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A three-stage iterative procedure for building space-time models is presented. These models 
fall into the general class of STARIMA models and are characterized by autoregressive and 
moving average terms lagged in both time and space. This model class collapses into the 
ARIMA model class in the absence of spatial correlation. The theoretical properties of STAR­
IMA models are presented and the model building procedure is described and illustrated by a 
substantive example. 
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I. INTRODUCTION 

A flexible class of empirical models is the multipli­
cative autoregressive moving average model family. 
These models, together with the model building pro­
cedure commonly referred to as the Box-Jenkins 
method (see Box and Jenkins, 1970), have proven 
very useful in a wide spectrum of statistical analyses 
(Box and Tiao, 1975; Deutsch, 1978; Deutsch and 
Alt, 1977; Deutsch and Ogelsby, 1979; Deutsch and 
Wu, 1974; McMichael and Hunter, 1972). Since these 
models are univariate, however, they are applicable 
only to single series of data. Thus, although statistics 
are often available over a region in space, univariate 
models can only deal with the history at one particu­
lar point or region in space, or effectively work with 
data from several distinct regions which have been 
aggregated to form a larger but single region of 
space. An alternative to univariate time series mod­
eling is multivariate time series modeling (Gold­
berger, 1964; Granger and Newbold, 1977; Hannon, 
1970; Phadke and Wu, 1974). These models attempt 
to simultaneously describe and forecast a set of N ob-
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servable time series. When these N series represent 
patterns of the N regions, the interrelationships be­
tween the different regions can be taken into account 
and thus a better systems description should result. 

A further refinement of a general multivariate time 
series model can occur if the system to be modeled 
exhibits systematic dependence between the observa­
tions at each region and the observations at neigh­
boring regions. This phenomenon is labeled "spatial 
correlation," and was referred to by Cliff and Ord 
(1973): 

If the presence of some quality in a county of a coun­
try makes its presence in neighboring counties more or 
less likely, we say that the phenomenon exhibits spa­
tial autocorrelation. 

Models that explicitly attempt to explain these de­
pendencies across space are referred to as space-time 
models. 

The purpose of this paper is to describe the exten­
sion of the three-stage iterative model building pro­
cedure developed by Box and Jenkins to accommo­
date the space-time, time series model class of 
ST ARMA models. In Section 2 of this paper we pro­
pose a comprehensive class of space-time models that 
are characterized by the autoregressive and moving 
average forms of univariate time series lagged in 
both time and space. These types of models have 
been referred to as space-time autoregressive moving 
average (STARMA) models (Cliff et aI., 1975; Cliff 
and Ord, 1973; Marten and Oeppen, 1975). Section 3 
develops the general procedures for the identification 
stage in which a tentative ST ARMA model is se­
lected. The identification of a tentative model from 
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FIGURE 1. Spatial order in two- and one-dimensional systems. 

data structure is the first stage of the three-stage 
iterative model building procedure. Section 4 deals 
with the second stage of the modeling procedure, es­
timation, or the fitting of the tentative modeL The 
last stage, diagnostic checking, is the subject of Sec­
tion 5. Here the adequacy of the fitted model is tested 
so as to give direction for updating the tentative 
model if it is inadequate. Section 6 presents a sub­
stantial application of the space-time model class and 
its associated modeling procedures to actual reported 
crime data for the city of Boston. 

2. THE SPACE-TIME AUTOREGRESSIVE MOVING 

AVERAGE MODEL 

The ST ARMA model class is characterized by lin­
ear dependence lagged in both space and time. As­
sume that observations z;(t) of the random variable 
Z;(t) are available at each of N fixed locations in 
space (i = 1, 2, ... N) over T time periods. The N lo­
cations in space will be referred to as sites andean 
represent a variety of situations. For instance, these 
sites could be the counties of a state, the districts of a 
city, or the cities of a nation. The autoregressive form 
of the space-time model would express the observa­
tion at time t and site i, z;(t) as a linear combination 
of past observations at zone i and neighboring zones. 
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If the same relationship holds for every site in the 
system, the process is said to exhibit spatial station­
arity and is thus amenable to these forms of space­
time models. 

To assist in the formulation of this space .. tulfle 
model, the following definition of the spatial lag op­
erator is needed. Let Df), the spatial lag operator of 
spatial order I, be such that 

DO)zm = z;(t) 

N 

Df)z,(t) = L WIj(f) zit) 
j-I 

where wlj(f) are a set of weights with 

N 

L wif)= 1 
j-I 

for all i and WIj(f) nonzero only if sites i and j arerh or­
der neighbors. The matrix representation of the set of 
weights wlj(f) is W(f), an N x N square matrix with 
each row summing to one. 'If z(t) is an (N x 1) col­
umn vector of the observations z;{t), i = 1, 2, ... N, 
then 

and 

L(f)z(t) = W(f)z(t) for I> O. 

The specification of the form of weights WIj(f) for 
various positive I's is a matter left up to the model 
builder who may choose weights to reflect the config­
uration of, for example, the county system. The WIj(f) 
may be chosen to reflect physical properties of the 
observed system such as the length of the common 
boundary between contiguous counties i and j, the 
distance between the centers of counties, natural bar­
riers such as rivers or mountains and even the ease of 
accessibility of county i to county j. This last factor 
might include such things as the number of roads be­
tween i and j, the amount of public transportation 
available connecting the two, and even the flow rates 
upon these avenues. 

These weights, however, must reflect a hierarchical 
ordering of spatial neighbors. First order neighbors 
are those "closest" to the site of interest. Second or­
der neighbors should be "farther" away tha~ first or­
der neighbors, but "closer" than third order neigh­
bors. For regularly spaced systems, a workable 
definition of spatial order is available (see Besag, 
1974). Figure 1 shows the first four spatial order 
neighbors of a particular site for both a two-dimen­
sional grid system and a one-dimension line of sites. 
This definition of spa.tial order represents an ordering 
in terms of euclidean distance of all sites surrounding 
the location of interest. 

