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Abstract

An identification algorithm for dynamic intervention quéls is
developed. ﬁsing this algorithm the form of the dynamic component
from which policy inference is drawn is determined from data structure
and is free of a modelers a priori biases. A re-analysis of the gun
related crimes for a pre and ‘post history surrounding the implementation
of the Massachusetts Gun Control Law is conducted usirg this algorithm

and a dynamic modeling approach.



Introduction

In a previous paper (Deutsch and Alt (1977a)), a preliminary

evaluation of the Massachusett's gun control law was conducted.
Here, intervention analysis was conducted by formulation of a
method of shift detection (Box and Tiao (1965)), in a traditional
quality control framework in which the process was measured by
the reported number of gun related crimes. The objective here .
was to identify the in-control from out-of-control state of the
process as determined by new system obsgrvations with respect

to historical wvalues. Further associated with the determination
of an out-of-control state was the ass&ssment’of the transition
point or time frame in which the process went from a state of
in-control to out—of-control. It should be moted that this
appfoach identified from data alone, the transition point for which
an. assignable cause for the transition was sought.

In our pfevious analysis of the three gun related crime series,
we detected that both the armed robbery and assault with a gun series
did go out—-of~control at an identical time point. The éssignable
cause that we éuggested as an explanation‘of this transition was the
activities of planned publicity that occurred immediately prior’to
and continued after the trénsition point. We‘concluded the pabér
with a‘suggéstion that further description of the detected transitibn,'
in particular with regard to its dynamics ;houldbprove useful. ' That
is,‘given that a transition or‘shift did occur in ‘the reported levels

’ of gun related crimes; was this a shift to a new more desirable steady



state level or simply a transient phenomena in which the system returned
to its original level of behavior. This question required models of
- dynamic intervention Box and Tiao (1975).

Since the data series are ordered by time in dynamic dntervention
modeling, replication is impossible. Thué, lack—of-fit tests to check
adequacy of the fitted forms do not exist. For given data sets
several different forms of dynamic models can be adequately fit in a
statistical sense. However, each form may typically resulﬁ in different
policy implicatidns for the analyst. To eliminate biases of a modeler's
postulation Qf a specified form of dynamic componment, an identification
procedure 'was developed, which uses only information or structure
contained in the data alone for the model form specification. This
identification procedure was used to re<analyze the Boston Gun related

crimes.

Evaluation of_ggangg_gz%Dgpamic\Mg&gls

Box and Tiao (1975)’haVe suggested a class of general dynamic
models capable of representing intervention effecﬁs. Since inter-
ventions are likely to have some effeét,on a system other than to
change the level, a model‘reprgsentation which takes into account
“dynamic or delayed effects is desirable in order to deSCribeféhe‘
form of the infervention accurately.  As suggested previously, the
evaluation of change via sﬁifts is identical to a subset of:thé
dynamic models., |

An overview of the dynamic model class and their descriptive
capabilities is contained in’the followiﬁg sections, along With
the spedific relationsﬁips between the'mbdel specification

of the shift approach'énd the dynamic modelé.: Using these



relationships, an identification algorithm for dynamic intervention
modeling iIs described. Lastly the dynamic intervention analysis

is conducted for the Boston Gun Control data.

Overview. of Dynamic Intervention Models
- Linear dynamic systems may be represented by relating an output

and y, represent

Y to an input X. If the inpﬁt is varied and x,

deviations at time t from equilibrium, the system can be represented-

by a linear filter of the form,

Ve = 0¥ Fugx g Tegx o F e

w(B)xt,

where,

2
w(B) = o + wlB + sz + ...

The operator w(B) is called the transfer functiom, If we wish to allow
not only for a simple change in level of the output Vo but aiso the
rate of change, to affect the output, we may represent the model by

an equation of the form,
§(B)y, = w®Bx_,

where

5(B) =1 - 8,B =~ 5,8 LS

In this case the transfer function is a ratio of two polynomials in B,

:G_l(B)m(B), with 8 (B) determining the rate of change.



