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Abstract 

,This paper compares various algorithms for th.e d,etection and.. subsequent 
tracing of negative cycles in a graph. Both direct search and shortest 

, ·path methods are examined •. An experimental design is employed to evaluate 
the ef~ects of ' algorithm, nodes, density, and arc distribuCion in detecting 

. ·negative cycles on random networks. Extensive analysis is performed on 
1) the computational time to detect a negative cycle and 2) the sum of the 

.. arc cos;ts arOlmd the··cycle. A third response variable, a quality index~ 
... defined as the absolute value of the sum of the arc costs around the cycle 
.d~vid~d by the computational time to detect ana trace the cycles serves as 

, . -an additional means of comparing. the efficiency;;:.of: t4e algorithms. 
, ,~ 

.. 
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.. -_ .. - . - - -:.....--



Introduction 

Two important approaches to the solution of single commodity neo-rork 

f10N problems are (1) primal approaches and (2) dual approaches. Dual 

approaches rely on the identification of shortest paths in a net'<'7O"rk; vlhereaS,;._ 

primal approaches depend on the detection of negative cycles in a network. 

A number of papers [6,10] have compared various methods for Ioca·ting 

.;snortest paths in a network. However, little work has been doone on the 

determination of nega.tive cycles. In the remainder of this pape.r we sh8.J.l 

. attemp·t to en'TT"Oorat;e the important methods for locating negative ~ycles. We 

. shall Iollow this enumeration with theoretical and computational cQmparisons 

of several of these approaches. Final1y we shall. conclude with a d~cussion 

of' the relative difficulty of locating negative cycles as compared to that of 

locating shortest paths. 

M~thods for Identifying Negative CycLes 
.~ ". 

Literature on identifying negative cycles can ge~e~ally be divided into 

'two major classes: 

1. Shortest path approaches 
" 

2. Direct search approaches. 

'Shortest path approaches attempt to find' the shortest'·path in a netyTOrk~ If 

·they are unsuccessful it is because a negative cycle exists. If the iaformatio~ 

.in these shortest path aigorithms is organized properly, it is 'usually a S~aight 

.~onvard and simple matter to reconstruct a negative cycle when e.n indication' 

of the existence of one is given. 

Direct search methods rely on some specialized property -which negative 

cycles possess. There methods exploit such a property to directly construct 

a negative cycle. 

.!~ ., • _ .. -- ... - ... 
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Shortest Path Approaches 

Nany of the impol"tant algorithms for detecting negative cycles in. a ' 

graph concern locating shortest paths. Given a graph containing N nodes, 

a path bec~een any pair of nodes may contain at most N-l arcs. If a 

shortest path can be found 'tY'hich' contains more than N-l a-x:cs, then. an arc 

must be repeated and a negative cycle formed. 

One of the first computationally efficient schemes for solving this 

2 

" problem was presented by Bellman [2]. Bellman 'proposed' a dYnamic' programming 

algo~ithm for the probl~when the associated arc distances are non-n~gative. 

By the principle of optimality, ~. (the optimal 'distance from node'2 to 
J 

'no~e j) must satisfy the nonlinear system of equations~ 

'IT. ::=: Hin re .. + iii] j ::=: 2, 3, ..... , 
J oJ. • J..] 

l..rJ 

;:<"- ~ .. "" 

1T1 :::: O· 

,Bellman suggested the following ,iterative algorithm 

(k+l) 
'll'j =- Hin 

i,tj 

j = 1 ~ 2, ••. , N 

(k) 
(c- .• + 'II'J..' 
. J..J 

k=O,1,2, ••• 

N 

...... , N 

~..... . 



rr5 k ) represents the mini:c!u:n distance for a path passing through at I!!Ost k 
J 

intermediate nodes. Ternination with the ootimal solution occurs when 
, . 

3 

. '0;:) 
:"J' 

(k-l) . 
= TI.. , J :::: 1:0 2~ ••• , N. 

J 
Convergence is guaranteed in no more than 

, . 
, .;N-2 • ,:> i.e. k :::: N~2, .iterations since no path contains more. than N-1 arcs. 

