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Abstract 

An identification algorithm for dynamic intervention mod.els is 

developed. Using this algorithm the form of the dynamic component 

from which policy inference is drawn is d.etermined from data structure 

and is free of a modelers a priori biases. A re-analysis of the gun 

related crim~s for a pre and 'post history surrounding the implementation 

of the Hassachusetts Gun Control Law is conducted usirig this algorithm 

and a dynamic modeling approach. 
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Introduction 

In a previous paper (Deutsch and .Alt (1977a)), a preliminary 

evaluation of the Nassachusett' s gun control la-tv was conducted. 

Here, intervention analysis was conducted by formulation of a 

method ot' shift detec.tion (Box and Tiao (1965)), in a traditional 

quality control frame'tvork in which the process 'tvas measured by 

the reported number of gun related crimes. The objective here 

was to identify the in~control from out-of-control state of the 

process as determined by new system observations with respect 

to historical values. Further associated 'tvith the determination 

of an out-of-control state was the assgs~ment of the transition 

point or time frame in which the process 'tvent from a state of 

in-control to out-of-control. It should be noted that this 

approach identified from data alone, the transition point for which 

an assignable cause for the transition T,vas sought. 

In our previous ana.lysis of the three gun related crime series, 

we detected that both the armed robbery and assault with a gun series 

did go out-of-control at an identical time point~ The assignable 

cause that we suggested as an explanation of t.his transition ,vas the 

activities of planned publicity that occurred immediately prior to 

and continued after the trans:Ltion point. We concluded the ;paper 

with a suggestion that further description of the detected transition, 

in particular 'tvith regard to i.ts dynamics should prove useful. That 

is, given that a transition or shift did occur in the reported levels 

of gun related crimes, was tlrl.s a shift to a ne,v more desirable steady 



state level or simply a' transient phenomena in which the system returned 

to its original level of behavior. This question required models of 

dynamic intervention Box and Tiao (1975). 

Since the data series are ordered by time in dynamic intervention 

modeling, replication is impossible. Thus, lack-of-fit tests to check 

adequacy of the fitted forms do not exist. For given data sets 

several different forms of dynamic models can be adequately fit in a 

statistical sense. However, each form may typically result in different 

policy implications for the analyst. To eliminate oiases of a modeler's 

postulation of a specified form of dynamic component, an identification 

procedure"was developed, which uses only information or structure 

contained in the data alone for the model form specification., This 

identification procedure was used to re,analyze the Eoston Gun related 

crimes. 

Evaluati?n of Change b+, Dynamic,M?dels 

Eox and Tiao (1975) have suggested a class of general dynamic 

models capable of representirtg intervention effects. Since inter­

ventions are likely to have some effect on a system other than to 

change the level, a model representation which takes into account 

dynamic or delayed effects is desirable in order to describe the 

form of the intervention accurately. As suggested previously, the 

evaluation of change via shifts is identical to a subset of the 

dynamic models. 

An overview of the dynamic model class and their descriptive 

capabilities is contained in the following sections, along with 

the specific relationships between the model specification 

of the shift approach ~nd the dynamic models. Using these 



.. 

relationships, an identification algoritlun for dynamic intervention 

modeling is described. Lastly the dynamic intervention analysis 

is conducted for the Boston Gun Control data. 

Overview" of Dynamic Interver:tion Models 

Linear dynamic systems may be represented by relating an output 

Y to an input X. If the input is varied and x t and Yt represent 

deviations at time t from equilibrium, the system can be represented 

by a linear filter of the form, 

where, 

The operator weB) is called the transfer function; If we wish to allow 

not only for a simple change in level of the output Yt' but also the 

rate of change, to affect the output, we may represent the model by 

an equation of the form, 

o (B)Yt w (B)x
t

_
b 

where 

In this case the transfer function is a ratio of two polynomials in B, 

o-l(B)w(B), with a(B) "determining the rate of change. 



