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Summaty. This paper is intended to tell "why-we-do-it-this-way".
After preliminary remarks on randomness, errorsg, and distribution
functions, various techniques of statistical analysis are dis-
cussed. These include significance tests, confidence intervalsfd
and goodness of fit tests. Finally, several examples will be
discussed: 1) Performance requirements for breath alecohol
testers; 2) bivariate discrimination for gunshot residue
detection; and 3) Matching "profiles", e.g., trace element
analyses or the output of a speech frequency analyzer.
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Introduction

Why are there applications for statistiecs in
criminalistics? Because there is randomness in the
activities which are the subject matter of crimi--
nalistics, And what is randomness? "All the
varlation, from whatever source, which exists
among the results of independent experiments which
are intended to be identical (1). Does a given
weapon always leave exactly the same amecunt of
residue on the hand of the firer? Even if it did,
would the amount 1ifted and measured be the same?
Why not? How can we predlct the behavior of a lift
technique? If three different chemists analyze a
sample, and come up with three different composi-
tions, what do you do? What if one differs very
much from the other two? If you evaluate a breath
tester on twenty people, can you make predictions
on its behavior in general? What if the twenty
people are just picked off the street? Or just

came from a businessman's luncheon, complete with they turned out:

cocktails? Or just came from a hospital, and pre- ’!;
sumably include some on medicine of various sorts? S 8 cc ;
How should one choose a sample? 25 x °

Some questions have answers s¢ clear that
there is little need for statistics. For example,
blood type matching: at least among the major
classifications, there is no question which group
a person belongs. to. (Which is not to say that
there are never any goofsl) But others require
care: 1f we are to decide whether a person belongs
in class A or class B, and we have a measurement,
and we know that the class A average is 50, the
class B average is 80, and our measurement is 60,
what do we decide? But now suppose we.have:the
further information that for class A, the measure-,
ments vary from 45 to 55; while for class B, they
vary from 50 to 100; anyone.care to change their
decision? Actually, this is artificial; usually
we have not a given finite range, but distributions
which extend much farther, and overlap even more,
with the spread measured by a "standard deviation".
And which decision to take depends not only on the
means and standard deviations, but:also on the
"costs" associated’with errors of various kinds,
and the proportions of classes A and B in the

* This work was supported by the National Institute
for Law Enforcement and Criminal®Justice,
through the Law Enforcement Standards Laboratory
of the National Bureau of Standards.
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population or on the "prior odds" that the person
in question is from clags A. This question I will
not pursue any further.

Let us look at another example. Scenario:
Sidney Statistician is peacefully working on his ]
latest brainstorm, when Eruie Engineer walks in. :
Sound:

Hi, Sid - you busy? |

Why of course, Ernie, but never too busy to
talk to you! What's bothering you?

Well you know, Sid, I'm getting measurements
on that infernal new analysis technique, and there é
seems to be a problem, I got two measurements on %
each of one control and one suspect, and here's how'

15 20

Well, Ernie, that looks pretty good to me.
The measurement technique looks right consistent.
What's the problem?

Only one thing, Sid: the "control" was stone
gober, so how could he have given higher values
than the suspect? I need help!

Okay, Ernie, let's have a look at how the
measurements wire taken.

Well, 8id, I gave the one batch of two samples
to Joe, and the other batch to Bill, and told them
to. go to it. And I suppose Joe used the one
analyzer, and Bill the other; they usually do.

Ernie, you goofed! You havé no way to estimate

'aﬂy biases in the equipment or in the operators!

. guspect and Bill got the control, instead of the

Do you have more samples left?

Yes, I do, as a matter of fact. And since I
learned something the last time I was here, I have
already put two samples from each out’for analysis.
to g different fellow - i‘e., this time Joe got the

=

o:hér way around. And here are the results: -

cc " ss .
15 20 25




- .
.

These don't jibel
four samples left.

