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SummUY,. This paper is intended to tell "why-we-do-it-this-way" ,. " ;:"oi' 

After preliminary remarks on randomness, errors, and distribution ~~~~~\\~~ 
functions, various techniques of statistical analysis are dis-. __ ~', ~~. ".~,~~1l ~ ~ 
cussed. These include significance tests, confidence intervals~(r";~_·'" 
and goodness of fit tests. Finally, several examples will be ' 
discussed: 1) Performance requirements for breath alcohol 
testers; 2) bivariate discrimination for gunshot residue 
detection; and 3) Matching "profiles", e.g •• trace element 
analyses or the output of a speech frequency analyzer. 

Introduction 

Why are there applications for statistics in 
criminalistics? Because there is randDmness in the 
activities which are the subject matter of crimi-· 
nalistlcs. And what is randomness? "All the 
variation, from whatever source, which exists 
among the results of independent experiments which 
are intended to be identical" (1). Does a given 
weapon always leave exactly thEl same amaunt Df 
~esidue on the hand of the firer? Even if it did, 
would the amount lifted and measured be the same? 
Why not? Haw can we predict the behavior of a lift 
technique? If three different chemists analyze a 
sample, and come up with three different composi
tions, what do you do? What if one differs very 
much from the other two? If you evaluate a breath 
tester on twenty people, can you make predictions 
on its behavior in general? What if the twenty 
people are just picked off the street? Or just 
came from a'businessman's luncheon, complete with 
cocktails? Or just came from a hospital, and pre
sumably include some on medicine of various sorts? 
How should one choose a sample? 

Some questions have answers so clear that 
there is little need for statistics. For example, 
blood type matching: at least among the major 
classifications, there is no question which group 
a person belongs. to. (IYhich is not to say that 
there are neve:.:- any goofs I) But others require 
care: if w'e are to decide whether a person. belongs 
in class A or class B, and we have a measurement, 
and we knol; thab the class A average is 50, the 
class B average is 80, and our measurement is 60, 
what do ,~e decide? But now suppose we .have· the 
further information that fer class A, the measure
ments vary from 45 to 55; while for class B, they . 
vary from 50 te 100; anyone·care to change their 
decision? Actually, this is artificial; usually 
we have not a given finite range, but distributions 
which extend much farther, and overlap even mere, 
with the spread measured by a liS talldard deviation". 
And which decision te take depends not only en the 
means and standard deviations, but· also on the 
"costs" associated"with errors of various kinds, 
and the preportions of classes A and B in the 

* This werk was supper ted by the Nutionnl Institute 
for Lnw Enforcem~nt and Criminal', Justice, 
through the Law Enforcement Stanuards Laboratory 
of the National Bureau of Stnnda'rds. 
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population or on the "prior odds" that the person 
in quegtion is from class A. This question I will 
not pursue any further. 

Let us look at another example. Scenario: 
Sidney Statistician is peacefully working on his 
latest brainstorm, when Ernie Engineer walks in. 

/ Sound: 

Hi, Sid - you busy? 

Why of course, Ernie, but never too busy to 
talk to youl What's bothering you? 

Well you know, Sid, I'm getting measurements 
on that infernal new analysis technique, and there 
seems tD De a problem. I got twe measurements on 
each of one control and .one suspect, and here's how' 
they turned out: 

S S CC 
15 20 25 x 

Well, Ernie, that loeks pretty good to me. 
The measurement technique looks right consistent. 
What's the problem? 

Only on& thing, Sid: the "control" was stone 
sober, so how could he have given higher values 
than the suspect? I need help! 

Okay', Erni.e, let's have a look at how the 
measurements wlare taken. 

Well, Sid, I gave the one batch of two samples 
to Joe, and th.e other batch to Bill, and told them 
to· ge tD it. And I suppose Joe used the one 
analyzer, and Bill the other; they usually do. 

Ernie, you goofed I You have no way te estimate 
any biases in the equipment or in the operato~sl. 
Do you have more samples left? 

Yes, I do, as a matter of fact. And since I 
learned scmle~hing the last time I ~Ias here, I have,. 
already put two samples fr.om each out' for analysis.,. 
to a different fel1el~ - i:e., this time Joe got t~~ 

~ 3u~pect ~nd Bill got the ~ontrol, in~tcad of the 
other way around. And here are the results: 

CC 
15 20 

5S • 
25 

1 
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These don't jibe! What do I do now? I only have 
four samples left. 

