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Introduction h + We w· ·~ll were n = nl n 2 • • assume 
The interrui?ted time-series experi­

ment and its statistical inference was 
first introduced by Boy. and Tiao [3) 
specifically for the A..-qIM.Z\. (0,1,1) pro­
~ess. Their work was extended by Glass, 
~villson, and Gottlnan (4] to include other 
types of .P-_RIHA processes. Their model 
formulations aSSlli~e that the autoregress­
ive and moving average parfu~eters before 

, the intervention are the same as those' 
'aften'lards ,,,,here these para.~eters 
describe the correlative structure. In 
this paper, ~hese models are rr-ade more 
flexible to allQw for the conseauences of 
the intervention affecting thesE; para­
meters and the process level para~eters. 

Also, maximum likelihood (HL) and 
iterative conditional lease squares (ICLS) 
estimatio:l techniques are presented for 
both sets of process parfuueters: those 
describing process level and those 
des'cribing internal correlative struc­
~Ure. \{hile explicit expressions are 
develo~ed for'the estimates of the level 
and shift parameters, algori~~ms are 
presentee for the numerical computation 
of those parameter estina'tes describing 
the correlative structure. The NL esti­
mates can be used to set up an as~~totic 
likelihood ratio test to investigate the 
hypothesis that the autoregressive and 

. moving average pazfuueters prior to the 
intervention are equal to L~ose after the 
intervention. 

These concepts are specifically 
addressed to the first,'-order moving 
average interventioh model with an ob­
vious generali2ation to other model types. 

'An example is included. 
Model Description and Properties 
We will be primarily concerned with 

the continuous intervention situation, 
where the intervention or treatment re­
mains in effect for each time period , 
after its introduction. 'For example, if 
we are monitoring the monthly occurrences 
of homicide for a particular city, an 
intervention might consist of a gun con­
'tro1 law which remains in effect for a 
relatively long period of time a~ter its 
introduction. Furthermore, we w~ll 
assume that the intervention abruptly 
changes the level of the observations, 
although other types of level changes can 
be easily accomodated. 

To account for a possible change in 
l,eve1 only' upon the introduct ,,-on of~n 
intervention after thenl~ observat~on, 
consider the Iollowing modification of an 
MA(l) process: } 

Zt= 1l+at- 9 1a t_l,t=1, ••. ,nl ; (1) 

Zt=: 1l+c+at-9lat_l,t=nl+l, ••. ,n , 

at-NID(O,a!) for t = l, ••. ,n. This single 

consequence intervention model, denoted 
~u\SCI(l), and its statistical analysis 
via ICLS was considered by Glass, Willson, 
and Gottman [4 J. ~'le will further modify 
the intervention model of equation (1) to 
allow for the intervention ~ffecting the 
process variability as well as the lev~l. 
This mUlti-consequence intervention model, 
denoted NAHCI(l), has the following 
fOrmlJlation: 

Zt = ll+at-Clat_:L't=l, ••• ,nl ;' 

Zt = ll+c+at-Ylat_l,t=nl+l, ••• ,n. 

Thus, L~e model given in equation (2) 
differs from that presented in equation 
(I) since Y1 has replaced 61 for 

t = nl+l, •.• ,n. 

(2) 

I ' t 
Let Z,= [Zl'···'Z I Z +1'··"'1:] = _ nl nl n 
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[~i:~~J, where ~l is an (nlxl) vector and 

~2 is an (n2xl) vector. Then E(~), de­

noted by ~ , can be written as _z 

~z [~~:1 = lJ~n+ k, (3) 

where ~n is an (nxl) vector of LIs and 

Thus, the (nxl) vector ~ has O's for its 
first nl entries followed byn2 lIs. 