What do I do now? I only have

Let's not cry yet, Ernle. You need to balance
things a bit better, if you want to learn anything
ugeful, Suppose you use each of the four combina-
,tiong of man and machine, once, for each person.
That makes four samples each. And just to avoid
any personal biases, or time-order effects, let's
assign them ir random exder. OK?

(TIME PASSES. SOME TIME LATER, ANOTHER MEETING
OF GREAT MINDS.)

Here you dre, S51d - the new data. What do
you make of {t? Plotted like before, it seems
like there might be an effect, but not too clearly:

C CCs
5 15 25

sc8 -8
35"

What else can you get out of it?

. Let's put the results in a two~way layout.
We'll write the suspect value above a slash, and
the control wvalue below, for each combination of
machine and man, like so:

.." e

DOOOC

HINKS {1901)

<% NOTEBOOM (1921) . : :

c.utc.t.t.l

Q- SPENCER JONES (1931)

B WITT (1933)

= ADAMS (1941)

F RABE (1950)

SPENCER JONES (1928)

Machine
A B
Joe . 35/25  25/15
Man (Suspect/Control)
Bill . 25/15 15/5

Now notice the consistency: 1n each cell, the
sugpect value is 10 higher than the control. And
for each combination of machine with sample, Joe
ig 10 higher than Bill, and finally, for each
combination of man with sample, machine A reads 10
higher than machine B. Now I can't say which
machine is right, or whether they both have a bias,
but it is apparent that machine A's readings are
consistently higher; likewise for Joe's readings
compared to Bill's. And finally, the suspect's
readings are consistently 10 higher than the con-
trol's. Good enough?

(CLOSE CURTAIN)

Now anyone knows enough to balance observa-
tions like that, doesn't he? (Or does he?) And
every experienced scientist knows how accurate his
technique is, right? Wrong! Consider Fig. 1. It
shows fifteen measurements of the astronomical
unit (the mean distance from earth to sun), made

NEWCOMB (1885) s

=% BROUWER (1950)

B MILLSTONE HILL (1958)

‘. JODRELL BANK (1959)

Ak S.T.L. (1860)

| JODRELL BANK (1961}

© "I CAL TECH (1961) - C

| SOVIETS (1361)
— A W — l l | | |
928 929 930 931 932 83.3

i ; J
| .

o N .

CAT

Fig. 1.
with uncertainties.

the preceding vyalue.

y
1S
»

Estimates of the astromomical unit (mean carth-sun distance),
Each value is outside the range of uncertainty of

’
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Fig. 2. The Quincunx, or Galton probability board.
The balls will approximate a Binomial distribButiom,
if the board is properly constructed. = The numbers
constitute a "Pascal triangle'; each row gives the
relative frequencies for a binomial distribution
with p = 1/2 and appropriate value of n.

over the period 1895 to 1961, by highly respected
sclentists (2). Also shown is the uncertainty
assigned to each measurement by the scientist(s)
who produced it. The striking thing about this
set of measurements is that not one of the measure-
ments fell within the uncertainty assigned to the
previous measurement! There are probably several
morals to be gotten from this, but one I would like
to state is: Don't take for granted that any com-
ponent of error is negligible - mcasure it!

Not much fancy statistics went into the .
example above. But the experimenvnr was fortunate:

= et e b ]l s mem = v e ‘h‘l mnlabden o
e c\lu.)..l.uu.ul.n.k CIXUL was ou :uuu.l..x. TSAQCIVE To

the cffects, and the "design" was jso bad, that the
problem came to light. Rest assured, there are

many times where it does not - it Jjust results in
false positives, or false negatlvds, or no conclu-
sions at all, and the loser may be a manufacturer,
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a suspect, the public at large, a researcher, or -
you name it. How much better to anticipate the :
sources of error, and measure them. They don't
cease to exlst by being ignored - they just get to
foul things up in ways that never can be righted!
So call in the statistician early, and be open with
him!

Errors

There are several well-recognized sources of
error. One classification is into the following:

Varfability of experimental material

‘that is) would stack up.

