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“ROBUST ESTIMATION OF ABILITY IN THE RASCH MODEL'

L Howard Wainer o
Bureau of Social Science Research
1990 M Street, N.W.
Washington, D.C. 20036

and
Benjamin Ds Wright

The University of Chicago
Chicago, Illlinois 60637

ABSTRACT

Estimating ability parameters in latent trait models in

general, and in the Rasch Model in particular is almost
élways hampered by ﬁoise in the data. This noise can be
caused by guessing, inattention to easy quesfiﬁns, and other
fac*ors which are unrelated to ability. In this study
several alternative formulations which éTTempf to déal with
fhese problems without aireparameferizafion are Tesfed
through a Monte Carlo simulation. 1t was found that although
no one of the tested schemes is uniformly supériof to all
others, a robustified Jackknife stood out as the best one in
general, it was also super efficient for tests with forty or
fewer items. It is proposed that this sort of Jackknifing
scheme for estimating ability be implemented for practical
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1. Introduction and Background

=y

approximated. The models which parameterize differential

P
P

Latent trait models as a class, and the Rasch model in .
slopes have difficulty recovering the slope parameters even

particular, have begun to have substantial impact on the

=]

=

‘when the data do fit their model. This is not a topic of

construction and scoring of mental tests. Through the use of
this paper. We merely want to indicate that attempts to

=

latent trait models, measures of individual ability as well
expand the one parameter model to encompass additional

L

as item difficulty can be obtained that have important

B

possible characteristics of the data through an increase in

=R

practical and statistical properTies.”For example, if the "
3 the number of item parameters does not appear to be

*

£

Rasch model fits, the measures of abilify and difficulty

e
Eoad

completely successful yet. Slope parameters are not well

obtained are interval scaled thus making the quantitative .
' estimated in testing situations with only a fsw‘hundred

study of change possible. The Rasch model characterization - : L.
] o individuals (Lord, Reference Note 1), and lower asymptotes

of a person's performance on an item as a function of the- b .

e

s

introduced to deal with guessing, cannot be consistently

difference between that persdn's ability and the difficulty »
. estimated at all (Ree and Jensen, Reference Note 3).

of the item yields the useful resulft that one can obtain
ll. The Problem

sample-free item calibration as well as test-free person :
The Rasch model has many practical benefits if it fits.

=
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measurement. There are many more reasons why a latent trait
It can never fit exactly however, because there are always

formulation is an important one (see for example, Raséh, :
d|s+urbances. These disturbances often take the form of;

1960; Wright, 1968; Lord and Novick, 1968; Wright and ‘
guessing (a person of low ability gets a difficult item

Panchapakesan, 1969; Bock and Wocd, 1971; Wright, 1977;
correct) and sleeping (a person of high abilify'gefs an easy

=
o

. Hambleton et al, 1978; Wainer, Morgan and Gusfafsson, 1979). .
item wrong) (Wright and Mead, 1977). The model has a

f"»#w"”:ﬂ

The problem in harvesting the benefits of latent trait ;
: certain amount of robustness with respect to such

models is the problem of fit. These benefifs only follow

gy

aberrations, but +they can make the estimation procedures

L i e s e 5T e e e 4
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when the model fits. Studies of robustness (Lord and Novick,

*

g )

both biassed and inefficient. The problem, Then: is how to

1968, p 492) indicate that certain parameferﬁ.are robust . S
estimate The parameters of interest accurately and

with respect to modest deviations from the underlying
efficiently even when the data don?’t fit the model. .
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4 assumptions; in particular it seems that the Rasch mode!
11l1. Some Choices

{E . yields rather good estimates of ability and difficulty even
"As a way to deal with this problem we shall consider

- s
[

when its assumption of equa!.slopes is only roughly

five different estimation schemes. We shall compare these
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; | £ Scheme 1 = Pure RASCH

alternatives over a variety of simulations. _We shall assume This is the standard maximum likelihood h.fh d }
, . me o or

) . s . . h . ) g . - - '
that item difficulties are available and that all that is to L estimating Rasch abilities given a vector of item

==

PR

be estimated are person abilities. This is a rcasonable

difficulties. It relies on the Rasch model property that

assumption because we can increase the calibration sample f ¢ : s ; : sy
‘ raw score is a sufficient statistic for ability. £Each raw

s}

at i w f it individuals ho ha unusual . ]
gre ly, winno rom ndivi w ve un score has a distinct ability associated with it. To find

