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Preface and Summary

This study recognizes law enforcement as an industry replete with
problems suitable for operations research and economic analysis. The
application of this body of theory is made more difficult because the
"commodities" that are a part of the cost and payoff in this industry
are not market traded. Work in this area involves the search for promiecs
and the construction of shadow prices.

We chose to investigate the relationship between the time spent on
the preverntive patrol of an area, the number of crimes committed, and
the ratio of arrests to reported crimes. Our model is based on rational
criminal behavior which responds to the expected costs imposed on the

criminal, Preventive patrol is designed to raise the expected costs to

"the criminal by raising the probability of capture. This empirical

analysis is based on the assumption that no change in preventive patrol
strategy takes place during the data collection period. Changes in
inputs can then be properly measured by changes in time devcted to pre-
ventive patrol. We chose retail store burglaries as a crime likely to
be the result of rational planning. The statistical procedures were
developed and tested with sample data. Tack of actuzl data prevented a

field test,

A statistical scheme for the analysis of the burglary detective

operation was also included. It concentrates on identifying the attitudes

of a burglary that are most important for its solution. Again, lack of

data prevented a test,
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Turning from an attempt to describe and evaluate some of the current

activities of police patrol and detective forces to an attempt to develop

Letter patrol strategies brings us to the second major portion of the
report, To be effective, preventive patrol must deter crime by its
very presence or by its ability to make arrests. We ignore the first
factor except as a constraint on minimum acceptable length of patrol.
Making arrests increases the arrest to crime ratio which sewes as an
estimate of the probability of capture to the potential criminal
thereby leading to a deterrent effect.

In order to effect an arrest or even to detect a crime in progress,

a preventive patrol device must come in visual contact with the crime, in

progress. Concentrating on a patrol force operating in squad cars,

this means that a car must pass the scene of the crime while it is in

progress and the officers in the car must detect the crime., . In the

parlance cf search theory, this is called achieving space-time coincidence.

The probability of achieving space~time coincidence depends on the dig-
tribution of crime in the area under surveillance, the patrol route

taken and the number of cars involved. The models developed in the
second part of the report concentrate on the use of search theory to
design an optimal preventive patrol strategy. They are constructed with
many of the institutional limitations on police activities included and
are of potential appilicability to the police, At the same time they rep-

resent a contribution to the search theory literature.




The difficulty in communicating operations research and economic
research on real problems to the people who might most directly benefit
from the research is certainly not peculiar té studies of police problems.
Usually, the trouble is blamed upon the researcher's penchant for what is

labeled technical jargon. But the fault lies on both sides. One cannot

hope to benesfit from new techniques if he is unwilling or unable to make

the difficult and time-consuming effort necessary for at least a rudimentary
understanding of them. It is not obvious that the new techniques will, in
fact, be of benefit, Police administrators would be foolish indeed to
accept them (or to reject them) without a trial., Fruitful trials will

not be made unless the analyst understands the rudiments of the adminis~
trator's problem and the administrator undefstands the rudiments of the
'analyst's techniques.

Techniques developed for one use usually cannot simply be applied to
other uses. Abstract models of police problems must be formulated andb
techniques developed for their solution. This process should not be ex-
pected to yield directly applicable results immediately., Indeed, the dev-
elopment of a sound body of the management sciences in police activities
may well be slowed bv insistence of funding agencies for immediate applica-
bility, 1If science and technology are to be of real aid in solving the
problems faced by police administrators, a necessary condition would seem
to be the existence of a body of technically well-trained people who are
interested in '"police problems.'" The main contribution of this project
may well be in this area.

This report was written by David Olson and Gordon Wright, responsible
for Part II and by John Mayne and Arthur Hurter for Part I. Alan Karr and

Alan Cohen helped in the preliminary work.
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PART I: POSITIVE ANALYSIS

Introduction

This project attempts to evaluate the applicability of some management
science analysis, particularly economics and operations research, to police
resource allocation problems. While recognizing the interdependencies between
police activities and many other aspects of the urban enviromment, the study
assumes that a meaningful allocation problem exists and can be formulated for
portions of the police activities.

The allocation of law enforcement resources implies the precedent problem
of defining the appropriate size of the law enforcement industry. The product
of this industry is the prevention of criminal behavior. The social gain from
crimes prevented is the value of harm forestalled. If this could be done at
zerc cost, social welfare would be maximized by preventiﬁg all crime. Since
crime prevention consumes resources that have alternative uses, the scale of
law enforcement should be pushed to the margin where harm forestalled is equal
in value to resources employed to achieve it. Attempts to improve police (or
society's) ability to prevent crime must assume that criminals are responsive
to costs imposed upon them. The most important components of cost are the
anticipated value of punishment and the probability of some punishment.

Law enforcement is an industry veplete with interesting allocational
problems. Economics and operations research may‘be very useful in solving
these problems but their application is more difficult because the "commodities!
that are part of the cost and payoff in this industry are not market traded.
Work in this area, then, involves the search for proxies and the construction

of shadow prices.




For each offense, there may be a loss to the victim and a gain to the
. offender. 1In addition, there is a loss to society because the crime took
place. The net loss of these items is the social loss from the crime, In

addition, there is a cost of police activity which is determined by the

manpower, materials and capital utilized., These resources primarily influence

® the prcbability of conviction and the cost of police activity per offense. A
major share of police activities are used in the patrol function. This is not
no‘rmally directed toward a single offense or even type of crime. Here, on the

¢ cost side, the production relationships are complicated by joint products.

We assume that a person commits an offense if the expected utility to
him exceeds the utility he could get by using his time and other resources in

]

other activities. Some persons become criminals, therefore, not because their

basic motivation differs from that of other persons but because their benefits

‘ and costs differ,
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Preventive activities should be directed toward lowering the benefits of
criminal activity while raising the opportunities for benefits from other
activities. Criminal justice activities are aimed at lowering the benefits of
crime, primarily by increasing the probability of conviction and by assigning
punishment to convicted offenders. There is a tendency to attribute all kinds
of criminal behavior to ill-defined social forces and to argue that the criminal
could not avoid commission of crime. Since the criminal does not then respond
to the "costs" imposed on him, i.e. he does not make a rational choice, the
basis for preventive police measures is largely removed. While recognizing
that many criminal acts such as murder and rape are not the results of rational
thought processes, (the so-called crimes of passion), this report adopts the
point of view that some crimes (e.g., burglary) are the result of rational
thought processes, At the very least, it assumes that the observed behavior
of some types of criminals can be predicted on the assumption fhat criminals
behave as if they were sensitive to a system of rewards and costs. If all
crimes were "crimes of passion' the police role would be one of apprehension
of offenders. This has a deterrent effect to the extent that criminals are
removed from society but it does not have deterrent influence on potential

offenders.
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The measurement of the influence the activities of a police force have
on the number and type of crimes committed is a difficult and largely unsolved
empirical question. Yet, it is at the heart of any analysis of police resource
allocation problems. Recognizing the extreme difficulties involved, this
report concentrates on burglary since it is least likely to be purely a "crime
of passion'. In particular, we concentfate on retail store burglary. Of
course, the joiﬁt product character of the police patrol activities never ceases
to be a troublesome, complicating factor.

In addition to attempting to measure the influence of "preventive" patrol
on burglary rates, a scheme for more effectively organizing preventive patrol
activities is developed.

General Analysis

This report distinguishes three elements that determine the rewards of
a'particular burglary as the rational burglar would view them. They are:
(i) Rewards from alternative uses of resources
(ii) Rewards from the burglary under consideration if successful
(iii) Probability that the burglary in question will be successful
Together these three elements determine the expected net return to a particular
burglar from the commission of a particular burglary. In the second quarterly
report, the relationships between exogeneous variables and the three elements
just discussed were treated in detail. Only a brief description of the six

equation model is included here.




In a completely disaggregated form, each individual and each retail
establishment would have to be identified. Some aggregation seems in order.
With an eye toward empirical usefulness, we chose aggregations that made use
of groupings already established. Individuals are grouped into meighborhoods
or census tracts according to their residence addresses. Retail establishments
are grouped into police districts or beats according to their location.

The key variable is the expected net return from a burglary in district k
by an individual living in the j-th neighborhood. This dependent variable
[ij in eqqation 2 of 4th quarterly report} depends upon: the expected gross
return from a retail burglary in the k~th retail district in a particular time
period [Rtk], the probability that the burglary will be successful, and the
value of alternatives foregone by individuals living in j if they undertake a

burglary in k [g(ItJ)].
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The cost of opportunitics foregone by individuals residing in neighborhood
j depends upon what may be thought of as the envirommental and demographic
factors appropriate for the j-th neighborhood. These may include median age,
median years of education, proportion non-white, age of residential buildings,
median assessed property value per family, median family size and a measure of
the rate of unemployment [Zi]. It is assumed these exogeneous variables can
be combined to yield a measure of the average tendency toward burglary (crime)
of residents in neighborhcod j, The relationship between the exogeneous,
environmental and demographic factors and the tendency toward burglary must
draw upon research in economics, political science, sociology and psychology
which is not presently available., For purposes of this report, the existerce
of such a relationship is assumed. It is alsc assumed that police activities
do not influence the environmental and demographic variables in a neighborhood.
Consequently, for our purposes, the value of alternate opportunity to residents
of neighborhood j is taken as given.

The gross return from a successful burglary is directly related to the
character of the establishment, and the shopping district being considered.
It is infl;enced by the same entities that influence the economic prosperity
of the retail area. Location theory is used to identify the variables of
importance and to delineate the market area for each retail district. Once the
market area is defined, then variables that measure its purchasing power and the
frequency with which customers visit the area can be used to estimate the anti-
cipated gross return from a successful burg}ary. This relationship is discussed
at length in the third quarterly report and will be discussed in the next

section of this report.




The final element affecting the expected return from a burglary in
district k by aﬁ individual from neighborhood j is the probability of its
success. It is assumed that a burglary is a success if something of value
is taken and the burglar is not captured. As far as the patrol force is
concerned, the burglary is a success if something of value is taken and the
burglar is not captured in the act, or as the result of jmmediate search and
pursuit., In any case, a burglary is either a success or a failure. Thus the

probability of a successful burglary is one minus the probability of capture.

The probability of capture depends upon private devices such as burglar alarms,‘

watchmen and dogs. It also depends upon police activities. Taking the private
efforts as given, the probability of capture can be considered as a measure of
police output.

The probability of capture can be estimated as the ratio of the number
of burglary arrests made in district k over some period of time to the number
of reported burglaries in district k over the same period of tiw.. We assume

that burglars from neighborhood i are equally adept as burglars from neighbor-

hood j so the probability of capture is the same for all. The probability of

capture will be treated as a variable primarily influenced bty police activities.

The variables depicting police activities are the major control variables in

the overall model.
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The number of burglaries ?n retail district k by people from neighborhood
j in time period t+1 depends upon the expectad returns from‘burglarfes in’ 1
district k by people from neighborhood j in time period t. The tota} burglaries
in district k is the sum over all neighborhoods. Thus, by raicing the proba-
bility of capture through, say, a more efficient allocation of resources, the
police can reduce the number of burglaries because they reduce the expected
net return from a burglary.
va our goal were merely to predict burglaries or'any crimes in the next
time period, then a straightforward extrapolation of time trends will prubably
yield accurate predictions. In fact, this has proven to be the case in both
the St. Louis and Chicage police departments. However, we are interested in

more than just the prediction of quantities of criminal activity. We want to

relate police activities to the level of crime, at least to the level of

s
wal

burglary, as has just been described.




The Gross Return Function

The return function was the major topic of the third quarterly report.
The gross return from a successful burglary depends upon the economic
characteristics of the retail establishment selected. Among other things,
the economics of the store in question depends upon the types of goods it
sells. Th2 dollar sales of stores selling goods of type g in retail district
k in time period t (thk) depend upon the.brobability that people residing in
neighborhood i shop for commodity g in district k. The dollar sales in time
period t from goods of type g in district k from people living in i, depend
upon the number of people living in neighborhood i and the per capita expendi-
ture in time period t on goods of type g.

The probability that a consumer living in neighborhood i would shop for
good g in retail district k (Pigk) is a function of retail district k and its
aécessibility. if Sjg is the number of stores in district j that sell good g
and Tijg is the adjusted travel time (people will travel longer distances for
some goods than for others) from i to j, then:

Pi

g _ g g g g
k= (8, /Tik) /2j (sj /Tij)

This probgbility multiplied by the total dollars expended on goods of type g
per capita times the number of people in neighborhood i yields the expected
dollar sales for all stores in district k, selling good g, from people living
in neighborhood i. Summing over all neighboarhcods and goods yields eétimates
of dollar sales for the stores in district k. This model has apparently been
used, with the aid of a computer (see 3rd guarterly report), to estimate retail

dollar sales.
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To apply this model, the retail centers, demographic classes (if different
from neighborhoods), neighborhoods and types of goods must be specifiéd and
defined. The data requiréd and sources for these data are developed in the
third quarterly report. The primary sources are the U.S. Census of Population
and Housing, the U.S. Bureau of Labor Statistics Consumer Expenditures and
Income and the U.S. Census of Business -~ Retailing.

There can be little doubt that the rewards from a successful burgiary
depend upon the economic characteristics of the store being burglarized in
much the same way that the store's economic well~being depends on the same
characteristics. From the point of view of the potential burglar, the selection
of a location for his business is much like the decision of a retail merchant
selecting a location for his establishment. Thus, we considered location analysis
for aid in formulating our model. One of the surprising features of our work
is the discovery that very few useful models of retail location appear in the
open literature, The research discussed in the third quarterly report repre-
sents the extent of useful work in retail location theory known to us, Thus,
one of the original reasons for attempting to use location theory seems much
weaker now than when the project proposal was written. The idea of adapting
a reasonably complete, useful theory of retail store location to the choice of
sites for burglary fails because of the character of the published work on

retail location decisions.
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The idea is, in the auther's opinion, still worth pursuing, although it
is clear that some purely theoretical work is required before useful models
can be developed. 1In terms of a particular retail store, a market area, not
for customers, but for potential burglars might be developed. The sensitivity
of the area to changes in store characterigtics (e.g. types of goods) would be
of interest and could help to explain the burglar's choice of burglary sites,
A complete model of choice for burglars of different demographic and environ-
mental background would include aspects of the alternatives available to an
individual. It would thus include two of the three basic elements of choice
for a burglar, rewards from alternative uses of resources and rewards from
the burglary under consideration, if successful. The spatial structure of an
urban area or a part of an urban area could then have a direct, explicit
influence on the choice of burglary sites. If successful, such a study would

be of interest to planners and designers.

Police Activities

The bulk of our study is concerned with the activities of the police and
their influence on the number of crimes committed (reported) and the proba-
bility that the criminal is captured. If the number of burglaries is taken
as given for time period t, then police effectiveness against burglary is
measured by the proportion of these burglaries foiled through capture of the
burglar. This effectiveness, in turn, should influence the number of burglaries

in future periods by altering the expected net return to the potential burglar.



Thus, we are concerned with the relationships between the inputs utilized
by the police, and the manner in which they are used on the one hand and the
proportion of crimes that result in capture and in the number of crimes com~
mitted on the other. 1In short, the production function relationships for police
activities are being sought,

Our search for a production function is complicated by the manner in which
most polise departments operate. If we abstract from the detective, traffic
and publiz relations activities;'we are left with the patrol activity. With
some notable exceptions, the patrol force performs two duties: preventive
patrol and response patrol. The preventive patrol attempts to reduce the
burglar's estimation of his chances of success based on police presence. The
response patrol attempts to deter crime through the capture of criminals after
a call for service has been placed.