Smaller batches tend to be more homogeneous.
(And this applies whether the batching is by procesa
lot, by time, by distance, operator, producer, oxr
anything else.) " If you stick to one batch, you
might get pretty results ~ but do they apply to
anything other than that batch? Remember, the pur-
pose of experimentation is generally to make
inferences about other materiall

Uncontrolled conditions

One does not always know what external condi-
tions influence the results. (Temperature? Day
of the week? Whether it is payday? Etc.) Even if
one does know, one may choose not to control - or
may not be able to control. But at least, one is
aware that there is a source of variability there,
and is not likely to make assertions about the
results that could be invalidated by that source
of error.

Measurement error

This includes human error. Again, don't be
optimistic. Take an honesk look at the variability.

There 1s one technique of such general use-
fulness that it ought to be mentioned, even in so
general an essay as this. That is the technique of
comparison experiments. Suppose that one has a
measurement technique that is subject to many kinds
of errors, which cannot be well controlled. Sup-
pose however that the effécts of these errors are
the same for all specimens. Then the difference
between two specimens would be pretty much the same
under any set of conditions, as long as the two
specimens were measured under identical conditions.
Finally, suppose that we have shandards - i.e.,
items whose characteristics are well known. Then
we can measure the test’ specimen and the standard,
keeping all experimental conditions as constant as
possible, to get a good estimate of the difference.
Knowing the true value for the standard, we can
then adjust the measurements to get a good value
for the test specimen. (And of course, there are
refinements to evaluate how constant the conditions
were kept, involving repeat measurements.,) This
approach is not a cure-all, but it is a big help
in many situations.

Distribution Functions

A distribution function tells us how we think
something bechaves, (It's‘'a model.) It tells us
hews dha v-nall'l"n Af mane bwdiala fdundanandane trialan
how the of many txiale {(dndepeondent trials,
JFor example, Fig, 2 shows
what is known as a Quincunx, or Galton probability

board. Each number on each row is foriwed'by

adding the two numbers directly above ic- these
numbets constitute the "Pnscnl triangle", which

.
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'standard Normal'').

glves the relative probabilities in the binomial

distribution with p = for each value of n.

1
2 ’
For example, 1f a falr coin is flipped five times,
the number of heads has a binomial distribution
with n =5 Jand p (the probability of a head on
one toss) = Thus, loocking at the sixth line

5.
(the first corresponds to
relative frequencies of 0,1,...,5 heads is
1,5,vav,1s  Since the sum of this row is 32, the
probabilities are 1/32, 5/32, ..., 1/32, A little
reflection will show easily why this is true, if
you consider what happens to a lot of marbles

which have a 50-50 chance of falling to the right
or to the left of each peg. Now within sampling
variability, the shape of the plle of marbles
accumulated at the bottom should correspond to a
binomial distribution. But it will also look
familiar to many of you as a "Normal", or Gaussian,
distribution. (Everybody believes in the Normal
distribution - the eXperimentalists, because they
think it is a theorstically proven fdct, and the
theorists, because they think it is an objectively-
observed reality!) There's some truth in both
views: it has been shown that, under, the right
conditions, the sum of a large number; of varlables
(e.g.y the contributions from many different
sources of error) tends to behave like a Normally-
distributed variable, and on the othet hand, so
many physical neasurements seem to have a Normal

n = 0), we see that the .
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The Normal distribution with zero mean and unit variance (the
The vertical lines enclose 68% of the probability.

distribution. BUT NOT ALL! The "right conditiouns",
alluded to above, are satisfied when the number of
components is large, their contributions are inde-
pendent, and the contribution of any one is small
relative to the total. This.does not include, for
example, the case when there are occasional
bloopers, or "outliers". Nor does it include the
case when many components are correlated - i.e.,
tend to be large or small together.

