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Introduction

The interrupted time-series experi-
ment and its statistical inference was
first introduced by Bdx and Tiao [3]
specifically for the ARIMA (0,1;1l) pro-
cess. Their work was sxtended by Glass,
Willson, and Gottman [4] to include other
types of ARIMA process=s. Their model
formulations assume that the autoregress-—
ive and moving average parametars before

- the intervention are the same as those
-afterwards where these paramsters

describe the correlative structure. In
this paper; these models are made more
flexible to allow for the conseguences of
the intervention affecting these para-
meters and. the process leval parameters.
Also, maximum likelihsod (ML) and
iterative conditional lease squares (ICLS)
estimation techniques are presanted for
both sets of process parameters: those
describing process level and those
deseribing internal correlative struc-
ture. While explicit expressions are

“'developed for the estimates of the level

and shift parameters, algorithms are
presented for the numerical computation
of those parameter estimates describing
the correlative structure. The ML esti-
mates can be used to s=t up an asymptotic

- likelihood ratio test to invastigate the

hypothésis that the autoregressive and
noving average paramsters prior to the
intervention are sgual to those after the
intervention.

These concepts are specifically
addressed to the first-order moving
average intervention model with an ob-

vious generalization to other model types.

‘An example is included. L
Model Descripticn and Properties
We will be primarily concerned with
the continuous intervention situation,
where the intervention or treatment re-
mains in effect for each time period -,
after its introduction. For example, if
we are monitoring the monthly occurrences
of homicide for a particular city, an
intervention might consist of a gun con-
‘trol law which remains in effect for a
relatively long period of time after its
introduction. Furthermore, we will
assume that the intervention abruptly
changes the level of the observations,
although other types of level changes can

. be easily accomodated.

To account for a possible change in
level ‘only upon the introduct-on of an
intervention after the.nlgh observation,
consider the following modification of an
MA(l) process: ‘

Zt= u+at-91at,l;t=},---;n1 ; . (1)
zt=‘u+6+at—91at_l,t=nl+1,.,i,n y

vhere n = njin,. We will assume

at*NID(o,og) for t = 1,...,n. This single

consequence intervention model, denoted
MASCI (1), and its statistical analysis

. via ICLS was considered by Glass, Willson,

102 ‘

R T R BN WG P R T T

and Gottman [4). We will further modify
the intervention model of equation (1) to
allow for the intervention affecting the
process varizbility as well as the level.
This multi-consequence intervention model;
denoted MAMCI (1), has the following
formalation: ‘ _

Zt = p+at—elat_l,t=l,...,nl; (2)
Zt = p+£+atfylat”l,t=nl+l,...,n.

Thus, the model given in equation (2)
differs from that presented in equation
(1) since vy has replaced 9 for

t = nl+l,...,n.

