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A ~EVIEW OFlrsTIMATION PROCEDURES' FOR THE RASCH MODEL 
WITH AN EYE TOWARD LONGISH TESTS 

By 
\ 
Howard Wainer and Anne Morgan 

The Bureau of Social Science Research, Inc. 

and 

Jan-Eric Gustafsson 
Institute of Education 
University of G~teborg 

·L9ng~emps, je .me suis couche. de bonne heure.": 
(Proust,1913;p. 3) 

ABSTRACT 

Two estimation procedures for the Rasch Model are reviewed 
j 

in detail, particularly with respect to new developments that 

"make the more statistically rigorous Conditional Maximum , 
Likelihood estimation practical-for use with longish tests. 

~mphasis of the review is on European developments which are 
I 

hot well known in the English writing world. 
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I. INTRODUCTION 

Classical test theory models based on the concept of true­

score have been in use for most of the 20th century, but for 

the last decade or so their shortco~ings have become 

increasingly apparent The principal shortcoming is that with 

classical test theory the item parameters change with the 

norming group. The development of la;tent trait theory ·has , 
resulted from the sea.rch for a: replacement. Lard and Novick 

.:. (1968) honestly reflect this s:t::ate o·f affairs by rigorousI.y 

developing the various tru~·re models nth their strengths 

and weaknesses and also specffyi.ng (primarily in the chapters 

by Birnbaum) the basis of the emerging latent trait 

technology •. Thi.s new technology has beell rather slow to catch 

·on for a variety of reasons; a.mong which mathematical and 

uumerical problems in parameter estimaLion are' probably the 

most important. 

There has been, and remains, considerable debate about 

the best single model to use for the scoring of tests. We 

shall not enter this debate, Dux instead will stay within the 

confines.of.the simplest mode1. 7 title one-parameter logistic 

(usually called "The Rasch Model" after its originator [Rasch, 

1960;1966]). 1£ this siniple model fits the data, there is no 

need for the more complex on·es .. The question of whether the 

model fits the data 01' not can be answered,.partially at 

least, with statistical go~dness-of-fit tests. Ev~n for this 

'simplest verSion, however, there are serious problems of 
I . 

parameter estimation. 'l'he problems can be simply stated: 

estimation methods that are statistically rigorous could not 

be used for the kind of tests most likely to be scored ~ith a 

latent trait model (large~scale standardized tests with many 

people taking themtlike the SAT1 that are of~en quite 

long). Short-cut methods and ~pprox:1mation~ haVe been devised 

~-~------~---... -.----------.. -----.. -.---
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which ap,pear to work quite well (from simulations) but are 

still not statistically rigorous (e.g., Fischer, 1974; Wright 

6 Douglas, 1976; Wright & Mead, 1977). 

All at once a variety of developments have occurred which 

seem to have resolved this problem. These developments have 

DOt occurred at anyone time, nor at anyone place, nor are 

they by anyone person, but they are all here now and can 

~rofita.bly be taken advantage of. This paper reviews these 

~developments and tries to catalog them with respect to how 
. \ 

each can lle 'brought to bear on th~ problem of the estimation 

• 1'1, 

of parameters of the Rasch Model for moderate to long tests 

(40 to 90 items). In this paper we shall report the 

approximation methods of Wright anc his colleagues, the 

developments of Fischer and Scheiblechner,' the numerical 

. break-through of Gustafsson, and the work on tests of fit that 

Andersen end Martin-Lof have done. Much of this material is 

DOt in the English language literature. 

The Rasch Model is a latent trait model of a very simple 

:.Dature: the probability of a correct answer to an item is a 

-funetion of the difficulty of that item and the ability of the 

.person. 

I ' 

\ 

-1 
I 

~ model makes the following assumptions: 

(1) All items measure the same tra·it. The test is then 
called homog~neous. 

(2) The item characteristic curve, the function relating 
the probability of a correct answer to all item to 
the underlying ability variable (the latent 
trait), has a logistic form. 

(3) Local stochastic independence of the items (i.e., 
whether or not a person solves an item depends on 
that person's ability and on the difficulty of 
the items, but not on which other items she or he 
bas previously solved). 

L,-~---~--'-"-' -' -' -"" " . .. .-.... -...... -- ... - - .. - ..... 
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If these assumptions hold, the following properties 
obtained as well: are 

I 

I 
I 
I 

-- ! 
I 

! 

(a). The raw (number correct) 
statistic for the estima:~:nr~f i:bi~i:;.fficient 

(b) 

(e) 

The comparison of two 1 the diff peop e is fully described by 
erence in their abilities 

ability dimension. This do on the latent 
specific it . :s not depend on which 

ems were adm1n1stered . 
independent person measurement). to them (1tem 

The estimation of item difficult' i of the ability of the 1 l.es s independent 

lib 
samp e on which-they 

ea rated (sample-free it l' . were em ca 1brat10n). 