,- .. ~ _., 

Ford and Ful,kerson [9} presented a sici1ar algorithm which extended to ' ,,"-
, . 

the more general problem where some c .. are negative.. 'When the procedure .. ' 
. 3.J . 

is applied to a problem with sOme. negative distances c .. either con~ergence' ~,-
, .,,' _ . ,,1..J, " '.' , .. , ", 

will occur on or before the (N-l)st iteration, indicating no negative cycles 

',exist and the solution is optimal; or a change in some '1l". will. , J occur, On the 

Nth iteration> indicating the existence of a negative cycle~ 

, " 

only over nodes previously treated, Yen 112], [13], [14] has p:roduced a 

dynamic programming algorithm which reduces the ,amount of ,computational effort 

to N3/2 ... This nt.mibe,:: i~ half. that required by tKe 'original dynarrlc. p:rogramming , 
,-

,algorithms.,of Ford-Fulkerson a1?-d Bellman .. This algorithm also :indicates a 

negative cycle "'-Then a node label (functio::1.al equation) changes value on the 

. ,las t i tera tion • 

Dantzig proposed the first.simplex algorftha for. the ~horte~t path 

.problem' [5]. Bennington 13] refiJ:l.ed this algorithm to show t:~t the s~t of 

basic feasible solutions couler be restricted, to the set of arboresceo.c.e.s 

eent'erea at the origin. .An arboresce.nce. centered at the origin. ~onsists of 

N-l arcs which. form a unique path from the origin to all remaining }lodes 

withou.t fonning any cycles. Bennington also introduced a test for negatl.ve 

" . 

" 

cycles into the simplex algorithm. Being a simplex based method, the "Bennington 

algorithm is of exponential order in the worst case. 

'. 

. , 

" 



Direct Search Appro?ches 

The only direct search method to locate negative cycles is due to 

Florian and Robert (7]. The algorithm is based on a property of negative 
\ 

parti.al sums of finite sequences. The only disadvanta.ge of this algorithnv=-

can be shmm to be its excessive computatio~al t.:."?per bound (v:Lz. exponti.al 

order) • 

~election of Algorithms for ~esting 

We shall restrict our evaluation to the a.lgorithms ,of Ye?-;. Bennington:> 

Florian) ana Ford-Fulkerson~ The first three are considered the most.effi-

. ' 

cient algorithms from the fields of dynamic programmi:ng, linear. pro~ram:rirl.ng:> " 

and direct search methods) respectively. The "Ford-:Fulkersou, also a dynamic 

progr8.JIt!lling based algorithm, has proven its reliability over time and Would 

act a,S a "control algorithm" with which to com?ar;~ the'" performance of the 

remaining trn:::ee algoritbmG. The following section. desc.ribes the algOrithms in 

de'tail including a flowchart depicting the seq:lence of operations for each 

algorithni. 

Flmvcharts for the four algorithms are p:::esented in the 'ap'pendix~ 

E~~eriroental Design 

An experiment 't-1as designed to 'study the e::fect of severa1 factors 'on 

the detection of negative cycles in,a graph. Foariudepeudent variables were 

selected for the experiment. The factors consisted of (1) the specific 

algorith~ used to locate the cycle, (2) the n~ber of nodes in the network, 

(3) thE! density of the netW'ork, and (4) the ciistribution of arc cost. 

,. 

,~ . 

~ ~ ., .. , .-. 
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I 
A list processing approach uas employed so the effect of ne.blOl::k 

representation would be co~on to all four algorithms.' Under list ~rocessittg~ 

only those arcs \vh~ch exist in the neb:-rork a-ce stored in compute):" meI!lOry~ 

Three lists are used to store the originating nodes i) the termin~ting nodes 
-.. ~ -:-. 

j, and the cost associated with arc (Lj) respectivel.y. ,Two additional lists :... 
• of 1 .... -' 

serve as pointers to indicate arcs entering or leaving a desired node. 

A classical Fixed-Effects factorial design consisting of four factors, -

'algorithm, node.s, density, and a-rc distribut.ion was selected nith eac.h factor 

,eva~uated at (4,4,4,3) levels, respectively. Ue't';oJ'orks we-c~ generat~,c1- an~ 

searched for negative cycles using all possible combinations' of ,the follo'}-1ing 

,factors: .' 

A. ,Type of algotithm.""'-t;he algorithm ~sea ~o detec't aud. 

trace negative cycles (Ye:n, Bennington,. F1orlan-Rooe-rt? 

