schedule is found, all graphs in C2 are 

examined and so on). Enumeration of the first schedule 

,: eliminates the need for examining graphs in any of the 
I 

, lower ranking classes since every schedule based on those 

graphs must, by definition, have Wf < wf
co• Hence, if a 

schedule is foun~ from a graph in CI, then only the remaining 

graphs in Cl must be examined since they may also produce 

schedules with exactly wf
CO weekend recreation periods. 

Each such schedule must then be compared with the current 

optimal schedule on the basis of other preference measures. 

In summary, this procedure consists of the following 

steps: 

1. Enumerate all eye' , graphs and categorize 
each according to \ ';l.:ts Wf value. Define C 1 

as the set of all graphs with maximum W 
values, C2 as the' set of all graphs wit~ 
Wf-l weekend periods, etc. 

2. Set i = 1.' 
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Examine all graphs in C.: . ~ 

a. if one or more schedules are£ound, 
determine the best schedule in C. 
using the le~icographic decision~ 
model. Stop. . 

b. if no schedule is found, set 
i = i+l, go to ~tep 4. 

4. Compare i with CW: 

a. if i ~ CW' go to step 3. 

b. if i > CW' no schedules exist, stop_ 

,\, 
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6. THE' ENUMERATION' OF 'ONE-SHIFT CYCLIC PR SCHEDULES 

6.1 INTRODUCTION 

This chapter describes an :i.mp1icit enumeration algorithm 

to gener.ate cyclic one-shift PR schedules based on the 

properties of recreation periods in a cyclic graph. The 

relationship between work period lengths and each pair of 

ord(.!red recreation periods within a graph is utilized to 

ini~roduce the concept of a separation matrix. This matrix 

serves as a screening device to eliminate schedules which 

conta;Ln one or more work periods of unacceptable length. 

The enmn~ration algorithm uses a series of modified separa-

tion mattices to generate preferable one-shift schedUles. 

Several modifications to the enumeration procedure are also 

described which can, under certain dircumstances, signifi-

cant1y reduce the computational effort required. 

The remainder of this chapter is divided into four parts. 

Section 6.2 briefly examines the number of feasible schedules 

that can be enumerated from a single cyclic graph. The 

discussion illustrates the impossibility of using manual 

methods for all but the smallest problems (i.le., shift tours 

that are only three or four weeks long) I and the need for 

an efficient enumerating. algorithm. The concepts and use 

of s.eparation matrices are described in sections 6.3 

through 6.5. The enumeration algorithm itself is presented 

in section 6.6 and illustrated with a detailed sample 
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problem. Three acceleration techniques are described'in 

section 6.7. 

6.2 NUMBER OF FEASIBLE SCHEDULES FROM EACH CYCLIC GRAPH 

Each 'cyclic graph enumerated for a set of recreation 

periods represents a unique allocation of the periods for 

the daily distribution of recreation days represented in a 

star diagram. To obtain feasible one-shift SChedules, the 

recreation periods within the cyclic graph must be "arranged~~, 

in a feasible manner over the weeks of the shift schedule. 

As an example, consider the cyclic graph in figur.e 6.1. 

Wed. 

Tue. Thu. 

Mon. --__ - .... ~~ ... ---- Fri. 

Sun. Sat. 

Figure 6.1 

Cyclic Graph with Five Recreatipn Periods 
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The graph contains 12 recreation days '''hich are joined 

together into five recreation periods. Assume that these 

five periods are to be distributed over a' s.ix-\"eek shift 

schedule containing 30 work days and 12 recreation days. 

One feasible arrangement 0£ the five recreation periods in 

a six-week schedule is shown in f~gure 6.2. Recreation 

Period 1, which begins on Monday in the cyclic graph, is 

assigned to week 1. Period 2, which also begins on Monday, 

is ,assigned to week 2; and periods 3, 4, and 5 are assigned 
' .. 

1 

2 

Week 3 

4 

5 

6 

M T 

lR R 

2 R R 

W T S S 

R 

3 R R 

4 R R R 

5 R R 

Figure 6.2 

PR Schedule Based on the Five Recreatio~ 
Periods in Figure 6.1 
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respectively to weeks 3, 4, and 5 in the schedule. It is 

important to note that this schedule satisfies the allocation 

and period characteristics defined by the cyclic graph in 

figure 6.1; i.e., the number of recreation days on each day 

of the week in the schedule equals the number of n.ode·s on 

the corresponding ray of the cyclic graph, and the length 

and sta.ct day of each period in the schedule coincide with 

a perio~ of the same length and start day in the cyclic 

graph. Hence, the schedule in figure 6.2 contains all of 

the information needed to reconstruct the cyclic graph in 

figure 6.1. This example illustrates that each one-shift 

PR schedule uniquely defines one and only one cyclic graph. 

The inverse of this statement, however, is generally not 

true. Frequently, large numbers of schedules can be produced 

from a single cyclic graph. It can also occur that no 

feasible schedules can be derived from a graph. 

As an example of an alternate schedule derived from a 

given graph, figure 6.3 illustr~tes a second one-shift 

schedule generated from the cyclic g~:~h in figure 6.1. 

Although this schedule differs from the schedule shown in 

figure 6.2, it. retains all of the basic properties imposed 

by the generating cyclic graph; i.e., the number of recreation 

days on each day of the week matches the daily allocation of 

recreation days in the graph, and the leng~h and start day 
,,/r 

characteristi~~':'fDr each of the five recreation periods in 
/ 

figure .,6.3 ate identical to those in the generating graph. 

o 
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w T F . S S 

R 

3 R R 5 R R 

4 R R R 

Figure 6.3 

PR Schedule Based on the Five Recreation 
Periods in Figure 6.1 

The number of feasible arrangements of the recreation 

periods (where each arrangement corresponds to a distinct 

scheCiu1e) is related to the number of recreation periods n 

in the graph, and the number of weeks w in the schedule. 

As an example, in the six-week schedules shown in figures 

6.2 and 6.3, the start days for recreation periods land 2 

could have been placed in any two of the six Mondays within 

the schedule. Similarly, periods 3, 4, and 5 each had six 

.l 
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possible locations for their respective start days. Assuming 

that the position of each period within the schedule is 
, 

independent of the placement of the other periods, an upper 

bound on the total number of distinct, one-shift schedules 

(i.e., arrangements of the periods) N that can be generated 

for a w-week schedule with n recreation periods is given by 

the product of the total number of locations for each period; 
n 

• A ,..n 
~ . e., N = IT W = tv • For cyclic one-shift schedules, 'it 

i=l 
can be assumed without loss of generality that period 1 is 

always ass.igned to week 1 in the schedule, leaving only n-l 
A n-l periods to be assigned; consequently NC = W • These" 

results indicate that the five recreation periods in the 

cyclic graph in figure 6.1 can produce, at the most, a total 

of N = 65- 1 = 1,296 one-shift cyclic schedules. 
C 

Since the cyclic graph in figure 6.1 has a pair of 

period disjoint rays*, (the graph has two pairs: (Sunday, 

Monday) and (Thursday, Friday» the exact number of distinct 

non-cyclic schedules N can be calculated using the equation 

derived in appendix 10.2; i.e., 

7 
(W-R . +n . }! 

~ ~. 

N = IT k 
i=l (W-R.)! IT (n .. !) 

]. . 1 ~J J= 

-----.~*----------------

w,Ri,nij integer 

o < n. < W-R. 
~. - ~ 

Adjacent rays in a cyclic graph not joined by a 
period line (see appendix 10.2). 

_...:::...-~ __ ..o-_________ =-________ ~~~_~~--"---

(6.1) 

I 

IJ;:. 
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R. = nUmber of nodes on ray i 
~ 

n .. = number of recreation periods of type j (length) 
~J 

that start on day i; j = 1,2, ••• ,k and 
i = 1,2, ••• ,7. 

ni • = total number of periods that start in day i~ 

n. 
~. 

= ~ n ... 
j ~J 

Equation (6.1) indicates that the five periods in the cyclic 

graph in figure 6.1 can be used to produce 4,500 distinct, 

non-cyclic one-shift schedules~ and 750 cyclic schedules 

(N = N/WY. c 

As a second example, consider the cyclic graph in 

figure 6.4. This graph contains 20 recreation days combined 

into eight recreation periods: four 3-day periods and four 

2-day periods; ahd Tuesday and Wednesday are period disjoint 

rays. Using R = 20 and n = 8 in equation (6.1) indicates 

that 6,531,840 distinct non-cyclic and 653,184 distinct 

cyclic 10-week schedules can be created. 

These examples illustrate the exponential-like growth 

in the number of distinct schedules that can be produced 

from a cyclic graph as the number of weeks and recreation 

periods increase; and the enormous number of schedules that 

can exist for even relatively small cyclic graphs. Although 

equation (6.1) is not applicable for cyclic graphs 'i'lithout 

a pair of period disjoint rays, it is reasonable to believe 
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Wed. 

Tue. 

Mon. ----<~-...-......,~~ ..... ---Fri. 

Sun. 

Figure 6.4 

Cyclic Graph with Eight Recreation Periods 

that these graphs will also contain approximately the same 

numbers of schedules as has been illustrated above. This 

conjecture is strengthened in section 6.5.3 where the relation

ship l,etween the number of distinct schedules assqciated with 
'1 

',1 

a cyclic graph (whether containing period disjoint rays or 

not) and the number of tours for a modified version of the 

travelling salesman problem is established. 

6.3 WORK PERIODS DEFINED BY THE SEQUENCE OF RECREATION PERIODS 

On the surface, the enormous number of possible schedules 

that can be p:r:'oduced for even relatively small cyclic graph$ 
-::'\1. 
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presents a discouraging picture. Complete enumeration, even 

done implicitly, can be .computationally unreasonable when~-' 

hund~eds of thousands of schedules must be examined. In 

addition, the qualitative nature of many of the variables 

or cha.racteristics that are important in selecting one 

schedUle over another make the use of algorithmic schemes 

which utilize well-defined quantitative objective functions 

impractical. Both of these difficulties suggest that if 

desirable schedules are to be algorithmically determined, 

method~ must be found which significantly reduce th~ universe 

of schedules to be examined, and that these reduction methods 

should be based on constraints which reflect desirable schedule 

qualities. 

One of the most useful and important schedule character-

istics which can be used to compare and discard large subsets 

of schedules is the set of lengths of the individual work 

periods associated with each schedule. Individual work 

periods in a schedule may be conveniently defined in terms 

of the recreation periods which they separate. As an example, 

in figure 6.2 the work period in week 1 separates recreation 

periods 1 and 2. The length of the work period, four days, 

is the number of work days separating the two recreation 

periods. Hence, the work period is defined by the pair of 

recreation periods (1,2). The lengths and defining recrea

tion periods for each of the work periods in figure 6.2 are 
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summarized in table 6.1. The work periods for the schedule 

in figure 6.3 are similarly summarized in table 6.2. 

\vork 
Period 

1. 

2. 

3. 

4. 

5. 

Total Number 
Work Days 

Table 6.1 

Wo~k Period Lengths for the 
Schedule in Figure 6.2 

Defining Number of Days Between 
Recreation the Recreation Periods 
Periods (Work Period Length) 

(1,2) 4 

(2,3) 7 

(3,4) 7 

(4,5) 5 

(5,1) 7 

of 30 

Both schedules contain the same five recreation periods 

and a total of 30 work days. The £ive work periods in each 

schedule, however, are seen to vary considerably in length. 

In figure 6.2, the work periods range from four to seven 

days in length; three of the periods are exactly seven. days 

long. In figure 6.3, however, the work period lengths 

display more variance, ranging in length from a minimum of 

one day to a maximum of 11 days. On the basis of work 

,. 



J,,',_ 'i" 

Work 
Period 

1. 

2. 

3. 

4. 

5. 

Total Number 
Work Days 
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,Table 6.2 

Work Period Lengths for the 
Schedule in Figure 6.3 

Defining 
Recreation 
Periods 

(1,3 ) 

(3,5) 

(5,4) 

(4,2) 

(2,1) 

of 

Number of Days Between 
the Recreation Periods 

(Work Period Length) 

-, 
6 

1 

11 

7 

5 

30 

period lengths alone, the second schedule would be less 

desirable (and probably unacceptable) to most schedule 

designers. 

The process by which work period lengths are used to 

screen out large subsets of schedules, and also to measure 

schedules that are produced is central to the remainder of 

this chapter. In the sections that follow, the concept, 

construction, and use of a unique separation matrix 

____ ~ ________ ~"1 ____ ~ ____________________ ' ______ __ 
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associated with each cyclic graph are described. This 

matrix is used to identify schedules which satisfy upper and 
\ 

lower limits on work period lengths, and as the basis for 

the implicit enumeration algorithm to determine desirable 
I 

schedules. 

'''.4 SEPARATION MATRIX 

Associated with every cyclic graph with n recreation 

periods is a nXn matrix S, a s'eparation, matrix. Each entry I 

S •. ,' 1n the matrix represents' the number of da,Ys in the, 
~J' ' 

work, per:Lod aefined by the ordered pair of recreation periods 
(,. -~;\ 

(i, j) ! i"e., the entry s .. is the number ofconse2Jtive work , ~J 
, I 

days that separate the end of peri.od i from the beginning oJ 

period j. As an example, in the cyclic graph in figure 6.1, 

period 1 ends on Wednesday and period 2 begins on Monday. 

The S12 entry for the work period defined by the recreation 

period pair (1,2) equals four since four work days separate 

the end of period 1 from the beginning of period 2. Figure 

6.5 shows the complete separation matrix associated with' the, 

cyclic graph in figure 6.1. 

To cormtJ:uct the matrix shown in figure 6.5, the 
\ 

minimum sepai~ation values were used for each entry, (i.e., 
! 

,I 

the minimum number of days separating the end of period i 

, ,from the, beginning of peri .. od j). Diagonal entries, s .. " are 
~~ 

not 'defined, and are represented by a dash by figure 6.5'_,A 
~l '," c 

separation ma,trix in which minimum separating values are 

1.._ 

ij 

:;: ::: 
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Beginning of 
Recre~tion Period 

I 2 3 4 

- 4 (5 I 
-

5 - 0 2 

3 3 - 0 

0 0 2 -

0 0 2 4 

Figure 6.5 

Element.ary Separation Matrix for the 
Cyclic Graph in Figure 6.1 

5 

2 

3 

1 

5 

-

used for each pair of ordered recreation periods in graph 

C is said to be the elementary' 's'eparatibh'nrat'rix for C. 

By construction, each graph has only one elementary separa-

tion m::it:::-ix. Each entry S .. in an elementary matrix must 
~J 

lie in the range 

o < s .. < NR-I, i ~ j 
~J 

where NR equals the number of :rays in the graph. Hence, 

for graphs based on a seven-day week, 0 < s .. < 6 for all 
~J 

Each entry in the elementary separation matrix represents 
, 

the 'minimum numbier of C'~nsecutive work days that can exist 
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between each ordered pair of recreation periods. For most 

cyclic graphs, several additional values are possible for 

each entry due to the fact that two recreation periods can 

be separated by the minimum number of days plus one, two, 

or more weeks. As an example, figure 6.6 indicates the 

minimum length work period that can exist if recreation 

period 1 is immediately followed by period 2. As indicated 

in the matrix in figure 6.5, the minimum S12 value is four 

days. This minimum separation value can only occur if 

Week 

M T W T F s 

1 lR R R (4 work days) 

2 2R R 

3 

4 

5 

6 

Figure 6.6 

Placement of Recreation Periods 1 
and 2 for Minimum Separation 

S 

--

.I; 
(I 

Ii 





, , 
1: 

.~ 
f 
j 
j' 
I 
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periods 1 and 2 appear in consecutive weeks of a schedule. 

An alternate value for S12 can be ob'tained if periods 1 and 

2 a.~~e positioned as shown in figure 6. 7. In this alternate 

configuration, the recreation periods are now separated by 

11 consecutive work days; i.e., they are separated by the 

minimum separation value (4 days) plus one week (7 days) 

and, hence S12 = 4+7 = 11. A third value for S12 is 

possible if recreation period 2 is placed in week 4; then 

S12 becomes 18 (i.e., S12 = 4+7+7 = 18). In general, the 

values for each entry in a separation matrix can be 

Week 

, 

M T W T F s s 

1 lR R R (4 !Work deWS & 

2 7 work days ) 

3 2R R 

4 

5 

6 

Figure 6.7 

Placement of Recreation Periods 1 and 2 
for Minimum Separation Plus One Week 
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represented by 

s.. = s! . + kN
R

, 
~J ~J 

k = 0,1,2, ... 

where S!. indicates the value in the elemeIltary separation 
~J 

matrix. The number of mUltiples (k) of NR that can be 

added to the s!. value depends on the number of weeks in 
~J 

the schedule, the number of recreation periods, and the 

entry value itself. 

Thus, in addition to the unique elementary separation 

matrix for each cyclic graph, there also exist numerous 

other separation matrices, each of which contains one or 

more entries which are not equal to their elementary matrix 

values. The total number of distinct separation matric~s 

that can be generated f~om a single cyclic graph 9an be 

quite large; if each entry in an nxn separation matrix 

(there are n(n-l) non-diagonal entries in each matrix} has 

two possible values, there are 2n (n-l) distinct matrices. 

Hence, a cyclic graph with only five recreation periods 

can have over one million distinct separation matrices 

associated with it.* Despite the large number of matrices 

that may exist for a given graph, it can be shown that: all 

acceptable schedules can, in fact, be enumerated from only one 

matrix. The selection and use of that matrix is the subject 

of the following sections. 

*Assuming exactly two alternative values for each 
non-diagonal entry in the 5x5 matrix produces 

25x4 = 220 = 1,048,576. 
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6.5 USE OF THE SEPARATION ~mTIRX TO CONSTRUCT ONE-SHIFT, 

CYCLIC SCHEDULES 

In this section, a sample work schedule is used to 

illustrate how all of the information required to construct 

PR schedules can be summarized by designating selected 

entries in a separation matrix. The sample schedule is also 

used to identify properties of the designated entries which 

are used in the enumeration algorithm. 

The schedule, based on the cyclic graph in figure 6;1, 

is shown in figure 6.8. The length and defining recreation 

periods for each work period within this schedule are 

identified in table 6.3. The separation matrix to be 

discussed, shown in figure 6.9, was obtained by adding seven 

days to selected entries in the elementary matrix introduced 

1 

2 

Week 3 

4 

5 

6 

M T w T F 

lR R R 

3R R 

4 R R 

5 R 

2R R 

Figure 6.8 

'PR Schedule Based on the Cyclic 
Graph in Figure 6.1 

S 

R 

R 

, 
., 
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Table 6.3 

Work Period Lengths for the 
Schedule in Figure 6.8 

Defining 
Work Recreation 

Number of Days Between 
the aecreation Periods 

(Work Period Lengths) Period Periods 

1. 

2. 

3. 

4. 

5. 

Total Number of 
Work Days 

(1,3) 

(3,4) 

(4,5) 

(5,2) 

(2,1) 

1 

1 -
End of 2 0 Recreation 
Period 3 *10 

4 * 7 

* 
5 7 

6 

7 

5 

7 

5 

30 

Beginning of 
Recreation Period 

2 3 4 5 

4 0 * 8 '* 9 

* 7 * - 9 *10 

*10 - (7) * 8 

* 7 * 9 CD -
*0) * 

9 4 -

Figure 6.9 

Modified Separation Matrix Obtained from the 
Elementary Matrix in Figure 6.5 

;. .. -.;::;:? 
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in figure 6.5. The altered entries are identified with 

an asterisk in the upper left-hand corner of their cells. 

The selection of this particular separation matrix is 

discussed belm.,. 

All of the information contained in table 6.3 can be 

indicated by designating certain entries in the separation 

matrix shown in figure 6.9. As an example, the first work 

period in table 6.3 is six days_long and is defined by the 

ordered pair of recreation periods (1,3). This.information 

can be indicated in the matrix by circlin~ the (1,3) entry. 

In a similar manner, the information associated with each of 

the remaining viOrk periods can also be recorded in the matrix 

by circling the appropriate entries. After the five matrix 

entries have been designated, the separation matrix in fiqure 

6.9 and cyclic graph in figure 6.1 contain all of the informa

tion that is needed to construct the work schedule in figure 

6.8; the cyclic graph specifies the start day and length for 

each recreation period, and the circled entries in the separa

tion matrix describe the sequence of recreation periods and the 

number of consecutive work days between each pair of adjacent 

recreation periods. 

The significance of this example is that it illustrates 

the fact that in determining alternate schedules from a 

given cyclic graph, the only schedule properties that vary 

from schedule to schedule are (1) the sequence of recreation 

periods, and (2) the lengths of the separating work periods; 
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and, as noted above, both of these properties can be 

described by a set of designated entries in a separation 

matrix constructed from the given cyclic graph. Hence, 

the enumeration of all feasible schedules for a given cyclic 

graph with n recreation periods is equivalent to the enumera

tion of all possible sets of n entries from all of 'the 

separation matrices that can be produced from the graph. 

Quite obviously I howev,er, if no means were available to 

limit the scope of this equivalent enumeration process, 

no particular advantage would have been gained. Fortunately, 

it is not necessary to examine all separation matrices that 

can be constructed for a given cyclic graph. In fact, it is 

easily shown that all acceptable schedules can be enumerated 

from only one matrix. Selection of that matrix is discussed 

below. 

6.5.1 Selection of the Appropriate Separation Matrix 

The number of separation matrices to be examined for 

each cyclic graph can be limited by setting upper <UW) and 

lower (LW) limits on work period, lengths within each schedule. 

Setting limits on work period lengths is equivalent to 

specifying upper and lower limits on the value of each 

separation matrix entry Sij' (i.e~, Lw ~ Sij 2 Uw for all 

i,j, i ~ j). As indicated in table 6.4, the range of the 

work period lengths (range = Uw-LW) determines the number of 



-258-

distinct values that may exist for each entry in matrices 

constructed for cyclic. graphs with NR l.'ays. 

Table 6.4 

Number of Distinct Values for 
Each Separation Matrix Entry 

Work Period 
Ra.nge 

(Uw-Lw) 

o ~ Uw-Lw < NR-I* 

Uw-Lw=NR-I 

Uw-Lw > NR-l 

Number of Disti~ct 
Values for Each 

Separation Matrix 
Entry 

One or none 

One 

One or more 

*NR=number of rays in the cyclic graph. 

For all of the applications presented in this paper, 

NR = 7i thus for work period ranges up to six days no more 

than one acceptable value can exist for each matrix entry, 

and, as a result, only ~ separation matrix will exist for 

each cyclic graph. 
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As an example, the separation matrix in figure 6~9 is 

obtained from the elementary matrix in figure 6.5 if the 

upper limit on work period lengths is ten days (Uw = 10) 

and the lower limit is four days (LW = 4). Since the 

range is exactly six days, only one acceptable value is 

obtained f9r each Sij entry. As a result, this one matrix 

contains all of the information necessary to enumerate all 

acceptable schedules (i.e., all schedules based on the 

cyClic graph in figure 6.1 which contain work peri6ds that 

are between four and ten days in length). 

If a work period range of less than six da,ys is used, 

there may not be an acceptable value for every matrix 

entry. For example, if the work period limits had been set 

at Uw = 9 days and LW = 4 days above, no acceptable values 

would have been found for entries (2,5), (3,1) and (3,2). 

In such a case, these entries could not be used in the 

construction of a schedule and the number of schedules 

(i.e., sequences of recreation periods) based on this 

matrix would be correspondingly reduced. 

6~5.2 Characteristics of the Designated Matrix Entries 
Corresponding to Feasible Schedules 

In addition to limiting the search for acceptable 

schedules to a single separation matrix by designating 

upper and lower limits on work P?riod lengths, the enumer5l-

tion of all schedules for a given cyclic graph can be 

accelerate9 by utilizing characteristics which are common 

" :'{ 
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to ever~: set of designated matrix entries which describes 

a' feasible schedule. These characteristics are: 

(I) the sum of the values of the designated entries 
in the matrix must equal the number. of work 
days in the schedule; and 

(2) the separation matrix must contain one and 
only one designated entry in each row and 
column. 

The first characteristic is a quantitative statement 

of the correspondence which must exist between the work 

period lengths in a feasible schedule and the corresponding 

set of designated matrix entries. The second characteristic 

reflects the I'equirement that each recreation period of the 

cyclic graph be used once and only once in a feasible 

schedule. As an example, consider the schedule shown in 

figure 6.8, and the corresponding set of uesignated matrix 

entries shown in figure 6.9. This set of entries possesses 

both of the characteristics identified above: the values 

of the five entries sum to 30 work days, and one and only 

one designated entry appears in each row and column of the 

matrix. The first characteristic insures that the five 

work periods and five recreation periods produce a six-week 

schedule (42 days long). Since the five recreation period 

l~ngths sum to 12 days, the five work periods must contribute 

exactly 30 days. The appearance of one designated entry in 

each row and column of the matrix insures that each recrea-

tion period appears once and only once in the schedule. 
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This example illustrates that both characteristics 

are necessary properties (i.e., nb feasible schedules will' 

be found for any set of entries which does not possess both 

properties). Although necessary, the properties are ~ 

sufficient (i.e., not every set of matrix entries which 

" possesses both properties will define a feasible schedule). 

In the following section, these two feasibility 

properties are used to develop an analogy between feasible 

tours for the travelling salesman problem and feasible 

solutions to the one-shift scheduling problem. This 

analogy is used to identify an additional feasibility 

" requirement for each set of matrix entries. 

6.5.3 Analogy of the One-Shift Scheduling Problem to the 
Travellin~r Salesman Problem 

In the simplest statement of the travelling salesman 

problem, a salesman is required to visit n cities, beginning 

from his home in city I and visiting each of the other n-l 

cities once and only once before returning home. The 

salesman's problem is to select the sequence of cities 

(tour) which will minimize the total distance travelled. 

Associated with each n"'f;city travelling salesman problem 

is a nxn distance matrix, Dt, in which each matrix entry I 

{dij }, equals the travel distance between t~o cities (dij 

equals the distance "from city l1£ city j). It is not 

necessarily true that d .. = d .. ; i.e., the travel distance 
J 1. 1.J 

between two cities may differ with travel direction. 

I) 
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Associated with each visit sequence to the n cities is a 

unique set of n distance matrix entries which are defined 

by the travel sequence. The total travel distance of each 

sequence equals the sum of these n entrie~, and the optimal 

travel sequence defines the set of n d .. 's with the lowest 
~J 

sum. 

As at.'; example, figure 6.10 contains a distance matrix 
I 

for a five-city problem. The matrix contains one row and 

column for each city and displays the travel distances 

City 

Horne 1 

2 

3 

4 

5 

City 
Horne 

1 2 3 

- 4 0 
CD - 7 

10 10 -

7 7 9 

7 0) 9 

Figure 6.10 

4 5 

8 9 

9 10 

0) 8 

- (5) 
4 -

Distance Matrix for a Five-City 
Travelling Salesman Problem 
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bet,ween each pair of cities for both directions of travel 

(the entries on the main diagonal are not used). For this 

particular problem, the minimum (optimal) travel distance 

is 30, which can be achieved with four distinct travel 

sequences. Using city I as the home city, the four 

sequences are: 

I {1,2,3,4,5,1} 

2 {1,2,3,S,4,1} 
3 {1,3,4,5,2,1} 

4 {1,3,S,4,2,1} 

The five matrix entries associated with the number 3 

sequence are circled in the d,istance matrix. 

In general, an n-cit,y travelling salesman problem has 

(n-l)! distinct visit sequences that must be examined. To 

date no integer programming algorithm has been devised 

which is capable of finding the optimal trav~l sequence for 

the general n-city problem. A variety of iterative schemes 

have been attempted, but all eventually succumb to the 

enormous number of sequences that exist as the number of 

cities increases (9S). 

The analogy between the travelling salesman problem 

and the work scheduling problem is easily established with 

recognition of the equivalence between distance and separa

tion matric~s. Each separation matrix associated with an 

n-recreation period cyclic graph can also be considered as 
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a distance matrix for an n-city travelling salesman problem 

if the following correspondences are made: 

(1) each recreation period in the separation 
ma'trix corresponds to a city in the 
distance matr.ix; and 

(2) each work period length in the separ.ation 
matrix corresponds to a travel distance 
between cities in the dista.nce matrix. 

With these correspondences, use of a separation matrix to 

find work .schedules in which each recreation period appears 

once and only once i.s equivalent to using a distance matrix 

to find a travel sequence in which each city is visited 

onCe and only once. 

As an example, if the two correspondences identified 

above are applied to the separation matrix in figure 6.9, 

the matrix becomes identical in both structure and interpre-

tat ion to the distance matrix in figure 6.10_ In figure 6.9, 

the five designated entries define a feasible work schedule 

(figure 6.8), and the five designated entries in figure 6.10 

define a feasible travel sequence (sequence 3). The identical 

structure of the designated entries ,in both matrices illus

trates that the properties identified in the proceeding 

section for each set of separation matrix entries correspon-

ding to a~feasible schedule also apply, in an ana1agous 

manner, to ea.ch set of designated entries in a distance 

matrix which correspond to a feasible travel sequence~ In 

terms of the travelling salesman problem, these characteristics 

are: 
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(1) one an0 only one designated entry appears 
in each row and column (each city must be 
visited once and only once); and 

(2) the sum of the designated entries equals 
the total tra,vel distance of the sequence. 

The analogy between the work scheduling and travelling 

salesman problem indicates that the task of determining 

feasible work schedules from a separation matrix is 

equivalent to findiI?-g solutions fo~~a, special kind of 

travelling salesman problem. As illustrated above, solu

tions to bot.h problems are structurally identical; i.e .. , 

each feasible schedule ('cravel sequence) must Use (visit) 

each recreation period (city) once and only once with a 

return to the initiating period (home city). IrJ; the 

travelling salesman problem, the usual objective is to find 

the travel sequence which minimizes the total distance 

travelled. For the work scheduling problern l however, the 

objective is to enumerate schedules (travel sequenc~s) 

which contain (equal) a given number of work day,s (trr.-J.vel 

distance). 

Recognition of the equivalence between the scheduling 

and travelling sales.man problems suggests another feasib;Llity 

constraint for the set:, of designated matrix entries corre~~pon

ding to a feasible schedule. As in the travell~.p~::c-:§alesmaj!-
" i',\ 

problem, disconnected sequences (subtours) of ~he recrea-

tion periods (cities) do not produce feasible schedules 

('visit sequences), Le., the sequence of recreation periods 
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(cities) must not "return" to the initiating recreatio'i:t 

period {home city} until each recreation period (ci'ty) has 

been used (visited) once. As an example, the recreation 

period sequence described in table 6~3 is {(1,3), (3,4), (4,5), 

(5,2), (2,1)}; each two-number pair (i,j) defines a work 

period of the schedule (or leg of the travel sequence), 

and the sequence of recreation periods is {1,3,4,5,2,l}. 

Each period appears only once in the sequence before period 

). app~ars again to complete the schedule {tour}. 

To illustrate an invalid set of entries, consider the 

sequence of entries {(1,3) I (3,2), (2,1), (4,5), (5,4}} from 

the same separation matrix (figure 6.9). Although this 

sequence uses one and only one entry from each row and 

column of the matrix, and the sum of the entries equals 

30, the required amount, the entries do not define a feasible 

schedule (or travel sequence) because the seg\.;.ence is 

disconnected: the sequence {l,3,2,1,4,5,4} returns to 

period 1 before including periods 4 and 5. 

The following section describes an algorithm to enumer

ate sets of matrix entries from a given separation matrix 

which defLne feasible one-shift schedules. The algorithm 

utilizes the feasibility requirements developed in this 

and the preceeding section. 
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6.6 AN ALGORITHM FOR THE ENUMERATION OF ONE-SHIFT CYCLIC 
SCHEDULES 

This section describes an implicit enumeration scheme 

to obtain all feasible work schedules for a given separation 

matrix by constructing the unique set of matrix entries 

associated with each schedule. The efficient enumeration of 

feasible sets of separation matrix entries is achieved by 

utilizing the characteristics (feasibility constraints) 

identified in section 6.5. S~~arizing briefly, for each 

set of designated matrix entries corresponding to a feasible 

work schedule: 

(1) one and on.ly one designated entry appears 
in each row and column of the separation 
matrix (i.e., each recreation period is 
used once and only once)~ 

(2) the sum of the values of the designated 
entries equals the total number of work 
days in the schedule; and 

(3) the sequence of matrix entries is connected 
(i.e., each recreation period appears once 
in the sequence before the sequence returns 
to the initiating period). 

The logic used to enumerate feasible schedules is a 

branch-and-bound procedure (93,94). All of the basic 

elements of the algorithm are presented in this section. 

The branching rule is described first. This rule is 

derived from the requirements that feasible sets of entries 

must be connected, and must use each recreation period once. 

This is followed by a discussion of the algorithm's bounding 

procedure, which is based on the requirement that every 
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feasible schedule possess a specified number of work 

days. 

The algorithm has been used to find one-shift schedules 

with up to 10 recreation periods. The primary difficulty 

encountered in use of the algorithm on matrices which are 

greater than lOx 10 in size li.es not with an inefficiency 

of the algorithm itself, but rather with the large number 

of feasible schedules which 'frequently must be enumerated. 

Some acceleration techniques which focus the algorithm on 

more desirable schedules are presented in section 6.7. 