Let's not cry yet, Ernie. You need to balance 
things a bit better, if you want tp learn anything 
useful. Suppose you usc each of th~ four combina-

.tions of man and machine, once, for each person. 
That makes four samples e~ch. And just to avoid 
any personal biases, or time-order effects, let'a 
assign them in random order. OK? 

(TIME PASSES. SOME TIME LATER, ANOTHER MEETING 
OF GREAT MINDS.) 

Here you are, Sid - the new data. What do 
you make of it? Plotted like before, it seems 
like there might be an effect, but not too clearly: 

C ecs ses s 
5 15 25 35 • 

What else can you get out of it? 

Let' a put the results in a rna-way layout. 
We'll writs the suspect value above a slash, and 
the control value below, for each combination of 
machine and man, like SOl 

:::::::::i1::::::::;::: HI N KS 11901) 

::11:: NOTEBOOM (1921) 

Machine 
A B 

Joe. 35/25 25/15 
Man (Suspect/Control) 

Bill 25/15 15/5 

Now notice the consistency: in each cell, the 
suspect value is 10 higher than the control. And 
for each combination of machine with sample, Joe 
is 10 higher than Bill, and finally, for each 
combinatioll of man with sample, machine A reads 10 
higher than machine B. Now I can't say which 
machine is ~ight, or whether they both have a bias, 
but it is apparent that machine A's readings are 
consistently higher; likewise for Joe's readings 
compared to Bq.l' s. And finally, the suspect's 
readings are consistently 10 higher than the con
trol's. Good enough? 

(CLOSE CURTAIN) 

Now anyone' knows enough to balance observa
tions like that, doesn't he? (Or does he?) And 
every experienced scientist knows how accurate his 
technique is, right? Wrong! Consider Fig. 1. It 
shows fifteen measurements of the astronomical 
unit (the mean distance from ~arth to sun), made 

:::::::::::::1::::::::::: SPENCER JO~JES (1928) 

::G:: SPENCER JONES (1931) 

:=9:: WITT (1933) 

:::::::::::::::!i::::::::::::::::::~:: ADA M S (.1941) 

::::::::J:::::::: BROUWER 11950) 

:~ RABE (1950) 

I MILlSTONE HILL (1958) ., 
.' 

:~: JODRElL BANK (1959) 

.:1:. S.T.l. (1960) 

I JODRELL BANK (1961) 

I SOVIETS (19.61) 

I I I 
92.8 82.S 

I CAL TECH (1961) 

Q~1 
VU •. I 

I· 

~. EstimAtes of the astronomi.cal unit (menn cnrth-sun distnncc), 
with ullcertainties. Each value is Dutside the range of uncertainty of 
the preceding yalue. 

, 
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~. The Quincunx, or Galton probability board. 
The balls will approximate a Binomial distrioution, 
if the board is properly construc~ed. The numbers 
constitute a "Pascal triangle"; each ro\~ gives the 
relative frequencies for a binomial distribution 
with p = 1/2 and appropriate value of n. 

over the period 1895 to 1961, by highly respected 
scientists (2). Also shown is the uncertainty 
assigned to each measurement by the scientist(s) 
who produced it. The striking thing about this 
set of measurements is that not one of the measure
ments fell within the uncertaintY-;ssigned to the 
previous measurement! There are Rrobably several 
morals to be gotten from this, but one I would like 
to state is: Don't take for granted that any com
ponent of error is negligible - measure it! 

'; 

Not much fancy statistics ,wel\t into the 
example above. But the experimen~er was fortunate: 
th~ a:,p\;"rimontal error was 50 smal'l 'relati va to 
the effects, and the "design"· was ~ bad, that the 
problem clime to light. Rest assuJ;:'ed, there are 
many tim('s where it does not - it just results in 
false positives, or false negativri~, or no conclu
sions at all, and the loser may be' a manufacturer, 

, " 
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a suspect, the public at larB~, a researcher, or -
you name it. How much bet ter to anticipate the' 
sources of error, and measure them. They don't 
cease to exist by being ignored - th~y JUBt get to 
foul things up in ways that never can be righted! 
So cal~ in the statistician early, snd be open with 
himl 