With this definition of spatial order in hand, we 
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are now ready to present the ST ARMA model. .Anal­
ogous to univariate time series, z/(/) will be expressed 
as a linear combination of past observations and er­
rors. Here, however, instead of allowing dependence 
of ztC/) only with past observations and errors at site i, 
dependence is allowed with neighboring sites of vari­
ous spatial order. In particular 

~k 

z;(t) = t ~ cf>kIDI)Z/(t - k) 
k-I 1-0 

- i:: ~ OkIL(/)e/(t - k) + etC/) (1) 
k-I 1-0 

where p is the autoregressive order, q is the moving 
average order, Ak is the spatial order of the k1r. autore­
gressh~e term, mk is the spatial order of the klh mov­
ing average term, cf>kl and Okl are parameters, and the 
e/(t) are random normal errors with 

E[E;(t)] = 0 

E[e;{t)ep + s)] = {~ i=j,s=O 
otherwise 

This model is referred to as a ST ARMA (P~l' ~" ... ~.' 
qml.m2 .... m.) model. 

The same model in vector form is 
~k 

z(t) = t ~ cf>kIW(I)Z(t - k) 
k-I I~O 

with e(t) normal with mean zero and 

{ 
<f2I 

E[e(t)e(t + s)'] = ON 
s=O 

otherwise 

Two special subclasses of the ST ARMA model are 
of note. When q = 0, only autoregressive terms re­
main, and hence the model class carries the label 
space-time autoregressive or STAR model. The 
model 

~k 

z(t) = t 2: cf>kl W(I) z(t - k) + e(t) (3) 
k-I 1-0 

is referred to as a STAR (P~,.~;, .... ,,) model. 
Models that contain no autoregressive terms (p = 

0) are referred to as STMA models. The model form 
q m. 

z(t) = e(t) - ~ 2: OkIW(1) e(t - k) (4) 
k-I 1-0 

is a STMA (qm,.m2 .... m) model. 
In order for the ST ARMA model to represent a 

stationary process, one in which the covariance struc­
ture of z(t) does not change with time, certain condi­
tions must be met. These conditions are called the 
stationarity conditions and require that every Xu that 

solves 

det [x/ I - t ~ cf>kl W(I) x/-k] = 0 
k-I 1-0 

lie inside the unit circle (Ixul <1). Effectively this re­
quirement serves to determine a region of possible cf>kl ' 
values that will result in a stationary process. 

If the same conditions are applied to the moving 
average terms in the ST ARMA model, namely if 
every Xu that solves 

lies inside the unit circle (lxlIl<I), then the model is 
said to be invertible. The invertibility property im­
plies that z(t) can be expressed as a weighted linear 
combination of past observations with weights that 
converge to zero. It is clear that all STAR models are 
invertible and all STMA models are stationary. 

3. IDENTIFICATION OF ST ARM A MODELS 

The most pressing questions encountered when at­
tempting to utilize these forms of space-time models 
are: which of the model forms (STAR, STMA, 
STARMA) is most appropriate for the data at hand, 
and what are the temporal and spatial orders 
(p,q) .. ,m) of the model form? These questions are an­
swered in the identification stage of the three-stage 
model building procedure. 

Identification is the process by which one subclass 
of the general model class is chosen that exhibits the­
oretical properties most closely matching those esti­
mated from the data. The techniques of identifica­
tion involve summarizing and categorizing the data 
to yield information that best matches the observed 
process with a subclass of models. In univariate time 
series modeling, the primary tools in identification 
are the autocorrelation and partial autocorrelation 
functions. Choosing between the three general sub­
classes of models (AR, MA, ARMA) is a matter of 
determining whether the partial autocorrelation 
function cuts off, the autocorrelation function cuts 
off, or they both tail off. 

To identify space-time models, it is usually a good 
idea to combine the }(l possible cross-covariances be­
tween all possible pairs of sites in a logical manner 
consistant with the forms associated with the pro­
posed model class. The result is labeled the space­
time auto covariance function, a function expressing 
the covariance between points lagged both in space 
and time. 

Using the definition of the spatial lag operator pre­
sented previously, an average covariance between the 
weighted fh order neighbors of any site and the 
weighted klh order neighbors of the same site at s 
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time lags in the future would be 

( ) 
_ E {~ DI) ZI(t) l}k)z,(t + S)} 

Ylk s - £..J N . 
I-I 

(5) 

Here Ylk(S) is referred to as the space-time covariance 
between rh and k'h order neighbors at time lag s. This 
formulation assumes that E (ZI(t)} = 0, and hence, 
will often require a centering of the system about the 
overall sample mean i. 

In vector notation the space-time covariance func­
tion can be expressed as 

{
[W(I) z(t)]' [W(k) z(t + S)]} 

Ylk(S) =E N (6) 

which can be seen to be equivalent to 

{
W(k)' W(I) res)} 

~OO=~ N m 
where res) = E [z(t) z(t + s)'] and tr[A] is the trace of 
A defined on square matrices as the sum of the diago­
nal elements. 

The usual estimator of res) 

res) = ~ z(t) z(t + s)' 
1=1 T-s 

(8) 

may be substituted into (7) to obtain sample esti­
mates, Ylk(S) , of the space-time autocovariance func­
tion. Alternately one could estimate directly via (5) 
as 

N T-s 

L L Dl)z;{t) Dk)z,(t + s) 
A () .!:.i-:!I-.!:.'-:!I ______ _ 
Ylk S = N(T- s) (9) 

In particular note that 

Yoo (8) = ~ tr [res)] 

which equals the average of the S'h lag autocova­
riance for all N sites. Also 

I 
YIO (s) = N tr [w(I)r(s)] 

is the average over all sites of the covariance between 
each site and its weighted first order neighbors s time 
lags previous. 

The space-time covariance has the important prop­
erty that 

(10) 

This follows from (7) and the fact that tr [AB] = tr 
[BA] and res) = r(-s)'. In particular from (7) 

Ylk(S) = ~ tr [W(k)'W(l)r(s)] 

which also equals 

.!.. tr [r(s),wCI)'W(k)] 
N 
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since tr [A] = tr [A']. Rearranging we have 

Ylk(S) = .!. tr [W(I)'W(k)r(s)'] 
N 

which equals 

-.L tr [W(I)W(k)r( -s)] or Ykl-s). 
N 

The definition of space-time autocorrelation is not 
as straightforward a matter as it is in the univariate 
domain since there are several possible scalings that; 
might be used (see Martin and Oeppen, 1975). One is 
interested in a definition that leads to sample auto­
correlations that have constant variance at all spatial 
lags. A suitable definition for the space-time autocor­
relation between rh and k'h order neighbors s times 
lags apart is 

Plk(S) = lYnCO) Ykk(O)] 1/2 
(II) 

This definition is preferred because the variance of 
its sample estimate has been shown to be relatively 
constant for all spatial lags (Pfeifer, 1979). 