Inﬁa physical system the input variable X, is typically different
than ;he output variable Ve and is uniquely identifiable. In social
systems, the variable is not necessarily identifiable nor is it necessa;ily
different iﬁklabel than the output Specification, For example in

intervention analysis the x, might represent the presence of a number

t
of specific activities that are collectively acting to affect change.

In fact these activities might be known or unknown, That is, a given
program being implemented will typically have specific activities

each contributing to a change in the operating environment which in
turn will affect the Oufput‘yt. Howayer, these known activities might
occur simultaneously with other documented activities outside of the
formal program but related to the programs existence. This is the
posture that we adopt in intervention modeiing. Thus we’will in general
denote the X5 to be gt which represents variations in the environment,
either known or unkiown, that may affect the single output measure,

Ve of the environment. Beyond the changes in the output measuré that

are associated with environmental changes, we allow for random

variations in the form of an additive noise structure, Nt. Thus

S@®)y, = 6(®E, + N, '

where Nt may be modeled by any of the multiplicatiVe autoregressive
moving-average processes (see Box and Jenkins 1970).

Although the Et could conceivably take on any form, we will
consider only the case where thej are indicator vaxiables‘taking on
the values zero or one. The‘prééence‘of an intervention effect or
essentially a’chénge in the envi?onment‘will thus be indicated by'

Et =1, otherwise gt = 0 when there are no modifications.



Using the transfer function framework, we can model various types
of intervention effects. For example, if we let the variable gt denote

a step change in the input,

0, t< T

1, £ > T,

where T is the time of intervention, we can model the output as a
response to this step change. Three typical responses might be those
pictured in Figure 1 parts (a), (b), and (c). On the other handﬁ it
may be more convenient to think of the input as a pulse occurring once

at time T, rather than as‘a step input as in the previous case. We can

then let

_ (@)
e =8 =

and we can model output such as that shown in Figure 1 parts (@), (e),

and (£).
In Figure 1l(a) the output is represented by
- 9]
wBSt .

e

Relating this to the general form of a transfer function ﬁodel, we
can see that for this model, which we will refer to as the Constant
Step Response Model, where only wy is non=-zero (m = wl),‘ In this
model, w measures fhe constant magnitude of the output response.

In Figure,i(b),vwe note that the output is a first-order reSponse

to the step input. We must thus incorporate a rate of change parameter
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into this First-Order Step Response Model. This output is therefore

represented by,

wB_ (T)

Ve T1-B %t

As in the Constant Step Response Model, only one w is non-zero. However,

in thé present model all §'s are equal to zero except for & Here,

1
w/(1-8) represents the steady state gain or change in the output.

The traﬁsfer function output represented in Figure 1(c) is,

Ve T —f%%— Sé’.l‘) '

We can easily see the resemblance between this Ramp Response Model and
the First-Order Response Model. 1In the case of the Ramp Response Model,
61 = 1, which indicates that the rate of change is constant over time.
Thus, there is a constant response to the input for the output for each
time interval (T, T+1l) and ©w measures this response.

In Figure 1(d) and (e), we note that we have a Decaying Pulse

Response Model and a Partially Decaying Response Model, respectively.

In each case, the term,

mlB

1-6B

represents the decaying portion of the model, The parameter w, measures

the initial response to the pulse input and § measures the rate of decay

of these first-order models. For the Partially Decaying Response Model,

: ;3
= -Pféf + fg—- P (T where
Ve T |1 B 1Bt



w, measures the residual response after the initial effect, We can
also relate these models to the general transfer function model form.

For the Decaying Pulse Response Model, only w, is non-zero and as in

1
the case of the First~Order Step Response Model ‘all subsequent 6's
are zero except for 51. For the Partially Decaying Pulse Response

Model, the first term with w., is as above and the second term has

1
61 non-zero being equal to one, and all other §'s zero.
In Figure 1(f), we see the most complex of the six transfer

function models depicted, the Inverse Decaying Pulse Response Model.

