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Stationarity and Invertibility Regions for Low Order STAR}~ Models 

by 

Phillip E. Pfeifer 

and 

Stuart Jay Deutsch 

Summary 

The building of STARMA, space-time autoregressive moving average, 

models requires a 'tl7orking kno'tl7ledge of the conditions under which a 

particular model represents a stationary process. Constraints on the 

parameter space that ensure stationarity are developed for all STARMA 

models of autoregressive temporal order less than or equal to two and 

spatial order less than or equal to one when the model form utilizes 

sc~led weights. Invertibility conditions for these same models a~e 

also given. 

KeY'tyords: 

STARMA Stationarity Conditions 

STARMA Invertibility Conditions 

STARMA Modeling 



1. Introduction 

The STARMA. space-time autoregressive moving average, model family 

has proven useful in modeling time histories of spatially located data 

(1,2,3,7). This model family utilizes the spatial autocorrelation usually 

exhibited by space-time series to provide an efficient representation of 

the system. 

The basic mechanism for this representation is a hierarchical spatial 

ordering of the neighbors of each site and a sequence of ,veighting matrices, 

H(.9·). Matrix W(~) has elements w •. (~) that are nonzero if and only if 
~J 

sites i and j are ~th order neighbors, and W(O) is the identity matrix. 

.. ': 

.where 

The STARMA family of models takes the form 

p Ak cp W(~) z (t) L L z(t-k) 
I'IJ k~ I'IJ 

k=l ~=O 

q t<. o W(9.)· (t-k) E + e: (t) [1 ] 
k=l ~=O 

k9. t . I'IJ 

z(t) is the Nx1 vector of observations at the N locations in the 
I'IJ • system at t~me t 

.t(t) is the vector of unexplained residuals at time t 

p is the autoregressive order 

q is the moving average order 

Ak is the spatial order of the kth autoregressive term 

~ is the spatial order of the k th moving average term 

4i I·· k9. are parameters 

ekJl. 
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E[~(t)] = R, 

E[~(t) ~(t+S)I] = 
s=o 

otherwise 

This model is referred to as a STARMA/p ,Q ) model. 
~ AJ.,A 2 ,···Ap '"m

1
,m2 , ••• mq 

Two special subclasses of the STARMA model are of note. When q=O, 

only autoregressive terms remain and hence, the model class carries the 

label space-time autoregressive or STAR model. Models that contain no 

autoregressive terms (p=O) are referred to as STMA models. 

The purpose of this paper is to investigate the conditions under 

which the process generated by [1] is a stationary stochastic process. 

In model building, the selection of a unique represent~tion of a given 

2 , 

space-time system requires restriction of the parameter space to be equi-

valent to the stationary domain. That is, a covariance structure does 

not uniquely identify a particular model form unless the model parameters 

are required to fall in the stationary region. 

Section 2 defines stationarity of the general multivariate ARMA model, 

o.f which the STARMA is a special case. Section 3 examines the stationarity 

of the STAR(211) model, a second order autoregressive model of the first 

spatial order. Stationarity conditions on the 4 parameters of this model 

are developed for the case of a general scaled W(1) matrix. A SC'aled 

n (t' 
weighting matrix is one in which L w .. ) = 1 for all i. From the station-

j=l ~J 

ity region of the STAR(2
11

),·the corresponding regions for the STAR(2
10

), 

STAR(2
0

,O) and STAR(ll) follow directly. These regions are presented and 

displayed. 

Whereas all moving average models are stationary (thg stationarity of 
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a model is a function only of the autoregressive terms), one usually re-

quires that the moving average terms be such that the model is invertible. 

Section 4 discusses invertibility of the STMA model. 

2. Stationarity and the General Hultivariate ARNA Process 

A discrete-time vector process, z(t), is called stationary if for all 
"'. 

nand h, the distributions of ~(tl),~(t2), ... ~(tn) and ~(tl + h),~(t2 + h), 

... z(t + h) are the same. If the ~(t) have finite mean square, this means 
'" n 'v 

that 

E[z(t) z(t+s)'] = E[z(t+h) z(t+h+s)'] = res) 
'" '" '" '" 

and the covariance between observations s time lags apart does not change 

with time. 