1 v
< s g M
, g: patterns of response and so get a sub-set of individuals who 5} iz what it is we solve the equation shown in (1) for a,;
. ; " ] . 1 . . . . . :1, ‘ R
| g: are not 'noisey These individuals can ‘then be used to get i ?ﬁ usually through Newton-Raphson.
i . ; 2’
¢ good estimates of item difficulty. However, the dual is not | E '
L £ Fi = SUMjIpjjl= 0
; Ev true, we cannot give a test of great length, and when we are Tﬁ EE or ) . (1)
; reporting on persons we cannot eliminate individuals who do 'ﬁ
| i. . T [% Fi - SUMjlexplaj-d;)/(1 + explaj-d;))1=0
not behave exactly as the model dictates. We need to do our vﬁ Bl where ri is the raw score for person i.
gz best to estimate abilities for everyone. Qur task is to ’% %g ‘ Scheme 2 - Traditional Correction for Guessing
S ¢ . . . L . . L {2 _
) explore various estimation methodologies which assume the ﬂg The traditional guessing correction is fo assume that if
.availability of item difficulties and try fo estimate S a person does not know the answer to a question and guesses,
- . . . 1
ability as accurately and efficiently as possible. It may be 3 - than the probability of guessing correctly is 1/M, where M
. . . I » .
that some of the techniques we describe will be of some use 4t is the number of choices. Thus if we have an M choice test

in the estimation of item difficulties as well, but this is

and an individual has C wrong we assume that he has an

not our primary motivation. additional C/(M-1) correct that he guessed on. This is a

The Rasch Model

=

crude attempt to put a lower asymptote on the item

Pi'=9¥P(ai'dj)/[1+exP(ai’dj] characteristic curve.
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Scheme 3 - Jackknife
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Where Phjis the propabﬂify of person i gefTiHQ item | -ﬁl The Jackknife is an estimation scheme.which was

) correct . — f'.r | developed to reduce biag, and has been shown (Tukey, 1958)

| ?§ and ‘ ' ' ) ‘ i} to be useful for hypothesis fTesting as well. The w%y That it
; - a; is the ability of person | (i=1,«e.,N), and . , - works in our application is to construct a matrix of
5% {i . dJ is fhg_difficulfy of item jJ (j=1,e4¢q,L) , :?‘ g% abilities A which has L-1 raw scores labelling the rows, and
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L+1 columns. The first column, with elements A(r,1) are the

abilities associated with raw score r, calculated through

+he method described in Scheme 1. The second qolumn are the

abilities based upon a test with the first item
omitted. This test has only L-1 items. Each succeeding
column represents abilities estimated through Scheme 1 but

With +hat item omitted. Thus fthe kth column is a test of

length L-1 containing all itfems except item k-1.

The Jackknifed pseudovalues'of ability are:
a.¥% = - - . - i - . H
J LA(r, 1) (L l)liA(r 1,j+1) + (1 XJ)A(F,J+1)] (2)
0 if item j is answered incorrectly ‘
Where x. = '
J 1 if item j is answered correctly.

and the Jackknifed estimate of ability, a¥, is just the mean

of These aJ*vs.

a¥ = SUM.(a.¥/L]l= LA(r,1) - [(L—1)/LI
SUM ; [x A(r-l,J+1) + (1 ~xIACr, j+ D) ]
for j=1,L.
For reasons that will become clear when we discuss the

results of the simulations, it is important that we notice

+hat the Jackknifed ability estimates are easy to cbmpufe.

For any test all one has to do is to compute the matrix A

and then for each person to run across the matrix at that

‘subject's raw score adding up the entries in fhat row for
each item that is incorrect and jumping up one row for each
item that is correct. Jumping occurs because when an item is

correct the raw score for that person excluding that item is

one less.

Next, +here are two aspects of an esfimaforlfhaf concern
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.fhe three values

us. The first is that it reduces bias,

i.e. tThe effects of

odd response ganerns. The Jackknife was developed as a

method to reduce bias (Quenouille, 1956), so we have hopes

that it will serve this purpose. Secondly, we would like an
estimator that does not jump around too much with minor
disturbances in the response vector. This quéliTy has been

termed 'resistance! 1977), and corrésponds to ah

(Tukey,
esfimafor having a sampling distribution with a .small

vari . I~
iance 'resistant!

The Jackknife is known to be modestly
and so this quality is likely to be met in pracf}ce as well.
Let us see how estimation with the Jackknife works.

Consider a test with ten items whose difficulties are

uniformly distributed and span a range of four logits. These

difficulties are shown below:

-2.00 -1.56 =-1.11 -0.67 -0.22
0.22 0.67 T1.11 1.56 2.00
This yields the raw score—To—abiliTy tTransformation
matrix A, shown in Table 1.
Insert Table 1 About Here
Consider how one would estimate the ability for a

response vector of (1111110001). The raw score .is 7 and so

we sum the first six values associated with a raw score of 6

(since the first six items were correcf).