6.6.1 Enumeration of Feasible Sequences of Recreation 
Periods - The Branching Process 

As indicated above, the determination of all distinct 

one-shift schedules from an nxn separation matrix is 

equivalent to determination of all sequenced set of matrix 

entries 

{(i,j), (j .. k) f ••• ' (m,n), (n,i)} 

which possess the following characteristics: 

(1) the set contains exactly n entries; 

(2) the set forms a connected sequence of 
entriest and 

(3) the sum of the entries equals the total 
number of work days required in the 
schedule. 

The branching process is used to construct, entry by 

entry, all sets which satisfy properties (1) and (2) above. 

The process of constructing feasible sets is based on the 
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observation that each set of n connected matrix entries 

can be alternately described by a unique sequence of 

recreation periods containing n+l components (i.e., the 

sequence of connected matrix entries' {(i,j) ,(j,k) , ••• ,(m,n), 

(n,i)} is uniquely described by the sequence of recreation 

periods {i,j,k, ••• ,m,n,i}). Each sequence of n+l recreation 

periods which describes a set of n matrix entries satisfying 

properties (1) and (2) above, possesses the following 

characteristics: 

(1) the sequence contains exactly n distinct 
recreation periods (the first n periods in 
the sequence) i and 

(2) the sequence begins and ends with the same 
period. 

To illustrate, consider the set of five entries indicated 

in the separation matrix in figure 6.9:'{(1,3) ,(3,4) ,(4,5), 

(5,2), (2,1)}. 'l;'his set of entries which defines the feasible 

work schedule shown in figure 6.8, can be uniquely represented 

by the six-component sequence of recreation periods: 

. {1,3,4,5,2,1}. (The sequence contai~s five distinct recrea-

tion periods! and begins and ends with the same period.) 

Recalling the travelling salesman problem, the sequen~e of 

recreation periods is the analogue to the sequence of cities 

visited. The remainder of this section describes the 

branching process in terms of the enumeration of all 

feasible sequences of recreation periods • 
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To describe the process the following terms will 

be used; 

node - a specified subset of the set of all 
feasible sequences (node 0 represents 
the set of all sequences) 

branch - a directed line segment connecting two 
nodes 

tree of solutions - a graph of all the nodes and branches 
for a particular problem 

path to node k - a sequence of nodes and branches from 
node 0 to node k 

terminal node - a node representing one feasible 
sequence. 

To illustrate the process, consider the enumeration of 

all feasible sequences {rl,r2,rg ,r" } from a 3x 3 separation 

matrix_ There are a total of six feasible sequences to be 

found: {1,2,3,1}, {I,3,2,1}, l2,l,3,2}, {2,3,1,2}, {3,l,2,3}, 

and {3,2,1,3}. The tree of solutions for this problem is 

shown in figure 6.11. The circles represe.nt the nodes 

and the superscript for each node indicates the sequence 

in which the nodes ar~ formed. The equation within each 

node is the constraint imposed at that node; e.g., at node 

1, rl = 1 ind~cates that node 1 represents the set of all 

sequences with rl = 1. A sequence at any node must satisfy 

all of the constraints imposed by every node which lies on 

the path from node 0 to that node. Nod~ 14, for example, 

represents the set of all sequences with rl = 2 and rz = 1. 

The six feasible sequences for this problem are represented 

by terminal nodes 7, II, 18, 22, 29, and 33. 

'.I 
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Figure 6.11 

Tree of Solutions for the Enumeration of Feasible Sequences 
of Recreation ~eriods for a 3x3 Separation Matrix 
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To enumerate these six feasible sequences and the 

tree of solutions in figure 6.11, the process begins at 

node O. The set of all sequences, represented by node 0, is 

divided into three mutually exclusive subsets: the set of 

all solutions with rl = 1 (represented by node 1), the set 

of all solutions with rl = 2 (represented by node 13), and, 

the set of all solutions with rl = 3 (represented by node 

25) • 

Next, each of these three nodes is subdivided into 

three mutually exclusive sets. From node 13, for example, 

three sets of solutions are produced: the set of all 

solutions with r2 = 1 and rl = 2 (represented by node 14), 

the set of all solut:i.ons with r2 = 2 and rl = 2 (represented 

by node 19), and the set of all solutions with r2 = 3 and 

rl = 2 (represented by node 20). 

If each of the level 2 nodes* were now subdivided into 

three subsets, and each of these subsets further divided 

into three sets, each of the resulting 81 nodes (3~ = 81) 

would represent one sequence, defined by the four constraints 

prescribed on the path from each level 4 node to node O. 

Only six of these 81 solutions/however, is feasible. 

* The level of a node is defined to be the number of 
constraints that apply to the set of sequences represented 
by that node (e.g., in fi.gure 6.11, node 13 is a level 1 
node, node 20 is a level 2 node, node 21 is a level 3 node, 
and node 22 is a level 4 node). In a tree of solutions for 
an nXn separation matrix, all terminal nodes are n+l 
level nodes. 
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The enumeration of all 81 level 4 nodes or even all 

27 level 3 nodes (33 = 27)is not necessary however if the 

constraints identified above for each feasible sequence of 

r.ecreation periods are used. In deriving feasible sequences 

for an nxn separation matrix, these constraints are: 

(1) the first n recreation periods in each 
sequence must be distinct; and 

(2) the n+1st period in each sequence must be 
identical to its initiating (level 1) 
period. 

Use of these constraints is also illustrated in 

figure 6.11. The first constraint is used at levels 2 and 

3 to weed out subsets of solutions which use the same 

recreation period more than once. Three such subsets occur 

at level 2 (nodes 2, 19, and 36). For each of these nodes, 

marked with a 1-.1 sign, the recreation period assigned to 

rz of the sequence is identical to the period assigned to 

rl of the sequence. As a result, only six of the level 2 

nodes are used to generate nodes at level 3. Of the 18 

nodes formed at level 3, 12 also violate this feasibility 

constraint by assigning a recreation period to ra -that has 

already been assigned to rl or r2 of the sequence. ,only 

nodes 6, 10 1 17, 21, 28, and 32 satisfy this constraint. 

In general, the branching process is effectively 

completed at level n of the tree of solutions (level 3 in 

figure 6.11) because the final period in each feasible 

sequence (assigned at level n+1) must be identical to its 
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initiating period. Consequently, as shown in figure 6.11, 

only one branch descends from each of the six active nodes 

at level 3, and the period assigned at level 4 is identical 

to the initiating period for each sequence. 

To illustrate the construction of the unique work 

schedule associated with each feasible sequence of recreation 

days assume that the recreation periods to be used in the six 

sequences found in the example above come from the cyclic 

-> graph shown in figure 6.12. The graph. contains seven 

recreation days which are clustered into three recreation 

periods: period 1 which is tWQ days long and begins on 

Wed. 

Tue. 

Mon. ---___ ----.,;7/E---4!f---- Fr i. 

Sun. 

Figure 6.12 

Sample Cyclic Graph with Three 
Recreation Periods 
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Monday, period 2 which is three days long and begins on 

WednesdaYr and period 3 which is two days long and begins 

on Saturday. If upper and lower limits of 10 and 4 days 

respectively are used for work period lengths, the modified 

separation m~trix in figure 6.13 is formed. 

Wi th the informa t~ion contained in the cyclic graph in 

figure 6.12 and the se~paration matrix in figure 6.13, each 

of the six feasible seguencea of recreation periods derived 

above can be used to construct a one-shift PR schedule. The 

convention used in this thesis, without loss of generality, 

is that the initiating recreation period of a feasible 

Recreation Period 

1 2 3 

1 - 7 10 
Recreation 
Period 2 9 - 7 

3 7 9 7 

Figure 6.13 

Separation Matrix for the Cyclic Graph in Figure 6.12 
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sequence is always placed in week 1 of the schedule.* As an 

example, consider the sequence of periodl3 represented by node 

7 in figure 6.11: {1,2,3,1} which defines the following 

sequence of matrix entries: {(l,2) ,(2,3), (3 / l)}. The 

values for these entries indicate the lengths of the work 

periods used to separate each pair of recreation periods in 

the schedule. The four-week cyclic schedule based on this 

sequence is shown in figure 6.14. 

Period 1 is placed in week 1 of the schedule. Once 

the position of the first recreation period is determined, 

the remainder of the schedule can be constructed by laying 

M T W T F S S 

1 lR R 

Week 2 2 R R R 

3 3 R R 

4 

Figure 6.14 

PR Schedule constructed with the {1,2,3,1} Sequence of 
Recreation Periods and the Separation Matrix in Figure 6.13 

* This convention is not applicable for the construction 
of nm-l-cyclic schedules (see chapter 7). 
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out the work and recreation periods in the order specified 

in the feasible sequence. Since recreation period 1 begins 

on Monday and is two days long, the work period following 

it must begin on Wednesday. Since this work period 

separates recreation periods 1 and. 2, its length is given 

by matrix entry (1,2): seven days. Hence the work periOd 

begins on Wednesday of the first week and ends seven days 

later on Tuesday of the second week. The second recreation 

period, period 2, begins on Wednesday of the second week 

and ends three days later on Friday. The next 't-vork period 

which separates recreation periods 2 and 3 begins on 

Saturday of the second week and ends seven days later 

(matrix entry (2,3) = 7) on Ft:iday of the third week.. The 

third recreation period is placed on Saturday and Sunday 

of the third week and the final work period which separates 

recreation periods 3 and 1 runs from Monday through Sunday 

of the fourth week (matrix entry (3,1) = 7). Each work 

schedule associated with the other feasible sequences 

found ~Il figure 6.11 and based on the separation matrix in 

figure 6.13 are constructed in a similar manner (see figures 

6.15-6.19). 

These six schedules also illustrate two characteristics 

which can be used to reduce the computational effort associated 

with the enumeration ~f acceptable cyclic schedules. These 

I, ~ , " 

fr 
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w T F S 

2 R R R 

3 R 

F~gure 6.15 

S 

R 

PR Schedule Constructed with the {2,3,1,2} Sequence of 
Recreation Periods and the Separation Matrix in Figure 6.13 

1 

Week 2 

3 

4 

M T 

1R R 

w T F S s 
3 R H 

2 R R R 

Figure 6.16 

PR Schedule Constructed with the {3 t l,2 / 3} Sequence of 
Recreation Periods and the Separation Matrix in Figure 6.13 
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W T F S S 

3 R R 

2R R R 

. .,.:. 

Figure 6.17 

PR Schedule Construc,ted with the {1 t 3, 2, 1} Sequence of 
Recreation Periods and the Separation Matrix in Figure 6.13 

M T w T F S S 

1 3 R R 

2 

Week 3 2R R R 

4 

5 1R R 

Figure 6.18 

PR Schedule Constructed with the {3,2,1,3} Sequence of 
Recreation Periods and the Separation Matrix in Figure 6.13 
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T w T F s s 

1 2R R R 

2 

Week 3 lR R 

4 3 R R 

5 

Figure 6.19 

PR Schedule Constructed with the {2., I , 3 ,2} Sequence of 
Recreation Periods and the Separation Matrix in Figure 6.13 

characteristics are: 

(1) each feasible sequence produced by the branching 
process described above doesn'ot produc~ a 
distinct cyclic schedule, and---

(2) all distinct cyclic schedules produced by the 
branching process do not have the same period 
length. 

The use of each of these characteristics to accelerate the 

enumeration of all distinct schedules with a prespecified 

schedule period length is discussed below • 

. , 
/; 

1; 
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6.6.1.1 Distinct Cyclic Schedules 

The branching process described above is based on the 

observation that each feasible sequence of n matrix entries 

can be characterized as an unique linear permutation of n 

recreation periods (i.e., all feasible sequences can be 

found by enumerating all linear permutations of the n 

periods and adding an n+lst component which is identical to 

the first component of the permutation). As a result, the 

branching process described above produces as many fea§iible 

sequences as there are linear permutations of n periods 

(i.e., for n recreation periods, exactly n! feasible sequences 

will be found*). As an example, in the three-period problem 

above, n! = 31 = 6 feasible sequences were found. 

The work schedules constructed from the six sequences 

derived in that example illustrate that each feasible 

sequence of recreation periods does not necessarily produce 

a distinct cyclic schedule. The six cyclic schedules shown 

above actually represent only two distinct schedules, each 

shown in three different ways. The three schedules shown 

in figure 6.14, 6.15, and 6.16 are equivalent representations 

of the same cyclic schedule, and the three schedules shown in 

figures 6.17, 6.18, and 6.19 are equivalent representations 

of a .second distinct cyclic schedule. The work schedules 

* This result assumes that the n periods are distinct. 
Modification of the branching process when two or more 
periods are identical (i.e., have the same start day and 
length) is discussed in section 6.7. 
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shown in figures 6.14, 6.15, and 6.16 are equivalent cyclic 

schedules in the sense that each schedule can be obtained 

from eit..1-ter of the other two by rotating the schedule brackets 

(e~g., the schedule in figure 6.14 can be obtained from the 

schedule in figure 6.15 by rotating each bracket "down" one 

week and moving the bracket for week 4 back to week 1). 

Conversely, distinct cyclic schedules have the property that 

they can not be obtained from one another by rotating 

schedule brackets. 

The identification of sequences of 'recreation periods 

which yield equivalent cyclic schedules is quite simple. 

If the underlying (or generating) permutations* for any two 

sequences are themselves cyclic permutations of each other, 

the resulting schedules from the sequences will be equivalent. 

As an example, the underlying permuta'tions for the sequences 

used to construct the equivalent schedules in figures 6.14, 

6.15, and 6.16 are {1,2,3}, {2,3,1}, and {3/l,2}~ each is 

a cyclic permutation of the other two. Similarly, the per-

mutations for the sequences used to construct the equivalent 

schedules in figure 6.17, 6.18, and 6.19 are {l,3,2}, {3,2,l} 

and {2,1,3}; again each is a cyclic permutation of the 

other two. 
* The underlying permutation for any feasible sequence 

of n+l periods is the first n components of the sequence 
(e.g., the underlying permutation for the sequence'{1,2,3,l} 
is {l,2,3}). 
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The problem of determining the number of distinct cyclic 

schedules that can be produced from an n recreation period 

matrix is analogous to the problem of determining the total 

number of distinct seating arrangements for n persons around 

a table. It has been shown by many authors that there are 

exactly (n-l)! distinct arrangements for n distinguishable 

persons and n cyclic permutations for each arrangement. 

The distinguishing feature of each seating arrangement is 

the relative position of each person at the table with respect 

to every other person rather than the absolute location of 

each person at the table itself. 

Similarly, feasible sequences based on n distinct 

recreation periods can be used to create (n-l)! distinct 

cyclic schedules, and each distinct schedule can be represented 

in n different ways corresponding to n cyclic permutations of 

the underlying permutation associated with each feasible 

sequence. Hence, there are (n-l) !on = n! feasible sequences 

for. an n recreation period matrix a result noted above. 

As an example, consider the three recreation period problem 

(n=3) discussed above: six feasible sequences were found 

(n! = 3! = 6), two distinct cyclic schedules were constructed 

(n-l)! = (3-1)! = 2), and three equivalent sequences were 

found for each schedule (n=3). 

Enumeration of a set of (n-l)! feasible sequences, 

each corresponding to a distinct cyclic schedule can be 

accomplished with the branching process described above 

., 
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by adding the requirement that the same recreation period 

be used as the initiating (or level 1) period in every 

sequence (i.e., requiring rl = c for all sequences). With 

this additional constraint, the branching process will 

pr9duce (n-1)! feasible sequences (for an n-period problem) 

which can be used to construct (n-1)! distinct cyclic 

schedules. 

The validity of the rl constraint is based on the 

observation that each of the n underlying permutations which 

correspond to each distinct schedule can be characterized by 

the recreation period which occupies the rl component (i.e., 

each of the n underlying permutations begins with a different 

recreation period). Since there are n. distinct periods in 

each underlying permutation, each period is used as the rl 

component for one cyclic permutation. Hence, specification 

of a constant rl component for all sequences has the effect 

of eliminating exactly n-1 feasible sequences for each 

distinct schedule. 

As an example, for the n = 3 case, the underlying 

permutations for the two distinct schedules are (1) {1,2,3}, 

{3,1,2}, and {2,3,1}, and (2){1,3,2}, {3,2,1}, and {2,1,3}. 

Specification of the rl component to one value, (e.g., 

rl =1), eliminates all but one permutation for each 

schedule •. 
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Computationally, adding the requirement that rl ~ c 

(any of the n periods can be used for c) eliminates all but 

cne of the level 1 nodes from the tree of solutions. For 

example, if the constraint rl = 1 had been ~pplied to the 

tree of solutions in figure 6.11 only' that portion of the 

tree descending from node 1 would ha,ve been generated and 

only two feasible sequences would have been enumerated: 

{1,2,3,1} and {1,3,2,1}. These sequences, based on non-

cyclic permutations, produce the distinct cyclic schedules 

shown in figures 6.14 and 6.17 respectively. 

6.6.1.2 Cyclic Schedule Length 

The rotation period length of a cyclic schedule is 

the number of weeks Pw (or days Po=7Pw) required to rotate 

once throu·~h all schedule brackets. The six work schedules 

in figure 6.14 through 6.19 illustrate that the period 0 

length of distinct schedules based on the same set of recrea-

tion periods and separation matrix may be different. The 

discu.ssion in this section identifies the relationship 

between the rotation period length of a schedule and the 

total number of ,'1ork days Sw defined by the sequence of 

matrix entries associated with that schedule. 

The rotation period length of a schedule in days equals 

the sum of the recreation days R define by the cyclic graph, 

and the 'work days Sw defined by the sequence of matrix entries; 

i.e., 

(6.2) 
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since R is constant for every schedule enumerated from the 

same separation matrix, schedules with different PD values 

can only occur because of differences in their respective 

Sw values. Conversely, specification of a PD value for a 

schedule also identifies its Sw value; i. e., 

(6.3) 

where SW(PD,R) indicates that Sw is a function of both PD 

and R. 

As an example, bo~~ schedules shown in figures 6.14 

and 6.17 use ten recreation days (R = 10). The four-week 

schedule (PD=28) in figure 6.14, however, only requires 

SW(28,10) = 18 work days while the five-week schedule 

(PD=35)in figure 6.17 requires Sw(35,lO) = 25 ~.,ork days. 

The algorithm described in this chapter uses result 

(6.3) to produce schedules with a specific rotation period 

length by enumerating only sequences of matrix entries 

which sum to a Sw value specified by SW(PD,R). The use of 

this restriction as a bounding procedure is described in 

section 6.6.2. 

It is interesting to note that d.espi te ,the large number 

of feasi'ble sequences of recreation periods that can be 

enumerated from a separation matrix «n-I)! sequences from 

an nXn matrix), the number of distinct Sw values associated 

with the sequence of matrix entries is usually quite small. 
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Let ~~ represent the set of allowable integer values 

for Sw for a given set of recreation periods and a 

specific separation matrix. Each value in set Aw must 

satisfy the following constraints: 

(6.4) 

(2) (R+Sw)mod 7 = 0* • (6.5) 

In the first constraint, Uw and Lw are the upper and 

lower limits respectively on work period lengths, and n 

equals the number of work periods in each schedule. (In 

a cyclic schedule, the number of work periods equals the 

number of recreation periods.t) The second constraint 

limits Sw to values which make the sum R+SW equal to a 

multiple of seven (i.e., values which make the schedule 

period length equal to an integral number of weeks). 

Both constraints are imposed on Sw by the manner in 

which the separation matrix is constructed. The first 

constraint is easily shown. Since each entry in the matrix 

{s .. } satisfies the constraint: 
~J 

* Amod x 
integer less 
3) • 

LW < {s .. } < UW' - ~J -

= A-x[A] where I ] indicates the greatest 
x '10 

than or equal to A/x (~.g., lOmod 7 = 3-10-7 [-;7] = 

tExcept in the trivial case when either R or S are 
zero (i.e., a schedule containing no work or recrea~i.on 
days). 



the sum of any n entries from the matrix must satisfy the 

first constraint identified above. (Every Sw represents 

the sum of exactly n matrix entries.) 

To verify the second constraint, the following geometric 

interpretation of schedule period length can be used. Each 

cyclic schedule consists of an unique alternating sequence 

of work and recreation periods. Each sequence can be used 

to define a circular path on the generating cyclic graph of 

the slihedule. The path is defined to begin on the start 

ray of the first recreatioll period in the feasible sequence 

and advances ray by ray around the graph in a clockwise 

direction for each recreation and work period in the schedule 

until the ray correspondin.g to t.he last day of the final 

work period is reached. For each period, the path is 

advanced by the number of rays that equals the number of 

days in the period. Hence, the total number of rays covered 

by the entire path equals the period length of the schedule 

in days. * 

The length of the schedule rotation period in weeks can 

be obtained by counting the number of times the path forms 

a complete cycle around the seven rays of the graph. Each 

cycle (or week) begins on the start ray of the first 

rec.r.e.ation pe:riod and ends seven rays later. The period 

* Since the path may extend around the graph multiple 
times, each ray in the graph may be covered or crossed 
several. times~ each crossing is counted as one day. 
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length of a schedule will equal an integral number of weeks 

if the path ends on the ray immediately preceeding the start 

ray of the first recreation period~ The last work period 

for each feasible sequence obtained from the branching 

process described above satisfies the requirement for a 

complete cycle, that is, for sequences based on n recreation 

periods, the last work period in the schedule is defined by 

the ordered pair of recreation periods (rn,rl). Hence, the 

last work period extends the path to the ray immediately 

preceeding the start ray for period rl, thus completing 

the last cycle of the path and producing a schedule period 

length equal to an integral number of weeks. 

To illustrate how the two constraints limit the number 

of values that can exist in set Aw' consider a problem in 

which cyclic schedules are enumerated u~.ing a cyclic graph 

wi th ten recrea. tion dc.lYs (R;::::lO), and a five period (n=5) 

separation matrix with Uw ;:::: 8 and LW = 4. The (6.4) constraint 

sets the following upper and lower limits on SW; i.e., 

( 5) (4) ~ Sw ~ ( 5) (8) 

20 2. Sw ~ 40 • (6.6) 

The allowable values for Sw imposEld by the constraint (6.5) 

are more easily determined if the constraint is rewritten as: 

{

7k 

Sw;:::: 7k+(7-~od 7) 

k ;:::: o , 1 , 2. • . , i:;~ Rmod 7 = 0 

k ;:::: O,l, 2 ••• , if'\~od 7 ~ 0 

\, (6.7) 
" 
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Using (6.7), the allowable values for R - 10 (lOmod 7 = 3 f 0) 

are given by: 

Sw :::: 7k + 4 k = 0,1,2, ••• 

or 

Sw = 4,11,18,25,32,39,46, •.• (6.8) 

Combining { 6 .6) and (6. 8) yields the values for set Aw 1 L e. , 

Aw =' {25,32,39} • 

The schedule period length (in weeks) for each Sw in 

Aw is obtained by adding the R value and dividing by seven 

(e.g., Sw = 25 produces a schedule with Pw=(25+l0)/7 = 5 

weeks, S W :::: 32 produces a schedule with Pw = 6 weeks, and 

Sw = 39 produces a schedule with Pw = 7 weeks). 

Hence, in the example above, although 24 feasible 

sequences (n:::: 5, (n-I)! = 24) would be produced from the 

separation matrix (with each sequence representing a distinct 

schedule), the sum of the matrix entries associated with 

each S(3quence would sum to only one of three values: either 

25, 32. or 39 days. 

6.6.2 Enumeration of Feasible Sequences of Recreation 
Periods - The Bounding Process 

The branching procedure described in section 6.6.1 is 

used to enumerate a~l distinct cyclic schedules (regardless 

of period length) based on a given set of recreation periods and 

a unique separation ma·tri:x. The procedure enumerates one sequence 

of recreation periods for each schedule. The bounding 
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procedure described in this section is used to restrict 

the branching process to feasible sequences,<;which correspond 

to schedules with a specific period length. 

The bounding procedur~ is based on the calculation of 

upper and lm'ler bounds on the total number of work days for 

all recreation period sequences which descend from each node 

i:n the branching process. These bounds, based on the-unique 

partial sequence associated with each node, can be used to 

terminate exploration of tree branches prior to the final 

level based on the knowledge that the corresponding:xecrea .... 

tion period sequences will not produce schedules with the 

correct number of work days (i.e., the number of work days 

required to produce the desired schedule period length). 

With the use of these bounds the only sequences which are 

fully enumerated are those which are both feasible and 

oorrespond to schedules with a specific rotation period 

length. 

Initial upper and lower bounds on the total nu:mb.r1: of 

work days for all feasible sequences are calculated using 

entry values frOl'Jl the separation matrix. As the tree of 

Sollltions grows, information based on the partial sequence 

of recreation periods associated with each node in the tt'ee 

is used to improve the initial bounds (i.e., reduce the 

range between the upper and lower bounds). The bounds 

associated with each node are used to determine whether any 

. acceptabl¢ eahedules will be produced by any of the feasible 

'J 



i r
4t 

------~-----~ .. --------. 

-292-

sequences that may descend from that node~ If the bounds 

indicate that no acceptable schedules will be found, the 

node is terminated. The remainder of this section (1) 

describes how the initial bounds are calculate~ from the 

separation matrix, (2) describes how the bounds are 

improved at each node in the tree, and (3) illustrates 

~he procedure with a simple example. 

Calculation of the initial bounds for all feasible 

sequences is based on the observation that (1) the total 

number of work days associated with each feasible sequence 

is given by the sum of the matrix entries defined by the 

sequence, and (~ that each set of entries consists of one 

and only one entry from each row and column of the matrix. 

As a result, the total number of work days Sw associated 

with each set of entries can be described either as the 

sum of n "row" entries (Le., one entry from each row 'of 

the matrix), denoted as 

(6.9) 

whereri equals the matrix entry for row it or equivaiently! 

as the sum of n "column entries (i.e., one entry from each 

column of the matrix), denoted as 

(6.10) 

where c. equals the matrix entry for column j& Upper and 
J 

lower bounds for Sw are calculated by using upper and lower 

" 1/ 
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bounds on the individual terms r i and c j in equations (6.9) 

and (6.10). 

Specifically, let ~ and ~ represent lower bounds on r. c. 
1. J 

the matrix entries in each row i and column j of the separa-

tion matrix; i.e., 

~ = min s .. , i = 1,2,ooo,n (6.11) r. j 1.J 
1. 

and 

R- = min s .. , j = 1,2,.,./n (6.12) c. i 1.J 
J 

Similarly, let u r. 
1. 

and uc . 
J 

represent upper bounds on the 

matrix entries in each row i and column j; i. e. 1 

u = max Sij' i = l,2, ..• ,n r. j 1. 

(6 .13) 

and 

u = max s .. , j = l,2 , ••• ,n c. j 1.J 
J 

(6.l4) 

Using the lower bounds given in (6.11) and (6.12) on the 

values of individual matrix entries, the following results 

can be obtained. Since entries from each row i must satisfy 

r i ~ R-r ., .. e sum of the n entries in each feasible sequence 
1. 

must sa.tisfy 

n 
~ 

i=l 
r. > 

1. 

n 
2 .!/,r. 

i=l 1. 

(6.15) 

Similarly, since entries from each column j must satisfy 

c. > ~C.l the sum of the n entries in each feasible sequence 
J - J 



must satisfy 

n 
. I 
j=l 

c. > 
J 
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n 
L ~c. 

j==l J 
(6.16) 

Since the left-hand sides of (6.l5) and (6.16) both equal 

Sw (equations (6.9) and (6.l0)), a lower bound L on the 

total number of work days in any feasible sequence of n 

matrix entries is given by 

{1 n tcJ L == max JZ.r . ' .L (6.17) 
~ J=l 

An upper bound U on the total number of work days can 

be derived in a similar manner. Since r~ < u holds for ..... - r i 
every row it the sum .of n row entries in a feasible sequence 

is bounded from above by 

n 

. l 
~==1 

r· < 
~ 

n 
L U r . 

i=l ). 
(6.18) 

Similarly, since c. < u holds for every column j, J - c. 
J 

the sum of n column entries in a feasible sequence is bounded 

from above by 

n 
I 

j=l 
c. < 

J 

n 
.L U c . 
J=l J 

(6.19 ) 

Fence, an upper bound U on the total number of work days in 

any feasible sequence of n matrix entries is given by 
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(6.20) 

To illustrate the computation of these upper and lower 

bounds, consider the 4x4 separation matrix shown in figure 

";.. -

6.20. The matrix is based on the cyclid graph containing \~~ 

ten recreation days shown in figure 6.21, and is to be used 

to enumerate one-shift schedules with a five-week rotation 

period. The upper and lower bounds on the matrix entries 

within each row and column of the separation matrix are 

indicated t;o the right of each row and below each column 

(e.g., the upper and lower bounds for the entries in row 2 

are ten and seven days respectively). The U and L values 

for the matrix are circled in the lower right-hand corner 

of the figure (23 ~ Sw ~ 37). 

If the total nunlber of required work days Sl"l (i.e., the 

specific value of Sw determined from Po and R), does not 

fall w:i. thin the range [L, U 1, no sequences with the correct 

number of work days will be enumerated from this matrix. 

If, however,sw is within the range [L,U], t~1e matrix may 

contain one or more feasible sets of entries which sum to 

Sw Since the rotation period for the schedule sought in 

the example above is five weeks (i. e., P D = 35) and there 

~e ten recreation days per rotation, each feasible sequence 

must include 'a total of 25 work days. The bounds I23,3.7] 

indicate that one or more feasible sequences may exist. 
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~ved. 

Tue. 

Mon. Fri. 

Sun. 

Figure 6.20 

Cyclic Graph with Four Recreation Periods 

Recreation 
Period 

Column 
min/max 

Recreation Period 

1 2 3 4 

1 - 6 9 4 

2 10 - 7 9 

3 7 8 - 6 

4 6 7 10 -
6/10 6/8 7/10 6/9 

Figure 6.21 

Row 
min/max 

4/9 

7/10 

6/8 

6/10 

e 
Separation Matrix Based on the 

Cyclic Graph in Figure 6.20 
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In the discussion to follow, it will be shown that 

equations (6.17) and (6.20) can also be used to determine 

upper and lower bounds on the number of work days for all 

feasible sequences descending from any given node within 

the tree structure. These bounds are used to identify nodes 

from which no further branching is necessary. 

The improved bounds for each node in the tree structure 

are based ':cpv!1 a series of modified separation matrices. 

These matrices are derived from the original separation 

matrix using i~formation related to the partial sequence 

associated with each node. The partial sequence of recrea

tion periods corresponding to a given node defines one or 

more matrix entries. These entries will be contained in 

every set of entries for sequences generated from branches 

descending from that node and are said to be "dedicated" 

entries for that node. These dedicated entries can be 

used to identify other matrix entries which cannot be 

used in any feasible sequences derived f:tom that 

node. The entries which are identified as unacceptable for 

future use are said to be "voided". If voided entries are 

deleted from the separation matrix, the result is called a 

"reduced" separation matrix; this reduced array is used to 

obtain improved estimates of the upper and lower bounds U 

and L. 
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Dedicated matrix entries can be used to void other 

entries in the matrix because o.f the requirement that each 

feasible sequence of recreation periods must be a connected 

sequence and must use each recreation period once and only 

once. These requirements are used to void entries in two 

ways: 

(1) since one dedicated matrix entry can appear 
in each row and column, if entry (i,j) is 
dedicated, all other entries in both row i 
and column j can be voided; and 

(2) $ince the set of dedicated entries must 
correspond to a connected sequence, if 
period j is added to the partial sequence 

"{a,b,c,d,i, •.• }, entry (i,j) becomes 
dedicated and entries (j,i), (j,d), (j,c), 
(j,b), and (j,a) can be voided.* 

The second voiding procedure cited above is analogous to the 

requirement in the travelling salesman problem that each 

city in a feasible solution be visited exactly once before 

returning to the home city. The only exception to this rule 

occurs when the jth period is the last period selected for a 

sequence. In that case, the (j,a) entry (period a is the 

first period in the sequence) must not be voided since it is 

used in level n+l to connect the last period of the sequence 

with period a. 

Two reduced matrices are illustrated in figure 6.22 for 

partial sequences {l,3, ••• } and {l,3,2, ••• } based on the 

original separation matrix of figure 6.21. Dedicated entries 

* Additional voiding procedures are discussed in 
section 6.7.3. 
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Recreation Period 

1 2 3 " .. 6 9 4 

10 - 7 9 

7 8 - 6 

6 7 10 -
6/10 6/8 7/10 4/9 

Row 
min/max 

4/9 

7/10 

6/8 

6/10 

9 
(a) Initial Separation Matrix 

1 

2 

3 

4 

(b) 

1 

2 

3 

4 

Recreation Period 

1 2 3 4 

- - C~ 
10 - - 9 

- 8 - 6 

Row 
min/max 

Dedicated 
9/9 entries; (1,3) 

9/10 Voided 
entJ:ies: (1,2), (1,4) , 

6/8 (2,3), (3,1), 
(4,3) 

6/7 

6/10 -'liB 9/9 6/9 e 6 7 - -

Reduced Separation Matrix Associated with 
the Partial Sequence {l,3, ••• } 

Recre~ltion Period 

1 2, 3 4 

- -, Q) -
- - - 9 

- (8) - -
6 - - -

6/6 8/8 9/9 9/9 

Row 
min/max 

9/9 

9/9 

8/8 

6/6 e 

Dedicated 
entries: (3,2) 

Voided 
entries: (2,1), (3,4) , 

(4,2) 

(c) Reduced Separation Matrix Associated with 
the Partial Sequence (l,I/2 ••• J 

Figure 6.22 

Separation Matrices for Partial Sequences 
.} and {I, 3,2, • .} Based on the Initial 
Separation Matrix in Figure 6.21 

" 

;; 
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ar~ circled and voided entries are indicated by a dash. 