Let t denote the {m;n) variance­
Z 

covariance-matrix of Z. Then 
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0 0 (1+Y1) -Yl 

0 0 -Y 1 (1+yf) 

and B21 is a (n2xn1 ) matrix all of whose 

entries are zero except for the ela~ent 
in the northeast corner which is '-Yl' 

Furthermore, since Z = Ca+~", where C is 
- --l,J 

an, [nx(n+l)] matrix, we see that e is 
distributed as an n-variate normal. The 
above results can be s~uarized by saying 
that for a ~Lzu.lCI (1) process 

~-Nn(~Z,EZ) , (5) 

'whare ttz, and ·~z are presented in equa­

tions (3) and '(4), respectively. 
.1 Iterative, Conditional Least Squares 
~ Estimatio~ 
~ Although policy .makers are pr~uarily 
~ concerned ,vi th the estimation of Jl and 
;;\' for the intervention models, ,'le shall 
j. see that least squares estimates of both 
~ of these parameters are directly depend-
·r Eint upon the values· of the moving-average 
;i;. parameters. The basic idea r which is an 
.~ extension of :that employed by Box and 
); , Tiao [3], is to transform the n original 
~, observations to another. set of variables 
~~ . amenable to linear statistical model 
l~ analysis. For these transformed vari-
~ ables, We employ an iterative technique 1 
,~ of searching on the moving-average para-
"". I:leters until those values are found ,,'hich 
~. " (; m~m.mize the residual sum of squares • 
. ~ Before fiuding the necessary._ trans-
J. formation, recall that the model Y = XB+a 
'~!w,ith ~-Nn (Q,a 2 I), describes the ciassi~ -
<~ 

$(. • normal linear regression model, details 
:.1.:':,."": of which can be found in Goldberger [5]. 
~ ~In.our case, Y is an (nxl) vector as is 

:,or.. ~, X is an (n;2) matrix, and B = [1l,O]t. 

J;:' Let zl,z2,···,zn be n successive ob-
'". ::;ervations generated from the MAMCI (1) 
~:.tnodel' stated in equation (2). In order 
.:~' to t ,}f. . ransform thezt I s. to y t'S, which arE! 

:~;': 

,f>~ 
>'" 

'.".~~,~-
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in statistical linear model form, we let 
a o = 0, Yl = zl' and Yt =Zt+81:'lt_l' for 

t = 2/ ... ,nl~ while Yt = Zt+Y1Yt-l~ for 

t = n l +1, ... ,n. Thus, the transformed 
variables can be expressed as 

t-l Yt = (1+8 1+" .+6 1 )J.1+at, 

for t 1, .. ,nl' while 
t-nl nl-1 

Yt = [H •. '+Y1 (1+81+ ... +81 )] 

./.. t- (nl+1» 
+ (14"(1+·'· 'Yl' Hat 

for t = n
l
+1, ... ,n. Equations (6) and 

(7) have the matrix representation 
Y = XS+a, Hhere 

1 0 
1+91 0 

n2 nrl - n..:.l 
1+··:lJl (1+61+" .+01 ) ~+Yl+' "~12 

(6) 

(7) 

(8) 

The elements of xtx will be denqted by 
c

11
,c

12
, and c

22
, \-,here c

12 
= c

21
• After 

much tedious algebra, it can be shown 
that 

-2 -1 nl 
. cll = (1-81 ) [n1- (1-91 ) (261) (1-81 )] 

-2 2 -1 2 2nl 
+ (1-91) [(1-61) 81 (1-61 )] 

+ (1-y
l

)-2 [n
2
-(1-y

1
)-1 (2y

1
) (1-y~2)] 

-2 2 -1 2 2n2 
+ (l-Yl) [(l-Yl) Yl (l-Yl )] 

-2 2 -1 n 2 2 2n2 + (1-61) (l-Yl) (1-811) Yl (l-Yl ) 

. -1 -1 nl + ? (1-81 ) (1-Yl) (1-91 ) ql ' 

and 

-2 2 -1 2 2n 
+ (1-Y1) [(l-Yl) Yl(1-Y1 2)] 

-1 -1 nl + (1-91) (l-Yl) (1-91 ) ql • 

Note that 2 . 
-1 n 2 -1 2n_ 

q1 = (l-Y 1) Y1 (1-Y12)- (1-Y1) Yl(1-Yi--Z), 

19) 

(10) 

(ll) 



, ~ _f ..... • r' • 
'and 

Q2'=: ~(1-Yi)-2YI (1+'(1) (l-Y~)+(i(1-Yr2) 

.Let sLY and s2Y denote the elements of 

" xt'y" Then 
nl 

(1 0 )-I( - c i ) sLY = -"1 nly - i: ~lY' nl i=l ... 

