Ll

M you

have issues viewing or accessing this file, please contact us at NCJRS.gov.

P e

1SS e
Leell

A,

TPL Primer
An introduction to Table Producing Language

by
Barbara B. Noble

for
U. S. Department of Justice
Law Enforcement Assistance Administration
National Criminal Justice Information and
Statistics Service

Under Grant No. 78-55-AX-0028

BUREAU OF SOCIAL SCIENCE RESEARCH; INC.
1990 M Street, N. W.
Washington, D. C. 20036

June 27, 1979

R R S A

R




TPL Primer
An Introduction to Table Producing Language

INTRODUCT | ON

Table Producing Language (TPL) is a set of computer programs
which produces printed tables from machine~readable data files.
TPL can be used to select data for display, to compute new
variables from old values, and to format many different types of
statistical tables.

TPL was written by the Bureau of Labor Statistics and
converted to run under the Michigan Terminal System by the LEAA
Research Support Center.

The purpose of this document is to introduce you to TPL and
to provide information sufficient to produce useful tables. A
brief explanation, a statement model, and examples of each TPL
statement, and a description of the MTS procedures for running
TPL tables are included in this primer. |t is assumed that a
TPL codebook and data file have been prepared for your use.

This primer is not intended to be a complete description of

TPL. Complete documentation of TPL, including instructions for

preparing a TPL codebook and data file, can be found in Table
Producing Language, Version 3.5, Users Guide, prepared by the
Bureau of Labor Statistics.

Definitions

A TPL codebook describes a data file to the TPL table
generating programs. It is stored in a file separate from the
data. The codebook includes information about the name,
location, type, and values of each variable in the data file.
The sampie codebook in the appendix is used in the examples in
this primer.

TPL recognizes two types of variables: control and
observation variables. Control variables are classification or
grouping variables such as sex or type of offense. A1l wvalues
of the control variables in a data file are listed in the
codebook.

Observation variables are quantitative variables on which
arithmetic can be done. In most cases, it makes no sense to do
arithmetic with control wvariables. Examples of observation
variables are amount of bail or number of years of sentence.




TPL Primer 3
An Introduction to Table Producing Language

When generating a TPL codebook, each type of record in the
data file is given a name. In the sample codebook, one record
name is defined; DEFENDANT. The record name is used as an
observation variable. |t has an assumed value of one for each
record and can be used to count records.

In a TPL codebook, somzs variables may be defined as both
control and observation variables. This allows some flexibility
in using the data. Rules for choosing the type of variable are
explained later,




TPL Primer L

An Introduction to Table Producing Language

TPL TABLE REQUEST STATEMENTS

Format O0f TPL Statements

There are six TPL statements for producing tables: USE,
TABLE, SELECT, DEFINE, COMPUTE, and POST COMPUTE. A TPL request
must at least include a USE statement and a TABLE statement.

TPL statements are made up of keywords, parameters,
punctuation, and some special symbols. A model of each
statement shows its format and content. Keywords, such as the
names of statements, are shown in uppercase and are to be used
as shown. Parameters are shown 1in Jlowercase and are to be
replaced by information specific to your request. Punctuation
and special symbols are also to be used as shown.

A TPL statement cannot extend past column 72. If a
statement 1is longer than 72 characters, it may be extended over
more than one line by breaking the command at a convenient
blank. End each statement with a semicolon.

USE Statement

The USE statement provides TPL with the name of the codebook
to use. 1t is always the first statement in a table request.
The modetl of the USE statement is:

USE codebookname CODEBOOK 3

Replace codebookname with the name of your TPL codebook.
For example:

USE ARREST CODEBOOK;

The name of the sample codebook is ARREST. Notice that this
is not the name of the file which contains the codebook but the
name of the codebook in the file.

R A e R

¥
>
A




TPL Primer 5
An Introduction to Table Producing Language

TABLE Statement

Format Of The TABLE Statement

The TABLE statement defines the name, title, and content and
structure of the table. The following is a model of the TABLE
statement:

TABLE name 'title' : stub-exp, heading-exp

Replace name with a letter, a number, or a short label to
identify the table. For example, A, TABLEl, or First are ail
valid names for a table. The table name is used to label the
table.