The model is represented by:

®
- 1 2 L@
Y ot 53 v 1o e .

In this case, w, represénts the immediate impact of the pulse input,'

0
The parameter Wy Yepresents the delayed response which recedes gradually
according to the rate of change parameter, 6. 3Beyond these components,
is’the permanent effect, measured by the quantity Wy The second and
third terms in this model are exactly the same as the two terms in

the Partially Decaying Pulse Response Model. The first term in the
transfer function implies that only Wy is non-zero and all §8's are

zero. A summary of the interrelationships of these six types of

dynamic intervention models are contained in Figure 2.

Relationship Between Evaluation by Shifts and Dyﬁamic Models
Whereas it has been noted that the underlying model of change in
shift detection represents a subset of the models in the Dynamic Model

- class, we proceed now to describe the relationship between this shift

parameter and all the dynamic models., These relationships are developed .
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Constant Step Respounse Modzl
First-Order Step Response Model
Ramp Response Model

= Decaying Pulse Response Model

Partially Decaying Pulse Response Model-
Inverse Decaying Pulse Response Model

(1-B)=1

by considering the shift parameter to be sequentially estimated, that
is, a function of time, Gt.

For example, consider the first order step response model, in
which the constant shift w is equal to zero for all time points less
than T+l and equal to a constant for all time points > T+l, Direct
comparison with the shift model shows the shift parameter to be zero
prior to T+l and equal to a constant for all times > T+l. This is
seen from direct comparison of the model forms. For the. shift

parameter model the level at time -t isj

zZ, =B t = 1,2, 05T

T+L,TH2,. . .

N
]
w
+
O
t
I

. . . . < th .
where Bt is the time series representation of the t— observation for
any underlying process. of the multiplicative moving average class.
Thus if the underlying model was a first order moving average process,

Bt = (l—BB)atq Similarly the constant step response model is

T
Z =LOBS£)+Bt ’

0 for t=1,2,...,T

S =
t 1 otherwise.

From direct comparison of these models we see for all values of t less
than T+l that w 'is zero. For time T+l when St is one, 6T+1 is equal to

w. Table 1 summarizes the relationships between‘the shift parameter and-
the paramefers of the dynamic models for the six basic models illustrated.
Here the symbol delta is used to denote the shift parameter and the,delta
primes and omegas are used to denote the parameters of the dynamic models.

From the table we see that a sequential plot of the magnitudes of the
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Table 1. Relationship of the Shift Parameter to

the D‘ynami'c Model Parameters
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N

shift parémeter versus time gives rise to the shapes of the dynamic model
configufation in Figure 1.

It should be noted however that’the estimation procedure for delta
described.in [1] does not yield unbiased estimateé of the specific
dynamic'mbdel parameters shown in the table. Rather the estimates of
delta obtained at time t ére coupled or confounded with information

associated with earlier estimates made prior to time t.

Geheral Methodology for the Identification Algorithm

We have‘just seen that the shift parameter has the ability to express
dynamicé within the time series framework. However, we caﬁ achieve this
dynamic property of § by estimating it sequentially, if and only if we
incorporate previous estimates of the parameter into the estimation
procedure. This means that we must think of delta not strictly as a
parameter, but as a time-dependent variable in the wodel, denoted by

8 In the following paragraphs, an algorithm for identifying forms

£

of intervention effects utilizing successive estimates of Gt over time

- 'is suggested.