Fig. 3 shows a Normal distribution, with mean
equal to zero and variance equal to unity. (The
so-called "standard" Normal,) Now suppose this is
the appropriate error distribution for some measure-
ment, and we want to know the true value to within
1/10 of a unit. One measurement is not golng to
glve us an answer we can trust. Everyone knows
what to do - take & number of measurements and
average them. Why does this{help? Because when
measurements are Normally (and independently)
distributed, then the mean of a set of n 1is also
Normally distributed, but with variance smaller by
a factor of n. So if we take 100 measuréments, and
average them, the mean will quite likely be within
1/10 of the true value - in-fact, since its vari-
ance is 0.01, its standard deyiation is 0.1, and
the tables of the Normal distribution tell us that
a variable will fall within one standard deviation
(in this case, 0.1 units) of its mean, about 68%
of the time. If that is not enough, take more




measurements: with 400 measurements, the gs.d. is
0.05, and the probability of being within two
standard deviations (again, 0.1) of the mean is 95%.
But remember, this 18 true for independent observa-
ticns only! If the apparatus is not taken down
each time, the observations are not independent:
some of the errors which affect each measurement
are being held constant throughout the experiment,
and thus will appear in the mean just as strongly
as they do in a single measurement! (They become
randomly-chosen 'bias" errors instead of random
errors.)

!
Now leF's consider tests of significance, and
confidence intervals. We will use a simple
example, because it's the concepts we are after.
Suppose we have a coin, and we wish to test whether.
or not it is "fair" . We wish to decide between the
. two hypotheses Hy: "the coln is fair" and H.:

1
"the coin is biased". A very important point to
realize here 1s that these two hypotheses are dif-

ferent in kind: 1f HD is true, we know exactly

the behavior pattern of rthe coin, and can predict
(for example) what will be the distribution of the
number of heads in a large number of tosses; while

" biased the coin is.

1f H, 1g true, the behavior pattern is not com
pletely specified, because we don't know how

A rorresponding situation
holds in agricultural experiments, where aignifi-~
cance testing got its start: HO 1g often a

hypothesis of no difference in effect between
different "treatments", for example. In fact,
people often try to find such a simple HO, even

1f it entails some Procrustean efforts. Why? So
we have something to hang our hats on, 8o to gpeak:
we need to be able to analyze the test procedure.
We are generally interested in seeing the null
hypothesis rejected, but not (of course) when it
is true, and primary emphasis is often on limiting
the chance of rejecting a true Ho.

Back to the coin. If we perform n tosses, and
count the number of heads, then we should have
approximately n/2 heads, 1f the coin is falr. If
the number of heads is too far removed from this
value, we will reject the hypothesis of fairness.
fHlow far 1s too far? That depends: what happens
if we err? Note there are two kinds of error
possible: rejecting a true HO’ and falling to

reject a false Hj. (Note I did not say "accepting

o 3 { \ 1 t
- ®
jom}
pr-4
a
* B
© o 7
. .
w
©
TR~ T
Q.
aZ
© o .
. B -
52} . .
Lu [
fo——r)
—
[—
- o« ©
o =
a
an}
&
< g
-]
43 <
a
L o ]
=
©
z -y
o . A—pt—a—i—s T
o 0. 5.00 10.0 15.0 20.0 25.0. ‘ _
Fig, 4. fhe Binomial distribution, for n = 25, p = 0.5, 0.6, 0.9, '
*  The probabilities to the right of-the vertical line at 17 1/2 are *
0.022, 0.153, and 0.998 respectively.
N7
L]




1.0

PROBABILITY OF REJECTING Hg ~

o
o
RO

4

.6 .8 1.0

TRUE BINOMIAL PRQ_BABILITY, p

Fig. 5.

