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Abstract 

Bayesian analyses are developed for data consisting of counts of crimes 

before and after the introduction of an experimental crime control program. 

It is argued that Bayesian analysis is superior to conventional significance 

testing in that the entire probability distribution of the estimated change in 

crime rate can be displayed. Furthermore, the new Bayesian methods developed 

here are more appropriate than available Bayesian approaches to changes in 

time series because they make explicit use of the discreteness of the crime 

count data. The analysis assumes that crimes occur in the before and after per­

iods according to homogeneous Poisson processes with possibly differing rates. 

This assumption is verified for the case of the Nashville,Tennessee experiment 

in saturation levels of police patrol. Application of the new Bayesian methods 

is illustrated by a re-analysis of the Nashville data. 
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1. Introduction 

A common form of program evaluation in the field of criminal justice 

involves a "before-and-after" comparison of crime rates in an area targeted 

by a new crime control program. This paper presents two .Bayesian methodolo­

gies for analysing data which consist of two sequences of counts of random 

events; for instance, data on the daily number of crimes during an interval 

consisting of a "baseline" followed by a "trial" period. Section 2 of the 

paper develops the mathematical results when the performance measure of 

interest is the difference in the crime rates. Section 3 applies the method 

to a re-ana1ysis of the Nashville experiment on saturation levels of police 

patrol [1]. Section 4 addresses the case in which the comparison is made in 

terms of the ratio of the crime rates. 

The methodology is based on a mathematical model of crime occurrence 

which holds that the number of crimes in a given interval of time is a Poisson 

variable. The Poisson model is well-supported by the Nashville data. This 

analytic approach has certain advantages over both classical and Bayesian 

alternatives. The original analysis of the Nashville data by Schnelle et a1. 

used student's t-test to examine the statistical significance of the difference 

in crime rates between baseline and trial periods. There are two drawbacks 

to their approach: first, the t-test assumes that daily crime counts vary 

continuously according to a Gaussian distribution, whereas in reality the 

counts are discrete and typically number only a few crimes per day, 

making the Gaussian a poor approximation; second, the statistical significance 
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of the difference in crime rates is less relevant to policy than the dis­

tribution of the magnitude of the change in crime rate - reporting only a 

significance result suppresses much of the information in the data and misses 

an opportunity to present the results in a more readily interpreted format. 

A Bayesian analysis would be more useful in presenting the distribution of 

the change in crime rates, but conventional Bayesian approaches to shifts 

in the level of a time series are based on the assumption that the variable 

of interest is continuous, with Gaussian increments from one time to another 

[2]. An approach which recognizes and exploits the discreteness of the data 

would be better matched to the problem. Such an approach is developed below; 

it assumes that crimes occur in the baseline and trial peJ:iods as Poisson 

processes with (possibly) different rates and determines the posterior distri­

butions of the difference in crime rates (section 2) and the ratio of crime 

rates (section 4). 
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2. Methodology for Difference in Crime Rates 

The typical data series consists of counts of crimes commited during 

a baseline reference period followed by a trial period during which the new 

crime control program is applied (see Figure 1). During the ith interval of 

observation (assume that the basic interval is a day) a total of n. crimes 
~ 

are commited. The sequence {n.}, divided into baseline and trial counts, 
~ 

is the basic data input to the analysis; the output is an estimate of h(~A), 

the distribution of the change in crime rate .. 

Let: Ab = crime rate during baseline period 

At = crime rate during trial period 

~A = ;. - A = 't b change in crime rate 

g(Ab ) = posterior distribution of Ab 

f(~A) = posterior distribution of ~A 

In a Bayesian perspective, the crime rates Ab and ~A are treated as random 

variables whose different possible values are supported more or less strongly 

by the crime count data. The relative credibilities of these different values 

are expressed in the posterior distributions g(Ab) and f(~A). 