- = ! 1t
Let Z.= [zl,...,znl‘znlﬂ,...,zn] =

[zi}z%], where Z, is an (n;x1) vector and
(nle) vector. Then E(Z), de-

can be written as

22 is an

noted by Moo

12
.~~l . .
Ug = = it K, (3)
- ]:lz ~ -~
~2
(nxl) vector of l's and

where j, is an

0
_nl
k=|_ |-

3
=D

Thus, the (nxl) vector k has 0's for its

first n, entries followed by nj 1's.
Let Bz denote the {nxn) variance-

covariance matrix of Z. Then

Ny “ 821* Béz
'NCURS

AUG 21}1979: T

5 ACQi :‘fiilfloN'S‘

o

A earpee .,
.
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where in statistical linear model form, we. let 21:
: (1402 0 0 o 3 = 0. ¥y = 23, and yy = Zeto3ye ), for be
; EN: B - cee . . 5
' (l'el) 1 t=2,...,m; while y, = z;+y;y, ., for i
- -0y (1+ei) R 0 0 t = ny+l,...,n. Thus, the transformed
O ' ; variables can be expressed as
g o= . , . : .: : _
Zq - : - . Ye = (l+el+..~.+elt l)u+at. (6)
s 0 0 -’(14,5%) -6, for t = 1,..,n;, while
| 2 Yy = [1+...+7P"n1(1+el+...+erlll—l)l u
: 0 o re- -3y (1487) t + -
'; e, L - - t=- (nl+l)
: i K2 (1+Y1+"'+Yl . ) 6+at
b I( 1+ —— .o 0 0
ki (1+73) Y1 for t = nl+l,.. .,n. Eguations (6) and
* i
i ~Yy (1“'\'?_) et 0 0 (7) have the matrix representation i
b ¥ = X8+a, where S
. - . ~ ~ - g
- B = . . . . — -] &
P g2 : | : : 1 0
: RRU
o 0o oawmbh oo ey 0 i
2 . ' . b
0 0 cee -y (1+v7) : . i1
3 1 1] -1 _ e
3 - and B21 is a (nzxnl) matrix all of whose B £+9;+‘_'_'+$L _______ 0 4 ) '1:
~ entries are zero except fox.: .ths': element =] Tty (146 ,,_.”.*_enl"l} i H®
: in the northeast corner which is =¥y~ -1 1
. . o ~1 .
Furthermore, since Z = Caty,, where C is 1+nyi(l+el+...+eil ) Tty -
P an [nx{n+l)] matrix, we see that Z is . ’ :
distributed as an n-variate normal. ' The I o ny-1, - : sl
above results can be summarized by sayving Tt . oy 2404 F. . 48 Thy 4., .y, 2
that for a MAMCI{1} process SRENEC ) 1) Ey 1
Z- b R - .
- = Nﬂ(g%’ §) ! (5) The elements of X'X will be denoted by
1 whare g and 'gz are presented  in egua- €11%12" and €07 where Ci2 T ©oy- After
! - -
% - tions (3) and (4), respectivaly. much tedious algebra, it can be shown
Iterative, Conditional Least Sguares that

Estimation = (1-0) 20— (1-9.) L(284) 0~031)]
Estima o = (1-9,) 5 1 1 1

re - c
5: ~ Although policy makers are primarily 11 19 on
% concernad with the estimation of p and + (1-6 )"2[(1_5%)" 0% (1-8] l)] i
% 3 . for the intervention models, we shall. 1 1
2 see that least squares estimates of both 2 -1 n e
% of these paramesters are directly depend- + (l—Yl) [nz-‘(l—Yl) (2Y1) (l-le)] L
% . eént upon the values of the moving-average 19) B
& pardmeters. The basic idea, which is an : -2 2-12 2n, '[
%  extension of that emploved by Box and + (Q-vy)  [0vp) v 9] o
A Tiao [3], is to transform the n original 1 29 on i
§ . Observations to another set of variables + (1-8 -2 1~ 2)" (1-001) “y2 (1~y2)
g g . s s (1 ]_) ( ¥y 1t Y it
% amenable to linear statistical model i.;:_‘
:‘7, analysis. For these transformed vari- - -1 ny il
% . ables, we employ an iterative technique ¢ +2(1-8y) “(1-vy) T8 gy i
B of searching on the moving-average para- : o : ‘
& meters until those values are found which ) ez 2.1 (16) i\
¥oorminimize the residual sum of squares. Cyp = (1-vq) T1-vy) T g, . : i
cE Before f£inding the necessary._trans- ' o ) . BN 4 H
4 formation, recall that the model Y = XB+a and , - i
i aWith a Nn((_),kazI) » describes the classic e, = (1-v)) 2[%_2(1_71) 171(1—722)]

-hormal lineay regression model, details ‘ . i

"Of-which can be found in Goldberger [5]. -2 2.-12 2n 4
& -Inour case, Y is an (nxl) vector as is + (1=yq) “[1-vp) T3y 2)] an i
% %% X is an (nx2) matrix, and g = u,sl ™. , <1 -1, 0y '