The voided entries are also identified to the right of 

each matrix. For both reduced matrices, individual row 

and column limits/and U and L bounds are shown. 

The value of computing these U and L bou:uds at each 

node is summarized in the following observation: if Lk 

and Uk denote the bounding limits based on the reduced 

matrix for node k, then for node k+l which descends from 

node k, it can be shown that 

(6.21) 

and 

(6 • 22) 

Verification of inequality (6.21) is easily established 

by noting that the relationship 

(6.23) 

is valid for each row i in the reduced matrices for the k 

and k+l nodes. This result follows from the observation 

that the lower limit £k+l for each row i is based on either r. 
]. 

all or a subset of the matrix entries used to determine ~k • r. 

Consider each possibility. If the set of entries in row i 

. d . 1 f b th d d' n k+ 1 n k are]. ent].ca or 0 re uce matr].ces, then N ~ N • r. r. 
]. ]. 

If, however, one or more entries are voided in row i of 

the reduced matrix for node k in order to produce the 

reduced matrix for node k+l, then either Q,k+l = Q,k ('Ir r. r. 
]. ]. 

]. 
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t k+l 
> t k depending on which entries are voided. Combining r. r. 

~ ~ 

the results of both possibilities produces inequality (6.23). 

Since the inequality in (6.23) holds for every row in 

the matrix, it follows that 

n 
.2 
~=l 

Repeating the same argument for the lower limits on the 

entries in each column in the reduced matrices for node k 

and each descendent node k+l leads to the parallel observa

tion that 

n 

.I 
J=l 

t k+l > 
c. 

J 

n 
l 

j=l 

It follows directly from equation (6.17) that LL+l ~ Lk " 

The same argument can be used to confirm the'upper bound 

result stated in. (6.22). 

Results (6.21) and (6.22) state that as each descendent 

node is generated, the U and L bounds calculated from the 

reduced matrix will be "as tight or tighter" than the corre-

sponding bounds for the parent node. This useful result is 

illustrated in figure 6.22. In only two steps, the U and L 

bounds narrow from [23,37] for level 1 to [30,34] for level 

2, and to [34,34] for level 3. Although shown for illustration 

purposes the level :3 matrix in figure 6.22 would n.ot be 

generated by the algorithm since the [30,34] bounds indicate 
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that no schedule with the correct number of work days 

(i.e.,sw= 25) can be found for any sequence descending 

from this node. 

6.6.3 The Branch-and-Bound Algorithm - A Sample Problem 

The branch-and-bound procedures described above represent 

the basic components of the algorithm used in this thesis to 

generate one-shift cyclic schedule for a given set of recrea-

tion periods and an nXn separation matrix. The algorithm 

constructs, period by period, feasible sequences consisting 

of n+l recreation periods. Associated with each sequence is 

an unique set of n separation matrix entries which define a 

one-shift cyclic schedule with the required schedule period 

length. The basic elements of the algorithm are: 

(1) a branching process based on the requirement 
that the first n recreation periods in each 
feasible sequence must be distinct, and 

(2) a bounding procedure based on the requirement 
that each feasible sequence must define a set 
of matrix entries which sum to a given value. 

Like other branch-and-bound algorithms, this procedure is 

equivalent to the enumeration of all possible recreation 

period sequences, but achieves its efficiency through implicit 

rather than explicit enumeration. 

An illustration of the use of the algori"thm to find 

schedules for the cyclic graph and separation matrix of 

figure 6.20 and 6.21 is presented below. The complete tree 

structure for the problem is shown in figure 6.23. The 

sequence in which the nodes were created is indicated by the 
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solution 1 Solution 2 

{l,2,3,4,l} {l,4,2,3,1} 

Note: Total number of rf:quired work days is 
WR=25. 

Figure 6:>23 

Partial Tree Structure for the Enu~eration of 
One-Shift Schedules Based on the 
Separation Matrix in Figure 6.21 
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number within th~ node; the right-hand superscript indicates 

the upper and lower bounds on the total number of work days 

for sequences descending from the node. The left-hand 

superscript indicates the recreation period to which the 

node corresponds. The tree structure does not indicate 

nodes created at level 2 by attempting to utilize period 1 

again at that point in the sequence, and so on for subsequent 

levels of the tree ~'~,tis has been done to simplify the pre

sentation in the figure). The complete tree structure 

indicates that two distinct schedules exist; they are shown 

in figure 6.24 and 6.25. The reduced matrices used to 

calculate the upper and lower bounds for each of the 12 

nodes in the tree structure are shown in figure 6.26. 

6.6.4 Summary of the Enumeration Algorithm 

The implici't enumeration algorithm described in sec-

tions 6.6.1 and 6.6.2 can be summarized with the use of the 

following notation: 

Lk - lower bound on the number of work days for 
each sequence enumerated from the reduced 
separation matrix at level k. 

Uk - upper bound on the number of work days for 
each sequence enumerated from the reduced 

separation matrix at level k. 
W - required number of work days in each 

feasible sequence 

V - n+l component sequence vector (v~,v2, ••• ,vn+l) 
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M T T F S S 

1 lR R 

2 2R R R 

3 3 R R R 
.~""" 

4 4R 

5 R 

Figure 6.24 

Five-Week PR Schedule Enumerated as 
Solution 1 in Figure 6.23 
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4 

5 

M 

lR 

R 

T w T F S 

R 

2 R R R 

3 R R 

Figure 6.25 

Five-Week PR Schedule Enumerated as 
Solution 2 in Figure 6.23 
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1. Nods 1 h,·,·,·,·) 
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~, .. -
10 - '7 9 2 7/10 

7 I - , l G/I , 7 1D...L'::" 4 6/10 

'/1l) 'II 1/1G V~ e 
• ll!.~f.~;~n:~tinUC 

2. /10&. 2 (1,2,',',') 

123 

~~-: ~ : :~: 
3 7 - ~ , '17 

4 • - 10 - fllO 

6/7 \i/' 7/10 'I' e 
• ;t~!.IIR!. 32, cont1J> .... 

3. /lode 3 (.1.,2.',·,·) 

.1 rt 3 • 

ln~ll;: 
4 , - • - G/6 

6/6 6/6 1/7 6/6 e 
• 25-1fa-25, o"lutioll 
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3 - - - 6 6/6 

• 5 - - - 6/6 

6/6 6/6 7/7 6/'8 
• 1<44 1J>iti&tinq recreation 
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5. No4f 5 11,2,3,4,1) 

1 2 3 4 

~~-: ~ : :~: 
) 0 - - 6 1/6 

4 , - - - fI' 

$I, '/6 7/7 Vll e 
• solution l. Backtrack to 

node 2 An4 inittat. 
" neV bran<::il. 

C. Noele {l,2,.,·,·} 
1 Z • 

~rm-: = : :~: 
3 7 - - - 7/7 

4 - - 10 - 10/10 

7/7 5/G 10/10 '/9 e 
• lIlle t.-l2, no .01ution. 

can .ld.t. lIacktnc:lc 
to node 1 anc! in! t1& t. 
" new bran.ch .. 

7. Node '7 (l.:I.·.·.·) 

1 :I 1 • 

~mr;: = : : :~:o 
3 - • - 6 6/i 

4 Ii 1 - - 6/7 

6/10 7/8 '/9 'I' e 
• "I!. \~~~;t:\ .~!~t~~:::~. 

8. Noele (1,4,·,·.·) 

1 

3 

1 3 

- - - (4) 
10 - 7 -

7 8 - ~ 

- 1 10 - 1/10 

1/10 "I 1/10 4/' e 
• 25!. WR .::. 32 * eontJ.nua, 

Figure 6.26 

t. Noc5e' (1,.,2,·,·) 

1 2 3 4 

~~-= ~ ~ :~: 
17---7/7 

4 - 7 - - 7/7 

7/7 7/7 7/7 4/4 e 
• 2!.~;~' ~.d:~~tion 

10. Ncd. 10 (1 •• ,2.l.·) 

III 4 

~~-= ~ : :~: 
J 7 - - - 1/7 

4 - 7 - - 7/7 

7/1 7/7 7/7 4/4 e 
• 1.44 tha initiaUnq 

recre.t1oll per1od. .. 

11. Node 11 [1,4.~,3.11 

1 2 1 • 

~~-: ~ : :~: 
3 7 - - - 1/7 

( - l' - - 7/7 

7/7 7/7 7/7 4/4 e 
• Soludan 2. Backtrack 

to noele 8 an" initiot .. 
A new branch. 

12. Noc5e 12 !l ••• 3.·.·) 

1 2 1 • 

~!m: : = : 1:~:0 
3 - 8 - - 8/& 

• - - 10 - 10/10 

10/10 8/8 10/10 4/4 e 
• WR<B~~~.~ ~l~~~n·o 

atld c:ontinU4. 

Reduced Separation Matrices Associated with Each 
Node in the Partial Tree Structure 

in Figure f}i,23 
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Mk - reduced n n separation matrix at level 

k (Ml is the original nxn matrix) 

L - level indicator 

P - set of n recreation periods labeled from 1 to n. 

Algorit~: 

Step 0: 

Step 1: 

Step 2: 

Step 3: 

Initialization: 

a) V = o. 
b) L = I, go to step 1. 

Find Land U for M 

a) if W ~ [LI,UI], stop, no solutions. 

b) ifWRC [Ll,Ul], setvl = It (Le., 

select period 1 as the first period 

in every sequence), go to step 2. 

(note: if Ll = W = Ul, all feasible 

sequences will produce acceptable 

schedules) 

Increment L by 1: 

a) if L = n+l, set vL = VI' store 

feasible sequence t set L = n, go 

to step 3. 

b) if L < n+l, go to step 3. 

Examine. vL : 

a} if vL = 0, set vL = pi where 

{p' = min plal1 p not in v}, go 

to step 5~ if none exist, go to 

step 4. 



• 

'Step 4: 

step 5: 

Step 6: 
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b) if v = L j, j f:- n, se~: 

vL = pI where {pi = 
min plall p > j and not in v} 

go to step 5; if none exist, go 

to step 4. 

c) if v = L n, go to step 4 .. 

Set vL = 0, L = L-l: 

a) if L = 1, stop. 

b) if L > 1, go to step 3. 

Construct ML based on V and ~-l' go 

to step 6. 

Find LL and UL fr.om ~ 

a) if W~ [LL'UL] go to step 3. 

b) if WE: [LL'UL] go to step 2. 

(note: if L = L W = UL, all feasible 

sequences from the current node will 

produce acceptable schedules 

6 .. 7 ACCELERATION TECHNIQUES FOR THE ENUMERATION ON ONE-SHIFT 
CYCLIC SCHEDULES 

This section describes three procedures for improving 

the efficiency of the enumeration algorithm described above. 

These procedures were not included in the description of the 

basic algorithm in section 6.6 because the usefulness of 

each depends upon the presence of a special feature or 

characteristic of either the input data or the enumeration 

process itself. The first procedure is useful whenever two 
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or mere identical recreation periods are present in the 

cyclic graph used to construct the separation matrix, the 

second procedure is used when uniformity of work period 

lengths is a desired schedule attribute, and the third 

procedure utilizes special features within reduced separation 

matrices to maximize the number of voided entries. 

6.7.1 Identical Recreation Periods 

In the description of the branch-and-bound'~igorithm 
,.1/ 

in section 6.6, it was shown that for separation matrices 

based on n recreation periods, a maximum of (n-l)! sequences 

of periods can be produced such that e~ach sequenoe produces 

a distinct cyclic schedule. The maximum number of sequences 

and distinct schedules is obtained only when each recreation 

period is distinct.* (Non-distinct or identical periods 

begin on the same day of the week and have the same period 

length.) When two or more identical periods exist within 

a cyclic graph, the number of distinct schedules is reduced 

(i.e., some of the (n-l)! sequences produce equivalent cyclio 

schedules). 

This section describes a modification to the branch-and-

bound algorithm which insures that each distinct schedule is 

enumerated only once. To introduce this modification, 

c.ons.i.der .. the .c.yc.li.c graph in figure 6.27. The graph contains 

* This discussion ignores the fact that some of the 
(n-l)! distinct schedules may have different schedule 
period lengths. 
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Wed. 

Tue. Thu. 

Mon. 
1 

Fri. 
4 

Sun. Sat. 

Figure 6.27 

Cyclic Graph with Two Pairs of 
Identical Recreation Periods 

two pairs of identical recreation periods: periods 1 and 2, 

and periods 3 and 4. A separation matrix based on this 

graph is shown in figure 6.28; the entry values in the 

matrix are restricted to a range of from four to nine days. 

Two cyclic schedules, based on the sequences {l,2,3,4,l} 

and {1,2,4,3,1} are shown in figures 6.29 and 6.30. The 

sequences are non-cyclic permutations of each other and 

both would be produced by the enumeration a~gorithm 

descr.ibed in section 6.6. The schedules produced by these 

sequences, however, are equivalent because of the presence 
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Recreation Period 

1 2 3 4 

1 - 5 9 9 
Recreation , 

Period 2 5 - 9 9 

3 7 7 - 4 

4 7 7 4 -

Figure 6.28 

Separation Matrix Based on the 
Cyclic Graph in Figure 6.27 

M T W T F 

1 1R R 

2 2R R 
Week 

3 3R 

4 4R 

5 

Fig.ure 6.29 

S S 

R R 

R R 

PR Schedule BaSed on the {1,2,3,4,l} Sequence of 
Recreation Periods and the Separation 

Matrix in Figure 6~28 



Week 

1 

2 

3 

4 

5 

M 

lR 

2R 

-312-

T W T F S 

R 

R 

4R R R 

3R R R 

Figure 6.30 

PR Schedule Based on the {1,2,4,3,1} Sequence of 
Recreation Periods and the Separation 

Matrix in Figure 6.~8 

of identical recreation periods. The acceleration procedure 

described in this section modifies the algorithm so that only 

one sequence is fully enumerated for each distinct schedule. 

(Hence, in the example above, the modified algorithm would 

enumerate either sequence {l,2,3,4,l} or sequence {1,2,4,3,1}, 

but not poth.) 

To understand the motivation for the acceleration 

procedure, it is useful to examine the tree structure for 
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the sequences discussed above. A partial tree d,iagram 

illustrating the enumeration of these sequences is shown 

in figure 6.31. Using the recreation period labels assigned 

in figure 6.29, and recalling that the algorithm uses the 

lowest numbered period eligible for each descendant node, 

the first sequence enumerated is {l,2,3,4,l}. After storing 

this result, the algorithm backtracks to the second level of 

the tree and selects a recreation period for the next descend .... 

ant branch from node 2. Since the previous descendant node 

used period 3, the next eligible period is period 4. Adding 

this period to the sequence, and continuing the path from 

node 6 produces the sequence· {1,2,4,3,l}. These sequences 

produce equivalent schedules because the recreation periods 

used for ,the ra (or level 3) components in both sequences 

are identical (i.e., nodes 3 and 6 in the tree diagram do 

not represent distinct partial sequences). The partial 

sequence at node 3: {l,2,3, ••• } is equivalent to the partial 

sequence at node 6: '{l,2,4, ••. }. 

The acce,?,eration procedure described in this section 

eliminates the enumeration of identical partial sequence 

nodes in the tree structure. This is done by assigning a 

second label to each recreation period based on its type 

(i.e." on its start day and length). Identical recreation 

periods are assj.gned identical labels. The additional 

label is incorporated into the selection criteria used to 
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determine the next recreation period for each descendant 

node. The modified selection rule insures that the set of 

descendant nodes enumerated from each parent node in the 

tree structure defines a set of distinct partial sequences. 

The modified rule permits each recreation period type to be 

used in only one descendant node from each parent node in 

the tree structure. 

The modified selection rule can be illustrated using 

the tree diagram in figure 6.31. After the sequence 

{1,2,3,4,l} ~as been produced at node 5 and the algorithm 

has backtracked to node 2, a new recreation period must be 

selected for the next descendant node (i.e., node 6). 

Application of the branching rules described in section 6.6 

eliminate periods 1, 2 and 3 as candidates. Application of 

the modified selection rule also eliminates period 4 because 

a period is not eligible if any previous descendant node has 

used a recreation period of the same type. With this con

straint, period 4 is ineligible because it is identical to 

recreation period 3 which was used for descendant node 3. 

The extent of the reduction in the number of nodes 

produced in the tree structure with the elimination of :Lden

tical partial sequences is suggested by the following results. 

If all n recreation periods are distinct, the number of oescend-

ant nodes deL) from a parent node at level L is given by 

deL) = max{n-L,l}. (6.24) 
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Tree Level 

1 

2 

3 

'--+---!l"---_ Equivalent 
nodes 

4 

5 

{1,2,3,4,5} {1,2,4,3,1} 

Figure 6.31 

Partial Tree Diagram for the Enumeration of the 
Schedu1es in Figures 6.29 and 6.30 

o 
\\ 
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Equation (6024) indicates that as the level of the tree 

structure increases, more recreation periods are used in t.he 

definition of each partial sequence and, as a result, fewer 

periods are available for descendant nodes. Let t equal 

the number of distinct recreation period types. The 

modified selection rule for enumerating descendant nodes 

has the effect of replacing n in equation (6.24) with t; 

i.e., 

(6.25) 

If every recreation period is distinct, then t = nand 

dt(L) = deL). If two or more periods are identical, however, 

t < nand dt(L) < d(L). Summarizing these results, since 

1 < t < n 

it follows from equations (6.24) and (6.25) that 

The additional selection constraint introduced above will 

eliminate the enumeration of all equivalent schedules except 

th,os,e hased .on sequences in which the initial period in the 

* If t = 1, all of the recreation periods are identical; 
in that event, dt(L) = 1 for each node and only one sequence 
is produced. 
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sequence is identical to one or more other periods in the 

cyclic graph. The three sequences produced in the tree 

diagram in figure 6.32 illustrate this ,e~weption. The 

first sequence: {1,2,3,4,1}, yields the schedule shown in 

figure 6.29 and the second and third sequences: {1,3,2,4,1} 

and {1,3,4,2,1}, yield the schedules shown in figures 6.33 

and 6.34. Despite the use of the additional selection 

constraint, two equivalent schedules are enumerated (the 

schedules in figures 6.29 and 6.34). These schedules are 

equivalent because the initial recreation period used in 

the sequence for each: period 1, is identical to period 2. 

The sequences for these schedules illustrate that equivalent 

schedules will still be enumerated if a recreation period, 

identical to the inital period in the sequence, is placed 

either inunediately after the initial period (as in sequence 

{1,2,3,4,1}), or immediately before the initial period (as 

in sequence {l,3,4,2 r l}). 

The enumeration of these equivalent schedules can be 

eliminated in two ways by adding the restriction thatrecrea

tion periods that are identical to the initial period in the 

sequence cannot be used either in level 2 of the tree structure 

or cannot be used in level n of the tree structure. The 

first method (i.e., prohibiting identical periods from 

appearing in level 2) is preferred since it eliminates 

larger portions of the tree structure. As an example, 
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Tree Level 
1 

1 

2 

3 

4 

5 

{1,2,3,4,1} {1,3,2,4,l} {1,3,4,2,1} 

Figure 6.32 

Tree Diagram for the Enumeration of Recreation 
Period Sequences Based on the Cyclic 

Graph in Figure 6.27 
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M T w T F s S 

1 lR R 

2 3 R R R 

Week 3 

4 2R R 

5 

6 4R R R 

Figure 6.33 

PR Schedule Based on the {1,3,2,4,1} Sequence of 
Recreation Periods and the Separation 

Matrix in Figure 6.28 

T W T F S S 

1 lR R 

2 3R. R R 
Week 

3 4R R R 

4 

5 2R R 

Figure 6.34 

PR Schedule Based on the {1,3,4,2,1} Sequence of 
Recreation Periods and the Separation 

Matrix in Figure 6.28 

".\ 
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i~ period 2 had been prohibited from appearing at node 2 

in the tree diagram in figure 6.32, nodes 2, 3, 4, and 5 

would not have been created and only two sequences, each 

corresponding to a distinct schedl:.~le, would have been 

enumerated. 

6.7.2 Work Period Lengths 

The acceleration technique presented in this section 

is based on a strategy of dividing the computational effort 

required to enumerate all feasible schedules from a given 

separation matrix with the branch-and-bound algorithm into 

several reduced efforts based on the enumeration of subsets 

of schedules from a series of reduced matrices. The computa

tional advantage of this strategy lies in the fact that if 

preferred schedules can be found early in the enumeration 

process, large numbers of less preferred schedules can be 

implicitly discarded without use of the branch-and-bound 

algorithm. 

The preC'edure is based on the observation that all 

feasible schedules that can be enumerated from a separation 

matrix can be partitioned into mutually exclusive subsets 

on the basis of their maximum and minimum work period lengths. 

Let the two-number pair (a,b) represent the set of all 

schedules with minimum work period length W. = a, and 
m~n 

maximum work period length Wmax = b. Every sch£3ule in the 

set (Wmin = a, Wmax = b) has a work period range equal to 

I' II 
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R = b-a, and associated with each set of schedules is an 

unique reduced separation matrix. (Derivation of this 

matrix is described below.) 

The number of partitioning sets that exist for a given 

original separation matrix is a function of: 

(1) the average work period length 
(~'l = Win) i and 

(2) the minimum (Lw) and maximum (Uw) 
work period lengths in the 
matrix. 

The W values for individual schedules enumerated from the max 

original matrix are bounded by 

(6.26) 

The number of distinct values for Wmax depends on the 

integrality of Awi i.e., 

= I Uw - Aw + 1, if Aw is an integer 

Uw - [Awl, otherwise 

The values for W. for individual schedules are bounded by m1n ] 

W. integer m1n (6.27) 

and the number of distinct values for W. equals NW ~ .. " m~n ' min 
[Aw] - LW + 1. The total number of distinct partitioning 

sets that can be formed equals NS = (NW . )- (NW ). 
m1n max 
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It is easily shown that for any work period ra~ge 

R = Uw - Lw' the maximum value for Ns occurs when 

Aw = [(UW+LW)/2] which yields 

max NS(R) = 
(R~1)(R~3), if R is odd. 

Since R = 6 is the maximum range used in this study, the 

maximum number of sets equals Ns (6) = 16. 

Results (6.26) and (6.27) can be used to identify all 

partitioning sets for a, given separation matrix. As an 

example, the 12 sets that exist when Uw = 10, LW = 4, and 

Aw is not an integer (e.g. , Aw= 6.25) are shown in 

figure 6.35. The sets are arranged vertically in the 

figure by length of the work period range (top to bottom), 

and horizontally by the size of the max:i.mum work period 

length (left to right). The work period ranges vary in 

length from one to six days, and the maximum work period 

lengths vary from seven to ten days. 

The partitioning sets for a given separation matrix 

can be used to reduce the computational effort of the 

branch-and-bound algorithm in the following ways: 

(1) it may be possible to determine an optimal' 
schedule by examing only a small number of 
the partitioning sets; and 

(2) the reduced separation matrix associated 
with each set may contain a member of VOl.,;" 

entries which may reduce the computational 
effort required to enumerate all schedules 
from the matrix. 



Work Period 
Range 

(Days) 

1 

2 

3 

4 
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(6,7{» 

(S,7{1J (6,8{J> ~ 
(4,7f)) (5,8~ (6,9{J) ;;.;;y 

5 (2,7) 

(4,S{E> (5,9)@ 

(4,9{.2J 

6 (1,7) (2, S) 

Lower limit on 
work period length~ 

(6,12 ) 

Upper limit on 
work period length 

Note: Average work period length, Aw=6.25 days, and 
the limits on work period leng~~ areUW=lO and 
Lw=4. 

Figure 6.35 

Partitioning Sets for a Non-Integer Valued Average 
Work Period Length 

Since "1Or~ period ra~ge and maximum work period le~gt.h 

can be used to disti~guish alternative schedules enumerated· 

from the same separation matrix" if the partitionin,9" sets 

are ranked correctly, every schedule in a given set will be 

superior to or dominate (i.e., in terms of their preference 
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vectors) every schedule in all lower ranking sets. To 

illustrate, consider the 12 sets shown in figure 6.35. The 

ranking for each set, indicated by a circled right super-

script, is determined in two steps: first by comparing 

maximum work period lengths (i.e., the Wmax value) and 

second by comparing work period ranges (i.e., Wmax-Wmin). 

Hence, sets (6,7), (5,7) and (4,7) are the highest ranking 

sets because each contains only schedules with Wmax = 7, 

the lowest value possible. Every schedule in the nine other 

sets contains at least one work period that is longer than 

seven days. The tie among the three sets: ( 6 , 7 J' (5 , 7) and 

(4.7) is broken by comparing work period ranges. Set (6,7) 

with a one-day work period range, is ranked first; set (5,7) 

with a two-day work period range, is ranked second; and set 

(4,7) is ranked third. 

As a second example, the nine partitioning sets for a 

separation matrix with Uw = 10, LW = 4, and an integer Aw 
value (e.g., Aw = 6) are shown in figure 6.36. The ranking 

for each set is indicated by the circled right superscript. 

Although the sets identified in figure~ 6.35 and 6.36 are 

both based on Uw = 10 and LW = 4, fewer sets are shown in figure 

6.36 because of the integrality of AW' The reduction in the 

number of sets occurs because no sets are included in figure 

6.36 which contain either Wmin = AW or Wmax = Aw. These sets 

are excluded because any· set of the form (W . =~_, ~v A) ml.n --W max -111] 
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Range 

(Days) 

1 

2 

3 

4 

5 

6 

(2,7) 

(1,7) (2,8 ) 

-325-

(6,6iJJ 

(5/8~ 

(4,S{2> (5,9{§) 

.(4,9}J) 

Lower limit 
work period 

'-Upper limit on 
work period lerigth 

Note: Average work period length, Aw=6.0 days, and 
the limits on work period length are Uw=lO 
and Lw=4. 

Figure 6.36 

Partitioning Sets for an Integer Valued Average 
Work Period Length 

(W . <k_, W =k_) can not contain any schedules. mln ---w max--W 
This 

is easily seen by noti~g that if W. = k_, ~hen every work mln ---w 

period in the schedule must equal Aw- Hence, for every 

schedule with Wmin =Aw' Wmax will equal Aw and the set 
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(Wmin = Aw· Wmax > Aw) will be empty. A parallel argument 

can be used to show that the set (Wmin < Aw' Wmax = AW) 

must also be empty. These same arguments can also be used 

to verify that no schedules can exist with an integer value 

for Aw and a work period range of exactly one day. 

The ability to rank all feasible schedules according 

to their partitioning set permits the search for the 

optimal schedule to be done in a step-wise manner by apply-

ing the branch-and-bound algorithm to the reduced matrix for 

each set of schedules. The algorithm is applied to each 

set, in order of their rankings, until a feasible schedule 

is enumerated. Once a schedule is found, all lower ranking 

sets are discarded since they contain, by definition, only 

lower ranking schedules.* 

In addition to accelerating the process of finding the 

optimal schedule, the use of the partitioning sets may also re-

duce the computational effort required to enumerate the schedules 

for each set. This reduction in effort occurs because the 

branch-and-bound algorithm is applied to an unique reduced sepa-

ration matrix associated with each set. The reduced matrix for 

each partitioning set (a,b) is constructed from the original 

separation matrix in the following manner. 

* 

Each entry s! . 
1J 

If multiple schedules are found wi,thin a set:., 'the 
optimal schedule is determined from among them by comparing 
other schedule attributes. 
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in the reduced matrix for set (a,b) is determined according 

to the followi~g rule: 

s!. = 
~J I

S. ., if a < s.. < b 
~J - ~J-

voided, otherwise 

where s .. represents the (i,j) entry in the original 
~J 

separation matrix. 

As an example, an original separation matrix and the 

reduced matrix obtained from it for the (6,7) partitioning 

set are shown in figure 6.37. The reduced matrix contains 

1 

Recreation 2 
Period 

3 

4 

Recreation Period Recreation Period 

1 2 3 4 1 2 3 4 

- 6 9 4 1 - 6 - -
10 - 7 9 (6 I 7) 2 - - 7 -

-
7 8 - 6 7 - - 6 3 

6 7 10 - 4 6 7 - -
(a) Initial Matrix (b) Reduced Matrix 

Figure 6.37 

Original 4x4 Separation Matrix and 
.. Reduced (6,7) Matrix 

. \ . 
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all entries from the original separation matrix necessary 

to enumerate all feasible schedules with a maximum work 

period length of seven days and a work period range of only 

one day. The reduced matrix, with only six valid entries, 

represents a much simpler problem. One solution from the 

reduced matrix is the sequence of periods {1,2,3,4,1} which 

defines the entries {(1,2), (2,3},(3,4),{4,l)}; these entries 

define a schedule with 25 work days. The enumeration of at 

least one schedule for this set indicates that all lower 

ranking sets can be discarded. If no other schedules are 

found for the (6,7) set, the sequence identified above 

would represent the optimal solution. 

To summarize, the following procedures can be used to 

reduce the computational effort required to enumerate 

desirable schedules from a given separation matrix: 

Step 1: 

Step 2: 

Step 3: 

Partition the set of all feasible 

schedules into mutually exclusive 

sets based on maximum and minimum 

work period lengths (Wmax and Wmin). 

Use Wmax and R = Wmax-Wmin to rank 

order the partitioning sets. 

Construct the reduced matrix for the 

(next) highest ranking set. 
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Step 4: 

Step 5: 
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Use the matrix conditioning procedures 

(see section 6.7.3) to minimize the 

number of valid matrix entries. 

Use the branch-and-bound algorithm to 

enumerate all feasible schedules from 

the reduced matrix: 

i) if schedules are found, determine 

the optimal schedule from among 

them, stop. 

ii) if no schedules are found, return 

to step 3. 

6.7.3 Matrix Conditioning 

The computational effort associated with use of the 

branch-and-bound algorithm to enumera-te feasible schedules 

from a separation matrix can often be significantly reduced 

or even eliminated with several procedures collectively 

described in this section as matrix conditioning. All of .. 

the procedures involve the examination of individual separa

tion matrix entries. Some procedures are used only to 

determine whether the separation matrix contains any feasible 

solutions (i.e., whether the branch-and-bound algorithm 

should be used), while others ~re used to maximize the 

number of voided entries in a matrix prior to \'3sing the 

enumeration algorithm. The four procedures discussed in 

this section are: 
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(1) th~ examination of the matrix for the 
presence of at least one valid entry 
in each row and column; 

(2) the dedication of each matrix entry 
identified as the only valid en'try in 
either a row or column of the matrix; 

(3) 't.'l-t.e examination of the reduced matrix 
associated with each partitioning set 
for the presence of at least one entry 
equal to W 'n and at least one entry 
equal to w:~x; and 

(4) the dedication of an entry if it is 
either the only entry in the reduced 
matrix equal to Wmjn , or the only entry· 
in the reduced . matrix equal to 
W • max 

The rationale and use of each of the procedures are discussed 

below. 

Procedures 1 and 2 are based on the requirement that 

the entry set for each feasible sequence of periods must 

use one and only one entry from each row and column of the 

separation ma'trix. For procedure 1, the matrix is examined 

to determine whether at least one valid entry exists in each 

row and column of the matrix. If a row or column without a 

valid entry is found no feasible schedules can be enumerated 

from the matrix, and the branch-and-bound algorithm is not 

used. 

Procedure 2, only' applied to separation matrices not 

rejected by procedure 1, is used to identify matrix entries 

which cannot appear in any feasible sequence of periods. 

The procedure is based on 'the identification of matrix 

entries with the property that each is the only valid entry 
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in eithor a row or column of the matrix (there may be 

several such entries in the same matrix). S'lnce each of 

these entries must, by definition, belong to the entry set 

for every feasible sequence enumerated from the matrix, 

these entries are said to be dedicated. The value in 

identifying dedicated entries is that each such entry can 

be used to identify other matrix entries that cannot appear 

in any feasible sequences, and hence, can be voided. As 

each dedicated entry is identified, the following rules are 

used to identify other entries tha·t can be voided. 

1. Since each dedicated entry (i,j) must be 

used in every feasible solution, every 

other valid matrix entry in row i and 

column j of the matrix will not appear 

in any feasible sequence and, as a result, 

can be voided. 

2. Since every feasible solution is repl~esented 

by a connected entry set, if dedicate~d 

entry (i,j) appears in every solution, then 

matrix entry (j,i) cannot not appear in any 

solution, and can be 'V'9ided. * 

" If any matrix entries are vdided because of ,Procedure 2, 

.pr.o.c.edures 1 .and.2 (if necessary) are applied ~gain. The 

*This second rule applies only to ff/·':l..edules with 
. three or more work periods. 
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procedures are repeated because each time one or more 

entries are voided, the matrix is modified and must be 

examined again to determine: (1) whether any feasible 

sequences can still be enumerated from the matrix, i.e., 

whether each row and colu~~ in the matrix still contains 

valid entries I and (2) whether any additional entries 

are now dedicated. The iterative use of both procedures 

continues until either of the following occurs: 

(1) the matrix is rejected by procedure 1 
because of thfa absence of valid entries in 
a row or column or 

(2) no additional entries are voided by procedure 2. 

To illustrate the use of these procedures, consider the 

reduced matrix for the partitioning set (6,7) shown in 

figure 6.37. Examination of the matrix for procedure 1 

indicates that at least one valid eI).try exists in each row 

and column, and hence the matrix may contain one or more 

feasible sequences. Examining the matrix for procedure 2 

reveals that three of the matrix entries: (1,2), (2,3) 1 

and (3,4), are the only valid entries in either their 

respective rows or columns. Hence, each entry is, by 

definition, dedicated and can be used to void other entries 

in the matrix (e.g., dedicated entry (1,2) can be used to 

eliminate entry (4,2) and dedicated entry (3,4) can be used 

to eliminate entry (3.1). 