In addition to performing the joint function of response and preventive
patrol, the police patrol force is on duty against all crimes. The design of
a patrol force must take into account its possible effectiveness against murder,
robbery, rape, burglary, auto theft, etc. The optimal tactic to employ against

burglary might be a very poor one to employ against murder,




[

Perhaps the least sophis%icated format suggested for the evaluation of an
industrial production function is input-output analysis. Here, the firm is
treated as a black box which takes in inputs and transforms them intokoutputs.
The actual transformation between inputs and outputs is ignored. The inputs
and outputs are identified and assumed to be related through one or more linear
relationships depending on the number of outputs identified. The coefficients
of the linear relationships are empirically determined uaing cross-section or
time series data. Simple relationships of this sort are purely descriptive.
They provide a convenient and sometimes useful means of summarizing the history
of an organization (time series) or the current "state of the art" (cross-
section). Unless the "firms" being studied are using optimum tactics, the
results of the study do not represent the production functions of economic
theory which assume that technological efficiency has been attained.

When we attempt to determine an input-output type of production relationship
for police patrol activities, our difficulties begin with a definition of the
appropriate measures of inputs and outputs. In view of our earlier discussion,
the measure of output selected is the ratio of burglary captures to burglaries
in a particular area for a particular period of time. Another alternative is
to measure the total number of arrests for all crimes and divide it by the total
number of crimes. This would yield an estimate of the overall police output,
(We recognize the difference between the number of actual crimes and the number
of reported crimes. In using the latter, we are tacitly assuming that the

ratio of the two remains constant as police activities are altered.)
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We have decided to concentrate our attention on retail store burglaries
because we feel that this is one of the crimes upon which the activities of
a police preventive effort may have some effect. For our purposes, then, the
relevant output measures are the number of (reported) retail burglaries in
district k in time period t and the number of "unsuccessful! retail store
burglaries in the same district at the same time. When only the patrol force
is under examination, we consider a burglary as unsuccessful when the burglar
is caught within a short period, say one hour, after the crime is observed or
reported. If the criminal is captured later by the detective force, the crime
is still a success as far as the patrol force is concerned.

Our choice of output variagbles referring only to retail burglary conceptually
dictates that the input variables also be directly related to patrol activities
against retail store burglary. However, the patrol activities of the police
are not usually directed against specific crimes. A police patrol unit, when
not answering a call for service, patrols its beat.on the look out for all kinds
of crime. The presence of the police alone may serve as a deterrent to a
burglar since it may'decrease his estimate of the probability of success. How-
ever, such preventive patrol measures may have a similar deterrent effect on
crimes other than retail burglary. Even so, the time spent on preventive patrol
can be considered a direct input in the retail burglary function. TIf this
preventive patrol effort does deter other types of crime, this in no way lessens
its effect against retail burglary. In a sense, preventive patrol functions

something like a public good.




&
Police patrol resources are usually assigned to beats and these beats

aiffer in geographic identity from the retail districts described by the
Bureau of the Census. Assuming no major change in patrol techmology, the
measure of input must be related to the number of beats that include the
particular retail district and the freguency with which the beat cars patrol
the retail district portion of each beat. it may be advantageous to distin-

guish between two-man cars, one-man cars, motorcycle patrol, foot patrol, and

., T.V. surveillance. Any police department run with a modicum of efficiency

should regularly keep and record data measuring the use of each of these types
of inputs on preventive patrol.

In addition to the preventive patrol activities, another means of increasing
police output is for police resources to respond quickly to caliwy for service.
Therefore, the response patrol input against retail burglary is the average
pfoximity of response forces to the retail district of interest. A common
measure of such an input is the average response time., Police departments
should certainly have data on how long it takes them to answer calls for service.

The private resources devoted to prevention are more difficult to measure.
Two approaches are suggested in the fourth quarterly report and they will not
be repeated here. Data on private prevention efforts will be difficult to
obtain and will probably require sample surveys. For purposes of this study,
assume that private efforts will not be directly influenced by changes in police
activity and can be cousidered a constant. Of course, this assumption cannot

be valid over long periods of time and is employed primarily as a convenience.
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If we think of holding all elements of the burglary generation relationship
constant except those related to the probability of a successful crime, then
police activities should influence the number of retail burglaries reportea in
a district and over a time period in a measurable way. Over relatively short
time periods, this is probably not a bad assumption. The return from a success-
ful burglary, depending as it does on the characteristics of the store and the
neighborhood in which it is located will probably not change significantly over,
say, a six month period (unless, of course, the management changed). Surely,
the characteristics of the neighborhood in which the burglar lives and his
alternative opportunities will not change a great deal over the same period.

If these elements of the relationship yielding the expected return from a burglary
are constant then the expected return becomes a function of the probability of

a successful burglary alone. With private preventive activities taken as fixed,
the probability becomes a function of police activities «lone., Since the number
of burglarics (reported) in time period t+1 in district k depends upon the
expected return from such a burglary in period t, we can state an empirically
testable hypothesis: TIncreases in police patrol activities in period t reduce

the number of retail burglaries committed in period t+1.

In this context, incrcases or reductions mean changes in quantity of the
resources used in the same manner as presently employed. Hopefully, this hypothesis
can.be tested using readily obtainable data from police department records. Until
such records and cities are identified, the details involved in identifying retail
districts, neighborhoods, beats, etc. cannot be specified. The result of such an
analysis would be to discover the sensitivity of the number of retail burglaries,
and of the unsuccessful burglary to reported burglary ratio, to the inputs of
patrol activities measured in terms of response time and time spent on preventive

patrol.



Given a knowledge of the technology and procedures employed in any city,
the costs of the police inputs could be determined. WNotice that the relation-
ship between the unsuccessful to total burglary ratioc and the two "time"
inputs is a production function relationship. It is a convenient means of
summarizing the observed modes of operation. However, it is not detailed
enough for police resource allocation decisions. It may be thatltwo, two-man
squad cars operating on a beat provide a particular level of response time and
preventive patrol time. The influence of these levels of response time and
preventive patrol time may yield a particular result with regard to the output
variables. However, there may be more efficient ways of obtaining the same
values of response and preventive patrol time that cost less than the two,
two-man cars per beat procedure. Nevertheless, the effect on the output vari-
ables would be the same.

At this point, the direction of future research should be clear. IEconomic
and operations research analysis should be employed in an attempt to find the
efficient means of providing any predetermined combinations of response time
and preventive patvol time, Econometric and statistical amalysis should be
employed to develop the sensitivity of the number of burglaries committed in
district k during period t and the ratiy of unsuvccessful to total burglaries in
district k during t. Our work has concentrated part of its resources on the
economic and operations research quest for efficiency and another portion on the
econometric-statistic attempt at establishing an empirical production function

for testing sensitivity.
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As will become clear in succeeding sections, the optimal design of a
patrol force is complicated by its dual role as responsive and preventive.
Here, it is convenient to.specify éither a minimum acceptable preventive patrol
time or a minimum acceptable response time and to maximize the other subjéct to
a budget constraint. Parametric techniques then permit the establishment of
tradeoffs between response time and preventive patrol time, This isvdiscussed
further below. 1In some contexts of importance, the response time and the
preventive patrol time are complementary inputs. Increasing one tends to
increase the other. Here, the design of an efficient response force would
lead to an effective preventive force as well. However, this advantageous
situation will not always obtain and, in general, tradeoffs between patrol
forces designed on the basis of efficient response and those based on efficient

preventive patrol must be made,

The Burglary Detective Activity

In reviewing some of the efforts of the burglary detective division we
were struck with the lack of analysis of retail burglary cases turned over to
the detective division by the patrol division. An empirical analysis of
burglary and detective activities is proposed in the fifth quarterly report
and is summarized below.

The objective of this research is to identify those attributes of a retail
(or.commercial) burglary that lead to the clearance of the case by detectives,
The results would also help to determine what kinds of information about a

crime are worth obtaining and what kinds do not aid in efforts to clear a case.

The retail burglary cases turned over to the detective division must be considered

successful burglaries from the point of view of the patrol force.
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This analysis assumes that no change in the procedures or abilities of
the detective force took place over the time period under analysis. The basic
source of data is the report filled out by the patrol officer who initially
answers the call for service. This report is supplemented by the detective
who takes over the case. In Chicago, for example, this report is called the
burglary case report. As an Iinitial analysis, we include as attributes of
importance only those items listed on the Chicago Burglary Case Report. These
include: an identification of the location of the store and the beat on which
the burglary occurred, the kind of store (e.g., liquor, cleaning), was a safe
involvéd, dollars of cash taken, dollars of jewelry taken, dollars of furs
taken, dollars of clothing taken, dollars of other goods taken, number of
offenders, time of burglary, race of victim, man-hours of detective force
effort until case cleared or '"'given up'. These attributes would be measured
and recorded for each case turned over to the burglary detective unit, in
district k during period t. They can be thought of as independent variables.
The dependent variable, a binary variable, simply identifies each case as
cleared or uncleared., On cleared cases, additional information can be obtained
from the burglar: residence of offender, sex of offender, age and race of

offender.
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We want to be able to classify burglaries, on the basis of their attributes
as either cleared or uncleared. TFurther, we want to get some measure of the
relative importance of the different attributes in determining whether or not
a case is cleared. We want to be able to take the values of the attributes
of a burglary case turned over to the Detective Division and to predict whether
or not this case is goiné to be cleared. The standard statistical technique
to use for this kind of classification is discriminant analysis, However, the
application of discriminant analysis to this problem is not without difficulty.
The theory of discriminant analysis was developed for continuous independent
variables (attribute measures). However, many of the attributes are best
measured in discrete terms. For example, a store is either a liquor store or
it is not (i.e., this variable is 0 or 15. Furthermore, we are measuring these
variables on arbitrary ordinal scales (e.g., rather than O or 1 we could have
used 1 or 10) rather than on a cardinal scale. In this situation, parametric
statiétical tests, which use means and standard deviations (i.e., which require
the use of arithmetic on the original scores) theoretically ought not to be
used with data in an ordinal scale such as attribute scores. Discriminant
analysis does involve means and standard deviations,

Some effort was spent during the fifth quarter attempting to thoroughly
learn discriminant analysis and to find means of adapting it for the burglary
detective problem. A report was prepared and summarized in our fifth quarterly
report. Finally, it was decided to employ a linear discriminant function

computed as if the independent variables employed were continuous.
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.
Our trial area was to be the 20th police district in the City of Chicago.
Other studies of burglary had already been performed in this particular

-

digtriat, In addition, some of the data obtained for our burglary detective

. division study could also be employed in our study of patrol forces and

burglary to be discussed further below. The measures of the attributes
listed earlier can be obtained from the Buwrglary Case Reports. 1In Chicago,
this information is routinely punched inte the '"burglary case report summary
tape' and should be readily available. Data were to be collected on cases
that were about one year old in order to avoid some of the ambiguity caused
by a case being neither cleared nor '"given up" as unsolved because it was
still being worked on. The summer period was seclected as more interesting and
we tentatively selected the period May 1969 through Octobexr 1969,

The 20th district in Chicago is primarily a combination of residential
and commercial enterprise. From the middle of 1968 to the middle of 1969
there were 592 reported commercial burglaries. There were approximately 17
commercial burglaries during this year per linear street mile., A computer
program for linear discriminant analysis is available at the Vogelback Computing
Center of Northwestern University. Our development of a statistical analysis
technique has progressed to the point where it should now be tried with "real'
data, Tne Chicago Poliece Department has decided against making these burglary
casé reports available to us. Yet we feel that the analysis suggested could
vield interesting results in terms of the allocation of resources between the
patrol division and the detcctive division. It might also point to a new form
for a burglary case raport cmphasizing the data that seem more important in

capturing a burglar.
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Patrol Resources and Burglary

In this section we return to our earlier discussion relating the number
of burglaries in a district during a period of time, the number of unsuccess-
ful burglaries in that district over the same period of time and the activities
of the police patrol forces. Again, the objective is descriptive rather than
prescriptive. When we talk about changes in police inputs, by and large we
are talking about more or less of the same technology employed during the period
over which data were collected.

From the point of view of the police administrator, the police inputs are
men (man-hours) and capital equipment (squad cars). In terms of our earlier

discussion, these are converted to inputs like response time and time on pre-

ventive patrol. Unfortunately the technology that relateé'man~hours and squad
c;rs to time on preventive patrol and response time is not well known. It is
in making this transformation as efficient as possible that economic analysis
and operations research find their major role, The focus of our attention is
again on commercial burglaries. The general feeling is that more effective
police patrol will reduce the number of burglaries committed.

The patrol force of the Chicago Police Department is not divided into a
response force and a preventive force. To some extent, the St. Louis force is
divided in this manner. In Chicago, each patrol car performs both preventive
and'responsive tasks. Of course, the response function takes top priority so
that the time devoted to preventive patrol is a residual. Further, the data
will reveal that there is more preventive patrol done during those parts of the
day with the least crime. Clearly, this result cannot be credited to preventive
patrol activity. There seem to be certain hours of the day that are preferred by
burglars. Recall that the patrol cars answer calls for service of all kinds so
that high crime portions of the day are not necessarily high commercial burglary

times.
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We decided to design an eccnometric study of some police beats in the
20th Police District in Chicago where burglary is a crime of major magnitude.
A particular block of hours in the day (e.g., 8 P.M, to 2 A,M.) was selected
as the most active hours for burglars. The plan was to collect data on the
number of commercial burglaries, the number of commercial burglary arrests
and the time devoted to preventive patrol on several beats., The data would
be recorded, for the chosen hours and beats, on a daily basis over some rather
long period of time, say six months. The initial time periods might be iden-
tified by examination of the records of private burglar alarm companies. One
of the difficulties with ordinary police records on burglary is that often
the time of occurrence is unknown. The preventive patrol efforts of the beat
car are, of course, not all concentrated in commercial areas unless the entire
beat is in a commercial area. Thus, only a fraction of the time spent on
preventive patrol can be considered devoted to prevention of retail burglarvies.
This difficulty can be alleviated by aséuming that the ratio of time spent
patrolling the commercial areas to total time spent on preventive patrol is
equal to the ratio of miles of commercial streets to the total street miles omn
a beat. However, since we are assumiﬁg that police patrol tactics do not
change over the data period, it is only necessary to megsure the time spent

on preventive patrol.
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Consider a particular beat and a period of time during each day. Then the
data required on a "daily basis' can be summarized as:
(i) The number of commercial burglaries [obtained by sorting the
usually collected burglary data]

(ii) The number of on-view arrests (defined to include arrests made
immediately after the erime) as a measure of unsuccessful bur-
glaries [Police burglary data]

(iii) The number of men, patrol units and the time they spent on
preventive patrol. [Police records of activities of patrol units]

In the Chicago Police Department, for example, the Radio Dispatch Summary
Tape could be sorted by beat to give almost a minute by minute account of the
reported activities of each patrol unit. In addition, they would provide the
case report number and dates of any commercial burglaries on the beat in question.
The case numbers can be used to identify the Burglary Case Reports of interest.
These yield an indication of the type of burglary, the time of the crime and

whether or not the burglary was a success.

1. An effort was made to obtain the Burglary Case Report Tapes and the
Radio Dispatch Summary Tapes from the Chicago Police Dept. However, they were
not available to us. There is the possibility that similar data could be obtained
from the St. Louils Police Dept. Our initial contacts indicate a willingness on
their part to supply data but of course a specific proposal would have to be
approved by their Board of Police Commissioners. However, they sometimes split
their patrol functions into preventive and response forces. TFurther, they appar-
ently don't have anything qui:ze like the Chicago Radio Dispatch Summary Tapes
making acquisition of data on the hour to hour activities of the patrol units
uncertain. We were able to contact the American District Telegraph Company and
their records indicate that almost all commercial burgliaries, covered by their
alarms, took place between 10 P.M. and 3 A.M. on weeknights.
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Now suppose the data desired were obtained. We would have three time-
series of variable values on cach pre-selected beat.

(i) Nt’ the number of commercial burglaries each day. They are
assumed to have occurred during the "critical hours" e.g.,
10 P.M. to 3 AM., see footnote 1.