A title for the table is optional. |If you want a title,
enclose it in single quotes as illustrated.

The stub and heading expressions, stub-exp and heading-exp,
specify the structure and content of a table. The stub
expression defines the rows and the heading expression defines
the columns. The stub and heading expressions are identical in
format and are composed of the names of variables and some
special keywords.

Let's first consider a simple example to illustrate the
TABLE statement.

TABLE TABLE1: RACE, SEX;

TABLE1 is the name of the table, RACE is the stub.expression
and SEX is the heading expression. From the codebook in the
appendix, we see that SEX and RACE are control variables, and
that SEX has two values and RACE, four values. The resulting
table looks like this:

TABLE]

SEX OF DEFENDANT
Male Female

RACE OF DEFENDANT

Whiteeveoieovoosoons
Black.v:iioeeooevesnnn
Oriental..... vesenae

Other.iiieeeesesioase

!
:




TPL Primer 6
An Introduction to Tablie Producing Language

Notice that labels from the codebook are printed instead of
the variable names and values.

Table Structure

The structure of a table is primarily determined by the
control variables specified in the stub and heading expressions.
In the last example, the row structure is determined by the stub
expression, RACE, and the column structure by the heading
expression, SEX. The table has eight cells with the coordinates
White Male (RACE=1, SEX=1), White Female (RACE=1, SEX=2), Black
Male (RACE=2, SEX=1), etc.

Table Content: Counts Of Records

Having defined the structure of a table, let's consider
content. The content of a table is the values that appear in
the cellis. For example:

TABLE1

SEX OF DEFENDANT

Male Female

RACE OF DEFENDANT .
White.veivveooonnns . 5 2
Blackeieieooeanns - 3 1
Oriental.ceeeeeese .o 2 -
Other.iveaveceeenons 2 -

-~ DATA NOT AVAILABLE.

The content of this table is how many records there are in
the data file with each of the eight combinations of SEX and
RACE. In the sample data file in the appendix, you can verify
this table by counting the number of records for each
combination of values for SEX and RACE.

Table Content: Sums Of Variables

A count of the number of data records which matches each
combination of coordinates is one kind of content of a table.
The second kind of content is sums or aggregations of an
observation variable. The TABLE statement:

TABLE TABLE2: RACE, BAIL_AMT;

i




TPL Primer 7
An Introduction to Table Producing Language

will produce the table:

TABLE2

BAIL AMOUNT
RACE OF DEFENDANT
White..ovvvvevnennns 20,000
Blackeeveoeeononanns 2,000
Oriental.eecececcnss 6,000
Other..... ceserannan 15,000

The heading expression, BAIL_AMT, consists of one variable
which is an observaion variable. There is no control variable
to affect the column structure of the table so the table
contains only one column. The cells of the table contain the
sum of the values of BAIL_AMT for each category of RACE. You
can prove this to yourself by finding all records in the sample
data file where RACE is 1 (White) and adding up the values of
BAIL_AMT for those records.

THEN, The Concatenation Operator

A single table can contain sums of more than one observation
variable, or counts of records classified by more than one, set
of control variables, or sums and counts. To do this, use the
concatenation operator, THEN, between variable names in either
the stub or heading expression or both. For example:

TABLE TABLE3: RACE, SEX THEN BAIL_AMT;

results in the table:

TABLE3
SEX OF DEFENDANT BAIL AMOUNT
Male | Female

RACE OF DEFENDANT

Whiteeeeeieonooennne 5 2 20,000
Blackesiaoeeosn cieess 3 1 2,000
Oriental..cececeenns 2 - 6,000
Other.iiseieseecoesas 2 - 15,000

- DATA NOT AVAILABLE.

Notice that this table contains the same information as the
first two tables, counts and sums. The first and second tables
are put side by side or concatenated to form this third table.