These last two properties of the model are very 

:important. In 1950 Gulliksen cha.rac terized current thinking 

when he ~~ote, "A significant contribution to item h analysis 

~ eory would be the discovzry of item . , parameters that remain 

felative2y stable as the item analysis ( group changed" 

, p. 392) •. The Rasch model and latent trait based models in 

requirement that the results of a 

on which reference population that 

to, nor on the selection of a specific set of 

~eneral satisfy Gulliksen's 

person do not depend either 
I 

person belongs 

~tems from the homogeneous universe of items, if the data fit 

~he model. This h emp asizes the great potential importance of 

testing, should it be found that 

fit the model reasonably well. 

"~he Rasch Model to ability 

:test data 

I II. THE RASCH MODEL FOR DICH;TOMOUS DATA 
I I The response of person v to 

.~an take values 0 (incorrect) or 1 

item i is denoted A vi' it 
(correct). The probability 

,:of a cor rect response according to the Rasch Model is given by 

____ ••• __ J 

----~ 
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exp(r;v - 6f) 
0 0 )«-
, 1 + exp(E,;y - oi' 

h re 1: i - l, ••• ,k, 
is the item parameter describing the 

~ e U i' is the ability 
i d /:' V = l, .... ,n, 

difficulty of item an ~ v' 
I ter describing the ability of person v. Both of t~ese 
parame . f d to as 
! in the logistic metric and are re erre 
parameters are tly 
. "logl.0t.s.- A,n alternative, an.d f.requen 

:. measurement in 
exponential transformation 

useful, representation involves an 
, ) d - exp[- oJ.. Using this 
yielding e - exp( E,; v an e: i - i 

v ~~te e~~~tion (2.1) as 
in variable allows one to rew,...... ~-

change 

. \ P(A . = 1 Yl 

. is scaled in the opposite 

&v.e:t 
C', + a,E. 
li y, 

(2.2) 

di.rec,tion of c5 i' and is 
W, here E i 
I h "easiness" of item i. 
usually interpreted as t e 

, .' 

a . (a mare general case 
'"1:he probability of the response Vl.. 

of equation [2.2]) can be written 

I· 
I 
\ 

\ 
I 

! 
i . 

br similarly 
i . 

Ifa.. o.)a 0 

\vvE1 Vl 

I + eyEf (2.3) 
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= exp[ avi' (e; V 

1 + exp(E.: v 

. , 

(2.4) 

Both of these representations (2.3 and 2.4) will be used in 

the subsequent elaboration of the Rasch model. 
I 
I 
~ ESTIMATION PROCEDURES WITH RESPECT TO LONGISH TESTS 

In this section of the paper we shall describe two 
1 

estimations procedures These are the Unconditional Maximum 

Likelihood
2 

(UML) and the Cond~tional Maximum Likelihood 

(CML) methods. Until recently, only the UML could be 

practically applied for longish tests (those with more than 30 

or 40 items). ·This has changed recently with newer and more 

sophisticated estimation schemes, better numerical methods, 

and faster computers. In the pase there were strong 

theoretical reasons for preferring the CML method, but it has 

not been feasible to apply it to longish tests. Wright and 

his colleagues have corrected some of the difficulties of the 

:1 Two less commonly known estimation procedures, which have 
been 'used for longish test s, should be mentioned (see 
Fischer, 1970, 1974 for details): a "minimum-chi-square 

!method" (Fischer, 1970), a very fast algorith~ with 
- consistent estimators but for which the mathematical 
'statistical basis is incomplete: Scheiblechner's (1971) 

conditional maximum likelihood algorithm, whose computer 
program can be used for, a maximum of 50 items. 

:2 
! The term "Unconditional Maximum Likelihood" estimation is 

I , 
an unfortunate one in this application, since this is 
actually "JOINT Maximu~ Likelihood­
estimation. Unconditional estimation is when a part of the 
parameter space is integrated out by assuming a 
~istribution and integrating over it. Joint estimation 1s 
when estimates are obtained for all paramet~rs 
simultaneously by maximizing the likelihood in all 
directions at once. Nevertheless, to maintain congruence 
with current usage. and so avoid confusion, we shall use 
the term Unconditional. 
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UML. making it an'acceptable method as far as bias is 

concerned (Wright & Douglas, 1977b); Fischer, Gustafsson, 

Martin-Lof and others have advanced CML to the point where it 

is practical for longish tests. We shall present both methods 

and will comment on the choice between them in a later 

section. 
I 

The Unconditional Maximum Likelihood Estimation Procedure 

(UML) 

_I This method of estimating the item and ability parameters 

of the Rasch Model simultaneously was presented by Wright and 

Panchapakesan(l969) and Fischer and S~heiblechner (1970). It 

yields a solution that must be corrected for bias, but until 

recently it was the only viable method for tests over 30-40 

:items. 