'. Consider the vector process generated by the generai ARMA model 

z(t) -
'" 

P 
l: 

j=l 
B(j) z(t-j) 

'" 

q 
~(t) - 1. A(k) ~(t-k) 

k=l 
[2 ] 

where the B(j) and A(k) are NxN square parameter matrices, 'p is the auto-

regressive order of the process, q is the moving average order and the ~(t) 

are random shocks with 

l Go E[~(t) ~(t+s)'] = 
s=o 

otherwise 

It is clear from this formulation that E[~(t)] = R. 
The conditions for stationarity of this general multivariate model 

can be found in (4) and are repeated here without proof. 

solves 

[ 

p 
det x P I - l: B(j) 

, u 1 j= 

p-j 
x 

u ]~Q 

If every x thC!.t 
u 

[3] 
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lies inside the unit circle (Ix 1 < 1), then the vector process [2] ~vill 
u 

be stationary. 

3. Stationarity Conditions for the STAR Model 

It is clear that since the STARMA model is a constrained version of 

the general multivariate ARMA model; the stationary conditions for the 

general model can be used to test for stationarity of the ST~~. In 

particular we will address the stationarity of the STAR(2
11

) model and 

derive constraints on the parameters of this model that will ensure 

stationarity conditions for simpler models can be determined by setting 

'to zero certain parameter(s) of the STAR(2
11

) as we shall see. 

The STAR(2
1l

) model 

z (t) 
'V 

is therefore stationary if every x that solves 

det [xu21 - (010
1 + ouw(:llXu - (0201 + 021W(l)l] -·0 

Ix I < 1. This is equivalent to requiring that every x solving 
u u 

: has 

det r( + J, )W(l) _ (x 2 l ~11xu ~21 u - ~10xu 

[4] 

[5 ] - <1>20)1 J = 0 

2' 
lies inside' the unit circle. Letting A (xu) =.(xu - ~lOxu - ~20)' it is 

easily seen that A(X
U

) are the eigenvalues of the matrix C = (~l1xu + ~21)w(l) 

It is known cf. (5) that if A is an eigenvalue of the square matrix 

C =' {cij L then A lies within or on the boundary of at least one of the N 

circles in the complex plane defined by 

I c .. 1· 
1.J 



For the case at hand C = (Pllxu + <i>21)w(1) and since 'l7ii (1) = 0 and 

N 
~ w .. (1) = 1 for all i, these N circles are all identical to 

i=l ~J 

Thus, substituting for A(X ), we have that every x solving [5] neces-u u 

sarily satisfies 

5 

[6 ] 

Our task is nml7 one of finding the largest set S C R4 such that if 

(~1O'~1l'~20'~21) E S then every Xu satisfying [6 J also has IXul < l. 

Any set with this property will be a stationarity region for the STAR(2
U

) 

model since it has been shown that all solutions to [5] also satisfy [6] • 

Req~iring all x satisfying [6] to lie inside the unit circle will there­
u 

fore ensure stationarity of [2]. 

Since we are interested in ensuring that every x that solves Ix2 -

4>lQx- <1>20 1 .::. l~llx + <1>211 has Ixl < 1, consider the nonlinear programming 

problem 

maximize x 

subject to 

Substituting x = a + bi, where a and b are now real numbers we have 

maximize (a2 + b2)~ 

subject to 

[<a' - b' - "lOa - "20)' + (2ab - "lOb) .]'" ~ [<.11 a + .21)' + <"lIb) .]", 



6 

Upon squaring both sides of the constraint, multiplying and rearranging, 

we arrive at an equivalent problem 

k 
maximize (a2 + b2)2 

subject to g (a, b) < 0 ~vhere 

* )~ 
We will now show that if (a ,b ) is an optimal solution to this problem, 

* * ·then it is necessarily true that g(a ,b ) = O. Suppose we have an optimal 

* * * * * * solution (a ,b ) that satisfies g(a ,b ) < '0. Then (a ,b ) is also an op-
1 

timal solution to the unconstrained problem maximize (a2 + b2)~. But 

obv.~ously the optimal solution to the unconstrained problem is unbounded. 