The "power™ (probability of rejecting H ) for a two-sided 57

test of H i p = 1/2) for the Binomial distributiSn with n = 25.

a false HO".' More about this point later.)

we know all about the behavior of the

Since
under HO
coin, it is comparatively easy to set a value for
the first type of error (which incldentally is
called the Type'Il error): given the truth of H
the distribution of the number of heads is
binomial with known parameters, and so we can
calculate the probability of getting a number of
heads which is beyond whatever criterion we set.
For example, 1f we decide to reject whenever the
nunber of heads differs from w/2 by more than

nl/2 , We have‘(approximately) a 5% chance of
rejecting a true HO. (Here I have used the Normal

0,

approximation to the binomial distribution, so

it is valid for n greater than about 30; a cor-
rection for continuity would allow its use for
somewhat smaller values of n.) Thus we can settle
the question of safety: we have limited the chance
of ineriminating an innocent coin. What about
effectiveness? In other words, what chance do we
have of incriminating a blased coin? Look at

Fig. é: it shows the binomial distribution for

n= 25 and p = % , with a cutoff (criterion) value
cf'_-_tnl/2 = +5 around the expected number of 12% .
Also shown are the distributions for'p = .6 and

p = «9. Obviously the chance of ‘rejecting a coin
with = 0.1 biz If it were

1 bias {s small: only 15%.

desired to have a large chance of rejécting such a °

coin, while preserving the 95% safety. level, we
would have to perform more flips - in,fact, we
would need 270 flips to attain a 90% ¢hance of
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rejection. (The derivation of this result is left
as an exercise for the reader.)

Statisticians often talk about a "power
curve'. This is merely a graph of the probability
of rejection (the power of the test) as a function
of the parameter of interest (in this case, the
true probability of heads). The power curve for
the test above, with n = 25, is shown in Fig. 5.
The power curve is bound to be low at the parameter
value corresponding to the null hypothesis, since
we want the "size", or Type I error, to be small.
It will generally rise from that point (at least
in the direction of the alternatives of interest).
We would like it to be steep, however, so that
even slight departures from H_ would have a good
chance of being caught. As 1S often the case,
steeper curves cost more. Therefore it behooves
one to think carefully about what alternatives are
likely, and how important it 1s to catch them,

before experiments are done!

Incidentally, it is now obvious why we don't
ever say we have "accepted" HG. If the results
of the experiment are highly surprising under HO,
we can reject HO, and we have the assurance that in
so doing we will reject a true HO only once 1n so

many tries - whatever corrngsponds to the errer
level we are using. But if ﬂhe results are not
that sutprising, all we can say 1is that we do not
reject NO; it may be because we did not do a big

enough experiment, or because H, is not as far

0




wrong as we thought it might be, instead of being
proof that Ho is true.

Now a word or two about confidence intervals.
We just said that the number of heads occurring in
n.tosses of a fair coin is likely to be within

nl/2 of the expected value n/2. As a matter of
fact, this can be extended to any coin that is not
too blased: the number of heads occurring in n
tesses of a not-too-blased coin has a 95% chance

of being within 1nl/2 of its expected value, which
is np, where p is the probability of a head for
that coin. In symbols,

Pr(np = nll2 < x <mnp + nl/2) = 0.95. But by a
little trivial algebra, we note that the double
inequality above is equivalent to the following:

x/n —'n"l/ <p < x/n+ n—l/z. Can we then say

that there is a probability of 0.95 that the true

p falls between the two limits x/n + a2 Yes,
1f we are careful about how we interpret such a
statement. Note that p is not usually a random
variable, but rather it is a constant, even if it
is unknown. Therefore it either is or is not
between the two calculated limits, and the proba-
bllity 1s accordingly either 1 or 0. The real
meaning is that there is a probability of .95 that
two limits, so calculated, will in fact bracket the
true value. The chance of confusion is suffi-
ciently great that different terminology has been
adopted: we say we have 95% "confidence" that the
true value lies between the quoted limits. The

practical meaning is that, in a long series of
such statements, only one in twenty times will the

~quoted interval fail to enclose the true value,

Finally, a few words about goodness of fit -
tests. Fig. 6 shows a (hypothesized) true distri-
bution function, and a sample cumulative
distribution function., They differ, of course.

Is there enough evidence to say that the sample
probably does not come from the distribution shown?