The sample estimates of the space-time autocorre­
lation coefficients follow quite naturally to be 

(12) 
N T-S 

L L D/)Z;{t)L'k)Z;{t + s) 
I-I I-I 

[~ t (D"z,(t)?· ~ ~ (DklZ;(t»2f
2 

Once the sample autocorrelation function has been 
calculated via (12) the selection of a candidate model 
from the ST ARMA model family is still not· an easy 
task. Although each of the particular models within 
the ST ARMA family has a unique space-time auto­
correlation function, it is often hard to distinguish 
between some of the model forms. In particular, even 
if it is known that the process is autoregressive, but of 
unknown order, it is not easy to see from Plis) what 
the order is. This particular problem can, however, 
be overcome by using the space-time partial correla­
tion function. 

As was the case with the space-time autocorrela­
tion function, alternate definitions exist for the space­
time partial autocorrelation function (see Martin and 
Oeppen, 1975). In light of the proposed model class, 
however, the appropriate definition follows quite di­
rectly from the form of the STAR model. Pre-multi­
plying both sides of the general ST AR(k>.. >. •••• ) model 

k >. 

z(t) = L L rpjIW("z(t - J) + e(t) 
}=I 1-0 
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{ 
yoO([) yOO(O) YOI (0) ••• YO. (0) YOO(-I) Y01(-I) ... YOI.(-I) -

~IO 

YIO(I) YIO(O) Yu (0) ... Yu (0) YIO(-I) YU(-l) ... YII.(-I) ~II 

.-1 : ... (I-k) 

Y,O(l) Y,O(O) Y).1 (0) ... Y
H 

(0) Y,O(-I) VI.\ (-I) ••• Y>.1. (-I) ~II. 

{ 
YOO (2) 

YIO(2) 

.-2 
YI.0(2) 

(I) (0) (2-k) 

~20 

~21 

(14) 

~21. 

{ 
yoO(k) 

YIO(k) 

.-k 

YtO(k) 

(k-I) (k-2) ... (0) 

L -

~kO 

~kl 

~kl 

DISPLAY 1. The space-time analog of the Yule-Walker equations. 

by [W(lI'Z(t - s)]' gives 

k ~ 

z(t - s)'W(Ir)'z(t) = L 1: CPjlz(t - S)'W(lI)'W(I)Z(t -}) 
j-I 1-0 

+ z(t - s)'W(lI)'e(t). 

Taking expected values and dividing both sides by N 
yields 

k ~ 

YhO(S) = L L CPjIYhI(S - }) (13) 
)-1 1-0 

since E[z(t - s)'e(t)] = ° for s > 0. 
This system of equations for s = 1,2, ... k and h = 

0, I,'" A may be written as shown in Display 1 
(equation (14». This system is the space-time analog 
of the Yule-Walker equations for univariate time se­
ries. 

The last coefficient, cP' kl' obtained from solving the 
system of equations as 1=0, 1 ... A for k = 1, 2, ... is 
called the space-time partial correlation function of 
spatial order A. For example, the space-time correla­
tion function of spatial order 2 has the series of terms 
CP'IO, CP'II, cj/12' CP'20' <P'21, CP'22, CP'JO, ... that represent the 
last coefficient obtained by successively fitting the 
systems of equations for A = 2. For spatial A = 3 the 
function has elements CP'IO, cj/II' CP'12, cj/IJ' CP'20, CP'21, cj/22' 
C//23' cp' 30, ... etc. 

The choice of A, the spatial order of the space-time 
partial correlation function, is l(!ft to the investigator. 
It is important that A be at least as large as the maxi­
mum spatial order of any hypothesized model. Too 
large a A, however, results in an unduly large amount 
of computational effort. In making the choice on the 
value of A, the size of the system should be taken into 
account. Larger systems might warrant a fairly high 
A, say 3 or 4, but for moderate systems A = 2 will 
likely suffice. 

The space-time partial correlation function could 
be estimated by successively fitting STAR (kl.,l. .... 1) 
models for I = 0, 1, ... A for each k, k = 1, 2, .. , and 
picking out the estimates ;j,kl of the last coefficient 
from each of these models. Fitting STAR models, 
however, involves enough computational effort to 
warrant an alternative, approximate estimation pro­
cedure. If the values of the parameters are not too 
close to their stationarity boundaries, approximate 
Yule-Walker type estimates can be employed. They 
are calculated from equation set (13) by replacing the 
theoretical Yhl(S) with their estimates Yhlsj and solv­
ing this system successively for I = 0, 1, ... A for k = 
1,2, .... 

Direct solution of (14) with estimates of Y replac­
ing the theoretical values still involves a bit of com­
putational effort. Unfortunately a strictly recursive 
method similar to that due to Durbin (l960) for uni­
variate time series partial calculation is not possible. 
Some improvement over the successive solution of 
system (14), however, can be made. 

In a manner completely'analogous to that of uni­
variate time series, STARMA processes are each 
characterized by a distinct space-time partial and 
autocorrelation function. Whereas univariate autore­
gressive models exhibit autocorrelation functions 
that decay exponentially with time and partial corre­
lation functions that cut off after p lags, the STAR 
process exhibits a space-time correlation function 
that tails off with both space and time and partial 
autocorrelations that cut off after p lags in time and 
Ap lags in space. Similarly, univariate mDving average 
models have just the opposite, autocorrelations that 
cut off after q lags and partials that decay over time. 
The STMA (q"" .. , nr) model similarly is characterized 
by an autocorrelation function that cuts off after q 
temporal lags and m" spatial lags and partials that 
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TABLE l-Space-time autocorrelation fimctions for the STAR 
model. 

Space-Time. Autocorrelation, P to (a) 

Spathl lag (t) a 
Tim. lag (.) 