TPL Primer 8
An Introduction to Table Producing Language

Totals

Adding totals to a table is easy: include the keyword TOTAL
in place of a variable in the stub or heading expression. For
example:

TABLE TABLEL: RACE THEN TOTAL, TOTAL THEN SEX
THEN BAIL_AMT;

produces the table:

TABLEL

TOTAL SEX OF DEFENDANT |BAIL AMOUNT

Male Female
RACE OF DEFENDANT
White....... veessens 7 5 2 20,000
Blacke.eeeo.. Ceeenen L 3 ] 2,000
Oriental.cceveeess . 2 2 - 6,000
Other...... ceeenaaae 2 2 - 15,000
TOTAL.veeannn e 15 12 3 43,000
- DATA NOT AVAILABLE.

Notice that the keyword TOTAL can appear anywhere in an
expression and in both the stub and heading expressions. The
keyword TOTAL in the stub expression results in a count of the
total number of records in the file, 15; a count of records for
each category of SEX, 12 and 3; and the total BALIL_AMT, 43,000,
from all records in the file. Similarly, TOTAL in the heading
expression results in counts for each RACE group and of all
records in the file.

BY, The Nesting Operator

The nesting operator, BY, used between two control variables
in an expression, produces all possible combinations of the
values of the variables. Consider:

TABLE TABLE5: DRUG_USER BY RACE, BAIL_AMT

gives the table:




TPL Primer 9
An Introduction to Table Producing Language

TABLES
BAIL AMOUNT
DRUG USER
Yes
RACE OF DEFENDANT
Whiteiveoas, crraas 11,000
Blackeavieieooss . 0
No
RACE OF DEFENDANT
Whitesiieoinaranas 1,000
Blackeeesuas ceenus 2,000
Oriental.ciesonscs 1,000
Other...... cereaas 5,000
Missing Data
RACE OF DEFENDANT
Whitessoeeeunne ces 8,000
Oriental..... e see 5,000
Othel.ieresvacannas 10,000

&

Three values for DRUG_USER and four wvalues for RACE are
nested to  produce twelve combinations. Because some
combinations are not present in the file, some rows which were
empty were not printed.

Combining Nesting And Concatenation Operators

The nesting and concatenation operators, BY and THEN, can be
combined in an expression. When these operators are combined in
an expression, .nesting takes precedence over concatenation.
This means that nesting is done first; then the results of
nesting are concatenated. Ffor example, the TABLE statement:

TABLE TABLE6: TOTAL, SEX BY DRUG_USER THEN BAIL_AMT;

generates the table:

TABLE6
SEX OF DEFENDANT
Male Female BAIL
DRUG USER DRUG USER AMOUNT
Yes | No |Missing| Yes | No [Missing
Data Data
TOTAL..... L 5 3 1 2 - 43,000

- DATA NOT AVAILABLE.

K s T G




TPL Primer 10
An Introduction to Table Producing Language

Rules For Using Observation Variables

TPL determines the contents of the table cells. Cells will
contain counts of records if no observation variable is
mentioned, or will contain sums of an observation variable when
an observation variable is specified. Each cell can contain one
or the other, but only one. This leads to some restrictions on
the use of observation variable names in table expressions.

1. Observation variables can be named in only one tdble
expression; the stub expression or the heading expression.

2. HMore than one observation variable can be wused in an
expression (f they are separated by the concatenation operator,
THEN. The parts of an expression separated by THEN are called
terms. The name of an observation variable can appear anywhere
in a term. Its placement affects only the location of labels in
the table.

Some examples will illustrate these rules. Two control
variables, RACE and SEX, and two observation variables, BAIL_AMT
and BOND_AMT will be used and only the stub and heading
expressions of the TABLE statement will be illustrated.

BAIL_AMT, RACE BY BOND_AMT;

This is not valid because observation variables are named in
more than one expression.

RACE, BOND_AMT THEN BAIL_AMT;

This example is correct: observation variables are named in
only one table expression and they are named in separate terms
of the expression.