In a physical system the input variable x is typically different 
t 

than the output variable Yt and is uniquely identifiable. In social 

systems, the variable is not necessarily identifiable nor is it n~cessarily 

different in label than the output specification. For example in 

intervention analysis the xt might represent the presence of a number 

of specific activities that are collectively acting to affect change. 

In fact these activities might be known or unknown. That is, a given 

program being implemented will typically have specific activities 

each contributing to, a change in the operating environment which in 

turn will affect the outputYt' However, these known activities might 

occur simultaneously with other documented activities outside'of the 

formal program but related to the programs existence. This is the 

posture that we adopt in intervention modeling. Thus we will in general 

denote the x t ' to be !;:t 'Which represents variations in the environment, 

either known or unknown, that may affect the single output measure, 

Yt of the environment. Beyond the changes in the output measure that 

are associated with environmental changes, we allow for random 

variations in the form of an additive noise structure, Nt" Thus 

where N may be modeled by any of the multiplicative autoregressive 
t 

moving-average processes ~ee~ox and Jenkins 1970). 

Although the ~t could conceivably ta~e on any form, we will 

consider only the case where they are indicator variables taking on 

the values zero or one. The presence of an intervention effect ur 

essentially a change in the environment will thus be indicated by 

~t = 1, otherwise ~t = 0 when there are no modifications. 
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Using the transfer function framework, we can model various types 

of interventj.on effects. For example, if we let the variable /;t denote 

a step change in the input, 

!; = 
t 

s (T)=lo, 
t 1, 

t < T 

t > T, 

where T is the time of intervention, \Ve can model the output as a 

response to this step change. Three typical responses might be those 

pictured in Figure 1 parts (a), (b), and (c). On the other hand;1 it 

may be more convenient to think of the input as a pulse occurring once 

at time T, rather than as'a step input as in the previous case. We can 

then let 

0, t 1= T 

1, t = T; 

and we can model output such as that shown in Figure i parts (~l, (el, 

and (f). 

In Figure 1(~2 the output ~s represented by 

Y = wBS (Tl 
t t' 

Relating this to the general form of a transfer function model, we 

can see that for this model, which we will refer to as the Constant 

Step Response Hodel, where only WI is non-zero (00 = WI)' In this 

model, 00 measures the constant magnitude of the output response. 

In Figure, 1 (b), we note that the output is a first-order response 

to the step input. l<1e must thus incorporate a rate of change parameter 



e· 

1 r--?-.. -+.--+,----________________ ~ 

(aj 

(T) S . 
t 

--- .. • • • 

r 
~. - .... ----- .. -- .... ~.--------.,;.. 

• • 

(b) 

(c) 

! 
,L 

(:) 

1-6 

_. ......... __ ----'1---.. __ .. __ to -.--._ 

(d) 

.... .. . • 

(e) - --- -- - -~-::--,-.... 

.. • • • 

• 

wo 

(f) 

#I • • • 

Figure J. Six Basic Transfer Function Hodels 

.. .... " 



into this First-Order Step Response Nodel. This output is therefore 

represented by, 

= ~ S(T) 
Yt 1 ...... B t 

As in the Constant Step Response Model, only one w is non-zero. However, 

in the present model all o's are equal to zero except for 01 . Here, 

w/(l~o) represents the steady state gain or change in the output. 

The transfer function output represented in Figure l(c) is, 

y = 
t 

wB 
1-13 

s (:r) 
t 

We can easily see the resemblance between this Ramp Response Model and 

the First-Order Response Model. In the case of the Ramp Response Model, 

01 = 1, which indicates that the rate of changc;l is constant over time. 

Thus, there is a constant response to the input for the output for each 

time interval (T, T+l) and w measures this response. 

In Figure led) and (e), we note that we have a Decaying Pulse 

Response Model and a Partially Decaying Response Model, respectively. 