! The basic data matrix from whic!& estimation proceeds is 
I , 

·~he matrix A having elements' {a .}, which is, say persons by 
, . V1 

:items. Summing across items yields the raw score for person v, 

.~enoted rv' Summing across persons yields the total number of 

'correct responses to item i, and is denoted si. Under the 

'assumption of local stochastic independence the likelihood of 

A is the product of the probabilities of all the entries of 

A. This is denoted by A and is shown in equation (3.1): 
\ 

! 
I 
I 
.i 
I 
! 
! 

n k 

A =11 II 
v=l ;=1 

·a . 
(6 e:.) Vl 

V 1 
-----= 

IT 
i 

s­
e:i ' 

(3.1) 

From this likelihood function, it is immediately apparent 

that only the marginal sums of A are represented [r and v 
8 i ]. Thus, one need not take into account the "inner 

structure" of A as yet, that is, which items a certain 

/ 

I 
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1'1 
. ~ I I 

I 

11 

I 

1
00 

ij ~ 
m 
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I, 

examinee has answ'ered" nor- which ex~minees an.swered a 

particular item (this will enter in later on when the 

goodness-of-fit of the model is examined). Raw score (number 

correct) is,a sufficient statistic for estimating person 
~~~~~ -- - ---. 
parameters and ~ score ~~ sufficient 

parameters. 

statistic for item 

I The likeIihoo'cf £unct'ion can be maximized in the usual way 

by first no.e.fug: e.fr'~t. tiTe' I:og of the likelihood function 
I 

~ch1eves it~ maxtmum. at tfr~ $$me place as the fun~tion, and 
! 
then using th~multfv~ form of Newton~Raphson on the log 

likelihood furrc:tfun .. Th:t:~ fg ~complished by calculating the 

'gradient v~t6r~ ~~tn' r~~pect to each parameter, and the 

Hessian (macrtx: 6f S'~cf partials) •. 

; The det.a!1§ of trr~ derivation of the estimation equations 

is found in WrlglTt'ff wtrrk (e .. g .. Wright & Mead, 1977; Wright & 

Stone, 1979) '" tlrere.:UJ an indeterminacy in the model which 

can be removed' by impO'sing some sort of normalization. One 

way of normaliZing iff to ,get an origin (say the difficulty of 

all item equ:a:l.s zero)" or set a scale (say the sum of all . .. 
41fficultie~ equals un~ty) .. 
I 

.. 
• 

.. '; . 
! • That maximum likel.ihood estimates are not consistent in 

certain sit~t!6trg. rr.cflf b'ee-n known since 1948 (Neyman & 

Scott). This fg the ~ge: for the Rasch Model when structural 

parameters (e.he it.em d:lfficulties) ar.e estimated in the 

presence of inCidental par-ameters (the person abil~ties). When 

:_ample size tg increased the problem ~ of course, remains since 

~ach new person brings a ne~ incidental parameter. If, 
, 
ho~ever, the egtimation equating can be formulated in the item 

parameters only, consistency and unbiasedness is assured 

(Andersen, 1977). This can be done if there exists a minimal 

sufficient statistic for the person parameters, and in the 

'Rasch model,. raw sca-re is such an estimator. 

........ -~---------..,.--.---
·,~·,-_,.-_,,"'_1;:~"!'~'."~~~7t"r.'~ .. ~-I='~~>"""""~_~·_" • 
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Wright and Doug1as(l977b) have shown bias to average 

(over SCQres and items) k/(k-l). A~plying this correction 

factor to the difficulty estimates allows one to obtain 

estimates that are, on average, unbiased and in simulations 
, . 

seem to be similar to those obtained by the unbiased CML 

method to be discussed next. 

The following is an algorithm for the unconditional 

estimation of item and person parameters from Wright and 
, 
Douglas (1977b): 

'I 
I 
! 

, 

(1) Calculate si' the total number of correct· responses 
to item i and, n the number of persons with raw 

r score r. 

(2) Edit the data to exclude zero or perfect scores for 
both items and persons (i.e. rv = 0 or k and si = 
o or n). 

(3) Initialize a starting vector br as, 

(4') 

0 
di · 

. b 0 ., log[r/(k-r)]' 
r 

for r 2 l, ••• ,k-I. 
(3.2) 

Initialize a vector d
i

, centered at d. = o as, 

lO{N :/i] *10{N :/iJ'k i = l, ••• ,k = 

. (3.3) 

(5) Improve each estimate ~i by applying equation 3.4 

(1-1, •••• k) 

L_. __ ... (3.4) 

I 

. , 
--,_ ..... _---_ .... -

r 

I 

j 

~ 
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I' 

'1
1
:' fI , . 
I~ '. r . 

h !, 

,~ , , 

" 

~ .1; 
l- n 1; , 

: n ' . 

[] 

fJ 
D 

. ! 
, n 

i 
I r, , . 
! , 

I 
'I 

I 

1.'--

, . 

. . 
~ .--_ .. __ ..... _---.,,_._, .. _-_. 

until convergence at some reasonable criterion, 

say CRIT. 

fd j+l - d j I < CRIT 
i i • 

where CRIT = .01 is a good value, and 

[exp{b - dji,}]/[1 + exp{b - dji,}] . r r 

(6) Recenter the vector d. at d. = O. 
-J. 

(7) Using the improved vector ~i' apply equation 3.5 to 
improve each b • 

r 

r-

k. 

-LP~i 
.. 

until convergence at 

