
-,----

TPL Pr imer
An introduction to Table Producing Language

by
Barbara B. Noble

for
U. S. Department of Justice

Law Enforcement Assistance Administration
National Criminal Justice Information and

Statisti~s Service

Under Grant No. 78-SS-AX-0028

BUREAU OF SOC I AL SC I ENCE RESEARCH, INC.
1990 M Street, N. W.

Washington, D. C. 20036

June 27, 1979

If you have issues viewing or accessing this file, please contact us at NCJRS.gov.

TPL Primer
An Introduction to Table Producing Language

INTRODUCTION

Table Producing Language trPL) is a set of computer programs
which produces printed tables from machine-readable data files.
TPL can be used to select data for display, to compute new
variables from old values, and to format many different types of
statistical tables.

TPL was written by the Bureau of Labor Statistics and
converted to run under the Michigan Terminal System by the LEAA
Research Support Center.

The purpose of this document is to introduce you to TPL and
to provide information sufficient to produce useful tables. A
brief explanation, a statement model, and examples of each TPL
statement, and a description of the MTS procedures for running
TPL tables are included in this primer. It is assumed that a
TPL codebook and data file have been prepared for your use.

This primer is not intended to be a complete description of
TPL. Complete documentation of TPL, including instructions for
preparing a TPL codebook and data file, can be found in Table
Producing Language, Version ~, Users Guide, prepared by the
Bureau of Labor Statistics.

Definitions

A TPL codebook describes a data file to the TPL table
generating programs. It is stored in a file separate from the
data. The codebook includes information about the name,
location, type, and values of each variable in the data file.
The sample codebook in the appendix is used in the examples in
this primer.

TPL recognizes two types of variables: control and
observation variables. Control variables are classification or
grouping variables such as sex or type of offense. All values
of the control variables in a data file are listed in the
codebook.

Observation variables are quantitative variables on which
arithmetic can be done. In most cases, it makes no sense to do
arithmetic with control variables. Examples of observation
variables are amount of bailor number of years of sentence.

2

TPL Primer 3
An Introduction to Table Producing Language

When generating a TPL codebook, each type of record in the
data file is given a name. In the sample codebook, one record
name is defined; DEFENDANT. The record name is used as an
observation variable. It has an assumed value of one for each
record and can be used to count records.

In a TPL codebook, some variables may be defined as both
control and observation variables. This allows some flexibil ity
in using the data. Rules for choosing the type of variable are
explained later.

I'. · · t
• ,

TPL Primer 4
An Introduction to Table Producing Language

TPL TABLE REQUEST STATEMENTS

Format Of TPL Statements

There are six TPL statements for producing tables: USE,
TABLE, SELECT, DEFINE, COMPUTE, and POST COMPUTE. A TPL request
must at least include a USE statement and a TABLE statement.

TPL statements are made up of keywords, parameters,
punctuation, and some special symbols. A model of each
statement shows its format and content. Keywords, such as the
names of statements, are shown in uppercase and" are to be used
as shown. Parameters are shown in lowercase and are to be
replaced by information specific to your request. Punctuation
and special symbols are also to be used as shown.

A TPL statement cannot extend past column 72. If a
statement is longer than 72 characters, it may be extended over
more than one line by breaking the command at a convenient
blank. End each statement with a semicolon.

USE Statement

The USE statement provides TPL with the name of the codebook
to use. ~t is always the first statement in a table request.
The model of the USE statement is:

USE codebookname CODEBOOK

Replace codebookname with the name of your TPL codebook.
For example:

USE ARREST CODEBOOK;

The name of the sample codebook is ARREST. Notice that this
is not the name of the file which contains the codebook but the
nam~ of the codebook in the file:

TPL Primer 5
An Introduction to Table Producing Language

TABLE Statement

Format Of The TABLE Statement

The TABLE statement defines the name, title, and content and
structure of the table. The following is a model of the TABLE
statement:

TABLE name Ititle l
: stub-exp, heading-exp ;

Replace
identify the
valid names
table.