There are several well-recognized sources of 
error. One classification is into the following: 

Variability of experimental material 

Smaller batches tend to be more homogeneous. 
(And this applies whether the batching is by process 
lot, by time, by distance, operator, producer, or 
anything else,) If you stick to one batch, you 
might get pretty results - but do they apply to 
anything o,ther than that batch? Remember, the pUr
pose of experimentation is generally to make 
inferences about other material! . 
Uncontrolled conditions 

One does not always know what external condi
tions influence the results. (Temperature? Day 
of the week? Whether it is payday? Etc.) Even if 
one does know, one may choose not to control - or 
may not be able to control. But at least, one is 
aware that there is a source of variability ther~, 
and is not likely to make assertions about the 
results that could be invalidated by that source 
of error. 

Measurement error 

This includes human error. Again, don't be 
optimistic. Take an honest look at the variability. 

There is' one technique of such general use
fulness that it ought to be mentioned, even in so 
general an essay as this. That is the technique of 
comparison experiments. Suppose that one has a 
measureQent technique tha~ is subject to many kinds 
of errors, which cannot bci well controlled. Sup
pose however that the eff~cts of these errors are 
the same for all specimens'. Then the difference 
between two specimens would be pretty much the same 
under any set of conditions, as long as the two 
specimens were measured under identical conditions. 
Finally, suppose that we have standards - i.e •• 
items whose characteris.tiGs ar;' well known" Then 
we can measure the test specimen and the standard, 
keeping all experimental conditions as constant as 
possible, to get a good estimate of the difference. 
Knowing the true value for the standard, we can 
then adjust the measurements to get a good value 
for the t~st specimen. (And of course, there are 
refinements to evaluate how constant the conditions 
were kept, involving repeat measurements.) This 
approach is not a cure--all, but it is a big help 
in many situations. 

Distribution Functions 

A distribution funcdon tells us how we thInk 
something behaves. (It's a model.) It tells us 
hc~ the results of m~nj t~inlo (independent trinl~, 
'that is) would stack up. .For example, Fig. 2 shows 
what is .knOlm as a QuincU\~x, or Galton probllbility 
board. Each number 01'1 each row is fo'rtl£d 'bV 
adding the .two numbers di recUy above it; these 
nunbers constitute the "Pascal triangle". whieh 
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gives the relat~ve probabilities in the binomial 

distribution with p = t. for each value of n. 

For example. if a fair coin is flipped five times, 
the number of heads has a binomial distribution 
with n c 5 land p (the probability bf a head on 
one toss) .. 2" Thus. looking at the six.th line 

(the first corresponds to n '" 0). we see that the, 
relative frequencies of 0.1 •••.• 5 heads is 
1.5, •••• 1. Since the sum of this row is 32, the 
probabilities are 1/32, 5/32, ••• ; 1/32. A little 
reflection will show easily why this is true, if 
you consider what happens to a lot of marbles 
which have a 50-50 chance of falling to the right 
or to the left of each peg. Now within sampling 
variability, the shape of the pile of marbles 
aCClDnulated at the bottom should correspond to a 
binomIal distribution. But it I~ill also look 
familiar to many of you as a "Normal", or Gaussian, 
distribution. (Everybody believes in the Normal 
distribution :- the experimentalists, because they 
think it is a theol'etically proven fact, and the 
theorists, because they think ltis ail objectively
observed reality!) There's some truth in both 
viel,'s: it has been shown that, under, the right 
condirions, the SllU of a large number. of variables 
(c. g •• the contributions from nlany dffferent 
sources of error) tends to behave Hila a Normally
distributed variable, and on the othet hand. so 
many physical measurements seem to have a Normal 

distribution. BUT NOT ALL! The "right conditions", 
alluded to above, are satisfied when the number of 
components is large, their contributions are inde
pendent, and the contribution of anyone is small 
relative to the. total. This. does .!!.Q! include, for 
example, ·the,case when there are occasional 
bloopers. or "outliers". Nor does it include the 
case when many components are correlated - i.e., 
tend to be ,large or small toge'ther. 