1 0.607 
2 0.424 
3 0.319 
4 0.250 
5 0.202 
6 0.166 
7 0.139 
6 0.ll7 
9 0.100 

10 0.066 

0.467 
0.413 
0.353 
0.296 
0.254 
0.217 
0.186 
0.160 
0.136 
0.ll9 

0.216 0.155 0.596 0.447 
0.226 0.159 0.410 0.394 
0.222 0.155 0.303 0.333 
0.206 0.144 0.234 0.261 
0.166 0.133 0.167 0.237 
0.166 0.121 0.152 0.200 
0.147 O.llO 0.125 0.171 
0.130 0.099 0.105 a.us 
0.ll4 0.090 0.069 0.125 
n.llJD 0.080 0.075 0.106 

Space-Time Partial Autocorrelations, ~~1 

Spatial lag (t) a 1 
Times lag (6) 

0.606 0.400 0.596 0.400 
a a a a 
a a a a 

0.161 0.145 
Q.169 0.149 
~.164 0.149 
0.170 0.135 
0.153 0.124 
0.136 0.U2 
0.120 0.101 
0.10S 0.091 
0.091 O.OBl 
0.060 0.072 

tail off spatially and temporally. Mixed models ex­
hibit partials and autocorrelations that both tail off. 
In the univariate case, they tail off only in time, 
whereas space-time mixed ARMA processes have 
space-time autocorrelation functions that decay with 
both time and space. 

To illustrate the relationship between the theoreti­
cal space-time partial and autocorrelation functions 
and the three subclasses of the ST ARMA model 
family, the theoretical space-time autocorrelation 
and partial autocorrelation functions for three repre­
sentative models of a STAR, STMA and mixed 
ST ARMA are calculated. First order models, both 
temporally and spatially, are chosen: the STAR (11) 
with rplO = 0.5 and rpll = 0.4, 

z(t) = 0.5 z(t - 1) + 0.4 W(I) z(t - I) + e(t); 

the STMA (11) with B;o = -0.5 and Oil = -0.4, 

z(t) = e(t) + O.5e(t - 1) + O.4W(I)e(t - 1); 

and the STARMA (11' 11) with rplO = 0.5, rpll = 0.4, (}IO 
= -0.5, (}II = -0.4, 

z(t) = O.5z(t - 1) + O.4W(I)z(t - 1) 

+ eel) + 0.5e(t - 1) + O.4W(I)e(t - 1). 

Tables 1, 2, and 3 present the calculated space­
time autocorrelations and space-time partials for 
these STAR, STMA and ST ARMA models respec­
tively. Only PIO(S) is presented [not Plk(S) for positive I 
and k] since identification can usually proceed 
strictly on the basis of PIO(S) for 1=0, 1, ... A and s = 
I, 2, ... S. For compactness we chose I = 3 and S = 

10. 
Two sizes of systems are presented. The three ta­

bles provide the correlative information for both a 
5 X 5 and 7 X 7 square regular system of sites. The 
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weighting scheme chosen in both instances incorpo­
rates the spatial order convention depicted in Figure 
I, with the added property that each ['h order neigh­
bor of any site is weighted equally. Equal scaled 
weights are chosen not only because they are useful 
in their own right, especially toward modeling regu­
larly spaced homogeneous spatial systems, but also 
because they can serve as a pattern for more general 
weighting schemes. Thus, the four corner points, be­
cause they possess just 2 first order neighbors, will 
have Wlj(l) = 1/2 for the two j values. The remaining 
nodes on the boundary each have 3 first order neigh­
bors and thus, wi) = 1/3 for the 3 neighboring sites. 
All other interior sites possess a full compliment of 
first order neighbors and have 4 nonzero w/ I

) with 
value 1/4. 

Tables 1, 2, and 3 serve to demonstrate the basic 
concepts of space-time identification. In each in­
stance, the space-time autocorrelation and partial 
autocorrelation functions give an indication of both 
the type and order of the generating model. Table I 
shows space-time partials that cut off after one spa­
tial and one temporal lag, characterizing the STAR 
(II) model. Table 2, on the other hand, shows a 
space-time autocorrelation function cutting off after 
initial first order terms both spatially and temporally, 
thus representing a STMA (II) model. Lastly, Table 
3 exhibits autocorreJations and partials that tail off, a 
characteristic of a mixed model. 

In practice, of course, the identification of a can­
didate model will never be as easy as it appears here 
since the model builder will not be dealing with the 
exact space-time autocorrelation functions of the un­
derlying process, but rather a sample calculated from 
the observed data history. Thus the identification 

TABLE 2-Space-time autocorrelation fimctions for the STMA 
model. 

Space-Time AutocorrelaClons t PIO(s) 

Sp.tial1ag (t) a 
Time lag (8) 

0.364 0.173 
a a 
a a 

1 

0.365 0.167 
a a 
o a 
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process is complicated by the sample fluctuations ex­
hibited by the estimates of Pto(s) and cP',I' An approxi­
mate measure of the variance of the sample space­
time autocorrelations of a pure white noise process, 
(see equation (19) below), however, will help to de­
termine the significance of observed correlations, and 
a more detailed knowledge of the relationships be­
tween the theoretical patterns of the space-time auto­
correlation functions and the values of the parame­
ters in the STARMA models (as presented in Pfeifer, 
1979) will also aid the model builder in the identifi­
cation stage. In any case, the identification stage rep­
resents a tentative evaluation of the form of the un­
derlying model. This initial guess as to the form of 
the model is evaluated in the second and third stages 
of the modeling procedure, and if inadequacies or 
misinterpretations are discovered, the model builder 
returns to the identification stage to reevaluate his 
initial decision. 

Note also from Tables I, 2, and 3 that system size 
does indeed have a small effect on the theoretical 
space-tllme autocorrelation functions of the models. 
This is ·due to the relative influence of the boundary 
elements. The 5 X 5 system has 16 boundary sites, 
and 64% of the system is on the boundary. There are 
24 boundary sites in a 7 X 7 system, representing 49% 
of the total. The effect of the boundary then de­
creases with system size and one would expect the 
statistical properties of the model to be fairly in­
variant to system size for large enough systems. In 
practice, the identification procedure will require a 
working knowledge of the relationship between size 
and shape of the system and the theoretical proper­
ties of the models. 

4. ESTIMATION OF THE STARMA MODEL 

After a candidate model from the ST ARMA 
model family has been chosen during the identifica­
tion phase of the modeling procedure it is necessary 
to estimate the parameters. The best estimates of the 
«I» and 0 from many points of view are the maximum 
likelihood estimates. 