In each case, the. term, 

represents the decaying portion of the model. The parameter wI measures 

the initial response to the pulse input and 0 measures the rate of decay 

of these first-order models. For the Partially Decaying Response Nodel, 

=j. ~~B 
Yt 11- B 

w2R I (T)· 
+ -- P where I-B t ' 



00 2 measures the residual response after the initial effect. We can 

also relate these models to the general transfer function model form. 

For the Decaying Pulse Response Nodel, only 001 is non-zero and as in 

the case of the First-Order Step Response Nodelall subsequent a's 

are zero except for 01 , For the Partially Decaying Pulse Response 

Hodel, the first term with 001 is as above and the second term has 

01 non-zero being equal to one, and all other o~s zero, 

In Figure l(f), we see the most complex of the. six transfer 

function models depicted, the Inverse Decaying Pulse Response Model. 

The model is represented by: 

In this case, 00 0 represents the immediate impact of the pulse input, 

The parameter 001 l;epresents the delayed response which recedes gradually 

according to the rate of change parameter, o. Beyond these components, 

is the permanent effect, measured by the quantity 00
2

, The second and 

third terms in this model are exactly the same as the two terms in 

the Partially Decaying Pulse Response Nodel. The first term in the 

transfer function implies that only 000 is non~zero and all o's are 

zero. A summary of the interrelationships of these six types of 

dynamic intervention models are contained in Figure 2, 

Relationship Bet'iveen Evaluation by Shifts and Dynamic. Nodels . ' 
lihereas it has bee~ noted that the underlying model of change in 

shift detection represents a subset of the models in the Dynamic Madel 

class, we proceed now to describe the relat:/.onsh~p between this shift 

parameter and all the dynamic models~ These relationships are developed 



Key: A = Constant Step Response Nodel 
B First-Order Step Response Model 
C = Ramp Response Model 
D = Decaying Pulse Response Hodel 
E = Partially Decaying Pulse Response Model­
F = Inverse Decaying Pulse Response Hodel 
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Figllre 2. Relationships Among Si:< Basic Transfer Function Models 

by considering the shift parameter to be sequentially estimated, that 

is, a function of time, 0t' 

For example, consider the first order step response model, in 

which the constant shift w is equal to zero for all time points less 

than T+l and equal to a constant for all time points ~ ~+lt Direct 

comparison with the shift model shO'tvs the sh:i:ft para,meter to be zero 

prior to T+I and equal to a constant for all times ~ T+I~ This is 

seen from direct comparison of the model forms. For the, shift 

parameter model the level at ti~e tis; 

" 
Zt = f\ t = 1)2)'~'iT 

Z = B + 0 t t 
t T+I, T+2 ~ .. " 

wh Q' th t .. . f h ' th 'I:.. • f ere J..>t ~s e ~me ser~es representat~on 0 t e t-, - ouservat~on Or 

any underlying process of the multiplicative ~ov~ng average class. 

Thus if the underlying model was a f:i:rst order ~oving average process~ 

B
t 

= (1-8J3)at . Similarly the constant step response model is 

WJ3S(T) + S 
t t 

St =\0, for t = 1,2, •.• ,T 

II otherwise. 

From direct comparison of these models we see for all values of t less 

than T+I that w 'is zero. For time T+l when St is one, 0T+I is equal to 

w. Table I summarizes the relationships between the shift parameter and 

the parameters of the dynamic models for the six basic models illustrated. 

Here the symbol delta is used to denote the shift parameter and the delta 

primes and omegas are used to denote the parameters of the dynamic models. 

From the table we see that a sequential plot of the magnitudes of the 
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shift parameter versus time gives rise to the shapes of the dynamic model 

configuration in Figure 1. 

It should be noted however that the estimation procedure for delta 

described in [1] does not yield unbiased estimates of the specific 

dynamic model parameters shown in the table. Rather the estimates of 

delta obtained at time tare coupled or confounded with information 

associated with earlier estimates made prior to time t. 