(ii) Ct’ the number of “on-view!" arrests (i.e. the number of unsuccessful
burglaries from the point of view of the patrol force) that occurred
each day.

(iii) Tt, the time spent on preventive patrol each day.

One of the difficulties encountered with commercial burglaries is that they often
occur unnoticed by the wvictim until the next business day. Thus, it is difficult
to specify their time of occurrence. This has led us to the definition of Nt
above. However, a useful treatment of burglaries on weekends is yet to be
dgveloped.

TFurther difficulties stem from the magnitude of the numbers involved. Maay
elements influence the rate of crime in a city. By collecting data on a day to
day basis and by beat on a single type of crime we tend to hold many of these
things constant thus permitting concentration on the effect of police patrol
activities. While no one will claim that crime rates in Chicago are too low,
the values obtained for the Nt variables seldom exceed 2 and most often are zerc.
Of course, the number of unsuccessful commercial burglaries as measured by '"on-
view! arrests is even smaller. Thus, we expect that observed values for Nt’
if measured for a beat, by day, for commercial burglary would be 0, 1, 2, and 3

with very few 3's. This characteristic of the data is a key factor in our choice

of statistical techniques.
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In most empirical work, the fine details of the analytical procedures .
cannot be specified until some preliminary investigations have been made with
the data in hand. At this time we feel that the following methods should be
applicable to the data just discussed,

Single classification analysis of wvariance

Here, the intent is to classify the observed commercial burglaries
according to the intensity of the preventive patrol onﬂthe night of occurrence.
This kind of classification presupposes the prior designation of levels of
patrol activity into categories e.g., light, medium and heavy. Whenever cate-~
gories of this type are suggested, the problem of defending them against those
who think they should be more c¢r less numerous or perhaps based on different
criteria must be faced., Breaking an essentially continuous variable e.g.,
time spent on preventive patrol, into discrete categories always suggests the
possibility that other categofy designations might be more useful. Questions
of this nature can only be resolved after the data are at hand.

For purposes of expositioﬁ, assume k categories have been defined. Next,
define the random varisble Xi as the number of commercial burglaries that occurred
when preventive patrol of category i (i=1,...,k) occurred. If we adopt the
categories light (i=1), medium (i=2) and heavy (i=3) then XZ is the number of
commercial burglaries that occurred on a beat during a time period with medium
preventive patrol. Data have been collected on the number of commercial burglaries
and the time spent on preventive patrol., The time periods for which preventive
patrol falls into each of the k categories are designated and the numbers of
commercial burglaries associated with these time periods assigned to each of the
k cells or categories. TFor each of these cells, we compute the mean number of
burglaries. If in cell i there are ni time periods then the sample mecan x

.
K, = > * Xij/ni where Xij is the number of commercial burglaries in time period j

L AR
j=1
with preventive patrol i.
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If preventive patrol has no inlluence on the number of commercial burglaries

(successful) then the means in each category should be essentially the same.
Thus, we formulate the so-called "null hypothesis" which can be written
HO = Ml = Mz =, = Mk where Mi is the true or population mean for the i-th
patrol level. If our previous arguments have any merit, we would expect the
null hypothesis to be rejected. However, the B, are not directly measurable,
we have only the sample means, Ki' The question of how close say Kl and Kz
have to be before they are considered the same is one of selecting the "level
of significance,'" if the sample size is given. If we choose a level of signi-
ficance say of .05 then when we say that K1 = K2 at the 5% level of significance
we mean that there is only a 5% probability that the two sample means would be
this close if, in fact, preventive patrol does have an influence and the popu-
lation means are different.

As thege statistical techniques are discussed with reference to the analysis
of police patrol problems, some common technical terminology must be employed.
We cannot always repeat the standard textbook representationsvof terms like

"level of significance." The reader is referred to standard textbooks on

statistics.
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The test is based on a comparison between the variance that occurs within

a group, indicated by i, aﬁd the between group variance of group means. If

the hypothesis holds, that the means of each group are the same, then the variance

between groups should be small. The statistic used is the "F" statistic and

is equal to the fraction szm/szp where

s2 is the between groups variance given by
{ zJ (K / - KZ/N}/(k—l) and N = zpi = total nc, of
observed commercial burglaries

2 is the total w1th1n*group variance given by

e {00 0t - D tmplide,

A large value of F would indicate rejection of the hypothesis that the
mean numbers of commercial burglaries were all the same regardless of the level
of preventive patrol. The critical region (i.e., region for rejection) is
F > F(l-a)(k-l’ Zpi ~ k) where o is the chosen level of significance. For a
given value of &, we know k-1 (one less than the number of patrol intensity
categories) and Eéi is the total number of time periods for which data were
cnollected on the beat or region in question; Thus, F(l_a)(k—l, Ani-k) can be

looked up in a standard table for the F statistic.
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The assumption wnderlying this test is that the observations we've used
are randomly selected from normally distributed populations of the same variance.
In other words, wc've assumed that the data collected when preventive patrol
is at level i, i.e,, the Xij’ are equivalent to random selections, for group i,
from a normal population. We assume this for each of the k groups representing
different levels of patrol technology. We further assume that the variance
within earhh of these groups is the same, These assumptions can be checked if
data are available., If they are valid, the test of significance using the F
distribution as just described is known to be valid. TIn addition, "Investi-

gation has shown that the results of the analysis are changed very little by

e
“~

moderate violations of the assumptions of normality and equal variance.'
Of course, if we do not reject our null hypothesis that preventive patrol
doesn't influence the wmean number of commercial burglariés then our theoretically
based anticipation is disappointed. On the other hand, if our tests indicate
rejection of the null hypothesis we may say with some confidence that preventive
patrol efforts as classified for this test do influence commercial burglaries.,
In the latter case, we could further test for differences in the individual

o

group means, ., and Mj, using methods similar to those described a’bove.m'g This
might vield some information about the nature of the differences among the means
from which an indication of the effect of different types of intensity of pre-
ventive patrol might be obtained. Of course, we would expect that the means

would systemeticnlly decrease as we move from group to group since the intensity

of patrol increasecs.

% -
Dixon, W. and F. Massey, Introduction to Statistical Analysis, (New York,
MceGraw~Hill, 1957) p. 151.

%

“ibid, p. 152-156.
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The mosl arbitrary feature of this test is the classification ol different
patrol types and intensity into the k categories. Of course, the classification
cannot beldeve10pcd without a perusal of the data. Even then, we might want to
try several different sets of categories. In any case, the sensitivity of the
results to the category definitions should be investigated.

If data were aveilable, we could perform an identical test substituting
the number of on-view arrests for the number of commercial burglaries.

Cross-~correlation

If we considerxr N%j the number of commercial burglaries during time period i
and Ti the time spent oﬁ preventive patrol during time period i as random
variables, then a cross-correlation coefficient, P, can beAcalculated and used
in a test of the dependence between the two random variables. If n is the
number of time periods during which data were collected, then
ﬁ:ZNJn and T=Zﬂﬂne MWw?cmwm#a
i 1
‘ - =AY =2 =2 [z
e = Ei(Ni - W) (T, - T>/D(Ni -7 (T, - D ]2 :
Since the number of burglaries committed is usefully treated as a random variable
and the time spent on preventive patrol, being a residual caused by random calls
for service, can be treated as a random variable, this approach is reasonable.
If P is small, the random variables Ti and Ni are relatively independent and
inereasing Ti could not be expected to influence g On the other hand if
is large in absolute value, then the conclusion is that Ti and Ni are related,
(We would expcet P to be different from zero and negative.)
Tables oxist+ which give percentiles of the distribution of P assuming the
random variables are independent, Thus, independence can be evaluated at some

pre-~determined level of significance.

Tibid, p. 468.
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Aggregated regression tests

Although regression is the most common form of statistical test for the
relation between two or more variables, the data related to a single area and
reasonable time periods make it unlikely that they would lend themselves to
regression analysis. The range of variation in the dependent variable, the
number of commercial burglaries or the number of burglary arrests, is too small.
However, it might be informative to run a regression on aggregated data. Still
restricting attention to a single pre-determined area, we add the results of
our data collection to develop weekly totals. Now, Ni' will represent the number
of commercial burglaries during the study hours selected for the i-th week.
Similarly Ti' is the preventive patrol time during the stud; hours during the

i-th week. A regression of the form:

v ’
Ni = By +-ﬁ1Ti +oes

could be run to determine values for ﬁo and Bl. Then the hypothesis that Bl =0
could be tested in the usual way. Rejection of this hypothesis is an indication
that weekly totals of burglaries and time on preventive patrol are related and
the sign of Bl (presumably <0) indicates the direction of ghe relationship. If
E1<O and BO>O then GO can be taken as a rough cstimate of the upper bound on
commercial burglaries., This last intexpretation is risky since it calls for
the linear extrapolation of the results into an uncertain region near the point
where Ti' = 0,

It is quite likely that the results of the regression analysis will be
disappointing in that the hypothesis Bl = 0 will not be rejected., Again, this
could be due to the predicted lack of variation in the weekly totals in Ni'

4
and T, .
i
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Conclusion of Descriptive Section on Patrol

The purpose of this phase of the study is to investigate two potential
effects of police patrol acéivity. They can be summarized in the following
questions: (i) Does the amount of time spent on preventive patrel on a beat
in time pericd t have any influence on the number of commercial burglaries on
the beat in some later time period? (ii) Does the amount of time spent on
preventive patrol have any influence on the ratio of unsuccessful commercial
burglaries to total commercial burglaries on the beat during the same time
period?

Ideally, the procedure used to answer these questions would invelve first
the exact specification of patrol technology (e.g., 2-man squad cars patrolling
the streets and alleys of a beat in a specified systematic manner). Then the
intensity of the preventive patrol would be varied in a systematic pre-determined
way and the value of the two independent variables measured. The specification
of the patrol technology might be the product of an operations research analysis

similar to that discussed in the next section of this report.
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Our approach recognizes the cost of experimentation, both direct and
indirect, in a rcal world emvironment as fraught with danger as the arena
of police activity. We also recognize that our approach will be less accurate
than direct cxperimentation. We further recognize that many police depart-
ments treat preventive patrol as a residual activity to be performed when a
patrol unit is not engaged in answering calls for service. In these instances,
no direct decision on f.eventive patrol is made by the police officials. This
may or may not be an efficient patrol technology but it does seem to be a common
one., GCommercial burglary calls for service make up only a small fraction of the
calls for service assigned to any particular patrol unit. Thus the amount of
time, and when it comes during a watch, spent on preventive patrol is not
determined by the rate of commercial burglary under this patrol technology.
Apparently, the only way to increase the time spent on preventive patrol in
this techmology is to add additional patrol units.

Additional patrol units should result in a decrease in response time and
an increasc in the probability of space-time coincidence. Whenever a preventive
patrol unit is able to observe a burglary in progress, it has achieved space-
time coincidence. Both of these effects of increased preventive patrol activity

should decresse the probability that a sucecessiul burglary can be committed.




If the decrease in the probability of success is made known, this should
serve to convince some potential burglars that higher expected rewards awailt
them in some other line of work. It must be stressed that increased effective-
ness on the part of the police can be further enhanced by publicizing the
resulting reduced probability of success, It is the probability of success,
as seen by the potential burglar, that must be reduced by police activities
if they are to have a deterrent effect. It might be just as effective and
less expensive to lower this probability by introducing new technology which
is not fully understood by the potential burglar but about which claims of
effectiveness can be made. An example of such a device might be closed circuilt
television surveillance.

In this study we explicitly assume that no such devices are introduced
over the suggested data collecting period. We also assume no information gap.
Tﬁe burglar knows the true ratio of unsuccessful burglaries to burglaries.
However, he is not assumed to learn it immediately which accounts for the time

lag in the deterrent effect.
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There is serious doubt in some minds that police preventive patrol is
really a deterrent to potential criminals. Clearly, if there were no police
patrol activitics at all, large numbers of the good citizens of an urban area
would undoubtedly turn to crime, Lvidence of such behavior can be found from
descriptions of riot areas and of police strikes, On the other hand, rather
‘large increases in police patrols in selected high crime areas often does not
seem to reduce crime rates significantly. Perhaps it is safe to conclude that
the presence of a police force does have a detervent effect but this effect
may be relatively insensitive to rather large changes in police patrol inputs.,
If this is the case, the statistical analysis suggested above will reveal very
little influence for preventive patrol times on “he number of burglaries com-
mitted. The range ol variation in preventive patrol time likely to be observed

may simply not he great enough.

Final Comments

This section of the report has been written without the aid of analytical
expressions and with a minimum of teghnical language. It is Impossible to
describe fully the details of the analytical procedurcs employed in this form.
However, the often stated reluctance of police officials to read technical

material prompted us to choose it.
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The material discussed thus far in the report has been covered in the
guarterly reports. This fact and the nature of the material permitted a
rather non-technical presentation of the work. The next sections deal with
the use of operations research techniques, particularly search theory, and the
use of analytical expressions and technical language cannot be complietely

avoided.

- 41 -




PART IT: NORMATIVE MODELS

Preventive Patrol Model - 1

There are many reasons for developing a preventive patrol model and a
preventive patrol assigmment algorithm. The overriding reason, however, is
the current lack of a validated model and assignment method. Several authors
have proposed patrol models and carried them to varicus stages of completion.
Elliott [1] has used a form of Koopman's LZ] search model to justify the
increased use of patrol forces against the crime of burglavy in Syracuse, New
York., He has also done some experimental work to determine the ability of
police officers in patrol cars to spot breaks in windows or doors. Larson and
Blumstein [3] used their version of a Koopman-type search mo@el to demonstrate
the low probability of detecting crimes-in~pfogress by a patrol officer.

Olson [4],[5] used the Blumstein-~Larson model with robbery data in Chicago

to allocate patrol units to specific sectors and to compute a theoretical

upper bound on their probability of detecting at least one crime-in-progress.
This assigoment method was not subjected to a street test. None of these models
or assignment methods have been fully exploited, or extended in a manner to
permit the generation of actual patrcl routes for police units. A discussion

of the reasons for conducting more work in this area follows:
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Currently, police departments believe that preventive patrol is effective
as a deterrent and as a means of suppressing crime. When crime rates rise,
the departments request funds for "more men on the strect.' The departments
have no quantitative methods for justifying this manpower increase. An attempt
to develdp a statistical relationship between patrol input and output is discussed
in the previous section. Very few departments even maintain the data to support
the positions that street patrol either deters crime, or acts as an effective
agent in detecting crimes-in-progress and in apprehending the eriminals. The
budgets for pelice departments usually expend over 90% for personnel costs in
wages and bencfits. This means that the allocation of manpower has the over-
riding effect on the quality of police service per dollar that a community
receives. A quantitative method of assessing the effects of preventive patrol
i; therefore necessary to improve manpower allocation within a department.

The current level of allcocation methods seldom goes beyond pin maps that
show the occurrences of crimes in the city. It is assumed that police officers
viewing these maps will then conduct effective preventive patrol. Some cities,
such as St. Louis, use a computer to generate crime density maps. These are
more useful since a copy can be retained by a patrol officer in his car, This
still does not solve the problem of distributing the police patrel effort in the
most effective wanner. Quite often police departments will allocate their avail-
able patrol effort in a direct proportion to the level of criminal activity. The
search models in this paper and those of Elliottand Larson show that this is not

the most effective allocation of effort.
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Two problems must be faced by a police administrator: (1) how can I
best conduct preventive patrol with my existing resources, and (2) how can I
best improve the effectiveness of my preventive patrol effort. These problems
imply that an assignment method should be able to use estimates of current
patrol performance for the first problem, and to encompass enough of the per-
tinent patrol crime, and envirommental characteristics to assist thevpolice
in improving thzir performance through training programs or by physically
changing some of the model parameters.