Consider the distribution f(~A). We begin by finding the distribution of 

the change in crime rate ~A conditional on a particular value of baseline 

crime rate A
b

, then we uncondition by integrating over the posterior distribu­

tion of Ab • For any given value of Ab , the change in crime rate could be any 

number greate'r than or equal to - Ab: this recognizes both that the trial 

period crime rate At = Ab + 6A cannot be negative and that it might possibly 

be greater than A
b

• The latter situation might correspond to a trial program 
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Figure 1: Data and Variable Definitions 

Number 
of 4 

Crimes 
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1 ""<:..------ Baseline Period -------=>"'1-=<'---- Trial Period --....;)~I 

Ib = interval of baseline data (here = 10) 

It = interval of trial data (here = 6) 

Nb = number of crimes during baseline interval (here = 15) 

Nt = number of crimes during trial interval (here = 8) 

i index denoting .th interval = ~ 

= number of crimes in . th interval (e. g. , 2) n. ~ n = 
~ 7 

I\b = mean rate of occurrence of crimes during baseline period 

At = mean rate of occurrence of crimes during trial period 

/:),A = At Ab = change in crime rate 

g(Ab) = posterior distribution of Ab 

f (/:),11.) = posterior distribution of /:),11. 

'\ 
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which, while reducing total crime, nevertheless increases total reported 

crime; it is reported crimes which constitute the data base for the program 

evaluation. We will make the conservative choice of assuming that the 

conditional prior distribution of the change in crime rate, f (L'lA lAb)' is 

non-zero and uniform over the range - Ab ~ L'lA < 00. Given this (improper) 

diffuse prior, the conditional posterior distribution of the change in crime 

rate is proportional to the conditional likelihood of observing the sequence 

of counts {nr +1' 
b 

a Poisson process 

nr +2"'" nr +r } during the 
b b t 

trial period, generated by 

with rate At = Ab + L'lA [3]: 

n, 
exp [- (Ab + L'lA)] CAb + llA) ~ Ini! 

Thus the unconditional posterior distribution of the change in crime rate, f(L'lA), 

can be determined by integrating (1) over the possible values of baseline crime 

rate AG' Therefore the next task is to determine the posterior distribution of 

the baseline crime rate, g(Ab). 

We begin with the choice of a prior distribution. We might either choose 

a diffuse prior or follow suggestions in the literature [3,4] and choose a 

logarithmically flat prior (i.e., a priOr~A~l). We opt for the latter, although 

with reasonably large counts of crimes Nb in the baseline period (as in the 

Nashville case) this choice makes little practical difference. Since the base-

line data consist of the sequence of Poisson counts {n
l

,n2 , ..• ,nr }, the posterior 
b 

(1) 
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distribution of Ab becomes 

n. 
exp[-Ab ] Ab 1/ni ! 

Nb-l 

exp[-Ablb ] Ab 

We can now combine (1) and (2) to obtain the unconditional posterior 

distribution of the change in crime rate 

where 

L (t-A) = max [0, -t-A] • 

The integral ·(3) can be reduced to a simple finite sum when L(t-A) = 0 but becomes 

a finite sum of incomplete gamma functions when L(t-A) = - t-A. We will solve 

(3) by numerical integration. The special case t-A = 0 can be solved analytically 

using the fact that 

(Xl 

n n' ! x exp(-ax)dx = n~l 
x=O a 

Thus 

this value provides a useful check on the accuracy of the numerical integration. 

(2) 

(3) 

(4) 

(5) 

(6) 
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3. Application to Nashville Data 

The Nashville experiment set out to determine the impact on Part I 

crimes (robbery, larceny, burglary, motor-vehicle theft, forcible rape, 

aggravated assault and homocide) of saturating small areas with police patrol 

cars. Four zones' with high crime rates were selected for study. The first 

two zones, referred to as "Day Patrol One" and "Day Patrol Two", each received 

in turn 10 days of saturation patrol during the 9AM - 5PM shift. The.n the 

third and fourth zones - "Night Patrol Oneil an.'l "Night Patrol TNo" - each 

received 10 days of saturation patrol during the 7PM - 3AM shift. Thus the 

Nashville experiment consisted of four successive trials of 10 days each, two 

with daytime saturation and two with nighttime saturation. Crime counts were 

obtained in each of the four zones before, during, and after the 10 day trial 

periods. Briefly, the results obtained by Schnelle et a1. [1] were that no 

statistically significant changes in crime rate were observed in the two day­

time trials, but significant decreases were observed in both nighttime trials. 

