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A 'REVIEW OF TSTIMATION PROCEDURES FOR THE RASCH MODEL
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“"Longtemps, je me suils couché. de bonne heure.”
(Proust,1913;p. 3)
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ABSTRACT

Two estimatlon procedures for the Rasch Model are reviewed

in detail, particularly with respect to new developments that

“make the more statistically rigorous Conditional Maximum

Likelihood estimation practical-for use with longish tests.

Emphasis of the review is on European developments which are

hot well known in the English writing'world.
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I. INTRODUCTION -

Classical test theory models based on the concept of true-
score have been in use for most of the 20th century, but for
the last decade or so their shortcomings have become
increasingly apparent . The principal shortcoming is that with
classical test theory the item parameters change with the
nortming group. The development of latent trait theory -has
;esulted from the search for z replacement. Lord and Novick

;k1968) honestly reflect this state of affairs by rigorously

developing the various true—score models with their strengths
and weaknesses and also specifying (primarily in the chapters
by Birnbaum) the basis of the emerging latent trait

technology. This new technolcgy has beeun rather slow to catch

-on for a variety of reasons; among which mathematical and

numerical problems in parameter egtimaticn are probably the

most important.

i There has been, and remafns, considerable debate about
the best single model to use for the scofing of tests. We
;hall not enter this debate, but fnstead will stay within the
confines .of. the sinplest model, the ome-parameter logistic
kusually called "The Rasch Model™ after its originator [Rasch,
1960;1966]). 1f this simple model fits the data, there is no
need for the more complex ores. The question of whether the
model fits the data 6t not can be answeted _partially at
least, with statistical goodness-of-fit tests. Even for this
simplest version, however, there are serious problems of
%arameter estimation. The problems can be simply stated:
estimation methods that are gtatistically rigorous could not
be used for the kind of tests most likely to be scored with a
latent tr&it model (latge=scale standardized tests with many
people taking them flike the SAT] that are often quite

Jong). Short-cut methods and approximations have been devised
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pear to work quite well (from simulations) but are
Fischer, 1974; Wright

which ap
still not statistically rigorous (e.g+»

& Douglas, 19763 Wright & Mead, 1977).

All at once a variety of developments have occurred which

seem to have resolved this problem. These developments have

pot occurred at any one time, nor at any omne place, nor are

they by any one persom, but they are all here now and can

<pto£itably be taken advantage of. This
m with respect to how

paper reviews these

developments and tries to catalog the
can be brought to bear on the problem of the estimation
eters of the Rasch Model for moderate to long tests
In this paper we shall report the

the

-each
of param
(40 teo 90 items) .

ation methods of Wright anc his colleagues,

spproxim
‘ the numerical

ts of Fischer and Scheiblechner,
and the work on tests of fit that

Much of this material is

‘develapmen
.break~-through of Gustafsson,
Andersen and Martiﬁ-LBf have done.
ont jn the English language literature.

. The Rasch Modelfis a latent trait model of a very simple

| ot

nswer to an item is a

-mature: the probability of a correct a
and the ability of the

function of the difficulty of that item
person.

The model makes the following assumptions:

i

E (1) All items measure the same trait. The test is then
g called homogeneous. ’ .

i
1

(2) The item characteristic curve, the function relating
the probability of a correct answer to an jitem to
the underlying ability variable (the latent

trait), has a logistic form.

; (3) Local stochastic independence of

-

i whether or not a person solves
i that person's ability and on the difficulty of

4 the items, but not on which other items she oT he
! . has previously solved)
!
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If these assumptions hold
, the followin
obtained as well: P B propextits sre

(a) The raw (number c
orrect) score 1s a
statistic for the estimation of abili:;fficient

(b) Thetﬁzmgizéson of two people is fully described by
erence in their abilities on
; . the
:::ii;icdiien51on. This does not depend onlzﬁizi
ems were administered t i
independent person measurement). o them (iten

(c) The ;stimatioc of item difficulties is independent
o 1i;he ability of the sample on which-they were
ca rated (sample—free item calibration).