(r=l, ••• ,k-l) 

b~ I < CRIT 

where pm = [exp{bm - di}]/[I+exp{bm dill ri r r 

(3.5) 

(8) Repeat steps (5)· through (7) until successive 
estimates of d

i 
become stab~e, that is, 

1:1 [d/-+1 ._ d
i 

I] 2 Ik . < (CRIT)2 ' 

(9) Correct for bias by multiplying each d
i 

by {k-1)/k 

(10) Calculate the b
r 
fo~ those corrected die 

(11) Correct the bias by multiplying each br by 
(k-2)/(k-l) 

(12) Calculate the asymptotic estimates of the standard 
errors of difficulty estimate from the inverse 

'-------_.------

.1 

~ ~------ .. ~.~----~----------------~-----------------------------------
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,. .... -- .. --.--. 'Hessian (equation 3.6), 

-2: r {n P i[I-P i ll-I /.2 
r r r (3.6) 

When the test score distribution is symmetric and the 

tests are rather long, a very economical procedure for 

approximating the UML method was devised by Cohen (1979) 

The Conditional Maximum Likelihood Procedure (CML) 

7he following description of the conditional approach 

£ollows closely that given by Gustafsson (1977). 

I Consider a given examinee with the raw score r v ' 

corresponding to the person parameter ev • The probability of 

obtaining any raw score vector (a .) given the person 
-V1 

~rameter and the vector of item parame~ers is: 

I . , 
;. 

I 
i 
I To be able to express this probability as a conditional 

probability of a given score r, one must first know the 
v . 

~robability of obtaining score rv given9v • This latter 

probability is given by the sum of the probabilities of all 

;possible ways of obtaining the score r v ' that is, the sum' of 

all terms described in (3.6) in which- the vector, avi sums to 
I 
lr. 
i 
i. 
(.~) 

Any given score r on a set of k items can be obtained in 

different ways. A special notation is needed to express 

this in a simple way. Define the elementary symmetric function 
, 
of order r in the parameters Ei as: 

'-----------------------,--,--

~ ~.,..-~:---------------------------- .. -.- ~ 
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k 
~ II 

ta i=r ;=1 
1 V 

(3.8) 

In the expansion of 

aade over those (~) 
I 

this sum of products, the summation is 

combinations in W~ich 1:. a i = r. For 
1 v 

jimplicity , Yr will be used to denote the symmetric function 

of order r in the item parameters. 

I This new notation allows us to write the probability of 

obtaining the score r given e and Ei as: 
! v 

~{r I 9v, (e:1• )}= 
ta .=r 
1 Vl (3.9) 

The conditional probability of obtaining the vector a . 
-V1 

with the total score r , given the score r is thus given by , " v· v 
~quations 3.7 through 3.9, yielding: 
i 

P{(av;)19V,(e:;~} = 

~{rI9v'{E~)} 

k n 
;=1 

(3.10) 

Note that this conditional probability is not a function of 

61 •. ,but only of the item' parameters. 
i V . 
I I Using the assumption of conditional independence one can 

now obtain the conditional likelihood of the data matrix A, 

wit~ elements {avi } for n persons yielding: 

! 

'L-'------------------

~ ------_._._-_ .. 
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Denoting nr as 

(1, ••• , k-1 ) and 
I 
equation can be 
I 
I 
! 
J 

I 
! 

. ",' . '.'. 

,.···fI 
val 

Ie' n' ,-, 

the number of 

s1 as the score 

simplified to: 

k k n S1 II e1 1=1 i=l A'=_ = k-l -0 

II Yr IT 
v=l V r=l 

- , (3.11 ) 

per,sons' with raw score r 

of item i (1, ••• ,n-l) this 

s-, 
1 e' 1 

"r 
(3.12) 

Yr 

The Conditional Maximum Likelihood estimators (CML) can 

be derived from this conditional likelihood function. To do 

~hiSt take logs of both sides, differentiate with respect to 

~ and set them equal to zero. This yields all the wi' 

! 
k-1 (1). 

&1091\ S, L 
c .-!_ Yr-l (1=1, •• qk) 

.\ 

Yr 'ae1 e, r=l 1 
(3.13) 

• 

'in which the symbol y(i) 
r~l 

is use~ to denote the partial 

e • This derivative is a derivative of Yr with resp~ct to i ' 

'symmetric function of order r-l in all parameters except 

, t (3.14) which are a set of ~ From (3.13) one arrives'a j 1- . 
nonlinear equations in the £1. 
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k-l 

l: (i-l, •• • ,k) (3.14 ) 

r=l Yr 

We can see that since the sum of t,he si etluals the sum of 

the n , we must impose s~me further constraint on the system I r 

rf equations to allow for a solution. Once again, this can be 
I 

done in a variety of ways, either by specifying an origin or 
~Y specifying a scale. . 

I The great problem in solving the system ~f'nonlinear \ 

equations in (3.14) has been the accurate and rapid 

computation of the symmetric functions and their first and 

second order partial derivatives. Fischer (1974) presents 

three use.Eul formulas for the computation of the symmetric 

functions and their first and second order partial 
