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Abstract 

There are many public ~olicy settings in which random assignment of 

clients to experimental and control groups is not feasible. I will discuss 

one such case, and the alternative method of assignment which was actually 

used. The vulnerability of this method to intentional selection bias 

will be explored using Markov methods of analysis. 
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1. Introduction and Overview 

The random assignment of clients to experimental and control groups 

is an important and controversial issue in p~ogram evaluation. On the 

one hand, it is generally accepted that "[A randomized] experimental 

design is the research approach most likely to avoid ambiguous findings 

1 
and tha resultant ••• arguments over interpretation of study results." 

On the other hand, ethical and legal considerations--especially concern 

about the propriety of randomly denying a presumably beneficial treatment 

to the control group, or subjecting the experimental group to a potentially 

harmful one--are frequently an obstacle to the use of randomized designs 

in. many situations where they might provide useful information. 

One example which illustrates the weight being given to such concerns 

is the recent Supreme Court ruling on spot checks of automobiles: 

The Supreme Court held that a motorist who hasn't 
done anything to arouse suspicion can't be stopped at 
random [sic] by police for inspection of his driver's 
license and auto registration ••• 

While ruling out such stops that leave the choice 
of the vehicle up to the "unbridled discretion" of 
police, Justice Byron White, writing for the majority, 
said states could use other, more systematic methods 

"to check compliance with traffic-safety regulations. 
For instance, he said, "questioning of all oncoming 
traffic at roadblock-type stops is one possible 
alternative."Z 

Interestingly enough, once we eliminate confusion over the use of the 

word "random", a concurring opinion. seems to suggest that randomization 

would be considered a "more systematic method": 

••• Justices Harry Blackmun and Lewis Powell, while 
joining the majority opinion, add that they assumed that 
the court would also allow nonrandom [sic--nonarbitrary] 
stops other than roadblocks. For instance, they suggested, 
stopping every 10th car to pass a given point would 



2 

"equate withlt but be "less intrusive than" a 100% 
roadblock stop.3 

A number of possible ways to resolve such dilemmas over randomiza-

tion have been suggested. For example, many writers have provided 

arguments in favor of using randomization wherever possible. Campbell 

has pointed out that randomization could be justified as a fair way of 

allocating resources in situations of scarcity: ItSuch decision pro-

cedures as the drawing of lots have had a justly esteemed position since 

time immemorial. n4 Campbell and Bor.uch mention that randomization need 

not involve denying services to clients who would otherwise receive them--

.'! •. even if deprivation of treatment were a problem, one could arrange the 

use of evaluation budgets in a way that expands rather than decreases 

5 
the number of people having access to the program." Gilbert, Light 

and Mosteller argue that the ethical problems of randomization may if 

anything be overshadowed by the ethical problems of using weaker designs 

than are available: 

We change our social system ••• frequently and rather 
arbitrarily; that is in ways ordinarily intended to 
be beneficial, but with little or no evidence that 
the innovation will work. These changes are routinely 
made in such an unsystematic way that no one can assess 
the consequences of these haphazard adjustments .•. 
The result is that we spend our money, often put people 
at risk, and learn little. This haphazard approach is 
not "experimenting" with people; instead, it is 
fooling around with people. 6 

Another approach has involved the development of more flexible 

alternatives to random assignment, the best known of which are the 

7 quasi-experimental designs proposed by Campbell and Stanley. Although 

these designs are a useful contribution in situations where true 
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experimental designs are not feasible, they can often yield highly 

equivocal results. In particular, the most commonly used quasi-expe'ri-

ment, based on non-equivalent control groups, is extremely weak when the 

experimental and control groups differ on attributes closely related to 

treatment effectiveness. 

Within the area of alternatives to randomization, another promising 

path is the development of "semi-random" experimental designs--assign-

ment procedures which incorporate some element of randomness to help 

ensure the comparability of experimental and control groups, while per-

mitting systematic flexibility in other respects. Precedents for de-

signs of this type include the old and revered method of stratified 

sampling, and "balanced" designs such as those discussed by Blackwell and 

Hodges8 and Efron9, which are designed to yield experimental and contl:'ol 

groups of very nearly the same size. For a discussion of other possible 

semi-random designs, see the proposal "New Tools for Comprehensive 

Evaluations in Criminal Justice," 10 submitted to LEAA by Larson. 

This paper is concerned with one semi-random design in particular, 

that of "random time quota selection," developed and used by the Vera 

* Institute of Justice in their evaluation of the New York Court Employ-

P ' 11 ment rOJect. To sketch the background of this evaluation, liThe Court 

Employment Project (CEP) diverts defendants from the criminal justice 

system, provides them with employment services and leads to a dismissal 

12 of charges for defendants who successfully complete the program. II 

* The Vera Institute of Justice, founded in 1961, is a non-profit 
;.')rganization which develops and evaluates proj ects andc.onducts research, 
for the purpose of furthering equal prot;ection under the law for the 
indigent. 
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Quasi·-experimental evalua.tions of CEP (usi.ng non-equivalent control 

groups) had been l'erformed~ and had yielded somewhat inconclusive results; 

it was felt that a true experimental design was the only way to resolve 

the remaining uncertainty about the' program's effectiveness. 