There exist various tests for this problea.
Some are based on the maximum difference between
the two curves; some on the integrated area
between the two curves; and some on the differzsnce
between actual and predicted frequencies in a set
of intervals covering the range of possible values.
One of the latter is the so-called Chi-squared
test. It is indeed widely used: anytime theras is
(or can be produced) a classification scheme, the
Chi-squared test is likely to be used. ' Lf there
are n cells, or intervals, and the theoretical
distribution predicts values Ei’(which stands for

Expected) for cell i, and one actually observes 0
then it 1s a simple matter to calculate

(g, -
the Chi-squared tables, using n-1 for the degrees- -

of-freedom parameter. It often works falrly wall.
Why? Because in many applications, the distridu-

i’

Oi)Z/Ei , sum over all i, and compare with

“tion of the calculated statistic is reasonably

close to a Chi-squared distribution, But there
are a lot of approximations going on here, And

&z

0 10

0 30

S (xX)= NUMBER OF OBSERVATIONS WITH VALUE < x

Fig. 6. Conti?uouq cumulative diQtrihution function (cdf) F(x), and

sample cdf n
the sample sizn.)
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since anything that can go wrong will go wrong,
people get into trouble all the time by ignoring
them. Furthermore, it has happened that people
have used the Chi-squared when there are no fre-
quencies in sight. What happens then? One case
in point will be mentioned in the third example

of the following section, where more detalled dis-
cursion of Chi-squared appears.

Examples

Standards for a breath analyzer: acceptance
criteria

Let's start with some background information.
In most states, the legal limit for blood alcohol
concentration is 0.10% w/v. NBS has developed a
standard for breath alcohol testing machines,
which (among other things) requires that the
standard deviation of readings, as estimated by a
standard test procedure, be at most 0.004% w/v.
There has been some criticism of this level, to
the effect .that it ought to be lowered to 0.003%
w/v, The effect of such a change was to be
evaluated.

From experiments at NBS, it seems that the
standard deviation of wachines currently being

produced is about 0.0028% w/v. It is not a good
idea to set a requirement sotight that satisfactory
wachines cannot pass, and going a little farther,
1t is also not a good idea to set the requirement
so that the machines car. pass (with reasonably
high assurance) only after a very expensive test.
To be more specific, if the true s.d. were in fact
.0028%, and we felt the manufacturer was entitled
to have at least 957 of *such machines pass the
test, then we should set the limit and the number
of tests performed on each machine so that there
is at most a 5% chance of having an estimate,
based on that number of tests, higher than the
limit. Basing the test on the sample standard
deviation,  one needs 9 or 10 observations with a
limit of 0.004, but about 280 with a limit of
0.003! Of course, one also wants to be sure that
machines which do get accepted are satisfactory;
i.e., that machines which are not satisfactory
have a very low chance of acceptance. It Lurns
out that, with ten observations, and with a s.d.
of 0.01, the chance of acceptance 1s less than

1/2 of 1%. And since 0.01 is still much smaller
than the legal limit of 0.10, it still provides a
perfectly adequate margin of safety for the inno-~
cent and a good chance of detection for the
drinker: with a true valué of 0.07, there is only

. a 1/2% chance of getting a result above 0.10, while
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with a true value of 0.12, there is a 987 chance
of getting a result above 0.10. (See Fig. 7.)

Bivariate discrimination for gunshot residue
detection .

Problem: Given values for the amounts of
barium and antimony found on the (firing) hand of
a suspect, declide whether the values are incrimi-
natingly high: 4i.e., whether they provide
evidence that the suspect has recently discharged
a weapon., Preliminary thoughts: Do we want to
pick a threshold level for each element, say Ta
for antimony and Tb for barium, and then treat as
a "positive" result any case for which either
value exceeds its threshold, or only those for
which both values exceed their respective thresh-
olds? Should they depend on time since firing is

. suspected to have occurred? On type of weapon?