To estimate delta at any point in time, we must first specify that

time, which will be denoted by T. This is equivalent to specifying D>

the number of observations

the number of observations before T and N,

1 + n, = N and N is the total number of observations

after time T, where n

1 2

"used in the estimator. The quantities n. and n, enter directly into the

estimator as do the observations associated with n, and n,. Thus, by
specifying ny and Ny, we effectively specify which observations:will enter

intovthe estimator as historical (before T) data and those which‘will be

i

‘used as "future" (after T) data. Of course, the estimate, St;‘is also func-

tionally dependent on' the fofm of the ARIMA model noise term and the associated



moving-average and/or autoregressive parameter values (Deutsch and Alt,
For our purposes, we will denote the ARIMA model form as M and the

parameters from this model colleétiVely as A. Thus; we can write,
6t,= f(nl,nz,Y,M,A).

In sequential estimation, we must monitor ﬁpr significant éhifts
if the sequenfial plot of 8 is to miﬁic the dynamics af iﬁtervenfion.
To translate what it means to use past significant values of delta,_
in the actual estimation procedure without correction, we ;efer to

the functional despriptioh of & given previously. We know that if

A

we estimate ¢  at time T, ST’ with n, = 1, we are usiﬁg'the ny
observations before time T and an additional observation, Vo 41"
1
If we let Yh denote the observations occurring before time T, we can
1 -

write:

8p = f(nl’,HZ’Ynl’ nl+1’M,’A)'

Suppose we estimate GT and find that it is significant, i}e., not
statistically equal to zero. Then, in effect we are saying that there
has been an intervention effect at time T which is evidenced by the

observations to the observation Yh +i.

change from the previous n
' 1

1

1976).

- Thus,

if we move ahead and stand at time T+1, we again let nzﬁl andvthis'time

e

was the previous value of n, used to estimate 8

nf = n1+1, where ny |
at time T. .Nowé an addithnal observatlon yni+2 or yni+1 wllllbe used,"‘
and y will be grouped with the n, observations (¥ ) to form the

nl+l 1 : n,°

set of nf observations. However, since we have already concluded that

an intervention effect of significant magnithe occurred at time T, the

set of‘nf‘observations which we are comparing the Vox observation to is



not internally consistent. That is, the ni set of observations,doés
not represent a single population. To form an historically consistent

population we subtract the previous significant value of §, ST’ from the y f1

observation to account for the difference in level with the previous

observations. We can then proceed to estimate ST

10 A;.thls point

in time, we can write,

) = f(nl,N2

P41 M,4)

,Y *’y 3>
nl nl+2

; g . st
where Yn* includes the original ng observations and the corrected n +1—

3 1
observation.  O0f course, if 3 was not statistically significant, then
no -adjustment is needed since 6T is effectively zero and there is already
st .
ljir—-observatlon. For

subsequent estimates of St, we use the same procedure as we move

consistency between the ny observation and the n

ahead to time T+2, T+3, T+4, etc. The estimation procedure is depictgd
in flow chart form in Figure 3,

With thisidentification algorithm, the sample pattern produced will
notvmatch the theoretical patterns associated with;the d&namic intervention
model exactly but rather will deviate from it. The distertion from
thebretical patterns are due to the stochastic additive noise component, Nt’
~in particular the form of the noise component aﬁd the‘specific associatea
parameter values, Akcomputer simulation experiment was run to assess the
nature and magnitude of the deéCrepanciesvassociated ﬁith the stochastic
~components effect in the dynamic intervention mﬁdel identification.

Figures 4 through 9 graphically illuétrate these vafiations for each of tﬁe
six dynamic intervention models in the presence of a&ditiVeinoise whose
form is.fir;tyorder autoregressive, firét ordef»moving avetage or‘first

order integrated moving average.
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Consi&er Figure 4 which contains the chart for the Constant Step
Response Model. Here we see on a domain of theta, the moving average :
parameter and phi, the autoregressive parameter overlays of the
theoretical pattern and the observed patterns. For example, when
8 = ¢ = 0 and the additive noise process is white noise, the theoretical
pattern is identical té the sample pattern produced by the identification
algorithm. In all other combinations of the parameters of the additive
stochastic component,'the solid line indicates the pattern produced by
the algorithm and the dashed line the theoretical pattern. These charts
can be used to assist in pattern matching the estimated sample pattern
produced from the algorithm to the theoretical underlying form of the

dynamic intervention.