The 'original reduced matrix has now been "conditioned ll 

down to the four entries shown in figure 6.38. (The (4,1) 
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Recreation Period 

1 2 3 4 

- 6 - -
- - 7 -
- - - 6 

6 - - -

Figure
h

_ 6" 3 8 

Conditioned Reduced Matrix from Figure 6.37 

entry is now also dedicated because of the voiding of entries 

(3,1) and (4,2». Each valid entry remaining in the matrix 

is dedicated and, by observation, sequence {1,2,3,4,1} is 

the only feasible sequence that can be enumerated from the 

matrix. The conditioned ma1':rix in figure 6~38 corresponds 

to the reduced matrix associated with node 5 in the tree 

diagram in figure 6.23 {the schedule corresponding to that 

node and to se~;ence {I, 2,3,4, I} is shown in figure 6.24). 

'\)1 

,) 
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This example illustrates the computational benefits 

that can be realized when the acceleration procedures 

based on work period length (described in section 6.7.2) 

and matrix conditioning are used. Beginning with the 

or:i.,lginal matrix in figurr~ 6.37, the optimal schedule was 

determined, first by creating the reduced matrix for the 

partitioning set (6,7), and second by using the matrix 

conditioning rules to eliminate all but four of the 

ori~inal matrix entries. These four entries identified 

the only feasible schedule in set (6,7). If set (6,7) 

was the top ranking set, then the schedule found woule 

represent the optimal solution -- "enumerated" without use 

of the branch-and-bound algorithm. 

Matrix conditioning procedures 3 and 4 are used 

exclusively on reduced separation matrices associated with 

partitioning sets. The conditioning procedures are 

motivated by following observati.on: although the reduced 

matrix for each partitioning set (a,b) is constructed in a 

manner which insures the inclusion of all schedules which 

belong to set (a, b), the reduced matrix may also contain 

schedules which belong to other sets. As an example, the 

reduced matrix for the partitioning set (6,8) shown in 

figure 6.39 "contains valid entries (3,2) and (4,2) ,'and 

'the four entries contained in the reduced (and conditioned) 

mCit~i~fQr partitioning set (6,7) shown in figure 6.38. As 

-
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Recreation Period Recreation Period 

Recreation 
Period 

1 

2 

3 

4 

1 2 

- 6 

10 -
7 8 

6 7 

3 4 

9 4 

7 9 

- 6 

10 -

.1 2 3 4 

1 - 6 - ~;" -
(6,8) 2 - - 7 -

---.~ 

3 - 8 - 6 

4 6 7 - -
(a) Initial Matrix (b) Reduced Matrix 

Figure 6.39 

Original 4x4 Separation Matrix and 
Reduced (6,8) Matrix 

a result, the reduced matrix for the (6,8) set contains 

all feasible schedules belonging to set (6,8) (i.e., all 

feasible schedules with Wmin = 6 and Wmax = 8), ~ all 

feasib],e schedules belonging to set (6 f 7) *. Condi.tioning 

procedur.es .. 1. and . .2 .are not used to eliminate "spurious ll 

* In. general, the reduced matrix for partitioning 
set (a,b)" contains all feasible schedules contained in 
sets {o,d} where a < c and d < b. 

.;:..J 
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schedules from a reduced matrix; rather they are used to 

determine the presence of and to accelerate the enumeration 

of ~ feasible schedules within a matrix. In contrast, 

conditioning procedures 3 and 4 are used to determine the 

presence of and to accelerate the enumeration of feasible 

schedules contained in partitioning set (a,b). 

Procedures 3 and 4. are based on the observation that 

each feasible schedule in the partitioning set (a,b) must 

have Wmin == a and Wmax = b (i. e., the entry set defined by 

each feasible sequence must contain at least one entry equal 

to Wmin and at least one entry equal to Wmax)' For procedure 

3, the reduced matrix is examined to insure that it contains 

untries (at least one of each) equal to Wmin and Wmax ' If 

either condition fails, the reduced matrix contains no 

feasible schedules from set (Wminl Wmax) , and the matrix 

is discarded without use of the branch-and-bound algo~ithm. 

Procedure 4, only applied to matrices which satisfy 

the conditions of procedure 3, is based on the observation 

that if only one valid entry in the reduced matrix equals 

either·W. or W , that entry (or entries if one entry is 
m~n max . 

found for W. and another for W ) must appear in 'the 
m~n max 

entry set for every feasible schedule belonging to the 

partitioning set (Wmin,Wmax) '" As a result, each such entry 

(there can only be two in any matrix) can be dedicated, and 

the voiding rules identi.fied in procedure 2 can be applied . 
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Pro.cedures 3 and 4. can be illustrated using the 

reduced matrix for the partitioning set (6,8) shctwn 

in figure 6.39. The two values of interest for the examina-

tion of the matrix for prooedure 3 are W. = 6 and W = 8. 
m~n max 

Both values are present in the reduced matrix. Since the 

(3,2} entry is the only matri.x entry equal to Wm = 8, it ax 
can be dedioated and used to void entries (I,2) 1 (3,4), 

i 

and (4,2). Since matrix enti'ies have been voided, all four 

conditioning procedures are applied again. The conditioned 

matrix is now ~ejected by procedure 1 because of the 

absence of any valid entries in either row 1 or column 4. 

Hence, the matrix contains no schedules for set (6,8). 



() 

-338-

7. THE DESIGN OF MULTI SHIFT PR SCHEDULES 

7.1 INTRODUCTION' 

This chapter describes a methodology for constructing 

multishift PR schedules using the schedule attributes 

identified in chapter 2 and the enumeration algorithms 

described in chapters 4, 5, and 6. The methodology is 

presented in four parts. First, schedule properties 

<->associated with shift changeovers (i.e.1 points in a multi-

shift PR schedule when officers change shift assignments) 

are reviewed, and sample schedules are examined to illustrate 

that the use of optimal one-shift PR schedules does not 

insure the formation of preferable (or even acceptabl~multi-

shift schedules .. 

Next, shiJ't:, changeover properties are quantified, and 

used to classify non-cyclic, one-shift schedules for each 

shift tour to be used within the multishift schedule. This 

classification scheme is used to partition all feasible 

non-cyclic. schedules for each tour into a small number of 

sets such that the schedules within each set are identical 

in terms of their shift changeover' properties. 

The next section describes the;, enumeration of a. set of 

optimal non-cyclic schedules for each shift tour. The 

algor;i;thms developed in chapters 4, 5, and 6, although 

originally designed for the enumeration of cyclic schedules, 
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are used for this task by identifying a 1-1 relationship 

between each non-cyclic schedule to be examined and a 

corresponding cyclic schedule. 

The collection of optimal non-cyclic scheduies 

enumerated for each tour are used to construct multishift 

schedules by selecting and placing in proper sequence one 

non-cyclic schedule for each tour. In the final section 

of this chapter I a. simple, implicit enumeration a1.gori thm 

is described for examining all combinations of the one-shift 

schedules, and identifying the most preferable multishift 

schedules than can be constructed from them. 

7.2 MULTISHIFT SCHEDULE PROPERTIES 

Multishift schedules are cyclic PR schedules in which 

each officer rotates through two or more shift assignments 

during each rotation period of the complete schedule. As 

an example, the multishift schedule in figure 7.1 requires 

each officer to spend time on three shifts (afternoon, day, 

and night). The schedule has a l3-Yleek period consisting 

of five weeks on the afternoon shift, four weeks on the day 

shift, and four weeks on the night shift.* 

All of the schedule measures identified in chapter 2 

for the.dete.rmination of optimal one-shift PR schedules 

* The schedule in figure 7.1 is a three-shift schedule 
with one tour on each shift (three tours per period). Multi
shift schedules can include mUltiple tours·on each shift 
during each schedule period. A multishift schedule with six 
tours during each period (i.e., two tours on each of three 
shifts) is shown in figure 1.5. 
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Shift M T w T F S S 

1 R R R 

2 R R 
Afternoon 

3 R R R 
--

4 

5 R R 

6 R R 
< 

7 R 
Day 

8 R R 

9 R R 

10 R R 

11 R R 
Night 

12 R R 

13 

Figure 7,.1 

Sample Three-Shift PR Scheo.u1e 
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(e.g., the number and frequency of weekend recreation 

periods, the lengths of work and recreation periods, etc.) 

can also be used to assess the desirability of multi shift 

schedules. In addition, the discussion in chapter 2 also 

points out that multishift schedules should be evaluated 

in terms of their shift changeover properties. 
",~, " -

To review briefly, in a multishift schedule each point 

in the s.chedule at which shift assignments are changed is 

called a shift changeover point. There are three changeover 

points in the schedule in figure 7.1: at the end of weeks 

5, 9, and 13.* The attributes of a multishift schedule at 

each shift changeover point are important because unless 

the schedule has been carefully designed, several uhdesir-, 

able features can appear. Before describing these features, 

it is first convenient to introduce the following definition:' 

a changeover recreation period is a recreation period which 

includes either the last day (Sunday) of a shift assignment, 

the first ,day {Monday} of a shift. assignment, or both of 

those days. There are two changeover periods in the schedule 

in figure 7.1: the three-day period in week 1 (which 

contains the first day of the afternoon shift) and the two-day 

period in week 10 (which contains the first day o.f the night 

shift). There c.annot, by definition, be more than one 

* Since all of the PR schedules discus.sed in this study 
begin on Monday and end on Sunday, every shift changeover 
occurs from Sunday to Monday. 
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changeover recreation period at each shift changeover point 

in a schedule. 

The absence of a changeover recreation period at a shift 

changeover point in a multishift schedule is usually con

sidered undesirable because an officer changing shift assign-

ments may experience: 

(2) a short off-duty period between the last wo~k 
day on the shift tour just completed and the first work 
day on the shift tour just initiatedi* and 

(2) a long and fatiguing work period that begins on 
one shift and ends on the following shift. 

It is important to recognize that these undesirable 

features can arise from the absence of a changeover recreation 

period even when the schedules used for each shift tour are 

considered satisfactory as one-shift schedules. As an 

example, the day and afternoon schedules in figure 7.1, if 

used as cyclic schedules (see figure 7.2) may be quite 

acceptable; yet when placed in sequence in a multishift 

schedule they produce a shift changeover point without a 

changeover redreation period. The absence of the changeover 

recreation period results in a lO-day work period that begins 

on Wednesday of the last week of the afternoon shift and 

ends on Friday of the first week of the day shift, and an 

*Without a recreation changeover period it is possible 
for an officer to have as few as eight hours between successive 
work assignments. As a result, the officer may be required to 
work as many as 16 hours in a single 24-hour period. (See 
tables 2 .. 4 and 2.5,,) 
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(a) Day Shift 
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(b) Afternoon Shift 

T W T F 

R 

R R 

R 

(c) Night Shift. 
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Three One-Shift Schedules Used in the Multishitt 
Schedule in Figure 7.1 
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a-hour off-duty period* between the last ",ork day on the 

afternoon shift and the first work day on the day shift. 

Both of the undesirable properties associated with 

the afternoon-day shift changeover in figure 7.1 would be 

eliminated if a recreation period was scheduled at the 

changeover point. Such a recreation period wouln insure 

that each officer would receive some days off between shift: 

assignments, thereby eliminating the 8-hour break between 

successive work days and the long work period extending over 

two shifts. As an example, consider the multishift schedule 

in figure 7.3. Both the afternoon and night shifts in this 

schedule are identical to those shown in figure 7.1; only 

the day shift schedule is different. Each shift changeover 

point in figure 7.3 contains a changeover recreation period 

(a two-day period at the afternoon-day changeover, a three

day period at the day-night changeover, ann another three-day 

period at the night-afternoon changeover'). The recreation 

period at the afternoon-day changeover eliminates both of the 

undesirable features identified in the schedule of fi~ure 7.1. 

As indicated in chapter 2, the multi shift schedule 

design methods developed for this thesis are limited to the 

construction of multishift PR schedules with changeover 

*Assuming the night shift is eight hours long. 
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Shift M T w T F S s 

1 R R R 

2 R R 
Afternoon 

3 R R R 
"-

4 

5 R R 

6 R R 

7 R R 
Day 

8 R R 

9 R 

10 R R r 

11 R R 
Night 

12 R ·R R 

13 

Note: Multishift schedule is based on the same 
manpower allocation used for the schedule in figure 7.1 

Figure 7.3 

Sample Three-Shift PR Schedule 
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rec~eation periods at every changeover point.* 

Although the presence of a changeover recreation period 

eliminates short breaks between successive work assignments 

and long intershift work periods, other undesirable (or 

unacceptable) changeover conditions can arise. As an 

example, although the day-night changeover point in the 

multishift schedule shown in figure 7.1 has a changeover 

period (i.e., the two-day period beginning on Monday of 

week 10), the work period at the end of the day shift is 

only two days long. If the day shift schedule were used as 

a one-shift cyclic schedule, the two work days at the end 

of week 9 would be joined with the five work days at the 

beginning of week 6 to form a work period of seven days.t 

When used in the multishift schedule, however, the two work 

days at the end of the day shift become a work period 

defined by the two-day recreeltion period in week 9 and the 

cha.ngemTer recreation period in week 10. If the same lower 

limit of four days, used to design the three shift schedules 

in f:ltJ'ure 7.1, were applied to work periods in the multishift 

schedule, then the schedule; shown in figure 7.1 would be 

u:nac,ceptQ.ble. 

* = Computational experience indicates that. this require-
ment is not very restrictiveo Empirical evidence suggests 
that fil9r,many practical problems, if any multishift schedules 
c:an pefound ignoring the changeover period requirement, then 
El.9h~cih1t9S satisfying the changeover requirement also exist. 

tEach of the three shift schedules shown in fiqure 7.1 were 
designed as one-shift cyclic schedules using upper and lower 
limits on work period lengths of eight and four days respectively. 
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Another design difficulty that can arise when a change

over recreation period is present is illustrated by the day

night changeover point in figure 7.3. The interesting 

feature of this changeover point is the fact that the three

day changeover recreation period extends over two shifts 

(i.e., its total length is dependent upon recreation days 

contributed by both shifts). The design difficulty intro

duced by this construction is that if each shift schedule is 

designed with an upper limit of UR on the length its recrea

tion periods, it becomes possible, if both schedules should 

contribute UR recreation days, for changeover periods to 

be 2UR days long. Hence, if the UR upper limit is also 

applied to changeover recreation period lengths, it is 

possible that two one-shif't schedules, each containing only 

periods of acceptable lengths may produce an excessively 

long changeover recreation period. 

The resolution of the design difficulties associated 

with shift changeover points is the. central focus of this 
,;> 

chapter. The algorithms described below were designed to 

meet two objectives: 

(1) the placement of a changeover recreation period 
of acceptable length at every shift changeover 
point; and 

(2) the design of work periods of acceptable length 
to pI:'ecede and follow each changeover recreation 
period. 

" 
The remaining three sections of this chapter describe how 

each objective was achieved. 

I) 

() 
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7.3 CLASSIFICATION OF NON-CYCLIC, ONE-SHIFT SCHEDULES 

The sample schedules presented in the previous section 

illustrate that the use of optimal cyclic schedules for 

each shift tour does not insure the design of acceptable 

multishift schedules. These examples indicate that the 

primary difficulties associated with the design of multishift 

schedules are related to the placement of recreation periods 

at each shift changeover point. Fundamental to these dif

ficulties is the fact that each shift schedule, designed 

initially as a one-shift cyclic schedule, is non-cyclic when 

used in a multishift schedule. Although a multishift schedule 

is cyclic over its entire ro'tation period (e.g., in figure 

7.3, an officer rotates from week 13 back to week I), each 

component shift schedule is non-cyclic because after working 

for the specified number of weeks on each shift officers 

move to a new shift. 

It is important to note that the terms cyclic and 

non-cyclic describe how an one-shift schedule is used rather 

than its structure. For example, when used as. cyclic schedules, 

one-shift schedules have no specific beginning or ending. 

brackets, and the labelling of each bracket in the schedule 

is arbitrary~ only the sequence or order of the brackets is 

significant. Used as non-cyclic schedules, however, one-shift 

schedules are characterized, not only by the sequence in which 

the brackets are worked, but also by which bracket isdesig

nated as the initial bracket to be worked during each tour 

on that shift. 
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It is convenient to classify the properties of non-

cyclic schedules as either, 

(1) internal properties - Schedule properties that 
are independent of which bracket is designated 
as the initial week; or 

(2) changeover properties - Schedule properties which 
are dependent upon the particular bracket that is 
designated as the first week of the non-cyclic 
schedule. 

The optimality of the cyclic schedules derived in 

chapter 6 was determined exclusively on the basis of their 

internal properties. When a cyclic schedule is used in'a 

mu1tishift schedule, however, the closed cycle of brackets 

is IIbroken" and a non-cyclic schedule is produced with a 

specific set of changeover properties. Consequently, the 

design of mu1tishift PR schedules must be based upon a 

methodology for constructing non-cyclic shift schedules 
i 

which accounts for both internal and changeove:,;, properties. 

It is useful to distinguish three types of recreation 

,periods which a non-cyclic schedule can possess: 

(1) a beginning period - a recreation period which 
precedes the first work period in the schedule; 

(2) an ending period - a recreation period which 
follows the final work period in the schedule; 
and 

(3) interior periods - any recreation periodwhicJ;l 
appears between the first and last work periods 
of the schedule. 

Beginning recreation periods always start on the first day 

of the shif~ schedule (Monday), and ending periods always 
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end on the last day of the shift schedule (Sunday). By 

definition, every non-cyclic schedule has one beginning 

recreation period and one ending recreation period (each 

may have length zero).* A non-cyclic schedule may 

have any number of interior periods; there may be none or 

several. (Every recreation period in a one-shift cyclic 

schedule is defined to be an interior period.) The lengths 

of the beginning and ending recreation periods for a non

cyclic schedule indicate the number of recreation days that 

are contributed to the changeover recreation periods at the 

beginning and end of the shift tour. Specifically, let the 

two-number pair {b/e} represent the set of all non-cyclic 

schedules with a beginning period of length b and an ending 

period of length e. To illustrate, the three non-cyclic 

shift schedules in figure 7.3 belong to sets (3,0), (2,1), 

and (2,0) respectively~ 

The requirement that a changeover recreation period of 

acceptable length be placed a't each shift changeover point 

in a multishift schedule is equivalent to the requirement 

that: 

i = 1,2 , ••• , N (7.1) 

* If the first day of a shift schedule is a work day, 
the beginning period is defined to have length zero. 
S'imilarly, if a shift schedule ends wi th a work day, the 
ending periOd is defined to have length zero. 
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where ti is the length of the changeover recreation period 

between shifts i and i+1, and LCR and UCR are the lower and 

upper limits respectively on the lengths of changeover 

recreation periods.* The length of each changeover period 

ti equals the sum of the lengths of the ending period of 

shift i and the beginning period of shift i+1. Hencef (7.1) 

can be written: 

From (7.2) it may be seen that: 

i = 1,2,3 ••• ,N (7.2} 

(N+1 :: 1) 

i = 1,2,3, ••• ,N 

(N=l =1). 

which indicates that the beginning and ending periods for each 

non-cyclic shift schedule used in a mu1tishift schedule must 

satisfy the limits: 

i = 1,2, ••• ,N (7.3) 

Result (7.3) implies that the only sets of non-cyclic 
I, 

schedules from which acceptable sched,.i1es for each shift 
, 

tour can be obtained are: 

. { (0 , 0), ( 0 I ].), ••• I ( 0 , U CR)' (1, 0) I (1 , 1), ..., 

(OCR' UCR-l), (OCR'UCR)} 

* For convenience, it is assumed that the same limits 
(LCR'UCR) apply to every ch;;mgeover period in the rnu1tishift 

schedule; and fUrther, that these limits .. are identical to 
those used to design the interior recreation periods for 
each non-cyclic schedules (i.e., UCR = URand LCR = La)· 

.:.;:)' 
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or more concisely, the co1lecti0l1 S of all sets 

The number of sets in S equals (l+UcR)2. Hence, if UCR = 4, 

there ar~~ 25 distinct sets of non-cyclic schedules (ranging 

from (0,0) to (4,4» which contain schedules which satisfy 

condition (7.3). 

Because the shift changeover properties depend on the 

changeover recreation period~it is not possible to design 

optimal mu1tishift schedules merely by using an optimal 

non-cyclic schedule for each component shift derived 

independently of the other shifts. However, the (b,e) 

classification of non-cyclic schedules into (a relatively 

small number of) sets may be used to deal with this problem 

while preserving the independence of the design process 

for each shift. Within each set (b,e), all of the non-cyclic 

schedules have the same changeover properties (i.e., each 

schedule begins and ends with the same number of recreation 

days). As a result, differences in the preferability of 

schedules within the set (b,e) can only be based on d.iffer-

ences in their internal properties~ and hence, it is possible 

to determine an optimal non-cyclic schedule for'each set 

(b,e) using the algorithms developed in chapters 4, 5, and 6. 

In this manner, it is possible to construct for each 

shift, (l+UcR) 2 dominating non-cyclic schedules, corresponding 

to the optimal schechle for each set (0,0), (0,1), ••• , 

(UCR,UCR)' Multishift schedules can then be formed by selecting 

I) 
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one dominating schedule for each shifty and examining 

the resulting shift changeover properties in the multi-

shift schedule (these properties a.re immediately measurable 

since they are determined by the values of band e associated 

with the schedules selected for each shift). Since the 

internal properties of the component schedules for each shift 

are optimal for any value of band e selected, the resulting 

multishift schedule will be optimal if the optimal. shift 

changeover conditions can be found. 

The next. section describes how the set of optimal non

cyclic schedules can be constructed for each shift. 

7.4 DESIGN AND CONSTRUCTION OF DOMINATING NON-CYCLIC 
SCHEDULES 

7~4.l Introduction 

This section describes how the enumeration algorithms 

developed in chapters 4, 5, and 6 can be used to generate a 

set of optimal non-cyclic schedules for each shift tour in 

a multishift schedule. 

The design procedures described in this section are 

based on the observation that corresponding t9 each set of 

non-cyclic schedules (b,e), for which an optimal schedule 

is sought, is a set of cyclic schedules {b,e)c* with the 

folldwing pr.o.p.erti.es: 

*The label (b,e)c is·used to identify the set. of cyclic 
schedules which correspond to the set (b,e)of non-cyclic 
schedules~ the band e values are used merely for identifica
tion since cyclic schedules have no beginning or ending 
periods • 

... _ 1""' __ , __ • ___ "!r __ i: _______ --"--... _-______ _ 
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(1) a 1-1 correspondence exists b~tween each 
non-cyclic schedule in the set (b,e) and 
a cyclic schedule in the set (b/e)C; and 

(2) the optimal cyclic schedule in set (b/e)c 
corresponds to the optimal non-cyclic 
schedule in the set (b,e). 

USing the corresponding set of cyclic schedules, the 

procedure for the design of the dominating non-cyclic 

schedule for set (b/e) consists of the following steps: 

1. Construction of the alternate set of 
cyclic schedules (b,e)c. 

2. Use of the algorithms from chapters 4, 
5, and 6 to determine the optimal cyclic 
schedule for the set (b,e)c. 

3. Use of the optimal cyclic schedule to 
identify the optimal non-cyclic schedule 
for set (b,e). 

The basic concepts and procedures for each step are 

discussed below. 

7.4.2 Artificial Recreation Periods 

Fundamental to the construction of (b,e)c is the concept 

of an artificial recreation period. When designing cyclic 

schedules for a given shif~ an artificial period is used to 

account for the time spent on other shifts (including both 

work and recreation periods). To illustrate, consider a super-

visor who is permanently assigned to shift A in the two-shift 

schedule shown in figure 7.4. From the supervisor's point of 

view, each"officer working the two-shift schedule is assigned 

to shift A for five weeks and is on recreation for the foIlowing 

four-week period (see.figure 7.5). In reality, of course, each 
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~ T W T F S S 
1 
2 Five-Week 
3 Schedule for 
4 Shift A 

Week 5 
6 Four-Week" 
7 Recreation 
8 Period 
9 

Fi2ure 7.5, 
':...' 

Perception of the Nine-Week 
Schedule in Figure 7.4 by 
a Supervisor Permanently 

Assigned to Shift A 
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officer spends his four-week "artificial recreation peric)(~~' 

assigned to shift B. However, for purposes of designing 

the schedule for shift A, time spent on other shifts may be 

treated as a single recreation period beginning on a Monday 

and ending on a Sunday. 

Bach cyclic schedule in the set (b,e)c is formed by 

attaching all artificial recreation period to a non-cyclic 

schedule in the set (bye) to represent the "off-shiftn time 

between the end of the last week and the beginning of the 

first week of the non-cyclic schedule. The properties 

required of the artificial periQd include the following: 

\\ 

(1) it has length zero (i.e., the period 
includes no recreation days); 

(2) it begins on the Monday following the 
last Sunday of the non-cyclic schedule; 
and 

(3) it ends on the Sunday preceding the first 
Monday. of the non-cyclic schedule. 

, ,. 

As an example, consider the cyclic graph in figure 7.6 

from which a four-week, non-cyclic schedule must be designed. 

Figure 7~7 shows the same cyclic graph with an artificial 

recreat,ion period added (dashed line); note that the period 

begins d~ Monday (property 2), ends on Sunday (property 3), 

and passet~ through none of the recreation day nodes in the 

graph (prop;erty ~). 

The' e1e1lent,alry separation matrices for both cyclic 

graphs are shqwn in figures 7.8 and 7.9. The matrix for 

" , 
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Wed. 

Tue. 

Mon. 

Sun. 

Fj...Epre 7.6 
-.:.-~.) 

Sample Cyclic Graph with 
Four Recreation Periods 

Wed. 

Fri. 

Mon. _a-L,,_+-.-II~,,*"--4t-__ ~ Fri. 

Figure 7.7 

Sample Cyclic Graph with an 
Artificial Recreation Period 
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Recreation Period 

1 2 3 4 

- 5 1 4 

5 - 1 3 

2 2 - 0 

0 0 3 _. 

Figure 7.8 

Elementary Separation Matrix for the 
Cyclic Graph in Figure 7.6 

Recreation Period 

1 2 3 4 a 

1 - 5 1 3 5 

Recreation 2 5 - 1 3 5 
Period 

3 2 2 - 0 2 

4 0 0 3 - 0 

a 0 0 3 5 -

Figure 7.9 

Expanded Elementary Separation Matrix for 
the Cyclic Graph in Figure 7.7 
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'.: 

the cyclic graph with the artificial period has one 

additional row and column. The matrix entires in row "a" 

and column lla ll represent work period lengths defined by the 

artificial period and each of the real recreation periods. 

Each entry (a,j) in row a indicates the length of the work 

period that will appear at the start of week 1 of the non

cyclic sche;dule if p~riod j is 1,;\,sed as the first recreation 

period in the schedule; for example: if period 3 is placed 

in week 1, the schedule would begin with a three-day work 
'f) 

period, as seen from matrix entry (a,3). The three days 

represent the number of days between the end of the artificial 

period on Sunday and the beginning of period 31.1 on Thursday. 

Any zero-valued matrix entry ,in row a indicates a recreation 

period that can be used as a beginning recreation period 

(i.e., an initial work period of length zero); there are 

tw'o such periods indicated in figure 7.9: periods 1 and 

Each entry (i, a) in column a indicates the length of the 

work period that will end the last week of the shift if 

recreation period i is used as the la~t period in the 

2. 

schedule. For example; if recreation period 2 is used as 

the last period, the shift schedule would end with a five-' 

day .. work period, as seen ~rom matrix entry (2,a). The 
(~i '~-._. 

/j 

five-day work period separates~~ne last day of 
/( 

(Tuesday) from the first dayff of the artificial 

period ;1 

which is the following Monday. Any zero-valued entry in 

II 

r) 
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column a indicates a recreation period that ends on Sunday 

and can be uf~ed as an ending recreation period for the 

schedule~ only one such period exists in figure 7.1: 

period 4. 

The use of artificial recreation periods is indicated 

by the structure of the expanded separation matrix. By 

using certain entries in row a and column a, real recreation 

periods can be "placed" adjacent to the artificial rE::creation 

period. A real period placed immediately after the artificial 

period (i.e., using period j with (a,j) = 0) can be used as 

a beginning period for the schedule; a period placed immedi

ately in front of the artificial period (i.e.,. using period 

i with (i,a) = 0) can be used as &n ending period for the 

schedule. Hence the expanded separation matrix provides a 

mechanism for the design of cyclic schedules which correspond 

to non-cyclic schedules with specific types of beginning 

and ending recreation periods (i.e., the matrix provides a 

mechanism for the control of the changeover properties of 

the non-cylic schedules).! Procedures for modifying the 

expanded ~lementary separation matr:tx to insure correct 

placement of beginning and ending recreation periods to 

design non-cyclic schedules for the set (b,e) are discussed 

below. 

7.4~3 Use of the Expanded Separation M~trix 

The construction of the modified, elementary separation 

matrix for the design of non-cycli~ schedules involves 

three steps: 



-361-

(1) the adjustment of interior work period 
lengths (i.e., the adjustment of matrix entries 
in rows and columns other than row a and column a);* 

(2) the adjustme~t of entries in row a; and 

(3) the adjustment of entries in column a. 
~ 

The procedure for adjusting interior work period lengths 

is identical to the modification procedures described in 

section 6.5.1. The only information required is the upper 

and lower limits on work period lengths (Le." Uw and LW) • 

Briefly, the modification procedure for each matrix entry 

(i I j) is: 

Step 1 

(1) 

(2) 

(3) 

Interior Matrix Entries (i~a, j~a) 

if LW < s.. < UW' - ~J-

(sij is the value 

entry (i,j) is unchanged, 
of the (i,j) entry); 

if s .. > UW' void the (i,j) entry; 
~J 

if s .. < h_, let s!. + 7k, increment k 
~J -w ~J 

(k = 1,2,3, ••• ) until LW ~ Sij < Uwand 
replace s .. with s!.; if an acceptable 

~J ~J 

s!. value cannot be found, void the (i,j) 
~J 

entry. 

I~ 

The procedures for modification of entry values in row 

a and column a are depend'€tnt upon the required length of 

the be:ginning and ending recreation periods. There are 

four types of non-cyclic schedules to consider; these are 

(see.fig.ur.e .7.10) : 

* These entries represent the number of work days 
separating interior recreation periods. 

''i) 
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(b=O, e=O) * 
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Type III 
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Week 

Week 

M T W T 

f- b days 

F 
I 

1 

Type II 

(b > 0, e=O) 

(b) 

M T W T F 

fori- b days ---t~ 

Type IV 

(b > 0, e > 0) 

S S 

S S 

~ e days- I---e days-

(c) (d) 

*b equals the length (in days) of the beginning 
recreation period, and e equals the length (in days) of 
the ending recreation period. 

Figure 7.10 

Four Schedule Types for the Placement of 
Beginning and Ending Recreation Periods 

in Non-Cyclic Schedules 

'i 
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(1) Type I (0,0) - both the beginning and ending 
recreation periods have length zero; 

(2) Type II (b/O) - the beginning period has length 
b, (b>O) and the ending period has length zero; 

(3) Type III (O,e) - the beginning period has length 
zero and the ending period has length e, (e>O); 
and 

(4) Type IV (b,e) - both the beginning and ending 
period have lengths greater than zero. 

Consider first, the design of beginn.ing recreation 

periods. Only two possibilities exist: either the beginning 

period has length zero (schedule types I and III), or the 

beginning period has a length greater than zero (schedule 

types II and IV). The latter possibility is discussed first. 

The design of a non-cyclic schedule with a beginning 

period of length b days, is equivalent to "placiIJ.g" a 

recreation period, b days long, adjacent tip (and fol)!owing) 

the artificial period in the schedule, (i.e., the matrix 

entry corresponding to the work period between the artificial 

period a ~~d the designated beginning period j must equal 

zero). Hence, the design of a schedule with a beginning 
i 

recreation period with length great.er than zero requires: 

(1) 

(2) 

the presence of a zero-valued matrix entry 
(a,j) in the expanded separation matrix 
(where j corresponds to a real recreation 
period of length b), and 

the use of entry (a,j) in a fe~sible 
sequence of recreation periods. CJ 



·a j., • 

-364-

These requirements dictate the following matrix 

modification rules for row a for the design of non-cyclic 

schedules with a beginning period wit~ length b (b>O): 

1. Examine row a and select one zero-valued 
entry (a,j) (where recreation period j has 
length b)i if no entries are found, the 
matrix cannot produce any acceptable 
schedules. 

2. Dedicate entry (a,j) by voiding all other 
entries in rm'l a and column j (this insures 
the use of entry (a,j) in every feasible 
sequence). ' 

To design a non-cyclic schedule with a beginning period 

of length zero, a different matrix modification procedure 

is used. Since the beginning period has length zero, no 

r0-creation days are present at the beginning of the schedule 

(i.e., the shift actually begins with a work priod that 

separates the end of the artificial period from the beginning 

of the first interior recreation period). Any interior 

recreation period can be used so long as it forms a work 

period of acceptable length with the artificial period. 

Hence, the entry values in row a of the expanded elementary 

matrix are modified using the same procedures that are used 

to modify matrix entries which correspond to interior work 

periods (i.e., tha procedures described in step 1 above). 

Summarizing, the matrix modification procedures for 
, 

row a of an expanded, elementary separation matrix are: 
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Row a Entries (i = a) 

(1) If b = 0, modify each entry in row a using the 
rules in step 1. 