'therefore 
~ 

any optimal solution to the problem maximize (a 2 + b 2 ) 2 subject 

to g(a,b) :5.. 0 must satisfy g(a,b) = o. 

We will now procede to find a set S such that if (~10'~11'~20'~21)E S, 

then every solution tb 

[7] 

lies inside the unit circle. From the above arguments, every solution to 

[6] will also lie inside the unit circle, and S will be a stationarity re-

gion. 

There are four solutions to [7]: 

(~10 +$11) + "(~10 + ~11)2 + 4(~20 + ~21) 
2 

($10 + <P 11 ) -" (</>10 +~11)2 + 4(~20 + ~21) 
2 
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d ' h l' f h . 2 '" '" correspon J.ng to t e so utJ.ons 0 t e two equatJ.ons Xu - 'l'10Xu - '1'20 = 

that 

Iy - 1)'2
2 

- 4vl Iy + ly22 - 4vl "- - < 1 and - < 1 if and only if 

Iyl < 1 + v 

and v < 1 

to construct the set S that ensures Ix I < 1 u = 1,2,3,4. The resulting 
u 

-$20 - <P21 < 1 

1$10 + <PIli < 1 - cf>20 - cf>21 

-<P20 + <P21 < 1 

1<p 10 - cf>111 < 1 - <P 20 + cf>21 

which can be rewritten as 

[ 8] 
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Constraint set [8] serves to define the set S of (~10'~11'~20'~21) values 

that ensure stationarity of the STAR(211 ) model. 

Stationarity regions for other low order STAR models can be found by 

setting to zero certain parameter(s) in constraint set [8]. In particular, 

the stationarity region for the STAR(2
10

) model is found by setting ~21 = 0 

and combining to give: . 

-1 < ~20 

1~101 + I~lll < 1-~20 
[ 9J 

This region is pictured in Figure 1. 

The stationarity region for the STAR(200 ) results when ~11 and ~21 

are zero. The resulting region 
'. 

-1 < ~20 
[ 10] 

I ~1O·1 < 1 - ~20 

is seen to be identical to the stationarity region of the univariate AR(2) 

region (Figure 2). 

In a similar manner, the stationarity region for the two parameter 

STAR(ll) model can be found by setting ~20 and ~21 equal to zero giving 

[U] 

This region is shown in Figure 3. Finally the STAR(1
0

) model has a single 

stationarity constraint l~lOI < 1, identical to the AR(I) condition. 
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4. Invertibility Regions of the STMA Model 

It can be seen from the general form of the STARMA model [1) that 

there is a duality between the autoregressive and moving average terms 

of the STARt-lA. The autoregressive terms of the model modify the obser-

vations in exactly the same way that the moving average terms modify the 

residuals. 

\ve have just developed constraints on the autoregressive pa17ameters 

of the STAR model that ensure a stationary model. The observations from 

a stationary process can be expressed as a weighted linear combination 

of current and past residuals, and furthermore these weights will con-

verge to zero as the time lag increases. It should be clear, then., that 

,the st'ationarity constraints applied to the moving average parameters 

will ensure that ~(t) can be expressed as a weighted linear combination 

of current and past errors with weights converging to zero. This property 

irs called invertibility, and consequently the invertibility regions for 

various Imv order STMA models, are simply the ,S'tationarity regions o:f the STAR 

with Sf. replacing ~ .. ' 
J 1.J 



.' 

5. Conclusions 

The stationary and invertibility regions are developed for those 

models from the STARMA model class with temporal order less than or 

equal to two and spatial order less than or equal to one. These re­

gions apply to the STAR}~ model using general scaled weights. 
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Figure la. The Stationarity Region of the STAR(2
10
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Figure lb. Stati?narity Contours for the 

STAR(2
10

) Model at Various Values of 1¢11 1 
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Figure 2. The Stationarity Region of the STAR(200) Model 



1 

-1 

Figure 3. The Stationarity Region of the STAR(ll) Model 
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