General Methodology for the Identification Algorithm 

We have just seen that the shift parameter has the ability to express 

dynamics within the time series framework. However, we can achieve this 

dynamic property of ° by estimating it sequentially, if and only if we 

incorporate previous estimates .of the parameter into the estimation 

procedure. This means that we must think of delta not strictly as a 

parameter, but as a time-dependent variable in the wadel, denoted by 

Qt. In- the following paragraphs, an algorithm for identifying fo~s 

of intervention effects utilizing successive estimates of 0t over time 

is suggested. 

ro estimate delta at any point in time, we must first specify that 

time, which will be denoted by T. This is equivalent to specifying n l , 

the number of observations before T and nZ' the number of observations 

after time T, whe:re nl + n
2 

= Nand N is the total number of observations 

used in the estimator. The quantities nl and nZ enter directly into the 

estimator as do the observations associated with n l and n2" Thus, b~ 

specifying nl and n2 , we effectively specify which observations· will enter 

into the estimator as historical (before T) data and those 'tvhich will be 
"-

used as "future" (after T) data. Of course, the estimate, at', is also func-

tionally dependent on the form of the ARIHA model noise term and the associated 
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moving-average and/or autoregressive parame!=-er values (Deutsch and Alt, 1976). 

For our purposes, we will denote the MUlA model form as M and the 

parameters from this model collectively as A. Thus, we can write, 

In sequential estimation, we must monitor ~or significant shifts 

if the sequential plot of 6 is to mimic the dynamics of intervention. 

To translate what it means to use past significant values of delta 

in the actual estimation procedure without correction, we refe~ to 

" the functional description of ° given previously_ We know that if 

"-

"Te estimate ° at ti.me T, 0T' with n 2 = 1, we are using the nl 

observations before time T and an additional observa.tion, Yn +1' 
1 

If we let Y denote the observations occurring before time T, we can 
n

1 
write: 

" 
°T = f(n1 '?2,Y

nl
'Yn

l
+l,M,A), 

Suppose we estimate 0T and find that it is significant, i.e., not 

statistically equal to zero. Then, in effect we are saying that there 

has been an intervention effect at time T which is evidenced by the 

change from the previous n1 observations to the observation Y
n1

+l - Thus, 

if we move ahead and stand at time T+l, "tve again let n2=1 and this time 

n* 
1 

= nl +1, lvhere nl was the previous value of nl used to estimate °t 

at time T. Now, an additional observation Yn
l
+2 or Y

ny
+l will be used, 

and Ynl+l will be 'grouped With. the nlobservations (Y
nl

) to form the 

set of ny observations. However, since we have already concluded that 

an intervention effect of significant magI;litude occurred at time T, the 

set of n~l: observations which we are comparing the y ~. observation to is ni 



not internally consistent. That is, the ny set of observations does 

not represent a single population. To form an historically consistent 

" population we subtract the previous significant value of 0, 0T' from 

observation to account for the difference in level with the previous 

observations. We can then proceed to estimate 0T+l' At this point 

in time, we can write, 

st 
where Yny includes the original nl observations and the corrected n1+l--

" observation. Of course, if ° was not statistically significant, then 

no adjustment is needed since 0T is effectively zero and there is already 

consistency betw~en the nl observation and the nl+lst observation. For 

subsequent estima.tes of at' we use the same procedure as we move 

ahead to time T+2, T+3, T+4, etc. The estimation procedure is depicted 

in flo'tv chart form in Figure 3. 

With this identification algorithm, the sample pattern produced will 

not match the theoretical patterns associated with the dynamic intervention 

model exactly but rather will deviate from it. The distortion from 

theoretical patterns are due to the stochastic additive noise component, Nt' 

in particular the form of the noise component and the specific associated 

parameter values. A computer simulation experiment was run to assess the 

nature and magnitude of the descrepancies associated with the stochastic 

components effE~ct in the dynamic intervention model identification. 