SEX, RACE BY BAIL_AMT;
SEX, BAIL_AMT BY RACE;

These expressions, both valid, result in tables identical is
structure and content and differing only in the placement of
labels in the heading.

SELECT Statement

The SELECT statement specifies conditions to be met by each
record in the data file to be included in a table. One SELECT
statement is allowed per request and it must come immediately
after the USE statement. The SELECT statement applies to all




TPL Primer 11
An Introduction to Table Producing Language

tables requested in a TPL request. The SELECT statement looks
like this:

SELECT IF name relation name ;
or
SELECT IF name relation 'value' ;

Replace name with the name of a control or observation
variable. If two names appear, then both iust be control
variables or observation variables.

The value can be numeric or a literal wvalue enclosed in
single quotes. |If the variable named is an observation variable
then the value must by numeric and can be sighed, e.g., 10, +42,
or =-8. Control variable values are handled in a different way.
Only unsigned numbers can be used without surrounding single
quotes. A1l other wvalues including negative numbers are
considered literals and must be enclosed in single quotes.

The relation can be any one of the following logical
operators:

less than

greater than

equal to

not less than

not greater than

not equal to

less than or equal to
greater than or equal to

Vv A

A J 1 1
" nm# vaA

\'%

For example:
SELECT IF BAIL_AMT > 0;
SELECT IF RACE -= '-1"';

In the first example, the SELECT statement would cause
selection of all records whose BAIL_AMT is greater than =zero.
The second example shows use of a literal value. Al}l records
except those containing a value of -1 for RACE will be selected.

The selection criteria can be extended to more than one
variable by using the logical operators AND and OR. Consider
the following examples:

SELECT IF BAIL_AMT > O AND RACE = '-1';

SELECT IF BAIL_AMT > O OR RACE = '-1';

In the first case, both conditions, BAIL_AMT greater than
zero and RACE not equal to '-1', must be true before a case will




TPL Primer 12
An Introduction to Table Producing Language

be selected. In the second example, a case will be selected if
either condition is true,

More than one of the logical operators can be wused if
needed.

COMPUTE Statement

The COMPUTE statement provides a way of creating a new
observation variable from other observations variables and
constants. A value is computed for each record in the data
file. The format of the COMPUTE statement is:

COMPUTE newname : algebraic-expression ;

Replace newname with a name for the newly created
observation variable. The name may consist of up to 30 letters,
numbers, and the underscore symbol. The first character must be
a letter and the last cannot be an underscore. Examples of
names are AGE_AT_ARREST and X10.

An algebraic-expression is formed in the wusual way:
observation variables and constants separated by arithmetic
operators. The operators are:

+ addition % multiplication
- subtraction / division

The arithmetic operators follow the usual precedence rules;
i.e., multiplication and division are done before addition and
subtraction. The order of calculation can be altered by
enclosing parts of the expression in parentheses. For example:

COMPUTE TOTAL_AMT: (BOND_AMT + BAIL_AMT) / 1000;

The name of the new observation variabie is TOTAL_AMT. |Its
value, computed for each record in the data file is the sum of
BAIL_AMT and BOND_AMT, divided by 1,000. Notice that if the
parentheses were omitted, the division would be done before the
addition and the resulting values would not be the same.

POST COMPUTE Statement

The syntax of the POST COMPUTE statement is the same as the
COMPUTE statement.

POST COMPUTE newname : algebraic-expression ;

The difference between the COMPUTE and the POST COMPUTE
statement is the order in which aggregation and calculation are




TPL Primer 13
An Introduction to Table Producing Language

done. The POST COMPUTE statement sums observation variables
specified in the POST COMPUTE statement over the entire data
file for each table cell, then calculates the value of the new
variable for each cell of the table. Consider:

COMPUTE X: BAILAMT / DEFENDANT;

POST COMPUTE AVG_BAIL: BAIL_AMT / DEFENDANT;

TABLE TABLE7: DRUG_USER, BAIL_AMT THEN X
THEN DEFENDANT THEN AVG_BAIL;

produces the table:

TABLE?