Next we add on

(associated with items 7, 8, and 9)

@associated with a raw score of 7 since these items were

incorrect and so omitting them still yields a raw score of
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7. Last we add on 0.68 the ability pseudovalue associated
with 'a raw score of 6 for item 10 omitted. S&mming these we
obtain a total of 11.63. Next we multiply by 9/10 [(L-1)/L]
and subtract from.11.50 (L x 1.15] yieldiné a Jackknifed
estimate for this person's ébilify of 1.03. Referring back
to Table 1 we see that a raw score of 6 yields an ability
estimate of .56 which would have been the result if we
treated this person's getting the last item cor}ecf as a
On the o?her hand

wild guess and changed it to incorrect.

if we fully believed this response his raw score would have

been 7 and his ability estimate 1.15. ‘The Jackknife weighs’

these two extremes and places the esfimafe beitween them.

Next suppose that the

response vector was
(1111110010). Then we find that the pseudovalue of .68
associated with getting item 10 correct is replaced with .73

(for item 9) and 1.45 is replaced by 1.37. The net result of

this changes the Jackknifed estimate from 1.03 fto 1.06. This-

is just what a sensible person would do, since the second
response pattern is more likely to have arisen through
"proper" test taking, and so indicates a somewhat higher
ability. |

It appears that the Jackknife does what we wanT,'alfhough
how well is yet fo be determined. We do gef‘fhe feeling
however from this demonstration that the variance of the
sampling distribution of the Jacgknifed ability is apt to be

small since wild disturbances in response pattern do not

cause wild variations in the ability estimates. To see this

b e S TSRS
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note that the ability estimate associated with Thp paffern
(0111111001) is 1.09. We Ieavé it to the reader to try other
patterns To’develop an intuition as to how this estimation
scheme behaves. The Jackknife is not insensitive to
response pattern (as Rasch estimates are) but does not jump
around much. This will be demonstrated in the results

sectione.

Scheme 4 - AMT-Robustified Jackknife

The pseudovalues obtained from Jackknifing suggest an
additional estimation methodology. Consider the response
pattern(1111110001) again. If we calculate the pseudovalue
associated with each item using Equgfion 2 we obtain:

ltem Pseudovalue
1.42
1.51
1.69
2.05
2.41
2.95
"3. 17
"2-36
—1055
5.38

QUWONOUVHBWWN-—

-l

The mean of these pseudovalues yields the Jackknifed
estimate of ability. Now consider these pseudovalues , and
how.fhey.are combineé in the Jackknife. There are two kinds
of pseudovalues ; negative ones associated with incorrect
responses, and positive ones associated w}Th correct
responses. The Jackknife could be understood as first
averaging the negative ones, and so coming cut with an
average ability estimate based upon

‘items missed, then

averagingjfhe positive ones for an ability esfimafe from the
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Kg scales parameters THETA, and SIGMA of a samb]e from a

g- items gotten right, and then combining these two averages,

welighted by their sample sizes to yield the final Jackknifed : )
) population with known shape leads to equations of the form:

gﬁ estimate. We know that the mean can be a poor way to ' .
- ) SUM. (-f1(z;)/f(z;)] = 0
estimate location. In some situations (Andrews et al, 1972) J J J !

b and
E it is the worst of all choices. Since we are concerned {E
| SUMy fz581(zy)/f(z5) - 11 =0
i about unusual situations, perhaps.the performance of the iﬁ J J J / J? !
. ‘ where f is the density function and z., = (x: - THETA)/SIGMA
Jackknife can be improved through the ¢hoice of an estimator J J )/
. ; M-estimates of location are solutions, T, of an equation
E‘ of location more robust than the mean. i
. | o= of the form
Suppose we calculate the median of the positive 1
. 19 SUM. PSI[(x;-T =0
{; pseudovalues. This is 2.05. The median of the negative 3t @ J J )/s]
- 4 where PS| is an odd function and s is estimated either
pseudovalues is -2.36. Weighting these by seven and three ¥ g% ’
{: i independently or simultaneously.
respectively, summing and dividing by ten yields an
- . : I The Sine M- Estimate (AMT) is an M-Estimate in which the
[ estimated ability of .73. Whether or not this is better than ﬁ '
3 ! function PSI is: .
3 the Jackknifed value of 1.03 is hard to say, but it is ‘ q 7
] . 4l Sin(x/2.1) fx9 < 2.1
! certainly in the ballpark. @
: 5 mmmmmmmmmmemmmemmem e mm oo "N PSI(x) =
L 4] : 0 otherwise
Insert Figure 1 About Here :
- Es The fourth scheme then is to use the AMT estimator on the
L e e e a5 e o S GO o e S e o S o T A A S e :

positive and negative pscecudovalues separately, obtaining two

. One of the winners of the Princeton Robustness Study . .
. . - (} estimates of ability. These two estimates are then weighted
( 2