Figures 4 through 9 graphically illustrate these variations for each of the 

six dynamic intervention models in the presence of additive noise whose 

form is first order ~utoregressive, first order moving average or first 

order integrated moving average. 
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Consider Figure 4 which contains the chart for the Constant Step 

Response Model. Here we see on a domain of theta, the moving average 

parameter and phi, the autoregressive parameter overlays of the 

theoretical pattern and the observed patterns. For example, when 

e = $ = 0 and the additive noise process is white noise, the theoretical 

pattern is identical to the sample pattern produced by the identification 

algorithm. In all other combinations of the parameters of the additive 

stochastic component, the solid line indicates the pattern produced by 

the algorithm and the dashed line the theoretical pattern. These charts 

can be used to assist in pattern matching the estimated sample pattern 

produced from the algorithm to the theoretical underlying form of the 

dynamic intervention. 

Analysis of Massachusett's Gun Control Law Via Dynamic Intervention Models 

The previous intervention analysis of the Gun Control Lm;r via shift 

detection addressed the question, did a change take place? In this 

re-ana1ysis we employ dynamic intervention modeling to address the nature 

of these changes, specifically focusing upon whether the changes was 

permanent or 'transient. In this re-ana1ysis additional data through 

September 1977 was available. Thus the post intervention period contained 

almost two and one half years of monthly data. 

In the following, a brief review of some pertinent aspects of the 

Gun Control Law are reviewed and the full data set exhibited. After which 

the step by step model building procedures for dynamic intervention analysis 

discussed, starting with the time series data for gun related crimes is 

presented. 



The Updated Boston Gun Control Data 

Gun-related offenses have become an increasing problem in major 

cities. In an effort to deter gun-related crimes, the State of Massachusetts, 

in April 1975, put into effect a law 't.;rhich mandates a one year minimum 

sentence upon conviction of carrying a firearm without a 1icens7. To 

assess the impact of this gun control law, three types of gun-related offenses 

were examined: armed robbery, assault with a gun and homicide. Monthly 

data were available on the number of each of these offenses for the city 

of Boston. 

The Boston gun-control data have been previously analyzed for each 

of the three offenses from January 1966 to October 1975. As described in 

Deutsch and A1t (1977), this approach estimated the effect of the Gun 

Control law via the delta approach. In doing so, the analysis determined 

the magnitude of the intervention effect and ascertained its significance. 

However, the results did not address whether the intervention effect had 

a lasting impact on the three gun-related offenses. The purpose here is 

to discover if the intervention effected permanent change in the time 

series under study, and if so, what form the in'tervention effect took. 

Thus, the analysis in this section will extend and enhance the results 

of the previous analysis. 

Additional data for the present analysis was collected up to and 

including September 1977. The data used in this analysis are presented 

in Figures 10, 11, and 12. The data in, Figures 10 and 11, Boston Assault 

with a Gun (BAG), and Boston Homicide (BOH) respectively represents 

reported monthly Uniform Crime Report data. However, the data for 

Boston Armed Robbery (BAR.) Figure 13, includes all armed robberies, 

whether the w'eapon used was a firearm or other dangerous weapon. Even 
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though separate reports were made for armed robbery wi.th 'veapons other 

than firearms from January 1974, reports before this time were not 

delineated in this manner. Therefore, to achieve consistency, all 

armed robberies, regardless of weapon, were included in the data for 

the entire time period. This configuration of the armed robbery data 

is the same as that used in the previous analysis, so that the results 

are directly comparable. 

Analysis of the Boston Gun Control Data 

The first step in the present analysis 'vas to identify the correct 

model form for the three sets of updated. data using the ARIMA model forms 

proposed by Box and Jenkins (2,6). Plots of the. data along with the 

sample auto correlations and partial autocorre1ations of ·the data were 

studied to postulate a model form for each of the three time series. Plots' 

of the BAG, BAR, and BOH series indicated nonstationarity. Notice the change 

in mean throughout the series in Figures 10 to 12 respectively. Also, for 

the BAG and BAR data, there was strong indication of a seasonal correlation 

at lag t,ve1ve. When a seasonal difference is taken (D=l for S=12) in addition 

to the removal of nonstationarity (d=l), p1ots'of both the BAG and BAR data 

appeared stationary and nonseasonal. Since the BOH data did not appear to 

be seasonal, one difference (d=l) alone was imp10yed to reduce this series 

to a stationary series. 