!
: These last two properties of the model are very
Jmportant. In 1950 Gulliksen characterized current thinkin

when he wrote, "A significant contribution to item anal sii
theory would be the discovery of item parameters that reiain
xelative-y stable as the item analysis group changed”

(p. 392). The Rasch model and latent trait based modeli i

general satlsfy Gulliksen's requlrement that the results of :
person do not depend either on which reference population that
person belongs to, nor on the selection of a specific set of
dtems from the homogeneous universe of items, if the data fit

‘the . i i
model. This emphasizes the great potential importance of

~the Rasch Model to ability testing, should it be found that

.test data fit the model reasonably well.

II. THE RASCH MODEL FOR DICHOTOMOUS DATA

l

| The response of person v to item i is denoted A it
vi’

.Fanctake values 0 (incorrect) or 1 (correct). The probability

iof a correct response according to the Rasch Model 1is given by

!
!
i
s
i
:

.
Y
i
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exl-;'(Ev - &4)

] = E . §.1% — (2“1)
Plhyi =1 v ) 1+ exp(g, - 84)

k, is the item éarameter dgscribing the
v=1,cca,n, is the ability
Both of these

where § i’ { = 1,000,
difficulty of item 1 and & .»

parameter describing the ablllty of person V.

s
are in the logistic metric and are referred to 2

B T

= _explagile, - §1)]
P(Ayj = ayj | §08) = vilby - §i
Lrexpley -55)  (2.4)

Both of these representations (2.3 and 2.4) will be used in

the subsequent elaboration of the Rasch model.
I

' III. ESTIMATION PROCEDURES WITH RESPECT TO LONGISH TESTS

i In this section of the paper we shall describe two
parameters i frequently [[j : 1
neasurement in "logits.” An alternative, and k Ciom : estimationszprocedures These are the Unconditional Maximum
useful, representation involves an exponential transforma i Likelihood” (UML) and the Conditional Maximum Likelihood
§1e1ding 0, exp( £ ) and € = exp[—¢ i]. Using th (CML) methods. Until recently, only the UML could be
) -.change in variable allows one to rewrxte equation (2.1) as practically applied for longish tes;s (those with more than 30
: : gﬂ or 40 items). .This has changed recently with newer and more
v i A sophisticated estimation schemes, betger numerical methods,
% i . . eVei {E and faster computers. In the past there were strong
? 'é P(Avi =1 l Bys ei) ='i F B.Es ' theoretical reasons for preferring the CML method, but it has
% . . vl : (2.2) 71_ : not been feasible to apply it to longish tests. Wright and
: ' >' his colleagues havé corrected some of the difficulties of the
{

'

| { the opposite &irection of ¢ i? and is .1

where ¢ i is scaled in

E;S "'&9
— e

Two less commonly known estimation procedures, which have
been used for longish tests, should be mentioned (see
Fischer, 1970, 1974 for details): a “"minimum—-chi-square
:method™ (Fischer, 1970), a very fast algorithm with
- consistent estimators but for which the mathematical
-gtatistical basis is incomplete: Scheiblechner's (1971)
conditional maximum likelihood algorithm, whose computer
program can be used for a maximum of 50 items.

- ~ " . i. -
hsually interpreted as the "easiness” of item
| more general case
' The probability of the response a_, (a -

oo ey

-~

of equation4{2.2]) can be written

wa mgme wer e

‘The term “"Unconditional Maximum Likelihood”™ estimation is
an unfortunate one in this application, since this is
actually “"JOINT Maximum Likelihood"™
estimation. Unconditional estimation is when a part of the
parameter space is integrated out by assuming a
: “distribution and integrating over it. Joint estimation is
N : when estimates are obtained for all parameters
oo i 'slmultaneously by maximizing the likelihood in all
A —~—— ' directions at once. Nevertheless, to maintain congruence

- with current usage, and so avoid confusion, we shall use

the term Unconditional. .

- ] . .
P(Avi = Al Oy &y

[ A

1+ By ef (2.3)

|
|
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concerned (Wright & Douglas, 1977b)‘; Fischer, Gustafsson,
Martin-Lof and others have advanced CML to the point where it
is practical for longish tests. We shall present both methods

and will comment on the choice between them in a later

section.
|

The Unconditional Maximum Likelihood Estimation Procedure
(UML)

This method of estimating the item and ability parameters

' -pf the Rasch Model simultaneously was presented by Wright and
Panchapakesan(1969) and Fischer and Scheiblechner (1970). 1t

~ylelds a solution that must be corrected for bias, but until

recently it was the only viable method for tests over 30-40

items.