" l"..., , 
-1 ~ 

+ (1-Y1) (n..,Yn
2
- E '~7 ) 

. L. i=l '1 ~+i 
(12) 

and 

-1 nl ~ ; 
+ (1-81) (1-9,_-) E YlY. +' , 

i=l - ~ ~ 

-1 n1 
:where Y

nl 
= nl t Yi and 

i=l 
n

l -1 = n i: Y It fol1o~s from 
2 i=l n1+i" 

'~inear model theory that 
~ 11 12' 
~ "'" c slY+c s ~ 

, and 

(14) 

12 22 o :::: C S +c s' (15) 
lY 2Y 

for fixed 6
1 

and )'1 where cij denote the 

1 t · ,': ~ (XtX) -1 't;'.. -'l • th ' '\ e. emen 5 01: ~ ~ '* .... x-....en\.4l..ng .. e aOt 
hoc procedure of Glass, Willson, and 
'Gottman to the multi-co~sesue~ce model, 

~ . 
we'let e = y-X~, where the ~ vector i~ 
contingent upon particular values of V 
and ~ which in turn are contingent upon 
va,lues of 81 and Yl- . Let s* (51,"11) be 
the Slliu of squared residuals or esti­
IDat~d erro~ for par~icular 'lalues of 61r 
'Yl').1, and 0_ That l.S, 

n "2 "t" ~ t ~ () 
( ) t a ~ a a == (y-x~) (y-xa_). 16 

'S. 61 '''(1 = t==l. t - - -

t'linimizing S". (9 1 'Yl) is equivalent to 

minimizing &2 = at &/(n-2). The search 
a --

for the minimizing (6
1

'''(1) pair can be 

restricted to the open unit square, that 
is, (9

1
'Yl)e:{(xl'x2):O<xi<I,i=1,2}. The 

output format assoicated with the search 
can be set up in table fashion with the 

#to .... ....2 
following Column headings: 61 'Yl,)J,o,oa' 

After that (61 'Yl) is selected with mini­

mizes &2, confidence intervals can be 
a 

constructed or tests of hypotheses can be 
performed for ~ or 0 by making use of the 

fact that (~-I1)/&a(cll)1/2 al19.' 

, 1/2 
(6-o)/&a(c22) are each distributed as 

pseudo Student-t random variables with 
n-2 degrees of freedom. The "pseudo" 
prefix is necessitated by the fact that 
both ratios depend on the nuisance para­
meters (Bl/YI)' Furthermore, keep in 

mind that the true confidence region for 
(~,o) is elliptical in nature. Thus, any 
confidence interval for 11 or 0 alone is 
merely a marginal one and the confidence 
levels should be adjusted accordingly. ' 

Note that this lease squares esti- • 
mation approach was iterative in that it 
searched on (61 'Yl' and conditional in 

that we· set aO=O. For this reason, it 

was designated iterative, conditional 
least squares. . 
Maximum Likelihood Estimation of. ).1 and a 

In this section, we will obtain 
closed form expressions Ior the maximum 
likelihood estimates'of 11 'and 0 where 
these estimates are functiOnS of the 
moving average parameters. As such, they 
are designated conditional maximu.'l1 like1i"" 
hood estimates. 

Let ~ = [Zl""'Zn1'Zn1+l, ••. ,Zn)t 
be a sample of n observations generated 
from a MM1CI(I) modeL and let Z be the 
(nxl) random vector associated~with the 
vector of sample. observations. Also, let 

~ = [aO,al, •.. ,anl t be an «n+l)xl) random 

vector where at-NID(O/o!l. Thus, the 
joint distribution of a equals . -
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t 2 2 -(n+l)/2 
f(~ ;oa) = (2rroa ) eh~{-~t~2o~} • (17) 

Since Z = Ce+g~, it follows that 

~-Nn (!!.~I o;CC t). But, o~cct = Ee where EZ 

is presented in equation (4). Let 
2 -1 

t ~ = a aM • Th us , 

f t' (zt;'~h = (2'rr02)-n/2\H\1/2expC-Q(1l,O)}, (18) 
z - - a, 
- 2 

where ~t = (Il,O,el''Yl,oa) and 

Q(v,o) ~ (:-1l~n-o~)tM(:-1l~n-o~)/2a~ (19). 

