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Introduction h + We w· ·~ll were n = nl n 2 • • assume 
The interrui?ted time-series experi

ment and its statistical inference was 
first introduced by Boy. and Tiao [3) 
specifically for the A..-qIM.Z\. (0,1,1) pro
~ess. Their work was extended by Glass, 
~villson, and Gottlnan (4] to include other 
types of .P-_RIHA processes. Their model 
formulations aSSlli~e that the autoregress
ive and moving average parfu~eters before 

, the intervention are the same as those' 
'aften'lards ,,,,here these para.~eters 
describe the correlative structure. In 
this paper, ~hese models are rr-ade more 
flexible to allQw for the conseauences of 
the intervention affecting thesE; para
meters and the process level para~eters. 

Also, maximum likelihood (HL) and 
iterative conditional lease squares (ICLS) 
estimatio:l techniques are presented for 
both sets of process parfuueters: those 
describing process level and those 
des'cribing internal correlative struc
~Ure. \{hile explicit expressions are 
develo~ed for'the estimates of the level 
and shift parameters, algori~~ms are 
presentee for the numerical computation 
of those parameter estina'tes describing 
the correlative structure. The NL esti
mates can be used to set up an as~~totic 
likelihood ratio test to investigate the 
hypothesis that the autoregressive and 

. moving average pazfuueters prior to the 
intervention are equal to L~ose after the 
intervention. 

These concepts are specifically 
addressed to the first,'-order moving 
average interventioh model with an ob
vious generali2ation to other model types. 

'An example is included. 
Model Description and Properties 
We will be primarily concerned with 

the continuous intervention situation, 
where the intervention or treatment re
mains in effect for each time period , 
after its introduction. 'For example, if 
we are monitoring the monthly occurrences 
of homicide for a particular city, an 
intervention might consist of a gun con
'tro1 law which remains in effect for a 
relatively long period of time a~ter its 
introduction. Furthermore, we w~ll 
assume that the intervention abruptly 
changes the level of the observations, 
although other types of level changes can 
be easily accomodated. 

To account for a possible change in 
l,eve1 only' upon the introduct ,,-on of~n 
intervention after thenl~ observat~on, 
consider the Iollowing modification of an 
MA(l) process: } 

Zt= 1l+at- 9 1a t_l,t=1, ••. ,nl ; (1) 

Zt=: 1l+c+at-9lat_l,t=nl+l, ••. ,n , 

at-NID(O,a!) for t = l, ••. ,n. This single 

consequence intervention model, denoted 
~u\SCI(l), and its statistical analysis 
via ICLS was considered by Glass, Willson, 
and Gottman [4 J. ~'le will further modify 
the intervention model of equation (1) to 
allow for the intervention ~ffecting the 
process variability as well as the lev~l. 
This mUlti-consequence intervention model, 
denoted NAHCI(l), has the following 
fOrmlJlation: 

Zt = ll+at-Clat_:L't=l, ••• ,nl ;' 

Zt = ll+c+at-Ylat_l,t=nl+l, ••• ,n. 

Thus, L~e model given in equation (2) 
differs from that presented in equation 
(I) since Y1 has replaced 61 for 

t = nl+l, •.• ,n. 

(2) 

I ' t 
Let Z,= [Zl'···'Z I Z +1'··"'1:] = _ nl nl n 
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[~i:~~J, where ~l is an (nlxl) vector and 

~2 is an (n2xl) vector. Then E(~), de

noted by ~ , can be written as _z 

~z [~~:1 = lJ~n+ k, (3) 

where ~n is an (nxl) vector of LIs and 

Thus, the (nxl) vector ~ has O's for its 
first nl entries followed byn2 lIs. 