On the particular weapon, 1if known? On sex, or:
occupation, or number of shots, or seriousness of
the crime, or type and brand of ammunition? On
lifting technique? Or lab, or lifter, or wind
conditions?

Null hypothesis: Suspect is innocent.
(Denoted by Ho.) We want t¢ bound the probability

-

of a "Type I error", namely the rojection of H,

when it is in fact true. (At what level? People
often pick 95%, but why? Would you be content

‘with a 95% probability that any given hydrogen

weapon willl not go off accldentally, 1f there are
100 of them scattered around your clty? I hope
not: there's only a 0.6% chance that there will
not be a disaster! It makes sense, oftentimes, to
iterate this decision: let's assume a tentatively
chosen value, say 95%, and go on. This means that
out of every 20 persons who have not recently

fired a weapon, but who are tested, one (on the
average) will be wrongfully accused (on the basis
of this procedure)., What then happens with persons
who have fired a weapon? If it turns oukt, upon
investigation, that in order to keep the Type I
error small enough, the threshold has to be so high
that we obtain a positive result for only one of
every 10 who have fired, what do we do? We can
work to make the procedure more sensitive; we can
lower the threshold; we can be satisfied that
occasionally we will produce a positive; but we
can no longer delude ourselveg into thinking we
have a good procedure as it stands.

Now let's look at the situation graphically.
Fig. 8 shows a bivariate distribution of barium
and antimony levels. It is to be interpreted as a
contour map: there is a "Iump" of probability, of
unit volume, which is spread out over the (x,y)
plane, forming a "hill". If we were to integrate
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Fig. 9. Typlcal Neutron Activation Analysis output curve.

the elemental volume in this hill, with respect to
the variable y, we'd have a probability density fer
x; and vice versa. As drawn, the figure does not
indicate any appreciable correlation between x and
y; if there were a correldtion (i.e., a situation
where knowing the value of x changes the distribu-
tion of y), it would show up as a tilt in the axes
of the elliptical contours.

A horizontal line on the figure represents a

threshold level for y; a vertical line represents
" a threshold for x. If we are to keep the Type I
error to 5%, then we need to pick these thresholds
. accordingly. If we are only going to test x, and
not y, then the vertical line needs to be drawn

so that 5% of the volume of the hill is to the
right of it. If only y, then the horizontal line
needs to be drawn with 5% above it. If x and y
are independent, then we can use lines with

2% % above and to the right, respectively,

declaring a positive whenever either line is
exceeded. (i.e., whenever the measurement 1s out-
side the lower left quadrant.) Or we could use
lines marking off 22%, and demand that the actual
values reach the upper right quadrant before
declaring a positive. Or perhaps a slanted line is-
best. The point is, we don't know which is best
until we know what values are likely to occur for
actual firarsl All the above are equivalent, as
far as true negatives are concerned, and we want
to pick a rejection region which includes as many
as possible of the true positives. And there are
complications: the values for actual: firers
change drastically with ordinary human activity

over time, and depend on the weapon, and are
extremely variable even for the same weapon; and
the values for non-firers depend on occupation.

It is reasonably certain that with certain ground
rules, the technique is indeed valuable; but its
efficient use demands study beyond any yet reported
in the literature. It is not a simple problem!

Matching profiles: multivarlate discrimination

When a trace element analysis is performed,
one typically cbtains a plot of "power" against
frequency, as shown in Fig. 9. This then must be
converted to a table of percentages for the trace
elements present, as in Fig.10. Certain techniques
of fingerprint analysis involve measuring and/or
counting various characteristics of the prints,
and also result in vector observations somewhat
like Fig. 10. If one has such sets of values for
a number of samples, .or one sample and a set of
Ygtandards", how does one tell which ones are
alike? If we could visualize 15-dimensional
space, it might help. Various ad-hoc techniques
have been applied to this kind of problem. Each
has adherents, but nothing very definitive is
known.