~ with a letter, a number I' or a short label to
table. For example, A, TABLEl, or First are all
for a table. The table name is used to label the

A title for the table is optional. If)'OU want a title,
enclose it in single quotes as illustrated.

The stub and heading expressions, stub-exp and heading-exp,
specify the structure and content of a table. The stub
expression defines the rows and the heading expression defines
the columns. The stub and heading expressions are identical in
format and are composed of the names of variables and some
specJal keywords.

Let1s first consider a simple example to illustrate the
TABLE statement.

TABLE TABLEI: RACE, SEX;

TABLEI is the name of the table, RACE is the stub.expression
and SEX is the heading expression. From the codebook in the
appendix, we see that SEX and RACE are control variables, and
that SEX has two values and RACE, four values. The resulting
table looks like this:

TABLEI

SEX OF DEFENDANT
Male Female

RACE OF DEFENDANT
Wh 'j te
Black .•..••••••••••.
Oriental~ ...••••...•
Other .•••••...•••.••

TPL Primer 6
An Introduction to Table Producing La~guage

Notice that labels from the codebook are printed instead of
the variable names and values.

Table Structure

The structure of a table is primarily determined by the
control variables specified in the stub and heading expressions.
In the last example, the row structure is determined by the stub
expression, RACE, and the column structure by the heading
expression, SEX. The table has eight cells with the coordinates
White Male (RACE=1, SEX=l) , White Female (RACE=l, SEX=2), Black
Male (RACE=2, SEX=l), etc.

Table Content: Counts Of Records

Having defined the structure of a table, let1s consider
content. The content of a table is the values that appear in
the cells. For example:

TABLEl

RACE OF DEFENDANT .
Wh i te '"
Black
Oriental•
Other

SEX OF DEF ENDANT
Male Female

5
3
2
2

DATA NOT AVAILABLE.

2
1

The content of this table is how many records there are in
the data file with each of the eight combinations of SEX and
RACE. In the sample data fi le in the appendix, you can verify
this table by counting the number of records for each
combination of values for SEX and RACE.

Table Content: Sums Of Variables

A count of the number of data records which matches ~~ch
combination of coordinates is one kind of content of a table.
The second kind of content is sums or aggregations of an
observation variable. The TABLE statement:

TABLE TABLE2: RACE, BAIL_AMT;

i

;\

TPL Primer
An Introduction to Table Producing Language

will produce the table:

TABLE2

RACE OF DEFENDANT
Wh i te
Black .••...•...••.••
Oriental •••.••.•...•
Other •....•..•.•....

BAIL AMOUNT

20,000
2,000
6,000

15,000

7

The heading expression, BAIL_AMT, consists of one variable
which is an observaion variable. There is no control variable
to affect the column structure of the table so the table
contains only one column. The cells of the table contain the
sum of the values of BAIL_AMT for each category of RACE. You
can prove this to yourself by finding all records in the sample
data file where RACE is 1 (White) and adding up the values of
BAIL_AMT for those records.

THEN, The Concatenation Operator

A single table can contain sums of more than one observation
variable, or counts of records classified by more than one. set
of control variables, or sums and counts. To do this, use the
concatenation operator, THEN, between variable names in either
the stub or heading expression or both. For example:

TABLE TABLE3: RACE, SEX THEN BAIL_AMT;

results in the table:

TABLE3

RACE OF DEFENDANT
Wh i te
Black •••.•••..•.••..
Oriental ••••.•••.•..
Other •.••••...•.....

DATA NOT AVAILABLE.

5
3
2
2

2
1

BAIL AMOUNT

20,000
2,000
6,000

15,000

Notice that this table contains the same information as the
first two tables, counts and sums. The first and second tables
are put side by side or concatenated to form this third table.

TPL Primer 8
An Introduction to Table Producing Language

Totals

Adding totals to a table is easy: include the keyword TOTAL
in place of a variable in the stub or heading expression. For
example;

TABLE TABLE4: RACE THEN TOTAL, TOTAL THEN SEX
THEN BAIL_AMT;

produces the table:

TABLE4

TOTAL SEX OF DEFENDANT
Male Female

RACE OF DEFENDANT
Wh i te 7 5 2
Black •.•.••..••...•. 4 3 1
Oriental .•........•. 2 2 -
Other .••••.•.••....• 2 2 -
TOTAL ••••••••••••••• 15 12 3

DATA NOT AVAILABLE.