In the logarithm of the likelihood func­
tion associated with equation (18),11 and 
o appear only in the ~uadratic from Q(lI, 
0). Let Q*(Il,o) =-2oaQ(ll,O). 

* By finding (lQ*(lI,O)/d).1 and aQ (ll,a)/aa 
and. setting thes.e partial derivatives 
equal to ~ero, we obtain a pair of simul­
taneousequations, the solutions to which 
are given .below: 

~ = [(~tr.:tjnl-8 O.:tMin) J/~~1jn ' (20) 

and 

, :' . 

--. - -.{-.-
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(ktHZ) (jtr.li )-(z~lj ) (k~j ) 
- - -n -n - -n - -n ~ 

(k"tt-lk) (j tHo; ) - (ktr.lj ) 2 - - .n ~n _ _n 
o = (21) 

Equations (20) and (21) point out that n 
and g are functions of the moving average 
pa'rameters oland 'Y 1 since they depend on 
H = 0 2 1;-1. HO\.;ever, these estimates are 

a ~ 
. 'independent of J~. Note that the main 

difficulty in obtaining il and ~, fo!:' 
fixed values of the moving ave!:'age para­

-meters, is the need to find the inverse 
of EZ ' 

l>1a:<imum Likelihood Estimation 
'of Hoving Average Paramete!:'s 

'l'he procedu!:'e used in this sectiori 
somm'lhat parallels that presented by Box 
and Jenkins· [2] "ho treat the non-inter­
vention moving average models and ass~ue 
p ~ D. Obviously, their procedure needs 
to be modified. 

From the M.;;HCI (1) model presented in 
equa tion (2), we can ,'lr i te dm.,n the 
following (n+l) equations, where the 
first equation is introduced for conven-
ience: 

a o a O 
at Zt-~+olat_l,t=l, .•. ,nl 

at Zt-ll-O+Ylat_l,t=nl+l, .. ~·,n. 

, By successive substi·tuion of a., for a
2 .t. 

and so on, ,'Ie can express a in terms of 
Z and a* = aO' '."here this syste:n of (n+l) 
equations has the following matrix repre­
sentation! 

~ = L~+~a*-~:l-e6 . (22) 

L is an [(n+l):-:n) matrix, while ~;1.?, and 
care [(n+l)xl) vectors. Also, L,~, and 

t>. are func·tions of both a 1 and y 1 "'ihile 

~ is a function only of )'1' The specific 
forms of L,~,t>·, and £= can be found in 
Alt [1). 

In making the transformation 

~ = L*[a7.l zt)t, where L* = [~l:L), it is 
. easily Seen that I J I = 1. By subs ti tu t­
ing equation (21) into equation (17), we 

.see that the joint distribution of ~ and 
~* is 

fzt a (zt,~;~t) = , * -
2 - (n+ i) /2 J 2 

(21TOa ) €.},:p[ -:,S (a
l

, Yl'~) / 2o~}, 
(23) 

'where, if we let 9 = J:~+~o, 

(24) 

Define a* to be the value of a. which 
%.~minimizes S (6 1 'Yl,a*)., By taking the 

',deri.vative of S (6
1

,'Yl'a*) with respec't 
"a. 'and setting this derivative equal to 
.zero, we find that 

to 

&.. = (-XtLz+Xtd) /(xtx). 
- ... -.. > - -

(25) 
where 
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and 

The ki's are such that 
. 2(n

1
-1) '-1 

k. 
~ 

at (1-8
1 

) (l-ai) 

i 2(nl- i ) (1_y 2(n2+l» (1_y 2)-1 
+ °1°1 1 1 

for i l, ... ,n
1
-1, 

and 

k. 
~ 

n 2 (n2+l) 
k 61

1 (1-Yl ) 
n 1 

n i-n 2 (n1+n2-i+1) 2 -1 
6 ly 1 (l-y ) (l-y ) 

1 1 1 1 

for i = n
1
+l, ..• ,n. 