BAIL AMOUNT X DEFENDANT|AVG BAIL
DRUG USER
YeS.iveeasnnsans 11,000 11,000 5 2,200
NO'vesens vesaens 9,000 9,000 7 1,286
Missing Data... 23,000| 23,000 3 7,667

For the new variable, AVG_BAIL, TPL sums BAIL_AMT for each
DRUG_USER value in the data file, and divides the sums by the
number of defendants in each DRUG_USER group. The resulting
values appear in the table cells. Notice that the values for
AVG_BAIL can be derived from the values shown for BAIL_AMT and
DEFENDANT. Also, notice that the values for X are not the same
as the values for AVG_BAIL. X is computed for every data record
by dividing BAIL_AMT by DEFENDANT which has an assumed value of
one. The results are then summed and the final values are the
same as the values shown for BAIL_AMT.

DEFINE Statement

The DEFINE statement allows a new control variable to be
defined which groups, deletes, and/or reorders values of an old
control or observation variable. The old variable may either be
defined in the codebook or be a newly computed variable. |t may
not be a wvariable created by another DEFINE or POST COMPUTE
statement. The DEFINE statement is made up of several lines:

DEFINE newname : oldname ;

'condition-name-1" : relation entry-1 ;
'condition-name=2' : relation entry-2 ;

The name of the new control wvariable replaces newname.




TPL Primer 14
An Introduction to Table Producing Language

Newname is formed as described above under the COMPUTE
statement. Oldname is the name of the observation or control

variable whose values will determine the values of the new
control variable.

Condition-name is the label for the category to be wused in
tables. It is enclosed in single quotes. The new categories
are automatically assigned values of one through n.

Relation is one of the logical operators listed under the
SELECT statement and entry is a value or range of values of the
old variable. A range of values is specified by two numbers
separated by a colon. No relation should be used with a range.

If entry is a single value, then a relation should be used. For
example:

DEFINE BAIL_GROUP: BAIL_AMT;
'0-$1,000"' : 0:1000;

'$1,001-10,000' : 1001:10000;
'More than $10,000' : >10000;

In this example, a new control. variable, BAIL_GROUP, is
defined based on the values of the old observation variable,
BAIL_AMT. The new variable has three categories with values 1,
2, and 3. BAIL_GROUP has the value 1 if BAIL_AMT is in the
range of zero through 1,000; the value 2 -if BAIL_AMT is in the
range 1,001 through 10,000; and the value 3 if BAIL_AMT is
greater than 10,000.

¥
5
[




TPL Primer 15
An iIntroduction to Table Froducing Language

Y
b4
i
i
i

APPENDIX: SAMPLE CODEBOOK AND DATA FILE




]

RECORD LEVEL" KEY KEY
NUMBER NUMBER VALUE LOCATION

0. 0 P 29




FIELD NAME (SOURCE LINE)

’ LABEL (IF ANY)

FIELD TYPE

DEFENDANT FIELDS:

LEVEL RECORD

FIELD
NUMBER NUMBER LOCATION

1

ARREST_MO (100)
'"MONTH OF ARREST'
ARREST_MO_OBS (106)

ARREST_YR (88)
'YEAR OF ARREST'

ARREST_YR_OBS (95)

BAIL_AMT (80)
'BAIL AMOUNT!

BIRTH_MO (22)
'BIRTH MONTH'

BIRTH_MO_0BS (28)

BIRTH_YR (33) . . .
'YEAR OF BIRTH'

BIRTH_YR_OBS (41) .
BLANK_KEY (110)

.BOND_AMT (84)
'BOND AMOUNT'

DEFENDANT (6) ...