One technique in use for comparing two
gsampies, or one sample with a known populationm,
involves calculating a quantity which it s hoped
behaves like & Chi-squared varlable, and comparing
it with the appropriate statistical tables. This
approach is fraught with danger, however. To sce
why, let us look at the Chi-squared quantity. It
is usually used when there are a number of
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cateyories, and each of a large number of iltems
falls (independently of the other items) into one
of the categories. One has an expected number for
each category, obtained by assuming each 18 equally
likely, or from some other assumption that seems
reasonable (and 1s to be tested), One takes the
squared difference between cbserved and expected
numbers for each category, divides by expected,

and sums over all categories. This number is
(under certain assumptions) reasonably like a Chi-
squared variable with parameter n-1, when there

are n categories. To see why this 1s reasonable,
turn to the definition of a Chi~squared variable:
the sum of squares of k independent variables,

each one having a Normal distribution with mean
zero and variance unity, is Chi-squared with
parameter k. How does this match up with the
categorles situation? Well, the number of items
which actually get classified into a certain
category is a Binomlal variable (assuming that each
item independently gets classified into one of
"many" categorles, according to fixed probabili-
ties); but if the probability associated with a
given category is "small", and the total number of
items classified is "large', then the number which
end up ir the given classification is
(approximately) Normally distributed with variance
equal to the mean. Thus If we subtract the
expected (mean) value, 'and divide by the square
room of the expected value, we have (approximately)
a Normal with mean zero and variance unity; upon
squaring, we have the usual Chi-squared formula.
But how many categories, how small a probability,
and how large a number of items? And what should
we do if we are comparing two samples, and have no
reason to consider either one the "expected" one?
There are several rules of thumb for the first
question. One says that every expected frequency
should be at least 2, or that at least 807 of the
expected frequencies are at least 5, with the
remainder belng at least 1; with the exception that
when the parameter (the number of "degrees of
freedom") is 1, all expected frequencles must be at
least 5. The other question has a more definite
answer: one calculates expected numbers based on
row and column totals, in a layout where (say) ‘rows

represent the different categories, and columns
represent the different samples. The pruportion of

- the grand total represented by the d~th row Le an

estimate of the (agsumed common) probability
associated with the i-th category, and so when we
multiply it by the j~th colusn total (the number
of items in the j-th sample), we get the expected
number in the (1,j)~th cell. Again we take
observed minus expected, square, divide by
expected, and add over all cells; only now the
parameter is (r-1){c-1) where r and c are the
number of rows and columns respectively. Again
the restrictions on minimum values for the expected
numbers must ‘be observed. Remember, what is being
tested here is that the distribution among cate-
gorles is the same for cach sample. If rejected,
then one has’ evidence that the samples do indeed
come from different populations. MNow one more
thing needs to be said. Suppose that one actually
has percentages of trace elements, instead of
counts in various categories. Can one force this
situation into the Procrustean mold of a Chi-
square analysis? Not without doing violence to
both the situation and the technique! Percentages
are not counts, even 1f they are obtained from a
radiation counter! (It may be that the scaling,
combined with the accuracy of the measurement
process, combined with Heaven kuows what else,
counterbalances nicely to make the result look like
a Chi-squared variable. But I certainly would not
like to stake my life on it, without checking it
out. Nor would I like to stake my freedom on it,
so why should I stake somebody else's freedom on
it?) This problem is being investigated at the
moment, with the hope that some (at least partially
satisfactory, interim) techniques will be forth-
coming.
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,Tabﬁe I. Results of Base Glass Analysis, ppme

Mn - 0.479 =+ 0.014
Au 0.217 & 0.013
Cu 1.035 4 0.030
Ga 0.330 == 0.010
La 0.0291 = 0.0015
Sb 0.0643 == 0.0041

(£2.7%)
(£6.097)
(£2.99)
(£3.0%)
(£5.1%)
(£6.4%)

* Limits quoted are 7s/V/n for the 95% C.L.: n = 18.

Fig. 10, Trace element composition, determined from a curve similar

to Fig. 9.
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