From the sample autocorrelation and partial auto correlations computed 

the BAG, BAR, and BOH data for the partial autocorre1ations were seen to 

tail off exponentially, while the auto correlations cut off. In addition for 

the BAG and BAR data at lags 1, 12, and 24, the same behavior was noted. 

Thus, a (0,1,1) x (0,1,1)12 model form was tentatively identified 



for BA;R...f'and BAR while a (0,1,1) model form was selected for BOH. The 

parameters of these models were then estimated. For the BAG data, 

sign~ficant estimates (a = .05) of the nonseasonal and seasonal 

moving-average parameters were found to be 81 = 0.837 and 812 ~ 0.748. 

For the BAR data, these estimates were 8
1 

= 0,504 and 812 :=; 0.748. 

For the BOH data, the nonseasonal moving average parameter was estimated 

as 81 = 0.757. Diagnostic checks applied to the residuals of the 

fitted models revealed no inadequacies in these model forms. These 

models are consistent w"ith the results from the prev.ious analyses (6) of the 

three data sets which postulated the same forms of the models with the 

parameter estimates given below: 

BAG: 8
1 = 0.826 812 = 0.775 

BAR: 81 = 0.512 612 = 0.790 

BOH: 81 = 0.810 

The difference in the parameter estimates results from using 141 

opservations (through September, 1977) in this analysis compared to 

the 118 used in the previous one (through October, 1975). These models represent 

the form for the" noise component,.Ne of the dynamic iIlterventioJ1 models. 

The next step in the analysis is to obtain estimates of 0, the shift 

parameter while employing the identification algorithm. To do this, 

the raw data was first transformed to eliminate the seasonal component 

in the BAR and BAG case. The transformed observations (wt's) were obtained 
., 

recursively by 

The rationale for this transformation 

is explained fully in Deutsch and Alt (1977). Because of the assumption 



wl = zl' etc. the resulting 129 wt's were used to obtain an estimate of 

81 for the integrated moving average model. For the BAG data, 81 = 0.836 

compared to the previous value for the raw data of 81 ,= 0.837. For the 

BAR data, the parameter estimates for the raw data and the transformed 

data'tvere 0.504 and 0.483, respectively. 

The seasonally adjusted BAG and BAR da.ta, henceforth referred to as 

TBAG and TBAR, nmv follow an integrated moving-average process of order 

one. The raw BOH data has also been shown to follow this model form. 

The three sets of data are now used to estimate <5 values at n1 = 95,96,.97, ••• 

for n2 = 1. Up t? this point, the procedure for the data analysis is 

identical to the previous analysis. However, we now depart from the 

previous technique by applying the identification algorithm i.e., adjusting 

for significant values of the shift parameter so that the form of the 

dynamics can be unconfounded and identified. 

First, we 'tvi11 consider the results for the BAiG data. Beginning at 

TIl = 94 or October 1974, we calculate estimates of o. We noted a large 

significant shift at n1 = 98 or February 1975 and the Narch 1975 data. 

A negative significant shift of -28 exists at this point in time. In 

the previous analysis, a shift of approximately the same magnitude was 

detected at the same point in time. ,By adjusting for this and subsequent 

significant delta's a pattern should begin to emerge. A plot of <5 versus 

time for a = 0.1 is sho'tYn in Figure 13. The plot suggests that there has 

been a fairly constant decrease with a slight bowing upward. This pattern 

closely mat~hes the expected patterns for the constant step model as shown 

in Figure 4. From this figure we see that for cp = 1 and 8 > 0, as in the 

case of our noise structure, estimated patterns for the constant step function 

will dip from the steady state gain level and then asymptote to the steady 

state value. "The plot of delta's in Figure 13 corresponds to this behavior 
~'\''" 
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with the exception of having a negative steady state level instead of 

the positive level illustrated. 