(2) If b > 0, 

(a) select one zero-valued (a,j) entry in 
row a corresponding to a recreation 
period with length b , and 

(b) dedicate the (a,j) entry by voiding all 
other entries in row a and column j. 

The matrix modification procedures for the entry values 
,-) 

in column a of the elementary matrix parallel those described 

for row a. Two procedures exist: one for the design of 

ending recreation periods with length zero (schedule types 

III and IV), and another for the design of ending periods 

with lengths greater than zero (schedule types I and. II). 

If the length of the ending period is greater than zero 

(i.e., e > 0), a real recreation period with length e must 

be placed adjacent to the beginning of the artificial 

period (i.e., one entry in column a must equal zero). Once 

a zero-valued (i,a) entry is identified (where i corresponds 

to a real recreation priod of length e), it is dedicated to 

insure its use in .every sequence enumerated from the matrix.~··"""'~ 

If a zero-length ending period is desired, the shift 

schedule ends with a work period that separates the last 

interior recreation period from the beginning of the artificial 

period. For this kind of schedule, column a entry values are 

modified accord~,ng to the same rules that are used to mqdify 
\'1 
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matrix entries corresponding to interior work periods 

(i.e., step 1 above). 

Summarizing, the matrix modification rules for column 

a of an expanded elementary separation matrix are: 

Step 3: Column a Entries (i :.: a) 

(1) If e = 0, modify each entry in column a using 
the rules in step 1. 

(2) If e > 0, 

(a) select one zero-valued (i,a) entry in 
column a corresponding to a recreation 
period with length e, and 

(b) dedicate the (i,a) entry by voiding all 
other entries in row i and column a. 

Several examples illustrating the use of the matrix modifica-

tion procedures are presented in the following section. 

7.4.4 Modified Matrix Examples 

This section presents several examples of the matrix 

modification procedures described above. Using the expanded, 

elementary separation matrix in figure 7.9, the modified 

matrix for each of the schedule types illustrated in figure 

7.10 are derived. The four modified matrices, each based on 
,j 
(, 

"'Qrk period limits: LW = 4 and Uw = 8, are shown in figures 

7.11 through 7.14. 

The modified separation matrix for a type I schedule 

shown in figure 7.11 was formed by using the step 1 procedure 

for all of the matrix entr:'ies, (including those in row a and 

column a); the seven voided entries (excluding the diagonal 

terms) represent work period lengths which could not be 

modified to fit the interval [4,8]. 
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Recreation Period 

1 2 3 4 a 

- 5 8 - 5 

5 - 8 - 5 

- - - . 7 -
-

7 7 - . - 7 

7 7 - 5 -
5/7 5/7 8/8 5/7 5/7 

Figure 7.11 

Row 
min/max 

5/8 

5/8 

7/7 

7/7 

5/7 

0~~ 

Modified Separation Matrix for Type I 
Schedule (0,0) Based on the Elementary 

Separation Matrix in Figure 7.9 

Recreation 
Period 

Column 
min/max 

1 

2 

3 

4 

a 

Recreation Period 

1 2 3 4 a 

- 5 8 - -

- - 8 - 5 

- - - 7 -
- 7 - - 7 

a - - - -
0/0 5/7 8/8 7/7 5/7 

Figure 7.1£ 

Row 
min/max 

5/8 

5/8 

7/7 

7/7 

(VQ 

E~ 

Modified Separation Matrix for Type II 
Schedule (b,O) Based on the Elementary 

Separation Matrix in Figure 7.9 

~-

t' 
I: 

'l 
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Recreation Period 

1 2 3 '4 a 

- 5 8 - -
5 - 8 - -
- - - "I' -. - - - - 0 

7 7 - - -
5/7 5/7 8/8 8/8 0/0 

Figure 7.13 

Row 
min/max 

5/8 

5/8 

7/7 

0/0 

7/7 

8 
Modified Separation Matrix for Type III 
Schedule (O,e) Based on the Elementary 

Separation Matrix in Figure 7.9 

Recreation Period 

1 2 3 4 

1 - 5 8 -
5 

-

Row 
min/max 

Recreation 2 - - 8 - -
5/8 

8/8 

7/7 

0/0 

0/0 

Period 
3 - - - 7 -
4 - - - - 0 

5 0 - - - -
Column 

min/max 0/0 5/5 8/8 7/7 0/0 8 
Figure 7.14 

Modified Separation Matrix for Type IV 
Schedule (b,e) ~ased on the Elementary 

Separation Matrix in Figure 7.9 

I', 
Ii 
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In the matrices for both type II and IV schedules 

(figures 7.12 and 7.14), the nUmber 1 recreation period 

has been selected as the beginning period; this ·is indicated 

by the fact that the (a,l) entry has value zero and, all of the 

other entries in row a and column 1 are voided.* Similarly, 

the (4,a) entry is dedicated in the matrices for the .type 

III and IV schedules (figures 7.13 and 7.l4) to insure that 

recreation period 4 appears as the ending period in every 

schedule generated from either ma'l:rix. The matrix for the 

type IV schedule in figure 7.14 contains two dedicated 

entries: (a,l) to insure that recreation period 1 is the 

beginning periodJand (4,a) to insure that period 4 is the 

ending period. 

The four modified matrices illustra,te that the use of 

an artificial recreation period and an expanded separation 

matrix does not necessarily increase the size of the matrix 

problem (ioe., increase the number of valid matrix entries). 

Whenever a beginning or ending period with b > 0 or e > 0 

is required, thi;: resulting dedicated entry Can be used to 

eliminate .. all other valid entries in· one row and one cOf,umn 

of the matrix. 

*The (Ita) entry is also voided in both matrices 
because (a, 1)· is a dedicated entry (see section ,? 7 • 3) • 

I 
, . 
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Once the expanded, elementary separation matrix has 
\ ' 

been modified to insure 'lthe\enurneration of schedules for 
'\ 

set (b,e) the branch-and":pou~d algorithm and acceleration' 

techniques described in chapte.'r 6 can be used. The only 

additional rule required is th~l ;gonvention that the arti

ficial period is always use~ as the first period in 

constructing each feasible seque~ce. By following this 

ru.le, the second period in eaph s\9quence always represents' 

the first real recreation perilod i.'i1 the corresponding 

n schedule , and the next-to-lastper.i.od in each sequence 
,/ 

always represents the last real recreation period in each 

schedule. 

As an example, consider the ~:~num~~ration of schedules 

from the modified matrices in figures 7.11 through ~.14 

assuming each schedule must contain exactly 27 work days 

(W = 27). The upper and lower bound,s on the total number 

of work days contained in any feasible sequence derived 

.from each matrix are circled in the lower right-hand cqrner 

of each figure. These limits indicate. that schedules with 

W = 27 cannot be obtained from the matrix in figure 7.11 or 

the matrix in figure 7.l4; the limits on the other two 

matrices (figures 7.12 and 7.13) include the required value 

and mayproquce acceptable schedules. Three non-cyclic 

schedules can be enumerated from these matrices: two from 

the matrix in figure 7.12 (see figure 7.15), and one from 

the matrix in figure 7.13 (see figure 7.16). 

c 
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T W T F S S 

R 

R 

3 R R 

4 R R 

(a) 

T W F, S s 

R 

3R R 

4 R R 

R 

(b) 

Figure 7.15 

Two Type II Non-Cyclic Schedules Ba~ed on the 
Modified Separa~ion Matrix in Figt~re 7.12 

Week 

1 

2 

3 

4 

5 

M 

-
" 

I' 
R 

2 
R 

T W T 'F S S 

. 

R 
! 

,-. 

R ~ 

c· " 

3 
R R 

4R R 

Figure 7.16 

A Type III Non-Cyclic Sch.~du1e Based on the 
Modified Separation Matilx in Figure 7.13 

~ " 
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The type II schedules derived from the matrix in 

figure 7.12 use recreation period 1 as the beginning 

period; both schedules H~long to the (2;0) set of non-
Ii 
i. 

cyclic schedules. The sequence of recreation periods 

for the schedu1e~ are {a,l,2,3,4,a} for schedule (aj and 

. {a,1,3,4,2,a} for schedule (b). The type III schedule 

derived from the matrix in figure 7.13 uses period 4 as the 

ending period and belongs to the set (0,2); the solution 

sequence is· {a,l, 2,3,4, a} • Although the sequ f3nces for 

Sdhedu1e (a) in figure 7.15 and the schedule in figure 7.16 

are identical} the schedules are different beci:tUse they were 

derived from different modified separation matrices. 

7.4.5 Verification of the Properties of the Corresponding 
Set of Cyclic Schedules 

In section 7.4.1, the concept of using a corresponding 

set of cyclic schedules to derive an optimal or dominating 

non-cyclic schedule for each set (b,e) was introduced. ~wo 

essential properties were identified for each corresponding 

set of cyclic schedules: 

(1) that a 1-1 correspondence exists between each 
non-cyclic schedule in the set (b,e) and a 
cyclic schedule in the corresponding set 
(b, e) c; and 

(2) that the optimal cyclic schedule in set (b,e)c 
corresponds to the dominating non-cyclic schedule 
in set (b,e). 
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The I-I correspondence between non-cyclicc and oyclic 

schedules is easily seen by examining the solution sequences 

for ·the thr1ee schedules shown in figures 7.15 and 7.16. The 

sequence of recreation periods used for each cyclic schedule 

and its corresponding non~~yclic schedule are~ 

Figure 7.l5a 

Figure 7.l5b 

Figure 7 .. 16 

exclie Schedule 

{a,l,2,3,4,a} 

{ a, 1, 3 , 4 , 2 ,a} 

{a,1,2,3,4,a} 

~on-Cyclic Schedule 

-r . {1,2,3,4} 

--r '{1,3,4,2} 

-r {1,2,3,4} 
(j 

The sequence for each non-cyclic schedule in set (b,e) is 

formed by deleting the artificial period from the correspond

ing' sequence for each cyc;lic schedule in set (b, e) c • Hence, 

for every distinct schedule in set (b,e)c, there is a unique 

and corresponding schedule in set (bfe), and conversely, for 

every distinct schedule in the set (b,e), there is a<unlque 
,: c 

and corresponding schedule in the set (h,e) • The strict 

1-1 correspondence between schedules establishes that the 

sets must contain equal numbers of schedules. This observCl,-

tion, and the fact that (1) the branch-and-bound algorithm 
c· implicitly enumerates every schedule in set (bfe) , and 

(2) the matrix modification rules insure that the non-cyclic 

schedule associated with every cyclic schedule:Emumel~ated 

from the modified matrix belongs to set (b,e) 1 verifies 

o 

tf~at every non-cyclic schedule inset (b,e) will be implicitly 

enumerated when the branch-and~bound algorithm is applied to 

the mqdifiedseparation matrix. 
{f 

~I 

it 

II 

,;.' 

, :1 
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The se90nd required property, tr","lt the optimal cyclic 

schedule in (bfe)c correspond to the dominating nOri-cyclic 

schedule in (b,e) is achieved by using preference measures 

applicable to non-cyclic schedules to determine the optimal 

schedule in set (b,e)c. A list of "non-cyclic" preference 

measures used to rank cyclic schedules in set (b,e)c is shown 

in table 7.1. The table also identifies schedule properties. 

which are measured differently for cyclic and non-cyclic 

schedules. 

7.4.6 The Design of Optimal Non-Cyclic Schedules 

Using the concepts introduced above, this section 

describes the algorithm for determining the set of dominating 

non-cyclic schedules for each shift tour to be used in a 

multishift schedule. The design procedure is outlined in 

figure 7.17 as a sequence of 11 steps; a brief discussion of 

each step follows. 

To illustrate each step in the algorithm as it is 

discussed, consider the design of a dominating set of 

non-cyclic schedules for shift i with the following daily 

allocation of recreation days: 

, 
Mon. Tue. Wed. Thu. Fri. Sat Sun. 1 !rotal 

2 2 o 1 1 1 1 t' 

I 8 

r: , 



\ 
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Table 7.1 

Preference Measures Used to Rank Non-Cyclic Schedules 

Schedule Measures Used 
to Rank Cyclic Schedules 

Modifications for Use with 
Non-Cyclic Schedules 

1. Number of weekend recreation 1. 
periods 

None 

2. Maximum number of consecutive 2. 
working weekends 

Cannot measure across 
artificial period (e.g. cannot 
combine weeks 4 and 5 with 
weeks 7 and 2 in figure 7.15) 

-3. Maximum length work period 3. For (0,0) non-cyclic schedules, 
cannot combine the first and 
last. work period lengths 

(days) 

4. Nlli~er of maximum length 
work periods 

5. Recreation period measure 

6. Work period· range 

7. Maximum nUl'(lber of days in. 
consecutive work periods 

8. Number of maximum length 
consecutive work periods 

9. Standard deviation of the 
work to recreation period 
length ratios 

4. None 

5. For (b,e) non-cyclic schedules 
''lith b> 0 and e > 0, cannot 
combine the beginning and 
ending recreation period 
lengths 

6. None 

7. First and last work periods 
are not treated as 
consecutive work periods 

8. None 

9. If b> 0 I cannot use beginning 
recreation period: if e=O, 
cannot use final work period 

Measure Values for the 
Non-Cyclic Schedule 

in Figure 7.15 

1 

2 

8 

1 

* 

3 

15 

1 

0.236 

*See table 2.9 for the preference rankings used to measure recreation period sets. 

, 
W 
~ 
U1 , 
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step 1 Determine the allocation of recreation days 
by day of the week for shift i. 

~. 

Step 2 Use tije upper and lower limits on 
the lElngth of changeover recreation 
perio(s to define the sets of 
non-cjfclic schedules of interest. 

~ 
Step 3 Select the first (next). set: if. none 

exist, s~op. 

l 
Step 4 Remove the beginning and ending 

recreation days from the recreation 
allocation 1 if an infeasible allocation 
is created, return to step 3. 

J, 
Stel? 5 Determine the first (next) partition of the 

reqreation days in the reduced allocation: 
if none exist, record optimal schedule 

,I for set tif any) and return to step 3. 

/( 
':I[ 
\, ~ 

step 6 Determine the first (next) qyclic graph 
based on the partition of the recreation 
days: if none exist, return to step 5. 

.1. 
Step 7 Add the recreation days in the 

beginning and ending recreation 
periods and an artificial recreation 
perioe to the cyclic graph. 

~ 
Step 8 Use the cyclic graph to ·determine the 

expanded elementary separation matrix. 

l 
Step 1} Modify the separation matrix for the work 

period length limits and the presence 
of the beginning and endin~ recreation 
periods. 

J; 
Step 10 Apply the matrix conditioning proced\u:es • .. 

~ 
Step 11 Use the branch and bound algorithm, 

rank measure each schedUle' and 
retain opt:imal schedule. Return to step 6. 

Figure7.!7 

Eleven-step ~rocedure for the Algorithmic Construction of 
Dominating Non-Cyclic Schedules 

I 

I i 



-377-

The upper and lower limits on the length of each changeover 

redreation period are UCR = 4 and LCR = 2 respectively; as 

a result, there are (UcR+l) 2 = (4+1)2 = 25 sets of schedules 

to be examined, The 25 sets are {(O,O), (0,1), (0,2), (0,3),' 

(0,4) I (1,0), (1,1), ••• , (4,3), (4,4)}. A dominating non-cyclic 

schedule must be found for each set. obtaining the daily 

allocation of recreat~on days, and defining and ordering the 

sets of schedules to be; examined completes steps 1 a.,nd 2. 

From this point on in the algorithm (steps 3 through II), 

each set of schedules is examined individually. If'any 

schedules exist for the set, the optimal schedule is found 

and retained. To illustrate this process, consider finding 

thie dominating schedule for the (0,2) set; every non-cyclic 

sc1~edule in 'this set must c':have an ending recreation period 

that is exac·tly two days long. 

Since the exact lengths of the beginning and ending 

recreation periods are known, they can be used to:reduGe the 

computational effort of both the partitioning and cydlic 

graph algorithms. For example: since the length and position 

of the ending period is known (the period is two days long 

and covers Saturday and Sunday), the period can be tel1lPO- . 
" . 

rarily removed from the daily allocation of recreation days 

to obtain a reduced allocation based on only six re(~reation 
" , 

. '~' 

~. ; i ,Ii 

days. The reduced a;llocation for the (0,.2) set is obtained by sub"" 
\I I • 

tracting one recreation day from e~ch day of the ",eek dovered 

by the C,E:)eriod) in this case Saturday and Sunday; t;hei new 

allocation is: 

//' 
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Mon. Fri. Sat. Total 

2 1 o 6 

It may happen that the specified beginning and ending 

recreation periods are not compatible with the daily alloca

tion of" :r-ecreation days. For example, each schedule from the 
''''~, . 

;~set (3,4) has a beginning period three days long and an 
'\ 
(~nding period four days long. Removing both of these 

periods from the original daily allocation produces the 

following result: 

Mon. Tue. Wed. Thu. Fri. Sat. Sun. Total 

1 1 -1 o o o o 2 

-
The -1 value for Wednesday occurs because the beginning period 

requires a recreation day on Wednesday that does not exist in 

the initial allocation; as a result, no non-cyclic schedules 

can be designed f.or the (3,4) case. In fact, since there 

are no recreation days allocated to Wednesday, no schedules 

can be designed with beginning periods that are more than 

two days long (i.e., b > 2); hence, no schedules can exist 

for the sets {(3,0), (3,1), ••• , (4,4)}. 

The reduced allocation of recreation days for the (0,2) 

case is feasible (i.e., there are no negative values) and Step 4 

is completed. The reduced daily allocation is now used in the 

algorithms described in chapters 4 and 5 to find partitions 
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and cyclic graphs (steps 5 and 6). The removal of the 

beginning and ending periods serves two purpose::;: Cl)the 

reduced allocation array produces a smaller problem requiring 
<) 

less computational effort; and (2) the beginning and ending 

period can be added to each cyclic graph produced thereby 

insuring that only schedules from the (0 1 2) set wi11 be 

produced •. 

The six recreation days in the reduced allocation for 

the (0,2) case produce only three partitions which satisfy ,<,'.; 

the constraints on the lengths of interior recreation 

periods (i.e., LR = 2 and UR = 4). The partitions are: 

Number of 
:..,,,,::..-..; 

2-day 3-day 4-day 
Partition Eeriods .:Qeriods Eeriod~ 

1 3 0 0 

2 0 2 '-:'0 

3 1 0 1 

Each partition, in turn, is used to produce cyc1ic grapns 

on the star diagram corresponding to the reduced allocation; 

the reduced star diagram for the (Ol2) CaSe is shown in 

figure 7~lB.. Because of the small number of nodes in the 

star diagram, it is possible to determine by inspection that 

parti.tions 2 and 3 produce no graphs. (The star diagram in 

figure 1.1B Can only be used for one or two-day recreation 

periods.) The remaining partition which consists .of three 

.c. 
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Wed. 

Tue. 

--_____ -"'P-~E__ __ ~---- 'Fri. 

Sun. Sat. 

Figure 7.18 

Reduced Star Diagram 

two-day periods produces only one cyclic graph (see 

figure 7 .. 19). Formu.la,tion of the graph completes step 6. 

To construct the complete cyclic graph used to produce 

the expanded elementary separation matrix, the beginning 

ana endi~g recreation periods, and an artificial period must 

,:. ) be added to tll~ reduced graph.. For the, (0,2) cas e, a two-day 

ending period covering Saturday and Sunday, and an artificial 



-- -----~------

-381,... 

" 

Wed. 

Tue. 

Mon. ---4I~..o-~~-e----- Fri. 

Sun. 

Figure 7.19 

Reduced Cyclic Graph 

recreation period extending from Monday through Sunda~fare· 

added to th~ cyclic graph in figure 7.19. The resulting 

cyclic graph, used in an example earlier in th,;i.s chapter, 
,;~ 

is .shown in figure 7.7. Construction of the complete 

cyclic graph conclude.s. step 7. 

The expanded, elementar.y separation mat.rix for this 

cyclic graph is shown in figure 7.9 (step 8), and the 

o 
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modified matrix for the (0,2) case (a type III schedule) 

is shown in figure 7.13 (step 9). Since recreation period 

4 is ,used as the ending period, matrix entry (4,a) is 

dedicated by setting the entry (4,a) equal to zero and 

voiding all of the other entries in row 4 and column a. 

No dedicated entry exists in row a because the beginning 

period has length zero. The only matrix conditioning rule 

(step 10) that can be applied is the voiding of the (a,4) 

entrYisince (4,a) is dedicated, it must appear in every 

feasible sequence and (a,4) will appear in none. ' 

Only one schedule (see figure 7" 16) can be ~mumerated 

from the modified ma,:t,rix in figure 7.13 (step 11) t This 

schedule repre sen-I:s the dominating schedule for the (0,2) 

set and joins the collection of other dominating schedules 

for shift i that will be used to design the optimal multi

shift schedUle. 
:~--\ 

7.5 THE ENUMERATION OF OPTIMAL MULTI SHIFT SCHEDULES .- \. 

--
7.5.1 Introduction 

, , 

This section describes an implicit enumeration scheme 

to find optimal multishift schedules based on the set of 

dominating non-cyclic schedules. The enumeration strategy 

is quite simple: a candidate non-cyclic schedule is 

selected from the set of dominating schedules for one shift, 

the changeover recreation period defined by this candidate 

schedule and the non-cyclic schedule selected for the 

" , \ 
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preceding shift is examined, and if the length of the change

over period is acceptable, the candidate schedule is 

retained and the algori thIn moves '1:0 the selection of a non-

cyclic schedule for the next shift tour in the multishift 

schedule. This step-wise process is continued until a 

schedule has been selected for each shift tour. Each complete 

multishift schedUle is then given a preference rating wh:i.oh is ' .. -- l' . 

used to determine the optimal schedule. 

This section describes the enumeration procedures used' 

to efficiently examine all of the combinations of the dominat~ 

ing non-cyclic schedules from each shift. In addition to the 

acceptabili ty requirement associated with ear.;:h changeove'r 

recreation per~od, several acceleration techniques are 

described which reduce the computational effort required to 

find optimal and near-optimal syhed,ule.s. 

7.5.2 The Enumeration Proces;:; 

The implici t et~umeration scheme ,to determine optimal 

multishift schedules is schemai:ically represented in figure 

7.20; the diagram -is based on a three-shift schedule. Each 

node in the tree diagram represents a unique sequence 9f 

one-shift, non-cyclio schedules included in the sequence 

(e.g., each level 2 node represents a unique sequence of 

two non-cyclic schedules). Each level in the tree corresponds 

to a specific shift tour in the multishift schedule, and the 

sequence of levels corresponds to the seqgFIDce of shifts 

1. 
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, , 

Node Level 

(1,0) 
1 (day shift) 

2 (night shift) 

(2,2 
3 (afternoon shift) 

--

\ 
\ 

\ 

Legend 

(b ,e) 

Schedule ~ J~ 
set no. 

Node sequence no. 

Fiqure 7.20 

\ 
'\ 

\ 

Schematic Diagram of the Tree Search Procedure for 
Constructing Multishift Schedules 
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required in the multishift schedule (e.g., the sequence of 

levels in figure 7.20 correspond to multishift schedules 

with a shift sequence of day, night, afternoon. Which shift 

is used in level 1 is arbitrary, but once determined, the 

shift assignment for each subsequ€mt level must correspond 

to the required shift sequence in the multishift schedule. 

The number within each node identifies the order in 

which the nodes are created; the left superscript for each 

node indicates the set of the non-cyclic schedule added to 

the sequence at that level (e.:~., 'the dominating schedule 

for set (3,2) was added to the sequence at node 2). The 

entire sequence represented by each node can be determined 

by noting the schedule set nUmbers on the path from START 

to each node (e.g.r the number 4 node represents the sequence 

{(I,O), (3,2), (2,3)}; that is, the day shift sechedu~e is 

from set (1,0), the night shift schedule is from set (3,2), 

and the afternoon shift schedule is from set (2,3). 

As each .candidate shift schedule is selected, the leng1th 
Q~ M 

of the changeover recreation period between the candidate 

schedule and the schedule selected for the preceding shift 

must be examined to determine whether it is acceptable 1 

that is, whether it satisfies the condition: 

i = I, 2, ••• ,N 

bN+l :: b l 

I,', 
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where N equals the number of shift tours. , Each level N 

candidate schedule must satisfy the changeover period 

requirement for two change.over points: i = N-l and i = N; 

that is, the candidate schedule at level N must be compatible 

(in terms of the changeover recreation period) with the shift 

schedule at level N-l and with the shift schedule at level 1 

since shift N "precedes" shift 1 in a multishift schedule. 

7.5.3 A Sample Problem 

To illustrate the enumeration algorithm, consider the 

construction of an optimal multishift schedule using the 

following sets of dominating schedules: for shift 1, 

schedules exist for sets (2,3) and (4,1) i for shift 2, 

schedules exist for sets (1,1), (1,4), and (3,1); and for 

shift 3, schedules exist for sets (0,0), (1,3) and (3,4). 

(This information is summarized in table 7.2.) 

The tree diagram for enumerating multishift schedules 

based on these eight shift schedules is shown in figure 7.21. 

The upper and lower limits on the lengths of changeover 

recreation periods are four and two days respectively, (i.e., 

UCR = 4 and LCR = 2). Two acceptable multishift schedules 

are found: one at node 5 corresponding to the sequence 

{(2,3), (0,0), (3,1)}~and a second at node 7 corresponding 

to the sequence {(2,3), (1,3), (l,l)}. Adding the lengths 

of the ending and beginning recreation periods for each 

adjac,ent pair of non-cyclic schedules in each sequence 
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Table 7.2 

Dominating Schedule Sets for the 
Three-Shift Sample Problem 

Schedules Found for the 
Shift Following Se,ts 

1. (2,3) , (4,1) 

2. (0,0), (1,3) , (3,4) 

3. (1,1) , (1,4) , (3,1) 

verifies that each cha~geover point'in the multishift 

schedule has a changeover recreation period of acceptable 

length. As an example, for the sequence associated with 

node 5, each changeover recreation period is three days 

long; i. e. , 

3 days 
• -A..--~ 

{(2,3) (0,0) (3,1}} 
L-v---' ~ 

3"days 3 days 



• 

1 

2 

3 

* * 
• Acceptable multishift schedule, a changeover recreation period of acceptable length exists at each shift 

changeover pOint. 

Figure 7.21 

Tree Diagram for the T~r~~~Shift Search'Example 

• 

I 
VJ 
00 
00 
I 
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The L--J symbol in the tree diagram indicates nodes in 

which the candidate shift schedule failed to produce a 

changeover recreation period of acceptable length. 

7.5.4 Acceleration Techniques 

Although the enumeration procedure described above is 

quite satisfactory for relatively small scheduling problems, 

as the number of shifts, and dominating schedules per shift 

increas~~s, the computational effort required for the enumera-

tion of all acceptable schedules also increases very rapidly. 

This section examines the growth characteristics of the 

enumeration process, and describes two acceleration procedures 

for improving the effectiveness of the enumeration algorithm. 

In the concluding portion of this section, a modified 

procedure is described for enumerating both optimal and 

near-optimal schedules. 

7.5.4.1 Growth Characteristics of the Enumeration Process 

The number of acceptable multishift schedules and the 

size of, the tree structure (i.e., the number of nodes) that 

exist for a given problem depend upon the number of shifts, 
~} 

N, and the limits imposed on the lengths of the changeover 

recreation periods. As derived earlier in this chapter, 

each shift can have a maximum of (UcR+l) 2 dom.inating 

schedules. Hence the first level in the tree structure 

can have as many as {UCR+l)2 nodes.* Although (U
CR

+l)2 

* For convenience, it is assumed in the remainder of 
this section that there are exactly (UCR+l)? dominatinq 
schedules for each shift. 



-390-

schedules are available for branching (i.~., as descendent 

nodes) from each node at levell, only a limited number of 

the schedules assigned to each level 2 node will satisfy 

the changeover criterion, LCR 2 e1 + b 2 2 UCR. The number 

of active nodes (i.e., nodes that satisfy the changeover 

constraint) at level 2, N2, equals 

where nk equals the number of level 1 schedules with e1 = k, 

and mk equals the number of level 2 schedule,s that are 

compatible with e I = k (i. e., level 2 schedules with b 2 

values that satisfy LCR 2 k + b2 2 UCR). The number of 

level 1 schedules with e1 = k depends on the number of 

distinct values for bl; since 0 ~ bi 2 UCR or bi = 0,1,2, ••• , 

UCR' there are exactly UCR+l schedules with e1 = k. 

Hence, 

(7.4) 

To determine mk , the number of beginning neriod lengths. in 

schedules at level 2 that are compatible with each value of 

k, it is convenient to use the following listing: 

'I I; 



end period 
length, 

e = k 

UCR 
UCR - 1 

LCR + 

LCR 

LCR .--

1 

o 

• 

~ 
.L 

1 
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number of beginning period 
lengths that are compatible 

with k 

1 

2 

UCR -

UCR -

UCR -

LCR 

LCR + 1 

LCR + 1 

UCR - LCR + 1 

UCR - LCR + 1 

For values of k from UCR to LCR+l, ~ values equals 

UCR+l-ki for values of k less than LCR+l, ~ is independent 

of k and equals UCR-LCR+l. As an example for k = 0, UCR = 4 

and LCR = 2, there are three beginning period lengths 

(UCR-LCR+l = 4-2+1 = 3): 2, 3, and 4. Since there are 

(OCR+l) schedules at each level 2 node that begin with each 

value, there are Mo = 3 (UCR+l) = 15 schedules that are 

compatible with k = O. Hence (7.4) becomes 

UCR 
N2 = I (UcR+l)2. (UCR-LCR+l) + 

k=O 

UCR 
I (UCR+l) 2. (UcR+l-k) 

k=LCR+l 
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which becomes: 

No"W let 

then (7.5) becomes 

which indicates that F nodes are generated at level 2 for 

each 14:!ve1 1 node. Hence, in general, the total number of 

active nodes for level i is given by 

and thE~ total number of nodes NT for N shifts equals 

N r 
i=l 

N. 
~ 

( 
N -) 

)
2 F -l. = {UCR+l . F-1 

One measure o~ the screening capability of the changeover 

period length criterion is the .fraction of node~ that are 

rejected (terminated) at" each level in the tree structure. 

Define the screeni~g factor, f, as 

-----~-~-
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n'u'rnb'e'r' 'of hodes r'e'j'e'c'te'd at. 'leV'e'l i 
f = total number of nodes possible at level I 

= 

= 

total number of nodes possible at level i -
total number of active nodes at level i 
total numbe.r of nodes possible at level i 

Ni _l (UCR+l)2 - N';~lF 

Ni-l(UcR+l) 2 

f = 1 -
F 

(UCR+l) ~ 

For LCR = ~ and UCR = 4 ... F equals 12 and the screening 

1;actor f equals 13/25 or .52. Hence the changeover length 

requirement for these values of LCR and UCR only eliminates 

52 percent of the nodes. 

This screening factor can also be used to determine the 

total number of acceptable schedules Ns that exist for a 

given set of initial conditions. Acceptable multishift 

schedules must come from active level N nodes which are not 

eliminated when the changeover period length criterion is 

applied to the cnangeover period between ~he levelland 

level N schedules; therefore 

(I-f) = (U +1) 2F N-l ). ( F ) 
CR (U +1)2 

CR 

Values of F and screening factors for a variety of 

changeover period limits are shown in figure 7.22. The 

values in the table indicate that as the range of the 



Upper Limit 
in Days 
on the 
Length of the 
Changeover 
Recreation 
Period, 

UCR 
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Lower Limit in Days on the Length of 
the Changeover Recreation Period, LCR 

1 2 3 4 5 6 

* F = 

f* = 1 _ __ __ F __ __ 

(UCR+l) 2 

*Assumes that the maximum number of dominating 
schedules, (UCR+l)2, are found for each shift. 

Figure 7.22 

F Values and Screening Factors (f) for the Multishift 
Schedule Enumeration Procedure as a Function of the Upper 
and Lower Limits on the Length of Changeover Recreation 

Periods 
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I 

limi ts (i. e., UCR-Ldi) becomes larger, F values increase 

and screening factoris fall to approximately 0.5.. Even for 

the smallest range pibssible (i. e., UCR=LCR)' Jche screening 
d 

factor is less than '0.86 for N < 6. The total number of 

nodes and .schedulesthat exist for the three sets of limits 

are shown in table 7.3. These results indicate how quickly 

the total number of acceptable schedules and nodes increase 

as the range of the changeover period limits increases. 

They also indicate that unless additional const.raints are 

used to screen out acceptable schedules, application of the 

enumeration procedure is quite limited. 

7.5.4.2 Selection of the Levell Shift 

One method for accelerating the enumeration algorithm 

is the selection of a shift tour for level 1 which minimizes 

the total number of active nodes produced in the tree 

structure. This decision can be based on the number of 

dominating schedules ni that exist for each shift. The 

number of active nodes Ni at each level i in the tree 

structure can be estimated by 

N. 
]. 

= 
i 
II 

i=l 
n. (P ) i 

]. a 

whe.re Pais the probability that each sum ei-l+bi will fall 

in the range (LCR' UCR). 'rhis acceptance probability can be 

" estimated by Pa = (I-f) where f is the screening factor 





Number 
~of 

Shifts 
N 

2 

3 

4 

5 

6 

Table 7.3 

Number of Schedules and Nodes Enumerated for Different 
Changeover Period Limits and NurnbE3~rs of Shifts* 

-:~l'? , '_i_t~ 

Changeover Recreation Period Limits 

UCR=2, LCR=2 UC~=4, LCR=2 . UCR=5, 

Number of Number of Number of NJ.lmber of Number of 
Schedules Nodes Schedules Nodes Schedules 

F NT F NT F 

-
9 36 144 325 400 

·27 117 1,728 3,925 8,000 

81 3'60 20,736 47,125 160,000 

243 1,089 248,832 565,525 3,200,000 

729 3,276 2,985,984 6,786,325 .64,000,000 

-
LCR=l 

Number of 
Nodes 

NT 

756 

15,156 

303,156 

6,063,156 

121,263,156 
.~ 

*Ca1cu1ations are based on a maximum of (UCR + 1)2 dominating schedules for each shift. 