Let z3,2,5,...,2, be n successive ob- . +(1-87) T(Q-yp) T (1-8y ) q - ‘ s
. Servations generated from the MAMCI (1) ‘
Todel' stated in equation (2). In order - Note that -1 n, 2 ‘-le(l—anz)
to transform the z,'s to y.'s, which are qp = (1-7y) Y1 (1-¥12)-(1-Y3) "Y; (1-v3 4),
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"and
gy-= 0y (v =2y () (=v52)+3 5"

.LeF Sy and Soy denote the elements of

o xty. Then
15" o7 &
= (1-89) oy~ L
R |

u l’!2

+ (17t (17, 'zl i

i
S1v slyi)

o,
=1y o -
+ Ureﬂ (1514 i;ly”rﬁfi,
2

S = () g, -z
2y 1 Wa¥n, T LA

and

] Ynpai) s (13)

‘where th = 14 z

Y It foliows from

=n- I .
2 2 3=1 ynl+l
“linear model theoxry that
A 11 L 12 ¢
§ = d 8, FC s

1y o f14)

- 12 + 22 (1)
—1 [~

(] C alyc 2\21

e

3 and~Yl.where c*3 denote the

elements of xtx)71. Exten

_ hoc procedure of Glass, Wili

-Gottman to the multi-conseg

we let a = y-X&, where the & vector is

contingent Upon particular values of y

and § which in turn are contingent upon

for Fixed o

the ad
and
ncdel,

ding
son,

anso

S ARE S

-
v

i
.t
a

" values of 83 and Yv3. Let S, (51,v1) be

the sum of squared residuals or esti-
mated erros for particulzar values of 8y,

YyrUs and §. That is,
n ~ ~Ta - Ead .
Slepm) = B 52 = 3% = (v-xb SyxB). Q)

- Minimizing S,(8;,v4) is equivalent to
2 - ata/(n-2).

minimizing 65 = The search
for the minimizing (Gl,yl) pair can be

a

restricted to the open unit sguare, that
is, (el,yl)e{(xl,xz):0<xi<l,i=l,2}. The

~output format assoicated with the search
“can be set up in table fashion with the

-

foliow;ng column headings; el,yl,ﬁ,ﬁ,ca;

After thaty(el,vl) is selected with mini-

mizes 62, confidence  intervals can be

constructed or tests .of hypotheses can be

. performed for w or § by making use of the

a = [aolall°'°lan]t be an ((n+l)x1l) random

. PO PO 1/2 ..
fact that (i u)/oa(cll) and

. 1/2 ,
(6—6)/oa(c22) are each distributed as

pseudo Student-t random variables with
n-2 degrees of Ereedom. The "pseudo™
prefix is necessitated by the fact that
both ratios depend on the nuisance para-
meters (el,yl). Furthermore, keep in

mind that the true confidence region for
(1,8) is elliptical in nature. Thus,; any
confidencé interval for u or § alone is
merely a marginal one and the confidence
levels should be adjusted accordingly.
Note that this lease squares esti~

mation approach was iterative in that it
searched on (al,yl) and conditional in -

that we set a0=0. For this reason, it

was designated iterative, conditional
least squares.

Maximum Likelihood Estimation of u and &
In this section, we will obtain
closed form expressions for the maximum
likelihood estimates of p ‘and § where
these estimates are functions of the
moving average parameters.

hood estimates. _
Let z = {zl,.,.,zn rZp +l,...,zn]t

be a sample of n observations generated
from a MAMCI(l) model and let Z be the

{nx1) random vector associated with the
vector of sample.observations. Also, let

vector where at—NID(O,og)- Thus, the
joint distribution of & eqguals

t 2 2~ /2 |
fla’io,) = (2n0) exP{—~t§/2c§} . an
Since % = Catp,, it follows that

: 2 _
z-Nn(gg,cgcct). But, craCCt =1z where I,

is presented in equation (4). Let

zg = ggm-ln Thus ,V ‘ » A
RS : LD = /2 N

e (gt;gt) = (maz)_“ﬂlml eptotu, )}, (18)

. : 2
where gt = (n,86,083s,y7r05) and
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0U8) = (z-wj ~skiTMlzoug sk} /262 -

In the logarithm of the likelihood func-
tion associated with equation (18), u and
5§ appear only in the guadratic from Q(u,
§). Let 0*(n,8) =-2050(n,8).