BAIL AMOUNT

20,000
2,000
6,000

15,000
43,000

Notice that the keyword TOTAL can appear anywhere in an
expression and in both the stub and heading expressions. The
keyword TOTAL in the stub expression results in a count of the
total number of records in the file, 15; a count of records for
each category of SEX, 12 and 3; and the total BALIL_AMT, 43,000,
from all records in the file. Similarly, TOTAL in the heading
expression results in counts for each RACE group and of all
records in the file.

BY, The Nesting Operator

The nesting operator, BY, used between two control variables
in an expression» produces all possible combinations of the
values of the variables. Consider:

TABLE TABLE5: DRUG_USER BY RACE, BAIL_AMT

gives the table:

TPL Primer
An Introduction to Table Producing Language

TABLE5

DRUG USER
Yes

RACE OF DEFENDANT
Wh i te
Black. l:) •••••••••••

No
RACE OF DEFENDANT
Wh i te
Black .•.••..•. 1 •••

Oriental .•.•••..•.
Other ••.•..•.•....

Missing Data
RACE OF DEFENDANT
Wh i te
Oriental ••.........
Other .••.•.••....•

BAIL AMOUNT

11,000
o

1,000
2,000
1,000
5,000

8,000
5,OOCl

10,000

9

Three values for DRUG_USER and four values for RACE are
nested to produce twelve combinations. Because some
combinations are not present in the file, some rows which were
empty were not printed.

Combining Nesting And Concatenation Operators

The nesting and concatenation operators, BY and THEN, can be
combined in an expression. When these operators are combined In
an expression, ,nesting takes precedence over concatenation.
This means that nesting is done first; then the results of
nesting are concatenated. For example, the TABLE statement:

TABLE TABLE6: TOTAL, SEX BY DRUG_USER THEN BAIL_AMT;

generates the table:

TABLE6

SEX OF DEFENDANT
Male Female BAIL

DRUG USER DRUG USER AMOUNT
Yes No Miss, i no Yes No Missino

Data Data
TOTAL ..••• 4 5 3 1 2 - 43,000

DATA NOT AVAILABLE.

TPL Primer 10
An Introduction to Table Producing Language

Rules For Using Observation Variables

TPL determines the contents of the table cells. Cells will
contain counts of records if no observation variable is
mentioned, or will contain sums of an observation variable when
an observation variable is specified. Each cell can contain one
or the other, but only one. This leads to some restrictions on
the use of observation variable names in table expressions.

1. Observation variables can be named in only one table
expression; the stub expression or the heading expression.

2. More than one observation variable can be used in an
expression if they ~re separated by the concatenation operator,
THEN. The parts of an expression separated by THEN are called
terms. The name of an observation variable can appear anywhere
in a term. Its placement affects only the location of labels in
the table.

Some examples will
variables, RACE and SEX,
and BOND_AMT will be
expressions of the TABLE

illustrate these rules. Two control
and two observation variables, BAIL_AMT
used and only the stub and heading
statement will be illustrated.

This is not valid because observation variables are named in
more than one expression.

RACE, BOND_AMT THEN BAIL_AMT;

This example is correct: observation variables are named in
only one table expression and they are named in separate terms
of the expression.

SEX, RACE BY BAIL_AMT;
S,EX, BA I L_AMT BY RACE;

These expressions, both val id, result in tables identical is
structure and content and differing only in the plac.ement of
labels in the heading.