Fig. 3 shows a Normal distribution, with mean 
equal to zero and variance equal to unity. (The 
so-called ,tstandard" Normal,) NOI~ suppose this is 
the approprif\te error distribution for some meaSure
ment. and we want to know the true value to within 
1/10 of a unit. One measurement is not going to 
give us an answer we can trust. Everyone knows 
what' to do - take a number of meaSurements and 
average them. Why does this ('help? Because when 
measurements are Normally (and independently) 
distributed. then the mean of a set of n is also 
Normally distri~uted. but with variance smaller by 
a factor of n. So if we take 100 measurements, and 
average them, the mean will quite likely be within 
1/.10 of the true value - in ·fact, since its vari.., 
ance is 0.01. its standard de~iation is 0.1. and 
the tables of the Normal dist'ribution tell us that 
a variab'ie will fall within oile standard devIation 
(in this' case, 0.1 units) of its mean. about 68% 
of the time. If that is not enough. take more 
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measurements: with 400 measurements, the s.d. is 
0.05, and the probability of being within two 
standard deviations (again, 0.1) of the mean is 95%. 
But remember, this is true for independent observa
tions onlyl If the apparatus is not taken down 
each time, the observations- are not independent: 
some of the errors which affect each measurement 
are bl,dng held constant 'throughout the experiment. 
andi thus will appear in the mean just as strongly 
as they do in a single measurementl (They become 
randomly-chosen "bias" errors instead of random 
errors.) 

I 

NOvl let's consider tests of significance, and 
confidence intervals. We will use a simple 
example, because it's the concepts we are after. 
Suppose vie have a coin, and we wish to test whether 
or not it is "fair". We wish to decide between the' 
two hypotheses HO: "the coin is fair" and H

1
: 

"the coin is biased". A very important point to 
realize hElre is that these two hypotheses are dif
ferent in kind: if HO is true, we know exactly 

the behavior pattern of t:he coin, and can predict 
(for example) what will be the distribution of the 
number of heads in a large number of tosses; while 
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if Hl ia true, the behavior pattern is not com
plel:e1y specified, because we don't know hoY! 
biased the coin is. A ~orreaponding situation 
holds in agriCUltural eXperiments, where signifi
cance testing got its start: lIO is often a 

hypothesis of no difference in effect between 
different "treatments", for example. In fact, 
people often try to f.ind such a simple HO' even 

if it entails some Procrustean efforts. Why? So 
we have something to hang our hats on, so to speak: 
we need to be able to analyze the test procedure. 
We are gene~ally interested in seeing the null 
hypothesis ~ejected, but not (of course) when it 
is true, and primary emphasis is often on limiting 
the chance of rejecting a true H

O
' 

Back to the coin. If we perform n tosses, and 
count the number of heads, then we should have 
approximately n/2 heads, if the coin is fair. If 
the number of heads is too far removed from this 
value, we will reject the hypothesis of fairness. 
now far is too far? That depends: what happens 
if we err? Note there are two kinds of error 
p6ssible: rejecting a true R

O
' and failing to 

reject a false 110, (Note I did not say "accepting 

15.0 20.0 25.0 

Br Ht.RoS 
Fi~. !rhe Binomial distribution, for n • 25, p • 0.5, 0;,6, 0.9. 
The ptob~ilities to the right of ' the vertical line at 17 1/2 are' 
0.022, 0.U53, and 0.996 respectively. 
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a false 11
0
". ' More about this point later.) Since 

under 110 we know all about the behavior of the 

coin, it is comparatively easy to set a value for 
the first type of error (which incidentally is 
called the Type'I error): given the truth of H

O
' 

the distribution of the number of heads is 
binomial with kn01m parameters, and so we can 
calculate the probability of getting a number of 
heads which is beyond whatever criterion we set. 
For example, if we decide to reject whenever the 
nUlllber of hea'ds di ffers from r./2 by more than 
1/2 

n , we have (approximately) a 5% chance of 
rejecting a true 11

0
, (Here I have used the Normal 

approximation to the binomial distribution, so 
it is valid for n greater than about 30; a cor
rection for continuity would al101~ its use for 
somewhat smaller values of n.) Thus we can settle 
the question of safety: we have limited the chance 
of incriminating an innocent coin. What about 
eff ectiveness? In other words, what chance do we 
hav~ of incriminating a biased coin? Look at 
Fig.~: it ShOl,S the binomial distribution for 

.. ' 1 
n .. 25. and p .. 2" ' l"ith a cutoff (criterion) value 

1/2 1 
of in .. i5 around the expected number of lCZ • 

Also shown are the distributions for 'p ,. .6 and 
P ... 9. Obviously the chance of , rejecting a coin 

~ith e 0.1 bias is 50).;.111: oniy J,,)l.. It it were 
desired to have a large chance of rejecting SItch a 
coin, while pn~servin!: the 95% safe ty· level, we 
would have to perform more flips - in"fact, we 
would nceci 270 flips to attain a 90% ~hance of 
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rejection. (The derivation of this result is left 
as an exercise for the reader.) 