I 
W 
1.0 
m 
I 

" -II 
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The validity of this estimate for P is 
a 

based on the assumption that the dominating schedules 

found for each shift represent a random selection of the 

(UCR+l)2 scheaules that could exist. Using (I-f) in place 

of Pa , the total number of nodes becomes 

(7.6) 

Equation (7.6) is more easily computed if the terms are 

rearranged and written in the form: 

(7. 7) 

where p = (l-k). Result (7.7) can be used to estimate the 

total number of nodes that will be generated in the tree 

structure utiing each of the N shifts in level I (or 

equivalently, using each cyclic permutation of the N-shift 

sequence). The estimating equation is used prior to the 

enumeration algorithm to determine which level I shift 

minimizes NT. 

As an example, consider the enumeration of all multi-

shift schedules with six shift tours based on the following 

sets of dominating schedules: 

1'../ 
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.Nurnb.er of. Schedule.s.,. n i = 

Shift 
Label Set 1 Set 2 Set 3 

a 15 10 25 

b 15 18 1 

c 15 14 25 

d 15 20 1 

e 15 12 25 

f 15 16 13 

Each set contains 90 schedules. 

The NT values for the six cyclic permutations of each 

set of schedules are presented in table 7.4. The NT values 

for each set indicate that selecting an appropriate level I 

shift becomes more important as the variability in the number 

of dominatin~' schedules per shift increases. AS expected, no 

differences in NT values occurs when all of the ni values 

are equal (set 1). In set 3, however, the variability in the 

number of schedules produces NT values that vary by a factor 

of 3 (e. g., ,the NT value for sequence 6 is less than one

third of the NT value for sequence 3). 

7.5.4.3 Ordering the Dominating Schedules for Each Shift 

The following definitions and notation are needed to 

describe the second acceleration procedure. Let W .. equal 1J 

the number of weekend recreation periods for thejth schedule 

for shift i; and let W
1
' equal the maximum W .. value for shift 

J.J 
,,; 

i; Le., 

.);, 



• 

Permu
tation 
Number 

1. 

2. 

3. 

4. 

5. 

6. 

Table 7.4 

Estimated Number of Active Nodes for Cyclic Permutations of the 
Shift Sequence for Three Sample Problems 

SChedule Set 1 

Shift 
Sequence 

(15,15 / 15,15,15,15) 

'" 

(15,15,15,15,15,15) 

Est. 
No. of 
Active 
Nodes 

NT* 

205,358 

205,358 

Schedule Set 2 

Shift 
Sequence 

(10,18,14,20,12,16) 

(18,14,20,12,16,10) 

(14,20,12,16,10,18) 

(20,12,16,10,18,14) 

(12,16 p lO,18,14,20) 

'(16,10,18,14,20,12) 

Est. 
No. of 
Active 
Nodes 

N't* 

173,615 

179,328 

168,774 

175,750 

171,857 

185,922 

Schedule Set 3 

Shift 
Sequence 

(25,1,25,1,25,13) 

(1,25,1,25,13,25) 
/ 

(25,1,25,13,25,1) 

(1,25,13,25,1,25) 

(25,13,25,1,25,1) 

(13,25,1,25,1,25) 

*Equation (7.7) . 

-;,/ 

• 

Est. 
No. of 
Active 
Nodes 

N * T 

3,798 

4,064 

11,139 

3,983 

10,126 

3,477 

~ 

I 
w 
1.0 
\.0 
I 
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i = 1,2, •.• ,N 

Using the Wi value for each shift, an upper limit on the 

total number of weekend recreation periods W in each multi-

shift schedule is given by 

N 
W = r 

i=l 
W. 
~ 

The W. • and W . values can be 
~J ~ 

used to define a dij value 

The d .. value for the jth 
~] 

for each dominating schedule. 

schedule in shift i is given by: 

d .. := W. - W •. 
J..] ~ ~J 

Each d .. value indicates the difference between the maximum 
~- ~J 

number of weekend periods possible from shift i and the number 

of weekend periods in schedule j. Let D equal the sum of the 

d .. 's for each multishift schedule; i.e., 
~J 

N 

D = . r· . {~} d iJ· 
~=l J 

where {j} rep-resents the set of j values corresponding to 

the N shift schedules used in a multishift schedule. The D 

value for each schedule indicates the difference betwEi!en 

the maximum nUll1ber of weekend periods possible in the entire 

schedule and the actual number included over all shift tours; 

i.e., 
N 

b = W - \' \' W •. 
i;l '{J} ~J 

·6 
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AS a result, a zero value for D indicates a multishift 

schedule that contains the maximum number of weekend periods. 

The d .. value assigned to each dominating schedule can 
~J 

be us.ed to provide an ordinal ranking of the candidate 

schedules within each shift to accelerate the enumeration 

procedure. Let J ik equal the nuwber of schedules for shift 

i which have d ij ~ k (JiO > 1 since at least one schedule 

must have d ij = 0). The sum of the JiklS equals n i : the 

total number of schedules from shift ii i.e., 

w. 
~ 

L J ik = n. 
k=O ~ 

The ordinal ranking for each schedule in shift i is obtained 

in the following manner. Schedules with d .. = 0 values 
~J 

are ranked from 1 to J iO (the order within the group of 

d .. = 0 schedules is arbitrary) i next, schedules with d .. = 1 
1J ' " 1J 

values are ranked from JiO+l to JiO+Jil • This process 

continues until all of the schedules within shift i are 

labelled. The process is repeated for each shift. 

With the schedules labelled in this manner, two modifica-

"tions can be made in the enumeration procedure. The first 

involves the following two steps: 

Step 1. Use the enumeration procedure described 
above to find an acceptable multishift. schedule; let D 
equal the sum of the d .. IS for the N shift schedules, 
and let C equal the ~J maximum number of consecutive 
working weekends in the schedule. 
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Step 2. Por each node examined subsequent to finding 
the first schedule, use the following test based on the 
sum D. of the d. ,'s for the shift schedules in the partial 
sequeft:ce at l.J1evel i, and the maximum number C. of 
consecutive working weekends in the first i shift 1.schedu1es 
to determine the acceptability of the candidate schedule; 
this test is in addition to the determination of an 
acceptable changeover recreation period: 

{a} if Di > D, or 

(b) if Di = D and Ci > C 

reject the candidate schedule. 

The additional tests described in step 2 are designed 

to identify (as early as possible in the enumeration process) 

groups of schedules which will be less preferable than thl9 

current optimal schedule. The D. value indicatas the maximum 1. 

number of weekend recreation periods that any ~chedu1e 

produced from node i can have (the maximum number equals 

W-Di ). Since each dij value is non-negative, the sequence 

of D. values for i = 1,2, ••. ,N is monotonically nondecreasinq; 
1. 

hence if D. > D, no schedule will be produced from node i 1. 

with as many weekend periods as the current optimal solution~ 

If D. = D at a level i node, there may be some acceptable 1. 

multishift schedules from node i which possess as many 

w'eekend periods as the current optimal schedule. In that 

event, the second most important preference criterion, the 

maximum number of consecutive working weekends, is used to 

identify nodes which must yield less preferable schedules. 

Like Di , the Ci values for i = l,2, ••• ,N form a monotonically 

nondecreasing sequence. Hence if D. = D and C. > C, the 
1. l. 
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preference ,measure of every schedule completed from node i 

will be less than the preference measure of the best schedule 

already found. 

The second change in the enumeration procedure, based 

on the ordering of the dominating schedules for each shift, 

comes into play once the first acceptable multishift schedule 

is found by the enumeration algorithm. From that point on, 

the D. 1 value for each node can be used to screen out 
~-

candidate schedules for shift i. The criterion is based 

on the observation that in order for a level i node to be 

active, its Di value must satisfy the condition Di ~ D. 

This inequality, in turn, yields the following result about, 

the dij values of the dominating schedules that can be 

added at level i; i.e., if 

then 

and 

D. < D 
~ 

D. l+d .. < D 
~- ~J 

d .. < D - D. 1 
~J ~-

max 
j 

d .. = D - .D. 1 
~J ~-

(7.7) 

Result (7.7) states that in order for the node at level i to 

be active, the d .. value of the candidate schedule for shift 
~J 

i must not exceed D-D. I" As a result, only the first 
~- . 

() 
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J iO + J i + ..• + Jim dominating schedules have to be 

examined from shift i. (There must be at least one schedule 

since min D-D. 1 = 0 and J. 0 > 1.) Hence as the D Vall.ie 
1- 1 -

decreases as new multishif1: schedules are found with more 

weekend recreation periods, the number of dominating 

schedules that have to be examined from each shift decreases. 

7.5.4.4 Enumeration of Opt:imal and Near-Optimal Mul't.ishift 
Schedules 

One difficulty with the modifications described above 

is the amount of computational effort that may be required 

to find the first acceptable schedule. In addition, deter

mination of only the optimal multishift schedule may net,be 

a practical design approach. Although one multishift 

schedule can be identified as optimal in terms of the 

specific schedule measures used in the design algorithms, 
\ 

computational experience with the enumeration procedure 

indicates that the differences that distinguish the optimal 

schedule from the second, tenth, or even fifteenth ranked 

schedule are frequently very small, a;':ld that such small 
\, 

differences may not be of major importance to the schedule 

designer. He may, in fact, place more value on ·the ,opportunity 

to select from among a group of op·t.imal and near-oPtim~, ' 

9,lternatives, a schedule pOJ:;sessing £;chedul'e. features not 

explicitly controlled in the design algorithm • 

. ' ......... ~ 
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To limit the effort expended in finding the first 

acceptable schedule, and to produce both optimal and near-

optimal schedules, a modified enumeration strategy can £e 

used. The procedure uses the W value derived from the 

examination of the set of dominating schedules for each 

shift. The altered strategy assumes that some acceptable 

multishift schedules exist with exactly W weekend recreation 

periods, and limits the enumeration process to finding only 

those schedules. (The optimal multishift schedule must, by 

definition, be included in the collection of schedules with 

W weekend periods.) To limit the search process, D is set 

equal to zero at tl;1e beginning of the enumeration. {This 

has the effect of indicating that a schedule with W weekenq 

periods has already been found.} As a result, only shift 

schedules with dij = 0 are examined, and 

multishift schedule found has DN = 0 and 

every acceptable 
N 
>: L w .. = W. 

i=i{j} ~J 
Since the search is limited to only the first J iO schedules 

from each shift, the enumeration is accelerated, and the 

collection of feasible schedules found includes both optimal 

and near-optimal schedules. If no schedules (or very few) 

are found with D = 0, the D value can be incremented to 

D = 1 and the enumeration process can be initiated again. 

This procedure can be continued unti.l either the optimal 

plus a sufficient number of near-optimal schedules are 

found or the D value exceeds a user specified limit. 

"!I 

.~ 

\.)' 
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7.5.5 Computer Code 

TO test the enumeration algorithm and acceleration 

techniques described above for d,esigning optimal and 

preferable multishift schedules, a computer code, entitled 

MERGE" was written in FORTRAN IV, and successfully implemented 

on an IBM 370-55 system. The program has been utilized to 

construct schedules for several police agencies (see 

section 8.4). Multishift schedules have been constructed 

with as many as six shift tours extending over 19 weeks. 

Execution times have consistent]'y remain~)d below one minute 

of CPU time. Printouts of the MERGE program are presented 

in section 8 .. 2. 
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8. CONCLUSIONS 

8.1 INTRODUCTION 

This concluding chapter reviews the major results of 

this thesis, describes the applicatiollof these. results to 

the design of manpower schedules for two units wi'chin the 

st. Louis Metropolitan Police Department, and finally, 

outlines severa],. areas for future work. 

8.2 MAJOR RESULTS 

8.2.1 Measures of Manpower Schedules 

The primary objective of this thesis was the develop

ment of a system for the design of optimal and preferable 

multishift PR schedules. The development and integration 

of a design capacity into the schedule enumeration algo

rithms consisted of the following steps: (1) identification 

of relevant and specific manpower schedule attributes and 

properties, and (2) specification of one or more quanti

tative measures for each attribute and property. In the 

procedures described in this thesis, these measures are 

applied to each candida,.te schedule to determine the rela ti ve 

preferability of alte:r;-nate schedulel3, and ultimately to 

determine an optimal :or most preferred schedUle for a given 

set of initial condi'tians. 

The schedule measures used in Jt.his work we:r;"e applied 

in two ways. Some were used to screen out infeasible and 

unacceptable schedules; these l1.leaSures represented minimum 

.> Ii 
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standards to be satisfied by every acceptable schedule. 

The minimum requirements imposed on all schedules in this 

thesis included: 

(1) preserving a specified manpower allocation by 
shift and day of the weeki 

(2) satisfying upper and lower limits on all work 
period lengths; 

(3) satisfying upper and lower limits on all interior 
recreation period lengths; and 

(4) including a changeover reiZlreation period of 
acceptable length at every shift changeover 
point (only applicable to multishift schedules). 

Other schedule measures were used as preference measures 

to assess the merit of alternative acceptable schedules; 

these measures, in order of their importance (as used in 

this thesis) were: 

(1) the number of weekend recreation periods; 

(2) the maximum number of consecutive working 
weekends; 

(3) the maximum work period length; 

(4) the number of maximum length work periods; 

(5) the recreation period measure~* 

(6) the work period range (i.e~, the difference 
between the maximum and minimum length work 
periods) i 

* Based on the number and kinds of recreation periods 
in each schedule. See table 2.9 for the preference 
rankings used for individual recreation periods in this 
thes'is~ 
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(7) the maximum number of days in consecutive 
work periods; 

(8) the nuttIDer of consecutive work periods 
with maximum length; and 

(9) the standard deviation of the ratios of work 
period to recreation period lengths. 

Optimal PR schedules were derived. from the set of 

acceptable schedules using these nine preference measures 

in a sequential lexicographic decision model. 

8.2.2 Construction of Optimal One-Shift PR Schedules 

Three algorithms were developed to utilize the 

sequential constructi.on process for one-shift PR schedules 

first described by Heller (16). The three algorithms are: 

(I) Ea'rtitioningalgorithm - to partition the 
recreation days allocated to each shi~t into 
recreation periods of acceptable lengths; 

(2) cyclic graph algorithm - to enumerate for 
each set of recreation periods produced by 
the partitioning algorithm, all distinct 
arrangements of these periods over the days 
of the week which preserve the required 
daily" manp.ower allocation; and 

(3) separation matrix algorith~ - to generate 
from each separation matrix (one matrix is 
selected for each cyclic graph on the basis 
of upper and lower limits on work period 
leng'chs) I all accepta,hle manpower schedules 
(i.e., all sequences of alternating work 
and recreation periods which have the 
correct number of work and recreation days 
for the entire shift). 

Each algorithm was developed and tested separately. 

The three were then combined into one computer code 

entitled EXEC for the desig~ of both cycl~c and non

cyclic one-shift PR schedules. 
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B.2.2.l One-Shift Cyclic Schedules 

The EXEC code has been used successfully to determine 

optimal cyclic schedules for a variety of daily manpower 

allocations and problem sizes. Figures B.l thro~gh B.3 

illustrate the printout from the EXEC code for a nine-week 

cyclic schedule designed to match the daily manpower 

allocation sho'W'n in table B .1. Figure B.l indicates the 

initial allocation data by day of the week, and the limits 

on both work and recreation period lengths. The optimal . 
schedule based on the initial data is shown in figure 8.2 

(a work day is indicated by an asterisk and a recreation 

day by an R). Quantitative measures for the schedule are 

Table B .1 

Daily Manpower Allocation for a Nine-Week Schedule 
-., 

Number of 
Officers Mon. Tue. Wed. Thu. Fri. Sat. Sun. Total 

On Duty 6 6 6 '7 7 7 6 45 

On Recreation 3 3 3 2 2 2 3 18 

Total 9 9 9 9 9 9 9 63 



-411-

INITIAL DATA 
TOTAL NUMBER OF WORK DAYS = 45 
TOTAL NUMBER OF', RECREATION Dt.YS = 18 

DAllY DISTRIBUTlON OF THE RiCREATION AND WOR~ 

MON TUE WED THU FlU DUTY b b b 7 7 RECREATION 3 3 3 l 2 

TOTAL NUMBER OF WEEKS = 9 

RECREATION PERIODS (WATCH INTERIOR) 
MINIMUM LENGTH = 3 
MAXIMUM LENGTH = 4 

WORK PERIODS 
fHNIMUM LENGTH = 4 
MAXIMUM LENGTH = 8 

Figure 8.1 

SAT SUN 
7 b 
2 3 

PERIODS 
TOTAL 

45 
18 

Initial Data for a Nine-Week Cyclic Schedule, 
EXEC Code Printout 
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**'* BEST WATCH SCHEDULE ***' 

WORK DAYS R EC DAYS 
8 3 
8 3 
tl 3 
8 3 
5 3 
8 3 
0 

BRE AK 9 WEEKS 

MON TUE WED THU FRI SAT SUN 

* *' .. " * * * 
*' R R R *' *' *' 
*' :4< 4' " * R. R. 

R It- .. * *' * * 
* * R R R '" * 
* *' * " * * R 

R R " * * * *' 
R R R '" '" * * 
* '" '" *' R R R 

BREAK 

Figure 8.2 

N1ne-Week Cyclic Schedule, 
EXEC Code Printout 

" 
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shown in figure 8.3. Computer CPU time to find this 

schedule was approximately 40 seconds on an IBM 360/65 

system. 

Computational experience to date indicates that, 

under most circumstances, optimal one-shift schedules up 

to nine or ten weeks long, can be found with the EXEC code 

with CPU times of five minutes or less. In general, CPU 

times increase as: 

(1) the total number of recreation days increases; 

(2) the range of upper and lower limits on recreation 
period lengths increases; 

(3) the lower limit on recreation period lengths 
decreases; 

(4) the daily allocation of recreation days becomes 
more uniform across the days of the week; and 

(5) the range of upper and lower limits on work 
period lengths increases. 

It should be noted that nine or ten-bracket PR schedules 

are adequate for many scheduling applications; for example, 

few multishift schedules are designed with more than an 

eight-week (or two-month) tour on each shift, and very good 

matches between allocated manpower and reported workload for 

each day of the week can be achieved for all but the most 

unusual workload distributions .. 

To illustrate the latter point, let f repre~ent .the 

aver~ge number of duty tours expected from each officer 

per week, and let N equal the total number of men available. 

The product Nf equals the total number of duty tours 
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MEASURES 

WEEKEND RECREATION PE~IODS 
NUMBER OF 
AVERAGE NUMBER of CONSECUTIVE 

WORKING WEEKENDS 
MAXIMUM NUMBER OF CONSECUTIVE 

WORKING WEEKeNDS 

WORK PE RI ODS 
MAXIMUM LENGTH 
MINIMUM LENGTH 
AVERAGE LENGTH 
RANGE 
STANDARD DEVIATlON 
NUMBER OF MAXIMli/1 LENGTH 

WORK PERIOD PAIR. SUMS 
MAXIMUM LENGTH 
MINiMUM LENGTH 
AVERAGE LENGTH 
RANGE 
STANDARD DEVIATION 

\~ 

WORK PERIOD/RECREATION PC RI 00 RAT 10 
AVERAGE RATIO 
STANDA~D DEVIATION 

.. 2 

= 3,.50 

:: 5 

= 8 .. 5 
= 7.50 
= 3 
= 1 .. 12 .. 5 

:: 16 
= 13 .. 14.80 .. 3 
= 1.47 

= 2.50 
= 0.37 

RANK S COitE = 2 508 2000110000100 30216 + 0.37 

( 
if 

Figure 8.3 

Preference Measures for the Nine-Week Cyclic 
Schedule in Figure 8.2, EXEC Code Printout 
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available for distribution each week. The fraction of Nf 

duty tours that can be scheduled on anyone day is given by 

k/Nf, k = 0,1,2, ••• : hence, since the maximum number of duty 

tours that can be aJ.located to any day is k = N, the maximum 

fraction of duty tours that can be scheduled on one day is l/f. 

The increment 11 between successive fractions of dutv ., 

tours equals 

(8.1) 

As a result, for daily workload requirements that do not 

exceed l/f, the maximum difference between the fraction of 

workload for a given day, and the fraction of manpower 

assigned to that day equals l/Nf.* Hence, for a lO-bracket 

schedule with one man assigned to each bracket, 11 = l/lOf,~ 

and assuming a value of f = 4.5 days per week, the maximum 

difference betweem the fractions of allocated manpower and 

reported workload for any day becomes 11 = 1/45 or only 

2.2 percent. 

8.2.2.2 One-Shift, Non-Cyclic Schedules 

To design preferable multishift PR schedules, the EXEC 

code can also be used to determine sets of optimal or 

dominating non.-cyclic schedules for each shift tour used 

.in .a multishi:Et schedule. Each dominating schedule is the 

* If the number of duty tours is always rounded to the 
nearest intecJral value, the maximum difference becomes" 
l/2Nf. 

I' 



-416-

optimal one-shift, non-cyclic PR schedule for a unique set 

ox schedules characterized by the lengths of their beginning 

and ending recr.eation periods. The concept of an artificial 

.recreation period is used to establish a 1-1 correspondence 

between each set of non-cyclic schedules from which an 

optimal schedule must be found, and a corresponding set of 

cyclic schedules; the optimal schedule for the set of cyclic 

schedules is used to identify the dominating non-cyclic 

schedule of interest. 

Figures 8.4 through 8.7 illustrate the EXEC printout 

for two sets of non-cyclic schedules designed to match the 

six-man daily allocation (identified as the day watch) in 

table 8~2. The printout of the daily allocation, the limits 

on the lengths of the beginning, ending and interior recreation 

Table 8.2 

Daily Manpower A.llocation for the Day Watch 

Number of 
Officers Mon • Tue. Wed. Thu. Fri. Sat. Sun. Total 

. 
On Duty 5 4 4 4 5 4 4 30 

On Recreation 1 2 2 2 1 2 2 12 

Total 6 6 6 6 6 6 6 42 
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INITIAL DATA DAY WATCH 
TOTAL NUMBER OF WORK DAYS = 30 

TOTAL NUMBER OF RECREATION DAYS = 12 

DAllY DISTRIBUTION OF THE RECREATION AND WORK 
MON TUE WED THU FRI 

DUTY 5 4 4 4 5 
RECREATION 1 2 2 2 1 

TOTAL NUMBER OF WEEKS = 6 

RECREATION PERIODS (START DF WATCH) 
MINIMUM LENGTH = 0 
MAXIMUM LENGTH = 4 

RECREATION PERIODS (END OF WATCH, 
MINIMUM LENGTH = 0 
MAXIMUM LENGTH = 4 

RECREATION PERIODS (WATCH INTERIOR) 
MINIMUM LENGTH = 2 
MAXIMUM LENGTH = 4 

WORK PERIODS 
MINIMUM LENGTH = 4 
MAXIMUM LENGTH = 8 

Figure 8.4 

SAT 
4 
2 

Initial Data, Day Watch, 
EXEC Code Printout 

.... '.. ~ 

" .... -

SUN 
4 
2 

r, 

PERIODS 

TOTAL 
30 
12 
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periods, and the limits irnpo~~ed on the le~gths of the work 

periods are shown in figure 8.4. As indicated in the 

printout, the upper limit on the lengths of the beginning 

and endi~g recreation periods is four days; as a result, 

25 dominating schedules are s:o~ght for this shift, one for 

each set from (0,0) to (4,4). Acceptable schedules may not 

exist for all 25 sets. 

Figure 8.5 summarize.s the search stat:i.stics to enumerate 

the dominating .schedule for the (0,2) case (i.e., schedules 

with a zero length beginning period and a two-day ending 

period). Five partitions of the 12 recreation days are 

found with four to six periods each. A total of 23 cyclic 

PARTITIONS FOR DAY WATCH, CASE ( 0, 2) 

TOTAL NO PERIOD LENGTHS NO OF CYCLIC 
OF PERIODS 1 2 3 4 5 GRAPHS 

6 a 6 a a a 
5 a .~ a 1 0 

5 a 3 2 0 0 

4 a 2 0 2 0 

It a 1 2 1 a 

TOTAL NUMBER OF PARTITIONS = 5 
TOTAL NUMBER OF CYCLIC GRAPHS = 23 

Figure 8.5 

Number of Partitions and Cyclic Graphs 
Enumerated for the (0,2) Set of 

Schedules for the Day Watch, 
EXEC Code Printout 

1 

4 

8 

3 

7 
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graphs are enttmerated front the five partitions (the number 

of cyclic graphs found for' eaGh partition ranges from one 

to ~ight). The optimal non-cyclic schedule for the (0,2) 

set is shown in figure 8.6. As required the schedule begins 

w'i th a work period (producing a zero length beginning 

recreation period) and ends with a two-day recreation 

period. Preference measure values for this schedule are 

also shown in figure 8.6. 

Figure 8.7 indicates the search statistics and results 

of the enumeration for the (4,2) set. Despite finding 

three partitions and four cyclic graphs, no acceptable 

schedules were found. The results for each of the 25 sets 

examined for the allocation in table 8.2 are summarized in 

table 8.3; dominating schedules were found for 19 of the 

25 sets. The results in table 8.3 sUg'gest that, in general, 

as more recreation days are dedicated to beginning and ending 

recreation periods (i.e., as the sum of their lengths, b+e 

increases), the numbers of partitions and cyclic graphs 

that exist decreases. For example, over half of the 115 

cyclic graphs found for the 25 sets were generated for only 

three cases: (0,0), (0,1), and (0,2), and. schedules were 

found for ~.ll 10 sets with b+e < 3. In contrast, schedules 

were found for only two of the six sets with b+e > 6: 

(2 , 4) and ( 4 , 3 ). 

[, 
'J 
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••• BEST WATCH SCIiEDULE 

DAY WATCH 
CASE ( 0, 21 

LEG WORK DAYS REC DAYS 

5 - 1 fI 3 
1 - 3 1 4 
3 - 2 7 3 
2 - 4 8 2 
4 - 5 0 

BREAK 6 WEEKS 

HON TUE WED THU FRI SAT SUN 

1 • .. ... ... ... ... ... 
2 ... It R R ... .. ... 
3 ... ... .. '" R R R 

It R ... .. '" ... ,.. ... 
5 ... R R R ... ... ... 
6 ,.. • ,.. ... * R R 

BREAK 

MEASURES 

WEEKEND RECREATION PERIODS 
NUMBER. OF 
AVERAGE NUMBER OF CONSECUTIVE 

WORKING WEEKENDS 
MAXIMUM NUMBER OF CONSECUTIVE 

WORKING WEEKENDS 

$ •• 

NUMBER OF CONSECUTive WORKING 
~EEKENOS(BEGINNING Or WATCH! 

NUMBER OF CONSECUTIve WORKING 
WEEKENDS(END OF WATCH) 

WURK PERIOOS 
MAXIMUM LENGTH 
KINlKUK LENGTH 
AVERAGE LENGTH 
RANGE 
STANDARD DEVIATION 
NUMBER OF MAXiMUM LENGTH 

WORK PERIOD PAIR SUMS 
MAXIMUM LENGTH 
MlNlHUM LENGTH 
AVERAGE UNGTH 
RANGE 
STANDARD DEVIATION 

= z 
= 2.00 

2 

= 2 

0 

= 8 
7 
7.50 

= 1 
= 0.50 
= 2 

15 
14 
14.67 

;: 1 
= 0.47 

WORK PERIOD/RECREATION PERIOD RATIO 
AVEKAGE RATIO' = 2.69 
STANDARD DEVIATION 0.81 

RA~K SCORE 2 208 2100 1000000 10215 + 0.83 

Figure 8.6 

Dominant Schedule and Preference Measures 
for the (0,2) Set of Schedules for the Day Watch, 

EXEC Code Printout 
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PARTITIONS FOR DAY WATCH, CASE 

TOTAL NO PERIOD LENGTHS 
OF PERIODS 1 Z 3 4 5 

5 0 4 0 1 0 

4 0 2 0 2 0 

4 0 1 2 1 0 

TOTAL NUMBER OF PARTITIONS = 3 
TOTAL NUMBER OF CYCLIC GRAPHS = 4 

( 4, 2) 

NO OF CYCLIC 
GRAPHS 

1 .. 
2 

1 

*** BEST WATCH SCHEDULE *** 
DAY WATCH 

CASE ( 4, 2) 

NO SCHEDULE FOUND FOR THIS CASE 

Figure 8.7 

Enumeration Statistics and Result for ·the 
(4,2) Set of Schedules for the Day Watch, 

EXEC Code Printout 

;j 

() . 



Set 

(0 I 0) 
(0,1) 
(0,2) 
(0,3) 
(0,4 ) 

(1,0) 
(1,1) 
(1,2) 
(1,3 ) 
(1,4) 

(2,0) 
(2 e 1) 
(2,2) 
(2,3) 
(2,4) 

(3,0) 
(3,1) 
(3,2) 
(3,3) 
(3,4) 

(4,0) 
( 4,1) 
(4,2) 
(4,3) 
(4,4 ) 

Total 
(25 Sets) 

-422-

Table 8.3 

Number of Partitions, Cyclic Graphs,and 
Dominating Schedules Enumerated for the 

Day Watch Data in Figure 8.4 

I Number of 
Number of Cyclic Schedule 

Partitions Graphs Found 

7 27 Yes 
4 11 Yes 
5 23 Yes 
3 4 Yes 
4 5 Yes 

4 4 Yes 
5 2 Yes 
3 4 Yes 
4 1 Yes 
2 1 Yes 

t" _I 5 Yes 
3 3 Yes 
4 5 Yes 
2 1 Yes 
3 1 Yes 

3 2 Yes 
4 1 No 
2 2 No 
3 0 No 
1 1 No 

4 4 Yes 
2 

I 
2 Yes 

3 4 No 
1 1 Yes 
2 1 No 

83 115 19 6 



-423-

J 
To illustrate how the computafrona1 effort of the EXEC 

code varies wi th the size and nature of daily shift allocations, 

consider the allocations shown in figures 8.e and 8.9; the 

first (identified as the afternoon watch) requires a seven-

bracket 'schedule and the second (identified as the night watch) 

requires a six-bracket schedule. The computational efforts 

for' these allocations and the day shift described above are 

summarized in table 8.4. Notice that the increased uniformiuy 
I" 

of the afternoon and night shift manpower allocations produces 

a significant increase in the 'number of cyclic graphs enumer- , 

ated for these shifts. The dominating schedules for all three 

shifts were produced from one run of ,the EXEC code; construc-

tion of the 68 schedules (of a possible 75), 319 partitions, 

and 1,619 cyclic graphs required ~67 seconds of CPU time. 

8.2. 3 Enumerat~on of Opt.ima1 and Near-OptimcU Mu1 tishift 
PR Sched,u1es 

An enumeration algorithm was aeve10ped for this thesis 

to construct optimal and preferable mu1tishift PR schedules 

with a changeover recreation period at every shift change

over point. The algorithm uses the sets of dominating 
o 

non-cyclic schedules constructed for each shift tour to 

construct acceptable mu1tishift schedules. The enumeration 

a1gori tflIn, incorporated into a compute:!; code called MERGE, 

has been used to construct mu1tishift schedules that are 20 

weeks long, and contain six shift tours. 

Q 
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INITIAL DATA AFT WATCH 

TOTAL NUMBER OF WORK DAYS 
, 

34 = 
TOTAL NUMBER OF RECREATION OAYS = 15 

DAILY DISTRIBUTlON OF THE RECREATION ANO WORK 
MON rUE WEO THU FRI 

DUTY 5 5 5 5 5 
RECREATION 2 2 2 2 2 

TOTAL NUMBER OF WEEKS = 7 

RECREATION PERIODS (START OF WATCH). 
MINIMUM LENGTH ~ 0 
MAXIMUM LENGTH = 4 

RECREATION PERIODS (END OF WATCH) 
MINIMUM LENGTH = 0 
MAXIMUM LENGTH = 4 

RECREATION PERIODS (WATCH INTERIOR) 
MINIMUM LENGTH = 2 
MAXIMUM LENGTH.;: 4 

WORK PERIODS 
MINIMUM LENGTH - 4 
MAXIMUM LENGTH = 8 

Figure 8.8 

SAT SUN 
5 4 
2 3 

Initial Data for the Afternoon Watch, 
EXEC Code Printout 

PERIODS 
TOTAl. 