SELECT Statement

The SELECT statement specifies conditions to be met by each
record in the data file to be included in a table. One SELECT
statement is allowed per request and it must come immediately
after the USE statement. The SELECT statem~nt applies to all

- -------------------------------------_._------------

TPL Primer 11
An Introduction to Table ProducJng Language

tables requested in a TPL request. The SELECT statement looks
1 ike th is:

SELECT IF name relation name

or

SELECT IF name relation Ivaluel

Replace ~ with the name of
var i ab 1 e. I f two names appear,
variables or observation variables.

a control
then both

or observation
must be control

The value can be numeric or a 1 iteral value enclosed in
single quotes. If the variable named is an observation variable
then the value must by numeric and can be signl~d, e.g., 10, +42,
or -8. Control variable values are handled in a different way.
Only unsigned numbers can be used without surrounding single
quotes. All other values including negative numbers are
considered 1 iterals and must be enclosed in single quotes.

The relation can be any one of the following logical
operators:

< less than
>. greater than
= equal to
-.< not less than
-.> not greater than
-."" not equal to
<= less than or equal to
>= greater than or equal to

For example:

SELECT IF BAIL_AMT > 0:

SELECT IF RACE -.= 1-11:

In the first example, the SELECT statement
selection of all records whose BAIL_AMT is greater
The second example shows use of a literal value.
except those containing a value of -1 for RACE will

would cause
than zero.
All records

be selected.

The selection criteria can be extended to more
variable by using the logical operators AND and OR.
the following examples:

than one
Consider

SELECT IF BAIL_AMT > 0 AND RACE = 1-1':

SELECT IF BAIL_AMT > 0 OR RACE = '-1';

In the first case, both conditions, BAIL_AMT greater than
zero and RACE not equal to I-II, must be true before a case will

. -

TPL Primer 12
An Introduction to Table Producing Language

be selected. In the second example, a case will be selected if
either condition is true.

More than one of the logical operators can be used if
needed.

COMPUTE Statement

The COMPUTE statement provides a way of creating a new
observation variable from other observations variables and
constants. A value is computed for each record in the data
file. The format of the COMPUTE statement is:

COMPUTE newname : algebraic-expression

Replace newname with a name for the newly created
observation variable. The name may consist of up to 30 letters,
numbers, and the underscore symbol. The first character must be
a letter and the last cannot be an underscore. Examples of
names are AGE_AT_ARREST and XIO.

An algebraic-expression is formed in the
observation variables and constants separated
operators. The operators are;

usual way:
by arithmetic

+ addition
subtraction

* multipl ication
/ division

The arithmetic operators follow the usual precedence rules;
i.e., multipl ication and division are done before additlon and
subtraction. The order of calculation can be altered by
enclosing parts of the expression in parenth~ses. For example:

COMPUTE TOTAL_AMT: (BOND_AMT + BAIL_AMT) / 1000;

The name of the new observation variable is TOTAL_AMT. Its
value, computed for each record in the data file is the sum of
BAIL_AMT and BOND_AMT, divided by 1,000. Notice that if the
parentheses were omitted, the division would be done before the
addition and the resulting values would not be the same.

POST COMPUTE Statement

The syntax of the POST COMPUTE statement is the same as the
COMPUTE statement.

POST COMPUTE newname algebraic-expression;

The difference between the COMPUTE and the POST COMPUTE
statement is the order in which aggregation and calculation are

TPL Primer 13
An Introduction to Table Producing Language

done. The POST COMPUTE
specified in the POST
file for each table cell.
variable for each cell of

statement sums observation variables
COMPUTE statement over the entire data
then calculates the value of the new
the table. Consider:

COMPUTE X: BAI1AMT / DEFENDANT;
POST COMPUTE AVG_BAIL: BAIL_AMT / DEFENDANT;
TABLE TABLE7: DRUG_USER. BAIL_AMT THEN X

THEN DEFENDANT THEN AVG_BAIL;

produces the table:

TABLE7

BAIL AMOUNT X DEFENDANT
DRUG USER
Yes ••••••••••.• 11.000 11.000 5
No •..••.••..•. ,. 9.000 9.000 7
Missing Data .•• 23.000 23.000 3

-

AVG BAIL

2.200
1.286
7,667

For the new variable, AVG_BAIL, TPL sums BAIL_AMT for each
DRUG_USER value in the data file, and divides the sums by the
number of defendants in each DRUG_USER group. The resulting
values appear in the table cells. Notice that the values for
AVG_BAIL can be derived from the values shown for BAIL_AMT and
DEFENDANT. Also, notice that the values for X are not the same
as the values for AVG_BAIL. X is computed for every data record
by dividing B~IL_AMT by DEFENDANT which has an assumed value of
one. The results are then summed and the final values are the
same as the values shown for BAIL_AMT.