Let t denote the {m;n) variance
Z 

covariance-matrix of Z. Then 
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0 0 (1+Y1) -Yl 

0 0 -Y 1 (1+yf) 

and B21 is a (n2xn1 ) matrix all of whose 

entries are zero except for the ela~ent 
in the northeast corner which is '-Yl' 

Furthermore, since Z = Ca+~", where C is 
- --l,J 

an, [nx(n+l)] matrix, we see that e is 
distributed as an n-variate normal. The 
above results can be s~uarized by saying 
that for a ~Lzu.lCI (1) process 

~-Nn(~Z,EZ) , (5) 

'whare ttz, and ·~z are presented in equa

tions (3) and '(4), respectively. 
.1 Iterative, Conditional Least Squares 
~ Estimatio~ 
~ Although policy .makers are pr~uarily 
~ concerned ,vi th the estimation of Jl and 
;;\' for the intervention models, ,'le shall 
j. see that least squares estimates of both 
~ of these parameters are directly depend-
·r Eint upon the values· of the moving-average 
;i;. parameters. The basic idea r which is an 
.~ extension of :that employed by Box and 
); , Tiao [3], is to transform the n original 
~, observations to another. set of variables 
~~ . amenable to linear statistical model 
l~ analysis. For these transformed vari-
~ ables, We employ an iterative technique 1 
,~ of searching on the moving-average para-
"". I:leters until those values are found ,,'hich 
~. " (; m~m.mize the residual sum of squares • 
. ~ Before fiuding the necessary._ trans-
J. formation, recall that the model Y = XB+a 
'~!w,ith ~-Nn (Q,a 2 I), describes the ciassi~ -
<~ 

$(. • normal linear regression model, details 
:.1.:':,."": of which can be found in Goldberger [5]. 
~ ~In.our case, Y is an (nxl) vector as is 

:,or.. ~, X is an (n;2) matrix, and B = [1l,O]t. 

J;:' Let zl,z2,···,zn be n successive ob-
'". ::;ervations generated from the MAMCI (1) 
~:.tnodel' stated in equation (2). In order 
.:~' to t ,}f. . ransform thezt I s. to y t'S, which arE! 

:~;': 

,f>~ 
>'" 

'.".~~,~-
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in statistical linear model form, we let 
a o = 0, Yl = zl' and Yt =Zt+81:'lt_l' for 

t = 2/ ... ,nl~ while Yt = Zt+Y1Yt-l~ for 

t = n l +1, ... ,n. Thus, the transformed 
variables can be expressed as 

t-l Yt = (1+8 1+" .+6 1 )J.1+at, 

for t 1, .. ,nl' while 
t-nl nl-1 

Yt = [H •. '+Y1 (1+81+ ... +81 )] 

./.. t- (nl+1» 
+ (14"(1+·'· 'Yl' Hat 

for t = n
l
+1, ... ,n. Equations (6) and 

(7) have the matrix representation 
Y = XS+a, Hhere 

1 0 
1+91 0 

n2 nrl - n..:.l 
1+··:lJl (1+61+" .+01 ) ~+Yl+' "~12 

(6) 

(7) 

(8) 

The elements of xtx will be denqted by 
c

11
,c

12
, and c

22
, \-,here c

12 
= c

21
• After 

much tedious algebra, it can be shown 
that 

-2 -1 nl 
. cll = (1-81 ) [n1- (1-91 ) (261) (1-81 )] 

-2 2 -1 2 2nl 
+ (1-91) [(1-61) 81 (1-61 )] 

+ (1-y
l

)-2 [n
2
-(1-y

1
)-1 (2y

1
) (1-y~2)] 

-2 2 -1 2 2n2 
+ (l-Yl) [(l-Yl) Yl (l-Yl )] 

-2 2 -1 n 2 2 2n2 + (1-61) (l-Yl) (1-811) Yl (l-Yl ) 

. -1 -1 nl + ? (1-81 ) (1-Yl) (1-91 ) ql ' 

and 

-2 2 -1 2 2n 
+ (1-Y1) [(l-Yl) Yl(1-Y1 2)] 

-1 -1 nl + (1-91) (l-Yl) (1-91 ) ql • 

Note that 2 . 
-1 n 2 -1 2n_ 

q1 = (l-Y 1) Y1 (1-Y12)- (1-Y1) Yl(1-Yi--Z), 

19) 

(10) 

(ll) 



, ~ _f ..... • r' • 
'and 

Q2'=: ~(1-Yi)-2YI (1+'(1) (l-Y~)+(i(1-Yr2) 

.Let sLY and s2Y denote the elements of 

" xt'y" Then 
nl 

(1 0 )-I( - c i ) sLY = -"1 nly - i: ~lY' nl i=l ... 