34 
15 
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INlTIAL DATA NITE WATCH 

TOTAL NUMBER OF WORK DAYS = 28 
TOTAL NUMBER OF RECREATION DAYS = 14 

DAILY DISTRIBUTION 

DUTY 
RECREATION 

MON TUE 
4 4 

OF THE RECREATION AN~ WORK 

WED THU FRI SAT' SUN 
444 4 ~ 

2 2 2 2 2 2 2 

TOTAL NUMBER-OF WEEKS = 6 

RECREATION PERIODS (START OF W~TCH) 
MINIMUM LENGTH = 0 
MAXl~UM LENGTH = 4 

RECREATION PERIODS (END OF WATC~. 
MINIMUM LENGfH = 0 
MAXIMUM LENGTH = 4 

RECREATION PERIODS (WATCH INTERIOR) 
MINIMUM LENGTH = 2 
MAXIMUM LENGTH = 4 

WORK PERIODS 
MINIMUM LENGTH = 4 
MAXIMUM LENGTH = 8 

Figure 8.9 

lnitial Data for the Night Watch l 

EXEC Code Printout 

;;-

PERIODS 

TOTAL 
28 
14 

!'\ 
\J 
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No. of 
Watch Sets 

Day 25 

Afternoon 25 

Night 25 

Total 75 
I 

.. ~., ... 
"1.' 

Table 8.4 

Number of Partitions, Cyclic Graphs, and Dominating Schedules 
Enumerated for the Watch Data in :E'igures 8.4, S.8, and 8.9 

Set With No. of Set With No. of 
No. of 't.he. Most Cyclic the Most Dominating 

Partitions Parti tionsJ Graphs Cyclic Graphs, . Schedules 
Enumerated No. of/Set Enumerated No. of/Set Enumerated 

83 7/(O,O} 115 27/(0,0) 19 

125 8/(0,1) 720 148/(0,0) 24 

III 8/(0,0) 780 148/(0,1) 25 

319 - 1,619 - 68 

• 

CPU 
.Time 
(Secs) 

-
27 

117 

123 

267 
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To illustrate the MERGE code, figures 8.10 through 

8.13 summarize the MERGE printout based on the data and 

three sets of dominating shift schedules described in the 

previous section. Figure 8.10 summarizes the initial data 

printout from the MERGE program which, identifies the daily 

allocation, number of weeks, and maximum number of weekend 

recreation periods for each of the three shifts, and identi

fies the uppe':c and lower limits on the lengths of the 

changeover recreation periods (i.e., four and two days). 

The line en ti tled "SPECIAL RECREA.TION PERIOD LENGTH .•• II 

identifies a special user option for the inclusion of one 

long changeover period or "mini-vacation ll during each 

rotation period of the multispift schedule. The MERGE 

printout in figure 8.10 indicates that the user has requested 

a seven-day mini-vacation. The line "MIN ~.AX NUMBER OF ••• " 

identifies the minimum value that can be obtained for the 

maximum number of consecutive working weekends~ this min-max 

value is based on the number of weekend recreation periods 

and the number of weeks in the multishift schedule. 

Figure 8.11 summarizes the preference measure for the top 

ten ranked multishift schedules enumerated for the initial data 

shown in figure 8.10. All of th~ schedules listed have 

six weekend recreation periods and a maximum of three 

consecutive working weekends. The characteristics for the 

optimal schedule (rank numper 1) are listed first; shown 
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INITIAL DATA 
NUMBER OF WATCHES = 
NUMBER OF CASES/WATCH = 
MINIMUM RECRELU ION PERIOD LENGTH = 
MAXIMUM RECREATION PERIOD LENGTH = 

SPECIAL RECR EAT I ON PERIOD LENGTH = 

TOTAL SCHEDULE PERIOD (NO OF WEEKS) = 
NITE WIHCH = 6 

AFT WATCH = 7 

DAY 'tiIATCH = 6 

MAXIMUM NUMBER OF WEEKEND RECREATION PERIODS = 

NITE WATCH = 2 

AFT WATCH = 2 

DAV WATCH -= 2 

MIN MAX NUMBER OF CONSECUTIVE WORKING WEEKENDS ..... 

WATCH 
NITE 
AFT 
DAY 

TOTAL 

WATCH 
NITE 
AFT 
DAY 

TOTAL 

DAILY ~ANPOWER ALLOCATION 
MON TUE WED THU FRI SA·! SUN TOTAL 

4 4 4 4 4 4 4 28 
5 5 5 5 5 5 4 34 
5 4 4 4 5 4 4 30 

14 13 13 13 14 13 12 92 

DAILY RECREATION ALLOCATIOt\l 

MON rUE WED THU FRI SAT SUN TOTAL 
2 2 2 2 2 2 2 14 
2 2 2 2 2 2 3 15 
1 2 2 2 1 2 2 12 

5 6 6 6 5 6 1 41 

Figure 8.10 

Initial Datia for the Three-Watch Example, 
MERGE Code Printout 

3 
25 

2 
4 

7 

19 

6 

3 

~' 'I 

P " 
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RANK 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

RANKING SUMMARY FOR 6 WEEKEND HECREATION PERIODS _ 
3 CONSECUTiVE ~ORKING ~EEKENOS 

, CASE SOLUTION MEASURE NnE 
NUMBERS 
AFT DAY 

154 0.90 14,2) 10,31 
19 0.95 12,41 10,41 

l22 0.95 14 f O) (2,11 
14 I.CO 12,31 Cl, 3) 
18 1.00 12,4) (0,31 

121 0.91 (4,01 12.11 
156 0.89 14.21 10,4) 
171 0.'15 14.21 12,11 
96 I.CO 13,31 11.11 

101 1.00 13.3 , 11,3) 

Figure 8.11 

Preference Measures for the Top'Ten Ranked Multishift Schedtiles with 
Six Weekend Recreation ~Periods and 'Three Consecutive W~orking Weekends, 

MERGE Code Printout 

( 1 ,31 

13,01 

12,31 

(4.01 

14.01 

Cl,31 

(0,31 ' 

12,31 

12,41 

11.4) 

\' 

• 

I 
.;:.. 
l'V 
\0 
I 
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are the solution number (the optimal schedule was the 
\ 

l54th schedule found), the preference vector, and the 

specific sets from which each of the non-cyclic shift 

schedules were drawn for each shift. (The seven-day 

mini-vacation occurs between the day and night shifts.) 

Following the optimal schedule, the characteristics of 

th~ other schedules are listed in order of their prefer-

ability (up to 100 schedules can be listed). 

The optimal schedule is shown in figure 8.12. 

(Notice that the beginning and ending period lengths fa:., 

each shift correspond to the three sets identified at the 

:f:ar right in figure 8.11.) The preference measures for 

this schedule are listed in fi~ure 8.13. 

To illustrate how small the differences may be between 

an optimal and a lower ranking schedule, the 10th ranked 

schedule and its preference measures based on the same 

data used to derive the optimal schedule above are shown 

in figures B.14 and 8.15 respectively. Although this 

second schedule uses a different non-cyclic shift schedule 

for each tour, both this schedule and the optimal schedule 

in figure 8.12 have the saUle values for the number of 

weekend recreation periods (6), the maximum number of con

secutive working weekends (3), maximum work period length 

(8), the number of maximum length work periods (2), work 
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RANK 
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1 SOLUTION NO = 154 

MaN TUE WEO THU ~RI SAT SUN 

1 R R R R * * * 
2 * * * * R R R 

~3 R * * * * * * 
4 * R R * * * 10< 

5 * * * R R * * 
6 * * * * * R R 

NITE I AFT 

1 * * * * * * R 

8 R R * * * * * 
9 * * R R * * * 

10 * * * * R R R 

11 R * * * * * * 
12 * R R R * * * 
13 * * * '* R R R 

AFT I OAY 

14 R * * * * * * 
15 * R R R * * * 
16 * * * * * R R 

11 * * * * * * * 
18 * R R R * * " 
19 * * '* * R R R 

DAY I NfTE 

MEASURE = 6030802 300 2000100 21601 

Figure 8.12, 

Top Ranked Multishift Schedule, 
ME~GE Code Printout 

~:::. 

D 

~o :::::.,./ 

(; ,", 

" " 

r" 1,5 

+ 0.90 
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NUMBER OF WEEKEND RECREATION PERIODS 6 

MAXIMUM NUMBER OF CONSECUTIVE WORKII\G WEEKf'NCS 3 

MAgIMUM LENGrH WGRK PERIOD 8 

NUMBER OF MAXIMUM LENGTH WORK PEUIOOS = 2 

RECREATION PERIOD CCHPOSITION 
RANK LENGTH/START NUMBER 

1 4 I FRI 3 
2 4 / THU 0 
3 4 I SAT 0 
4 3 / FUI 0 
5 3 / SAT 0 
6 2 / SAT 2 
7 4 ~ WED 0 
II 3 THU 0 
9 4 I SUN a 

10 3 / SUN 1 
11 2 / FRI 0 
12 2 I SUN 0 

WORK PERIOD RANGE 2 

MAXI hUM - TWO CONSECUTIVE WORK PERIODS 16 

NUMBER OF MAX l~lJP' - TkO CONSECUT I liE I,IORK PERIODS 1 

STANDARD DEVIATICN - WORK/REC RATIOS 0.90 

WORK PERIOD LENGTHS 1 1 7 7 6 1 7 7 7 7 8 B 
REC PERIOD LENGTHS 4 2 0,.2 2 3 2 4 3 4 3 2 3 

Figure 8.13 

Preference Me~sures for the Mu1tishift Schedule 
in Figure 8.12, MERGE Code Printout 

7 
7 
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10 SCLUT.ION NO = 101 

MON TUE WED THU FRI SAT SllN 
1 R R R * * * * 
2 * * * R R * * 
3 * * * * * R R 
4 R R * * * * * 
5 * * R R * * * 
6 * * * * R R R 

NIlE I AFT 
1 R * * -* * * * 
8 * R R * * * * 
9 * * * R R R R 

10 * * * * * * R 

11 R R tic * * * * 
12 * * R R * * * 
l~ * * * * R R R 

AFT I DAY 
14 R * * * * * * 
15 * R R R * * * 
16 * * * * * R R 
17 * * * * * * * 
18 * R R * * * * 
19 * * * R R R R 

DAY / NfTE 

MEASURE :: 603Ca02 21t 1000100 21601 + 

Figure 8.14 

Tenth Ranked Multishift Schedule, 
MERGE Code Printout 

1.00 
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NUMBER Of WEEKEND RECREATION PER IUDS = 6 

MAXIMUM NUMUER OF CONSECUTIVE WORKING WEE.KFNDS 3 

MAXIMUM LENGrH WORK PERIOD 8 

NUMIiER OF MAXIMU~ LENGTH WORK PERIOCS Z 

RECREATION PERIOD COMPOSITION 

RANK U;NGTH/START NUMBER 

1 4 / FRI 2 
Z 4 I THU 1 
3 4 I SAT ! 
4 3 / FRI 0 
5 3 / SAT 0 
6 Z I SAT 1 
7 4 I WED 0 
8 3 / THU C 
9 4 / SUN 0 

10 3 / SUN 1 
11 2 / FRI 0 
12 2 I SUN C 

WORK PERIOD RANGE 2 

MAXIMUM - TWO CONSECUTIVE WORK PERIODS 16 

NUMBER Of MAXIMUM - TWO CONS~CUrIVE WORK PERIODS 1 

STANDARD ~EVIATION - WORK/REC RAT 105 1.CO 

WORK PERIOD LENGTHS 7 7 7 7 7 1 6 7 7 1 8 6 
REG PERIOD LENGTHS Z 4 2 4 2 4 3 Z 4 3 2 2 

\ 

Figure S.15 

Preference Measures for the Multishift Schedule 
in Figure 8.14, MERGE Code Printout 

7 
7 
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period range (2) I maximum length for two consecu.tive work 

periods (16), and the nurOber of maximum length consecutive 

work periods (1). In fact, the only distinguishing pre

ference characteristic between these schecfules is the 

distribution of their recreation periods! the optimal 

schedule has more four-day recreation periods beginning 

.on Friday than the 10th ranked schedule. 

8.3 APPLICATIONS OF COMPUTERtZED MANPOWER SCHEDULING 

This section describes the use of the computerized 

manpower scheduling programs discussed above to design work 

schedules for two units in the St. Louis Metropolitan Police 

Department. 

8.3.1 Evidence Technician Unit i St. Louis Police Department 

The Evidence Technician Unit (ETU) of the St. Louis 

Metropolitan Police Department is a 19-man component of 

the Department's Laboratory Division. It operates three 

evidence collection vans 24 hours per day, one in eacll of 

the city's three police field operations areas. The vans, 

whose personnel perform preventive patrol activities bet.ween 

assignments, are dispatched to the scenes of crimes on the 

.request of the beat patrol officers responding to the 

incident, where they collect evidence, search for finger-

prints, and take photographs of the crime scene • 
.. , 

Since 1970, the unit has "utilized a three-shiftPR 

schedule~ prior to 1973, the schedules were designed 

B If 

~, . If, , 
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manually by Nelson Heller. Since that time, however, the 

unit has used PR schedules designed by the EXEC and MERGE 

programs. The basic steps in the design of schedules for 

the ETU are: 

(1) determination of the unit workload by shift 
and day of the week; 

(2) allocation of the unit manpower by shift and 
day of the week in proportion ·to the workload; 

(3) designation of the manpower allocation for 
evidence technicians who will rotate shift 
assignments (some technicians have permanent 
shift assignments); and 

(4) design of an optima.l multishift PR schedule 
for the rotating technicians. 

Each of these steps is discussed below. 

The workload for the 1973 ETU schedule was based on 

the number of radio assignments received by the unit from 

January 1, 1972 through October 10, 1972, a total of 8,487 

assignments. The distribution of assignments by shift and 

day of the week is shown in table 8.5.* The manpower distrib

ution for the 19 men (92 duty tours per week based on 

f = 4.81 work days per technician per week) based on this 

workload distribution is shown in table 8.6. (For a more 

complete description of how the manpower allocation for 

this schedule and the other applications in this section 

.w.e:r.e .der.i.v.ed, see reference 17.) Two of the 19 technicians 

* The ETU' works threeeight:-h6ur shifts per day: the 
day shift (7 A.M. to 3 P.M.), the afternoon shift (3 P.M. 
to '11 P.M.), and the night shift (11 P •. M. to 7 A.M.). 

--

" 
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Shift 

Day 

Afternoon 

Night 

Total 
(%) 

-

".~~~--~~~--------~--------~--~------~----~---

Table 8.5 

Number of ETU Radio Assignments by Shift and Day of the Week, 
January 1, 1972-0ctober 10, 1972 

Mon. Tue. Wed. Thu. Fri. Sat. Sun. Total 
---

452 416 398 347 405 417 306 2,741 

462 440 431 453 430 358 395 2,969 

385 351 369 405 428 446 393 2,777 
,-,! 

1,299 1,207 1,198 1,205 1,263 1,221 1,094 8,484 
(15.3) (14.2 ) (14.1) (14.2) (14.9) (14.4) (12.9) (lC'O.O) 

• 

(% ) 

(32.3) 

(35.0) 

(32.7) 
. ' .. 

(100.0) 



Shift 

Day 

Afternoon 

Night 

Total 

Percent 
Manpower* 

Pe:t'cent 
Work1oad** 

\1· 

Table 8.6 

Manpower Allocation by Shift and Day of the Week for the 
1973 Evidence Technician Unit Schedule 

Number of Officers on Duty 
Number Total 
of Men On Percent 

Assigned Mon. Tue. Wed. Thu. Fri. Sat. Sun. Duty Manpower 

6 5 4 4 4 4 4 3 28 30.4% 

7 5 5 5 5 5 5 4 34 37.0 

6 4 4 4 4 5 5 4 30 32.6 

19 14 13 13 13 13 14 11 92 

100.0% 15.2% 14.1 14.1 14.1 15.2 15.2 12.0 {I 1QO.D% ." 
":' 

:'':Z\ 

- 15.3% 14.2 14.1 14.2 14 .. 9 14.~ 12.9 
.,»: 

*Dai1y manpower percentages do npt sum to 100.0 because of roundoff. 

**Based on the workload distribution shown in table 8.5. 

• 

\ 

PercetLt 
Workload** 

32.3% 

35.0 

32.7 

100.0% 
'" 

\ 
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W 
co 
I 



< . 

'0· 

-439-

werE~ notl'!inclUded in the mul tishift rotating schedule: 
" . ,'!.\ 

on,,) was/permanentlY assigned to the afternoon shift and 
\\ .- . 

anoi:her was permanently assigned to the night shift -- both 

::1JIlen received Sunday and Monday off each week. Removing 

these two technicians from the 19-man allocation shown in 

table B'.6 produced a 17-man allocation (table B. 7) that was 

used als the basis for the multishift PR schedule. 

Since the technicians disliked long assignments on the 

same shift, the decision was made to split each shift into 

two tours; the day and afternoon assignments were divided 

into two three-week tours, and the night assignment was 

divided into one three-week tour and one two-week tour. A 

set of dominating schedules was found for each shift tour 

using the EXEC code, and several six-tour multishift 

schedules were generated using the MERGE program; the number 

one ranked schedule (and the one implemented by the ETD~) 

is shown in figure B.16. Preference measures for the 

schedule are listed in Figure B.17. 

This schedule possesses the following useful properties: 

(1) manpower is proportional to the. workload by 
shif.t and day of the week; 

(2) the number of weekend recreation periods is 
maximized; 

(3) the weekend recreation periods are distributed 
so that no tour contains more than one, and the 
maximum number of consecutive working weekends 
is fourz 





1\ Shift 

Day 

Afternoon 

Night 

Total 

Table 8~7 

Manpower Allocation by Shift and Day of the Week for the 
S(\\'venteen Men Assigned to the 1973 ETU PR Schedule 

Number of Men On Duty 
Number 
of Men 

Assigned Mon. Tue. ~'led • Thu. Fri. Sat. Sun. 

6 5 4 4 4 4 4 3 

6 5 4 4 4 4 4 4 

5 4 3 3 3 4 4 4 

, 

17 14 11 11 11 12 12 11 

On Duty· 
Total 

28 

29 

25 

82 

• 

I 
.r::. 
II::
o 
I 
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RANK NO - 1 SOLUTION NO ;::: 27 

MON TUE WEO THU FR I SAT SUN 

1 R * * * * * * 
2 * R R * * * * 
3 * * * R R R R 

NITE AI AFT B 

4 .* * * * * * * 
5 * R R * * * * 
6 * * * R R R R 

AFT BI DI\Y B 

1 * * * * * * * 
8 * R R * * * * 
9 * * * R R R R 

DAY Sf NITE B 

10 * * * * * * * 
11 * R R R * * * 

N~TE BI AFT A 

12 R R * * * * * 
13 * * R R * * * 
14 * * * * R R R 

AFT AI DAY A 

15 R R R R * * * 
16 * * * * R R R 

17 * * * * * * R 

CAV AI NITE (J 

RANK MEASURE = 5040803 30 lCOCOOOOl 51505 + 

Figure 8.1§.. 

1913 Multishift PR Schedule for the Evidence 
Tesimician Unit, St. Louis Metropolitan 

PQJlice Department, MERGE Code Printout 
Ii 
'" 1\ 

1:\ 
\" 

~ 
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NUMBER OF WEEKEND RECREATION PERIODS :: 5 

MA~IMUM NUMBER OF CONSECUTIVE WORK1NG WEEKFNCS '" " MAXIMUM LENGTH WORK PERIOD ::: 8 

NUMBER OF MAXIMU~ LENGTH WORK ~ERIOCS "" 3 

RECREA'T ION PERIOD COH~OSlT1ON 
<\ 

RANK LENG!H~START t'.lIJMIlER 

1 " I FlU 0 
2 lj I THU 3 
.J 4 / SAT 0 

" 3 I FlU 1 
5 3 I SAT 0 
6 2 I SAT 0 
7 It / WED 0 
8 3 I THU 0 
9 " / SUN 0 

10 3 I SUN 0 
11 2 I FlU 0 
12 2 I SUN 1 

WORK PERIOD RANGE '" 5 

MAXIMUM - TWO CONSECUTIVE WORK PERIODS :: 15. 

NUMBER Of MAXIMUM - TWO CONSECUTIVE WORK PFRIODS '" 5 

STANDARD DEVIATION - WORK/REC RATIOS .. 0.99 

WORK PER iOD LENG'jH~ 7 7 B 7 8 7 - 8 3 7 7 7 
REG PERIOD LENGThS 2 " 2 It 2 " 3 2 2 1 3 

Figure 8.17 

Preference Measures for the 1973 BTU Schedule 
in Figure 8.16, MERGE Code Printout 

--- --j,'\---~ 
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(4) all interior and changeover recreation periods 
(except one by design) are two, three, or four 
days long, with most of the three- and four-day 
periods covering both Saturday and Sunday; 

(5) one seven-day, mini~vacation changeover recreation 
period has been designed into' the schedule; 

(6) a changeover recreation period has been placed at 
every shift changeover point; 

(7) except for one three~day period, all of the work 
periods are six, seven, or eight days long; 

(8) technicians change shift assignments every two 
or 'three weeks; and 

(9) the 17 technicians using the multishift PR 
schedule have identical schedules. 

A new PR schedule was designed for the ETU in 1974. 

The workload data used for the new schedule is shown in 

table 8~8 and the manpower allocation to match that work 

distribution is shown in table 889. The optimal PR schedule 

designed and implemented to match this manpower allocation 

is shown in figure 8.18 (all 19 technicians were assigned 

to the rotating schedule that year) • .The preference 

measures are listed in figure 8.19.* 

8.3.2 Traffic Safety Unit, St. Louis Police Department 

'~, The Traffic Safety Unit of the st. Louis Metropolitan 

~ . 

Police Dep~,rtment consists of 46 officers whose primary 

responsibilities are traffic law enforcement and traffic 

control. The Unit is composed of three subunits; the 
',) / 

----~*--~,~, --------~----

, The slight cha~ges in workload distribution in 1974 plus 
the generally favo,rable response l;>y ETU technicians to the. 
properties of the 1974 schedule lead to the decision by the 
Unit supervisor to use the same schedule in 1975. 
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Table 8.8 

Number of ETU Radio Assignments by Shift and Day of the Week, 
September 1, 1972-June 3D, 1973 

Shift Mon. Tue. Wed. Thu. Fri. Sat. Sun. Total (%) 

Day .546 513 500 518 539 464 353 3,433 (32.4) 

I"~ 
Afternoon 663 643 713 643 711 529 448 4,350 (41.1) 

" Night 385 366 346 395 431 466 422 2,811 (26.5) " ,) 
/1 

I 
Total 1,594 1,522 1,599 1,556 1,681 1,459 1,2.23 10,594 (100.0) ~ 

~ 

(% ) (15.0) (14.4) (14.7) (14.7) (15.9) (13.8) (11.5) (100.0) .I::> 
I 

0 

~ 
\-
'-\ 

I, 

'.~ . 

. ,-
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Shift 

Day 

Afternoon 

Night 

Total 

Percent 
Manpower * 

Percent 
Work1oad** 

" 

lie' 

Table 8.9 

Manpower Allocation by Shift and Day of the Week for the 
1974 Evidence Technician Unit Schedule 

Nunfuer of Officers on Duty 
Number Total 
of l-len On Percent 

Assigned Mon. Tue. Wed. Thu. Fri. Sat. Sun. Duty Manpower 

6 5 4 4 4 5 4 4 30 32.6% 

7 5 5 5 5 5. 5 4 34 37.0 

6 4 4 4 4 4 4 4 28 30.4 

19 14 13 13' 13 14 13 12 92 

100.0% 15.2% 14.1 14.1 14.1 15.2 14.1 13.0 100.0% 

- 15.0% 14.4 14.7 14.7 15.9 13.8 11.5 
'" 

*Dai1y manpower percentages do not sum to 100.0 because of roundoff. 

**Based on the workload distribution shown in tab1e'S.8. 

\\ 

Percent 
Work1oad** 

32.4% 

41.1 

26.5 

100.0% 

1.-
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RANK NO ~. 1 SOLUTION NO = 838 

MON rUE WED THU FRI SAT SUN 

1 R R R :4'c :0: * * 
2 :0: * * R R * *-

3 * *- * * * R R 

NnE AI AFT B 

4 * :0: * :0: * * R 

5 R :0: :0: :0: * :0: :0: 

6 :0: R R :0: *- :0: :0: 

7 :0: :0: :0: R R R R 

AFT 8/ DAY fJ 

8 * :0: :0: * :0: * * 
9 :0: R R R :0: * * 

10 :0: :0: :0: :0: :0: R R 

CAY AI NITE B 

e 11 R R :0: :0: :0: * :0: 

12 :0: :0: R R :0: :0: * 
13 :0: * :0: * R R R 

NnE 8/ AfT A 

14 R * :0: '* :0: :0: *-

15 :0: R R R :0: :0: :0: 

16 :0: :0: *- :0: R R R 

AFT AI DAY B 

17 R\ :0: :0: :0: *- :0: :0: 

18 :0: R R * *- * * 
19 :0: * * R R R R 

DAV BI NITE A 

RANK MEASURE -= 603C802 211 1000001 21601 + 0.85 

" -,-

Figure 8.18 

1974 ETU Multishift PR Schedule, 
MERGE Code Printout 
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NUMBER OF WEEKEND RECREATION PERIOOS = 6 

MAXIMUM NUMBER OF CONSECUTIVE WGRKING WEEKF.NIJS = 3 

MAXIMUM LENGTH WORK PERIOD 8 

NUMBER OF MAXIMUM LENGTH WORK PERIODS :: 2 

RECREATION PERIOD COMPOSfTfON 
RANK LENGTH/START NUMeER 

1 It /FIU 2 
2 4 / THU 1 
3 It I SAY 1 
It 3 I FRI 0 
5 3 I SAT 0 
() 2 I SAT 1 
7 '* I WED ,0 
8 3 I THU 0 

" 9 '* / SUN 0 )) 
10 3 I SUN 0 '. 
11 2 / FRI 0 
12 2 / SUN l 

WORK PERIOD RANGE = 2 

MAXIMUM - TWO CONSECUTIVE WORK PERIODS = 16 

NUMBER OF MAXIMUM - TWO CONSECUTIVE WORK PERIODS = 1 

STANDARD DEVIATION - HORK/REC RATIOS = 0.85 

WORK PERIOD LENGTHS 1 1 6 7 7 8 8 1 1 1 7 
REC PERIOD LENGTHS 2. 2 2. :Z " 3 It 2 It 3 It 

Figure 8:19 

Preference Measures for the 1974 ETU Schedul..e 
, in Figure 8.18, MERGE Code Printout 
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largest of which is the Radar-Vascar Unit. It is manned 

by 20 officers whose responsibilities include speeding 

enforcement '<;l.nd general t,raffic patrol throughout the city. 

The second largest section is the 

by 14 officers assigned to patrol 

Motorcycle Unit, mann~d 
t~ 

high accident and heavy 

traffic areas •. The smallest subunit is the Highway Unit, 

manned by six two~man teams assigned to patrol the city's 

29.6 miles of expressways. Each su~unit'operates on two 

eight-hour shifts (days and afternoon), seven days a week. 

In 1973, the Unit commander requested assistance with 

the design of manpower schedules for Radar-Vascar and 

Motorcycle units. The workload measure he suggested for 

both units. was the to"6al number of reported accidents for 

1\ the entire city by shift and day of the week (see table 

8.10) • 

The manpower allocation used for the 20-manpower 

Radar-Vascar Unit is shown in table 8.11; equal manning 

levels on both shifts were requested by the Unit commander 

to preserve the manning levels used in previous schedu1es, 

despite the disparity in workload between the two shifts. 

To avoid long assignments on the same shift, each 10-week 

shift assignment was divided into three tours creating a 

six-tour roul tishift schedll,le • The optimal schedule designed 

for the Radar-Vascar unit is shown in figure 8.20 and the 

preference measures are listed in figure 8.21. 



I' I 
i, 

--;:)-',--
~\ 

o 



• 

Shift 

Day 

Afternoon 

Total 
(%) 

r~ 
'~:.- ' 

Table 8.10 

Number of Reported Accidents by Shift and Day of the Week 
Covered by the Radar-Vascar and Motorcycle Units, 

Traffic Safety Unit, City of St. Louis, 1971 

Mon. Tue. Wed. Thu. Fri. Sat. Sun. Total 

<-

1,104 1,270 1,130 16184 1,294 1,732 478 8,192 

1,440 1,373 1,373 1,546 2,974* 1,874 696 11,276 

2,544 2,643 2,503 2,730 4,268 3,606 1,174 19,468 
(1.3.1) (13.6) (12.9) (14.0) (21.9) (18.5 ) (6.0) (100.0) 

(%) 

( 42.1) 

(57.9) 

(100.0) 

*The Friday afternoon shift represents 11 hours of coverage. The officers 
assigned are divided into two groupsj the first group works from 3 P.M. to 11 P.M., 
and the second group works from 6 P.M. to 2 A.M .. 

• 



Shift 

Day 

Afternoon 

Total 

Percent 
Manpower 

Percent 
Work1oad** 

Table 8.11 

Manpower Allocation by Shift and Day of the Week for the 
1973 Radar-Vascar Unit Schedule 

Number of Officers On Duty 
Number Total 
of Men On Percent 

Assigned Mon. Tue. Wed. Thu. Fri. Sat. Sun. Duty Manpower 

10 7 8 7 8 8 7 5 50 50.0% 

10 7 7 7 7 9 8 5 50 50.0 

20 14 15 14 15 17 15 10 100* 

100.0% 14.0% 15.0 14.0.'")15.0 17.0 15.0 10.0 100.0% 
\\ 

\\ 

- 13.1% 13.6 12.9 14.0 21.9 18.5 6.0 

*Tota1 number of on-duty. shifts includes time ,[ 6ff for paid holidays. 

**Based on the workload distribution shown in table 8.10. 

'.\ 

Percent 
Work1oad** 

42.1% 

57.9 

100.0% 
, 

I 
II=>
U1 
'0 
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,/ RANK NO ai 1 SOLUTION NG = 10 

MaN rUt WED THU FRI SAT SUN 
1 R * * * * * 'R 

2 R * * * * R R 

3 * * * * * * R 
AFT AI DAY 8 

4 R * * * * * * 
5 * * R R * * * 

r, 6 * * * * R R R 
DAY 81 AFT B 

('-:,: 7 * * * '* * * * 
8 * R R R '* * * 
9 * R R R '* ;« '* 

AFT B/ DAY ~ 

10 R R R '* * * * 
11 * * * * '* R R 

1,e 12 * * * * * * R 
DAV AI AFT C 

13 R * * * * * * 
14 * R R * * * * 
15 * * * R R R R 

16 * '* * * * '* R 

AFT CI DAY C 

11 R * * * .* * * 
18 * R R * * * * 
19 * * '* 0 R R R " 
20 :0< * '* * * * R 

DAY CI AFT 11 

RANK MEASURE = 5040901 20 102COOO05 61503 + 0.93 

Figure 8.20 

e MultishiftPR Schedule for the Radar-Vascar Unit, 
St. Louis Metropolitan Police Departmen~ 

~:::) MERGE Code Printout 
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NUMBER OF WEEKEND RECREATION PERIODS = 5 

MAXIMUM NUMBER OF CONSECUTIVE WORKING WEEKENDS = 4 

MAXIMUM LENGTH WORK PERIOD = 9 

NUMBER OF MAXIMU~ LENGTH WORK PER laos = 1 

RECREATION PERJOD COMPOSITION 
.. ".\ 

RANK LENGTH/S1!TART NUMBER 
" it 

1 4jiFRI C 
2 ,'f-:</' / THU 2 
3 -4 I SAT 0 
4 3 I FRI 1 
5 3 / SAT 0 
6 2 / SAT 2 
7 4 I WED C 
8 3 I THU c 0 
9 4 / SUN 0 

10 3 / SUN 0 
11 2 ',1 FRI C 
12 ? I SUN 5 

WO~K PERIOD RANGE = 6 
"\ 

MAX~MUM - TWO CONSECUTIVE WORK PERIODS = 15 

NUMBER OF MAXIMUM - TWO CONSECUTIVE ,WORK PERIODS = 3 

STANDARD DEVIATION - WORK/REC RATlOS = 0.93 

WORK PERIOD LENGTHS 5 4 6 8 7 8 4 3 9 6 7 1 
REC PERIOD LENGTHS 2 2 2 2 3 ? 3 3 2 2 2 4. 

Figure 8.21 

Preference M.easures for the Radar-Vascar unit Schedule 
in Figure 8.20, MERGE Code Printout 
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A comparison of the computer-designed schedule in 

figure 8 ... 20 with the manually-des?-gned schedt1les used by 

the Radar-Vascar Unit in 1972 and 1973 is presented in 

table 8.12. This comparison indicates that of the three 

schedules, the computer-designed schedule has the following 

superior attributes: 

(1) the highest number of weekend recreation periods; 

(2) the lowest maximum number of consecutive working 
'w~ekends; 

(31) 

(4) 

, 

t;1 lowest maximum number of days worked in any 
two:lconsecutive work periods; 

t~e lowest number of one-day recreation periods; 
and 

(5) the lowest number of shift changeover points no't 
covered by a changeover redreation period. 

The manpower allocation for the ~~4-man Motorcycle Unit 

is shown in table 8.13. The optimal four-tour schedule 

designed for this allocation is shown ~tn figu:r:e 8.22 an<;1 

the preference measures for the schedul"e are listed in 
i:\ 

figure 8.23. A comparison of the mul ti~~hift PR schedule 

in figure 8.22 with the Motorcycle Units manually-designed 

schedules for 1972 and 1973 is presented 'in table 8.14. The 

computer-designed schedule has the following advantages: 

(1) a reduction in the maximum numbe\r of consecutive 
working weekends; 

(2) a reduction in the maximum work period length; 

(3) a reduction in the maximum number of days in 
consecutive work periods7 
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Table 8.12 

Comparison of the Computer-Designed Radar-Vascar Unit 
Schedule for 19'73 with the unit.' s Manually Designed 

Schedules for 1972 and 1973 

Schedule Attributes* 

Number of weekend recreation 
periods 

Maximum number of consecutive 
working weekends 

Maximum length work 
period (days) 

Minimum length work i 

period (days) I 

Maximum days worked i~ 
consecutive work periods 

Maximum lengt:4 recreation 
period (I:Jays) 

Minimum length recreation 
period (days) 

Number of shift changeovers 
with no recreation days 

Computer;" 
Manually-Designed Designed 

1972 1973 1973 

14 12 .. 15 

6 6 4 

9 10 9 

4 4 3 

18 19 15 

4 7 4 

1 1 2 

8 8 0 

*Schedule attributes are measured over a 60-week 
period to allow an integral number of rotation periods for. 
each schedule. 