. (Andrews et al, 1972) was the Sine M-estimator (the

‘ ] ' , by the number of observations that went into them and
- AMT). This estimator has an influence function that is %ﬁ : . ‘
%; f summed. The resulting value is then divided by the total
nearly like that of the mean for observations in ciose but i .
: A . . number of items and the result is the AMTed Jackknifed
g: goes to zero at the extremes. This implies that it will be ﬁg . .
- : : r estimate.
efficient for nearly Gaussian distributions and robust (I
) : A g@ We expect that when the test response pattern is
against fat tails and outlierse. ==

reasonable (i.e. no responses are obtained which are

To understand how the AMT is calculated consider that in ]
unlikely based upon the Rasch Model), the AMT-Jackknife will

‘regular cases', likelihood estimation of the location and : ‘
. ; . look like the -normal Jackknife. But when there are some odd

. . K b .
. . N R ) R ) o - T e T T T -
- - - = - SRR it § Tt d o . - il
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responses, they will not be counted as heavily, and so |
. ' . ‘ | a How one characterizes individual respcnses in a
g produce an estimate which is less affected by guessing and : . '
s simulation is critically important to its outcome.
sleeping, while retaining the Jackknife's narrow sampling ai -
. i B Certainly if one built arn estimator that matched the
distribution. . '
o responsc generator that estimator should win hands down in
Scheme 5 - WIM ﬁ
gj any competition. The validity of such investigations depends
Wright and Mead (Reference Note 4) developed a method for
i upon how the response model! matches reality. We decided that
g: estimating ability in the Rasch mode! based upon an analysis ] .
‘ a reasonable model for responding has the following
of the residuals. Their method ottains an initial estimate !
E . ; @ . characteristics:
of ability from raw score and it's associated standard
- 1) Need - A person guesSses if he/she has a need to
{ error. Then it calculates the residual of each item's I guess. This is a funcrtion of the extent to
3 which the item is more difficult than the
response for that person by subtracting from the response , person is able. If someone thinks they know
?E answer they will not guess, if they don't they
the probability of i1 being correct. These residuals are U might.
standardized and a t-statistic calculated for the fit of @ 2) Invitation - this Qs a function of the item
o }; unrelated to its difficulty (usually a function
this person's response pattern. If this t is greater than of the distractors). Some items invite one to
: T guess -+ others discourage it.
some chosen value (say t=2), then all. items more than two ﬁ
3) Inclination - A function of people unrelated to
logits above the person's initial abilify estimate are ability. Some people like to guess (risk

takers?) and others do not (risk avoiders?).

==!

4) Glitch - This represents something unexpected that
may be an item~-person interaction unrelated to
ability, difficulty, inclination or invitation,
a way for the best laid plans to go wrong.

is obtained based upon the shortened test. This process is

=

repeated until an acceptable t is achieved or until the tfest

E: omitted from that person's test and a new ability estimate

gets too short to work with. } The guessing model is:
. ' This estimation scheme (WIM) was also included in our - o ’ ’Trij=Pij+(1'Pij)(Vj+Ci‘VjCi)/UJ
:—;‘.‘ i .
‘ tests. The subroutine which does WIM estimation was written - where, |
%E : by Ronald Mead. Our results with this method reflect only on gz ’ﬁ:J is the probability of person i1 getting item
the method as we received it. We did not try to ftune it by correct
) : :
varying the critical t-value. It could be that it's 'h' © P.. is the probability of person i getting item j
) o ¢drrect based upon the Rasch model which is given
performance would improve with fine tuning. . earlier. The need to guess arises when Pij is small
ai : , o ég because d; is larger than aj. '
‘ IV. The Guessing Model . ' ; CemeT

V( is the invitation to guess associated with item j
/] ‘ 0 2V, <1 -

T VPRI
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Ci h inclinafionkfo guess associated with person i

is the
(0-<-Ci-<—1)

Uj is the number of alternatives for ifem j.

The actual response that was generated by this model was
determined and it was allowed fo remain with probability 1-G
(where G is the Glitch factor) and was changed with
probability G, the generating parameter included to stir up
trouble and add noise.