" l"..., , 
-1 ~ 

+ (1-Y1) (n..,Yn
2
- E '~7 ) 

. L. i=l '1 ~+i 
(12) 

and 

-1 nl ~ ; 
+ (1-81) (1-9,_-) E YlY. +' , 

i=l - ~ ~ 

-1 n1 
:where Y

nl 
= nl t Yi and 

i=l 
n

l -1 = n i: Y It fol1o~s from 
2 i=l n1+i" 

'~inear model theory that 
~ 11 12' 
~ "'" c slY+c s ~ 

, and 

(14) 

12 22 o :::: C S +c s' (15) 
lY 2Y 

for fixed 6
1 

and )'1 where cij denote the 

1 t · ,': ~ (XtX) -1 't;'.. -'l • th ' '\ e. emen 5 01: ~ ~ '* .... x-....en\.4l..ng .. e aOt 
hoc procedure of Glass, Willson, and 
'Gottman to the multi-co~sesue~ce model, 

~ . 
we'let e = y-X~, where the ~ vector i~ 
contingent upon particular values of V 
and ~ which in turn are contingent upon 
va,lues of 81 and Yl- . Let s* (51,"11) be 
the Slliu of squared residuals or esti
IDat~d erro~ for par~icular 'lalues of 61r 
'Yl').1, and 0_ That l.S, 

n "2 "t" ~ t ~ () 
( ) t a ~ a a == (y-x~) (y-xa_). 16 

'S. 61 '''(1 = t==l. t - - -

t'linimizing S". (9 1 'Yl) is equivalent to 

minimizing &2 = at &/(n-2). The search 
a --

for the minimizing (6
1

'''(1) pair can be 

restricted to the open unit square, that 
is, (9

1
'Yl)e:{(xl'x2):O<xi<I,i=1,2}. The 

output format assoicated with the search 
can be set up in table fashion with the 

#to .... ....2 
following Column headings: 61 'Yl,)J,o,oa' 

After that (61 'Yl) is selected with mini

mizes &2, confidence intervals can be 
a 

constructed or tests of hypotheses can be 
performed for ~ or 0 by making use of the 

fact that (~-I1)/&a(cll)1/2 al19.' 

, 1/2 
(6-o)/&a(c22) are each distributed as 

pseudo Student-t random variables with 
n-2 degrees of freedom. The "pseudo" 
prefix is necessitated by the fact that 
both ratios depend on the nuisance para
meters (Bl/YI)' Furthermore, keep in 

mind that the true confidence region for 
(~,o) is elliptical in nature. Thus, any 
confidence interval for 11 or 0 alone is 
merely a marginal one and the confidence 
levels should be adjusted accordingly. ' 

Note that this lease squares esti- • 
mation approach was iterative in that it 
searched on (61 'Yl' and conditional in 

that we· set aO=O. For this reason, it 

was designated iterative, conditional 
least squares. . 
Maximum Likelihood Estimation of. ).1 and a 

In this section, we will obtain 
closed form expressions Ior the maximum 
likelihood estimates'of 11 'and 0 where 
these estimates are functiOnS of the 
moving average parameters. As such, they 
are designated conditional maximu.'l1 like1i"" 
hood estimates. 

Let ~ = [Zl""'Zn1'Zn1+l, ••. ,Zn)t 
be a sample of n observations generated 
from a MM1CI(I) modeL and let Z be the 
(nxl) random vector associated~with the 
vector of sample. observations. Also, let 

~ = [aO,al, •.. ,anl t be an «n+l)xl) random 

vector where at-NID(O/o!l. Thus, the 
joint distribution of a equals . -
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t 2 2 -(n+l)/2 
f(~ ;oa) = (2rroa ) eh~{-~t~2o~} • (17) 

Since Z = Ce+g~, it follows that 

~-Nn (!!.~I o;CC t). But, o~cct = Ee where EZ 

is presented in equation (4). Let 
2 -1 

t ~ = a aM • Th us , 

f t' (zt;'~h = (2'rr02)-n/2\H\1/2expC-Q(1l,O)}, (18) 
z - - a, 
- 2 

where ~t = (Il,O,el''Yl,oa) and 

Q(v,o) ~ (:-1l~n-o~)tM(:-1l~n-o~)/2a~ (19). 