~-le do not know whether the similarity of rearrest 
rates indicates that the Project has no more impact than 
normal criminal justice treatment or whether it is a 
product of the weakness of the research design. What 
is clear, however, is that the only way to find out is 
to initiate, after seven years of Project operations, 
random assignment experiments. 13 

However, the Vera Institute's proposed use of random assignment in 

their evaluation met with strenuous objections, on the grounds that the 

denial of program services to defendants in the control group might via-

late their rights to equal protectian (Faurteenth Amendment) and due 

process (Fifth Amendment). The opinion of LEAA's Office of General 

Counsel lent additional weight to these abjections: 

It is generally recognized that a prosecut-:>r is 
given wide latitude in exercising his discretion in 
.q.eterming whether or nat to' prasecute ••• However, the 
prosecutar's discretian must be based upon a justifi
able standard ••. Where a justifiable standard is not 
used, the exercise of discretian is arbitrary and 
subject to challenge as a denial af equal protection 
and due process. In addition, where a classification 
is used, it must rest upon real differences which 
are relevant to the purpase for which the classifica
tion is made ••• 

This office. is of the apinion that the use of ~ 
random assignment procedure to determine whether ~ 
not to prosecute is not §:. justifiable standard. The 
selection of control group participants is not based 
upon real differences. [emphasis added]14 
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The Vera Institute therefore needed some method of selection which 

would provide nearly the same degree of comparability between experimental 

and control groups as randomization, while not violating the principle of 

selection "based upon a justifiable standard." The method which they 

devised to satisfy these requirements--random time quota selection--was 

implemented as follows. 

The total duration of the evaluation was divided into short time 

periods (roughly one to three working days) of random length. Then, 

proportional to the length of each time period, a quota was established 

for the maximum number of defendants who could be accepted into the pro-

gram (i.e., the experimental group) during that period, based on the 

actual (time-averaged) capacity limitations of the program. Those 

defendants who were deemed eligible to rec.eive program services, but were 

not accepted into the program under this criterion, thus formed the 

control group. Since the time periods were relatively short, the ex-

perimental and control groups were in effect chosen concurrently, and it 

was expected that the two groups would be largely free of accidental bias 

due to fluctuations in the characteristics of the defendant population 

over time. 

Another dimension along which experimental designs such as the above 

may be assessed, in addition to accidental bias, is that of "selection 

bias," a term introduced by Blackwell and Hodges: 

Suppose an experimenter E wishes to compare the 
effectiveness of two treatments, A and B, on a' somewhat 
vaguely defined population. As individuals arrive, E 
decides whether they are in the population, and if he 
decides that they are, he administers A or B and notes 
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the result ••• Plainly, if E is aware, before deciding 
whether an individual is in the population, which 
treatment is to be administered next, he may, not 
necessarily deliberately, introduce a bias into the 
the experiment. Thls bias we call selection bias. lS 

In general, selection bias could arise in a number of ways. Perhaps 

the most obvious, mentioned by Blackwell and Hodges, is through slight 

modifications in the eligibility criteria depending on what the next 

assignment is likely to be. An alternative mechanism is to delay the 

assignment of particularly favored clients until times when they are 

likely to be assigned to the experimental group. 

In our case, those with the most access to information about future 

assignments--the Vera Institute research staff--had very little opportu-

nity to influence the composition of the experimental group, since the 

selection of eligible defendants from which the two groups were drawn was 

performed independently by the CEP screening staff, and after that point 

the assignment of defendants was completely determined by the experimental 

design. However, it is also possible that selection bias might have 

occurred during the phase of screening by CEP, since the CEP staff had 

access to the outcomes of past assignments, and might have gleaned from 

those some information about future assignments. 

The purpose of this paper is to analyze the vulnerability of random 

time quota selection to selection bias in situations similar to the above. 

For example, the method of random time quota selection could be used in 

evaluating a wide range of programs, provided that clients arrive in a 

sequential ("trickle") manner, and that the program is unable to accommodate 

all clients determined to be eligible. Thus, the method is likely to meet 
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with approval in a variety of criminal justice settings, among others, 

due to the legal obstacles which might be encountered by randomized 

experiments. The mechanisms by which selection bias might occur would 

depend on the particular program being evaluated, but bias can occur in 

some form in almost any program, unless screening and assignment pro

cedures are either completely "blind" or very rigidly specified; for 

example, selection bias might be due to the actions of people other than 

program staff, such as social workers or other client advocates attempt

ing to secure program services for their favored clients. 

It would certainly be desirable to have some measure of vulnerability 

to selection bias--for example, how well one could do in attempting to 

intentionally influence program assignments. It would also be very 

interesting to explore the dependence of such measures on the exact form 

of the distribution for time period lengths. This paper will explore 

issues such as the above, in a context not necessarily limited to that 

encountered by the Vera Institute. 

In Section 2 I will present the basic assumptions of the model used, 

and in Section 3 perform some preliminary analysis. Section 4 uses the 

techniques of Markov analysis to investigate the behavior of a somewhat 

simplified system. Section 5 presents a discussion of the basic results 

of Section 4, with several extensions. Finally, in Section 6, I discuss 

the implications of my analysis for actual practice. 
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2. Assumptions Used in the Analysis 

In order to perform an analysis of the random time quota selection 

method, several assumptions must be made. First, there are a few rela

tively straightforward or notational points: I have assumed that appli

cants to the program arrive (in general) according to a Poisson process 

with rate A, that time per.iod lengths are independently and identically 

distributed according to some probability density function f
T
(')' and 

that the quota for any time period is given by q(.), an integer-valued 

function of the length of the period. 