Thus, a constant change step function model is tentatively entertained 

to describe the dynamics. The estimated parameters and associated'90% 

confidence intervals were found to be; 

II = 0.1406, 

w = -16.4509, 

[ -0.1256, 0.1537], 

[-24.6282,-8.2736]. 

Hodel 1 was overfit with the first order step response model lvhich 

collapses to the constant step model when the rate of change parameter 

is zero. The est.imated value of this parameter was 0.0676 'with a 

corresponding 90% confidence interval of [-0.0877, 0.2229]. Clearly 

this interval contains zero, therefore the constant step response 

model is adopted. The appropriate dynamic intervention model for the' 

ent'ire Boston Assault with a Gun time series is: 

where 

12 (I-B) (l-B ) Zt 

S = t 

w = 
" 6 = 

612 = 

0 t 98 (February 

1 t 98, 

-16.4509 

0.8267 and 

0.7751 

1975) 

Figure 14 contains the shift pattern produced by the identification 

algorithm for the BAR data for a = 0.1 and 0.075. Regardless of the 

choice of alpha there is a pattern of temporally persistent shifts noted. 

Thus, a step input form of a dynamic intervention model is chosen. As 



seen from this figure the two alpha. choices do not yield identical 

patterns with the identification algorithm, the larger value of alpha 

. , results in larger magnitudes in the, latter portion of the time plot • 

It should be noted that the larger the alpha value the greater the 

likelihood that a given estimated shift appears significant and a 

correction will be made for its level. For example, the patterns 

produced up to t = 109 is identical at which point a shift of -59.89 

was estimated with a corresponding significance level of 0.0986. At 

the 0.1 level this estimate is significant whereas at the 0.075 level this 

estimate is not considered significant. Thus for the 0.1 run, observation 

110 is corrected for 8109 (YllO - 8109) whereas in the 0.075 run, YllO 

relnains as recorded (not corrected). Therefore in estimation of 

subsequent delta's in the 0.10 run a gain in estimated magnitude will 

be created above the corresponding value of delta estimated for the 

0.075 run; 

6 ) = t+l,Cl.
2 

l~en both alpha levels produce significant or insignificant delta estimates 

at time t the gain at time t is zero. 

For the choices of alpha exhibited in Figure 14 shifts were noted 

for the .075 value but not the 0.10 value at t =109, 114, 117, 121, 122, 

123, 124, 125 and 128. Thus the latter segment of the 0.10 run has a gain 

above the 0.075 run as exhibited by the larger magnitude estimates. It 

should be noted that the pivotal consideration is t = 109. Given that 

the 109th observation is determined to be consistent with past history 

as with the 0.075 run many more subsequent observations are also deemed 

consistent with thf:' past history which also. includes the magnitude of the 
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l09th observation. On the other hand, if the 109th observation is 

viewed as inconsistent subsequent observations are also deemed 

inconsistent. 

The identification of the specific pattern which suggests the 

tentative model type is obviously a function of alpha. It is recommended, 

as with any statistical inference procedures in 'tvhich a type one error 

is user specified, that a range of alphas should be employed. For the 

most reliable estimate of initial dynamic model identification, patterns 

which stabilize for variation in choice of alpha are recommended. Thus 

we prefer to employ the pattern which is not unduly dominated by a single 

alternative decision of our sequential identification algorithm. 