i .
i The basic data matrix from which estimation proceeds is
i

-the matr'**' A having elements {a }, which is, say persons by

:ltems.. Sunnn:mg across items ylelds the raw score for person v,

denoted T, Summing across persons yields the total number of

‘correct responses to item i, and is denoted 55 Under the

-assumption of local stochastic independence the likelihood of

A is the product of the probabilities of all the entries of

A. This is denoted by A and is shown in equation (3.1):

(eve.)'a‘”' I1I oy v I;I ef °f

v

=
mx

L

va1 d=1 Boyep 0 JIIJaee e (3.1)
v i

| From this likelihood function, it is immediately apparent

d
.

that only the marginal sums of A are represented [rv and

84]. Thus, one need not take into account the “inmner

structure” of A as yet, that 1s, which items a certain

i

, ‘*,,?v

[

e

UML, making it an acceptable method as far as bias is
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examinee hag answered, nor which examinees answered a
particular item (this will enter in later on when the

goodness—of-fit of the model is examined). Raw score (number

correct) is.a sufficient statistic for estimating person

parameters and item score is a sufficient statistic for item

parameters.

l . The likelihood functiom cam be maximized in the usual way
by first noting thzt the Iog of the likelihood function
achieves its maximum #t the same place as the function, and
then using the multivariste: form of Newton-Raphson on the log
likelihood function. This g accomplished by calculating the

‘gradient vectors with respect to each parasmeter, and the

Bessian (matrix of second partials).

: The details Gf; the dertvationm of the estimation equationms
is found in Wright's work (e.g. Wright & Mead, 1977; Wright &
Stdne, 1979). There 1i¢ an indete;'minacy in the model which
can be removed by imposing some sort of normalization. One
way of normalizing is to.get an origin (say the difficulty of
an item equzls zerc), or set a scale (say the sum of all

difficulties equals umity).

| "

1. That maximum Iikelihood estimates are not consistent in

certain situstions has been known since 1948 (Neyman &
Scott). This ig the cagse for the Rasch Medel when structural
batametets (the item difficulties) are estimated in the
presence of incidental parametérs (the person abilities). When

';sample size is increased the problem, of course, remains since

each new person brings a new incidental parameter. If,
'ilovever, the estimation equating can be formulated in the item
paratﬂeters only, consistency and unbliasedness is assured
“(Andersen, 1977). Thig can be done if there exists a minimal
sufficient statistic for the person parameters, and in the

Rasch model, raw score is such an estimator.

l
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Wright and Douglas(1977b) have shown bias to average'

(over scores and items) k/(k-1). Applying this correction
factor to the difficult& estimates allows one to obtain
estimates that are, on average, unbiased and in simulations
seem to be similar to those obtaingd by the unbiased CML

method to be discussed next.

! The following is an algorithm for the uncondiﬁional
estimation of item and person parameters from Wright and
Douglas (1977b):

(1) Calculate s,, the total number of correct- responses
to item i and, n, the number of persons with raw

score Y.

(2) Edit the data to exclude zero or perfect scores for
both items and persons (i.e. r, = 0 or k and s; =
0 or n). )

(3) Initialize a starting vector 2{ as,
0

) b~ = log[r/(k-r)]  for r = 1,...,k-1.

g

(3.2)

(4) Initialize a vector d,, céntered at d. = 0 as,

i = ],.-.’k

*(3.3)

(5) Improve each estimate gi by applying equation 3.4

- -
Co. k-1
(S, dj"" . dj rr
i i 1- r (1'1’--o|k)
SR k-1 : . 3.4)
R S B B3 XA _
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until convergence at some reasonable criterion,
say CRIT.
! ;
Ja,"" - ¢f | < criT,
where CRIT = .0l is a good value, and

j = - ] P
Pl = lexppp, - ad /01 + expln_ - adm
"(6) Recenter the vector Ei at d. = 0.

(7) Using the improved vector.gi, apply equation 3.5 to
improve each br' .

&)
r- 2 P?i.

mH] m 1.
br =b" -

r k
- m . m
?pl‘i (] - pl"i)

until convergence -at

(r=1,...,k-1)

(3.5)

-

fhm+l o oom
b | < cRIT |
m
vhere P7. = [exp{bT - di}]/F1+exp{b$ -4

(8) Repeat steps (5) through (7) until successive
estimates of gi become stable, that is,

.JE:i - 0l e < (imy?