Statisticians often talk about a "power 
curve". This is merely a graph of the pl'obability 
of rejection (the power of the test) as a function 
of the parameter of interest (in this case, the 
true probability of heads). The power curve for 
the test above l with n = 25, is shown in Fig. 5. 
The power curve is bound to be low at the parameter 
value corres'ponding to the null hypothesis, since 
we want the "size", or Type I error, to be small. 
It will generally rise from that point (at least 
in the dir1:!ction of the alternatives of interest). 
Ive would like it to be steep, however, so, that 
even slight departures from HO would have a good 
chance of being caught. As is often the case, 
steeper curves cost more. Therefore it behooves 
one to thinK carefully about what alternatives are 
likely. and how important it is to catch them, 
before experiments are donel 

Incidentally, it is now obvious l;hy we don't 
ever say we have "accepted" HO' If the results 

of the experiment are highly surprising under H
O

' 

we can reject H
O

' and we have the assurance that in 

so doing we will reject a true HO only once in so 

Dk1nv tries - whatever corrosponds to the error 
lev~l we nr e usi ng. nut if t,he res ults a ra no t 
that sutprising, all we cnn say is that we do not 
reject 11

0
; it may be becnusewe did not do a big 

enough experimt'n t, or because· 110 is not as far 
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wrong as we thought it might be, instea~ of being 
proof that HO is true. 

Now a word or two about confidence intervals. 
We just said that the number of heads occurring in 
n.tosses of a fair coin is likely to be within 

nl / 2 of the expected value n/2. As a matter of 
fact, this can be extended to any coin that is not 
too biased: the number of heads occurring in n 
tosses of a not-too-biased coin has a 95% chance 

of being within ,nl / 2 of its expected value, which 
is np, where p is the probability of a head for 
that coin. In symbols, 

1/2 1/2!-
Pr(np - n < x < np + n ) = 0.95. But by a 
little trivial algebra, we not~ that the double 
inequality above is equivalent to the following: 

x/n _'n"1/2< p < x/n + n-l / 2 . Can we then say 
that there is a probability of 0.95 that the true 

p falis between the two limits x/n + n- l / 2 ? Yes, 
if we are careful about how we int~pret such a 
statement. Note that p is not usually a random 
variable, but rather it is a constant, even if it 
is unknown. Therefore it either is or is not 
between the two calculated limits, and the proba
bility is accordingly either 1 or O. The real 
meaning is that there is a probability of .95 that 
two limits, so calculat-ed, will in fad bracket the 
true vaiue. The chance of confusion is suffi
ciently great that different terminology has been 
adopted: we say we have 95% "confidence" that the 
true value lies between the quoted limits. The 

1 

F (x) 
!1 

o 
1 
lID 

F (x) 

practical meaning is that, in a long series of 
such statements, only one in twenty times wIll the 
quoted interval fail to enclose the true value. 

Finally, a few words about goodness of fit 
tesi:s. Fig. 6 shows a (hypothesizad) true distri
bution function, and a sample cumulative 
distribution function. They differ, of coUrse. 
Is there enough evidence to say that the sampl~ 
probably does not come from the distribution shown? 