More significant are the assumptions with respect to selection bias. 

I have assumed that most applicants make no attempt to influence their 

selection probabilities--these can be characterized as IInaive" applicants. 

There is also one "opportunistic" or "gaming" applicant, who will attempt 

to time application to the program so as to minimize the probability of 

rejection, based on incomplete observation of the system. (Only one 

application may be made, a rejection being final.) 

Obviously, the gaming applicant must have some knowledge of the 

selection method, and some way of making inferences about the state of 

the system, in order to calculate the optimal time at which to apply. 

With respect to the first issue, I have assumed that-the gaming applicant 

has complete knowledge of the operating characteristics of the selection 

method (i. e., knoW's the exact forms of the functions fTC') and q (.) being 

used). This will in general be an overestimate of the true state of 

knowledge, and so will tend to result in oVerestimates of vulnerability 

to selection bias. (For example, in the Vera Institute case, the CEP 
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staff knew the basic principle of random time quota selection, but ~ 

the exact forms of the functions f
T

(·) and q(.).) This assumption was 

adopted for reasons of simplicity--other, possibly more realistic assump

tions, such as allowing the gaming applicant a Bayesian prior distribution 

over the functions f T(·) and q(.), would have complicated the analysis a 

great deal. 

The final and most questionable assumption involves the gamer's 

basis for making inferences about the state of the system. I have per

mitted the gaming applicant to observe the outcome of exactly ~ ran

domly chosen call from the Poisson process, after which the gamer must 

calculate the optimal time to apply to the program, given the observed 

outcome (rejection or acceptance). The assumption that the call is ran§2~-

11 chosen from the stream of all calls is not entirely realistic. A more 

plausible scenario might be to assume that the gaming applicant enters 

the system at ~ random time, and then observes the next call to occur. 

However, the exact form of the assumption has little influence on the 

final results, so I have chosen the assumption for which the analysis is 

the simplest. 

The limitation that only ~ call may be observed, on the other 

hand, is in fact quite restrictive c~mpared to many plausible scenarios 

in which clients or their advocates may have access to a virtually com

plete history of calls. However, due to the previous assumption about 

complete knowledge of f
T

(·) and q(.), ~ restriction on the extent of 

possible observation is necessary; otherwise, for many reasonable choices 

of f T(·) and q(.), the probability of rejection can be made arbitrarily 
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small by continuing to observe until some specified sequence of events . 

has occurred. For example, if all time periods have merely non-zero quotas, 

then waiting until an arbitrarily long time has elapsed with no calls will 

bring the probability of rejection arbitrarily close to zero; if all 

periods have quotas of at least two, the probability of rejection immedi-

ately after a rejection/acceptance sequence will be exactly zero. 

A more realistic way of imposing the needed restriction on the ex-

tent of permitted observation might be to limit the amount of time during 

which the favored applicant may observe, by the end of which time an 

application must be placed. In this l~d5<::\, the gamer's strategy would be 

given by the solution of a continuous-time, probabilistic dynamic program--

to determine, after each observed call, not only the optimal time at 

which to call given the observed outcome, but also whether it is worth-

while to postpone calling in the hope of gaining another observation 

through an arrival of the Poisson process. 

Under the assumption of only one observed call, the gamer would be 

interested in determing PRIR(t) and PRIA(t)--the probabilities that a 

call placed t time units after the observed call would be rejected, 

given that the observed outcome was a rejection or an acceptance, re-

spectively. Possible measures of vulnerability to selection bias would 

then be given by 

inf PRIR(t) 
t>O - and 

inf PRIA(t) 
t>O 
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where P
R 

is the overall probability of rejection for a randomly chosen 

call from the Poisson process. In addition, it would be desirable for 

the functions PR!R(t) and PR!A(t) to be as close as possible to the 

constant value P
R

, so that less optimal attempts at influencing selection 

pr()babilities would also have little effect. 
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3. Analysis of the General Case 

Although one can derive general renewal formulas for the probabilities 

PRIR(t) and PRIA(t), it is not possible to obtain a~ything even remotely 

resembling closed-form results for general f
T

(·) and q(.). Therefc're, 

rather than presenting the long and cumbersome derivations for the pro-

babilities of interest, which involve infinite sums of convolutions~ I 

will instead present a simpler derivation, selected because it clearly 

illustrates some of the difficulties involved--PR, the probability that 

a randomly chosen call will be rejected. (In practice, PR will usually 

be a specified decision variable of the system, with f T(·) and q(.) 

being chosen to yield the desired value of PRj however, the analysis 

below will still hold.) 

P = 
R 

pia randomly chosen call will be rejectedl = 

E[number of rejections in a time period] 
E[total number of calls in a time period] 

= 

00 

f 
0 

00 

f 
0 

1 
o 

O.t) me -At 00 

fT(t) r(m-q(t)) 
mt m=q(t)+l 

00 (A,j-)m -At fT(t) rm _, e 
dt m=O m! 