DRUG_USED (60) . . .
'G-DEP DRUG USED'

DRUG_USER (53)
'DRUG USER'

RACE (45) ...
'RACE OF DEFENDANT'

SEX (16) . . . .
'SEX OF DEFENDANT'

. CONTROL (13)

. OBSERVATION

. CONTROL (&)

. OBSERVATION

. OBSERVATION
. CONTROL (13)

. OBSERVATION

. CONTROL (10)

. OBSERVATION
. CONTROL (1)

. OBSERVATION

. RECORD NAME

. CONTROL (16)
. CONTROL (3)
. CONTROL (&)

. CONTROL (2)

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

30

30
32

32

10

10
3k

23

15

13




DEFENDANT VALUES:

FIELD NAME (SOURCE LINE) NUMBER OF CONDITIONS
LABEL (IF ANY)
VALUE CONDITION LABEL OR NAME

1

ACHAR (110) e e e e e e e e e e 1
b ' ACHAR'
ARREST_MO (100) . . . . . « .+ « . . 13
'"MONTH OF ARREST'
i 'Missing Data'
01! 'January'
‘02! ‘February'
03! '"March'
'oL! "April’
105" 'May
06! 'June'
107" Yuly!
'o8! "August'’
'0g! 'September'
10! 'October’
e 'November'
12! 'December’

ARREST YR (88) . . . . « « .« . . . 4
'YEAR OF ARREST!

-1 '@/@Missing Data'
|76| 119761
'77! "1977'
|78| l]978|
BIRTH_MO (22) e e e e e e e e e 13
'"BIRTH MONTH'
-1 *Missing Data'
ol 'January!
02! 'February'
'o3! 'March'
St "April!
105! ‘May'
106! "June!
|07l IJU]Y'
08! 'August'’
'0g! 'September'
'10! 'October!

Ty "November'

‘ 2t 'December’




DEFENDANT VALUES: 2

FIELD NAME (SOURCE LINE) NUMBER OF CONDI!TIONS
LABEL (IF ANY)

t VALUE  CONDITION LABEL OR NAME

BIRTH_YR (33) e e e e e e e e e 10
'YEAR OF BIRTH!'
-1t 'Missing Data'
|51+| ']9514'
'55! '1955!
|56| |]956|
‘57! '1957!
|58| 11958|
‘59! '1959"
160" 11960'
61" '1961"
162! 11962
DRUG_USED (60) e e e e e e e e e 16
'G-DEP DRUG USED'
01! '"Heroin'
'g2! 'Morphine Base'
03! '"Opium'
. 106" 'Methadone'
09! 'Cocaine’
10! 'Methamphetamines'
11! "Stimulants'
2! 'Depressants’
1131 ILSD!
"y ‘Other Hallucinogens'
5! '"Marijuana'
116! 'Hashish'
VA 'Barbiturates'
118! ‘PCP!
'q0! 'Other Drugs'
'gg! *Missing Data'
DRUG_USER (53) e e e e e e e e e 3
'DRUG USER!
. 1y 'Yesg'!
|2| INOI
rgt *Missing Data'
RACE (45) - . . . k

'RACE OF DEFENDANT'

"’ e 'White!
12! 'Black'
13! 'Oriental’

'y! 'Other’




DEFENDANT VALUES: 3 :

FIELD NAME (SOURCE LINE) NUMBER OF CONDITIONS
LABEL (IF ANY)
VALUE _ CONDITION LABEL OR NAME

SEX (16) e e e e e e e e e 2
'SEX OF DEFENDANT'

! 'Male!
12! 'Female'




TEST DATA

-— < M wn

b et et et s et NI N ot it et N

BN — 0 et = NP EN— — — MmO >0

~

BIR-
TH
MY
OR
258
L62
355
660
661
55k

1259
160
357

1062
861
655
556

759
Leo

N —= =N O =N NN OO DD MONCe O

BAIL

ANMT
1000
Looo

10000
5000
5000

7000
8000
1000

2000

BOND

AMT
3000
1000
1000

5000
5000
6000
2000

5000

2000
1000
Looo
3000

1178




b) S als i "
£ -
Ry
TSN t
3
¥ o
. .
- -
N N
.
~
B . -

R e,

¥

. 1 o

Fesk g

-

P

A T e