This second problem leads to another reason for developing an analytical
patrol model, Any model will become more effective as it considers more of the
factors bearing on the patrol problem. In adapting the model to a particular
city (or area within a city) police officers should work with the model builders.
When they are asked to estimate or to measure the parameters included in the
analytical model, they will probably become much more aware of the total pre-
ventive patrol problem. This model can serve as a talking point for the planning
personnel and the operations people. |

In many metropolitan areas police officers do not work a particular beat
for extended periods of time. Sick leave, court time, vacations and transfers
require that many different police officers patrol a given area. As a result,
many officers do not have an intimate knowledge of the existing crime patterns
based on their experience in an area. An assignment method using the latest
crime data and allocating the officer's patrol time within the area could provide

more effective coverage than an officer acting on his own.
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Police often regard arcas with 4 lot of bars and other areas of pedestrian
congestion as potential areas for disturbances or disorderly conduct. As a
result, they often concentrate patrol effort on these streets. Quite frequently,
the street crimes of robbery and burglary do not occur in these same areas,

A patrol model would force the police to select particular crimes for preventive
patrol, or to weight the different crimes according to the emphasis that they
wish to place upon them. The model would then allocate an officer's patrol

time accordingly.

Finally, very few humans can act in a truly random mamner. Preventive
patrol should be random, or a criminal would simply plan his crime for a time
when no patrol units were in the vicinity. The allocation model should incor-
porate a feature that will generate a random patrol path for the police officer.
By random, we mean a path that cannot be predicted on the basis of past history.

The models presented here will review some of the past work and extend it.
Finally a model differing from the earlier models will be proposed for future
implementation. It is a Markov decision process that provides a method for
generating random patrol paths and also incorporates some oflthe features of
the earlier patrol models.

Almost every police department performs some preventive patrol. The amount
and the method vary considerably. For general application, assignment models

should consider the nature of these methods.




Many departments rely solely upon the {ree time of their beat patrol
officers for preventive patrol. The amount of preventive patrol time depends
upon the number of calls for service that they are assigned, the length of time
spent on these calls, the amount of fime spent on administrative duties, lunch,
and other duties such as parking tickets or traffic that remove patrolmen from
patrol status. In many departments, very 1ittle‘preventive patrol is dome.

In those departments which try to have a very short response time to a citizen
call, however, the individual officer cannot be out of patrol status for much
more than 60% of the time. This occurs because a short response time is guar-
anteed only if there is a high probability that a nearby officer is not busy

at the time of the call. Thus, an effective response force and effective pre-
ventive patrol are complementary. Departments that have the ability to respond
quickly to a call then have beat patrolmen with a fair amount of time available
for preventive patrol -- at least 25-30%. Some departments try to assign beat
cars so that each car has nearly 50% of his time available for patrol.

Any patrol allocation for beat patrol units should be done on the basis
of their expected patrol time -- not their full shift. One allocation method
is based on queueing theory. If K is the number of patrol cars, 1/K is the .._
average time required for a patrol unit to service a call, and & is the average
rate of incoming calls for service to patrol units, then the probability that
a random patrol car is patrolling is P = 1 - %A' The expected amount of pre-
ventive patrol is PK, which is the expected number of units in patrol status.
Additional times such as lunch periods could also be considered in estimating

the availability of preventive patrol units.
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Once the amount of preventive patrol time is estimated, the allocation
model will indicate the amount of preventive patrol time to be spent by the
beat officer in different sections of his beat. Because calls for service
or other interruptions (stopping a traffic law violator) occur randomly during
his shift, the allocation model cannot assign definite times for his preventive
patrol.

Some citics, such as St. Louis and Chicago, have special units that operate
only as preventive patrol units. While these units would respond to emergency
calls, they do not receive normal calls-for-service from a dispatcher. These
units often operate within high crime areas of the city on the evening watch --
6 P.M, to 2 A,M, Even though they have no call answering duties, these units
often conduct a large number of street stops that remove them from patrol status,
For a 21 day period in Chicago, the overall average of availability for one
preventive patrol group was 67.3%. This demonstrates that the operation of even
a full time preventive patrol unit must be examined before an assignment algor-
ithm is prepared. Units that did not perform as many street stops of pedestrians
and vehicles would have more time in patrol status.

With either the preventive patrol efforts of a beat officer or a special
force, police administrators often allocate their men by considering the majorx
crime problem in an area and telling their men to look out for it. Sometimes
the area chosen for a particular mission is restricted in size -- perhaps a
public housing neighborhood -~ or much larger. Aside from a pin-map type of
crime analysis no quantitative justification is given for the amount of patrol

effort directed towards these areas.
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The model used in [4,5] selectad arcas within the city that had the
highest incidences of robbery, estimated the effectiveness of police patrol
in the areca by a random search model, and assigned the number of units to
each area with the objective of maximizing the space-time coincidence of at
least one patrol unit with a robbery subject to a constraint on the number of
available patrol units. Space-time coincidence simply refers to a case where
a patrol vehicle passes a point at the same time that an observable crime is
taking place. This does not insure that the police will detect the crime or
apprehend the criminal. The probability of space-time coincidence is then an
upper bound on the probability of detection. This allocation model was not
subjected to an actual street experiment.

Larson [6] provided a more detailed allocation method similar to the above,
except that it intended to aliocate patrol effort to individual streets and
alleys. The benefits and restrictions on this method of allocation will be
discussed later,

Finally, there are models for allocating the location and tactics of all
available patrol units when a crime has just been reported, and a description
of the criminal or his vehicle is known. This is the '"hot-pursuit™ case and
it will not be treated in this paper. Bottoms [7] discussed this and proposed
methods for locating the trapping forces. The methods are undergoing study and

experiment with the Washington, D.C. police department at this time.
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Up to this point we have discussed some reasons for seeking a quantitative
method of preventive patrol allocation, and we have given qualitative descriptions
of some methoeds Tor allocating patrol effort. Now, some of the factors influencing
the selection of aveas for patrol and the assignment of patrol effort to these
areas will be discussed.

The first characteristic about an area is the type of crime problem within
the area. As mentioned before, preventive patrol can be considered effective
only against crimes which can be recognized by police on patrol, Police patrol
is normally confined to public areas. OCrimes such as robbery, purse snatching,
and burglary (vhere signs of forcible entry or the tfansport of stolen goods
are evident to a patrolling unit) offer some possibility of detection by preven-
tive patrol. While preventive patrol is supposed to deter crime -~ not just
capture criminals in the act -~ it can be argued that no criminal is deterred
unless he feels vulnerable to detection and apprehension., It seems questionable
that preventive patrol has any influence on crimes that are not in theory
detectible by them, For the most part, murder, rape, and serious assault have
in the past been committed on private property out of view of patrol units by
persons known to the victim. Hence, police have regarded these crimes as 'non-
prevent=tle' by patrol. Recently, some crime analysis has shown that murder
as an outgrowth of another felony such as robbery or burglary is on the increase,
As a result, a greater number of murders are committed in outdoor locations
where prtrol could be effective. As an example, these figures from the Chicago

Police Anmiial Report 1969 are given: [8]
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Table 1

Percent: Percent

1968 of Total 1969 of Total
Total Murders 647 715
Robbery, Burglary, etc. '
Motivation 65 10.0% 102 14.3%
Street, Alley, Park,
Open Lot Location 212 32.8% 258 36.1%
Outdoor Residence Area 19 2.9% 31 4&.3%




&

These figures are not given to suggest that murder is now a prime candidate
for suppression by preventive patrol. Rather, they are given to indicate the
type of analysis that must be done within a department to characterize their
crime problem. This data shows that over one-third of the murders occcur in
areas available to police patrol, and that there may be a trend for this type
of murder to increase. TFurther analysis could show that these types of murder
occur in a relatively small scction of the city.

Similarly, an analysis of burglaries and robberies within certain neigh-
borhoods could show them occurring out-of-view of any possible patrol unit.

This would be particularly true of daytime burglaries in multi-story apartment
buildings where the burglar does not have to make a forcible entry on the ground
floor, and when he confines his attention to cash or easily concealed items.

Once this crime analysis is complete, an estimate of the number of "viewable"
o£ "preventable" crimes occurring in a region can be made. The purpose of the
first part of this research project was to predict the number of commercial bur~
glaries in a neighborhood, The estimate or prediction of the number of crimes
committed in a particular area can be done in many ways -- including the use of
past history. The predicted number of crimes in an area for a given time period
can then be divided by the total numbcer of crimes predicted for the entire city
in that time period. This gives a relative frequency of crime occurrence in an
area that can be used as an cstimate of the probability of a crime occurring in
that arca. This is the first and most important crime factor for the allocation
model -~ the probability by time period (perhaps an 8 hour shift) and arca of

the occurrence of a viewable crime.




The second factor to consider is the relative seriousness of each type
of viewable crime. Victims would generally prefer to have their homes or
businesses burglarized as opposed to themselves being robbed and subjected
to the risk of bodily injury. Any system that weights the seriousncss of
crime types relative to each other will be largely subjective., One of the
most elaborate surveys that attempted to determine relative crime weights
was conducted by Sellin and Wolfgang [9]. The persons who participated in
the survey were college students, police officers, and judges., The purpose
of the weights was to dencastrate the relative seriousnesgs that this group
attached to particular crimes committed by juveniles., One would not be too
surprised if these weights did not correspond to the relative seriousness that
residents of high crime areas would give to crimes in their neighborhoods,
Until surveys are conducted within the neighborhoods of a city, the Sellin
and Wolfgang weights are probably as good as any. As an example, some weights

from their survey are given:

Homicide 26
Rape 12
Robbery 7
Aggravated Assault 7
Burglary 3

Theft ($50 or over) 3

Aute Theft 2
If only one crime type is being considerved, such as commercial burglary, the
relative seriousncss could be judged by using the value of the stolen goods.
Police allocation to some arvcas could be affected by considering the potential

loss or damage if burglaries or robberies occur there.
o i




4

So far, we have discussed methods of cstimating the probability of a

Trerime.agcurring and the relative seriousness that potential victims accord

these crimes. In addifion fo these Tadtors, a patrol allocation model should
consider its effectiveness in detecting particular crimes in an arca, and any
particular costs or risks associated with this process. Taken together, these
factors will then determine the arecas for search and the assignment of manpower
to them.

As inferred earlier, the mathematical allocation models will use the
maximization of the probability of space-time coincidence as an objective
function. This probability would become the probability of detection if the
conditional probability of detection given space-time coincidence were known.
When cmpirical data on the number of detections is used in an allocation model,
this distinction between space~time coincidence and detection is unnecessary.
If empirical data is unavailable better estimates of police performance can
still be made by considering enviromnmental factors such as lighting or distance
that can affect the detection of a criminal event. An examination of the par-
ticular streets and alleys could provide a relative measure of difficulty in
observing a criminal event by a patrol unit. This relative measure could then

be used in the allocation procedure.




Differences in the distance from a squad cav to building doorways would
affect the ability of an officer to see signs of forcible entry. This is a
major difference in patrolling residential arcas as opposcd to commercial areas.
Similarly, the lighting in streets, alleys, or in commercial establishmeots
after business hours varies greatly. TFinally, the amount of time that a criminal
event is viewable as a crime to patrol forces will affect the probability of
space~-time coincidence -~ and then detection. Each crime type has a charac-
teristic time associated with it. A street robbery may take less than a minute
while a commercial burglary where goods other than cash are taken might take 30
minutes to complete. The model builder can bring the police into the problem
by asking for their estimates of these time values. The discussion will inform
the police about the nature of the allocation model and, undoubtedly, reccive
their criticisms and suggestions.

In a similar manner, the model builders should determine if certain areas
place a higher cost on patrol. This additional cost could result from restric-
tions on the patrol speed, a requirement for additional manpower or equipment in
the area, or a subjective estimate of the relative risk of police activity in
that area as opposed to others.

These factors can be included in some of the mathematical allecation medels.
The desciiption of the models will show how they can be included, and how they
might affect the final result. It will also be clear that some of these [actors,
such as the subjective weightings on crime types, difficulty of detection, and

the risks or additional cost of patrol can be omittced {rom the wodel.,
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Prueventive Patrol Model - 2

Considc~ a one-car (preventive patrol) sector (heat) consisting of

N tircets, numbered 1, 2, ..., N, Assume that the preventive patrol policy
for this sector prohibits U-turns. This restriction is easily modified
for any street in the models presented in this paper. Since U-turns are
not allowed, we require a notation which specifies the possible location
of the patrol car as well as the direction in which it is patrolling. For
thiz purpose let the pair of integers 2i-1 and 21i represent the two direc~
tions of patrol for street i(=l,..., N). PFinally set M = 2N and let the
intvaer 0 denote the location of the patrol car prior to commencing patrol

.g., garage, police station, etc,). Street O could also represent the

i1vol or set of streets the patrol car must travel in order to reach the

£ 2bor at the beginning of a shift, Figure 1 illustrates such a street-

irection sector network.
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One of the major objectives in preventive patrol is that the patrol
schedule (policy) be non-predictable., That is, there should be no way in

which a potential criminal can better predict when the next patrol car

will visit a given location knowing the times of the previous vigits to

this location by the patrol car than not knowing these times mathematically,

let Ti, T%, sevs Ti be the times of wvisits 1, 2, ..., n to location j in
a vl ol ol j co "
the sector by the patrol car and sct ¥n+l Tn‘+1 Tn . Tn+1 is the time of

the (n+l)st visit to location j and Yf is the (elapsed) time between the

-1

nth and (n+l)st visit to location j. A patrol policy is said to be “random!

~or non-predictable in the above sense if

Pr”+1 T, (1)
U B
k. i in+l }

for all iocations j in the sector, for all n =0, 1, .., and all time périods
T=1,2, ....

(1) in words says that tha uncoaditional probability that a patrol car
visits locatioa j T time units in the future for the (nil)st time is equal
to the (conditioaal) probability of this same eveét occuriing given the
observed times of the previous n visits te this Location by th2 patrol car,

If statewent (1) holds for all locatioas j in the sector, thea we say that

the patrol scheadule is random,




The use of random patrol schedules in preventive patrolling is partially
based on the premise that it will discourage potential criminals who find
that they canaot predict the arrival patterns (times of visits to streets)
of patrol cars. It is this property, randomness of patrol, that will be
maintained in the models presented in this paper, Next, let X, denote the
location (street and direction of patrol) of the patrol car at time T
(=0, 1, ...). XT takes values in the set § = {p, I, o.o., M}. A random
patrol schedule has the property that for any sequence of locations the
patrol car has visited up to time T, say 0, il’ iz, .oy iT, the probability
that the next location patrolled is j conditioned on O, il, e irr is only
dependent on the last location patrolled, iT' This statement must hold for
any sequence of locations 0, il’ i2’ ey iT and j in the sector specified by
S, and any tim: period T (=0, 1, 2, ..., ). Mathematically, this statement,

which is equivalent to (1) is given by saying that the

Pr {XTH = j lxo 0, Xy =iy, «vus 1T}

1

(2)

]

Pr{ X = 3

|‘<:

for alt + = 0, 1, ..., and any sequeace {0, il’ 12, e iT) where the iy

are in §.




Most of the models appearing in the literature on preventive patrol, as
described earlier in this report, determine either the optimal number of
visits to each location in a sector, "optimal coverage rates', assuming
that patrol is random, or assumes coverage rates arve given and then deter-
mines random patrol schedules. TFor examples of both cases sec Larson [6]
and Rosenshine [10], Given crime statistics for a sector during a specified
interval of time and other statistics such as the speed of patrol, the cri-
terion most often used in models for determining optimal coverage rates is
to maximize the total probability of space-time coincidence or to maximize
the expected number of detections. The latter criterion in some instances

is equivalent to the former.