00 

fT(t) r(m-q(t)) 
m=q(t)+l 

AE[T] 

dt 

= 

Unfortunately, however, it is not possible to simplify this formula 

and express the desired probability in closed form. The fundamental 

difficulty is that, at this level of generality in f
T

(·) and q(.), the 

system has too much "memory." The number of acceptances so far in the 
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current time period, when taken together with the amount of time already 

elapsed, provides a great deal of information about the time remaining 

in the period. To put it another way, noting that the beginnings of new 

time periods constitute the renewals of the system, the difficulty is that 

the distribution function for the time until the next renewal, starting 

with the system in some arbitrary state, is too complicated to be an-

alytically tractable. 

Therefore, the aim of systematically exploring the relationship be-

tween vulnerability to selection bias and the form of the function f
T

(·) 

can not be met in the way we had originally intended. There are several 

alternative approaches which are still of interest, however: 

1) Making the necessary simplifying assumptions to "Markovize" the 

system, so that the information available at any given time can be 

adequately represented by one of a discrete of states. 

* 2) Attempting to derive useful approximation.s for particular choices 

of f
T

(·) and q(.). 

* 3) Investigating the behavior of the system numerically, again for 

particular choices of f T(') and q(.). (Note that since the expressions 

for PR!R(t) and PR!A(t) involve infinite sums of convolutions, this 

approach is not necessarily straightforward. The work of Kielson and 

Nunn, on numerical convolution via Laguerre transforms, might be useful 

16 here. ) 

*)Under items 2) and 3), it would be particularly desirable to con
centrate on choices of f (.) and q(.) which would be appropriate in actual 
application of the metho~. The most reasonable choices would be to let 
q ( ,) be roughly linear, and to expe.dment with various discrete distri
butions for the time period lengths, with the aim of finding a distri
bution for which PR1R(t) and PR!A(t) were relatively close to the constant 
value PR, 
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In this paper I have chosen to Markovize. However, I believe that 

the other approaches mentioned are also quite promising, and am interest

ed in pursuing one or more of these in the future. 

The assumptions necessary to Markovize the system are as follows. 

First, the distribution for the lengths of time periods must be without 

memory. Note that the geometric distribution is not memory1ess in this 

context, since time is not discrete--the arrival process takes place 

continuously over time. Therefore the basic choice for fTC') is exponen

tial. By viewing each time period as being made up of a fixed number of 

exponential stages, the Markov analysis presented here can also be ex

tended to permit Er1ang-distributed and other, more general time periods; 

this extension will be discussed further in a later section of this paper. 

The second, and more limiting required assumption is that the quota 

q(t) must be a constant, independent of t. To illustrate the need for 

this assumption, consider the following example. Suppose that q(t) were 

not constant, but instead were roughly proportional to t--say, q(t) = 

[2t] (rounded down), so that a time period five units in length would 

have a quota of ten acceptances. Then, if during the first two units 

of a time period we had already observed ten acceptances, the period 

would have to last at least another three time units, since its quota 

must have been at least ten. Thus, a system with proportional or other 

varying quotas is not without memory--the number of acceptances by a 

given time in the current period can contain a great deal of information 

on the time remaining in that period. 

At first glance, it may appear that these Markovizing assumptions--
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particularly with respect to constant quotas--are so restrictive as to 

render the resulting system trivial and uninteresttng. This is in fact 

not the case; the analysis of the simplified system still yields fairly 

interesting results, and may give some feeling for the behavior of random 

time quota selection under more general assumptions. 

The limitations that do exist are more in the realm of practical 

application. The use of constant quotas would greatly diminish the per

suasive advantages of this method over randomization, since the notion of 

limited capacity would no longer be emphasized quite so explicitly; also, 

the uSe of continuous-length time periods might be difficult to implement 

in some situations. These objections confirm the potential value of the 

alternative approaches discussed earlier in this section.. 
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4. ~alysis of the Markovized System 

To proceed with the analysis of the Markovized system, let the time 

periods be exponentially distributed with mean length l/y, let the quota 

be fixed at k acceptances per time period, and define the state of the 

system to be the total number of acceptances which have occurred so far 

in the current period. We can then draw the following simple state 

transition diagram! 

There are two types of events represented here. The start of a new 

time period occurs with rate y, and returns the system to state 0, inde

pendent of its previous state. The arrival of a new applicant to the 

program occurs with rate A, and increments the state of the system, un

less there have already been k acceptances in the current period, in 

which case the new applicant is rejected and the state of the system 

remains unchanged. 

This state transition diagram can then be converted to a flow graph, 

using either semi-Markov or continuous-time Markov formulations, by the 

appropriate relabeling of the arcs and th~ inclusion of "tap-outs.,,17 
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Here I have chosen the semi-Markov formulation. Although that choice 

was not necessary, since all events occur exponentially, it permits a 

clear representation of the self-transitions at states 0 and k. 

1 1 1 1 
A+Y+S A+Y+S A+y+s 

-1.._ 
A+Y+S A+Y+S 

Y 
A+Y+S • • • 

y 
A+Y+S 

Defining our notation, let: 

--p .. be the probability that the next event will result in a 
~J 

transition (or self-transition) to state j, given that the 
system is currently in state i; 

--w.(.) be the probability density function of the waiting time 
~ 

until the next transition, given that the system is currently 
in state i; and 

--h .. (0) be the probability density function of the holding 
~J 

time for a transition from i to j (i.e., the waiting time 
in state i, given that the next transition is to state j). 