For Cl = 0.05 a near identical pattern to that obtained for Cl ::: 0.075 

is obtained. Therefore Model.l, a constant step. resp.onse model is 

selected for the BAR data. The estimated parameters and associated 90% 

confidence intervals are: 

II = 5.0560; 

w. = -72.2838; 

[-01.6328, 11. 7452J 

[-124.4209, -20.1467J. 

lbe mean for the observations prior to the point of intervention is seen 

to be insignificant. Overfitting with Model 2 produced an insignificant 

estimate of delta and :Hodel 1 was accepted as the .appropriate dynamic 

intervention component. The final dynamic intervention model for armed 

robbery is: 

where 

12 (l-B)(l-B )Zt 

t < 98 (February 1975) 

t > 98 



'""'----

w = -77.8398 

1'1 

Ell = 0.5128 and 
,. 
612 0.7905 

Figure 15 pictorally represents the output of the identification 

algorithm for the BOH data. The pattern produced here is again ,typical 

of that expected for a constant step response model in the presence of 

an additive noise process which, is represented by an integrated moving 

average process (see Figure 4). The fitted dynamic components parameters 

and associated 90% confidence intervals are: 

11 = 0.5~Q, 1-0.0038, 1.0838J 

w = -3.2524, 1-4.3890, -2.ll58J. 

Again, the mean is seen to be insignificant and the final dynamic 

intervention model for the entire Boston Homicide series is, 

where 

o t < 108 (December 19741 
S = 
't 1 

w = -3.2524 

61 = 0.8100 

t ~ 108, 

and 

Summary and Discussion of Dynamic Hodeling Results 

Dynamic intervention models have been developed for time series data 

of gun related crimes in Boston. In developing these models a newly 

developed identifi,cation algo'rithm which does not require the modeler 

to arbitrarily postulate the dynamic component form was utilized. In 
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time series experiments, replication is not possible. Therefore lack-of-fit 

procedures can't be employed in developing a statistical model that not only 

explains the variation in a statistical sense but is also of the appropriate 

form. In many ways the form of the model is most important, particularly 

since. if;:! form and associated parameter estimates are the primary components 

of the dynamic intervention model that is related to policy inferences. 

The components of the dynamic intervention model that describe the sy~tem 

behavior after intervention can often be represented by several different 

forms that would be adequate in a regression sense alone. However in fitting 

these functions, structure is not only fit but the variation associated with 

the additive noise component is also described. Thus the identification 

algorithm which identifies the form of the intervention component from the 

information contained in the data avoids these pitfalls. 

With the aid of this identification procedure the dynamic intervention 

component for each of the three gun related time series in Boston exhibited 

a constant reduction in the activity level of the gun related offenses. 

This constant reduction was seen to be a permanent change in level that 

perpetuated for the. t'tvO and one half year post intervention period. The 

pe,rcentage reduction in each of these gun related crime series from the 

level without the intervention may be computed by taking the ratio of the 

th . 
constant gain at time t, to the sum of the ~ observed value and the 

steady state gain, 

% changet = 
II) 

x 100. 

The resulting percentage changes for each month of the series were 

computed. The low, high and average over all months in the post intervention 
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period are: 

BAG BAR BOH 

low -19.47 -14.08 -21.31 

average 1-26.99 -18.58 -29.21 

high -36.00 -22.35 -76.47 

As seen from the above summary, sizeable reductions in all three gun 

related crimes were noted throughout the two and one half year post 

intervention period. 

It should be noted that in our earlier analysis, Deutsch and Alt 

(1977), we had found significant reductions for armed robbery and 

assault with a gun but not homicide. In our present analysis with 

dynamic intervention models, the models have a greater resolution 

capability to describe dynamic changes in that a separable component 

that resolves additiveiy with a noise component is contained. 

Previously, with the shift detection method; Deutsch and Alt (1977), a 

negative shift in with a significance level of 0.125 was noted at 

t = 109 but sequential analysis .conducted without the identification 

algorithm masked subsequent significant shif.t patterns. 

The analysis conducted in this paper assumes a single consequence 

intervention process. That is only changes in mean level are addressed. 

In general, one may have a multi-consequence intervention condition in 

which not only the mean level of the process changes between the pre and post 

intervention periods but there is a simultaneous changeirt the covariance. 

The methods and considerations for multi-consequence intervention analysis 

are described in Alt, Deutsch and Goode (1977) • 

• 
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