Ford-Fulkerson). 

"::8. Nodes-i:.'he n\l!r!ber of nodres in the network (25,50, 75:t1.00) .. 
if' 

C. Density--the ratio of the number of arcs in the net:worlc 

to the :number of possible arcs if all pairs of nodes were 
" 

conn~cted (.05, .Hi; .15, ~20). 

Distribution of arc costs-the costs assoc:iated 'With the' 

arcs were generated: from a UIl.1.form. ·distrlbud.on ~r.:i.tb 'mean: " 

. .. ,.. 

-= 0, over three ranges corresponding to' a required varianc.e .. 

The, intervals chosen \Vere (-25%25) \! (-125,125)) and (-250,2.50) 

" 

corresponding to a variance of 208, 5208~. and 20833, .. respecf::ively. 

. .' . 

, " 

... 

The problem size was restricted to 100 nodes due 'to limitations in corn.":' .. ,: 

puter storage. The levels of density and the field. The specific levels of 

the three quantitative factors \V'el=-e chosen at t'heextremes and at :i:nter-

mediate levels so as to cover the entire range of interest:. Three observations 

.. "'-.-



~; 

were taken under each of the 192 conditions) U!;;~d.ng a to tal of 576 runs. 

Select~on of Response Variables 

rne initial response variable considered ~;as the computational time 

required to locate and trace a negative cycle i~ a graph. Since each 

algorithm could not be expected to locate the identical' negative cycle> 

6 

"additional response variable of a quality index was also recorded. The qua1:tty _ 

index was defined as the ratio of the absolub:: .... -alue of the sum of 'the arc 

costs around the cycle to the time required to locate and trace the cycle. 

Additional response variables of interest include the value of the ~yc1e 

(the sum of arc costs aroU!ld the cycle) and th~ number of nodes in the 

ne~ative 'cycle. " 

Generating Random Net",;orks 

The generat:i.on of netHorks possessing various combinations of the 

fdregoin~,factors was an integral element of the experimental design. In 

'order to ob~ai!l a valid comparison of the fou:: algorithmsr:Lt was essen.tial 

'. 

, .. 

•• 0 •• 

to test them under identical conditions. That is 1 a network would: be generated. 

with a specified number of nodes, density, and distribution of arc costs and 

each algorithm would receive this neuqork as input and proceeu to search for 

negative cycles. 

To guarantee a connected graph, i~e. eVery pair of nodes are joined by 

at least'one chain, the first N-l arcs were generated to form an arborescence 

in the neb~ork. (Note that the arborescence has required in the application 

of Bennington's algorit~.) Upon completion of the arborescence, additional 

arcs were generated to complete dle requi~ec censity. 
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Empirical Results 

'£he experiment 'Has performed by generating lli4 net~-TOrk5 (corresponding 

to three replications of the factorial design) and applying each of the four~ 

algorithms to locate a negative cycle. \. \.1. .... 

The follotrl.ng resl?onse variables 'Were re.corded throughout the e}l;peximent: 

(1) computational time to detect and txace the negative cycle., , (2) value of 

the cycle, (3) quality of the negative 'cycle, i.e. 1(2) 1/(1), (4) the number 

'of nodes in the cycle, and (5) the distinct nodes of the cycle. A sUIllIIla:ry 

'of 'the quality indices and solution times is presented in Tables I and 2. 

~ analysis of variance (Table 3) pe~formed on the quality ind~x data 

,~evealed a ~'ign1ficant effect (at the:O.05 1eve~) 'due to algorlt:hm, '~rc 

. -, . ' 

distributi.on!) and the algorithm-arc distribution interac:tion. A similar analysis 

, ,of vari'ance executed on computational time (Table ;~) ,d~closed an algor:i.thm-
-, 

node interaction as the single significant effect. This algorithm-node 
;!) , 

"nteraction reveals that as the number of nQdes in the network is increaseo.) 

its effect on computational ,time differs among the.~lgorithr~ cho~e~ t~ 
" ~,.- . ... ' '. 

locate the cycle. The sum. of squares due to all nonsign~fi'c.a.n.t 'effects were 
" , 

" 

. pooled together with the sum of squares due to, error and. the 'analysis ~as 

~eperforme'd_ 'Ihe results of the' /!NOVA confornied with the orlginai ,analysiS~ , 

We' can utilize the mean response data in explaining t'4ese effects. 
, . 