By finding 5Q" (u,8)/?u and 20" (u,8) /38
and setting

these partial derivatives
equal to. zero, we cbtain a pair-of simul-

= (-0 1/330

and

2 . 'As such, they
are designated conditional maximum likeli-

“(19).

)

taneous equations, the solutions to which
are qiven‘below: B AR

(200
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. eguation (2),

[ L

R (g5 )~ g ) o)

§ = - : 21
(tak) ( _]tMJ )= (ktM; )2 (21)
(20) and \21) p01nt out that i

and § are functions of the moving average
pdramotcrs Ol and Yl since they depend on

M = gzv =l However, these estimates are
lndepandent of \72 Note that the main
difficulty in obtavﬂln fi and 3, for

fixed values of the
meters,; is the nead
of ZZ,

mow;ng average para-
to f£ind the inverse

Maximum Likelihood Estimation

rof Moving Averags Parameters

The procedure used in this saction
somewhat parallels that presented bj Box
and Jenkins - [2] who treat the non~inter-
wvention moving average models and assume
gy = 0. Obviously, their procedure n=zds
to be modified.

From the MAMCI (1) model presented in
we can write down the
following (n+l) equations, where the

‘first equation is introduced for conven-

ience:
a8 = dg ,
a, = 'Zt—p+elat__l:t=l: ey
Ay = Zt—u-ﬁ-m‘lat_l,t—--l*"l, .. -rn-
© By successive substituion of a for a,

and soO on, we can express.az 1n terms of

z and a; = ag, where this System of (n+l)
equations has tha following matrix repre-—
sentation:

a = LZ+Xa,-bu-cé . {(22)

. L is an [(n+l)xn] matrix, while X.b, and

¢ are ‘[ (n+l)x1] vectors. Also, L,X, and
b are functions of both 8, and vy while

S oMinimizes S(61,v1,a,)-

‘where

0

is a function only of ¥y The specific
forms of L,X,b;, and c can be found in

Alt [1].
In making the transformatlon
=L [a*lzt]t, where L = [el‘ 1, it is
"ea511y seen that |J| = 1. By substitut-

ing equation (22) into eguation (17), we
.see that tne joint distribution of Z and
a* is

t S
fzt'a*(g 8572 ) = 23
- 2
A2n 2) 1)/ exp{-5(8 ;Ylia*)/'ZUz},
~where, if we let a = but+cs,
P fS(SllYl'a*) = (Lg:j-}_{a*—é) (Lg-*-}._{a*—g'i) . (24) -

Define 3, to be the value of a, which

By taking the
Qerivative of S(el,yl,a } with respect to
a, "and settlng this derivative equal to
zero, we find that

8 = (-xrzrgta) /(™). (25)

~observations but not of a,.

’ 2n 2n 2(n+1) -1
=1 1 2
xx = (10, 1 (1~e +8, T (l-yy )(l_Yi) ,
’ 1“1~ i, il
= 0g. (1-0.3" _ai
Xt = 19, (1-0;) 03 (1-8777)
1=0
+so L -1 nzz—l T 'i+l)
- n.—1
n -1 2 PR S 2 A
+ 1- b -
uey byy (1-vp) Zo M )
n n2 -1, 2i+1
1 i
+ uel Yl(l—Gl )(1’9 ) 3__20 Yl o
and
n
XtLZ = . T kizi .
T =l
The ki's are such that
; 2{(n,-1) -
= i - l ) (1—92
ky el(l o, l)
. -1
. 2{ns~1) 2(n,+1) .2
i 1 (14 2 ) (1-v2)
+ elel {1 1 ’
for i = 1,...,n_-1,
n 2{n, +1) 9. -1
k. =6y (1-v ) (-yD T
ny
and n. i-n 2(n +n2—i+l) ~1
k, = 6,% gy, T ) (I=y1)
i 1 %1 1
for i = nl+l,...,n.
By making use of equation (25}, we
see