'(9) Correct for bias by multiplying each d, by (k-1)/k

i
(10) Calculate the 2{ for those corrected Ei'

(11) Correct the bias by multiplying each br by
(k-2)/ (k-1)

(12) Calculate the asymptotic estimates of the standard
-errors of difficulty estimate from the inverse

-
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- Hessian (equation 3.6),

: =1/2
SE[d, ] {n P [1-P_.]} .
Z ri ri (3-6)

When the test score distribution is symmetric and the
tests are rather long, a very ecomnomical procedure for

approximating the UML method was devised by Cohen (1979)

i’he Conaitional Maximum Likelihood Procedure (CML)

The following description of the conditional approack
follows closely that given by Gustafsson (1977). :

—

!
i Consider a given examinee with the raw score T,
corresponding to the person parameter ev. The probability of
obtaining any raw score vector (_gvi) given the person

parameter and the vector of item parameters is:

(evs:1 L VH

k
Pi(a,;)]e ’(5')}=I-I 190 e 1+e o
vi v. 1 il 9vf1 ]:[( e;) @7

To be able to express this probability as a conditional
probability of a given score r,» one must first know the
Pprobability of obtaining score r, given ev. This latter
probability is given by the sum of the probabilities of all
~possible ways of obtaining the score LI that is, the sum of

a11 terms described in (3. 6) in which- the vector, ay sums to

21'.
|

i , Any given score r on a set of k items can be obtained in

(k) different ways. A special notation 1s needed to express

this in a simple way. Define the elementary symmetric function
gof order r in the parameters gy as:

j

4
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v lle)l 2 H | (3.8)

-Y‘ i=
'l
In the expansion of this sum of products, the summation is
'made over those (3«) combinations in which j3yy = r- For

implicity, Yp will be used to denote the symmetric function

of order r in the item parameters.

This new notation allows us to write the probability of

obtaining the score r given 8y and

k

ei as:

4 (o -)aVi e’Vrv\f-
P{r'evs(ﬁi)}_ z 1+‘e,i;1 = L

o N (140 )
?l:aw r i=1 I}[ vEi (3.9)

|
]

, .

i The conditional probability of obtaining the vector a
—vi

with the total score T,» given the score r, is thus given by

equat:ions 3.7 through 3.9, yielding'

- i
I : Prla,:) e, (esd)  5o1
Pila ;) |rs(e;)1= L V L= -
Pir|e,s(eg)d Ty (3.10)

Note that this conditional probability is not a function of

;6;,,, but only of the item:parameters.

Using the assumption of conditional independence one can

now obtain the conditional 1ikelihood of the data matrix A,
with elements {avi} for n persons yilelding:

!
i
]
]
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' . r € can see that since the sum of the S; equals the sum of
. W
as the number of persons with raw score

Denoting nr

(1,+¢4,k~1) and sy as the score of item 1 (1,...,n~1) this

!equation can be simplified to:

Ithe n., We must impose some further constraint on the system

of equations to allow for a solution. Once again, this can be

done in a variety of ways, either by specifying an origin or
y specifying a scale.

The great problem in solving the system of ‘nonlinear

equations in (3.14) has been the accurate and rapid

computation of the symmetric functions and their first and

M
n
aule .
=
™
w
wade
-

i ] N -
Tkl (3.12)

de
=Nk
ol
<
1
<
=<
-
1

: ; V=1 r=1 o second order partial derivatives. Fischer (1974) presents
! ;11 jonal Maximum Likelihood estimators (CML) can @ ' three useful formulas for the computation of the symmetric °
K The Conditiona £ .

derived from this conditional likelihood function. To do . functions and their first and second order partial
b be derive , g . .

i ; ; i ct to ~ %l T : derivatives. (p. 242)

: . this, take logs of both sides, differentiate with respe < [r% ! !

{ : all the € and set them equal to zero. This yields ~ E |

!