derivatives: (p. 242) 
I 
1 
/_ t 

! y = r 

Ie (,') ry = ): 
t:' i=l €iYr-l 

. . (3. 15) 

and (po 250) 
I 

(3. 16) 

with 0 ~ r S t, t =l, ••• ,k 

Equations (3.15) and (3.16) can be combined recursively to 
l 

g1ve a very efficient algorithm for computing the Y and the 
(i) r 

!r~ 1·, ,._.£~.i,~_:.h~r ~ ... ~:'.~~-'_~~~_ 2~':-=~~~ .. j_.Gus tafs son, 1977 t 
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pp. 30-31). This algorithm is not numerically stable, 

however, and it usually breaks down when there are more than 

20 to 50 items. 

'Using (3.17) recursively it is, however, possible to 

devise a numerically stable algorithm for computing the values 

of the symmetric functions of all orders (Gustafsson, 1977, 

pp. 31-31), and the derivatives can also be obtained if the 

algorithm is applied with the parameter value set to zero for 
! 
the item or items with respect to which the differentiation is . 
~e (Fischer, 1974., p. 250). TQis method allows computations 

of the symmetric functions for very large sets of items, but 

~t has the drawback that the computations are quite cumbersome 

and slow when there are many items (more than 50 to 60, say). 

However, as was shown by Gustafsson (in press {a}), it is 

·possible to devise an algorithm which is both fast and 

accurate if (3.17) is used to compute the values of the 

~ymmetric functions themselves, and if (3.14) is used to 

compute the values of the first derivatives. For those items 

.which have extreme parameter values the com.puta tions of the 

first der,~vatives do break down, but since it is possible to 

'J:est for. numerical accl~racy, the derivatives with -respect to 

J:hese items can be recomputed using (3.17) with the parameter 

1Val.ue set equal to zero for the item. 

Having routines for computing the symmetric functions and 

~heir derivatives it is .a rather simple matter to solve , 
~3.14), using numerical procedures. One useful method is 

Newton-Raphson's method (for the details, see Allerup & 

-Sorber, 1977; Andersen, 1972; Fischer, 1974; Wright & Douglas, 

19~7b). With this method only few iterations are needed, but 

each iteration requires much computational work since the 

second derivatives of the symmetric functions must be computed 

'and a (k-l)by(k-1) matrix must be inverted. 

--~---~~--
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Another useful method is based on a simple switching 

between the right hand side and the left hand side of (3.13) 

(Fischer, 1974, Gustafsson, 1977; Martin-L~f, 1973; Wright & 

Douglas, 1977a,b). In this simple iterative method each 

iteration requires relatively little comp~tational work, but, 

on the other hand, convergence is slow. However, convergence 
I 

~ay be speeded up through using the Aitken extrapolation . 
;(Fischer, 1974, p. 245; Fischer & Allerup, 1968; Gustafsson, 
I r977 , p. 35). Usually this extrapolation effects a very 

considerable saving of iterations, aud when it is applied this 
1 

simple method is in most cases much mQre effective than 

Newton-Raphson's method. 

It is impossible to give any generally va.lid guidelines 

concerning the amount of computer time needed 'to compute the 

CML estimates, even for a given number of items, since that is 

~trongly affected by the range of item parameters, and of 
; 

course also by which particular computer is used. However, 

~hen there are no extreme item 'Parameters,relatively little 

~omputational work is needed if there is a moderate number of , 
dtems. For example, on an IBM 360/ 65, the item parameters in 
I 
! . 
~ttest with 40 items can often Se estimated w~thin 3 to 4 
I 
seconds of CPU-time, and for a test with 60 items 15 to 10 

~econds often suffice. 3 

I; However, when there are more than 80 to 100 items in the 

fest a large amount of computa~ional work is needed, which is 

. due to the fact that the fastest method of computing the 
, 
~erivatives of the symmetric functions is no longer available; 
I 
~or most of the items the numerical breakdown occurs, which 

- 3· I These estimates were obtained with a FORTRAN IV program, 
: written for the IBM 360/370. A copy of the program written , 
I on tape may be obtained at cost from Jan-Eric Gustafsson, 
j Institute of Education, University of Go.teborg, Fack, 5-431 
L-20 Halndal, Sweden. . ,_. _. ____ . ____ .... _. ' .. _. 
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makes it necessary to use the much more cumbersome method 

based on (3.17). 

Estimating Ability 

The estimation of person parameters (ability) could be 

thought of as the dual of the estimation problem just solved 

for the items. Thus we could set up a system of equations 

~hich parallel the item scheme (i.e. determine a conditional 