that S(el,yl,a*) can be rewritten as

S(6,,v,,ax) = S(83,7,)+(ax3x) 1%, (26)
where ’ '

S(8,,v,) = [(Lz+xd,)-d] T

Note that S(8 Yy is a function of the

173
Since

et
£, [z ,a*,‘ét)—ft(z ehE lt(l .5;),

Z!ax

it follows from equations (23} and (26)
that

I t(a*lz ngt) . ’
a,l2 (28)
(2r / Ixtxll/zexp{ (a*-a ) (th)/zcz} '
and
£,
Bl ) (29)
| /2y "2 2 |
= (2no?) IEE|  ewlS0,7)/20) -

The following deductions can be made
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. Since

- where &, is obtained from egua

' provided.

L for t =
.naximum likelihood estimatzss of p and 6

from the foregoing statements:

(1) That a, is the conditional
expection of a, given z and ¢ follows
from inspection of equation (28).

{ii) Denote E(a,

X 3 ) by fa,]. Thus,
a; = [ .

? '
a,l
a = Lz+Xa -4, it*follows that

[a] = Lz+X{a,l-d and that

1

n 2
S(ﬂl,yl) =t2 [a»} L4
tion (25).

(iii) By comparing eguations (18)
and (29), we see that

lxtx |7t = |n

and
t
S(al'Yl) = (%—BZ) M(f‘gg) .

Thus, an easy method for finding |M] and
evaluating the quadratic form has been
Specifically, in order to

n
compute S(sl,yl) = I [at]z, we let

t=0

~Ea0] = a_ and recursively calculate the

L Efirst n [a ]'s from
1 ¢

. [at‘.] = zt"ﬁ""al[at_l] 7 (30)

for t = 1,...,n,, while the recursive

_;relatlonaﬁln for the last n, Ia l1's is
- given by

[a,) =z ~i-8+7ylap1l, (31)
nitl,...,n. The conditional

are given by 'equations (20) and (21),

”reapectlvely.

The above resulis are stated in the

" following theorem.
Theorem 1l:
‘unconditional likelihood function is

For the MAMCI(l) moﬂel, the

given by

Lig®|zh

- (21r02)_n/ 2 T Y Zexpt- ; (a,1%/252 . (32)

:Since th is a scalar, the determinant.

synbol “has been omitted.

Implementlnq the MLE Procedure

In Theorem 1, a computational form
of the likelihood function was given for
the MAMCI(1l) model. In this section, we

. present the finer points of 1mplementlng
- the computations.

The problem still remains of finding

£ which maximizes L(Etlz ). Now this

max1mlzatlon procedure can be decomposed

as follows:

g
o
”
i
‘e
rt
N
Ny
I

z max [mag L(Etlgt)]
£ - : ellYl’”ls Oa =

max { max[max L{zt|zt)1}.
03,7y Me8 02 T )

Up to now, we have not treated the maxi-
mization of L with respect to cg.
ever, by finding aan/aag and setting

this partial derivative equal to zero, we
find that - -

How--

a§=,z [2,1°/n , (337
t=0

which is the maximum likelihood estimate

of cz for fixed u,a,el, and yj-

By making use of equation (33) in
equation {(32), we £ind that

max L(Etlgt)