A+y+S 

Y 
A+Y+S 
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Then we have, by the properties of the exponential distribution, 

1) .l.. A 
A+y Hy 

...:L 0 
A+Y 

p = 

y 
0 

A+y 

Y 0 
A+Y 

0 

A 
A+y 

0 

0 

o 

o 

A 
A+Y 

1 

( .; e p =...:L u p = _1.._ n .; < k p = --L and p - 0 otherw'; "e) ..... , iO A+y"Vi' i,i+l A+Y"V'" , kk A+Y' ij - .... ~ • 

All events occur exponentially, so of the two types, the probability that 

the.next to occur will be an arrival is A~ ; correspondingly, the pro

bability that the next event will be the start of a new time period is 

2) w.(t) = (A+y)e-(A+y)t Vi. 
~ 

The waiting time in state i until 

the next transition is the time until either an arrival or the start 

of a new time period, whichever occurs first; the distribution for the 

minimum of two exponential random variables is itself exponential, with 

mean rate equal to the sum of the original rates. 

h . . (t) = (A+y)e-(A+y)t Vi,j. 
~J 

3) Since transitions occur ex-

ponentially, the distribution for the holding time until the next transi-

tion from state i, given that it will be to state j, is the same as for 

the llilconditional waiting time in state i. 
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Thus, each arc in the above flow graph has been labeled with the 

expression Pij hij e (s), for appropriate, values of i and j, where hij e (s) 

denotes the Laplace transform of h .. (t). Similarly, the tap-out from 
~J 

state i has been labeled with ccw.e(s), where cCw.(t) is the probability 
~ ~ 

that the waiting time in state i is greater than t (i.e., the com-

plementary cumulative of wi(t». 

The next step is to find the functions ¢ .. (.), where ¢ .. (t) is the 
~J ~J 

probability that the system is in state j t time units from now, given 

that it is currently in state i. To do this, we can either apply the 

e 
techniques of flow graph analysis directly, to find ¢ij (s) for each pair 

of i and j, or we can use the matrix formula 

wherecSwe(s) is a diagonal matrix with on-diagonal elements equal to 

cc e e w. (s), H (s) 
~ 

= (h .. e(s», and 0 represents the term-by-term matrix 
~J 

product (i.e.~ if A=(a .. ) and B=(b .. ), then AOB""(a .. b .. ». 
~J ~J ~J ~J 

The resulting matrix ~e(s) has the following form: 

~ o ~ j < k j=k 

:y+s A . 1 A k i=O 
S(A+Y+S) (A+Y+S)J - (A+Y+S) S 

(i > j) (i ~ j) 

Y A . 1 A j-i :y A k 
S(A+y+S) (A+Y+S)J + A+Y+S (A+Y+S) s(y+s) (A+Y+S) < k -

1 A k-i 
, y+s (A+Y+S) 

r ' A )j 
S(A+Y+S) ~A+Y+S 
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I will not invert these transforms here. The results are somewhat 

messy (the most complicated expression--for ~ik(t), i ~ l--involves the 

cumulative distribution function for the stm of an Erlangk(A+Y) random 

variable and an exponential(A) random variable); and would not be highly 

me~uingful, since we are not interested in the functions ~,,(t) for their 
~J 

own sake in any case. Instead, using the expressions for ~"e(s), I will 
~J . 

derive expressions for PRIR(t) and PRIA(t), the functions that our gaming 

applicant was originally interested in. 

First we will need to find the steady-state probabilities, ~(j): 

-Y- ( A .) j, 0 _< J' < k-l 
A+Y A+y 

= 

A k 
(A+Y) , j=k 

(Because the arrival process is Poisson, the value TI(j) is not only the 

probability of being in state j at a random time, but also the probability 

that a randomly chosen call from the process arrives while the system is 

in state j.) 

e 
~IR (s) is now relatively simple to compute, since the observed call 

will be rejected only if it occurs while the system is in state k, and 

the state of the system therefore will not change as a result of the call: 

e If(k) ~kk e(s) yAk 1 
PRIR (s) = TI(k) = s(y+s) (A+Y+S) + y+s 
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Inverting we get: 

-AV -yv -yt 
e (e -e ) dv 

PRIAe(S) is somewhat more complicated, since we must take into 

account the facts that the observed call might arrive while the system 

is in any of states O,l, •.• ,k-l, and that its acceptance would increment 

the state of the system: 

k- l , e 
= i~O rr(~)~i+l,k (s) 

k-l 
i~O rr(i) 

k-l r J...... I A), iJ r YAk] 
i~O LA+Y ~ ls(y+s) (A+Y+S) 

= 
k-l Y A i 
i~O A+Y (A+Y) 

+ 

1:: Y k-l[ 
i=O A+Y 

k-l Y A i 
,1:: A+Y <A+Y) 
~=O 

__ ~ ( A ) k ,., 1 [Y A k-l 
- s(y+s) A+Y+S l_(~)k ··s(y+s) (A+Y+S) 

A+Y 

+ 1 Y (A) k-l + 1 ~ ( A ) k-l J 
Y+s A+Y A+y S y+s A+Y 
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Inverting gives 

(k ~ 2): 
t k k-l (~)k-l 
f ).., v -)..,v -yv -yt )..,+Y [1 - '.+yl\ e - yt] (k-1)! e (e -e ) dv + -":"":')..,,,.-L-"""k- II. 

o l-(A+Y) 

1 

(k.= 1): A Y -O·+Y)t 
A+Y + A+Y e 
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5. Interpretation of Results 