There exist various tests for this proble~. 
Some are based on the maximum difference between 
the two curves; some on the integrated area 
between the two curves; and SOme on the difference 
between actual an,d predicted frequellcies in a set 
of intervals covering the range of possible values. 
One of the latter is the so-called Chi-squared 
test. It is indeed widely used: anytime thera is 
(or can be produced) a classification scheme, :he 
Chi-squared test is likely to be used •. If there 
are n cells, or intervals, and the theoretical 
distribution predicts values Ei (which stands ror 

Expected) for cell i, and one actually observes ai' 
then it is a simple matter to calculate 

2 
(Ei - 0i) /Ei ' sum over all i, and compare with 

the Chi-squared tables, using n-l for the degrees
of-freedom parameter. It often works fairly ~all. 
Why? Because in many applications, the distri~u-

- tion of the calculated statistic is reasonably 
close to a Chi-squared distribution. But there 
are a lot of approximations going on here. And 

I 
20 

.l s (x)-
n 

r-t:> X 

30 

-s (x) WITU 
VIlIIII \/lillll= 

11'-'1-"'1-
< - NUMBER OF OBSERVATIONS x 

~. Cont lruous cUffiulntivt' distrihution function (cdf) F(~),' nnd 
snmplt' eM n-llj S(x). (S (x), is Ithe numher of snmple vnlucs .::. x; n is 
the snmplc siZe.) 
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since anything that can go wrong will go wrong, 
people get into trouble 'all the time by ignoring 
them. Furthermore) it has happened that people 
have used the Chi-squared when the're are no fre'
quencies in sight. What happens then? One case 
in point will be mentioned in the third example 
of the following section, where more detailed dis
cu:!sion of ~hi-squared appears. 

Examples 

Standards for a breath analyzer: acceptance 
criteria 

Let's start with some background information. 
In mos t states, the legal limit for b load alcohol 
concentration is 0.10% w/v. NBS has developed a 
standard for breath alcohol tes ting machines, 
which (among other things) requires that the 
standard duviation uf readings, as es timated by a 
standard test procedure, be at most 0.004% w/v. 
There hns been some criticism of this level. to 
the effect .that it ought to be lowered to O. 003% 
w/v. 'rhe effect of such a change was to be 
evaluated. 

Fl'om experiments at NBS. it s~ems that the 
standard deviation of machines currently being 

produced is about 0.0028% w/v. It is not a good 
idea to set a requirement scitight that satisfactory 
machines cannot pass, and going a little farther, 
it is also not a good idea to set the requirement 
so that the machines car'. pass (with reasonably 
high assurance) only after a very expensive test. 
To be more specific, if the true s.d. were in fact 
.0028%, and we felt the manufacturer was entitled 
to have at least 95% of ·such machines pass the 
test, then l~e should set the limit and the number 
of tests performed on each machine so that there 
is at' most a 5% chance of having an estimal:e, 
based on that number of tes ts, higher than the 
limit. Basing the test on the sample standard 
deviation; one needs 9 or 10 observations I/ith a 
limit of 0.004, but about 280 with a limit of 
0.0031 Of course, one also \~ants to be SUl:e that 
machines which do get accepted at(~ satisfa(:torYi 
Le •• that machines which are not satisfacl:ory 
have a very 101~ chance of acceptance. It I~urns 
out that, with ten observations, and with a s.d. 
of 0.01, the chance of acceptance is less thun 
1/2 of 1%. And since 0.01 is still much smaller 
than the legal limit of 0,10, it still provides a 
perfectly adequate mnrgin of safety for the inno
cent and a good chnnce of detection for the 
drinker: . with a true value of 0.07, the're is only 

.' a 1/2"1. chance of getting a result above 0.10, While 
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with a true value of 0.12, there is a 98% chance 
of getting a result above 0.10. (See Fig. 7.) 

Bivariate discrimination for gunshot residue 
detection 

Problem: Given values for the amounts of 
barium and antimony found on the (firing) hand of 
a suspect, decide whether the values are incrimi
natingly high: 1. e., whether they provide 
evidence that the suspect has' recently discharged 
a weapon. Preliminary thoughts: Do we want to 
pick a threshold level for each element, say T a 
for antimony and Tb for barium, and then treat as 

a :'positive" result any case for which either 
value exceeds its threshold, or only those for 
which both values er-ceed thidr respective thresh
olds? Should they depend on time since firing is 
suspected to have occurred? On type of weapon? 
On the particular weapon, if known? On sex, or' 
occupation, or number of shots, or seriousness of 
the crime, or type and brand of ammunition? On 
lifting technique? Or lab, or lifter, or wind 
conditions? 