£
= - max [mgx L(gt]zt)]
l:Ylfu 8 Ua

max  (20)" 2622 0 ™ 2exptn/2).
eiIYlluls

This last expression is equivalent to

max

(2™ 2t "1y,
ellYlIUIa :

which can be rewritten as

max I [a 12/n} n/Z(X %) -/2

67 ,*{1,}1 6 £=0

In turn, this is equivalent to

mln‘{mln[ X a, 1 /n]n/z(x X)l/z} (34)
l'YlA = ‘ ‘ .
Equation (34) clearly points out the dif-

ference between unconditional least .
squares estimation (UCLSE) and MLE. In: -

ay
UCLSE, one‘w1shes to min- 3 E a.} &

Bpr¥yrved £=0
whlch is equlvalent to C
6 ryn:!.nu i {2 [atlz/n}n/z .
1rY1rHeS £=0
Tnus, UCLSE differs from MLE by the multi-
pllcatlve effect of (xtX) /2

Once that 4-tuple (n,8, el,yl) is
found which satisfies equatlon (34), az.

.is then found using equatlon (33). The
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most difficult part of satlsfylng equatlon
(34) is £3i ndlng 3 and § 51nce this -
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.vdt;."xltﬁ’7r : 2
involves finding M, where M™1 = EZ/Ua-
Thus, for each (8,,v:) pair, it becomes
necessary to compiute another inverse.
‘For a relatively large time series, this
oxceeds the capacity of core storage.
However, simplifications occur by making
use of the patterned structure of I

4

Datails of this can be found in Alt [1].
Additional Statistical Inference
Althougn ML estimates of the model
parameters have been obtained, +two in-
ferential gquestions remain unanswered:
(i) Is the pre-interventicn
moving average parameter
(04) significantly different
from the post-intervention
moving average parameter
- i
({l)-

(ii) Is the shift parameter (35)
significantly different
form zero?

The first gusestion can be formulated

as a hypothesis testing problem. Speci-
fically, we wish to test
H0:51=Yl vs. Hy:0%yq. (35)

To test ?his hypothesis, we employ the
‘a§ympyotlc cnljsquared property of the
-likelihood ratio test. Let L({lzt)

denote the maximum value of the likeli-~
hood function using Theorem 1. Let
-L(ﬂolzt) denote the maximum value of the
*likelihood function using Theorem 1 under
constraint thay 8, = y;. This is easily
obtained. Define

Az) = n(dg 2B /n@|z%) .
I+ can be shown that the distribution of

2 distribution

“when the null hypothesis (91=Yl) is true.

~2in 2 (2) convergses to a ¥

Thus, cur decision rule is to reject HO
when

-2%n k(§)>xi . " (36)
T L

This decision rule can be restated as
reject,Ho when

A2 t - 2, ot 2
n bn(qa)0+(§ §)0 n bn(ca) (x g)>xl,a (37)
"If the null hypothesis (el=yl) is ‘re-

jected, one could then set up a pseudo
t-test for testing H0:6=0 vs. H,:6=0 as

1
described in the section on ICLSE; if the

null hypothesis (61=Y1) is not rejected,

- .one could set up a pseudo t-test to
investigate the significance of ¢ under
the constraint 61=61-

: Example
“'Consider the data reported by Hall
‘et al [g] which records the daily number
of "talk outs" of twenty-seven pupils in
the second grade " of an all-black urban
poverty area school for a total time
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“the maximum likelihood estimates are

period of forty days. The first twenty’
days were denoted as the baseline pariod
before the commencement of an inter-
vention effect.  Beginning on the twenty-
first day, the teacher initiated a pro-
gram of systematic praise for not talking
out. . '

* A preliminary statistical analysis
of this data was conducted by Glass,
Willson, and Gottman [4], who assumed the
single consequence model of equation (1}
was appropriate. To check the validity
of their assumption, we test Ho:el=yl
using equation (36) and find
~2n k(g)=2.08, which has an observed
significance level of approximately 15%.
Thus, we adopt model (1) and £ind that

it St in At

-

§l=_,25, u=19.26, and 6=-14,.33.
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