In the logarithm of the likelihood func
tion associated with equation (18),11 and 
o appear only in the ~uadratic from Q(lI, 
0). Let Q*(Il,o) =-2oaQ(ll,O). 

* By finding (lQ*(lI,O)/d).1 and aQ (ll,a)/aa 
and. setting thes.e partial derivatives 
equal to ~ero, we obtain a pair of simul
taneousequations, the solutions to which 
are given .below: 

~ = [(~tr.:tjnl-8 O.:tMin) J/~~1jn ' (20) 

and 

, :' . 

--. - -.{-.-
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(ktHZ) (jtr.li )-(z~lj ) (k~j ) 
- - -n -n - -n - -n ~ 

(k"tt-lk) (j tHo; ) - (ktr.lj ) 2 - - .n ~n _ _n 
o = (21) 

Equations (20) and (21) point out that n 
and g are functions of the moving average 
pa'rameters oland 'Y 1 since they depend on 
H = 0 2 1;-1. HO\.;ever, these estimates are 

a ~ 
. 'independent of J~. Note that the main 

difficulty in obtaining il and ~, fo!:' 
fixed values of the moving ave!:'age para

-meters, is the need to find the inverse 
of EZ ' 

l>1a:<imum Likelihood Estimation 
'of Hoving Average Paramete!:'s 

'l'he procedu!:'e used in this sectiori 
somm'lhat parallels that presented by Box 
and Jenkins· [2] "ho treat the non-inter
vention moving average models and ass~ue 
p ~ D. Obviously, their procedure needs 
to be modified. 

From the M.;;HCI (1) model presented in 
equa tion (2), we can ,'lr i te dm.,n the 
following (n+l) equations, where the 
first equation is introduced for conven-
ience: 

a o a O 
at Zt-~+olat_l,t=l, .•. ,nl 

at Zt-ll-O+Ylat_l,t=nl+l, .. ~·,n. 

, By successive substi·tuion of a., for a
2 .t. 

and so on, ,'Ie can express a in terms of 
Z and a* = aO' '."here this syste:n of (n+l) 
equations has the following matrix repre
sentation! 

~ = L~+~a*-~:l-e6 . (22) 

L is an [(n+l):-:n) matrix, while ~;1.?, and 
care [(n+l)xl) vectors. Also, L,~, and 

t>. are func·tions of both a 1 and y 1 "'ihile 

~ is a function only of )'1' The specific 
forms of L,~,t>·, and £= can be found in 
Alt [1). 

In making the transformation 

~ = L*[a7.l zt)t, where L* = [~l:L), it is 
. easily Seen that I J I = 1. By subs ti tu t
ing equation (21) into equation (17), we 

.see that the joint distribution of ~ and 
~* is 

fzt a (zt,~;~t) = , * -
2 - (n+ i) /2 J 2 

(21TOa ) €.},:p[ -:,S (a
l

, Yl'~) / 2o~}, 
(23) 

'where, if we let 9 = J:~+~o, 

(24) 

Define a* to be the value of a. which 
%.~minimizes S (6 1 'Yl,a*)., By taking the 

',deri.vative of S (6
1

,'Yl'a*) with respec't 
"a. 'and setting this derivative equal to 
.zero, we find that 

to 

&.. = (-XtLz+Xtd) /(xtx). 
- ... -.. > - -

(25) 
where 
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and 

The ki's are such that 
. 2(n

1
-1) '-1 

k. 
~ 

at (1-8
1 

) (l-ai) 

i 2(nl- i ) (1_y 2(n2+l» (1_y 2)-1 
+ °1°1 1 1 

for i l, ... ,n
1
-1, 

and 

k. 
~ 

n 2 (n2+l) 
k 61

1 (1-Yl ) 
n 1 

n i-n 2 (n1+n2-i+1) 2 -1 
6 ly 1 (l-y ) (l-y ) 

1 1 1 1 

for i = n
1
+l, ..• ,n. 