The models presented in this paper combine these two decision pro-
cedures, The allocation model (determining optimal coverage rates) and
the random patrol schedule model, are combined into a single model which
meets the desired criteria. Also, the models presented in this paper have
the added advantage that the optimal patrol schedules can be computed by .
mathematical programning using readily available computer programs,

The ocutput of th~ two models is an optimal matrix, called PO, of

transition probabilities. That is,

P p% ee po
0o Po1 oM
(o} [ 0
Pig Pyp """ Piy
p° =

e L]

. L)

[o] (0] o]
Pvo M1 MM
[¢]

13

.

. k4
- e s . ]
where the numnbers (transition probabilities) p,, in P~ have the following

interpretation,



Let 1 and j be any two locations in the set § and let T (= 0, 1, ¢++)

be any time period. Then

o) B s o i
Pig = PF X S l}

probability (coaditional) that given location i is now

)|

being patrolled (time T) the next location patrolled is j
(in time T+ 1).

The probabilities in p° will be "close to"' zero for pairs of
locations, say (i,j), where j cannot be patrolled next upon the completioa
of patrolling i without either making a U-turn or passing through an inter-
mediate location. More will be said on this point later in the paper.

. . 0 ;
Next, using the matrix P, random patrol schedules can be determinad by

“the use of Moate-Carlo (simulation) techniques, The resulting patral
schedule or schedules give for any location of the patrol car during any
time period, the next location to be patrolled. The user would then
generate a series of schedules (from the Monte-Carlo model) which would
be used, say on successive tours during-the same shift.

Finally, the patrol schedules generated would be simple in form.
In most cases, for cach shift and patrol sector, & patrol schedule would
consist of two ecolumns of basic information as illustrated in the following

example.
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Patrol Schedule

(Sector No., Shift No.)

Present Location

(Street and direction
of patrol)

0

1

- 61 -

Next Location to Patrol

(Street and directioa of
patrol)



Note that in the schedule, if the patrol car has finished patrolling location
i in 8, then the next location to patrol is lorcation ji in S.

In Appendix B, a preliminary description of the preventive patrol decision
process is presented. Derman's approach [11) is used in the construction of the

patrol decision process as well as in the statement of the models.
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APPENDIX A

The method of allocating police to areas in the city to combat street

crime follows an early model of Blumstein and Larson [3]. In this model

T =
c

B =

"
n
rt

i

and

or

Pge =

when we take
status. The
[3] and [4].
at least one

c¢idence with

the time that a criminal event is viewable by patrol units

the number of miles of streets and alleys for patrol per square mile
the number of square miles in the patrol area

the speed of patrol

the total number of police patrol ﬁnits

o

the probability of space~time coincidence

KST
1 - exp ( "'“EKS )
KST,

1 - -
exp ( - P Tx

into account-the probability p of a patrol unit being in patrol
complete descriptign of the development of this model is given in
The probability of space-time coincidence is the probability of

patrol unit of the K units in area A achieving space-time coin-~

a given criminal event. This model assumes that the K units all

patrol region A in a random manner. In other words, one unit does not patrol

a region of = , but each unit patrols the same area A.
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This probability, Pyt , was used in the Koopman search model which is

written as

Max P [¢] _:f p(x)[l - exp (ch(>;)>] ax (1)
subject m/ j P(x) dx S o )

o(x) =2 0 ~ o 3

) p(x) 2 0 | (4)

where p(x) is the probability of a crime occurring between regionx and xHdx..
@(x) is a measure of the effort expended to achieve space-time coincidence

in the region x and x+dx with the criminal event, and o is the resource constraint

" on the total amount of effort available. The expression 1 - exp(-9(x)) in the

integral of équation (1) is the probability of space-time coincidence given that

a criminal event occurs. In the area allocation model

RST. &
B =1 - eml - o5f] = 1 - em (-9(0) )
\ R(x)ST
or cp(x) = pT-E (6>
ST
@ = P @
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In this case we collapse the sectors of search onto the real line, x, since
the search area is characterized by ;he total miles of streets and alleys for
patrol in an area. The parameters S, T., B, A, and p are considered fixed for
the allocation problem. The variable controlled by the decision maker in this
model is K(x), or the amount of the total number of patrol effort expended
between x and xtdx. For example; if the value of K were 20 patrol units and
the value of K(x) that maximized equation (1) for the area represented between

%, and x1+dx were .6, then

1
6 x 20 x 8 = 96 hours

of the maximum available preventive patrol time -- or 12 patrol units -« would

be allocated between Xy and x1+dx‘ The actual amount of prevehtive patrol time

would be p96 hours.

This model could include other factors besides the estimate of the probability

of a crime, the time durstion of the criminal event, and the patrol unit availa-
bility. Let O = q(x) S 1 be the weighting factor on the relative difficulty of
detecting a crimin. ¢ event given spgce—time coincidence, If known, this could
also be the probability of detection given space-time coincidence in the area
represented by the interval x to x#dx. Similarly, w(x) would be a relative
weighting factor with Q(x) 2 0 that gives an indication of an additional strain
on resources for patrol between x and xfdx. Finally, the factor v(x) = 0 could
represent the relative value of detecting a criminal event between x and x+dx.
If more than one type of crime is being considered, v(x) could be a composite
of Sellin-Wolfgang crime weights to indicate the relative seriousness of crimes

occurring between x and xtdx.
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The allocation model would then be written as

Max P[] = f v(x)px)[1 - exp(-pq(x)epx)) Jdx (8)
subject to f wx)ex) =z o (9

- QG

B(x) 2 0, v(x) = 0, w(x) = 0, q(x) 2 0, p(x) = 0

which can be solved in a similar manner to eqﬁation .

This model is usually described in terms of one crime type which has a
characteristic value of T,. In some areas, only one type of sﬁreet crime is
a major probletﬁo The model can be very simply applied as described. This
réstriction can be removed, however. Consider three areas for patrol:

Al A2 A3

where the number of robberies, burglaries, and acts of vandalism viewable by
pétrol units are estimated as

R B _V R B _V
' Ny Nps Nyos =mms Mgy Mgy Ny

respectively. Assume relative crime seriousness weights of 0.7, 0.3 and 0.2,

. . R
respectively. Let the time duration that these crimes are viewable be T,

TB and TV&
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" The estimated Rrobability of robbery in area one given that a robbery

r M R . R R
occurs is P, = ﬁk where N’I‘ is the total number of robberies N1 + N2 +

N R. Similarly, the values of sz, cee p3v, etc. are found., The expected

3

time duration of a viewable street crime in area one is

R BB Vv
= T
Tl le'l‘ —ipl +p1’1“ (10}

and the crime seriousness factor is

R B v
_ 0.71‘\1[1 + 0.31\11 -+ 0.21\11

V17 R B v (1
0°7N1‘ + O.BNT + O.ZNT
The probability of a crime occurring in area one is then
v en®en”
- . : 12)
Py R, B v (
N + NT + N'.L‘
‘Uf,;ing the discrete form of the integral equation, we have
3
\ Max P[] = Zvipi [1- ew( - 4,0)] 13
i=1 .
subject to
! 5
Zwicpi o (14)
1
with o, = ity (15)
3 ) L L
BAl
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Larson [6] later developed a model which s&ught to allocate the relative
amount of patrol effort to each block of a street or alley. The function that
specifies the amount of coverage that one street or alley receives relative to
another is 0 £ e(x) = 1. A value of e(x) = 1 indicates the maximum amount of

coverage. The total distance patrolled in a sector sweep is

L= ID.e(x) dx : (16)
o

where D is the total number of miles of streets and alleys in the patrol sector.
gl(xo, 4) is defined as the probability that at least one patrol segment overlaps
a point X, in a patrol of length J/ given that the patrol is divided into n equal

length segments. Larson obtains this probability as

. , |
Py (kg ) =1- (1-2 2ZhHn an
which becomes
By (s B = 1 ewp (- ZEW0)y (18)

as n becomes large. If we call the speed of patrol s, che etfective sector sweap
time is

T = L/s
and

Py (oo ©) = 1 - exp (- 0% (19)
T

where t = /s if Pn(xo,z) = Pn(xo,t) is the time duration of the patrol. This

time duration of patrol is the time duration of the criminal event, not the total

amount of time a unit spends in patrol. This is because we are interested in the

probability of the patrol unit passing point X, while the crime is in progress.
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This last equation is interpreted as meaning that the passage of point x

is a Poisson process with rate e(;°>. The probability density function for the

time between passings of x has a negative exponential distribution with mean

EYe(xo). The patrol rate at point X is

v(x ) = e(:o) | (20)

which is the average number of patrol passes of poiﬁt X per unit time. Street
segments between adjacent intersections are considered the smallest possible
patrol segment,l If one point of this segmént is passed, all points on that street
segment are passed.

Before proceeding, the reader may wish to compare Larson's result in

equation (19) to Elliott's which is

p=1 - exp (~t/T) (21)

whére Elliot calls t the amount of time that the criﬁe is viewable and T as the
average time to patrol all the miles of streets and alleys in a patrol sector.
Larson states that this interpretation of T is incorrect. Rather T should be
interpreted as the average time between passings of a point of maximum patrol

coverage.,



If the patrol unit is performing other duties, such as answering calls for
service, for some fraction (l-p) of the total patrol time, the average number of
patrol passings of point X per unit time becomes

V(Xo) =A e(XO) p Ny (22)
T

Using the same weighting factor for the difficulty of observing a crime in progress
at X as was done in equation (8), the last equation could be written as

v(xo) = ‘e (Xo)

() ax,) C(23)

This would now have the effect of altering the meaning of the probability to
a probability of detection instead of space-time coincidence.

This allocation model is still in Koopman's form of

Max Pk= i-p(x) [ 1 - exp (~v (%) f] dx’ (24)
subject to ) .
Jowasa ¢ 2o @5

where v(x)t = ©(x). In this equation, Larson interprets & as a measure of
the total amount of search available to achieve space~time coincidence with
a criminal event of time duration t. In this case

C= pstK (26)
where ¢ is measured as the total number of miles covered by the patrol units
during a criminal event of duration t. Larson's equations can include the other

weighting factors to be rewritten as

Max P = i v(x) p(x) [1 - exp(~p q(x)e(x)ts) ] dx (27)
- A L
s.t. uf wo(x) @ (x) Q. (28)
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There is a major problem in implementing Laréoﬁ'é'model that‘éléo occﬁrs
to a lesser degree in the area allocation method used by Olson in [4]. In
Larson's model, search effort is allocated to street and alley segments between
adjacent intersections. Neither the objective function nor the constraints
guarantee that search effort will be assigned in a manner to make the searcﬁ
by a patrol unit feasible in a physical sen;e, In other words, search effort
could be allocated to streets and alleys that have no common intersections, so
that a patrol car would have to cover streeté or alleys which had no effort

assigned in order to reach an assigned search segment.

e e a e

Consider the street and alley search allocation as the aééighﬁent'of flét}~
e(x )

0

T L4

rates between nodes (intersections)‘in a network. The flow rate is
In this problem, éome of the flow rates would be impossible to achieve because
there are either no connections between a fléw source and a segment, or the
coﬁnections have an insufficient capacity Eo achieve an assigned flow rate on
an intermediate link. Therefore, the search effort allocated to the different
links could only be used‘as constraint conditions in a mathematical program

thét tried to approximate the search allocation-assigned flow rates as closely
as possible, and still achieved a physically realizable mnetwork flow pattern.
Once the physically attainable, nearly optimal flow rates were found, a method
similar to Rosenshine's [10] could be used to obtain the transition matrix of

a Markov chain that results in achieving the expected flow rates. This tran-
sition matrix can then be used in a Monte Carlo program to generate random
patrol paths for the search units which would tell the patrol unit which turn

to make as it reached each intersection. By the end of the tour, the unit would
have achieved a coverage of the network approaching the optimal allocation of
search effort. Appendix B of this report will describe a Markovian decision
process for allocating search effort that avoids this two-step (Larson~-

Rosenshine) process,




The generation of a random patrol will then be accomplished in a more
gstraightforward manner. 1In the area‘ailocation, a similar problem occurs
when & fractional unit is assigned to a search sector. By multiplying the
amount of time a unit has for patrol by this fraction, a unit could be
assigned for that amount of time in the sector. The rest of the unit's
patrol time would be spent in another sector, If there were a significant
amount of time required to travel from one sector to another, this time must
be deducted from the total amount of time that the unit spends on preventive
patrol. Then tye.problem must be reworked with this new time.

The next séction will discuss the methods of solution of the search problem
w;th some interpretations of the results. The Larson allocatiorn method coﬁid
still be useful for other typeé of surveillance -~ such as closed circuit TV --
or other types of protective devices that did not have to be transported from
one segment to another. While his model will receive no further treatment,
the methods of solution could be used with his model for these purposes. While
the sector allocation method is not as precise as a street by street assignment

of effort, it might be more practical to implement since patrol units may resent

the specific driving instructions.
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The first method for solving problems written as equation (1) was given
by Kbopman [2]. This method is graphical, and Larson [6] gives an example of
the solution as applied to police patrol. As such, the method will not be
described in this paper. If a department has a small allocation problem
(such as a moderate size city with relatively few candidéte sectors for patrol),
this method of solution could be easily implemented since it does not require
high matﬁématics or access to g digital computer. |

The method of solution programmed éy leon [4] used a mathematical

programming solution developed by Charnes and Cooper [11]. This method can w 12

be easily programmed for a digital computer. For this case, a discrete version

of the integral equation is used and the problem is

T
Min ) emp (-1®) b, (29)
j:: i
subject to
n-
C @20, ) o =1
3 i
which is equivalent to the problem
n
Max z; [1 ~ exp (-7 ¢3)] pj (31
j=1

subject to equation (30).




' In the discrete fdrﬁ, P is the a priori probability of the criminal
event occurring in sector -j and qg is a normalized parameter related to the
effort allocated for search in sector j. The exponential quantity in equation
(29) is the probability of not achieving space-time coincidence given a criminal
event occurs in sector j where Tﬁﬁ effort has been allocated. 1In the sector
search model, the decision variable is the number of patrol units allocated to
sector j. If the total number of patrol units available is U, then we have
. Ko ,
' ¢3 S o ' : (32)
U \ o .

where Kj is the number of patrol units assigned to sector j. From the form

of equacion (32), we see that the constraint condition, equation (30), is

satisfied. Recalling the form of equation (5), we have

pST, K;

ne, = ¢ 7 , - (33)
J BA , )
g0 Nn= pSkel (34)
BA

for all search sectors j. The value of T in this equation is similar in
interpretation as the quantity ¢ in equation (26) for Larson's street allocation
model. Namely, it is a measure of the total amount of resources available on
the average ( Pis an average value) to achieve space-time coincidence with a

criminal event.
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The computer (or hand solution) is as follows. First rank the values of

pj with the highest vaiue first. Then take the natural logarithms of the

A .
ranked values of Py- Let P4 represent the natural logarithm of the a priori

probability pj' Let j = 1, 2, ==, n now represent the order of the j~-th sector

in the ranking. If

Py - MN2p, SR (35)

then all of the search effort is allocated to the sector with the greatest

& priori probability of a criminal event. If
A

. A . T h ‘. °
P2>P1 il - _ (36)

then the second sector is added for search. The sectors receiving any search

effort at all are found by iterating through the equation

_ 23 : ,
. . : A
N /gn‘->' %(Z 1;“imﬂ)zpn (37
| J T NG J+1 S

where J stands for the number corresponding to the last sector selected for
search. Once the value of J is found in equation (37), the value of mj is

found from

[
Sl

- (4 )] (38)

where

reJ,

This method of solution could be altered to solve Larson's street allocation

problem as well. The more general case where weightings are used will be shown

later.
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OQur reView of the past models of police pétrol and their methods of
solution is now complete. While the methods described can solve the allocation
problems, other methods using duality will be aescribed in order t6 place this
problem in a more general math programming format and to permit better economic
interpretations of the results.