VY. The Simulation

There are a large number of things to vary in a

simulation to get a full picture of what is happening. This.

simulation had -eight factors which were systematically
varied and on which all ' five estimation schemes were tried
out. These were:

1) Difficulty disftfribution (3 levels) - There
were three distributions of difficulties
that were used; uniform, Gaussian and
bimodal. The bimodal distribution was
generated by constructing a uniform
distribution and leaving out the middle
half.

2) Test length (3 levels) - We simulated tests of
three lengths, short (10 items), medium (20
items) and longish (40 items). Longer tests
were not used because the generalizability
of results would increase only slightly but
computer costs would multiply. '

3) Test width (2 levels) - Two test widths were
simulated, narrow (2 logits) and medium (4
logits). Wider tests are in use, but that
aspect must be left for another day.

4) Number of alternatives (two levels) - Tests
with five choices were simuiated since that
reflects a common test format, as were
tests with two alternatives (true-false
format) which represenfts an extreme case.

- 5) Ability (4 levelsf - Four levels of abilify’

=

B B

 —a
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were used; Extra Low, Low, Medium, .and
High. Typically we chose as Extra Low an
ability that was the same as the easiest
item on the fest. Medium was typically
chosen as zero, with.Low halfway between
them. High was usually symmetric with
Low. Therefore with the difficulties shown

previously the four abilities chosen would
be -2, -1, 0, +1. There was some variation
in this choice which will be explained
later.

6) Invitation to guess.(3 levels) - this ranged
from low (0.0) to medium (0.5) to high
(0.9). : -

7) Inclination to guess (3 levels) - The same as

Invitation. As is evident from the response
mode! these two parameters are symmetric in
their effect and so only the six
interesting combinations were used.

8) Glitch (3 levels) - Glitch is meant to convey
rare, or at most, seldom frouble. Thus we
used three levels of glitch, none (0.0), a
littlie (0.1), and a lot (0.4). Note that a
gliftch of 0.5 is maximum, in that it will
make the expected score for any response
pattern the same (L/2).

The Dependent Variables of the Simulation

Two aspects of estimator performance are of
interest. The first is accuracy -- how different is the
estimate of ability obtained from each estimator from the
ability parameter which generated the response vector. We
have summarized this by the mean difference between
estimated ability for each egfimafor and the generating
parameter. In the course o% the simulation this was
sometimes violated because as a response vector was
generated it was checked to see 1f it was estimable. In
particular if a response vector had a raw score of 1 or

lower or L-1 or higher it was not used and another was
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generated. This resulted in a ftruncation of the ability
distribution. This truncation caused the low abiiify g;opps
to have a somewhat higher ability.than the generating
parameter would indicate, and the High'abili?y group to have
a‘slighfiy lower ability than the generating parameter. To
correct for this we estimated the Rasch ability without any
noise for a particular simulation szuafiop (a specific
length, width, distribution and glitch) and used the pure
Rasch ability estimates as the basis of comparison for that
simulation. Hence hhen there is no noise the Rasch estimates
have zero bias by construction.

The second aspect of estimator performance that

‘interests us is the variance of the sampling distribution of

t+hat estimator around it's own mean. -Of course the smaller

this is the better the estimator.

We combined these two measures of estimator performance
into a total variance figure by adding together the weighted
squared bias (analogous to the between sum of squares) to
the sampling variance (the within sum of squares)'using the
usual synthesis of variance weightings. This represénfs'fhe
ove}all éfficiency of each estimator. We then found that
estimator which had the smallest effiéiency for that sample
and divided each estimator's efficiency into iT to obtain

relative efficiency. |+ is this figure that we shall report.

Vl. Results and Discussion

Obviously, with a design consisting of almost 4,000

cells and five estimators per cell it would be impractical

Ty
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to attempt to present all the results. Instead we shall
present selected findings representative of the main
effects, and comment on sdme important interactions and
trends. The principle effect is that there was a real winner
-- the AMT-Jackknife. The AMT-Jackknife won not because it
was the most bias free, although it did reasonably well in
that regard, but rather because of its extremely small
sampling variance. .

Before going on to the noisey simulaf{ons let us
consider the uncontaminated situation. It would seem Théf
any estimation scheme proposed'musf do reasonably well in
this situation before it can be considered a viable
alternative to ordinary mefhdds.

Table 2 shows the retlative efficféqcies of fhe-five
estimators for three test léngfhs, two different widths and
four abilities. These are rounded to one decimal placeAfor

usefulness.