Table l'shows that on the averages negative cycles obt~ined W:tth the illgoritllia., 

of Florian and Robert have 'an associated quality almost six times laJ:ger. than', 
.. 

any other al~orithm. There is no discernible difference in q,uality. over the ," 
levels of nodes or density. The mean response over arc dis trlbution shows a 

perceptible increase in quality over successive levels of this variable. 

. . , 

-, 

.-, 
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The results in Table 2 question the superiority of the Florian and 

Robert algorithm. The mean. computational tine for this algorithm is exceeded 

only by the Ford-Fulkerson algorithm .. Since ~~ality index is inversely 

proportional to computational time, these figures challenge the validi..ty .?~--:.:-

the e:h."Periment. 

In .addition to the contrasting results over quality and computational ,: 

,time with the 'Florian and Rob ert algon tho ~ the lack 0 f any significant effect~ ,,', 

due to nodes is also reason,for concern. Since an iteration.in each algoF~thm 

is a function of the n~ber 6f node~, we ,had originally e::q>ectec1 an. increase' ' 

:in the c'omputational. time (and therefore a decrease in quality index) w:Lth an 

. ,increase in the number, of nodes. 

E}!ami.nation of Table 5 vThich contains the mean res1?ons~s' over ill 

combination::; of algorithms and nodes offers SG:!l6 insight into the problem. 

The dependency on nodes is verified by the respons~s -from three of the four 

algorithms. The algorithm of Florian a.."1.d Robert is unaffected by the number 

of nodes in the network with the exception of the mean computational time 

,for 50 node networks 'which is exceptionally high. This terIii is respqnsible 

for the si.gnificant algoritrlJn-node interactio:l uncovered by tll.e. "NOVA in 

Table 4 .. 
. ' . 

The algorithm of Florian and Robert was re:noved and an analysis of 

'variance performed on the remaining data. The mean response data'is presented 

Tables 6 and 7 while the analyses are shown iU'Tables 8 and 9p 

The anaiysis on quality produced a significant effec.t due to 311 na.in 
, 

factors; algorithm, nodes, density, and arc distribution. In addition~ a1.1 .. -

interactions involving algorithms 'tv-ere found to be significant. The main . 

effects can be verified by examining the ~ea~ responses in Table 6. The Yen 

algorithm produces negative cycles with the ~igheE;t mean, quality. The d:i£ference 

" 
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Table 1. Mean Response--Quality Index 

Density. Arc Dis,tribution 
,'. 

.. 05 12529.6 ( . -25,25) ,1923.4 

.10 ,.14000.7 (-125 ~.125) 12231.8 

.15 : 13563.7 (~250 ,250) , 23638.0 

.20 11630.5 

" . 



Table 2. Nean Response-Computational Time (Sec) 

Algorithm Nodes 

Yen 0.085 25 Nodes 0 .. 10L -

Bennington 0.809 50 Nodes 1~134 

Florian~Robert 0.873 75 Nodes 0.548 

Ford-Fulkerson 1 .. 277 ; 100 Nodes 1 .. 260 

Density' Ar~ Distribution 

.. 05 ., 1.335 ( -25,25) 0.607 

.10 0.601 (-125,125) 0 .. 563 

.. IS (-250,250) .'. 1.1l2 .. 

.~O .. 0.609 
'. 

". 

10 

... 

....... 

.' 

" . .,.. 

. , 

.... '~ I 

. -.. 
.. . ~ 



Source, 

}lain Effects 

Algorithm 

Nodes 

Dcnsity 

Arc Distribution 

Interactions 

A1Borithm-Noc1cs 

l\1gorithm-Density 

Algorithm-Arc Distribution 

-Nodes-Density 

Nodes-Arc Distribution . 

Density-Arc Distr~but~ori 

Error 

Table 3. 

3 

3 

,3 

2 

9· 

9 

6 

9 

6 

6 

519 

*Significant at a s 0.05 level ' 

(1) Entries are in 10
9 

J " 

" , , 

I,' t 

" 

~ 

Sum of 
: §..quD.res (1) 

~11 

.. 
,!, 

167.00 

0.05 

0.49 

1.25 

3.01 

76.40 

3.54 

2.04 

0.41 

151. 00 

.. :' ", 

Me;!n 
,SguD.rc (11. 