By making use of equation (25), we 
see that S(8 l 'Yl,a*) can be rewritten as 

S(Sl'Yl,a*) = S(81'Yl)+{a*-a*)2~~,(26) 
where 

Note that S (a 1.' y 1) is a function of the 

observations but not of a.. Since 

f (zt a ;~t) = f t(zt;~t)f~'I"t(a*lzt;~t) 
t -'*- Z--_LJ --

~ ,~ - -
it follows from equations (23) and (26) 
that 

The following deductions can be made 



• .• ,0' t ,"J 

from the foregoing statements: 
(·i) That a* is the conditional 

expection of a* given z and E fol10w~ 
from inspection of equ~tion 128). 

(ii) Denote E(a*1 ~t'Et) by [a*]. Thus, 
a* = [a*J: 

. Since a = L~+~a*-~, it'follows that 

[~] L~+~[a*]-? and that 

n 2 
S(81'Yl) = E [a ... ] , t=O .... 

-where a* is obtained from equation (25). 
(iii) By comparing equations (18) 

and (29), we see that 

and 
t 

S(61 'Yl) = (:-~z) M(~-~z) . 

Thus, an easy method for finding IHI and 
evaluating the quadratic form has been 
provided. Specifically, in order to 

n 2 
o compute SCal'Yl) = t~O [atl , we let 

-faa] = a* and recursively calculate the 
first nl[a

t
] IS from 

'0 Jat.1 = Zt..,.~+al[at:"l] I (30) 

£pr t = l, .•. ,nl , while L~e recursive 
relationship for the last n

2
£a

t
]'s is 

given by 
[atl = Zt-p-6+Yl[at-l]' (31) 

. fQ~ t = nl+l, •.. ,n. The conditional 
maximum likelihood estimates of p and a 
are given by 'equations (20) and (21), 

°respecti vely . 
The above results are stated in the 

following theorem. 
.Theorem 1: For the !-lAHCI (1) model, the 
'unconditional likelihood function is 
given by 

L(~tl~t) 
- 2- -n/2 t -1/2 n 

= (211'0 ) (X -x) exp{ - E 
a -- t=O 

2 2 
[a ] /20 } • 

t a 
(32) 

.Since xtx is a scalar, the determinant 
'symbol-has been omitted. 

Implementing the MLE Procedure 
In Theorem 1, a computational form 

of the likelihood function was given for 
the. r-tAHCI (1) model. In this section, we 
present the finer points of implementing 
the computations. 

The problem still remains of f~nding 

~ which maximizes L(Et\zt). Now this - - -maximization procedure can be decomposed 
as follows: 
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max L (E t I ~ t) == 
E 

= max {max[max L(r.tlzt )]}. 
2 -al'Y l ~,o (Ja 

Up to now,o we have not treated the maxi-

mization of L with respect to 

ever, by finding cinL/acr; and 
this partial derivative equal 
find that 

2 0a. How-

setting 
to zero, we 

which is the maximlli~ likelihood estimate 

of 0
2 for fixed ~,o,6l' and Yl. a 0 

By making use of equation (33) in 
equation (32), we find that 

max 
f; 

= rna"{ [max L(Etlzt )] 
el'Y1.'~'o (J~ -

= max (2")-n/2(a;)-n/2(~~)-1/2exp[_n/2}. 

e~>Yl'Jl,o 

This last expression is equivalent to 

max [(~2)-n/2(xtX)-1/2r, 
a - -

61 'Yl,I1,O 

which can be rewritten as 

max {- ~ [a ] 2 In} -n/2 (X t X) -1/2 
t - - . 