. i S ! . 3 (1) (1)

: 1 . = + ‘

i i ' | i i .

| ! a'logA Z Yr— ' §=1,. 0. 5k) g et ; -

{ i e 4 3 . . — v -

*,' ‘ : . 381 e-i r=1 YY‘ .

e ! ’ . ‘ .. : k

i . ‘ ¥ - b

‘ ' : [ : ; ™= I Y,(.I)

j 3 :in which the symbol Y(i)l is used to denote the partial B ] 5 ' Coi=1 (3.16)
IR r= ! . :

£z : ivative is a ; : .
derivative of y_ with respect to €& . This der g ' and (p. 250) . . .
; f‘ symmetric function of order r-1 in all parameters except ! ! B ‘

£ , e 3.14) which are a set of 'I Yplepseasey) = Yplepseeaeg q) + AR LC FIPRILIEY

g ' '€ .. From (3.13) one arrives-at (3. ; g‘ |

:1 o : fnonlinear equations in the ei. ’ _ ~ . .f 4 ; with 0 < r <t,t =1,...,k

L i S

: i . '(3.17)
: : i B : (o

g : f - Equations (3.15) and (3.16) can be combined recursively to
v ¢ ’

v H fe give a very efficient algorithm for couputing the Ye and the
I‘ gj TR ' : ’ Il'(‘:'?'.__ (Fischer, i974 pPp. 243- 244‘ ‘Gustafsson, 1977
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bé;‘30-31). This algorithm is noﬁvnumerically stable,
however, and it usually breaks down when there are more than

20 to 50 items.

"Using (3.17) recursively it is, however, possible to
devise a numerically stable algorithm for computing the values
of the symmetric functions of all orders (Gustafsson, 1977,
pp. 31-31), and the derivatives can also be obtained if the
Plgorithm is applied with the parameter value set to zero for
the item or items with respect to which the differentiation is
made (Fischer, 1974, p. 250).
of the symmetric functions for very large sets of items, but

This method allows computations

it has the drawback that the computations are quite cumbersome

and slow when there are many items (more than 50 to 60, say).

However, ds was shown by Gustafsson (in press {a}), it is

-bossible to devise an algorithm which is both fast and

accurate if (3.17) is used to compute the values of the
symmetric functions themselves, and if (3.14) is used to
éompute the values of the first derivatives. For those items
which have extreme parameter values the computations of the

first der.vatives do break down, but since it is possible to

‘test for.numerical accwracy, the derivatives with respect to

these items can be recomputed using (3.17) with the parameter

walue set equal to zero for the item.

i Having routines for comﬁuting the symmetric functions and
;heir derivatives it is a rather simple matter to solve
k3-14), using numerical procedures. One useful method is
Newton-Raphson's method (for the details, see Allerup &
“éorber, 1977; Andersen, 1972; Fischer, 1974; Wright & Douglas,
1977b).

each iteration requires much computational work since the

With this method only few iterations are needed, but

second derivatives of the symmetric functions must be computed

-and a (k—l)by(k—l) matrix must be inverted.

P — —— P D T

L R T ——
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i
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Another useful méghod iémbased-dn’;‘simple switching
between the right hand side and the 1eft‘hand side of (3.13)
(Fischer, 1974, Gustafsson, 1977; Martin—L;f, 1973; Wright &
Douglas, 1977a,b). 1In this simple iterative method each
iteration requires relatively little compdtational work, but,
Pn the other hand, convergence is slow. However, convergence
may be speeded up through using the Aitken extrapolation
(Fischer, 1974, p. 245; Fischer & Allerup, 1968; Gustafsson,

977 p. 35).

considerable saving of iteratioms, aud when it is applied this

Usually this extrapolation effects a very

éimple method is in most cases much more effective than

Newton-Raphson's method.

It is impossible to give any generally valid guidelines
concerning the amount of computer time needed to compute the

CML estimates, even for a given number of items, since that is

strongly affected by the range of item parameters, and of

course also by which particular computer is used. However,

ﬁhen there are no extreme item parameters, relatively little

- icomputational work is needed if there is a moderate number of
{

#tems. For example, on an IBM 360/ 65, the item parameters in
?.teét with 40 items can often Be estimated within 3 to 4
seconds of CPU~time, and for a test with 60 items 15 to 10

{
geconds often suffice.3

However, when there are more than 80 to 100 items in the

est a large amount of computational work is needed, which 1is

.due to the fact that the fastest method of codputing the

?erivatives of the symmetric functions is no longer available;

i
for most of the items the numerical breakdown occurs, which

3

3These estimates were obtained with a FORTRAN 1V program,
written for the IBM 360/370. A copy of the program written
on tape may be obtained at cost from Jan—-Eric Gustafsson,
Institute of Education, University of Goteborg, Fack, $-431
_.‘20 Molndal, Sweden.
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makes 1t necessary to use the much more cumbersome method

based on (3.17).