Shift 

Day 

Afternoon 

Total 

Percent 
Manpower 

Percent 
Workloa¢l** 

Table 8.13 

Manpower Allocation by Shift and Day of the Week for the 
1973 Motorcycle Unit Schedule 

Number of Officers On Duty 
Number Total 
o.f Men On Pe:yqent 

Assigned Mon. Tue. Wed .. Thu. Fri. Sat. Sun. Duty Manpower 

7 5 5 5 5 6 5 4 35 50".0% 

7 5 5 5 5 6 5 4 35 50.0 

14 10 10 10 10 12 10 8 70* 

100.0% 14.3% 14.3 14.3 14.3 17.1 14.3 11.4 100.0% 

- 13.1% 13.6 12.9 14.0 21.9 18.5 6.0 

*Tota1 number of on-duty shifts includes time off for paid holidays. 

**Based on the workload distribution shown in table 8.10. 

If' 

Percent 
Work10ad** 

42.1% 

57.9 

100.0% 

I 
,;:.. 
\J1 
\J1 
I 
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NUMBER OF WEEKEND RECREATION PERIODS 

MAXIMUM NUMBER OF CONSECUTIVE WORKING "WEEKENCS 

MAXIMUM LENGTH WORK PERIOD 

NUMBER OF MAXIMU~\LENGTH WORK PERIOCS 

RECREATION PERIOD COMPOSITION 

RANK LENGTH/START NUMBER 

1 4 / FRI 0 
2 4 / THU 0 
3 4 I SAT 1 
4 3 / FRI 0 
5 3 I SAT 0 
6 2 r: SAT 2 
"1 4 I.: WED 0 
B 3 I THU 0 
9 4 I SUN 0 

10 3 I SUN 1 
11 2 / FRI C 
12 2 / SUN 1 

WORK PERIOD RANGE 

MAXIMUM - TWO CONSECUTIVE WORK PERIODS 

NUMBER OF MAXIMUM - TWO CONSECUTIVE WORK PFRIODS 

= 4 

= 3 

= 8 

= 2 

= 2 

= 15 

= 3 

STANDARD DEV{ATION - WORK/REC RATIOS = 0.91 

WORK PERIOD LENGTHS 7 B 6 7 7 7 7 6 
REC PERIOD LENGTHS 2 2 2 2 7 2 2 3 

Figure 8.23 

Preference Measures for the Motorcycle Unit 
Schedule in Figure 8.22, 

MERGE Code Printout 
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Table 8.14 

Comparison of the C'Omputer-Designed Motorcycle Unit 
Schedule for 1973 with the Unit I s Manually-Desigm~d 

Schedules for 1972 and 1973 

computer-
Manually-Designed Designed 

Schedule Attributes* 1972 1973 1973 

Number of weekend 
recreation periods 8 12 12 

Maximum number of donsecutive 
working weekends 9 4 3 

Maximum length work 
period (days) 11 10 8 

Minimum length work 
period (days) 2 6 6 

Maximum days worked in 
consecutive work periods 19 19 15 

Maximum length recreation , 

period (days) 5 6 7 

Minimum length recreation 
period (days) 1 2 2 

Number of. shift changeovers 
with no recreation days 8 8 0 

-

*Schedule attributes are measured over a 42-week 
period to allow an integral number of rotation periods for 
each schedule. 
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(4) inclusion of a seven-day mini-vacation; 

(5) elimination of one-day recreation periods; and 

(6) a reduction in the number of shift changeover 
points not covered by a changeover recreation 
period. 

8.4 FUTURE WORK 

Although the design procedures developed in this thesis 

represent an interesting expansion of schedUling technology, 

many questions remain unanswered. Some schedule attributes, 

not easily incorporated into PR schedules were not considered 

in this study, and scheduling problems related to schedule 

implementation and administration were outside the scope 

of this work. Some of the issu~s a,nd unanswered questions 

relating to PR schedules identified during the cOlurse of 

this study include: 

(I) compensatory time-off - what procedures or 
guidelines Should govern the selection of 
specific days for compensatory time-off in 
a PR schedule? Are certain days in a PR 
schedule better than others, and can such 
days be designed into sched~les? .. 

(2) vacation scheduling - what PR schedule 
attributes constrain schedule administrators 
in the selection· of vacation time-off? What 
procedures can be used to provide each 
employee with the vacation time of his choice? 

(3) . paY' period l&h(itt'hs - how can PR schedules be 
designed to insure that employees work the 
same number of work days during each pay period 
(particularly important for eInployee~ working 
under wage contracts)? 

o 
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(4) changing manp"ower' levels - what x'ules should 
be used to minimize disruptions to a l?R 
schedule when the number of brackets (men) 
is altered? 

(5)E,art-tim:e/sp-l"it-"shif"t,s - how ca~ PR schedules be 
designed for part-time and split-shift employees?, 
and 

(6) J;:Rschedule intpletnent"ation - what procedure 
should be used to minimiz~ employee and work 
disruptions when a PR schedule is implemented? 
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APPENDIX 10.1 

Survey of Police Manpower Scheduling Practices 

10.1.1 Introduction 

To obtain more informat~i.bn about the varieties of 

manpower schedules used by police agencies, a written 

survey was administered to representatives from 21 law 

enforcement agencies. The following sections describe 

the survey instrument, implementation, and results. 

10.1.2 Survey Instrument and Implementation 

The survey instrument, shown in figure 10.1.1, consists 

of 10 questions designed to elicit information about each 

agency's workload and manpower distribution by shift, the 
.-

type of manpower schedule used to meet that distribution, 

and the specific attributes and properties of the schedule \ 

used. 

The survey was administered in November 1972 to 21 

persons attending a short course at The Traffic Institute 

at Northwestern University, Evanston, Illinois.* 

The position and agency of the 21 reQpondents to the 

survey are shown in table 10.1.1; represented among the 21 

agencies were seven state highway patrol units, three county 

police agencies, and eleven municipal police departments. 

* ThE?; author wishes to thank Dr. Nelson Heller for 
adminisbering the survey to law enforcement personnel who 
were attending a seminar on manpower scheduling presented 
by him. 

(( 
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POLICE MANPOWER SCHEDuLING 

DepaX'tment: ___________ City: 

Name: Position: 

Please answer the following questions on the schedule used by 
officers in your department. If some units have different 
sChedules, base your answers on the schedule used by the 
called-for-service (radio motor patrol) units. 

1. The watches begin at: l5t_ 2nd _ 3rd _ 
Any additional watches (please specify) ________________ __ 

2. How many paid holidays do officers receive annually? ____ 

3. Are the schedules for all officers· basioally identical with 
respect to the patterns for days off, watch rotation, etc.? 

Yes 
No __ _ 

4. Are all officers permanently assigned to watches? Yes 
No If some, but not all of the officers work permanent 
watch assignments, please give the percent of men working 
each ' ... atch who are permenently assigned: Ist_, 
2nd _, 3rd _. Other' watches (please specify), ____ _ 

5. Is any attempt made to schedulq fewer days off on the busier 
days of the week? Yes~No_ 

6. Average percent of calls and manpower on each watch: 
C",lls: 1st _,2nd , Jlrd ___ _ 
Manpower: 1st . ,2nd , 3rd 

7. For officers working a rotating schedule. 
a. Indicate the watch rotation sequence, e.g., 3-2-1: ______ 

b. What is the length (in days) of the assignment to each 
watch? 

1st ____ , 2nd _, 3rd 

c. When officers change watches, on what day of the week 
is the change made? Do all officers change 
at the same time? Yes _ No 

d. How frequently do officers experience ~ or 32 hour off
duty periods between working watches due to changing 
watches? 

8. Indicate the longest and shortest work periods (consecutive 
work days without a day off) in the schedule: 

Ic..ngest (days) shortest (days) 

9. Ind~cate the longest and sh04test recreation periods (con
secutive days off), .not inri'uding vacations: 

10. 

longest (days) ___ ~ shortest (days) ____ ______ 

How frequently, o,n the average, do officers have weekends 
off (both Saturday and Sllndayl? One weekend 'out of 

What is the maximum number of working 
weekends separating weekends off? 

Figure 10.1.1 

Police Manpower Scheduling Survey Instrument 
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9. 

Table 10.1.1 

Police Departments Surveyed, Traffic Institute, Northwestern University, 
June 1972 

Name 

F. Bruce B'aker 

F. DeWayne Beggs 

Eugene Burdine III 

Ron Cochran 

William Cooke 

Ralph Davis 

William Doster 

Lee Duggan 

Edward D. Flaherty 

Position 

Sergeant, Planning 
Research Division 

Patrolman 

Planning lmalyst 

Lieutenan1: 

Planning ~lnd 
Research 

Captain 

Captain 

Chief 
,. 

• 1i, 
D1rector R~search & 

& 

Developmeni: Division 
11 

Police Agency 

Washington State 
Patrol 

Norman Police 
Department 

Montgomery County 
Police Department 

Fort.Lauderdale 
Police Department 

Bureau of Police) 
Bethlehem 

Bartlesville Police 
Department 

Kalamazoo Police 
Department 

Ocean City Police 
Department 

Waterbury Police 
Department 

I 

State 

Washington 

Oklahoma 

Maryland 

Florida 

Pennsylvania 

Oklahoma 

Indiana 

Maryland 

connecticut 

10. c. J. Gawronski Patrolman I. Cook County 
1 . Sheriff's Department Illinois 

I 
~ 

'" '" I 
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Name 

11. Albert T. Jameson 

12. Warren Keller 

13. Michael Laski 

14. William S. Lindsey 

15. James J. McJoratta 

16. Richard E. Patrick 

17. John F. Roche 

18. George R. Ryan 

19. James B. Scrivner 

2.0. Mark C. Thompson 

21. Richard A.. Wiberg 

Table 1.0.1.1 - (continued) 

Position 

Lieutenant 

Analyst 

Director, Planning & 
Research 

Lieutenant, Research 
& Development Section 

Captain 

Analyst 

Operational Planning 

Planning Sergeant 

Sergeant, Planning 
& Training Bureau 

Trooper 

Patrolman 

Police Agency 

Maine State 
Police 

Kansas City 
Police D~~artment 

St. Louis County 
Police 

Anne Arundel County 
Police 

Connecticut State 
Police 

.Louisiana State 
Police 

Hartford Police 
Department 

Wisconsin State 
Patrol 

Madison Police 
Department 

New ijampshire 
State Police 

,Minnesota Highway 
Patrol 

State 

Maine 

Missouri 

Missouri 

Maryland 

Connecticut 

Louisiana 

Connecticut 

Wisconsin 

Wisconsin 

New Hampshire 

Minnesota 

I 
.;:. 
0"1 
-..] 

I 
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10.1.3 Survey Results 

The results of the survey are presented in four parts: 

(I) general schedule propertie,s (questions 1, 2, and 3) i 

(2) workload distribution and manpower allocation by shift 

(questions 5 and 6); (3) rotating schedule properties 

(questions 4 and 7); and (4) schedule preference attributes 

(questions 8, 9, and lO). 

10.1.3.1 General Schedule Properties 

Table 10.1. 2 summari.zes th~ responses "co survey questions 

1, 2, and 3. The responses indicate that most departments 

provide the same work schedules for all officers, and use 

three eight-hour shifts per day with the morning or day shift 

usually beginning between 6 and 8 A.M~ Five of the departments 

(23.8 percent) reported using work shifts that were longer than 

eight hours. Only one department indicated use of split shifts, 

but nine departments (42.9 percent) reported usinq some form of 

overlay shift to provide more manpower during the busier hours 

of the day. At the time of this survey, most of the depart

ments were providing from 7 to 12 paid holidavs annually --

the average number reported was slightly greater than 9 days 

per year. 

10.1.3.2 Workload Distribution and Manpower Allocation 

Survey questions 5 and 6 were used to obtain information 

about thE;\ workload distribution by shift, and the manner in 

which available manpower was allocated by shift and day of 

the week;' the responses to these questions are presented in 
, 

table lO.S-.3. 
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Table 10.1.2 

General Schedule Properties Based on 
Survey Questions I, 2, and 3 

No. of 
Property Response Responses Percentage* 

1. All officers Yes 15 71.4% 
work the No 5 23.S 
same schedule No response 1 4.8 

2. Start hour., 6 A.M. 4 19.0 
first shift 7 A.M. 5 23.8 

8 A.M. 8 38.1 
Other 2 9.5 
No set hours 2 9.5 

3. Shift length Eight hours 16 76.2 
Other 5 23.8 

4. Split shifts Yes 1 4.8 
No 20 95.2 

5. Overlay shifts Yes 9 42.9 
No 12 57.1 

6. Number o£ paid 0-3 1 4.8 
holidays * * 4-6 1 4.8 

7-9 8 38.1 
10-12 8 38.1 
13-15 3 14.3 

*The sum of the percentages for each property may not 
equal 100.0 because of roundoff. 

**Average number of paid holidays equals 9~3 days. 

,> 



Table 10.1.3 

Workload Distribution and Manpower Allocation 
(Survey Questions 5 and 6) 

Is any attempt made to schedule 
fewer days off on the busier 
days of the week? 

Shift 

Day (7 A.M.-3 P.M.)*** 

Afternoon (3 P.M.-II P.-M'.) 

Night (11 P.M. -7 A.M.) 

Question 5 

NUl'IIDer of 
Response Responses 

Yes 15 

No 6 

Question 6* 

Workload Distribution 
Percentage** 

33.1% 

43.3 

23.7 

Percentage 

71.4% 

28.6% 

Manpower Allocation 
Percentage 

32.7% 

4,1.0 

26.3 
----------________________________ 4 __ ~ ______________________ ~ __ ~ __ ~ __________________ __ 

*Workload and manpower data based on responses from 18 departments. 

**The sum of the percentages does not sum to 1QO. 0 because of ;roundoff. 

***Actua1 shift hours vary slightly by department, see table 10.1.2. 

I 
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Over 70 percent of the departments indicated that an 

atb:~mpt wets made '\:0 schedule fewer days off on busier days 

of· the week. Table 10.1.3 presents the avera,ge calls for 

service distribution and manpower allocation for each 

shift based on responses from 18 of the 21 departments. 

The oal1sfo17 service data clearly reveal the dispropor

'tionate amount of ,qQrk on the afternoon shift: with 43.3 

pIsrcent (')f all calJLr-~or service, the afternoon shift 

re'oeives'",9.1mo,st twiLce as many calls as the nigh'\: shift. 

The average lmanpower allocation by shift: 41 percent 

on the afternoon shift, 33 percent on the day shift, and 

26 percent on the night shift, indicates that these police 

age.n(~ies we:re successful i11 scheduling available manpower 

in proportion to the workload distribution by shift. 

10.1.3.3 shift Rotation Properties 

T.able 10.1. 4 summa:p':tzes the information obtained about 

Jche number of departmet ~s which use shift rotating 

schedules (question 4) arid the nature of those schedules 

(question 7)~ Sixteen departments (76.2 percent) reported 

using some form of a rotating schedule, although 7 of the 

16 depa.rtment.s also indicated that some men were permanently 

assigned to qne shift. Somewhat surprisingly, only 9 of the 

16 department.s indicated use of a night-afternoon-day or 

backwar.'d rotation sequence; this result suggests that 

departments which utilize other rotation sequences must 
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Table 10.1. 4 

Shift Rotation Properties Based on 
Survey Questions 4 and 7 

No. of 
Property Response Responses Percentage* 

All officers are 
permanently assigned 
to one shift 

Some men are 
permanently assigned 
to one shift 

Rotation sequence 

Time assigned to 
each shift 

Length of time 
assigned to each 
shift 

Shift change day 

Frequency of 8-
and 32-hour 
changeover 
recreation periods 

Yes 
No 

Yes 
No 

Day-aft-night 
Night-aft-day 
Other 
No response 

Same on each 
shift 

Varies by shift 
NQ response 

1 week 
2 weeks 
4 weeks 
8 weeks 
Oth(:!r 
No response 

Monday 
Sunday 
Varies 
Other 
No response 

Never 
Each week 
Every 2 weeks 
Every 4 weeks 
Other 
Unknown 

5 
16 

7 
9 

4 
9 
2 
1 

13 
2 
1 

4 
3 
5 
1 
2 
1 

5 
2 
7 
1 
1 

1 
2 
5 
1 
4 
3 

,'I 

23.8% 
76.2 

43.8 
i'56.3 

25.0 
56.3 
12.5 
6.3 

81.3 
12.5 

6.3 

25.0 
18.8 
31.3 
6.3 

12.5 
6.3 

31.3 
12.5 
43.8 
6.J 
6.3 

6.3 
12.5 
31.3 
6~3, 

2S .0', 
lB.8 

Note: Responses- for ,r>roperties 2 throuCi,7 are based 
on the 161epartments that responded "No" ld'property 1. 

*The sum of the percentages for each property may not 
equal 100.0 because of roundoff. 
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schedule recreation days at some shift changeover points 

to avoid consecutive work tours. 

Interestingly, 81.3 percent of the departments using 

rotating schedules also reported 'that they use equal length 

shift toulrs. Al though this result appears to conflict with 

the survey response which.indicated that manpower allocations 

are proportional to the wo~kload by shift, several scheduling 

procedures can be used to achieve proportional manpower 

distributions with equal lengtlltours. These include: 

(1) permanently assigning some officers to busier shifts; 

(2) restricting time-off for vacations, paid holidays, and 

training to lighter workload shifts; (3) using overlay shifts 

to provide additional manpower during busiest hours of the 

day (8 of the 16 departments using rotating schedules also 

use an overlay shift); and (4) scheduling each officer for 

more shift tours on busier shifts (e.g., a rotation sequence 

of day-afte:r:noon-night-afternoon would, if each shift tour 

was the same length, put approximately half of the available 

manpower on the afternoon shift). 

The survey responses revealed considerable variation, 

among the 16 departments using rotating schedules, in the 

length , .. of time officers are assigned to each shift. Shift 

lengths of one, two, and four weeks were the most frequently 

reported. Half of the 16 departments reported using the 

same day of the week far every shift changeover; Monday and 
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Sunday were the most frequently used days. Several depart

ments reported that changeover days were determined by 

calendar date rather than by the day of week (e.g., changing 

shifts on the 15th and 30th of each month). Although most 

departments reported that 8- and 32-hours breaks between 

shift assignments occurred,there was considerable variation 

reported among the departments in the frequency of such 

breaks. 

10.1.3.4 Schedule Preference Measures 

The survey responses to questions 8, 9, and 10, summarized 

in table 10.1. 5, reveal the variations in both the lengths .of 

work and recreation periods, and the number and frequency of 

weekend recreation periods in the manpower schedules used by 

the police agencies included in this survey. Maximum work 

period lengths ral'l.ged from 5 to 10 days (th-e average was 

6.5), w'hile minimum work period lengths varied from i to 7 

days (the average minimum was 4.0); the average range (ille., 

the difference between the maximum and minimum work peric\d 

lengths) equaled 2.4 days. Recreation period lengths var;i.ed 

from 1 to 5 days with the average lengths for the maximum 

and minimum length periods equal to 3.5 and 2.0 days 

respectively. 

Although most departments reported that a weekend 

recreation period was scheduled eVery three or four weeks, 

some departments indicated that weekend periods could only o 
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Table 10.1. 5 

Schedule Preference Measures Based on 
Survey Questions 8, 9, and 10 

Work and Recreation Period Lengths 

Number o!:: Days 

Maximum Minimum 

period length: 
Longest 10 5 
Shortest 7 1 
Range 9 0 

Recreation period length: 
Longest 5 2 
Shortest 5 1 
Range 4 0 

Weekend Recreation Periods 

No. of 

Average 

6.5 
4.0 
2.4 

3.5 
2.0 
1.5 

Response Responses Percentage*** 

Frequency of weekend One/3 '~eeks 4 19.0% 
recreation periods* One/4 "leeks 7 33.3 

One/5 weeks 1 4.8 
One/6 weeks 2 9.5 
Other 5 23.8 
Unknown 2 9.5 

Maximum number 3 weeks 2 9.S 
of consecutive <4 weeks 3 14.3 
working weekends** 5 weeks 3 14.3 

6 weeks 5 23.8 
Other 3 14.3 
Unknown 5 23.8 

*Average equals one weekend recreation period every 
4.4 weeks. 

·"'Average equals five consecutive working weekends. 

***The sum of the percentages for each property may not 
equal 100.0 because of roundoff. 
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be scheduled. once every five, six, or more welaks. The 

relatively small number of weekend recreation periods was 

also reflected in the number of consec.utive working weekends; 

9 of the 16 responding agencies reported using schedules 

which included a maximum of at least five consecutive 

working weekendp. 

I 

. _________ --0.. __ ""----" ._,. 
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APPENDIX 10.2 

Derivation of the Equation for the Exact Number 
of Distinct, Feasible, One-Shift PR Schedules 

for a Given Cyclic Graph 

10.2.1 Notation 

The following notation is used in the discussion 

below: 

N 

N. 
1. 

- total number of feasible schedules 

- upper limit on the tota.l number of feasible 
schedules 

- total number of distinct arrangements of the 
recreation periods that start on day i, 
i::; 1,2, ••. ,7 

n .. - total number of recreation periods of type j 
1.J (i.e., j days long) that begin on day i, 

i = 1,2, ••• ,7 

n. 
1.. 

n .• 

R. 
1. 

w 

10.2.2 

- total number of 
on day i, ni. = 

- total number of 

recreation 
E n .. 
. 1.J 
J 
recreation 

periods that start 

7 
periods, n .• = . I 

1.=1 

- total number of recreation days allocated 
to day i (i.e., the number of nodes on ray i 
of the star diagram) 

total number of weeks in the schedule 

Recreation Period Interactions 

n. 
1.. 

In section 6.2, an upper bound on the total number of 

distinct, feasible schedules that can b~ enumerated from a 

given cyclic graph is derived based on the ~implifying 

assumption that the placement of each recreation period is 

independent of the place:ment of all other periods in the 

graph. Two upper bounds are derived: 
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(1) for cyclic schedules: 

N = Wn •• -1 
c 

(2) for non-cyclic schedules: 

(10.2.1) 

(10.2.2) 

More accurate expressions for Nc and N are derived in 

this appendix. Improvements over expressions (10.2.1) 

and (10.2.2) are obtained by including the effects of the 

interactions between recreation periods within a cyclic 

graph created by their start day and length characteristics. 

Each of these characterist:ics is discussed below. 

10.2.2.1 Recreation Periods that Begin on the Same Day 
of the Week 

Since the start day for each recreation period in a 

graph must occupy a unique position within a W-week schedule, 

the total number of arrangements for ni.distinct recreation 

periods (i.e., periods with different lengths), each of 

which begins on day i, is equivalent to the number of 

arrangements tha.t are possible when n. distinguisable 
J.. 

balls are placed in W slots; i.e., 

N. 
J. 

W! = J n integer 
(W-ni .) ! i. 

(10.2.3) 

o < n. < W 
J. • 
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As an example, the two recreation periods that begin on 

Monday in the cyclic, graph in figure 10.2.1 can be arranged 

in 6!/(6-2)! = 30 distinct ways over a six-week schedule. 

Wed. 

Tue. Thu. 

--~--e-~~~------- Fri. 

5 

Sun. Sat. 

Fiau.re 10.2.1 
_~,_ . .i--,;;""":;;";;;"'~~ 

Cyclic Graph with Five Recreation Periods 

Two of the arrangements are illustrated in f~gures 10.2.2 

and 10.2.3. 

10.2.2.2 Recreation Periods That Begin on the Same Day 
of the Week and Have the Same Length 

Since identical recreation periods (i.e., periods that 

have the same length and begin on the same day of the week) 

are indistinguishable, the number of distinct arrangements 

of n. periods over a W-week schedule is reduced if one or 
l.. 

moxe pairs of identical periods are present in 

{, 

n. • 
l.. 

The 



-480-

reduced number of arrangements can be calculated by 

modifying equation (10.2.3) to include the number of each 

period type nij that starts on day i. Whenever n.. > 1 ' lJ 
for any j, the number of arrangements for day i is reduced. 

I 

the modified equation is: 

N. 
l 

W! = ~~-;~~~--~~ (W-n. )! II (n .. !) n .. integer 
l] 

(10.2.4) 
l j l] 

o < n. <W 
l. -

If n .. = 1 for all j, equation (10.2.4) is equivalent to lJ 
equation (10.2.3). 

As an example, if the two recreation periods that begin 

on Monday in the cyclic graph in figure 10.2.1 have the same 

length (e.g., if n12 = 2), they can be arranged in 

6!/(6-2)!2 = 15 distinct ways over a six-week schedule. 

10.2.2.3 Non-Start Recreation Days 

The final interaction condition to be discussed is 

illustrated in the schedules shown in figures 10.2.2 and 

10.2.3. On both Wednesday and Saturday, two recreation 

days appear over the six-week schedules. On both days, 

one recreation day, a start day, is used to begin;,a recrea-
r; 

tion period, and the other recreation day, a non-start day, 

is used as part of a recreation period that begins on 

another day of the week. The presence of non-start 

recreation days on day i reduces th~ number of weeks which, 
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M T W T F S S 

1 1R R R 

2 2R R 

3 3R R 

4 4R R R 

5 SR R 

6 

Figure 10.2.2 

PR Schedule Based on the Five Recreation 
Periods in Figure 10.2.1 

M T w T F S S 

1 lR R R 

2 3 R R SR R 

Week 3 

4 4R R R 

5 

6 2R R 

Figure 10.2.3 

Second PR Scnedu1e Based on the Five Recreation 
Periods in Figure 10.2.1 
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can be used for periods which begin on day i (e.g., in 

each schedule above, the periods that begin on Wednesday 

and Saturday are limited to five weeks because of the 

presence of one non-start day). The total number of 

non-start recreation days on day .i is given by R.-n. 1 
~ ~. 

and the total number of weeks that can be used for ni • 

period starts on day i is reduced from W to W-(R.-n. ). 
~ ~. 

Replacing W in equation (10.2.4) with W-(R.-n. ) 
~ ~. 

yields the following modified expression for the total 

number of distinct arrangements for day i: 

N. = 
~ 

(W-R.+n. )! 
~ ~. 

(W-R. )! IT (n .. ~ ) 
~ . ~J 

J 

'Ji 

n .. 'integer . ;;;J 

o < n. < W-R. 
- 3.. - ~ 

(10.2.5) 

It is important to note that the validity of equation 

(10.2.5) relies on the following assumptions: 

(1) 

(2) 

* 

the cyclic graph contains no recreation 
periods that are greater than seven days 
in length*, and 

each of the R.-n. non-start recreation 
d h b ~ ~.. d 'f' ays, ave een ass~gne to spec~ ~c 
locations (weeks) within the W-week 
schedule. 

A more general statement of the assumption is that 
the length of every recreation period must be less t.han 
or equal to the number of rays in the cyclic graph. 

o 
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10.2.3 Exact Number of Distinct Schedules for One 
Class of Cyclic Graphs 

Although equation (10.2.5) can be used to determine the 

exact number of distinct arrangements for each day of the 

week, the product of the Nils; i.e., 

(W-R • +n . )! . 
N= 

7 
n 

i=l 
N. = 

]. 

7 
11 

i=l 

]. ].. . 
--------- J n.. ].nteger 
(W-Ri )! ~ (nij !) o].~ n. < W-R. 

] ].. - ]. 

i = 1,2, ••• ,7 

(10.2.6) 

is not, unfortunately, a valid expression for determining 

the exact number of schedules that can be enumerated from 

every cyclic graph. Equation (10.2.6) is useful, however, 

because it does produce exact answers for a large subset 

of all cyclic graphs, and as such, can be used to illustrate 

the enormous number of distinct schedules that can be 

enumerated from a single graph. 

Equation (10.2.6) is valid when it is used for cyclic 

graphs which contain at least one pair of E:eribd dis'joint 

rays. Adjacent rays (a,b)* are defined to be period disjoint 

if the number of period starts on ray b equals the total 

number of nodes on ray b {i.e., there are no non-start 

* Rays a and b are defined to be adjacent if 
included in the same two-day recreation period. 
(a,b) indicates that ray b "follows ll ray a (in a 
direction) in the graph.' 

they can be 
The notation 
clockwise 
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recreation days on raY<}9, or equivC'Lle~fl'tly if nb • =: Rb ) • 
", 

Period disjoint rays are easily identified in a cyclic 

graph; they are pairs of adjacent rays that have no 

period lines between them. As an exampie, the graph in' 

figure 10.2.1 has two pairs of period disjoint rays: 

(Sunday, Monday) and (Thursday,J'riday). A cyclic graph 
\' 

I', 

may have several or no period dis)DOint rays (e.g., the 

large cyclic graph in figure 10:'2. 4 with 20 nodes and 

seven recreation periods has no period disjoint rays; 

there is at least one recreation period line joining ever~r 

pair of adjacent rays). 

Wed. 

Tue. 

Mon. Fri. 

Sun. Sat. 

Figure 10.2.4 

Cyclic Graph ",ith Seven Recreation Periods 
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The validity of equation (IO.2.6) for cyclic graphs 

with at least one pair of period disjoint rays can be 

shown with the follo'Vling argument. It was noted above 

that the expression for each factor in (10.2.6) (Le., 

the exact number of distinct arrangements of periods that 

begin on day i), is valid with the a~?sumption -I:ha't all of 

the non-start reoreation days on day i have been. assigned 

to specific weeks within the schedule~ Stated in another 

way, this condition implies tha't each recreation period that 

includes a non-start recreation day on day i has already 

had its initial recreation day, which must be on a different 

day of the week, assigned to a specific week in the schedule. 

Hence, a more accurate notation for equa t.:ion {l 0 • 2 • 5} would 

be 

(W-R.+n. ) ~ 
~ ~. 

(W-R. )! IT (n .. !) 
~ j 1,J 

n .. integer 
~J 

o < n. < W-R. 
~. - ~ 

where Ni/{j} indicat,es that the number of distinct arrange

ments of the periods that begin on day i is conditional 

upon the assignment to specific weeks of all recreation 

periods which contain non-start recreation days on day i 

and begin on day j, j =1,2, ••• ,7, j ~ i. 

Paralleling the logic used to calculate the propability 

of multiple events using conditional probabilities*, the 

* p(ab .•• cd) = pea) ·p{b/a) ••• p(d/ab ••. c). 
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total number of arrangements for a cyclic graph can be 

accurately determined by equation (10.2.6) if the conditional 

nUmbers of arrangements for each day of the week correspond 

to the following generalized form of (10.2.6): 

N = Nl • N2/{1} • N3/{1,2} • •••• N7/{1,2, .•• ,6} (10.2.7) 

The characteristics of equation (10.2.7) are: 

(1) the presence of one unconditional term (Nl ), 
and 

(2) the elements of the conditional set {j} for 
each term satisfy the rul'8 that j < i for 
all days in {j} for day L 

Application of equation (10.2.6) to any cyclic graph with 

a pair of period disjoint rays always yields a set of daily 

factors N. which correspond to the right side of equation 
~ 

(10.2.7). 

To illustrate, consider the cyclic graph in figure 

10.2.1, and use the lib day" of one pair of period disjoint 
f i 

rays in the graph as day 1 for equation (10.2.7). In 

figure 10.2.1, either Monday or Friday can be used as day 

Ii "assume Monday is selected. Applying equation (10.2.5) i 

the Nl £acto~ is unconditional because Monday contains no 

non-start recreation days, a property of the b ray of every 

pair of period disjoint rays. Applying (10.2.5) again, the 

N2 factor based on Tuesday is conditional only on day 1 

(i.e. I N2/{1}) because the non-start recreation days on 
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Tuesday can 'only belong to periods that begin on Monday 

{day I}. Similarly, the N3 factor is conditional only on 

Monday and Tuesday (i.e., N3/{l,2}). Continuing this 

reasoning for all seven days prodc~es the following 

expression for the number of arrangements in the entire 

graph: 

which satisfies both requirements cited above for equation 

(10.2.7). The results of this example can be generalized 

for all cyclic graphs which possess at least one pair of 

period disjoint rays by noting that: 

(1) the b ray of each pair of period disjoint 
rays always always produces an unconditional 
term for equation -(10.2. S) (e. g., the Monday 
(Nl ) and Friday (NS ) factors above), and 

(2) if the b ray of a period disjoint ray is 
selected as day 1, the elements of the 
conditional set' {j} for each subsequent 
day i satisfy the requirement that j < i 
for all days in set {j} for day i. 

10.2.4 Summary 

For cyclic graphs with at least one pair of period 

disjoint rays, the exact number of distinct, non-Acyclic 

schedules is given by 

7 
N = II 

i=l 

(W-R.+n. )! 
~ ~. -

(W-R. )! II (n .. !) 
~ . ~J 

J 

n .. integer 
~J 

o < n. 0( W·~rt. 
1. - 1 

(10.2.8) 

?for one-shift cyclic schedules, equation (10e2.a) i.s 
Ii 

reduced by a factor of Wi i.e., Nc = N/W. 
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