By making use of equation (25), we 
see that S(8 l 'Yl,a*) can be rewritten as 

S(Sl'Yl,a*) = S(81'Yl)+{a*-a*)2~~,(26) 
where 

Note that S (a 1.' y 1) is a function of the 

observations but not of a.. Since 

f (zt a ;~t) = f t(zt;~t)f~'I"t(a*lzt;~t) 
t -'*- Z--_LJ --

~ ,~ - -
it follows from equations (23) and (26) 
that 

The following deductions can be made 



• .• ,0' t ,"J 

from the foregoing statements: 
(·i) That a* is the conditional 

expection of a* given z and E fol10w~ 
from inspection of equ~tion 128). 

(ii) Denote E(a*1 ~t'Et) by [a*]. Thus, 
a* = [a*J: 

. Since a = L~+~a*-~, it'follows that 

[~] L~+~[a*]-? and that 

n 2 
S(81'Yl) = E [a ... ] , t=O .... 

-where a* is obtained from equation (25). 
(iii) By comparing equations (18) 

and (29), we see that 

and 
t 

S(61 'Yl) = (:-~z) M(~-~z) . 

Thus, an easy method for finding IHI and 
evaluating the quadratic form has been 
provided. Specifically, in order to 

n 2 
o compute SCal'Yl) = t~O [atl , we let 

-faa] = a* and recursively calculate the 
first nl[a

t
] IS from 

'0 Jat.1 = Zt..,.~+al[at:"l] I (30) 

£pr t = l, .•. ,nl , while L~e recursive 
relationship for the last n

2
£a

t
]'s is 

given by 
[atl = Zt-p-6+Yl[at-l]' (31) 

. fQ~ t = nl+l, •.. ,n. The conditional 
maximum likelihood estimates of p and a 
are given by 'equations (20) and (21), 

°respecti vely . 
The above results are stated in the 

following theorem. 
.Theorem 1: For the !-lAHCI (1) model, the 
'unconditional likelihood function is 
given by 

L(~tl~t) 
- 2- -n/2 t -1/2 n 

= (211'0 ) (X -x) exp{ - E 
a -- t=O 

2 2 
[a ] /20 } • 

t a 
(32) 

.Since xtx is a scalar, the determinant 
'symbol-has been omitted. 

Implementing the MLE Procedure 
In Theorem 1, a computational form 

of the likelihood function was given for 
the. r-tAHCI (1) model. In this section, we 
present the finer points of implementing 
the computations. 

The problem still remains of f~nding 

~ which maximizes L(Et\zt). Now this - - -maximization procedure can be decomposed 
as follows: 

106 

max L (E t I ~ t) == 
E 

= max {max[max L(r.tlzt )]}. 
2 -al'Y l ~,o (Ja 

Up to now,o we have not treated the maxi-

mization of L with respect to 

ever, by finding cinL/acr; and 
this partial derivative equal 
find that 

2 0a. How-

setting 
to zero, we 

which is the maximlli~ likelihood estimate 

of 0
2 for fixed ~,o,6l' and Yl. a 0 

By making use of equation (33) in 
equation (32), we find that 

max 
f; 

= rna"{ [max L(Etlzt )] 
el'Y1.'~'o (J~ -

= max (2")-n/2(a;)-n/2(~~)-1/2exp[_n/2}. 

e~>Yl'Jl,o 

This last expression is equivalent to 

max [(~2)-n/2(xtX)-1/2r, 
a - -

61 'Yl,I1,O 

which can be rewritten as 

max {- ~ [a ] 2 In} -n/2 (X t X) -1/2 
t - - . 