Estimating Ability

The estimation of person parameters (ability) could be
thought of as the dual of the estimation problem just solved
Eor the items. Thus we could set up a system of equations
Lhich parallel the item scheme (i.e. determine a conditional

1ikelihood function omn jtem score expressed only in person

~;afameters). This would then yield a set of equations:

T
| PO
1

vis-1
L rV= %YS{(GV)}

(v=1,...,n)

(3.18)

kfrom Fischer, 1574, p. 240). This system of equations cannot
be solved because it is not possible to compute the symmetric

functions  in the 6 parameters. 1f we assume that the usual

situation holds, that is, that the number of persons is large

Yn comparison with the number of items, we can treat the

estimates of the item parameters as fixed and estimate the

person parameters under this assumption. We then get the

Eequations shown in (3.19) to solve:

” k ] e-'
1+e rEi

i=]

H
I3
.

i

'("""1 .-;!ak;“)

(3.19)

This is the same set of equations that were obtained in the

unconditional case, except that the subscript v has been

changed to r, which is possible since persons having the same
the same ability. These equations are

e

raw score are assigned

1 e e e v < P
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efficiently solved using Newton-Raphson.- -

Recently Andersen and Madsen (1977) have presented
another approach to make inferences about the person
parameters. They define what they call the population
likelihood and show that it is possible to estimate the
?arameters of the distribution of person parameters, assuming

a certain distribution function, such as the normal one.

This method has as yet only been used in illustrative

1
!
examples, but it shows great promise for a wide range of

-applications. Thus, it may be used to test the hypothesis

"that the distribution of person parameters is normal, and the

sostimates of the mean and the variance of the latent

-distribution would be estimates of the '"true mean" and the

"true variance." If the mean and the variance of the person

parameters estimated from (3.22) are computed for a group of "’

fersons these would be estimates of the "observed mean" and

“the “observed variance." This,  of course, makes poséible a

%qdirect method for estimating the reliabilit& of the test for a

pEertain group Qf persons, i.e. through dividing the estimate
«of the "true variance" with the.gstimate of the "observed

}
-wariance."
H

Information Function and Confidence Intervals

The asymptotic standard errors of the CML estimates of
-the item parameters can be cbtained from the inverse of the
.Hessian, and if Newton-Raphsoﬁ's method is used to solve
(3.14) these are automatically obtained.

i The standard errors for the estimates of the parameters can
-be vbtained from the Fisherian Information function. The
statistical information in the sample with respect to any

parameter I is defined as:

L S
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where A 1is the likelihosd function (see equation 3.12).

Birnbaum (in Lord & Novick, 1968, see Fischer, 1974,

294 ff) has shown that the information of item i w;th

espect to the person parameter Ev is:

! B
i exp(E,~8;)
oLl ——
{1+exp(£,-8;)} (3.21)

e O e

test [Itl with respect to the person

The information of a
sum of the information of each of the k

-parameter E_ is the

items:
H | k |
. ': , ) Zexp(év-ﬁi)
; i . 4 ) )
i Bl gy i1texp (g,~8:)7 : (3.22)
53 ; :
'Similarly the information in the sample with reépect to the
?tem parameters {Ip[ 51]} is:
o | no :
\ ~—exp(£,~8;)
" 1 X (3.23)
; P ey i 1Hexp(e -84
| ymptotically

f The maximum 1ikelihood estimates are gs
normally distributed with standard error equal to I <.

Thus ;- confidence interﬁals around the item parameters can be

1

et e L oD it e

[ RS-

[

L

constructed (when the number of examinees is large) in the

usual way:

| (3.24)
l B

i )
shere Z&. are the critical values obtained from the normal

.distribution.

3
1
v

When the test is at least of moderate length (more than
:8ay,30 or 40 items) the asympt&tic properties should hold
sufficiently well for one to make use of them in the
determination.of confidence intervials around the person

parameters. These are:

1

tgv

s = SR
| - 8% I(e,) "sEysg,* zg

i Q . | (3.25)

Df course these confidence intervals apply only to a randomly

-chosen persori, and not to a particular one (see Lord & Novick,

' 1968, p. 512).

IV. TESTING GOODNESS OF FIT

i
|
i The Rasch model is a very strong mod;l with rather
'?tringent assumptions. The desirable consequences of these
»hlsumptions are only viable if the assumptions hold. Thus it
&e crucial to have sensitive tests to determine fit to the
‘model.