Several papers have béen written that show thé relationship of thé search
problem to the Neyman-Pearson problem. Wcright and Francis [13] found a dual
problem to thé linear form of the Neyman-Pearson problem. Yen [14] used a theorem
by Wagner [15] to write the Wolfe dualnof‘theqsearch pfoblem, and Meeks [16] has
obtained duality relationships for the non~linear Neyman-Pearson problem. Some
of their results will be repeated here in the context of the preventive patrol
problem. | |

. Let a and b be real numbers or = ® with a<b. Let B and Y be-fﬁnctions
on (a,b) for which “ '

.

o =B (x) SY (x) S for a <x <b (39

The problem is to find a function @(x) on (a,b) that is bounded by B(x)
and Y(x) to maximize an effectiveness functional E(Y¥) given by the integral of
a point-effectiveness function e. The functional E(p) is subject to a cost
constraint C(®) which is the integral of a point-effectiveness function e.
Wagner [15] gives theorems for both the differentiable and discrete cases of

this problem., His theorem for the differentiable case is repeated.
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[~
Let e and ¢ be real functions of two variables defined on

{y la<x<b, B 0 SY @ and -=<p (@) <= (40)

let their partial derivatives with respect to ¢ exist on (40), and denote these by

3

Dle--

d Dc.,
an 1©

For each fixed x€(a,b), assume that l_)lg(.,x) and ch(.,x) are Riemann integrable

on each bounded subinterval of (B(x), Y(x)). Let & be .the set of all real-valued

A

functions ¢on (a,b) such that B(x) £ ¥(x) £ Y(x) for a < x < b for which

- E Zcp)

CY N -

e (tp (%), x} le and :
i)

¢ (tp (x),‘x> dx <@

S =E<c (@

Suppose g(x) ¢ & has the property:
there exists a A > 0 such that for all x € (a, b). .

©oDpe(,® SADe, M for g <P <Y () - ad (42

Dy e (-, x) ZA Dye{", %) for Bx) <9 (x) <g (x) . (43)

Then

max JLE (@ |¢¢ ¢ and c(9) =c (g)} (44)

E (g)

v

i

c® =unin{c(@ l9ctand 5 28 (@ } 45)
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This theorem states that for any chosen value of A > 0, a function g(x)
which is in the feasible set of ali functions ® and which satisfies (42) and
(43) will maximize the effectiveness integral, E(®), and minimize the cost
C(w for that particular value of ) > 0, hence it is cost effectivg° Wagner
also points out that this theorem holds if there are mu}tiplé'constraint, or
cost, functions.

Using this theorem, it is seen that for the case of m constraint functions
¥

m m '
E(®-p A C @ 2E® -) A G (@ 46)
i=1 i=1

The Lagrangian function is written as

m
L@ M =E @ -)k ¢ (9 @)
. =]
For a given value of ) > 0, a minimization problem can be written as
. b . m .
I mi$ G (A = I [e (g (x), x) - };Xi Ci (g (x)1 x) dx + QA €48)
“ XgEm a i=1
which is the dual problem of the maximization problem
b
1T max E (@) = f E <<P(X), X) dx (49)
a
b !
subject to Ci (p) = j c(@ (x), x) dx < @ (50)
for all L = 1, wwe=, m
and B (x) S¢ (x) 2V (x) (51)
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Problem I is the Wolfe dual of problem II. Problem II has a functionai form
very close to the search problem. As such, these problems have several dual
properties:

(i) If ¢ is any feasible solution ﬁo pfoblem II, and A € E+m,

E (p) <G (A) {52)

(2) If there exists a feasible solution g(x) to problem II and A € Ez

such that
m b
. 53
. a
=]
m
D, e (%) - ) A Dy e (¢ %) S0 (54)
i=1
whenever
g () <9 ® <Y (® (55)
EI.I
Dy e (9, ¥) - ) A Dy c, (¢ %) 20 (56)
i=1
whenever
B(x) <¢ (%) <g (x) (57)

then A° is a solution to the primal problem, g(x) is an optimal solution to

problem II, and

E(g) = G(\°) (58)
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(3) If g(x) is a solution to the dual problem then there exists a point A

in E}: for which

m b
Z)\i[Jci (g (x),x) dx-ai:l:O (59)
i=1 @ o
m
Dy e (¥ %) 'Z Ay Dyey (9 %) =0 (60)
i=]
whenever
g (x) <9 (x) <Y (x) (61)
m
Dl e (CPS X) "Z )\i Dl ci (CP: X) 20 (62)
i=1
whenever
B (x) <o (x) <g (x) (63)

These properties have been proven in [14].
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Rewriting these results in terms of the search problem is done by the

following replacement

e (o Gnx) =p @ [1-em (-p )] N
¢ (p (%), X) = @ (x) (65)
0Ex= X <+ (66)
0=¢ (x) =M (67)
p(x)z0 (68)
X
¢ (oc) =] ¢ ) axsa (69)
(o]

The minimization and maximization problems are ‘ ‘
X . \ X
' ?igﬁ i' [P (x)[1 - exp (—g (x))]; dx - A [ J g (x) dx - a] (70
subject to

0 if g(x) <9 (x) <M (71)

HA

pkx) exp(-g(x)) - A

iv

p(x) exp(-g(x)) -A20 if0 <@ (x) <g (%) (72)
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X

m omaxk@) = [ 2 G [1-ew (o )] | Cow
ped

0

subject to

X B
[ ¢ axsa (74)
0

0S¢ (x) SM (75)

where o is a constraint on the total amount of search effort Q available and

M is a maximum amount allocated to a particular region between x and x+ dx.

So far, the preventive patrol problem has only considered one constraint, so
Em is one dimensional. In this case, search is conducted along a straight line
over a finite portion from the origin to a point X < f =

From problem I, we see that

X
A [e @ oax - o] (76)
0
must be minimized. For a value of A > 0, the minimum is attained if
X
j g (x) dx = Q an
0

or if the allocation of search effort uses all of the available resource.

The necessary conditions for the optimal allocation function in I can be written as

g (x) = np (x) - 4n A if A <p (x) EAXexp (M)
0 if 0 =p (x) EA
(78)
M if p (x) = A exp (M)
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The remaining problem is to find the optimal value of A which would permit us to
solve for g(x) and have

Problem I = ProBlem II.

The optin, . value of A > 0 is found by using the solution for g(x) in the constraint

equation
X .
| smax = « (79)
k)
and obtaining
Jde+ J l:ﬂ,np.(x) - fn x] dx = @ (80)
Ey Ey ‘
or
% [_a.+ M J dx + J M p (x) dx] = fn X\ (81)
By Eo
where
E={X|cp(x)>0} ' (82)
EM={x|ﬁ(x)é>~eM} (83)
L———J‘ dx (84)
E
)
E, = E -E, (85)

The optimal value of A cin be found from the trancendental equation, and this

value used to find the values of g(x) thnat maximizes problem II.
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If the different weighting factors discussed before are used in the preventive

patrol problem, the maximization and minimization problems become

, X
X -
v Min Clp(x)v(x) (1 - exp(~q(x)g(x)) )| dz-A| v (x)g(x)dx-a | (86)
keE; J [ ) ( )] [E[ _J
o
~subject to
X
PV en(-a@8E ) - A [ Wi ax =0 @)
)
if g(x) <o (x) <M _ (88)
X <
PV er(-a(g ) A [ @) a2 0 (89)
o
if 0 < (x) <g (%) ‘ (90)
TIW X - :
M | b Goved [1-ew (~ae0ee) Jax (o1)
0
subject to
j‘ w (%) ¢ (x) dx(x) EC (92)
for p (x) 20, v (») 2 0, q (x) 20, w (x) 0 (93)
0 Ex X<+ @ (94)
02w (x) p (x) EM (95)
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The value to the decision maker of this formulation comes from the
economic interpretation of the primal problem variable A. For this parti-
cular problem type (nonlinear Neyman-Pearson problem), the solution g(x)
is the most cost-effective or efficient for a given value of A. By this
we mean that for a given value of A > 0, g(x) is the allocation of effort
that maximizes the probability of space-time coincidence for the least cost,
but we also know that the total amount of resources (or cost) Q are expended
for the optimal solution. The value of XA is the marginal increase in the
total probabiiity of space-time coincidence for am added unit of the
resourcé &. So, the value of A tells the de;ision maker how much addi-
tional search ability he will obtgin if he expends an additional unit of
his allocation effort. .

A final model will be discussed now.that has been worked on by Stone [17].

' This is the uncertain sweep rate problem. It refers to the case where some, or

all of the parameters such as S, p, or T aré random variables with a known
density function. This formulation is useful if we use an allocation method
based on past history. For instance, historical data that'provided‘a measure
of the probability oan police patrol unit detecting a criminal event could be
used instead of a mudel explicitly considering the speed of patrol, the number
of miles of streets and alleys, and the average availability of patrol units.
The historical data would provide an empirical distribution giving the pro-
bability of detection as a funetion of patrol manpower. This data would

probably be grouped by time of day, types of crimes, and area of the city.
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For those cases where p(:;c), w(x), v(x), and‘q(x) are greater than zero,
' X
g(x) = 2}%;2) [J&n (p(x)q(x)v(x)) - I Jw(x)dx-m]
if A/ < p(x)v(x)q(x) <A exp w(x) _‘J

0if 0 =p (®)v(x)q(x) =L’ (96)

2 if p(x)v(mq(x) =17 exp [5(}(:){)]

where A’ =1\ J w (x) dx (°7)

and the trancendental equation used to solve for the optimal value of A is

] foe | ebggmel e e e
where )
EM={x | px) v (®) q (0 21 exp [—%%] (99)
E ={xlw(x)g(x)>o} (100)
E, = E -E, (101)
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‘ Consider preventive patrol and write the problem as

X
o Max P(¢) = _[ p(x) b (cp(x), w) dx H (dw) (102)
: ‘

where H is the prior distribution of w, the patrol unit sweep width. The function b

is a local effectiveness function. If we have ¢@(x) = k, then b(k,w) is the

®
probability of finding the target given that it is located at x and w = y,. Here,
we may think of k as the number of preventive patrol units. We get the expression
X
® Max P () = fp(x> B (k) dx (103)
o
| where a
1 B(k) = J b (k,w) H (dw) (104)
fork 20
o
subject to <
J @ (x) dx < o (105)
@ °
This is the same form (a Neyman-Pearson problem) as befcre and the conditions
for solution are the same. WNamely,
PY p(x) B (k) = A for k < g (x) (106)
p(x) B (k) <A for g (x) <k (107)
® X
|20 ax =@ (108)
o)
L
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We assume that B(k) is concave, strictly increasing and B(0) = 0. Then
B’(k) is continuous, positive and strictly decreasing. Under these conditions

. -1 . ,
there exists an inverse function B’ (k) that is continuous and strictly de-

creasing. Stone [16] proves that there exists a )\ such that for p(x) >0 * ;7

A

g(x) = B”l(pCX> )if B/(0) p(x) 2 A (109)

0 if BY(0) p(x) <A
andjé(x) dx = o
This can be proven for any a priori probability demnsity p(x) that is a non-

negative integrable function on X -- conditions met by any probability density
function defined over the real line. B can be any bounded function defined on

E+ such that B’ is positive, continuous and strictly decreasing.

In the last developments for the primal and dﬁal prcblems, the continuous
férm of the equations were used. To assist the reader in solving these prob-
lems with the use of a digital computer (or even a desk calculation if the
problem is small) a discrete form of the equations will be used. The method
of solution is a more general version of the method previously described and
originally done by Charnes and Cooper.

In the discrete fo}m, the necessary conditions for the optimal allocation

function of problem I are

M
= . - dn A if A <p. = e
gJ n Py n i Py
0 if 0 = P; = A {110)
M if Py = A

where M is an arbitrary limit (less than the overall amount of search resource
available) on the amount of search effort expended on any region Xj' If this
limit were not set, the conditions would be

g. = Im Py - n A if Py > A

3
0 if p, =2 (111)
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Three cases can occur: (1) an amount of search.ME;r = ¢ is allocated to

‘.t.‘e:Em
r sections, (2) an amount of search'M}% 4—§k£np = n )\)xs = ¢ is allocated to
rek
r+s sections, (3) and an amount of search éﬂnp - dn )\)xq = @ is allocated to
Se 0 =y

s sections. The solution method will consider all three cases. From the
necessary conditions for an optimal allocation we will allocate search effort
only to those regions where

In Py > fn A (117)

or

reE

= Z’ ") |

Unless case (1) occurs, the optimal amount of search allocated to a sector is

g. = In - —-—-];--LZ In x ~a+MZ X :l 119)
j P3 zi, €E Ps s reE T (
’ o ™
SeE>
o
for Case (2)
d = -‘ Z -
an gj in pj ['seE In P ¥ a ] (120)
SeE

for Case (3).
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The counstraint equation is

Lo x=o

JEE j J (112)

where E ='txj l gy > 0}' (113)

so the trancendental equation obtained by substituting the values of 8 in the

constraint is

Mz xr-l- z (fn Py - In ) x, = o (114)
reEM seE0

or 1 .-2; };
zi L}I X+ - X fn ps = ] = fn A (115)
3 2. %g reEM sel
seEO
where B ={x_|p = )\eM} and BE_=E - E (116)
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Before proceeding, we will show that if

i (s W, x)
Inp s+1 > z——— <se; o in ps XS - O+ B Xr (121)
. R m

S

SeE0
then
4o ps-l—l (;EE fo. p xs+ -a + 5%;: ) (122)
s+l '
s+1eE
o
since

4n p <Z xs) + dn Pot1 Fs+1 >Z fn Pg ¥ 4op s+1 xs+1~0f. + MZxr (123)

s+1
S eEo s eE T eEm

by the original hypothesis so

o p [ in p, - G+MZ (124)
s+1 s+leE S+] reE

s+1 e:E

- which obviously holds also in the case of Em=0.
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If this condition is true, regiom s + 1 is accepted for search,

otherwise search is conducted only in the first s = r + 1 regions,

Allocation to regions greater than is made according to equation (110).
The algorithm for solving the problem with weighting factors qqs W,

would be developed in a similar manner., For instance, the discrete form of the

trancendental equation would be

®
r S = /
v + E; %, n (ps v qs> -0 ] in A (125)
reEM seEo , ' : .
seE
where
Mq )
= ¢ X l
EM h { xr l Pp Vi 4y Zr"e .. J (126)
E = { x {w, g. >0 } 127
| 5 85 (127)
E 6 =E ~E, (128) |

In this case the natural logarithms of the products pj vj qj would be ranked in
decreasing order. Similar minor changes to the algorithm would give the solution

to the case where weightings on each region for search were given.
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As a first step, the a priori probabilities pj of a criminal event occurring

in the j-th section are ranked in decreasing order, with pi representing the high-~

est value, and p, the next highest., Next, compute the natural logarithms of the

p.. The section corresponding to Py will always receive some search effort if

o >0,

To determine the remaining sections for search - if any - the following

steps are used,

1.
25

3.

Determine if fn Py > Mxl -

If 4n P = Mx, - O, then EM =0

1

In case (2.) occurs, then determine if tn Py >'—%— in Py ¥p - 0 and add
: ) 1

region 2 to the search area if this is true, since if true then
2
In p >-—l— < }; mpx -0 )
z 2 s's
Z 1
s=1 s

Continue until a region j is found where

j-1
fnp, = L ( E: fop x -G >
i .=l s s . At this point we know that only the
1

2,

S
1
first j-1 regions will receive any search effort. The actual amount will

.

be determined by equation (110).

In case in Py > M- =~ 0, then the first search region receives an
amount M. Similarly, if fn Py >M (x1 + x2) the next region also
receives M search effort., The process continues until a region r + 1 is

= -
found such that zn Pri1 =M ( Z,Xr ) Q.
< 1
Unless M ( 2; 2 ) - = 0, we know that some effort less than M will

1
be allocated to the region r + 1. ' r

. . 1 §
t = > -
Set s r + 1, then determine if 4n Pg /iy ) n P, % + M X, &
1

- 93 -




APPENDIX B

SOME PRELIMINARIES

Let Ao’ Al’ +vo denote the decisione made at times 0, 1, 2, ... during
the patrol., That is, A denotes the decision as to what location in the
sector to patrol at time 1 + 1. For example, using Figure 1, if the patrol

car at time 7 is in location 17, XT = 17, then A,r is either 5 or 13 or 17.