likelihood function on item score expressed only in person 

-~tameters). This would then yield a set of equations: 

r= 
V 

k e :y(V){(e )} 
~_ V s-l V 

Liy {(e~)} 
i=1 s 

(v=1, ••• ,n) 
(3.18) 

1974, P• 240). This system of equations cannot ,(from Fischer, 

it is not possible to compute the symmetri.c be solved because 

e parameter~. If we assume that the usual functions' in the v ~ 

situation holds, that is, that the number of persons is large 
the 

person parameters under this assumption. 

'equations shown in (3.19) to solve: 

l I 

r= 
.(r=l, ••• ,k-l) 

the 

the 

(3.19) 

This is the same set of equations that were obtained in the 

unconditional case, except that the subscript v has been 

changed to r, which is possible since persons having the same 

assigned t he same ability. These equations are -raw score are 
~---- --~-.---

..... -~--- .. -.--.. _._-_ ..... 
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efficiently solyed using Newton-Raphson.·, 

Recently Andersen and Madsen (1977) have presented 

another approach to make inferences about the person 

parameters. They define what they. call the population 

~ikelihood and show that it is possible to estimate the 

parall1eters of the distribution of person parameters, . assuming 

a certain distribution function, such ~s the normal one. 

I This method has as yet only been used in illustrative 
I 
~xamples, but it shows gr~at promise for a wid~ range of 

.-applications. Thus, it may be used to test the hypothesis 

.~hat the distribution of person parameters is normal, and the 

4stimates of the mean and the variance of the latent 

-distribution would be estimates of the "true mean" and the 

'f'true variance." If the mean and the variance of the person 

-::parameters estimated from (3.22) are computed for a group of' 

persons th':!se would be estimates of the "observed mean" and 

-'~he "observed variance." This " of course, makes possible a 

·:,jiirect method for estimating the reliability of the test for a , 
I 

,certain group of persons, i.e. through dividing the estimate 

,-,hf the "true variance" wi th the .. qstimate of the "observed 
i 

"'I'lariance • " 

anformation Function and Confidence Intervals 
, 

i ~e asymptotic standard errors of the CML estimates of 
I 

ithe item parameters can be obt~1ned from the inverse of the 

,:Hessian, and if Newton-Rnphson's method is us~d to solve 

~3.14) these are automatically obtai~ed. 

I The standard errors for the estimates of the parameters can 

-be bbtained from the Fisherian Information function. The . 
statistical information in the sample with respect to any 

parameter II is defined as: 
L-_____ .. ___________ . __ .~~ ~ ___ ~.~.~ ~ __ . __ _ ----_._----< 

------.. ----------- ----" 
~ 
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(3.20) 

Where A is the likelihood function (see ~quation 3.12). 

Birnbaum (in Lord & Novick, 1968, see Fischer, 1974, 
'I f ti of item i with p. 294 ff) has shown that the in orma on 

respect 
I 

to the person parameter ;v is: 

I " 

I 
" 

(3.21) 

" 

test [I 1 with r.spect to the person 
The information of a t 

E is the sum of the information of each of the k 
.!parameter ~ 

i.tems: 

(3.22) 

Similarly the information in the sample with respect to the 

:item parameters {lp( 0i n is: 

I 

I 
I 

(3.23) 

The maximum likelihood estimates are ~~ymptoti_\allY 
normally distributed with standard error equal to I . 

be 

------

1 

'Thus;- confidence i·ntervals around the item parameters can 
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constructed (when the number of examin'ees is large) 1n the 

usual way: 

.. { '-1 A { -1 
~1-z I (0.) <0.<0.+ Z I (0.) a p 1 - 1- 1 a p 1 

(3.24) 

I were Z' . are the critical values obtained from the normal 
a 

. -distribution. 

When the test is at least of moderate length (more than 

"say,30 or 40 items) the asymptotic properties should hold 

sufficiently wel~ fox one to make use of them in the 

determinatioI\ .of confidence intervals around the person 

parameters. These are: 

.~ -z 'I (~ )-1<.; <~ + z IIt(~ )-1 vat v - Y- -Y a . Y 

! (3.25) 

I 
I 

.. Of course these confidence intervals apply only to a randomly 

~hosen person~ and not to a particular one (see Lord & N9vick , 
., 

.~968. p. 512). , 

j 'IV. TESTING GOODNESS OF FIT - ---
I .. 
I ~he Rasch model is a very strong model with rathe~ 

stringent assumptions. The desirable consequences of these 
I . 
•• sumptions are only viable if the assumptions hold. Thus :l.t 
I 
118 crucial to have sensitive tests to determine fit to the 

·model. 
On the basis of the l.lUL approach Wright & Panchapakes;an 

. :(1969) and Head (1976, Note 2» have constructed tests of f:i.t • 