Null hypothesis: Suspect is innocent. 
(Denoted by HO') We want tv oound the probabilit:r 

f liT ¥ " o a yp-::.I. err,1r • namely the rllj ection of Hr, 
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when it is in fact true. (At what level? People 
often pick 95%, but why? Would you be content 
with a 95% probability that any given hydrogen 
weapon will not go off accidentally, if there are 
100 of them scattered around your city? I hope . 
not: there's only a 0.6% chance that there will 
not be a disasterl It makes sense, oftentimes, to 
iterate this decision: let's assume a tentatively 
chosen value, Day 95%, and go on. This means that 
out of every 20 persons who have not recently 
fired a weapon, but who are tested, one (on the 
average) will be wrongfully accused (on the basis 
of this procedure). What then happens v7ith persons 
who have fired a weapon? If it turns out, upon 
investigation, that in order to keep the Type I 
error small enough, the threshold !;las to be s.o high 
that we obtain a positive result for only one of 
every 10 who have fired, what do we do? We can 
work to make the procedure more sensitive; we can 
lower the threshold; we can be satisfied that 
occasi~nally we will produce a positive; but we 
can no longer delude ourselvee into thinking we 
have a good procedure as it stands. 

Now let's look at the situation graphically. 
Fig. 8 shows a bivariate distribution of barium 
and antimony levels. It is to be interpreted as a 
contour map: there is a "lump" of probability, of 
unit volume, which is spread out over the (x y) 
plane, forming a "hill". If we were to inte~rate 

® 

9.00 15.0 

BARIUM ( ARB I TRARY ·UN I TS ) 
~, nivnrinte Normal distribution with possible cutoff criteria, 
(See text.) . 
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the elemental volume in this hill, with respect to 
the variable y. we'd have a probabil:l. ty density for 
X; and vice versa. As drawn, the figure does not 
indicate any appreciable correlation between X and 
y; if there were a correlation (Le., a situation 
where knowing the value of x changes the distribu
tion of y), it would show up as a tilt in the axes 
of the elliptical contours. 

A horizontal line on the figure represents a 
threshold level for yj a vertical line represents 

. a threshold for x. If we are to keep' the Type I 
error to 5%. then we need to pick these thresholds 
3ccordingly. If we are only going to test x, and 

. not y. then the vertical line needs to be dr8lYn 
so that 5% of the volume of the hill is to the 
right of it. If only y, then the horizontal line 
needs to be dralYn I~ith 5% above it. If x and y 
are independent. then we can use lines I~ith 

~ % above and to the right, respectively. 

declnring a positive whenever either line is 
exceeded. (i.e., whenever the measurement is out
side the lower left quadrant.) Or we could use 
lines marking off 22%, and deriland that the actual 
values reach the upper right quadrant before 
declaring a positive. Or perhaps a slanted line is . 
best. The point is, we don't knol~ which is best 
until we knO\~ \~hnt valul's arc like,1.y to occur for 
actual firersl All the above arc eqUivalent, as 
for os true negntives are concerned. and we want 
to pick a rej ection region which incli,ldes as mnny 
as possible of the true positives. And there nrc 
cD~pllcntions: ~Ie vnlues for actual:fircrs 
chnnge dras,tically with ordinary human activity 
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over time, and depend on the weapon, and are 
extremely variable even for the same I~eapon; al1'l 
the values for non-firers depend on vccupation. 
It is reasonably certain that with certain ground 
rules, the technique is indeed valuable; but its 
efficient use demands study beyond any yet reported 
in t~e literature. It is not a simple probleml 

Hatching profiles: multiv9riate discrimination 

When a trace element analysis is performed, 
one typically obtains a plot of "pol~er" against 
frequency, as shown in Fig. 9. This then must be 
converted to a table of percentages for 'the trace 
elements present, as in Fig. 10. Certain techniques 
of fingerprint analysis involve measuring and/or. 
counting various characteristics of the prints, 
and also result in vec·tor observations somel~hat 
like Fig. 10. If one has such sets of values for 
a nlllnber of samples, .or one sample and a set of 
"standards", how does one tell \~hich ones are 
alike? If we could visuaUze is-dimensional 
space, it might help. Various ad-hoc techniques 
have been applied to this kind of problem. Each 
has adherents, but nothing very definitive is 
knmffi. 