Analysis of Massachusettfs Gun Control Law Via Dynamic Intervention Models

The previous intervention analysis of the Gun Control Law via shift
detection addressed the question, did a change take place? In this
re-analysis we employ dynamic intervention modeling to address the nature
of these éhangss, specifically focusing upon whether the changes was
permanent or transient. In this re-analysis additional data through
September 1977 was available.’ Thus the post intervention period contsined
almost two and one half years of monthly data.

In the followiﬁg, a brief review of some pertinent aspects of the
Gun Cdntrol Lav are reviewed and the full data set exhibited. After which
the step by step model building procedures for dynamic intervention analysis
discussed, starting with the time series data for gun related crimes is

presented.



The Updated Boston Gun Control Data

Gun-related offenses have become an increasing problem in major
cities. In an effort to deter gun-related crimes, the State of Massachusetts,
in Ap;il 1975, put into effect a law which;maﬁdates a one year minimum
sentence upon conviction of carrying a firearm without a license. To
assess the impact of this gun control law, three typesvof gun~related offenses
were exémined: armed robbéry, assault with a gun and homicide. Monthly
data were available on the number of each of these offenses for the city
of Boston. |

The Boston gun-control data have been previously analyzed for each
of the three cffenses from January 1966 to chober 1975. As described in
Deutsch and Alt (1977), this approach estimated the effect of the Gun
Control law via the delta approach. In doing so, the analysis determined
the magnitude of the intervention effect and ascertained its significance.
However, the results did not address whether the intervention effect had
a lasting impact on the three gun~related offenses. The purpose here is
to discover if the intervention effected permanent change in the time
series under’study, and if so, what form the dintervention effect took.
Thus, the énalysis in this section will extend and enhance the resulté
of the previous analysis.

Additional Aata for the present analysis_was\collected up to and
including September 1977. The data used in this analysis are presented
in Figures 10, 11, and 12. The data in Figures 10 and 11, Boston éﬁsauit
with a Gun (BAG), and Boston Homicide (BOH) respectively represents
reported monthly‘Uniform‘Crime’Report data. However, the data for
Boston Armed Robbery’(BARQVFigure 13, includes all arme& robberies,

whether the weapon used was a firearm or other dangerous weapon. Even
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though separate reports were made for armed robbery with weapons other
than firearms from January 1974, reports before this time were not
delineated in this manner. Therefore,; to achieve consistency, all

armed robberies, regardless of weapon, were included in the data for

the entire time period. This configuration of the armed robbery data
is the same as that used in the previous analysis, so that the results

are directly comparable.

Analysis of the Boston Gun Control Data

~ The first step in the pfesent analysis was to identify the correct
model form for the three sets of updated data using the ARIMA model forms
proposed by Box and Jenkins (2,6). Plots of the data along with the’
sample autocorrelations and partial autocorrelations of ‘the data-Were
studied to postulate a model form for each of the three time series. Plots -
of the BAG, BAR, and BOH series indicated nonstationafity. Notice the chaﬁge
in mean throughout the series in Figures 10 to 12 respectively. Also, for
the BAG and BAR data, there was strong indication of a séasonal correlation
"at lag twelve. When a seasonal difference is taken (D=1 for $=12) in addition
’to the removal of nonstationarity (d=1), plots-of both the BAG and BAR data
appeared stationary and nonseasonal. Since the BOH data did not appear to
be seasohal, one differencé (d=1) alone was‘imployed to reduce this series
to a stationary series.

From the sample autocorrelation and partialyautocorrelations computed
the BAG, BAR, and BOH data for the partial autocorrelations were seen to
tail'dff exponentially, while ﬁhe autocorrélationé cut off. In addition for
the BAG and BAR data at lags 1, 12, and 245 the same behavior was’notéd.’