We let Ki denote the set of possible decisions when the patrol car is in

location i, For example, in Figure 1, if X = 7, then KX = { 9 } ¢y
if XT = 16, then KX 12 11} and so forth . Next, let
HT = (XO, Ao’ Xl’ Al’ cen XT’ AT) denote the sequence of locations

patrolled and decisions made up to and including time T (=0, 1, 2, «c¢).

Let

p, (H, is X)) =Pz {AT =a|H._;, XT}

il

probability (conditional) that the decision
made is to patrol location a in KX at time

T+ 1, given the past sequence HT of locations
patrolled and decisions made up to time T, and
given the present location XT of the patrol car
at time T.

Since these are probabilities, they must satisfy the conditions

D, (Hy s X) 20 : (3)
and
}J Da (HThl’ XT>= 1
ak
KX'T
for all time 7 = 0, 1, ..., and all possible sequences of past "histories"

H and locations in the sector, X .
T-1 L

"7’ e

b




We now define what is meant by a patrol policy. A patrol policy is a

set of random variables P of the form Da (HT—l’ XT) satisfying conditions (3).

That is, P is a patrol policy if

po=1{o, (M _;, X)) : a€ KXT, T=0,1, 2, }

where the random variables in P satisfy the conditions in (3). A patrol
policy is a procedure for making decisions at each point in time (deciding
what location to patrol next). A patrol policy allo&s decisions to be maae
by the use of a "random' mechanism. That is, a patrol policy specifies for
any time T and any location XT of the patrol car in the sector, a probability
distribution on the set of locations to patrol in time period T + 1,

Note that a patrol policy as defined above allows decisions to be made

" which are functions of the entire past history of the patrol. We will re-

strict our attention to patrol policies which are independent of past his-

tory (random or Markovian policies)., That is, a patrol policy P is said to

be random or Markovian if the funsticus Da (" s XT) in P satisfy the condi-

T-1

tions

D (H X)) a|n

) L
a ‘=1’ Or 71> Xq)

)

Pr 1 A,T

Pr 1 A’r

for all a€ KX and T=0, , ...
T
In fact, it can be shown that Markovian policies are indeed the "best' or

"optimal’ for the models to be presented in the next section.
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We will use the following notation to denote Markovian patxrol policies,
we say a patrol policy PM is Markovian where
ia*
if Djn = Pr{ A =a | Ho 4, X =1 }

for all times T = 0, 1, ¢+ and all a € Ki’ for 1 = 0, «se, M, where the

p
Poo= {Djpr a €K, i=0,1, «os, M}

Dj,'s satisfy the conditions (analogous to (3)) '

Dia =z 0, for all a € K, and 1 = 0, 1, ooe, M,

and %) ‘

z; D, =1 foralli=O0, 1, =0¢, M.
ia
ack

We next define the laws of movement of the patrol car in the sector.

These laws coupled with a Markovian patrol policy of the form PM above will

then give us a patrol matrix (transition) as discussed in the preceding

section., Our objective is to comstruct by the use of the models presented in
the next section an optimal patrol policy PM which then determines, using
the laws of movement in the sector as defined below, an optimal patrol matrix

fo] . .
P’. For this purpose, assume the following random laws of movement for the

patrol car in the sector.
First, let
qij(a) = Pr{ X¢+1 = j XT = i, AT = a }
for ‘ a € Ki and i, j = O? 1, see, M,
For any time 7(= 0, 1, «..), qij (a) is the conditional probability that
location j is patrolled in time period T + 1, given that at time T, the

patrol car is in location i and the decision made is to next patrol location a.
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We require that the qij (a)'s satisfy the following conditions-
(3) - (9), due to the physical nature of the sector, the restrictions
that U~-turns are not allowed, and the pfoperties of the patrol decision
process.

First, since movement from location to location in the sector must

always occur, the relation

9 5 (a) =1 )
j=0

must hold for any decision a in Ki and for any location i (= 0, 1, «ss, M),

(5) simply states that regardless of the decision made when the patrol car

is in location i, movement to a new location always occurs with probability 1,
Next, if the patrol car is in location i (=0, 1, «es, M) at any time

period, and the decision made is to patrol location a in the next time

period, then we set

qij(a) = 1 - ¢ for a = j, provided a € Ki’ (6)

qij(a) = ¢/M for all a # j, provided a € K, N

qij(é) = ¢ for a=j and a not in K, » ‘ (8)
1 - . .

qij(a) =5 for a# j and a not in K, (9

.

where ¢ is an arbitrarily "small' positive number,

Condition (6) guarantees that movement is almost surely made from
location i to location j pfovided the decision made, a,is equal to j and
j is in Ki' If M is large and ¢ is chosen to be "very close'" to zero but
positive, then (7), (8), and (9) almost surely guarantee that infeasible
movements between locations are never made, The use of the small positive
number € implies a certain probabilistic structure (recurrent Markov matrix)

which insures that the models presented are solvable,
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Next assume we are given a patrol policy not necessarily optimal, say
M ; . :
P = .iDia. H 1, a = 0, 1: tea, M }

and consider any two locations i and j in the sector., By the definition of

the transition probabilities in a patrol matrix, we have for any T (=0, 1,+4°),

_ ’ . .
pij—Pr{x'rﬂ";'ler“lf
Y ) . . B [, _ _.}
—ZPrJLXT+1—J]XT——:L,AT—a}xPrlAT—aIXT»-l (10)
a
M

45 (@ Dy
0

First consider the case where j is in Ki‘ That is, assume j is a
feasible location to patrol upon leaving location i. We have

- (1-2¢) ZDia

=D,, ., - ¢ @+l) D,,
pij l(a"J) b’l l(a_J) M aEKi (11)
+ 1 - ¢
M
It is easily shown that
D, .\ ~€ =p,., =D, . + 1 12
i(a=j) Pij i(a=3) v (12)

Hence for M large and € small, Pij is approximately equal to D the

i(a=))’
probability the next location patrolled is j (j is in Ki), given that we have

finished patrolling location 1i.
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For j not in Ki we have

D

P‘.:: - 1 - D. . - - X‘

i3 (e e) i (a=i) (1 - 2¢) aeKla
i

M
(13)
+ 1 ﬁ € , and
- ~-e} D.. .. = ., = - ..
% (e (l-¢) 13) + eDlJ le (1 - €) (l + Di (a = jQ + eDlJ (14)

which for M relatively large and ¢ small, Pij is close to zero for all i and
j, j not in Ki'

Note that given any patrol policy of the formPM (we will show how to
construct optimal patrol policies in the next section), one can then construct
-an optimal patrol matrix ?° using formulas (11) and (13).

We now turn to a discussion of some other parameters and random variables
which will be used, for the most part, in the optimization models presented
in the mnext section.

First, for each street i (=1, ++¢, N) in the sector, let Li be the
minimal acceptable coverage rate. In many instances, one would expect Li
to be either zero or one for streets i having a low proportion of crime inci-
dents relative to the remaining streets in the sector,

Next, let S denote the length of the shift in hours for the sector. One
would expect that S would be equal to the normal shift time min.s twice the
time it takes the patrol car to traverse location 0, Letting s = average
speed of patrol (in miles per hour) in the sector, and 4 = average length of
a street in the sector, we set

Sh

]

(effective shift time),

= % xS .
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Sh is an estimate of the largest number of streets that can be éatrolled
during a particular shift and is also based on the actual physical charac-
teristics of location zero (0) in the sector.

Next, for any location in the sector, say £, we let CL be the Bernoulli
random variable denoting the occurrence or non-occurrence of a crime or inci-

dent, and set

VH{C/&"l}

and Pr{ C£‘= 0 }

We assume we have M such random variables with known distributions

Pr{ incident occurs in 4 } = cz

i
1

Pr{ no incident occurs in z} =1 - cz R

(Cz and 1 - Cz) for each location £ (=0, 1, +vs, M) in the sector,

Note that one would expect that the pair of random variables Ci and
Ciﬁl(i =1, see, N = number of streets in the sector) have the same dis-
tribution (Ci = Ci+1 i =1, ses, M=1). 1In many instances it may be quite
difficult to determine the distributions of fhe Ci‘s and Ci+1's, since
the data (available) may be in a form which does not distinguish which
side of the street crimes (or incidents) occur., However, it may be
appropriate and desirable for some streets in the sector, say for example

street i,to estimate both Ci and C because of the nature of the pre-

i+1?
ventive patrol (one-man, two-man cars, etc.), the physical characteristics
of street i, and the incident statistics for street i, Also, it should be
noted that

Expected value of C, = E [Czj

=Pr{cz=1}=c£, (15)

for £ = 1, «s0, M.

- 100 -

il




An obvious criticism of the random variables (this is true of most,
if not all, of the preventive patrol models using random variables) is
that they are time independent. However, because of the mature of the
objective functions used in our models and the fact we will be looking
at the patrol decision process as a renewal process, that is, the time
between sector sweeps is a recurrent event, the time independent properties

of the random variables Cz (£ =1, ¢ea, M) may be a good approximation,

I1f not, the models can be modified to incorporate time dependent random
variables. We will say more about this in the next section,

Next let To be the random variable which denotes the time the patrol
car spends patrolling the sector prior to the first return to location O,

To-l is then the number of locations patrolled between the times

‘location O is patrolled. That is, XO = 0 (at the beginning

of patrol) and since patrol evolves according to a patrol matrix P of
transition probabilities, TO is the first time T (Z1) such that X,r = 0,
Mathématically,
T0=Min‘)LT: xT=o,rr§1} (16)
Note that the probability distribution of TO is completely determined
given a patrol policy PM (which determines a patrol matrix). We will

usually require that the expected value of T, beequal or less than Sh,

the effective shift time,
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We now turn to the statement and analysis of the preventive patral

schedule models:

" MODEL I - THE ADDITIVE SCHEDULING AND ALLOCATION MODEL

Let Wo, Wl’ vee, W be the "benefits" or "returns' from preventive

T

o
patrol in the sector in time periods 0, 1, +.», To where To= Min{ T XT= 0, 7= 1}.
We assume Wo = 0, WT =0, and for T = 1, ee*, To -1,

o)
1 if XT = j and Cj = 1 )
.WT = an
0if X = jand C, =0
T J

for all locations j ( =1, ee+, M) in the sector S where C0 = 0,

We assume that the random veriables XT and therefore TO are independent

of. Cl,'..., GM' That is, the occurrence or non-ogcurrence

of an incident is independent of the location of the patrol car

in the sector. Hence, given any patrol policy,

E[WT]= H{X7=j’cj=1}
j=1

J-..

k4
A
P
il
(o
(S
]
&
—
Q
il
| et
L

¢, x Pr{ X, = if . (18)

- 102 -




0. ®

Note that the terms in the sum (18), Cj X Pr{.XT = j}, represent the

probability of a space-time coincidence in location j during time period T,

Therefore, E[Wt] is the total probability of a space-time coincidence in
period T during preventive patrol, It is this quantity, EEWt], that we want
to maximize the sum of from period 0 up to period T0 subject to certain
constraints. Note that we are assuming that a necessary condition for an
arrest during time period T in location j is that XT = j and Cj =1, See
Appendix I cfthe paper as well as the technical report by Larson {97 for a 4 lo
more detailed discussion of the ramifications of space-time coincidences
during random preventive patrol,

It should also be noted that the particular value of EEWT] in time f
is dependent on the particular patrol policy being used., That is, E[WT] and
therefore the probabilities B:{ X,r = j} for any time period T and location j
is a function of the particular patrol policy being used. For example,
let fM = { Dia: i, a = 0, sos, M} be‘any patrol policy. At time T - 1 the
X

=17 fr-1 T teel

. i me - : £ bild '
in time T, Aq_._1 aT_l, with probability Dl

patrol car is in some location i , and a decision is made

to patrol location a1
. T-1, t-1
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We then have for any location j in the

Pr)LX —JJ‘ }: Zpr{x

sector,
=3s Xpop =l A Td.}
E: E:Pr1¥ =5 | %= fpps Ay = 8y S
Pr{ XT-l T 1’ T-l}
= ES EZ a3 (a¢-1> x D % PriX fm-l} :
. a 1,3 T7-1, T-1
-1 %11

Continuing inductively in this manner gives

wrm s 3 T
i%liwz
(3, 9 D,

tre2,t -1

The entire movement of the patrol car up to time T and,hence Pr {XT

°e o8 . s s a D.
Z z quT—l 3 ( T-l) 1 a
1 a
Q o]

aT-l

Tt Xy )] D x Pr {z =
0 0

00

ot 2

J

and EEWT]are dependent on the particular patrol policy being used.

now adopt the notation P
P

M { } and gﬁqt .

and expectations which are functions of random patrol policies fM.
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Next, let Nj(TO) be the number of times location j is patrolled during

the first T time units., To exhibit the form of Nj (TO) more explicitly, let
Ij (XT> <fér j=0,1, eve, Mand T =0, 1, .--> be the indicator random
variables., Then

Ij (XT) =1 if XT =j and Fj(XT)= 0 if XT Then we can write

#3°

the random variables Nj (TO) in terms of the random variables Ij (XT) as

follows: |
Ny (T) = I (X)) + I (Rp) + oor o+ I (Kp ) |
T © |
0 |
= Ij’ (Xt), where (19)
T=0
nt = 1 ‘ . = =
again To = Min { T: XT 0, T2

"
|

Note'that the probability distribution of the random variables Nj(To> and To

as well as their expectations are again dependent on the patrol policy being
used,
We now turn to the statement of Model I.

T
. 1 2" y
MODEL I: Maximize E W | x_ = o] (20)
M
A inu M L T o )

subject to the conditions that

T=0

]
o
L
Il
i

|

EPM L§Zi (T)) + Mooy (To)l X (i= 1, +.e, N) (21)

h
) = O] = 22

where M is the set of all random or Markovian patrol policies, That is,

the elements in the set M are of the form
M

P'o= {D,: i, a=0,1, vuv, M|
where Dig = PPM { Ao=a | X =1 b
D, =0 for T = 0, «¢+, all a in X,,
ia i
E;Dia =1 and all locations i in the sector S
a
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In (20), the objective function, we want to determine a policy
which during a sector sweep of duration To’ maximizes the expected number
of space-time coincidences.

The constraints in (21) require that the average number or expected
number of times street i is patrolled, EPM [N21~1 (T;) + N2i (To)[ Xo = 0],
during a sector sweep of duration To’ be equal or greater than the given
lower bound Li (f&r streets i = 1, ¢+, N), Next, constraint (22)
requires that the average sector sweep time be no larger than the
effective shift time. All of the expectations appearing in (I)
require that preventive patrol begins in location O,

Note that once the patrol car returns to location 0 (a sector
_sweep is completed or an apprehension is made requiring a return),
préventive patrol would begin again with the parameters appropriately
modified (decreased)., It may be appropriate to recompute a new
schedule based on new incident (crime) statistics (CE) at this time
of return, A

Following the approach of Derman [1], Model I is mathematically % 7/

’

equivalent to M M
LY a o
MODEL I%: Mﬁgimize 1 . @ Dia Cy (23)
P in M ﬂb(PM) i=0 a=0

subject to the conditions

M M
m,. (P . (P)
21-1 _ + 24 _ = Li (L =1, +»+, N) (24)
T () m, (@)
and
_1 = gt
1 = (25)
nb(PM)
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In I*, (23) is equivalent to (20), (24) is equivalent to (21), and (25)

M
is equivalent to (22). The Dia's (i, a = 0,++*¢, M) are the 'decision"

probabilities associated with a given patrol policy PM.
To give an interpretation of the numbers ﬂi(PM), first let PM be any
patrol policy in M and set ﬂ(fM) = (ﬂb (fM), ™ (fM), Ll Ty (fM)>, 1)

vector. Then, given a patrol policy PM, and the resulting patrol matrix,

M
say PP constructed using PM, (10), and (11), it can be shown that the

ﬂi(fM)'s satisfy uniquely the following system of linear equations.