DEFINE Statement

The DEFINE statement allows a new control variable to be
defined which groups, deletes, and/or reorders values of an old
control or observation variable. The old variable may either be
defined in the codebook or be a newly computed variable. It may
not be a variable created by another DEFINE or POST COMPUTE
statement. The DEFINE statement is made up of several 1 ines:

DEFINE newname : oldname ;
' condition-name-l I relation entry-l
' condition-name-2 1

: relation entry-2

The name of the new control variable replaces newname.

TPL Primer 14
An Introduction to Table Producing Language

Newname is formed as described above under the COMPUTE
statement. Oldname is the name of the observation or control
variable whose values will determine the values of the new
control variable.

Condition-name is the label for the category to be used in
tables. It is enclosed in single quotes. The new categories
are automatically assigned values of one through n.

Relation is one of the logical operators listed under the
SELECT statement and entry is a value or range of values of the
old variable. A range of values is specified by two numbers
separated by a colon. No relation should be used with a range.
If entry is a single value, then a relation should be used. For
example:

DEFINE BAIL GROUP: BAIL AMT;
10-$1,000 1 7 0:1000; -
1$1,001-10,000 1 : 1001:10000;
IMore than $10,000 1 : >10000;

In this example, a new control variable, BAIL_GROUP, is
defined based on the values of the old observation variable,
BAIL AMT. The new variable has three categories with values I,
2, and 3. BAIL_GROUP has the value 1 if BAIL_AMT is in the
range of zero through 1,000; the value 2 ·if BAIL_AMT is in the
range 1,001 through 10,000; and the va 1 ue 3 if BCd L_AMT is
greater than 10,000.

.~--~.-~-~~---~----~--

TPL Primer 15
An Introduction to Table Producing Language

APPENDIX: SAMPLE CODEBOOK AND DATA FILE

RECORD
NUMBER

o.

LEVEL'
NUMBER

o

--------~---~--~--------,-------------------;

KEY KEY
VALUE LOCATION

I I 29

-- - ,---.. ----:;:--

,.. ~
t"

t
~f~
,:.,

DEFENDANT FIELDS:
,.
~:
!.;

FIELD NAME (SOURCE LINE) FIELD TYPE LEVEL RECORD F I HD

e NUMBER NUMBER LOCATION ,
LABEL (I F ANY) ~t

ARREST_MO (100) CONTROL ('13) 0 0 30
'MONTH OF ARREST' .~.

" k
r

ARREST_MO_OBS (106) OBSERVATION 0 0 30 1
:~

ARREST_YR (88) CONTROL (4) 0 0 32
~
'!-

'YEAR OF ARREST'
~.

c

ARREST_YR_OBS (95) OBSERVATION 0 0 32 ~\
:~

BAIL_AMT (80) OBSERVATION 0 0 17
'BAIL AMOUNT'

BIRTH_MO (22) · CONTROL (13) 0 0 8
'BIRTH MONTH'

BIRTH_MO_OBS (28) · OBSERVATION 0 0 8

BIRTH_YR (33) · CONTROL (10) 0 0 10
'YEAR OF BIRTH'

BIRTH_YR_OBS (41) · OBSERVATION 0 0 10
BLANK_KEY (110) . CONTROL (1) 0 0 34

~BOND_AMT (84) • OBSERVATION 0 0 23
'BOND AMOUNT'

DEFENDANT (6) RECORD NAME 0 0 0

DRUG_USED (60) CONTROL (16) 0 0 15
'G-DEP DRUG USED'

DRUG_USER (53) • CONTROL (3) 0 0 13
'DRUG USER'

RACE (45) CONTROL (4) 0 0 6
'RACE OF DEFENDANT'