'---- ... --,- '-----'--"---' .- ... --- -''''---'' -...... -.. 

,-------------------~--.--,.--.---... -.... 
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For these tests the chi-square distribut~on has been relied 

upon. The tests have, however, unknown asympto'tic properties 

and simulation studies indicate that even though the means of 

the distribution match what is expected~ the variances may 

depart substantially (Head, 1976). 

, On the basis of the CHL approach it is, in contrast, 

~ossible to devise tests with known B:symptotic properti,es. 

!here are several such goodness-of-fit tests available for the 
l 

Basch model (Andersen, 1973; Martin-Lof, 1973), each of which 

is sensitive to different threats against the model 

assumptions. The tests are presented by Gustafsson, (Note 2), 
and for a fuller treatment of the goodness-of-fit problem than 

can be afforded here, the reader is directed to this source. 

'Andersen's Conditional Likelihood Ratio Test 

The logarithm of the conditional likelihood function was 

used earlier and is: 
I 
) 
I 
1 k 

lOgA= ~ 
i=l 

k-1 

I: 
r:;.1 

• 
(4.1) 

The task of the parameter estimation is to maximize A in 

(4.1). When this has been done, ~hat is when the item 
I 

t f thA total sample have b.een·estim. ated~ one ~arame.ers or ~ 

~nserts them in (4.1) and calculates the maximum of the log 

iike1ihood function. This is denoted Ht • 

I If the model fits, it is expected that the same item 

~arameters should hold ~n all sub-groups of the person 

~ample. Thus, one estimates the item parameters in all of the 

k-l score groups and the values of the log likelihood 

function~. These are then ?enoted. Hr [r ~.1, ~ ~. ,k-1] and used 
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to form the statistic: 

'k-l 

!; 
r=l 

(4.2) 

This allows the test of fit by using the property that 

~210g~ A ) is asymptotically chi-square distributed with 

:(k-l )(k-2) degrees of freedom. 

Obviously this sort of test has limited application since 

lome 50-100 persons are needed within each score ,group. 

And~rsen also showed that the k-1 score groups can be pooled 

·~nto. say, g nonoverlapping groups and the same statistic 

:tortllt!d for the g groups. The result is still distributed as 

~hi-square but now with (g-1)(k-1) degrees of freedom. 

It is not necessary to divide the sample of persons into 

groups on the basis of their performance--any disjoint 

,grbUping of the sample can be used. But depending on how the 

1rouping is done the test is sensitive to different violations 

~f the model assumptions. If the g~ouping is made according 
I 

~o level of performance the test is sensitive to variations in 

~he slopes of the ICC's for the items. If another grouping is 

~s~d, such as according to sex, the test is sensitive to such 

~tfids of multidimensionality which show a~ item bias, that is, 
I 

~hat an item is systematically too easy or difficult for a 

BtouP of persons. 
I 
Mart;irt-Lof's Chi-Square Test 

'~~rtin-Lof (1973) has developed a chi-square test for 

overall goodness of fit based upon the fit within each score 

ttbUp. The logic of his test is as follows: 
1 ___ •• .._ .• ' ___ _ ., _ ._ • ~._. _. ,._._. _ ••. _. • .• ,... • •..•. 

the number of individuals ~ith raw score r is denoted n , 
r 

t:::==:::. , .... ____________ . __ _ ----.. _-_._--- ... ..• ~ 
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the number in the rth score group who" get item i correct is 

denoted nir • Thus, the observed proportion of correct answers 

to item i within score group r is n /n. The conditional 
ir r 

probability that a per~on with raw score' r answers item i 

correctly is equal to the number of response vectors in which 

item i is answered correctly divided by the total number of 

:response vectors which have a score of r, that is, 

. .../' 
(1 ) 

EiYr-l 

(4.3) 

Thus, if the model fits, the relation 

"ir = 
(1 ) 

E1'Y r-l . 
. 
I. "r Yr (4.4) 

, 
I 
;should hold for all score groups. Multiplying both sides of 

; hi ti by n we get an expression for the predicted ,t s equa on r 
~umber of correct responses to each item for each score 

group. If we define the vector of observed frequencies 

:q '=[n n n] an~ the corresponding vector of 
1 ' 2 , ••• , k ' . ; r r r r 

'predicted frequencies (from 4.3) tor' the appropriate test 

~tatistic is then: 

k-l 
T= ~ {(qr)'" (tr )) --{( (V r) )}-l{(qr)- (t .. )} 

r=l (4.S) 

in which the matrix V is a variance-cova.riance matrix of 
r 

-------------------- ----------

~ 1m 

'~l 

H1 
,n) 

~FI '.', ' 

/ 

:.------

order k-by-k with elements 

(1) 
"rEiYr-l for i=j 

(4.6) 
Yr 

(i,j) 
"rEi EjYr-2 for i~j. 
-~ 

Yr ../ 

:The test statistic 'T is asymptotically chi-square with 