Since the expressions for PRIR(t) and PRIA (t) are quite unwieldy, 

I will also present a variety of simpler results which help to give some 

qualitative understanding of the system's behavior. First, it is in-

stru(~tive to look at the expressions for the special case k=l (a quota of 

one acceptance per time period), since they are then simple exponential 

functions, and the characteristics of the system are therefore particularly 

clear in this case. 

vfuen k=l, PRIR(t) and PRIA(t) are identical, as indeed we might have 

expected. With only one acceptance per time period, an observed call--

whether accepted or rejected--can communicate only that the system 

will be in the rejection state immediately after the observation. In 

other words, the only information available about the state of the system 

through observation of calls is the knowledge that a call actually 

occurred at some given time. In keeping with this reasoning, evaluating 

Graphing this function, we get: 

.... ------------ t· 

-(A+y)t e 
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Although it is not as easy to qualitatively describe the behavior 

of PR!R(t) and PR!A(t) when k=2, some obser.vations can be made about the 

shapes of these functions. For example, PR1R(t) is monotonically de

creasing in t, as can be shown by differentiating: 

--<L P I (t) 
dt R R 

-ye -yt 

_ -Y A V t 

[ 

t ,k k-l 

- -ye 1-[ (k-l)! 
-Av ] e dv = 

-Av e dv < 0 1/ t 

We are certain to be rejected if a new time period has not yet started 

s:i.nce the observed rejection, but have a smaller probability of rejection 

if the system is in a new period,. and the probability that the system. is 

still in the same time period as the observed rejection obviously de-

creases over time. 

PRIA(t), on the other hand, is at least initially increasing for 

k > 2: 

A k 
d _ (A+Y) 

dt P 1llA (t) I - YAk> 0 
t=O l-(A+Y) 

When k > 2 we can also show that PRIA(t) is always strictly less 

than PRI R (t) : 

t 

~ k f 
1-(-) O· 

A+Y 

k-l k-2 
_A v 

(k-2)! 
-Av -yv -yt -yt 

e (e -e )dv - e 



= 

= 

Z5 

(.l)k-l 
A+y _ -rt [(~)k ] 

e A k + 1 
1-(-) 

A+Y 

t 
1 f "k-l vk- Z , __ ~~ ~ -~v -yv -yt 
A k ':"':""'(k'-_-oZ"":')-:-!- e (e -e ) dv 

l-(A+Y) 0 

1 [A k-l 
=. A k (~+y) 

l-(-A+y-) 
Jt Ak-l vk- 2 -(A+Y)V ] 

(k-2)! e dv o 

_....:;:1:..- -yt 
l_(~)k e 

A+Y 

1 [1 A
k

-
l 

v
k

-
2 

l_(~)k t (k-2)! 
A+Y 

A v -AV k-l k-2 ] 
(k-Z)! e dv 

-(A+Y)V d J A v -AV -ytd 
to k-l k-2 ] 

e v -t (k-2)! e e v 

-yt -yv Since e > e when t < v, this gives us the inequality 

J
CXl Ak-l vk- 2 

t (k-2) ! 
-AV( -yv_ -yt)d < 0 e e e v 

The intuitive justification for this result is as follows. Under 

the assumption of independently distributed time period lengths, the 

outcome of an observed call contains no information about the pro-

bability of rejection once a new time period has started. However, if 

the system is still in the period during which the observation took 

place, its outcome does make a difference: calls are sure to be re-

jected after an observed rejection, but have some probability of 

acceptance after an observed acceptance (if k ~ 2). 
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Further intuition can be gained by looking at PRIR(t) and PRIACt) at 

. + 
t=O (actually t=O , assuming our gaming applicant calls immediately after 

the observed call), and in the limit as t+ oo (assuming an arbitrarily 

long delay after the observed call). We would expect that PRIR(O), the 

probability of rejection immediately after an observed rejection, would 

equal one, since it is not possible for a new period to have begun in 

between the two calls, and in fact evaluating PRIR(t)lt=o gives the 

desired result. PRIA(O) is given by 

= 7f (k-l) 
l~''!l"(k) 

the probability that our observed call was the last acceptance in its 

time period, given that it was accepted at all. 

After an arbitrarily long time, we would expect the observed out-

come to have become uninformative, since the system will have retur.ned 

to steady state. Thus we have that a call placed t time units after an 

observed call, in the limit as t + 00, has the same rejection probability 

as if it were randomly timed: 

lim ( ) i~ 00 PRIR,t = 
lim P () 

t + 00 RIA t = A k 
(1..+'1) = 7f (k) 

Finally, we can attempt to calculate our measures of vulnerability 

to selection bias, 



ti~fo PRIR(t) 

PR 
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and 

Since PR1R(t) is monotonically decreasing, 

lim 
t+ co 

t i~fO PRIA (t) 

PR 

which is also equal to the probability that a randomly chosen naive 

applicant is rejected, PR, I was not able to determine 

as it is not possible to analytically find the zeroes of 

-vt 
= ye I 

t. 

I Ak vk- l 

o (k-l)! 
-AV e dv 

A k 
(A+Y) -yt 

+ - ye 
l_(~)k 

A+y 

1 

l_(~)k 
A+y 

-yt ye It A k-l vk- 2 -AV 
e dv o (k-2) ! 