SEX (16) · CONTROL (2) 0 0 4
'SEX OF DEFENDANT'

---.------

I

FIELD NAME (SOURCE LINE)
LABEL (I F ANY)

ACHAR (110)

, , ACHAR'

ARREST_MO (100)
'MONTH OF ARREST'

e

'-1' 'Missing Data'
'01' 'January'
'02' 'February'
'03' 'March'
, 04 ' , Apr i 1 '
'05' 'May'
'06' IJune'
107' IJuly'
, 08 I I Augus t I
109 I , September'
I 10 1 I October'
, 11' , November'
'12' I December ,

ARREST_YR (88)
'YEAR OF ARREST'

1-11 '@/@Missing Datal
176 1 11976'
'77' , 1977'
'78 1 11978 1

B I RTH_MO (22)
'BIRTH MONTH I

I -1 I

101'
'02'
'03'
1~1,1

1 05 1

'06'
'07'
1 08 1

109'
110 I

, 1 1 '
I 12 I

'Missing Data'
IJanuaryl
'Februaryl
'March'
I Apr ill

'May'
'J'o.Jne'
IJulyl
IAugust'
I September ,
10ctober'
'November'
I December I

DEFENDANT VALUES:

NUMBER OF CONDITIONS

R NAME

13

4

13

FIELD NAME (SOURCE LINE)
LABE L (I F ANY) 4It VALUE CONDITION LABEL OR NAME

BIRTH_YR (33)
IYEAR OF BIRTHI

1_11 IMissing Datal
1541 119541
1551 11955 1

156 1 11956 1

157 1 11957 I
158 1 11958 1

159 1 11959 1

160 1 11960 I
1611 I 19611
1621 11962 I

DRUG USED (60)
IG-DEP DRUG USED I

1011 IHeroin l
1021 IMorphine Basel
103 1 IOpiuml
106 1 IMethadone l
109 1 ICocaine l
I 101 IMethamphetamines l
I 1 1 I 'Stimulants l
I 12 I IDepressants l
I 131 ILSD I
I 14 I lather Hallucinogensl
115 1 I Mar ijuana I
I 16 I IHashish l
I 17 I IBarbiturates l
I 18 I IPCpl
190 1 IOther Drugs l
199 1 IMissing Datal

DRUG USER (53)
IDRUG USER!

I 1 I IYes l
121 'No '
19 1 'Missing Datal

RACE (45) . .
'RACE OF DEFENDANT'

e I 1 I 'White '
121 'Black'
13 1 'Oriental l
141 IOther '

DEFENDANT VALUES: 2

NUMBER OF CONDITIONS

10

16

3

1
,

4
" ~J
;j

~
fol

- - --------------~-~~~~-~-~-~----------------

FIELD NAME (SOURCE LINE)
LABEL (I F ANY)

SEX (16)
'SEX OF DEFENDANT'

1 1 1

121

'Male '
'Female '

DEFENDANT VALUES: 3

NUMBER OF CONDITIONS

2

~I'.'.' ~

I'····'· , ~.

f.,

~t

11·
" ,

'i\'. ,

TEST DATA

e DRUG
R BIR- U U AR-

S A TH S S REST
E C M Y E E BAIL BOND M Y
X E ORR D AMT AMT o R

1 258 2 99 1000 3000 1276
1 1 462 1 15 4000 1000 -1-1
2 1 355 1 16 0 1000 477
1 2 660 2 99 0 0 677
1 4 661 9 99 10000 5000 1076
1 3 554 9 99 5000 5000 278
1 4 1259 2 99 5000 6000 378
2 2 160 2 99 a 2000 676
2 1 357 2 99 0 a 1178
1 1 1062 1 15 7000 5000 877
1 1 861 9 99 8000 a 877
1 3 655 2 99 1000 2000 478
1 1 556 1 09 0 1000 578
1 2 759 1 15 a 4000 776
1 2 460 2 99 2000 3000 677

\
t"

" .~

~
)\

1:
"!~

~.

t
,$

~
~'
t

..... ,".