; On the basis of the IML approach Wright & Panchapakesan

‘31969) and Mead (1976, Note 2)) have constructed tests of fit.

P O b e aem—s—— ey
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E, Por these tests the chi-square distribution has been relied

upon. The tests have, however, unknown asymptotic properties

Fﬁ =g
=~

1
-

and simulation studies indicate that even though the means of
the distribution match what is expected, the variances may

depart substantially (Mead, 1976).

1
L]

: | (4.2)
9 |

This allows the test of fit by using the property that

! On the basis of the CML approach it is, 1in contrast,
possible to devise tests with known asymptotic properties. .

There are several such goodness—of-fit tests available for the

Rasch model (Andersen, 1973; Martin-Lof, 1973), each of which
45 sensitive to different threats against the model o : ' (k—l)(k—Z) degrees of freedom

-2103( A) is asymptotically chi~-square distributed with

£50550

assumptions. The tests are presented by Gustafsson, (Note 2), : Obviously thi t of .
4 s sort of test has limited application since

! ' .and for a fuller treatment of the goodness—of-fit problem than
some 50-100 persons are needed within each score groupe.

can be afforded here, the reader is directed to this source. F )
¥ Andersen also showed that the k-1 score groups can be pooled

Andersen’s Conditional Likelihood Ratio Test ‘ : . into, say, g nonoverlapping groups and the same statistic
formed for the g groups. The result is still distributed as
‘thi~gquare but now with (g=1)(k~1) degrees of freedom.

=

: The logarithm of the conditional likelihood function was

| | : bf the model assumptions. If the grouping is made according

used earlier and is: : ' E
i l . . » | '
: t ’ k k-1 O 5 It is not necessary to divide the sample of persons into
i - |
| i 2 2 groups on the basis of their performance--any disjoint
! , logp= = s;109e;- a n,. logy, . R grouping of the sample can be used. But depending on how the
-— - . .1 ;‘ X
! : . e : ( ) L, gl‘ouping is done the test is sensitive to different violations
:

ey
Aor iy 6.

to level of performance the test is sensitive to varlations in

‘ The task of the parameter estimation is to maximize A in
: the tlopes of the ICC’s for the items. If another grouping is

4.1). When this has been done, that is when the item
“SE‘da such as according to sex, the test is sensitive to such

it 2™
| —

parameters for the total sample have been- estlmated one Rind
*inds of multidimensionality which show as item bias, that is,

ﬁhat an item is systematically too easy or difficult for a

fgtoup of persons.
! . t
Martin-Lof’s Chi-Square Test :

: [ Martin-Lof (1973) has developed a chi-square test for

; g‘: i . inserts them in (4.1) and calculates the maximum ‘of the log

! l:lkeli"xood function. This is denoted H .

! If the model fits, it is expected that the same item -

parameters should hold in all sub-groups of the person

[
s

#ample. Thus, one estimates the item parameters in all of the

1

ﬁaverallggoodness of fit based upon the fit within each score

ST k-1 score groups and the values of the log likelihood
~emw———-  BTOUp. The logic of his test is as follows:

L. function. These are then denoted H_ [r = 1,e00,k=1] and used

—— P R

e '-l'he number of individuals wit:h raw scorehr» ”is denoted n ,‘l
r
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the number in the rth score group who get item 1 correct is

denoted n . Thus, the observed proportion of correct answers
to item 1 within score group r 1s nir/nr' The conditional
probability that a person with raw score r answers item 1
correctly is equal to the number of response vectors in which
item i 1s answered correctly divided by the total number of

'response vectors which have a score of r, that 1is,

)
i
€4 Vr-1

Yy (4.3)

i

PEA,; =1 rs(e;)d= 7y

Thus,‘if the model fits, the relation
? .
; (1)
| Mir = €1Vr-1.

x - LM Yp

(4.4)
f <
|

ishould hold for all score groups. Multiplying both sides of
%his equation by n_  we get an expression for the predicted
5umber of correct responses to each item for each score
group. If we define the vector of observed frequencies
q. = s ' rresponding vector of
iqt [nlr’an’ ’nkr]’ and the cor P g

predicted frequencies (from 4.3) ;r,‘the appropriate test

gtatistic is then:

k-1
= B (et ) e (8
; r=1 :

(4.5)

in which the matrix Vr is a variance-covariance matrix of

o O T b i v W A
e . e A
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e
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.ke Furthermore, let n

:gecore r1 on the first set and raw score r

Oy S . rm— Caa ek s ma b b wiee e
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order k-by-k with elements

~
(1) .
Np€iVp-1 for i= (4.6)
Yr ?
| 1,3) | .
. N€iE5 V-2 for i#j
{ .