Thus, a (0,1,1) \x‘(O,l,l)12 model form was tentatively identified



for BAR and BAR while a (0,1,1) model form was selectéd for BOH. The
parameters of these models were then estimated. TFor the BAG data,
significant estimates (o = .05) of the ﬁonseasonal and seasonal
moving-average paraﬁeters were found to be el = (0.837 and el
= 0,504 and 8,, = 0.748.

9 = 0,7487
For the BAR data, these estimates were 61 1
For the BOH data, the nonseasonal moving average parameter wag estimated

as 91 = 0.757.‘ Diagnostic checks applied to the residuals of the

fitted models revealed no inadequacies ip these model forms. ‘These

models are conéisteﬁt with the resﬁlts from the previous analyses (6) of the

three data sets which postulated the same forms of the models with the

parameter estimates given below:

BAG: Bl = 0.826 912 = 0.775
BAR: 91 = 0.512 612 = 0.790
BOH: el =0.810

The difference in the parameter estimates results from using 141
' observatiohs (through September, 1977) in this analysis compared to
the 118 used in the previous one (through Oétobef, 1975). These models represent
the form fo; fhe‘noise componeqt,iNﬁ; of the dynamic intervention models.
The next step in the analysis is to obtain estimates bf §, the shift
parameter‘while employing the identification algorithm; To do this,
the raw data was first transformed to eiiminatekthe seasonal componént
in‘the BAR and BAG case. The transﬁormed,obServations (Wt's) were obtainedr

2

recursively by'

W T Zgs T2 gt B0V g0

wherevwi = z;5 WZ T ZgreresWyg = Zy9" ‘The ;atlonale fo: this transformation

is explained fully in Deutsch and Alt (1977). Because of the assumption

N



Wy o= 2g, ete. the resulting 129 wt's were used to obtain an estimate of

1

for the integrated moving =zverage model. TFor the BAG data, 61 = 0.836

= 0.837. TFor the

®1
compared to the previous value for the raw data of 61
BAR data, the parameter estimates for the raw data and the transformed
data were 0.504 and 0.483, respectively.

The seasonally adjusted BAG and BAR data, henceforth referréd to as
TBAG and TBAR, now follow an integrated moving—average process of order
one., The raw BOH data has also been shown to follow this model form,
The three sets of data are now used t6 estimate § values at n, = 95,96,97,...
for n, = 1. Up to this point, the procedure for the data analysis is
identical to the previous analyéis. However, we now depart from the
previous techniq;e by applying the identification algorithm i.e., adjusting
for significant values of the shift parameter so thatlthe form of the
dynamics can be unconfounded and identified. |

First, we will consider the results for the BAG data. Beginning at
'hl = 94 or October 1974, we calculate estimates of 6. We noted a large

significant shift at n, = 98 or February 1975 and the March 1975 data.

1
A negative significant shift of -28 exists at this point in time. In

the previous analysis, a shift of approximately the same magnitude was
detected at the same point in time. - By adjusfing fbr this and subsequent
significant de;ta's a pattern should begin to emerge. ’A plot of § versus
time for ¢ = 0.1 is shown in Figure 13. The plot suggests that there has
been a fairly constant decrease with a slight bowing upward. This pattérn
‘cloéely matches the ekpected patterns for the constant step model as shown
in Figure 4. From this figure we see that for ¢ = 1 and‘e > 0, as in the .
‘case of éur noise structuré, estimated patterns for the constant step function
wili‘dip from the steady state gain level and then asymptote ﬁb the éﬁeady .

state Value;_&The plot of delta's in Figure 13 corresponds to this behavior
. ‘\\\& .
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with the exception of having a negative steady state ievel instead of
the positive level illust?ated.

Thus, a constant change step function model is tentatively entertained
to describe tﬁe dynamics. The estimated parameters and associated~902

confidence intervals were found to be;

=
it

0.1406, [ -0.1256, 0.1537],

-16.4509, [-24.6282,-8.2736].