HOv,Tever, the needed computations could easily be performed numerically 

for specific values of A, y, and k. 

It is important to note the somewhat peculiar fact that, when k=l 

and/or when the observed call is a rejection, our gaming applicant can do 

no better than PR, the overall probability of rejection for naive appli

cants. This result is not as paradoxical as it at first appears, since 

in both of these situations the information provided by the observed call 

consists only of the knowledge that the system has entered. the rejection 
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state. However, the fact that situations exist in which the gaming 

applicant is completely incapable of reducing the probability of rejection 

from the program points up the unrealistically severe restrictions we 

have imposed on possible gaming behavior. It is important to investigate 

the effect on selection bias of various means of relaxing those re-

strictions. 

One possible relaxation is to permit the gamer ~o apply to the pro-

gram before the arrival of the observation call. This is desirable from 

the gamer's perspective, since if no calls have yet arrived a long while 

after the gamer has entered the system, the probability of rejection for 

an application placed at that time will be very low. If s is the time 

elapsed with no arrivals since the gaming applicant has entered the 

system, then the probability of rejection for an application placed at 

time s is given by the probability that the gamer entered the system in 

state k, times the probability that a new time period has not yet begun: 

Under this model, the gamer weighs the chance of a decreased pro-

bability of rejection by delaying application, against the risk of an 

increased rejection probability if the observation call arrives before 

application to the program has been made. The optimal strategy is to 

* apply t time units after arrival to the system if an 'observation call 

has not yet occurred, and an arbitrarily long time after the observation 

* * call if it occurs before t , where t is chosen to minimize 



plrejectionl = 

t 

A k 
(A+Y) 
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-yt 
e !ObServation call dOeS] 

P not occur by t 

f -AS + I.e 
b 

[ -ysl [ inf 'I ~(k)e 1 u ~ 0 PR/R(u) ds 

t 

+ ! -AS [ -YSI [ inf ] o I.e I - 7f(k)e u ~ 0 PR/A (u) ds 

As an example, for k=l, this becomes 

Differentiating with respect to t gives 

(A~) [ I.e-At - (A+y)e-(A+Y)t 1 = 0, 

* I A implying that t = - y In (A+Y)' 

Another possible relaxation of the permitted gaming behavior, which 

might be a realistic model for many situations, is to assume that the 

gaming applicant is actually the favored client of some (gaming) client 

advocate, who is responsible for some amount 1.0 of the total arrival rate A~ 

Under this model, the gaming applicant arrives at the client advocate, and 

observes the outcome of the next applicant to arrive at that advocate. 

Since the only possible arrivals from the time the gaming applicant 

enters the system to the time of the observation are from a Poisson process 

with rate A - 1.0 ' the probability that the observation call will arrive 

with the system in state i is given by 
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Cb 

'IT' (j) = f dt 
o 

Then, assuming that the client advocate does not place any further 

calls until the optimally timed cal.l on behalf of the favored applicant, 

the effective arrival rate between the observation call and the call on 

behalf of the gaming applicant is I~gain only A->.a. Thus, the probability 

of rejection t time units after the observed call, given that the observed 

call is rejected, will be [¢kk(t)]A->.a i if the observed call is accepted, 

the probability of rejection t time units later will be 

k-l 
o~ 'IT'(i) [¢o+l k(t)],_, 
~=O ~ , A AO 

k-l 
~ 'IT' (i) 

i=O 

The probability of the gaming applicant being rejected t time units 

after the observed call, both in the case when the observed call is re-

jected and when k=l, is given by 

-yt ft 0.-.1.. 0 ) k vk- l _ (A-A ) v -yv -yt 
= e + (k-l)! e 0 (e -e )dv. 

o 

This is minimized in the limit as t + 00, yielding an optimum rejection 

probability of 

A k 
compared to (A+Y) for naive applicants. Thus, the ratio 



I 
rej ection at time 

in~ P a client advocate 
t > 0 

arrival rate AO 
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t, giVen} 
with 

will not be too much less than one when: 

- AO is small relative to A; 

the average period length, l/y, is 
small relative to A; and 

- k is small. 

One additional extension--which is not related to our assumptions 

about gaming behavior, but can be performed fairly simply--is the gener

alization of the Markov analysis to allow Erlang and other, more general 

distributions for the lengths of time periods. This can be accomplished 

by viewing each period as being made up of a number of exponential stages, 

possibly with different parameters. (In fact, the number of stages does 

not even need to be fixed. Rather, at the end of stage i, one could 

continue to stage i+l with probability Pi' or terminate the current time 

period with probability l-p., permitting the representation of an ex
~ 

tremely wide range of continuous distributions.) 

As an example, here is the state transition diagram for a system 

with two stages, having mean lengths l/Yl and l/Y2: 
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The methods of analysis for this system would be parallel to those 

used in Section 4 of this paper, although the algebra would obviously be 

more complicated. I will present a sample computation here for illustrative 

purposes--PR, the probability of rejection for a naive applicant. 