‘The test sfatistic'T is asymptotically chi~-square with
(k-1)(k-2) degrees of freedom. If some n = 0, the summaﬁion
in (4.5) must be restricted to those score groups that are
nonempty (say R of them). If this is done, the degrees of
freedom are then (k-1)(R-1).

wwariations in the slopes of the ICC’s and it is asymptotically

This test is sensitive to

iequivalent to the Andersen test, when the item parameters in

'the latter test are estimated within the score groups.
!

| The Martin-Lof Test of Homogeneity of Two Sets of Items

The tests which are sensitive to variations in the slopes
iof the ICC’s may fail to detect multidimensionality such that
‘different groups of items measure different person parameters
:(Gustafsson, Note 1). However, Martin-Lof (1973) has
:presented a conditional likelihood ratio kest which tests the

ihypothesis that two groups of items measure the same ability.
i
- To compute the test it is necessary that the items be

;grouped into two disjoint sets. Let us say that there are kl

and k2 items in the two sets, respectively, and that k1+k2 =
be the number of persons with raw
5 on the second set.

B T ———
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When the item paramecers for the total set of k items are
estimated, a maximum of the logarithm of the conditional
likelihood function is obtained (Ht)’ and when the item
parameters are estimated for each set separately, the
Fotresponding maxima Hl and H2 are obtained. The following
test statistic can then be formed:

4. - .

kq k2 k
logi= -3 3 vy » Ny |
ogr= - —_t T “H.-
! gA=, "rlrz log = + n.log = +Ht H1 ,
i r,=0 r,=0 r=0 .
- ] 2
(4.7)

Martin-Lof (1973) has shown that -2log( 1 ) is approximately
chi-square distributed with klkz-l degrees of freedom when n
tends toward iqfinity.

If the items are grouped according to level of difficulty
this test is sensitive to variations in levels‘of person
reliability (cf. Lumsden, 1978). But the test can also.be
applied with the items grouped according to two hypothesized
dimensions supposed to be running through the test. In this
kind of application, the test of course investigates the
Pypothes%s that the two groups of items measures differeﬁt
abilities.

V. SUMMARY AND DISCUSSION

Of the two estimation procedures discussed above in

detall, most researchers have been forced to use the
H

.Pnconditional procedure when applying the Rasch model to tests
Pf more than 20 to 30 items. An algorithm has now been

developed, which makes the conditional procedure a feasible

;ltptnative to the unconditional method.
i

4 principal advantage of the conditional procedure
hppears to be the known asymptotic properties of the
estimates, which allows the use of the goodness—of-fit tests

N,

=

-

1

[

[ tmcuy

‘:&:‘:.

=

described earlier. We therefore recommend that as soon as a
thorough analysis of fit of the data to the model 1is judged
important, the conditional procedure, along with these tests,
should be used.

!

. Another advantage of the conditional procedure 1is the
;vailability of the Andersen and Madsen (1977) method for
éstimating the parameters of the latent population
aistribution, and for testing hypotheses about this
éistribution. This methodology will most likely prove very
useful in those applications where inferences about groups of

persons are intended.

Extensive studies of-differences between item
difficulties obtained through each method have yet to be
done. Most likely, no important practical differences between -

the methods will be found. The unconditional method is in

-most cases faster, so when cost is a serious issue there are

sometimes. strong reasons to prefer this method rather than the
conditional one. This can’be done profitably in cases when the
question of fit is of less importance, either because it can
éonfidently be assumed that the data fit the model, or because

}
the robustness of the ..model can be relied upon in the

-solution of practical measurement problems. Furthermore, for

wvery long tests (over 100 items, say) only the unconditional

method is feasibie.

l Developments on the Rasch model have been underway in

‘Europe and the United States for the past two decades.

owever, mainly due to language problems European work has

been little known in the United States. This paper was an

' attempt to overcome this difficulty.

!
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