Because our basic model formulation has errors 
that are pure white noise, the distribution of 

is multivariate normal with mean 0 and variance-co­
variance matrix equal to crIN7, Specifically we have. 

f(ej«l»,9a2) = (2 II)-TN/2jcrIN7,j-I/2 exp(-2~ £'Ie) 

= (2 II)-TN'2 (c?tTN/2 exp( -Si,9») 

TABLE 3-Space-time autocorrelation/unctions/or the STARMA 
model. 

Spatial lag (t) 
Time lag (s) 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Spatial lag (1) 
Time lag (8) 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

where 

Space ,'Ume. I\IJtocorrelations, PlO(s) 

2,!5 8"st..!!F.'. 7x7 sYstem 

0.81S 0.664 0.372 0.210 0.808 0.643 0.357 0.256 
0.594 0.577 0.369 0.265 0.578 0.556 0.352 0.251 
0.458 0.492 0.347 0.250 0.439 0.470 0.330 0.237 
0.367 0.418 0.317 0.232 0.346 0.397 0.300 0.219 
0.300 0.357 0.284 0.212 0.280 0.336 0.268 0.199 
0.250 0.305 0.252 0.192 0.231 0.286 0.236 0.179 
0.210 0.263 0.223 0.173 0.192 0.244 0.208 0.161 
0.178 0.227 0.196 0.l56 0.162 0.209 0.182 0.144 
0.153 0.196 0.173 0.140 0.137 O.IBO 0.159 0.129 
0.131 0.171 0.152 0.125 0.117 0.156 0.139 0.1111 

Space-Time Partial Autocorre1ations, ~~t. 

0.815 0.306 -0.052 -0.026 
-0.309 -0.25~ 0.026 0.020 

0.162 0.183 0.014 0.004 
-0.096 -0.138 -0.028 -0.009 

0.061 0.102 0.032 0.011 
-0.042 -0.078 -0.029 -0.009 

0.030 0.059 0.0~5 0.008 
-0.020 -0.046 -0.020 -0.006 

0.016 0.035 0.016 0.005 
-0.012 -0.027 -0.013 -0.004 

0.808 0.304 -0.054 -0.026 
-0.310 -0.252 0.029 0.019 

0.162 0.185 0.013 0.005 
-0.095 -0.139 -0.028 -0.011 

0.061 0.103 0.033 0.013 
-0.041 -0.079 -0.030 -0.010 

I 
0.029 0.059 0.026 0.009 

-0.021 -0.046 -0.021 -0.007 
0.016 0.035 b.017 0.005 

-0.012 -0.027 -0.013 -0.004 

N T 

S(<<I»,9) = e'e = ~ ~ €/(t)2. 
I-I I-I 

Since the e(t) are unobservable random errors and 
the z(t) are the quantities actually observed, it is nec­
essary to recursively calculate the e(t) from the ob­
served z(t). The appropriate equations are 

.f, >.. 

e(t) = z(t) - 2.J ~ cJ>kIW(1) z(t - k) 
k-I 1-0 

+ i ~ ()kIW(l)e(t - k) for t = 1,2, ... T. (15) 
k-I 1-0 

Immediately we see that the first few e's and con­
sequently the entire e vector, if moving average terms 
are present in the model, are functions of observa­
tions and errors at times before time 1, the initial 
epoch observed. Hence without a priori knowledge of 
these initial starting values, one cannot easily calcu­
late exact m.1.e. of «I» and 9. This difficulty is best 
sidestepped by substituting zero, the unconditional 
mean for all values of z(t) and e(t) with t < 1. 

The conditionalllkelihood function of CI», 9 and cr 
is then 

L(<<I»,9,c?lz) = (2II)-TN'2 (crtTN/2 exp( S .. ~'9») 
where S*(CI»,9) is the conditional sum of squares 
function 

S*(W,9) = i'i 

and the i vector is calculated via (15) with z(t) and 
e(i) set equal to z/~ro for t < 1. The conditional 
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1'" 
.\! .\! 0 

[''' 
'" 

~(2) ~(I) w(l)~(I) .\! 
[~IOl 

~(2) 

~(3) . ~(2) W(I)~(2) ~(1) ~II + t(3) 

~20 

(T) ~(T-l) W(i)~(T-I) ~(T-2) (T) 

DISPLAY 2. The STAR (2 10) in general linear model form. 

m.l.e.'s of <f,«I1,9 are thus 

and ciJ 9 that minimize S (ciJ, 9). The closeness of 
the co~ditional m.l.e to the exact m.l.e. is a direct 
function of T. For small T, conditional maximum 
likelihood estimation is most inappropriate and the 
more complicated exact m.l.e. procedure must be em­
ployed. For moderate or larger values of T however, 
the conditional procedure closely approximates the 
exact m.l.e. and is usually adopted at a great savings 
in computational effort. 

Because these conditional maximum likelihoog es­
timates are also least squares estimates, i.e., those pa­
rameter values that minimize the residual sum of 
squares, estimation of the STAR model is based on 
standard linear regression theory. As an example, 
consider the ST AR(21O) model 

z(t) = CPloZ(t-l) + CPII W(l)z(t-l) + CPzoZ(t-2) + e(/) • 

In general linear model form Y'k: XB + e, this model 
for t = 1, 2, ... T can be written as shown in Display 
2. Here, zero vectors have been substituted for the 
unobserved z vectors, for those times before the sys­
tem was under observation. The least squares normal 
equations (X'X)«I1 = X'Z in this instance are as 
shown in Display 3. The parameter vector 
[~IO'~I "~20]' that solves this system of equations is the 
conditional least squares estimate of the parameters 
of the ST AR(21O) model. 