€
il

Model 1 was overfit with the first order step response model which
collapses to the constant step model when the rate of change parameter
is zero. The estimated value of this parameter was 0.0676 with a
corresponding 907 confidence interval of [-0.0877, 0.2229]. Clearly
this interval contains zefo, therefore the constant step response
model is adopted. The appropriate dynamic intervention model for the'

entire Boston Assault with a Gun time series is:
12 o~ ~ ~ 12
(1~-B) (1-B )zt = mBSt + (1—613)(1 BlZB )at

where

0 t 98 (February 1975)

t 1 t 98,

w = -16.4509

6 = 0.8267 and
6y, = 0.7751 .

Figure 14 contains the shift pattern produced by the identification
algorithm for the BAR data for a« = 0.1 and 0.075. Regardless of the
choice of alpha there is a pattern of temporaliy persistent shifts noted.

Thus. a step input form of a dynamic intervention model is chosen. As




seen from this figure the two alpha choices do mot yield identical
patterns‘with the identification algorithm, the larger value of alpha
results in larger magnitudes in the latter portion of the time plot.

It should be noted that the larger the alpha wvalue the greater the
likelihood that a given estimated shift appears significant and a
correction will be made for its level. For example, the patterﬁs
produced up to t = 109 is identical at which poiﬁt a shift of -59.89

was estimafed with a corresponding significance level of 0.0986. At

the 0.1 level this estimate is significant whereas at the 0.075 level this
estimate is not éonsidered significant. Thus for the 0.1 run, observation
110 is corrected for 8109 (yll0 - 3109) whereas in the 0.07§ run, yyqq
remains as recorded (not corrected). Therefore in estimation of
subsequent delta's in the 0.10 run a gain in estimated magnitude will

be c¢reated above the corresponding vaiue of delta estimated for the

0.075 run;

) = gain

Crra, = Se1,0? = @ )

1 1 t

t,az - 6t+l,oc

~ When both alpha levels produce significant or insignificanﬁ delta estimates
at time t the gain at time t is zero.
For the choices of alpha exhibited in Figure 14 shifts were noted
for the .075 value but not the 0.10 value at t =109, 114, 117, 121, 122,
123, 124, 125 and 128. Thus the latter segment of the 0.10 run has a gain
above the 0.075 run as exhibited by the larger magnitude estimates. It
should be noted that the pivotal consideration is t =’109. Giﬁen that
the 109th observation is determined to be consistent with past history
'as with the 0.075 run many more subsequent observations afe‘also deemed

consistent with the past history which also. includes the magnitude of the
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109th observation. On the other hand, if the 109th ogservation is
ﬁiewed as dnconsistent subsequent observations are also deemed
inconsistent.

The identification of the specific pattern which suggesté the
ytentative model type is obviously a function of alpha. It is recommended,
as with any statistical inference procedures in which a type one error
is user specified, that a range of alphas should be employed. For the
most reliable estimate of initial dynamic model identification; patterns
which stabilize for variation in choice of alpha are recommended. Thus
we prefer to employ the pattern which is not unduly dominated byAa single
alternative décision of our sequential identification algorithm.

For o = 0.05 a near identical pattern to that obtained for o = 0.075
is obtained. Therefore Model:1, a constant step response model is
selected for the BAR data. The estimated parameters and associated 90%

confidence intervals are:

5.0560; [ -01.6328, 11.7452]

= >
]

o8>
[

-72.2838; [-124.4209, -20.1467].

Thé mean for the cobservations prior to the point of intervention is seen
"to be insignificant. Overfitting with Model 2 produced an insignifican£
estimate of delta and Model 1 was aceepted as the apprbpriate’dynamic
intervention componentQ The final dynamic intervention model for armed

robbery is:
12, - e av g w12y
(l—B)(l—B )zt = guBSt + (; GlB)(l leB )at .

where
0  t< 98 (February 1975) =

1 t> 98



® = -77.8398
61 = 0.5128 and
61, = 0.7905 .