- B G G - - - — > o g e e S B S ey B e o G et S G o= Wi EE e S
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The results for a.uniform d{sfribufion of difficulfi;s
are striking for two reasons. First, the superiérify of the
AMT-Jackknife (followed closely by the standard Jackknife)
is evident. This assures us that the Jackknife is a viable
scheme. The second observation leads us fo check the

FORTRAN code. The Rasch maximum |ikelihood estimator is not
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the most efficient! . This counters expectation since maximum
likelihood is supposed to yield estimates with minimum

variance. Why does that fail to happen in this case? The

answer is that the superlative properties of maximum

Iikelihood are asymptotic. As fest length increases tThe
relative efficiency of the Rasch estimator goes up from 70%
to 90%. The WIM estimator behaves in the same way. i+
would seem that 40 items is not epough for a;ympToTic
properties to triumph over Jackknife properTieé. ‘This
finding leads us to reconsider using maximum |ikel!lihood with
short tests without further thought. Replacing maximum
likelihood with AMT-Jackknife may benefit short test
applications. We are not tThe first to observe that maximum
likel ihood dbes not accomplish everything one would desire
from efficient estimation. Lewis (1970) in studying methods
for‘The estimation of thresholds of sen§i+ivify curves (a

probiem. similar to the one we are examining) found that

‘maximum likelihood was unsatisfactory and used instead a

scheme based on order statistics (The wCountback Method").
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Continuing to explore the efficiency of These five
estimators in the errorless situation we see (Table 3) that

+he same structure observed for a uniform distribution holds

for a Gaussian distribution. Once again the AMT-Jackknife:

is the winner, followed closely by the sfandard Jackknife

=)
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and then Rasch and WiM. In all situations the Traditional
guessing correction is an abject }ailure. This is not
unanticipated since it {s making corrsctions for a
disturbance that is totally absent. As we will see later,
its performance improves when guessing does occur (not
surprisingly). Incidently, WIM, which -is the mosf*
compufafionaily expensive procedure, {é especially expensive
for Gaussian and Bimodal disTribuTioné of difficulfy.. More
iterations are required for convergence in these sf+uafions
than when the difficulties are uniform.

Table 4 shows the efficiencies for a bimodal
distribution with essentially the same structure evident
that appeared with the other two distributions. WIM
es*imafes were not obtained for a.40 item test (width 2)
when the procedure had not converged after 100 seconds (on
an Amdah! /V6). It was felt that any informafion obtained
from such a result would not be worth the cost/effort.

One conclusion is clear; when.There is no.guessing, wé
can improve on the maximum likelihood estimator of ability
in the Rasch model for tests of modest length (less than 40
items or so). In this noiseless situation there is little
to choose between the robust AMT-Jackknife and.fhe standard
Jackknife. - The AMT is a'biT better, but uses a bit more

effort in its computation. We also found that the

“traditional correction for guessing if applied when guessing

'Is absent can have disastrous effects upon the efficiency of

estimation. WIM, works as well as straight Rasch estimation

FORENIEEERERS PRt
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when there is no guessing, although it does lead to a bit of
shrinkage due to the shortening of tests when unusual
residuals occur by cﬁance.

Some Guessing

The next step in The.explorafion of estimators of
ability is to study their behavior with a little bit of
noise. Tables 5, 6 and 7 show the reléfive efficiencies for
the three distributions Qifh guessing invitations and
guessing inclinations set at 0.5. Even a cursory examination
shows that the structure observed in the no noise situation
still obtains. The AMT-Jackknife and the standard Jackknife
still lead, Suf WIM and Traditional corrections are
gaining. The bimodal distribution seems to Trouble the

Jackknife more than its robustified version, but both seem

" to do tolerably well. As one would suspect, at lower ability

levels schemes which are designed to deal with guessing
(WIM and Traditional) work to their best advantage. A%
higher abi[ify levels this is not the case. Jackknifing

schemes do better on narrow tests than wide ones (t+his

- observations has been confirmed by examining their behavior

on very wide tests of 6 to 8 logits and noting a
deterioration of performanﬁe. This is especially marked on

8 logit wide tests for the AMT).
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but less stronglys. The two Jackknife methods ﬁemain-fhe
schemes of choice, especially for ability individuals above
the mean. But as the data get increasingly noisey each
estimator reacts in its own way. The Rasch estimator yields
the same score fof all raw scores of the same value,
regardless of how that raw score was obtained, but indicates
its displeasure by yielding a poor goddness-of—fif statistic
for misfitting persons. WIM reacts by shortening the test,
telling us in essence that only a small portion of the test
responsé vector obeys the Rasch model. The Jackknife methods
react by regressing the scores toward zero (increasing bias

but reducing variance of sampling distribution) but

increasing the standard error. Thus saying that the

information on this individual is small.