55.60 

0.02 

0.·16 

20.60 

0.11,. 

0.33 

12.70 

o. S9 

0.34 

0.07 

,0.29 

. " 

" ' 

, . 
, 
, , 

F-ratio 

191. 71..* 

0.07 

0.55 

71. 0 3~'( 

0.48 

1.lll 

43.79* 

1.34 

1.17 

0.2/, 

; I . 'i, 
,\ I-' " . 

,'I' ': I-' 
, , .. 
~ 
,f, 



Table 4. 

Source 

Main Effects 

Algorithm 3 

Nodes 3 

Density 3 

Arc Distribution 2 

. . 
-. , . 

" , . 

. " . 
f ·Varinncc ... ..:COmptitll·tionii'l Tiltic 

." 

Sum of 
Ss,uare.s 

106.30 

125.00 

64.30 

35.70 

.: . I.! 

Bean 
SquClF.e. 

35.40 

If 1. 67 

21.43 

17.85 

.' I" , 

F-ratio 

1. 56 

1.8tf 

0.95 

0.79 

, " 

·t 

. ., 

y ----,p.l 

" 

.; 
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Table. 5. Nean Response--Algorithm-Node Interaction 

Computational. 
Nodes Quality Time (sec) 

-- .. = ~ .. " . , 
25 5423.8 ~062 

'00 

50 8627.2 ~089 

Yen ' 0' 

15 ' 7674.4 .078 
, 

-... 
100 7033.8 • 108 , . 

" . 
".'. 

25 4153.1 .. 056 

50 1274.2 .325 
,Bennington ' , 

; -
75 410.2 .798 

100 232.4 2~O58 

'" ':~ .. 

'iJ 
25 40150.7 .0050 

50 41141.5 ' 3~4760 
F1ori.an-Robert 

" , 

75 44801.4 ' .0046 

100 42454.5 '.0054 .' 
" " 

' .. 
" ' " 

- .. .... ' " ... . .. ..... " " 
0 ....... 

" , 
" 

" 

: ." :-' . -
25 2055.3 .2820 

: ' 

" ,.5) 819.3 .6440 ", -. 
Ford-Fulkerson , .-

75 402.5 1 .. 3~30 ~ .. 

'-lOa 243.1 2.8680' 

'. 



Table 6. Nean Response--Quality-Exc1ucling 
Florian and Robert's Algorithm 

Algorithm 

Yen 

~ennington 

Ford-Fulkerson 

7189.8 

1517.5 

880.0 

25 

50 

75 

100 
~ .. '" 

Nodes' 

3877.4 

3573 .. 6 

2829 .. 1 

2503 .. 1 
~ 

Density Arc Distribution 

.05 

• 15 

.20 

2013.0 

, 3249.6 

3733.7 

3786.9 

( -25,25) 

(-125,125) 

(-250,25~) . 

668:. 7 

'3570.8 

5347 .. 9 

• '. l 

" 

14 

'_. 
, -."-

, .' 

.' 
... .. . 
., ' 

". 
,," , . 



Table 7. 

.A1gori tbm 

Yen 

, -Be.nnington 

" Ford-Fulkerson 

Density 

.. ~ 
.05 

.10 

, ~15 

.20 
, . . , 

Hean Response--Computatio'nal Time-E~c1uding 
Florian and Rob.ert' s .Algorithm 

0.085 

0.809 

1.277 

0.621 

0.800 

0~662 

0.811 

Nodes 

25 0.133, . 

'50 0.353 

75 0 .. 730 

lOa- - -1.678 

Arc Distribution 

( -25,25) 0.728 

(-125~125) ,0.750 

(:...250,'250) 0.694 

'-

15 

.. -, 
:: .. : 

. 
' ... ' . 

..... 



Table, 8. Analysis'of hr:!.~nce.--Qu..'tli tY-E:K~it!di~g Florfa; 

Interactions 

Algorithm-Nodes 

Algor~thm-Density 

Algorithm-Arc Distribution 

Nodes-Density 

Nodes-Arc Distributio~ 

Density-Arc Distribution 

Error , 

'. 