61'Yl,~,9 t=O 

In turn, this is equiv.alent to 
n 

min {.min[ E [a
t
]2/n]n/2(xt X)1/2}, (34) 

e I' Y 1. ~, a t=O - -

Equation (34) clearly points out the dif
ference between unconditional least 
squares estimation (UCLSE) and MLE. In 

n 
UCLSE, one wishes to .min' {t 

6l ,Yl ,Jl,O t=O 
which is equivalent to 

n 2 n/2 
min {L [at] In} • 

e l' Y 1 ' ~ , 0 t=O 

Thus, UCLSE differs from MLE by the rnulti
t 1/2 0 

plicative effect of (~ ~) • 

Oncethat4-tuple (~,6,ei.'Yl) is 
found whic~h satisfies equation (34), a~ 
is then fouhd using equation (33)~ The 
most difficult part of satisfying equation 
(34) is finding ~ and 6 since this 

" 



• .,4.b,'.:.n. ,. . • • , 2 
involves finding N. where 1>1-1 = Ezlua. 

Thus, for each (Ol'Yl) pair, it becomes 
necessary to compute another inverse. 
~or a relatively large time series, this 
e:-:ceeds the cnpaci ty of core storage. 
However, simplifications occur by making 
use of the oatterned structure of [ . . z . -
Details of this can be found in Alt [1]. 

Additional statistical Inference 
Although :,lL estimates of the model 

parilmeters na ... ·e been obtained, two in
ferential questions remain unanswered: 

(i) Is the pre-intervention 
moving average parameter 
(9 1 ) significantly different 
frum the post-intervention 
moving average par~~eter 
(y 1)? 

(ii) Is the shift par~~eter (0) 
significantly different 
form zero? 

The first question can be formulated 
as a hypothesis testing problem. Speci
fically, we \vish to test 

HO:Sl=Y l vs. H1 :9+Yl' (35) 

To .test this hypothesis, we employ the 
asymptotic chi-squared property of the 
likelihood rat:i.o test. Let L un zt) 

1-

deno.te the maximum value of the likeli-
hood fUnction using Theorem 1. Let 
L (~!o! ~t) denote the maximu..l!l value of the 

'likelihood func::ion using T!1eorem 1 u:1der 
constrainttha~ 91 = Yl' This is easily 
obtained. Define 

A (~, = L (n 0 I ~ t) /L (n I ~ t) . 
It can be shm'm that the distribution of 

~2~n ;"(Z) converges to a xi distribution 

'when the null hypothesis (Sl=Y l ) is true. 

Thus, our decision rule is to reject HO 
when 

2 
-22.-n HZ'>Xl .., ,0. 

This decision rule can be 
reject. HO when 

(36) 

restated as 

n ~(o2)o+(xtX)0-n ~(&2)_(xtX»X12 0. (37) 
a a - - , 

If the null hypothesis (9 1=Y l ) is re-

jected, one could then set up a pseudo 
t-test . for .testing HO: 0=0 vs. Hl : 0=0 as 

described in the section on ICLSEi if the 
null hypothesis (9 1=Yl) is not rejected, 

one could set up a pseudo t-test to 
investigate the significance of 0 under 
the constraint 91=0 1 ' 

Example 
Consider the data reported by Hall 

.et al [6] which records the daily number 
OI"t:alk outs" of twenty-seven pupils in 
tqe second grade of an all-black urban 
poverty area school for a total time 

period of forty days. The first twenty 
days \.;ere denoted as the baseline p.:.riod 
before the co~~encement of an inter
vention effect. Beginning on the twenty
first day, the teacher initiuted a pro
gram of systematic pruise for not talking 
out. . 

A preliminary statistical analysis 
of this data was conducted by Glass, 
~villson, and Gottman (4], who assumed the 
single consequence model of equation (1) 
\'1as appropria 1:e. To check the validity 
of their assumption, ""e test HO:91=Yl 
using equation (36) and find 
-2R.-n >. (z) =2.08, \'1hich has an observed 
significance level of approximately 15%. 
Thus, "'Te adop-t: model (1) and find that 

. the maximlli~ likelihood~estimates are 
6

1
=-.25, ~=19.26, and 0=-14.33. 
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