More Guessing

Let us continue to follow the pattern by considering the
same three distributions of item difficulfty, but this time
with a great deal of guessing. Tables 8, 9, and 10 show the
results when guessing invitation and inclination are both
set to 0.9.> This yields a situation in which a person
guésses Qhenever he doesn't know the answer ahd is identical
+o0 the situation posited in the derivation of the
Traditional guessing correction. In this sifua+ion we would
expect the Traditional method to shine and it does do well,
but only when the test length is great enough to overcome

its small sample inefficiency.
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Once again the same pattern of results emerges. For
short tests the Jackknifing schemes work best, with the edge
always in the direction of the AMT. .As fests get longer (40
items) the Traditional guessing correction starts to work
quite well. WIM on the other hand i; disappoinT{ng,.doing
scarcely better than just a straight Rasch esfima+e. This
must be interpreted, however. WIM reduces measurement bias
quite well. But in doing so it also decreases test length
substantially, one could argue that the length of test
evaluated by WIM, after eliminating items with large
residuals, corresponds to the test that the testee actually
took. However, the reduced test length has the concomitant
effect of increasing the standard error of measqremenf, and
this causes its disappointing showing in'fﬁe efficiency
statistic.

Guessing + Glitching

.Sincg the distribution of difficulties does not "appear
to have much effect on the behavior of the various
estimators, we shall confine the remainder of the results we
repo%f to one or the other of the disTribufion;, with only
side comments if the results differ substantially when
another distribution is used. (Ilncidentially for an
extremely bimodal distribution in which all items are piled

up at the extremes, the AMT will not work at all).
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Table 11 shows the reaction of the various estimators
to Glitch of 0.1 over several test widths and for different
amounts of guessing. There are no surprises. The
deterioration of performance of the Jaékknifing estimators
with increased test width is visible but not too bad. The
AMT is always superior to the standard Jackknife. Under all
conditions Jackknifing seems to be the best choice for
higher ability individuals..Jackknifing also works rather
well for correcting guessers, but.there the other methods
may be better. We have only reported results for tests of

length 20 in this Table, but this is representative of the

" general findings. The Jackknifing methods do relatively less

well with a test of length 40, and do relatively better with
a test of length 10.

True/False Tests

If the number of alternatives is shrunk from five to two
we. find much the same results. With no guessing the
Jackknifing methods do best with an edge to the AMT. As
guessing gets increasidgly prevalent fhe'Tradifional
correction scheme works better. But we still find that for
high abilities the AMT method is superior in efficiency to
all others.

Vils Standard Errors

The Rasch standard error is,
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Rasch(s.e.) = I/SQRT{SUMJ(piJ(1-piJ)1}_.

for each ability level i. This accurately reflects what was
observed empirically for the Rasch ability estimates in our
simulations. The standard deviations of the sampling
distributions, when there was no guessing, was about what
this equation would predict. I+ underpredicted tThe
variability observed when there wés noise. The WIM standard
error is calculated in the same way as the Raséh, except
for a test of reduced lengthe. This seems to acéurafely
reflect reality for the situations we Tesfed.' .

The Jackknife standard error is calculated directly from

+he pseudovalues by: .

Jackknife(s.e.)= SQRT[SUMJ<aJ*-a*>2/<(L-1)F>l
and is known to be a conservative estimator. This is
certainly ftrue in this case. |+ tends to overestimate the
actual s.e. by about 50% for test lengths of 10, by 25% for
test lengths of 20. Buft it is just about right for test
lengths of 40.

There are several candidates for estimating the standard
error of'fhe AMT, buf our investigations are insufficient fo
be able to recommend one at this time. |+ seems reasonable

a better

‘+0 use the corrected Jackknife standard error until

choice is found. The Jackknife s.e. will almost certainly

be conservatively large.

Vill. Conclusions

This investigation sought to find and test alternative

methods for estimating ability under the Rasch model in the
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face of plausible noise. We did this by using some recent
developments in robust estimation, without adding.ﬁarame}ers
to the model and so retained the Rasch model's attractive
attributes. |In our investigation we-found that gains in
re;overing abilities in the presence of guessing and

untoward responses of other kinds can be obtained through

the use of a robustified Jackknife. BuUt we also found that
specially developed models aimed at the lower énd of the
ability continuum may be able o accoﬁplish this béffér than
these general tools. WIM worked when there was guessing, and
aided in increasing the accuracy of egfimafion for low
ability Tesfees.-The Traditional method worKked when there
was a lot of guessing, the test was long, and the ability
of .the testees was low. ’