6 

6 

4 

9 

6 

6 

384 

" . 

obert's Algorithm 

4.97 

S.110 

11.40 
\I 
I 1.92 
" 

, ')1 0.68 

0.85. 

58.49 

'\'Significant at ~ Wl! 0'.05 level': . . ' 

(lj ~~t~i~S ~r~ i~ 108 

,I. 

0$83 

0.90 

2,85 

0.21 

0,11 

.' , 0.14 

'" 
0.15 

~ .". t. • 
I tV I: ,I 

.' 
.. ' 

" '. 

5. 44~" 

5.92~\' 

18. 70~\' 

1./,,0 

0.74 

0.92: 

i • 

• tI .. 
" 



Table 9. Ari~ly~':ts . o~ . V~~ .. a~~e~~do;'l?~tat:l.on~ii Time~Excl~d~rig, 
FloriAn ,nd Robert 1s 'Algorithm 

~.££ 

Main Effects 

A1Bo~ithm 

Nodes 

Density 

Arc Distribution 

Interactions 

,AlBori thm-Nodes 

Algorithm-Density 

Algorithm-Arc Distr1but!on 

Nodes-Density 

Nodes-Arc Distribution 

Density-Arc Distribution 

Error 

'Degrees; of 
Freedom, 

2 

3 

3 

,2 

6 

6, 

4 

9 

6 

", 6 

" '. ',' 384' 
.'' I ~ 

, ~ •. I 

, . 

*Sig~ificant at a • 0.05 level 
I" • 

~" i' 
, , , " 

" 

, ' 

.. 

" " , , 

,', SU!I1 of Hean 
Squares Square, 

103.93 51.96 

150.8B, 50.30 

3.00 l.00 

0.23 0.12 

75.19 12..53 

16.84 ... 2.81 

0.29 ' 0.07 
:1' 

14.2i 
" 

1.58 

'l' .5.56: 0.93 

1.80 : 0.30 

183.82 ' 0.48 
~ 

: t ~ 

'" 
, 'I' 

" . I 
" 

. 

F-ratio 

108.501( 

105, 07'~ 

2.09 

o .2t~ 

26.17'k 

5.87* 

0.14 

3, 30~~ 

1.94 

0.63 

\ 
" 

J 
I , I) 

" 
,\ 

' " ; 1'; ~ , . .. . f 11 : 

, 
" • ,,' . 

; .; .. 
t . , .. 

" , 
' . 
,', 
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in mean quality bet~"een the Yen and Ford-Fulkerson algorithr:!s seems laL"ge. 

enough to create an effect due to algorithn. This data. shm-1s a.n increasing 

complexity of network problems with an increase in nodes. IncL"easing densi.ty 

supplies the ne~vorks with additional arcs and leads to negative cycles of 
._ .;:- ... t 

high quality. The data also indicates that distributing tne'arc 

\'7ide :i;ntervals centered at a 1'7i1l result in negative cycles with. high quality 
- .... -

The analysis on computational time produced a significant effect due to 

algorithms 'and nodes. The algorithm-nodes, algorithm-density and nodes-
. ~.. 

density interactions were'?lso considered to be significant. Table 1 

subst~ntiates the effects due to algorithm 'and nodes. Surprisingly; there' 

'\-TaS no effect on computational time due 'to density. NetworY.s with high den-

,sities contain a relatively large number of arcs and would seem to be' more 

complex than loH density networks. Obviously, the 'analysis has demonstrated 

other~rl.se. The lack of an arc distribution effect is understandable sin~e 
.' . .... . ;;.,.":" ~ 

the variance of arc costs 1-1ould not seem to 'be a computational factor .. 

Selecting the'l-Iost Effective Algorithm 

. . 
It seems reasonable to conclude that on n~tworks for which the 

' .. 

, theore~i6~i up~ei bo~d is 'not: atta~eci,. the Fiorian and Robert algorlthni ..... 

will produce the superior response 'in terms of both quality and. ~omputationa1' 

time. For the user who desires a llegative cyc1e.1-1ith high quality:!' the Yen 

algorithm is favored under most conditions. 