M
ey B o= meEt ™ + 1 equations)
M M M (26)
T, @) + ﬂi(P ) + et Ty ) =1 (1 equation)

For a given patrol policy PM, ™ (PM) is the long-run average or steady
state probability that the patrol car visits location i. In (24),
n.(PM)

no(Pr)
to location O,

is the expected number of visits to location j between visits
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The form of the objective function follows directly by using standard

renewal theory argusents. For example, see Chung [L8], Section 1.8, to show

ZZ'IT (P)D ca'

i=0 a=0

that

TT(P)

where A (?M), ﬂi(PM),.°‘, ﬂM(?M) satisfy the system of linear equations (26).

Similarly, it can be shown (see Karlin [19 ], Chapter 5),

1
E, [T X =0]= and
PM o ] () m (PM)
° M
m., (P)
F m, (&)

for all locations j = 0, 1, ree, M,

One might attempt to solve Model I by enumerating all patrol
policies which satisfy the constraints (24), (25), and (26) and then choose
that policy which yields the highest value of the objective function, (23).
However, this is clearly impossible, since the number of possible patrol
policies is uncountable, The next model which is equivalent to I%, and
hence to I does provide an efficient technique for determining the optimal

patrol policy, and hence the optimal patrol matrix.
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For this purpose let
x,_ =T, (P ot
ia i ia

a, 1 =0, 1, «oo, M. (27)

Xia can be interpreted as the joint probability that the patrol car is

in location i and the decision is to patrol location 4 in the next time

period. Using the above transformation, we can now formulate Model I* as

MODEL I*%: Find {Xia’ i, a =0, 1, +ss, M}
to M u
. . 2 z Xia ca
Maximize i=0 a=0
M

L s

a=0

oa

subject to the Constraints

M M M
=
z X21--1, a’t 2 XZi, a "'Li Z *0a
a=0 a=0 a=0
(L =1,e00, N) 3
M
gh Z X, g 1,
a=0
- 109 -
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M M M

Z Z Gy (@ X, = Z Xia (31)
k=0 a=0 a=0

(1 =0, 1, a0, M):

M M . ,

Z Z *ia T L (32)
i=0 a=0
X, z0 i, a =0, 1, »0¢, M,

(28), (29), (30), (31), and (32) are obtained from (23), (24), (25), and
(26) by making the transformation (27) and using the fact that for any

patrol policy PM,

M
W (PM)=Z X (L = 0, ¢+, M), and
i ia H s EH
a=0
fM PM

the transition probabilities Pij in the patrol matrix P (associated
with the policy PM) M

M M

. P _Z P
satisfy Pij = 9 5 (a) D, o
a=0

for i, j = 0, «¢+, M,

Model I **% is a linear fractional programning problem with 3N + 1
constraints (N is the number of streets in the sector, M = 2N) and 4N2 +
4N + 1 variables. Fortunately the nonlinearity o6f (28) causes no compu-
tational problems, since it can be made linear by a transformation of var-
iables., Hence linear programming computer codes can be used to solve I#*%

and hence solve I, our original model.
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Assume we have solved I** obtaining an optimal solution, say

{Xga’ i, a =0, s, M}. Then the oﬁtimal patrol pplicy {Dga, i, a = 0,

¢so, M} is obtained by (27) and we have

D = ia for i, a = 0, =09, M, (33)

The optimal patrol matrix P° = (ng) is then generated by the equations
M
P,. = Z q

3 (a) Dy, (34)
a=

ij

Finally, it is easily shown [20] that I** can be transformed to a

"linear programming problem by setting

%,
M

* z:xoa

a=0

YN+l =, —%:————-
x then

a=0

and

Y. » 1,

we can write I*¥* as a linear programming problem in {YN+1’ ia

a=20, 1, +¢+, M} as follows

M M

v v
Maximize /. L Y, ¢

. ia a

i=0 a=0
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. M M '
Subject to Z + Z - . vee. N
Y21-1, a Y21, a 7 Lot W)

Py Li (i =
a=0 : a=0
Y =1
M M N+L
, = ' -
® g L Z Qs (2) Yka =1
k=0 a=0

® ‘
M M
z Z Yla = YN—}-l ’
1=0 a=0
o M
z Y = 1‘
oa
a=0
Yia z90 i, a =0, 1, see, M, .

Note that the above linear programming model has only one more-

consttaint and one more variable then the fractional programming model I*%,

®

If, for example, a sector has 50 streets (N = 50), we would have to solve

a linear programming problem with 152 constraints, which is not unreasonakble
Py considering existing linear programming computer codes.
o
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Model II - THE GEOMETRIC SCHEDULING AND ALLOCATION MODEL

Let Wl, av e,y WT be the "returns" or "benefits" from preventive patrol

o
in the sector in time periods 1, «+¢, T, where T, = Min {r: X,r =0, Tz1},
(Xo = 0). Furthermore, (as in Model I) let Nj (To) be the number of times

location j (= 1, *+°*, M) is patrolled between the times the patrol car is

in location 0. We assume the random variables WT have the following form.

~®. (n)

1 e 9 ifxT=j,c=1,Nj(To)=n,

3
W = | and T < T, (35)
0 if X,r = i, Cj = 0, Nj (To) arbitrary ,

and 7T < T .
o
for all locations j in the sector S, where qﬁ(n) is a strictly increasing

function. We set C0 = 0 and assume the random variables XT (T =0, 1, s0s)

and Cl’ res, CM are independent with the probability distributions of the

Ci's given by

Pr{Cj = 1} = pr {incident occurs in location i}
and
Pr{C. = 0} = Pr {no incident occurs in location j}
J
=1~C,
J
1

for all locations j (=1, s*e*, M),
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Note that we are not assuming {(as in Model I) that if the patrol

car is im location j at time T, XT = j and an incident is in progress,

i

Cj = 1, a detection occurs, WT 1.

~CPj (n)

It
ol
=
]

Rather, if XT = j, and C, 1 -e < 1, given that the
3

number of visits to state j during a sector sweep is n. Note that as n

inzreases, WT is "close'" to one,

We assume the following form for the functions qa (v) (G =1, see, M),

. (m) = @ «n N.(T.) = n) 36
@ (=5 CREN (36)
where
5T j
Q. = —
J Le
Elr,]

s = average speed of patrol in the sector, (miles per hour),

£ = average length of a street in the sector (in miles),
and Tj = average crime duration in location j, (j = 1, ¢**, M).

We will now discuss, briefly, the functions qﬁ(n) in (36). For a
more detailed discussion, see Larson [6] or part I of this paper.
Let T be the eifective sector sweep time, time in hours between visits

to location 0, We set

E[T,] @ s E[TOJ
T = = B
s/ 4 s

where s/4 = average number of streets patrolled per hour. Then letting

Nj(To)sTj be the (maximum) total time crimes or ineidents in progress

in location j when the patrol car is in location j, Nj (TO) times, we

let -N, (T )T, WN, (T ) soT,
1oe 37073 4. 30 7
T 2E[T. ] (
_q.. B < N, (To)>

be the (approximate) probability of the patrol béing in location j during

an incident of duration Tj.




Note that the expectations and probabilities in (35) and (36) are
dependent (as in Model I) on the particular patrol policy used. Hence our

problem is to determine that patrol policy PM in M to maximize
- To
EPM[-Z W |X0=0]
T7=0

subject to the constraints

]
=
v
b

Eﬁﬂ [NZi (To) + N21—1 (To) I Xo

(i

]
s
-

ert, W)

) h
EPMLTO IXO-O:I—S

where the above constraints have the same interpretation as in Model I.

In Model II we are asked to determine that random patrol policy which

‘maximizes the total probability of space-time coincidence, or equivaleantly,

the number of detections during a sector sweep. In choosing a patrol policy
in M we are in effect determining the number of visits to each location in
the sector, which by (37), determines the probability of the patrol car

being in each location, that is, the policy used determines Nj (To) for all

locations j (=1, ++¢,”M). In this light we now reformulate our problem,

1 2 M
Let R, R, +¢*, R be the total return from preventive patrol during

a sector sweep of duration To in locations 1, 2, «+°*, M where To =
Min {T: XT =0, T & 1} and XO = 0, Let Nj (TO) be the number of times

location j is patrolled during a sector sweep., We assume the random

2 .
variables R', R, «s*, RM have the following form,

-(Pj (n)

1L -e if Nj (TO) =n and ?j =1,
R} = RI(n) = (38)
0 if N, (T )

n and C, = 0,
J

for all locations j = 1, «+*, M, where the functions qg(n) are given by

(36).
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Note that since Cl’ 1o, CM are independent of the random variables

xo’ Xl’ ...’

the E[R) | X = 0]

E[Rj <N (T))A[X =o]

c. -E [ @ 'N @ )_> ] X = 0] .

o]

]

M .
Letting C = Z ch - our problﬂeq};
=1

can now be stated as

M
MODEL II: Maximize {C - EPM [Z
j::

M
: - =, (N.(T )>
= ¢ - Minimum E [Z I ATl x = o] (39)
inM P ;¢ °
, j=0
sﬁbject to the conditions .
EQM [N‘zi__l (T)) + Ny, (To)] 2L, (G =1, o0, M) (40)
- h
N = = I

gt [_To | X 0_] S (41)

where M is the set of all random or Markovian patrol policies.
By use of certain probabilistic arguments, the authors have shown that

Model II is mathematically equivalent to

M M
MODEL II* M Z =, { Z P
C - Minimize Z % 13 o1 oa
P in M ey i=1 (42)
. j= —l =D
3=l Trj(PM) (1-e ‘PJ) + 7 e %
subject to the conditions
M M
Mys 1 (B) My, (B)
=+ B L (=1, e, W) (43)
() @)
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In II%, for a given random patrol policy, say PM in M, ﬂi(PM) are the
steady state probabilities for locations i (=0, 1, +°°*, M) in the sector
which satisfy, as in Model I, the system of linear equations given in (26).

EE for j = 1, ++*, M have the form, using (36) and (44),
M
?P- - S"T."KTO(P 2_

] )

= S"Tj

gosh

The FE(PM)'S and'ﬁij(fM) have the following interpretation. First,
;.(PM) = ﬁ:j(PM) for j =1, e, M, whereqﬁij(PM) is the expected number of
J J
times location j(#0) is patrolled using policy PM, starting in tecation i,

during a sector sweep. That is ﬁij(PM) is the expected number of times

location j(#0) is patrolled, starting in location 0, prior to the first
time the patrol car returns to location 0., The ﬁij(PM)'s are easily shown
to satisfy the following system of linear equations, uniquely.

M .
- M, P - M
() Q@ =mE) (45)
- M = M | P
_Where (P ) = <ﬂij(P )), the MxM matrix of expected values, and Q is

the MxM matrix of tramsition probabilities obtained by deleting the first
M
row and the first column of the patrol matrix PP

The seemingly complicated nature of the objective function (42) is due

to the fact that in (39), we are computing the expected values of non-
-9, (n)

linear random functions. Unfortunately, since the functions e J are
convex, we cannot substitute expected values in place of Nj(To), appearing

-, (n)

in the arguments of e J , in order to attempt a good approximation.
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Next, let

- M PM
¥i3a = My 5 Pia (B 5 =1, ves M) . &
(a=0, 1, «+¢, M)
" )
M P . y
Xia = Tfi (P ) Dia (1: a=20, vty M)' (4’7)

Then II%* is equivalent to
MODEL II*%: TFind {Xija’ i, § =1, ¢o*, M3 a=0, 1, +++, M} and

{x, : 1, a= O, 1, eo-, M]‘WhiCh are optimal for the problem

ia iy
g S 2bxja
C - Minimize a= )
‘ ‘3 ) PRI N
il : .
1 (Z x..><1-e J)+§4X“ oeJ
Jjla ija
=0 a=0
subject to the conditions
M M M
o . };
=
) *2i-1, a+) X)5,a = Lif8 *oa (49)
a=0 a=0 a=0
<l = 13 ”.: N):
M
h ¥ .
§ ) Foa= L (50)
a=0
I-g M hil.
2: 24 i @) %, = ZJ *ia (L=0, 1, ++, M), (51)
R=0 a=0 a=0
M M
L) o%. =L (52)
i=0 a=0
M M M
\ \ .
2, 2, U, (a) *ika = Xija ’ (33)
k=1 a=0 I a=0

(i, 3 =1, »++. M), and Xij’ xij 20, all i, j, and a.
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The constraints (49), (50), (51), and (52) follow in the same manner as
the constraints im Model I. (53) follows by using the transformations (46)

and (45), using the fact that for any patrol policy fM,

M .
- M ‘ .. .
ﬂij(P ) = EJ Xija (i, 3 =1, »eo+, M), and the transition

a=0
P
probabilities in Q@ = <Pij )} satisfy the conditions
p ¢ M
?ij - Zqij (a) Dia (l: J=1, e, M).

a=0
Model II%* is a non-linear fractional programming problem with 4N2+3N+1
constraints (N = the number of streets in the sector, M = 2N). Fortunately,

the denominator of the objective function (the term being minimized) is convex

and quadratic, and the numerator is linear. Hence the problem can be
solved by using existing quadratic programming computer codes by mani-
pulating the objective funct&on following the procedures suggested by
W. Dinklebach, see references [21 and P2].

Next, assume we have solved II%¥* obtaining an optimal solution,

0 . 0 ..
say {xia: i, a=0, 1, v+, M} and {Xija: i, J=1, ev*, M; a =0, eo*,

M}. Then the optimal patrol policy {Dia: i, a =0, 1, «**, M} can be
computed using the relation
) o
Dia = *ia i, a=0,1, «++, M
M
S
X,
1]
3=0
and, finally, the optimal patrol matrix P° = (sz),
M
) 0
Pis = ) 435 (@) Dy, .
a=0
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In Model II we have distinguished between directions of patrol on a
street, For example, some streets in the sector may be one-way, U-turns
may not be allowed, the type of preventive patrol {one-man, two-man, etc.)
may concentrate on one side of a particular street, etc, However, in Model II,
considering the nature of the exponential return functions, it may be appro-
priate in certain cases to define new random variables,'ﬁl(To),'ﬁz(To),
ces, ﬁN(TO) by setting

Ei(To) = NZi—l(To) + NZi(To)‘

i=1, see¢; N, N = number of streets in the sector.

We would then compute the expectation of the random variables

5qﬁ<Ni(T0)> for each i (=1, ¢*+, N) and use the resulting sum as our

o . 3 ’¢21~1(N (T ))
objectlze functbon rather than computing the expectation of e 2i-1""0

" Py Mo (Tg)

+ £ as was done in Model II.

-@i<ﬁi(To)>

Computing the expectations of the random variables e can

readily be done for any policy PM in M by defining a new Markov matrix

M M
PP with N + 1 states where each state i in PP (i =1, eos, N) is obtained

by "lumping" states 2i-1 and 2i from the Markov matrix <(M + 1) x M+ 1))
pM
P . See [23].

We assumed in the development of models I and II that the patrol car
travels at a constant speed through each street in the sector and also,
calls for service are not allowed. It may be appropriate in some cases to

assume that the speed of patrol is a random variable for each street in the

sector, This case can be handled by the use of semi-Markov programming [Z].
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Calls for service within the sector as well as in other sectérs can be
handled by appropriately enlarging the state space and assuming random
handling and travel times for the added locations. This case can also be
modelieﬁ using semi-Markov programming,

For both of the preceding cases, the new modeis would still exhibit

the same basic structure as in Models I and II.
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