We will re-analyze the Nashville data using the Bayesian methodology 

developed above. The first step is to confirm that the data are in fact well 

described by a Poisson model. On the assumption that the impacts of saturatioQ 

patrol do not persist after patrol returns to normal levels, we will not 

distilrguish between crime data from before and after the 10 day trial periods 

of saturation patrol; rather, we combine these data to form the baselines. 

The four baseline periods range in duration from 78 to 116 days. Shown in 

Table 1 are the distributions of crimes per day in each of the four trials. 

Using the dispersion test [5], the hypothesis that the counts of crime arise 

I 
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TABLE 1 

Comparison of Nashville Baseline Data to Poisson Node1 

(source: Schnelle et a1. [1]) 

# DAYS WITH GIVEN # EVENTS (EXCLUDING SATUF~TION TRIAL DAYS) 

# CRIMES uDAY PATROL 1" "DAY PATROL 2" "NIGHT PATROL 1" "NIGHT PATROL 21"'~IGHT PATROL 2 

0 26 (26) 35 (36) 33 (36) 31 (26) 31 (28) 

1 29 (29) 37 (35) 42 (42) 32 (36) 32 (36) 
.. 

2 15 (16) 15 (17) 29 (25) 23 (24) 23 (24) 

3 4 ( 6) 5 ( 5) 11 (10) 10 (11) 10 (10) 

4 4 ( 2) 2 ( 1) 1 ( 3) 5 ( 4) 5 ( 3) 

5 0 (0+) 0 (0+) 0 ( 1) 1 ( 1) 1 ( 1) 

6 0 0 0 (0+) 0 (0+) 0 (0+) 

_7_ _0_ _0_ _0_ 1 0 

Total days Ib 78 94 116 103 102 

Total crimes Nb 87 90 137 140 133 

Nb ;\ 1.115 0.957 1.181 1.359 1.304 =--
Ib 

X2 82.45 91. 73 94.15 130.74 Ill. 65 

d.f. 77 93 115 102 101 

Z 0.47 -0.06 -1.41 1. 92 0.77 

.. Signif. (2 tail) 0.64 0.95 0.16 0.06 0.44 

Serial auto corre- 0.021 -0.013 -0.118 0.022 
1ation - - ----~-~ 

Notes: 
Ib 2 

X2 dispersion test X2 
(ni - \) 

a) = = L: 
A b 

~ chi square df = I-I 
i=l 

b 

for large Ib refer ~ - \/2Ib - 3 to Gaussian (0,1) 

(R.L. P1ackett, Analysis of Categorical Dat~, pg. 10). 

b) deleting the busy day from "Night 2" is conservative if want to establish a reduction 

in .A.. 

c) Counts in parenthesis are expected Poisson counts, rounded to nearest integer. 
---
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from a Poisson process cannot be rejected at the 0.05 level in any of the 

four trials. However, the second nighttime trial nearly achieves the 0.05 

significance level and deserves special COillment. That particular baseline 

is unusual in that it contains one night shift in which 7 crimes were 

committed-the highest total for any single shift in the entire study. This 

exceptional case occurred shortly after the saturation trial and may repre-

sent temporally-displaced crime, one very active criminal, or a just a typical 

fluctuation. If we set aside that datum (forming the fifth column in Table 1, 

labelled "Night Patrol 2*"), we not only make a more conservative estimate 

of the impact of saturation patrol but also achieve a distribution very well 

described by the Poisson. Testing for serial correlation in each of the four 

series indicates that the Poisson assumption of independence between crime counts 

on successive days is also valid, since the serial correlation coefficient never 

exceeds 0.12 in absolute value. Thus the dispersion tests and tests for serial 

correlation both confirm the validity of modeling the count of crimes as a 

Poisson variate. 

Given that the Poisson model is valid, we can use (3) to determine the 

shape of the distribution of the change in crime rate during saturation patrol. 

The results of the numerical integrations are displayed in Figure 2. As noted 

by Schnelle et a1. [1], the nighttime saturation patrols produced a consistent 

and clear drop (about -0.8 crimes per shift), whereas the daytime patrols give 

neither clear nor a consistent indication of impact. 