Comparison of Negative Cycles to Shortest Paths 

To compl~te the research on randomly gene.retad networks, we attempted 

to gain a measure of the relative difficulty involved in.ocating negati.ve 



19 

cycles compa-ccd to loea ting shortes t paths. Since three of the four algorithms 

used to detect negative cycles are modifications of shortest path algorj.thrns, 

the ques tioa arose as to vThich ~'7as the. mos t difficult. problem. 

The results shm7 that locating negat:i..ve cycles requires less computational 
-~ ........ 

The answer lies in the te:cmi.na-i:.1ng..', effort than does locating shortest patbs. 
, .. "\ \~-

criterion of the two problems. 
-.. ' ... 

Recall that during the kth iteration ~ the Ford-Fulkerson algoritI1.m 
" . 

.... 
determines the optimal path from ,the source node to all nodes whose shortest" 

pat'll consists of no more thc;m' k arcs. Dur:ing the, same iteration, ,the Yen 

algorithm determines' the shortest path from the origin. to all nod,es mthe 

'kth block of increasing and decreasing sequences. At least one node must 

.. 
become permaneIl:t1y labeled during each iteration: in either al.goritbm., 

.. :' .. 
Therefore, both algorithms terminate with the optimal shortest paths whenever 

the nod'e labels from the success:i.v:eiterations are identical. for all. nodes. 

Corrverg.ence is guaranteed in no more than N-l arcs 0'; b'locks. 'Xermination 

,~ith a negative cycle may occur as early as the 2nd iteration~ 

Termination of the simplex algorithm ~dth the shortest paths or a 

negative cycle is a function of the initial basic feasible solution and'the 

manner in which. nonbasic arcs are chosen to' enter' the basi~. Ther~, is.' ~o 

evidence to indicate that this algorithm. detects negative cycles "faster" 
".. . . . .. 

than it locates shortest: paths. Empirical results have ShOT..rO, the Benning~on 

.. 

. , , . 
algorithm to b~ the most sevE7re'ly affec.ted algorithm in terms of computational:' 

time in locating negative cycles as the percentage of negative arcs in the 

network decreased. 
". 

Applicati<.m to the Ninimal Cost Flo{v Problem . . 

\ole have, thus for reported computational experience in locating negative 

cycles on randomly generated nea~or1-.s. ,Once a negative cycle u'as found) the 
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neCHorK ~"as U.L~'--CJ.'-' • .I.\::. ..... l and a net·' net\'70rk crec.te~"'lith different negative va~ue 

't.fill req1..tire the tracing of fet.;rer negative cycles in an iteration of Klein's 

[111 algorith..-u than "fill an. algorithm 't-Thich Goes not concexn itself w'ith the 

value of a negative cycle. Although this is cot a'statistical test of 

.0 

hypotheses, the result is encouraging and varran.ts further research. 

The computational experience 'with the 'Florian and Rob~rt algorithm. 'Was 

disappointing. A number of networks arose which approached the. t1:teoret:i.ca~ 

upper bound of this algorithm. 

'Any difficulties encountered with this algorith~ on random nebHorks are 

" 

acce.ntuated in the minimal cost flow probleB since the.entire problem consists 

of' examining similar net,-rorks. ·That is, if while solving a minimci1 cost flm~ 

. probl~ uSin& Klein's 'algoritlmi. a nett~ork arises 'Which cause,sFlo~an and . ': 

~oberts '8 algorithm to approach its computational upper bound, then the following 
. , 

t1.eowrk is also likely to p~esent problenis for the algox:~tgm.." 'i'he rationale 
"'''... . ... 

. . '; 

is that once a negative cycle is identified on a marginal cost network; flow 

is sent around'the cycle and the new marginal cost'network is formeQ. The new 

marginal cost network will differ from the pJ;"evious one in at most k (2<k<N) 

arcs;, i. e. those arcs corresp'onding to the negativ~ cycle. Therefore~ Klein's 
, .' 

algorithm.' will retain a so' c~11ed "badlf net'wo-rk imtil the min:i..uial ~ost fTow 
~ < -. ~" •• 

: ~. ~: .. ...... . 

is obtained. This contrasts our experimental "ru..'1.S" in 'which a network was 
~ . ~, .. ~ . . . . 

disca.rded after a single negative cycle was located: This evaluation may not 
, 

b'e a true indication of how well an algoritp-. will peI"form. ·when applied to 
," 

locate negative cycles in a practical proble.=. Therefo:re, as a final evaluation;" . 

the four algorithms were employed to loca.te'~egative cycles in Klein's algorit~ 

for Inini.mal cost flow problems. 