Approximate confidence regions for the parameter 
values of the STAR model can be constructed using 

(<<11 - ciJ)' X'X (<<ll - ciJ) _ Fi(K TN-K) 
K S*(<<I1) " 

(16) 

TN-K 

a result from linear regression t}leory. We should 
point out that because of the time series nature of the 
STAR model, the linear regression assumptions 
about the independent or regressor variable do not 
hold. Specifically the X matrix is stochastic rather 
than fixed m repeated samples. Additionally the re­
gressor variables are not independent of the residual 
errors and thus the classic results concerning the dis-
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tribution of the least squares estimat'es of the param­
eters do not follow directly. It has bl~en shown, how­
ever (Mann and Wald, 1943), th8.t tbe properties 
associated with the estimators in the classical linear 
regression model are possessed in the limit for mod­
els such as the STAR. In any case) the classical re­
gression results will be used here with the knowledge 
that they are only approximate. In expression (16), 
X'X is the appropriate moment matrix for the model 
at hand, ciJ is the least squares parameter vector esti­
mate, S*(ciJ) is the residual sum of squares and K is 
the dimension of «11. Also 

f?- = S*(ciJ) and (TN-K)f?-.. - x:(TN-K) 
TN-K <f 

allow confidence intervals for <f to be constructed. 
Since only STAR models are linear in form, it is 

necessary to estimate the parameters of the STMA 
and ST ARMA models using any of a variety of non­
linear optimization techniques. Gradient methods 
(where the gradient is numerically approximated) 
have found use, as has linearization, an iterative 
technique that at each stage "linearizes" the non­
linear model using Taylor's expansion and solves ap­
proximate normal equations for the next guess at the 
optimum parameters. The estimation algorithm used 
in this paper is due to Marquardt (1963) and com­
bines the desirable properti.es of both these into a 
single procedure referred t9 as Marquardt'S com­
promise. 

The nonlinear nature of STMA and ST ARMA 
models presents special problems in the determina­
tion of confidence regions for the parameters. The 
sum of squares surface S(W,e) and correspondingly 
thl; likelihood function is not symmetric, as is the 
case for linear models, and thus, no closed expression. 
is available for an exact confidence region. To com­
pensate, an approximate likelihood function is used 
from which an approximate confidence region is cal­
culable. 

In general, the exact sum of squares surface can be 
approximated by expanding about the least squares 
estimates as follows, 

where 

IJ' = (<<11',9') 

Q = t [ a S(IJ) ] 
a 8{a 8} 8 

for i = 1,2, ... K,j = 1,2, ... K; K is the dimension of 
8, or the number of parameters. Since 

T 

S(IJ) = L e(t) e(t)' 
I-I 
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we have 

a S(8) ~ 2 E(t)' a £(t) I = 0 ---ar,- = I_I a 81 a 

! a
2 

S(B) 1 = f E(/)' a
2 

E(/) I + f a E{/)' a E{/) I 
2 a 81 a8} a I_I a 8, a/3} a I_I a 81 a 8} a 

Now it can be shown that 

8
2 

E(/) I 
a 81 a8} a 

will in general be a function of E(/) occurring before 
time I and since we expect that if the model fits, 
E[e(t) E (I - k)'] = 0 for k :::= 1, the term is neglected. 
The matrix Q then can be written 

where 

a E(2) 1 

X= a8 1 a 

Q=X'X 

••• I 

Thus the sum of squares function is approximated 
via 

S(B) = S(8) + (B - 8)' Q(B - 8) (17) 

and an approximate 100(1 - a)% confidence region 
for [eI», 0]' = B is obtained via the relationship 

~ J( ~ 
S(B) = S(8). + TN _ J( S(B) FK• TN-K.a (IS) 

and the quadratic representation of S(B), equation 
(17). As a preliminary to the construction of the con­
fidence region, matrix Q must be numerically esti·· 
mated. It should be noted that the exact sum of 
squares function, S(B), will be replaced by the condi­
tional sum of squares S.(B) in the calculation of 
these confidence regions when conditional maximum 
likelihood is employed. 

As it turns out, matrix Q is also the; calculated mo­
ment matrix used in the linearization estimation 
method. Thus, an added benefit ofUnearization is the 
ease with which approximate confidence region.s can 
be calculated. 

Confidence intervals on a'- are calculated via 

(a'-lz(I),z(2), ... z(1) - s.(8) XTN_K-
2 

as in the linear model case. 

5. DIAGNOSTIC CHECKING OF THE STARMA MODEL 
Mter a candidate model has been selected and its 

parameters estimated, the model must be SUbjected 

symmetric 

T-I T-I 
t ~(t)1 W(I)~(t) 

t-I 
r ~(t)I~(t-l) 

t-2 

T-I 

T-2 
r ~(t)t~(t) 

t-I 

t~t ~(t)1 ~(t+l) 

T-t 
t ~(t) I W(I) t ~(t+l) 

t-t 

T-2 
t~l ~(t)t ~(t+2) 

~IO 

~II -

DISPLAY 3. The conditional least squares normal equations for 
the STAR (210) model. 

to "diagnostic checks" to determine if the model does 
adequately represent the data. The model can "fail" 
in two important ways. Firstly, the model may in­
sufficiently represent the observed correlation of the 
process. This inadequacy will surface in the form of 
significant correlation among the residuals of the fit­
ted model. Secondly, the model may be unduly com­
plex. In this instance, estimated parameters will 
prove to be statistically insignificant. 

The first phase of the diagnostic checking stage is 
the examination of the residuals from the fitted 
model. If the fitted model adequately represents the 
data, these residuals should be white noise, i.e., 
should be distributed normally with mean zero and 
variance-covariance matrix equal to a'-IN and all 
autocovariances at nonzero lags equal to O. 

Various tests are available for testing the residuals 
for white noise. Probably the most useful test (espe­
cially in the context of the three-stage modeling pro­
cedure for space-time models) is that of calculating 
the sample space-time autocorrelations and partials 
of the residuals and comparing them to their theoret­
ically derived variance. It has been shown (Pfeifer, 
1979) that if the underlying process is pure white 
noise, 

var(PIO (s» z N(; _ s) . (19) 

If the residuals are approximately white noise, the 
sample space-time autocorrelation functions should 
all be effectively zero. If the residuals are not random 
,they may follow a pattern that can be represented by 
a STARMA model. Identifying this model and cou­
pling it with the candidate that generated the residu­
als will usually lead to a better updated model. 

As an example, consider that the original can­
didate model was a STAR(ll) with estimated param­
eters<f;lo and ~II' Utilizing the backshift operator B 
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FIGURE 2.' The 14 districts of Northeast Boston. 

defined as 

B' z(t) = z(t - s) 

one can express aCt), the residuals from this model, as 

aCt) = (1 - CPIOB - CP •• W(·) B) z(t). 