One technique in usc for compnring two 
snmples, or one sample Idth a knolm population, 
involves calculating a quantity which it is hoped 
behaves like Ii Chi-squared varinble, and comparing 
it with the nppropriate stati~tical tables. This 
nppronch is fraught I~lth danger, hO\~cver. To see 
why, let liS lqok nt the Chi-squared quantity. It 
is usually used When there are a number of 

I 
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categorieA, and each of a large number of items 
falls (independently of the other items) into one 
of the categories. One has an expected number for 
each category, obtained by assuming each is equally 
likely, or from some other assumptipn that seems 
reasonable (and is to be tested). One takes the 
squared difference between observed and expected 
numbers for each category, divides by expected, 
artd sums over all categories. This number is 
(under certain assumptions) reasonably like a Chi
squared variable with parameter n-l, when there 
are n categories. To see why this is reasonable, 
turn to the definition of a Chi-squared variable: 
the sum of squares of k independent variables, 
each one haVing a Normal distribution with mean 
zero and variance unity, is Chi-squared with 
parameter k. How does this match up with the 
categories situation? ~ell, the number of items 
which actually get classified Into a certain 
category is a Binomial variable (assuming that each 
item independently gets classified into one of 
"many" categories, according to fixed probabili
ties); but if the probability associated with a 
given category is "small", and the total number of 
items classified is "large", then the number which 
end up in the given classification is 
(approximately) Normally distributed with variance 
equal to the mean. Thus if we subtract the 
expected (me&n) value, 'and divide by the square 
room of the expected value, we have (approximately) 
a Normal with mean zero and variance unity; upon 
squaring, we have the usual Chi-squared formula. 
But ~ many categories, how small a probability, 
and how large a number of items? And what should 
\le do if we are comparing two samples. and have no 
reason to consider either one the "expected" one? 
There are several rules of thumb for the first 
question. One says that every expected frequency 
should be at least 2, or that at least 80% of the 
eh~ected frequencies are at least 5, with the 
remainder being at least 1; with the exception that 
when the parsmetex' (the number of "degrees of 
freedom") is I, all expected frequencies must be at 
least S. The other question has a more definite 
answer: one ~alculates expected numbers based on 
row and column totals, in a layout where (say) 'rows 

Table I. 

represent the different clltegoriea, and colwllns 
represent the different samples. The proportion of 
the grand total represcnted by the i-th row 1s an 
estimate of the (assumed common) probabili ty 
associated with the i-til category, and so when we 
multiply it by the j-th colwnn total (the number 
of items in the j-th sample), we get the expected 
number in the (i,j)-th cell. Again we take 
observed mlnus expected, square, divide by 
expected, and add over all cells; only now the 
parameter is (r-l) (c-l) where I' and c are the 
number of rows and columns respectively. 'Again 
the restrictions on minimum values for the expected 
numbers must 'be observed. Remember, what is being 
tested here is that the distribution among cate
gories is the same for each sample. If rejected, 
then one has' eviaence that the samples do indeed 
corne from different populations. Now one more 
thing needs to be said. Suppose that one actually 
has percentages of trace elements, instead of 
counts in various categories. Can one force this 
situation into the Procrustean mold of a Ghi
square analysls? Not without doing violence to 
both the situation and the technique! Percentages 
are B2! counts, even if they are obtained from a 
radiation counterl (It may be that the scaling, 
combined with the accuracy of the measureI:lent 
process, combined with Heaven knows what else, 
counterbalances nicely to make the result look like 
a Chi-squared variable. But I certainly would not 
like to stake my life on it, without checking it 
out. Nor would I like to stake my freedom on it, 
so why should I stake somebody else's freedom on 
it?) This problem is being investigated at the 
moment, with the hope that some (at least partially 
satisfactory, interim) techniques will be forth
comiug. 
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Mn 
Au 
eu 
Ga 
La 
Sb 

0.479 ± 0.014 
0.217 ± 0.013 
1.035 ± 0.030 
0.330 ± 0.010 
0.0291 ± 0.0015 
0.064.3 ± 0.0041 

'(±2.7%) 
(±6.0%) 
(±2.9%) 
(±3.0%) 
(±5.1%) 
(±6.4%) 

a Limits quoted a're lsi Vn for th~ 95 % C.L.: n = 18. 

lli..:-lQ.. Trnce elt'mcnt composition, determined from n curve similnr 
to F:lg. 9. 
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