Over the set of pr.oblems solved, Benni~gton's algorithm produced the 

fastE:st avera.ga solution. t.:i.me~ This can be attributed to the "resta.rt" procec:Lure 
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,.,hich distinguis.hes the Bennington algorithL:! from the remaining algorithms 

'Hhich store no informat:i .. on from the previous cycles and must be "restarted" 

from scratch. By utilizing the "restart" technique, the initial arborescence 

in the Bennington algorithm need be created only once. After a negative cycle -. , 

is located, an arborescence for the new marginal cost nettwrk is obtained" .. .,.. •.• -

from a modified version of the previous arborescence along ,·r.i.t'h the reverse 

arcs from the negative cycle. 

The comput:ati~nal experieI1ce shm'7ed that both the Yen and FOJ?d-Fulkerson 

algorithms were required~ on the ~verage,' to locate fewer negative' cYcle.s' in" " 

a minimal cost flO'\-1 problem than were the Bennington or Florian-Robert: algorithms': 

An analysis also shm-led that the negative cycles detected. by the Yen. and Ford-

J,pcated 'by the other t'tvO algor:Cthms. 

Conclusion 

The empi:ricai results show the Florian and' Robert direct search method 

to pe superior to the remaining algo~ithms in locating neg~tive. c.ycleson 

random networks. The application of the algorithm in, Kle~n' s min:i.mal cost 
• . .' • f ..' •• • ~ .. 

• flot~ algorithm:p~o-duc~s' disappoiritmg' results. When' a marginal :c~st' ne~'T;~k"" , .. :: -
o· " 0" 

.,' 

pJ:'ese;nts ·a· difficulty to the direct searchmethod,thla next ma.rginal cost-

.-' 

" 
~ .',,: .. ~ 

.net~vork (differing from the previous net",,!ork,in k arcs corresponding to t:he 

~egative cycle) will also cause' difficulties to Florian a~c1 RobertI's aigo'rithm~' 

Contrasting Flori<>.n and Robert's algorithm was the Bennington algorithm~' . 

The true capability of the latter vas not realized untii the algorithm was 

applie,d to the minirnal -cost flmv problem. 

l'he' Bennington algorithm is the only 'algorithm ";'1hich retains informa.tiot:( 

from previous cycles. This information ~ ... as of n~ value taus in the experiment . 

inl-lhich the nettvork ~'7as discarded once a negative cycle was located: An 
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algorit1un like the Bennington algorith..ru, ,.hich possesses 2. "restart" procedure, 

is intuitively appealing and its relative 'Horth ~ ... as presented in the minimal 

cost flmv problem in \·7hich it produced the lo-..;~st average time per problem 

·solved. 
.. .., .... -

The Yen algorithm \Vas probably the overall nost efficient of the four /' 

algorithms tested. It' returned a negative cycle of reasonably high quality: 

in a fairly 1mV' average computational time o'l;er the entire e>:periment.. The 

algorit~m was not· severely .affected by any particul,a:r c.ombinat~on of the 

independent f~ctors comprising a network. The algorithm performed 'favorably 

in the minimal, cost flow problem as well as in locating the shortest paths 

when negative costs were allowed. Yen's algorithm has the lowest theoretic.al 

L~per bound on the number ?f required computations and this fact coupled 

with the empirical evidence recollIUlends the 2.lgorithm as ,the most dependable .. ' 

~he o,~Y dra'tvback would appear to be in progr"",ning the al&orithm. for 

efficient use on the computer. 

The Ford-Fulkerson algorithm was used pri=larily as a ,rlcontroln'algorithm 

" 

" 

, ' 

against which to compare the remaining algorithms. The Ford-Fulkerson algorithm' 

has withstood the test of time and produced respectable resul.t:s in Doth the . 
. , 

prov~ding the fastest computational tim~, did produce~ on the ave~age~ the, 

"most negati.ve" c.ycle. ~nlike. the Yen algo,rith,1-n., its strongest attribute is 

, , 

tbat the Ford-Fulkerson algorithm is easilyprograromed for implementation on 

the computer. 

", 

. , .... 

" 

", 
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