Figure 15 pictorally represents the output of the identification

1

algorithm for the BOH data. The pattern produced here is‘again'typicall

of that expected for a constant step response mcdel in the presence of
an additive noise process which is represented by an integrated mbving
average process (see Figure 4), The fitted dynamic cdmponents parameters

and associated 90% confidence intervals are:

n = 0.540, [-0.0038, 1.0838]

€ 3
il

-3.2524, [-4.3890, -2.1158].

Again, the mean is seen to be insignificant and the £inal dynamic

intervention model for the entire Boston Homicide series is,

(l—B)zt mBSt + (l—elB)at

where

0 t <. 108 (December 1974)

5, -
1 t>108,
® = =-3.2524 and
A‘__" | . . i
6, = 0.8100 . | ) §

Summary and Discussion of Dynamic Modeling Results

Dynamic intervention models have been developed for time series data
of gun related crimes in Boston. In developing these models a newly

ldéveloped identification algorithm which does not require the modeler

to arbitrarily postulate the dynamic component form was utilized. In
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time series experiments, replication is not possibie. Therefore lack—oféfit
procedures can't be’employed in developing aIStatistical model that not only
explains the variation in a statistical sense but is also of the appropriate
form. In many ways the form:of the model is most important, particularly
since,ié?%}form and associated parameter estimates are the’primary components
of tﬁe dynamic intervention model tﬂat is‘reléted to policy inferencee.

The components of the dynamic intervention model that describe the'system
behavior after intervention can often be represented by several different

. forms that would be adequate in a regfession sense alone, However in fitting
these functions, structure is not only £it but the variation associated with
the.additive noisevcomponent is also described. Thus the identification |
algorithm which identifies the form of the intervention component from the
information contained in the data avoids these pitfalls.

With the aid of this identification procedure the dynamic intervention
component for each of the three gun related time series in Boston exhibited
a conetant reduction in the activity level of the gun related offenses.

This constant reduction was seen to beya permanent change in level thet
perpetuated for the two and one half year post intervention period. The
pexcentage1redUCtion in each of these gun related crime series from the
level withoﬁt the intervention may be’compoted by taking the ratio of the
conétaﬁt‘gain atktime t, to the sum of the tggfobserved value'ano the

steady state gain,

o __w
% changet = X 100,

- t
The resulting percentage changes for each month of the series were

computed. The low, high and average over all months in the post intervention



period are: ’ , : F

BAG BAR BOH
low -19.47 -14.08 -21.31
average |~-26.99 ~-18.58 -29.21 |
high -36.00 =22.35 -76.47 .

As seenvfrom the above summary, sizeable reductions in all three gun
related crimeé were noted throughout the two and one half year post
intervention period.

It shouid be noted that in our earlier analysis, Deutsch and Alt
(1977); we ‘had féund significant reductioﬁs for armed robbery and
assault with a gun but not homicide. In our present analysis with
dynamic intervention models, the models have a greater resolution
capability to describe dynamic changes in that a separable component
that resolves additively.with a noise cbmponent is contained.'
Previously, with the shift detection method;b Deutsch and Alt (1977), a
~negativé shift in with a significance level of 0.125 was noted at
t = 109 but sequential analysis conductedrwithout the identification
algorithm‘masked subsequent significant shift patterns.

The analysis conducted in this paper assumes a single consequence
intervention pfocess; That is only changés in’ﬁaan 1evel are addressed;
In general, one may have a ﬁulti—consequence'intervention conditiqﬁ in
which not only the mean ievel oﬁ the process éhangés Betweén the preﬁénd post”
intervention pefiods but there‘ié a simqltaheods chaﬁge in the éovérianée,iﬁ‘
Thé methods and considerations for multi;conseQuenCe interventiohfanaiysisk;

are described in Alt, Deutsch and Goode (1977).7.{.1"
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