61'Yl,~,9 t=O 

In turn, this is equiv.alent to 
n 

min {.min[ E [a
t
]2/n]n/2(xt X)1/2}, (34) 

e I' Y 1. ~, a t=O - -

Equation (34) clearly points out the dif­
ference between unconditional least 
squares estimation (UCLSE) and MLE. In 

n 
UCLSE, one wishes to .min' {t 

6l ,Yl ,Jl,O t=O 
which is equivalent to 

n 2 n/2 
min {L [at] In} • 

e l' Y 1 ' ~ , 0 t=O 

Thus, UCLSE differs from MLE by the rnulti­
t 1/2 0 

plicative effect of (~ ~) • 

Oncethat4-tuple (~,6,ei.'Yl) is 
found whic~h satisfies equation (34), a~ 
is then fouhd using equation (33)~ The 
most difficult part of satisfying equation 
(34) is finding ~ and 6 since this 

" 



• .,4.b,'.:.n. ,. . • • , 2 
involves finding N. where 1>1-1 = Ezlua. 

Thus, for each (Ol'Yl) pair, it becomes 
necessary to compute another inverse. 
~or a relatively large time series, this 
e:-:ceeds the cnpaci ty of core storage. 
However, simplifications occur by making 
use of the oatterned structure of [ . . z . -
Details of this can be found in Alt [1]. 

Additional statistical Inference 
Although :,lL estimates of the model 

parilmeters na ... ·e been obtained, two in­
ferential questions remain unanswered: 

(i) Is the pre-intervention 
moving average parameter 
(9 1 ) significantly different 
frum the post-intervention 
moving average par~~eter 
(y 1)? 

(ii) Is the shift par~~eter (0) 
significantly different 
form zero? 

The first question can be formulated 
as a hypothesis testing problem. Speci­
fically, we \vish to test 

HO:Sl=Y l vs. H1 :9+Yl' (35) 

To .test this hypothesis, we employ the 
asymptotic chi-squared property of the 
likelihood rat:i.o test. Let L un zt) 

1-

deno.te the maximum value of the likeli-
hood fUnction using Theorem 1. Let 
L (~!o! ~t) denote the maximu..l!l value of the 

'likelihood func::ion using T!1eorem 1 u:1der 
constrainttha~ 91 = Yl' This is easily 
obtained. Define 

A (~, = L (n 0 I ~ t) /L (n I ~ t) . 
It can be shm'm that the distribution of 

~2~n ;"(Z) converges to a xi distribution 

'when the null hypothesis (Sl=Y l ) is true. 

Thus, our decision rule is to reject HO 
when 

2 
-22.-n HZ'>Xl .., ,0. 

This decision rule can be 
reject. HO when 

(36) 

restated as 

n ~(o2)o+(xtX)0-n ~(&2)_(xtX»X12 0. (37) 
a a - - , 

If the null hypothesis (9 1=Y l ) is re-

jected, one could then set up a pseudo 
t-test . for .testing HO: 0=0 vs. Hl : 0=0 as 

described in the section on ICLSEi if the 
null hypothesis (9 1=Yl) is not rejected, 

one could set up a pseudo t-test to 
investigate the significance of 0 under 
the constraint 91=0 1 ' 

Example 
Consider the data reported by Hall 

.et al [6] which records the daily number 
OI"t:alk outs" of twenty-seven pupils in 
tqe second grade of an all-black urban 
poverty area school for a total time 

period of forty days. The first twenty 
days \.;ere denoted as the baseline p.:.riod 
before the co~~encement of an inter­
vention effect. Beginning on the twenty­
first day, the teacher initiuted a pro­
gram of systematic pruise for not talking 
out. . 

A preliminary statistical analysis 
of this data was conducted by Glass, 
~villson, and Gottman (4], who assumed the 
single consequence model of equation (1) 
\'1as appropria 1:e. To check the validity 
of their assumption, ""e test HO:91=Yl 
using equation (36) and find 
-2R.-n >. (z) =2.08, \'1hich has an observed 
significance level of approximately 15%. 
Thus, "'Te adop-t: model (1) and find that 

. the maximlli~ likelihood~estimates are 
6

1
=-.25, ~=19.26, and 0=-14.33. 
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