Now suppose that our diagnostic checking of the aCt) 
showed a correlative structure suggesting that the aCt) 
themselves followed a STAR(lo) process with param­
eter value approximately equal to CPIO *. Here CPIO * is 
not a least squares estimate, but rather a value sug­
gested by the sample correlations of the residuals. 

Hence, if 

(1 - CPIO * B) aCt) = E(t) where E(t) 

represents a true white noise process, then 

E(t) = (1 - CPIO* B) (l - CPIOB - cp •• WCI)B) z(t) 

is the updated model. Thus, the new candidate model 
would be a ST AR(2 •• ): 

E(t) = (1 - (CPIO* + CPIO)B - CP •• W(I) B 

+ CPIO *CPIO B2 + CPIO *CPII W(·) B2) z(t) . 

To complete this example, it should be noted that if 
CPIO * CP.. was close to zero, the model builder might 
decide to nominate the ST AR(21O) as his next can­
didate. With the specification, or reidentification, of 
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the next candidate model, the procedure once again 
returns to the estimation stage. 

The second phase of the diagnostic checking stage 
involves checking the statistical significance of the es­
timated parameters. This is done via the confidence 
regions for the parameters presented in the last sec­
tion. A calculated region that contains the null vector 
does not reject the hypothesis that til = e = 0 at the 
level of significance of the confidence region. A more 
useful test is one that tests the hypothesis that a par­
ticular CPkl or Okl is zero with the remain!ng parameters 
in the model unrestricted. If we let 8 represent the 
least squares estimate of the full paramet~r vector 
(containing the parameter to be tested) and a* be the 
least squares estimate of the parameter vector with 8K 

(without loss of generality we assumb the parameter 
to be tested is the last entry in the 8 vector) con­
strained to be zero. The appropriate test for the hy­
pothesis that 8K = (1) is based on the statistic 

(TN - K) [S*(8*)- S*(8)] 

S*(8) 
(20) 

which is approximately distributed as an F •. TN- K un­
der the null hypothesis. 

Any estimated parameter that proves to be statisti­
cally insignificant should be removed from the model 
and the resulting simpler model would now be con­
sidered as the candidate for acceptance. The model 
building procedure then moves once again to the es­
timation stage. Removal of unsubstantiated parame­
ters is necessary as part of tbe model builder's search 
for what has become known as a parsimonious model. 
Parsimonious models are those that are "efficient" in 
their use of parameters. They possess maximum sim­
plicity and the smallest number of parameters con­
sonant with representational accuracy. 

The three-stage modeling procedlue continues 
through identification, estimation and diagnostic 
checking until at some point the model at hand 
"passes" the diagnostic checking stage. To do this, 
the model must evidence parameters that are all sig­
nificant and residuals that can effectively be consid-

10-

·11 
L --- -+- ----1----.,---1-, ---.,----+ 
l/li~ J176 1/11 lin ll7l 1/74 1ns 

FIGURE 3. Total assault arrests in Northeast Boston. 
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ered to be white noise. At the conclusion of the mod­
eling procedure the ST ARMA model is ready to 
employ. 

6. SPACE-TIME MODELING BOSTON ASSAULT 
ARRESTS 

To illustrate the space-time modeling procedure, 
raw arrest data from the 822 reporting areas of the 
city of Boston were combined to give monthly figures 
for the 14 areas of Northeast Boston depicted in Fig­
ure 2. Data were available for the years 1969 to 1974, 
and the crime type chosen to model was total as­
sauUs. Thus, the system of interest consists of N = 14 
sites and was observed for T ... 72 time periods. The 
total over all 14 sites of assault arrests is pictured in 
Figure 3. 

Table 4 gives the delineation of the spatial neigh­
bors of each of the 14 districts. The choices reflected 
in Table 4 were made to best depict the spatial order­
ing of F~gure 1. 

Weight:. for this system were also specified to agree 
with the equally weighted formulation presented in 
Section 2. As an example of this particular weighting 
scheme, W(I) is presented in Figure 4. Note that each 
row sums to one, and that nonzero entries occur only 
for those pairs of points that are first order neighbors. 

Initial identification of the assault data suggested 
that the system was nonstationary and required a 
first difference. This is evidenced by an autocorrela­
tion function that decayed from the value of one at a 
very slow rate. 

10 II 12 13 14 

1 1 
"2 "2 

1 1-
"2 2 

1 1- 1 
'3 3 "3 

1 1 1 1 
'4 '4 '4 '4 

1 1 1 1 
'4 '4 '4 '4 

1 1 1 1 
'4 '4 '4 '4 

1 1 1 1 
'4 '4 '4 '4 

1 1 1 
"3 "3 J 

1 1 1 
"3 "3 "3 

1 1 1 1 
10 '4 '4 '4 '4 

1 1 
11 "2 "2 

I 1 
12 "2 "2 

1 1 1 
13 "3 "3 "3 

1 1-14 '2 2 

FIGURE 4. W(I) for Northeast Boston. 

TABLE 4-Neighbors of each site for each spatial order. 

OR.!lER ..l. .1... ..l. 

Site 1 2,3 4 6 
2 1,4 3 5,6 
3 1,4,6 2 5,7 
4 2,3,5,6 1 7,8 
5 4,6,7,8 3,9,10,2 
6 3,4,5,7 1,2,8,10 
7 5,6,8,10 11 3,4,9,13 
8 5,7,9 10 4,6,14 
9 8,10,14 13 4,6,14 

10 7,9,11,13 8,12,14 5,6 
11 10,12 7,13 9 
12 11, )3 10 14 
13 10,12,14 9,11 7 
14 9,13 10 8,12 

The sample space-time autocorrelation and partial 
autocorrelation function of the differenced series is 
presented in Table 5. Because the space-time partials 
tail off and the space-time autocorrelation function 
seems to cut off both spatially and temporally after 
one lag, the differenced series was tentatively identi­
fi~d as a STMA(lo) process. Incorporating the differ­
ence into the model notation, this can be referred to 
as a STARIMA(O,I,lo), where STARIMA stands for 
space-time autoregressive integrated moving average 
process, and the extra 1 is for the first difference. 