(k-l)(k-2) degrees of freedom. If some n = 0, the summation 
r 

in (4.S) must be restricted to those score groups that are 

;nonempty (say R of them). If this is done, the degrees of 

freedom are then (k-l)(R~I). This test is sensitive to 

'variations in the slopes of the ICC's and it is asymptotically 

lequivalent to the Andersen test, when the item parameters in 

!the latter test are estimated within the score groups. 
I 

! The l-Iartin-L"of :fest of Homogeneit"y of Two Sets of Items 

The tests which are sensitive to variations in the slopes 

lof the ICC's may fail to detect multidimensionality such that 

different groups of items measure different person parameters 

:(Gustafsson, Note 1). Howeyer, ~artin-L~f (1973) has 

:prt:sented a conditional likelihood ratio test which tests the 

,hypothesis that two groups of items measure the same ability. 
i 

To compute the test it is necessary that the items be 

'grouped into two disjoint sets. Let us say that there are kl 

and k2 items in the two sets, respectively, and that k 1+k2 -

.k. Furthermore, let n be the number of persons wi th raw 
rlr 2 

:~~.~~e._rl on the f.irst set and raw score ~2 on the second set. 

. ' 
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When the item parameters for the total set of k items are 

estimated, a maximum of the logarithm of the conditional 

likelihood function is obtained (H
t
), and when the item 

~arameters are estimated for each set separately, the 

~orresponding maxima HI and H2 are obtained. The following 

test statistic can then be formed: 
L 

kl k2 k 
n n 

10g).=. -~ ~ log 
. r.1 r2 + ~ "r 

" "r1ogn +Ht -H1-H2 r 1r2 n 
r 1=O r 2=O r=O 

(4.7) 
Hartin-Lof (1973) has shown that -210g~ A ) is approximately 

chi-square distributed with kIk
2
-I degrees of freedom when n 

tends toward infinity. 

If the items are grouped according to level of difficulty 

this test is sensitive to variations in levels of person 

reliability (cf. Lumsden, 1978). But the test can also be 

applied with the items grouped according to two hypothesized 

~imensions supposed to be running through the test. In this 

kind of application, the test of course investigates the 

hypothesis that the two groups o~ items measures different 

~b111ties. 
i 
I !!. SUNMARY ~ DISCUSSION 

1 Of the two estimation procedures discussed above in 

detail, most researchers have been jorced to use the 
I . 

unconditional procedure when applying the Rasch moae1 to tests 
j 

pf more than 20 to 30 items. An algorithm has now been 
I 

~eveloped, which makes the conditional procedure a feasible 

alt~rnative to the unconditional method. 

A principal advantage of the conditional procedure 

~ppears to be the known asymptotic properties of the 

estimates, which allows the use of the goodness-of-fit tests 

--------. --~ 

--- ---- ----- ~---------

ill 
ffi26 

m 

~ 
I 
~ 1 

,I 

rn -
rn 
~ w 

rn i 1 

...... 

ill 

1m 

~ 

1 rn 
! rn 
a 
m 
.~' 

D 
fi 

ct!l~"tl;~· 

I 
/ 

-------.. ---------- .... 

I , l . . ------------_ ..... -----.--_ .. _-_ .... - .... 

described earlier. We therefore recommend that as soon as a 

thorough analysis of fit of the data to the model is judged 

important, the conditional procedure, along with these tests, 

should be used. 

I Another advantage of the conditional procedure is the 

availability of the Andersen and Madsen (1977) method for 
• . 
estimating the parameters of the latent population 
, 
~istribution, and for testing hypotheses about this 

aistribution. This methodology will most likely prove very 

useful in those applications where inferences about groups of 

~rsons are intended. 

Extensive studies of differences between item 

difficulties obtained through'each method have yet to be 

do~e. Most likely, no important practical differences between 

the methods will be found. The unconditional method is in 

'most cases faster, so when cost is a serious issue there are 

sometimes. strong reasons. to prefer this method rather than the 

~onditional one. This can be done profitably in cases when the 

~uestion of fit is of less importance, either because it can 

confidently be assumed that the da.ta fit the model., or because 
I 
the robustness of the ___ model can be relied upon in the . 
solution of practical measurement problems. Furthermore, for 

very long te'sts (over 100 it.ems, say) only the unconditional 

method is feasible. 
. 

Developments on the Rasch model have been underway in 

Europe and the United States for the past two decades. 

~owever, mainly due to language problems European work has 

heen little known in the United States. This paper was an 

attempt to overcome this difficulty. 
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