When interpreting these results for substantive purposes, one must be 

aware of two potential pitfalls. The first is a possible change in the crime report­

ing behavior of the public. It has been observed in other studies [6] that increas­

ing police presence can lead to an increase in the fraction of crimes reported 
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to police. This problem may not be too serious in the Nashville study, since 

saturation trials lasted only ten days and since Schnelle et a1. found that 

crimes were almost never reported directly to patrolling officers during 

either the baseline or trial periods. The second potential pitfall is spatio­

temporal displacement of crime, which may be a more serious issue in the 

Nashville case. Since the trials were so brief, some crime may have merely 

been delayed, rather than permanently averted. Schnelle et a1. were careful 

to check for spatial disp1acem~nt of crime, but one wonders whether their test 

was sufficiently sensitive. Since the drop in crime rate amounts to roughly 

1 crime per shift and since there are 33 patrol zones in Nashville, it would 

be quite possible for the one crime to be displaced and not detected. Even 

looking at only those zones contiguous to the experimental zones, a displacement 

of such a small number of crimes would still be hard to detect if the crimes 

were displaced to a different contiguous zone each night. While our main pur­

pose in this paper is to develop the Bayesian methodology rather than to address 

the substantive question, and while Schnelle et a1. took care to check for dis­

placement, we should be aware of possible problems in interpretation of results 

such as those in Figure 2. 
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4, Methodology for Ratio of Crime Rates 

Section 2 of this paper developed a methodology for estimating the 

difference in the crime rates during the baseline and trial periods. In 

this section we outline an alternative which expresses the experimental 

impact as a proportionate reduction (or increase) in the crime rate. Our 

goal is to estimate the ratio of crime rates 

As before, we assume that the crime count in each period is a Poisson variate. 

We note that non-Bayesian methods are available for this problem [7] but again 

prefer the distributional form of results provided by the Bayesian approach. 

Values of R less than unity indicate successful crime-reduction programs; 

the relative credibility of various estimates of R will be readily grasped 

in the Bayesian framework. 

Our approach again is to find the posterior distribution of R conditional 

on the value of A
b

, then uncondition by integrating over the posterior distri­

bution of Ab given the baseline data. As before, we will take this posterior 

distribution of Ab to be a gamma distribution 

N~ 

g(~) a exp(- AbIb) Ab b 

Of particular interest is the choice of prior distribution for R condi-

tional on the value of Ab • If we expected that the experimental program would 

definitely reduce the crime rate, we might use a beta distribution for 

o < R < 1.0. To allow for the possibility that R > 1.0, we can use a gamma 

prior a RAexp[-BR]. Note that this choice decouples the prior estimate of R 

(7) 

(8) 
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from the value of A
b

; it is difficult to imagine a compelling, systematic 

way to link the value of R with the value of Ab • If one prefers a diffuse 

prior, one can set A = B = O. If one wants a roughly bell-shaped prior 

with mean ~R and standard deviation aR, one should choose the integer values 

closest to 

With the gamma prior distribution for R, the conditional posterior 

distribution 

Ib+I t 
n. 
~ exp [-RA

b
] (RAb) 

RA exp f(RIAb) 0- rr [-BR] 
i=Ib+1 n.! 

~ 

N A exp(-RAbIt ) (RAb) t R exp [-BR] 

Unconditioning using (8) we find 

co A+N N N -1 
feR) 0- J R t exp[-BR] A t exp[-RItAb] Ab b exp[-AbIb] dAb 

A =0 b 
b 

A+Nt 
co Nt +Nb-1 

R exp[-BR] J Ab exp[-(RIt+Ib)Ab] dAb 
A =0 b 

A+N (Nt + Nb -I)! 
R t exp[-Bi\.] 

(RI + I )Nt+Nb 
t b 

A+N -(N +N ) 
feR) R t exp [-BR] [RI + I] t b 0- t b 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(16) 
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In the case of a diffuse prior, (16) specializes to 

feR) 
N -(N +N ) 

R t [RI + I] t b 
t b 

The Nashville data have been analyzed using (17); results are shown in 

Figure 3. As in Figure 2, the nighttime patrols were clearly successful, 

whereas the daytime results are weak and mixed • 

(17) 
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