Estimating this model gave 010 to be 0.803, and the 
residual sum of squares was 6504.679. The estimated 
variance of the parameter estimate was 0.000368, and 
thus an approximate 95% confidence interval for 810 
is (0.764, 0.841). Table 6 exhibits the sample space­
time correlation functions for the residuals from this 
model. 

Examination of Table 6 reveals relatively large 
values for PIO(1) (compared to an approximate vari­
ance of (14 x 70-1

)) and cj/II suggesting that the resid­
uals evidence some spatial correlation. For this rea­
son a new model, the STARIMA (0, I, II)' was 

TABLE 5-Spacc-time correlation functions of the differenced 
series. 

Space-Time Autocorrelations, pto(s) 

Spatial lag (1) 
Time lag (8) 

1 -0.484 0.007 0.041 0.013 
2 0.023 -0.038 O.OLl -0.027 
3 -0.017 0.004 -0.045 0.049 
4 0.026 0.013 0.019 -0.03B 
5 -0.056 0.039 0.005 0.017 
6 0.043 -0.074 0.045 -0.021 
7 -0.003 0.015 -0.091 -O.OlB 
8 -0.032 0.015 0.053 0.037 

Space-Time Partial Autocorrelations, t/l~.t 

Spatial lag (t.) 1 
T:ime lag (s) 

t -0.484 0.068 0.007 o.o~o 

2 -0.281 0.015 0.034 -0.011 
3 -0.196 0.068 -0.026 0.070 
4 -0.111 0.015 -0.025 0.028 
5 -0.140 0.004 -0.021 0.030 
6 -0.092 0.025 0.071 -0.007 
7 -0.048 0.138 -0.036 -0.055 
8 -0.073 0.008 -0.011 0.008 
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TABLE 6-Sample space-time autocorrelation jilnclions of the re­
sidualsfrom the model z(t) - z(t - 1} = -0.803 e(t - 1) + e(t). 

Spatial las (1) 
Tim. loS (a) 

Spatial lag (£) 
Time Lng Cal 

1 
2 
3 
4 
5 
6 
7 
8 

0.024 
0.031 

-0.007 
-0.002 
-0.056 

0.000 
-0.031 
-0.046 

Space-Tima Autocorreiations, ~10(9) 

0.084 
0.016 
0.027 
0.038 
0.024 

-0.061 
-0.009 

0.011 

0.051 
0.023 

-0.026 
0.021 
0.029 
0.026 

!-0.062 
0.030 

Space-Time Partinl Autocorrelntions, ~!t, 

0.024 0.133 0.042 
0.019 -0.007 0.016 

-0.013 0.028 -0.042 
-0.009 0.058 ~.015 
-0.060 0.047 0.031 
-0.003 -0.094 0.039 
-0.022 0.003 -0.064 
-0.043 0.064 0.039 

0.058 
0.027 
0.046 
0.016 

-0.014 
-0.041 
-0.026 
0.021 

0.055 
0.010 
0.045 

-0.044 
-0.035 
-0.050 
-0.021 

0.042 

entertained. The extra "spatial" parameter 8" in this 
model will hopefully describe the spatial structure of 
the residuals. 
_ Estimation of the ST ARIMA (0, 1, I,) yielded 

810 = 0.812, 811 = -0.092 and a residu.al sum of 
squares of 6457.266. The sample correlative proper­
ties of the residuals from this model are given in 
Table 7. We note that the first spatial order autocor­
relation and partial autocorrelation have both de­
creased, and in general there seems to be a lack of 
structure in these residuals. The lone exception oc­
curs at time lag 6 and spatial lag 1 pointing to a pos­
sibility that further investigation with respect to sea­
sonal forms of the STARMA might prove useful. 
Testing the significance of the 8" parameter is done 
via equation (20). Here N = 14, T = 71, K = 2, S(8*) 

TABLE 7-Sample space-time autocorrelation functions of the re­
sidualsfrom the model z(t} - z(/ - 1) = -0.812 e(t - 1) + 0.092 
W(l) e(t - 1) + e(t}. 

Space-Time Autocorrclations , Pta (9) 

SpatIal lag (1) 1 
Time lag (5) 

1 0.023 0.045 Q.036 0.046 
2 0.023 0.062 0.014 0.008 
3 -O.OlD -0.014 -0.043 0.041 
4 -0.004 0.029 0.015 -0.046 
5 -0.053 0.020 0.034 -0.036 
6 0.007 -0.120 0.042 -0.050 
7 -0.023 -0.023 -0.062 -0.023 
8 -0.044 0.036 0.041 0.040 

Space-Time Partial Autocorrelationsl ~~t 

Spa tinL lag (2.) 
Time lag (s) 

1 0.023 0,030 0.036 0.042 
2 0.028 -0.026 0.010 0.011 
3 -0.008 -0.009 -0.036 0.030 
4 -0.001 0.016 0.014 -0.029 
5 -0.055 0.003 0.027 -0.028 
6 -0.003 -0.074 0.026 -0.051 
7 -0.032 -0.022 -0.058 -0.034 
8 -0.046 0.004 0.034 0.015 
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= 6504.679 and S(8) = 6457.266. Combining these 
via (20) gives an approximate F 1•992 value of 7.3. The 
theoretical critical F valueJ at a = 0.0 I with 1 and 992 
degrees of freedom is approximately 6.7. Thus, 811 is 
significant with 99% confidence. 

Because the sample space-time auto correlations 
and partials show a lack of ~tructure (with the noted 
exception) characteristic of a white noise sequence, 
and since all parameters have proven statistically sig­
nificant, the STARIMA (0, I, I,) model 

z(t) - z(t - I) = -0.812£(1 - I) 

+ O.092W(')e(t - I) + e(l) 

passes the diagnostic checking portion of the three­
stage modeling procedure. This model is now ready 
to employ either as a forecasting function for the 
numbe.r of arrests for assault in the 14 districts of 
Northeast Boston or as part of a more sophisticated 
control system. 

7. CONCLUSION 

A three-stage iterative procedure is presented for 
building space-time autoregressive moving average 
CST ARMA) models. These models are characterized 
by autoregressive and moving average terms lagged 
both in space and time and are useful toward mod­
eling systems that exhibit spatial autocorrelation. 
The three model building stages, identification, esti­
mation and diagnostic checking, are presented and il­
lustrated with a substantive example. 
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