First, examining the result for the simpler system, 

A, k 
= (A,+y) , 

we see that it is equal to the probability of having k arrivals before the 

start of a new time period. (The probability that one arrival will occur 

A 
before a new period begins is given by A,+y' and given that one such 

even~ has occurred, the probability of the next one occurring remains un-

changed.) By analogy, then, in our system we will have 

PR = P lk arrivals before the completion of the 1st stagel 
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+ ~~~ [pI i arrivals before the completion of the 1st stage} 

x'P{comPletion of the 1st stage before the next arrival} 

x P {k-i arrivals before t.he completion of the 2nd stage} 1 
k-l Y 

C-A- ) k + L: Ail A k-i 
A+Yl i=O C"+yi A+Yl CA+Y/ 

= 

= 

A k A 
CA+y ) [1 + k A+Y] , Y = Yi = Y2 
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6. Summary and Conclusions 

1. set out in this paper to explore the vulnerability to selection 

bias of random time quota selection, as developed by the Vera Institute. 

In the course of pursuing that analysis, an increasing number of assump-

tions and restrictions became necessary, and it was not possible to in-

vestigate the method of random time quota selection in as much generality 

as was hoped. In this section, I will review the assumptions that were 

made, and present my views on which aspects of the analysis remain appli-

cable in broader contexts. I will also mention once again several direc-

tions for further research which were discussed earlier in the paper. 

The first set of assumptions was made prior to the investigation of 

the general case. Primary among these were: 

1) that there was only one gaming applicant; 

2) that the gamer had complete knowledge of the system 
characteristics fTC') and qC'); and 

3) that only one call could be observed. 

It is difficult to assess the impact of the first assumption on the 

magnitude of possible selection bias, although one can hope that it is 

not too great. If a number of applicants attempted to time their appli-

cations so as to influence their selection probabilities, this would be 

perceived by anyone applicant as a non-Poisson process for arrivals 

(with arrivals not necessarily mutually independent). The effect might 

be comparable in size to that of a different distribution for time period 

lengths. 

Assumptions 2) and 3) are obviously central to the analysis. For 
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example, it was demonstrated that~ given complete knowledge of system 

characteristics, failure to limit the extent of permitted observation can 

lead to extreme selection bias, with rejection probabilities often arbi

trarily close to zero. In general, the assumptions chosen tend to counter

act each other in their effects: the severe restriction on permitted ob

servation was intended to offset the generosity in overall knowledge of 

the system. 

Because of these two assumptions, the analysis that I have presented 

is clearly not an accurate model for most practical settings. However, 

the discussion above leads to a recommendation on how to reduce selection 

bias in general. In situations where clients or their advocates have 

access to a grea.t deal of information about previous calls, it is especially 

important to provide only minimal information on the details of the selec

tion method; similarly, in situations where there is a great deal of know

ledge about the system in general, such as where the researchers deal 

directly with program applicants, an effort should be made to limit the 

possibilities for observing the outcomes of calls. 

The next set of assumptions was made in order to Markovize the system. 

Certainly,few implementations of random time quota selection are likely to 

use the precise configuration we considered--constant quotas, and ex

ponentially (or Erlang) distributed time period lengths. In general, I 

would conjecture that implementations similar to the memoryless system 

analyzed here would tend to minimize selection bias, precisely because of 

the Markov property: there is relatively little information to be gained 
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through observation. However, this hypothesis should definitely be in-

vestigated further before being taken- as a recommendation. It is especially 

important to understand the effects of proportional rather than constant 

quotas, since proportional quotas are virtually essential in winning 

approval for the method in many contexts. 

Furth~r insight into the effect of observation opportunities on 

selection bias is provided by one of the extensions considered in this 

paper. The result (for the Markovized system), for an advocate who is 

responsible for an amount AO of the total arrival rate A, is that the 

probability of rejection for a gaming applicant can be reduced by a factor 

of 

from the probability with more restricted information. 

Here again, general recommendations can be made. Selection bias can 

be reduced by giving each advocate access to only a small proportion of 

all callq--for example, by having advocates ~lork out of separate offices 

rather than as a group, where possible. Also, shorter time periods will 

tend to reduce selection bias, as might be expected, since the system will 

more closely approximate true randomization. Finally, while small quotas 

appear to minimize worst-case selection bias, they may also increase the 

overall variability in rejection probabilities among different times of 

application to the program: for k=l the functions PRIR(t) and PR1A(t) 

are exponential, whereas for larger k they are "flatter" (similar to the 

cumulative distribution functions for Erlang random variables). 
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To review what I consider to be the.most important recommendations 

to be followed in minimizing.selection bias, the most obvious is that 

time periods should be chosen to permit the use of quite small quotas. 

The smaller the quotas are, the more closely the system mimics the be

havior of true randomization. The other important guideline is to limit 

the extent of possible observation a great deaL If it is not possibJ.e 

to withhold inform.ation or outcomes (acceptance or rejection) from the 

client advocates~ efforts should be made to limit observation opportuni

ties in other ways~-for example, by delaying the reporting of outcomes, 

by decentralizing client advocate operations so that each advocate observes 

only a small fraction of calls, etc. 

In sum, the results of thts paper, taken together with the experiences 

of the Vera Institute in successfully implementing random time quota selec

tion, in.dicate that with care the method can be used as an alternative 

to randoru selection without incurring undue selection bias. However, 

further research would be extremely useful in clarifying the properties of 

the method. Perhaps the most promising avenue for research is the numerical 

solution of the general renewal equations discussed in Section 3, to per

mit investigation of the influence of proportional quotas. It would also 

be extremely worthwhile to develop and explore the variant of random time 

quota selection described earlier~ in which calls would be accepted during 

a certain proportion of each time period, rather than according to fixed 

quotas. 
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