A surprising finding was that for short tests of 10 or
20 items the Jackknife estimators, with a significant edge
to the AMT version, yielded better esfiméfes of abiltity than

the maximum like!ihood estimator even when pre-condifions

for fpe Rasch model held. This increase in efficiency of
esfimafipn is especi?lly important for those applications of
latent trait modeis which use a limited number of measures
example the analysis of parole data.in Perline; Wright and
Wainer, 1979). In these circumstances the number of items
cannot be increased sensibly and the only alternative Is to

Improve the estimate of ability through other means. Thissen

(1976) attempted to do this by using a method Bock (1972).
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developed on the wrong answers, but this is verx_expen;ive'

compufaffonally and only applicabfe to multiple choice
items. Super efficient estimators may also be useful in
such applijcations as adaptive testing.

The simulations we did were very extensive,

nevertheless they barely made a dent in what needs to be

done. A careful study of estimators of standard error is

critical, as are the distributional properties of tThe
Jackknifed estimators. To our knowledge, no one has used
robust estimators in conjunction with the Jackknife before

and so nothing is known about that distribution. We believe

‘Jackknife estimates are t-distributed (although there is

difficulty in determining the effective degrees of freedom).
It ‘seems reasonable therefore to suppose that the robust
Jackknife will have a similar symmetric (albeit tighter)
distribution. This suggests that the Jackknife estimates of
standard error for the AMT estimator are conservative. Just¥
how conservative these actually are however awaits further
investigation. ' |

A second area of investigation that is still incomplete
are goodness-of-fit tests. Substituting robust estimates of
ability into the usual goodnéss—of—fifvequafiéns should
yiela a conservative estimate more realistic than those
usually obtained (which beéefif from capitalization on
we do not know to what extent the asymptotic

chance). But

properties of such fit statistics depived‘and/or described

by Andersen (1973), Fischer (1974), Martin-Lof (1974), and
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Wright and Stone (1979) applye.

The finding of improved estimation efficiency is an
intriguing one. Lewis(1970) pointed out that although
max imum |ikelihood estimates of Ioca{ion parameters of ogive
functions are asymptotically identical to minimum chi-square
esfimafes, they can be quite different for small
samples. Neither makes any claims for small sample efficacy,
but what is surprising is how large "small" can be, and how
#+ch of an improvement can be made using an alternative
procedure. Lewis found that asymptoticaliy optimal
procedures did especially badly in estimating accurate
confidence intervals around the location parameter. Perhaps
this too is an area in which the AMT—Jackknife will prove
useful. The questions are clear and imporfanf; and the
methodology for answering them is straightforward.

There are a number of other estimators which may improve
performance still more. For example, Ramsay &ié77)‘fodnd
that the E_ estimator has some advantages over the
AMT. Novick (Reference Note 2) has suggested several
Bayesian estimators that may have promise.

'fhe kéy point of }his paper is that for short tests the
ésympfofic properties of maximum |ikelihoad estimators are
not fully realized. Other methods increase efficiency. In
addition, these other estimators can correct for noise in
the data |ike guessing and so can increase vglidify. The
AMT-Jackknife may not be the best estimator of its type that

can be derived. Perhaps other variations on this theme can
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further in the direction of super-

efficiency. Nevertheless the AMT-Jackknife does seem to deal
well with the problem of guessing that is so pocorly handled

by trying fto estimate a lower asymptote of the item

characteristic curve.
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TABLE |
THE ABILITY-RAW SCORE CONVERSION MATRIX
Ability Omitting ltem (i)
Raw Ability All
Score |tems -
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1 -2.78 -2.32 =245 =2.56 =2,63 =2.68 ~2,72 =2.7% =2.75 ~2.76 =2.77
2 -1.83 -1.37 ~1.45 -1.54 -1.63 -1.69 -i.74 -1,77 -1.79 -1.80 ~-1.8I
3 -1.15 -0.68 -0.73 -0.80 -0.88 -0.95 =101 =-1.05 =-1.09 -l.11 =1.12
Y -0.56 -0.07 =0.10 -0,15 =0.21 =0.29 =0.35 =-0.41 -0.46 -0.49 -0.5I
5 0.00 0.51 0.49 046 041 0.35 0.29 0.21 0.15 0.10 ' 0.07
6 0.56 12 11 109 1,05 1.01  0.95 0.8 0.80 0.73  0.68
7° 1.15 .81 1.80 1.79 .77 L.7h 1,69 1,63 1.54 145 1.37
8 1.83 2,77 2.76  2.75 2.7% 2.72 2.68 2.63 - 2.56 2.45  2.32
9 2.78 ' |
| . h
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TABLE 2

RELATIVE EFFICIENCIES OF 5 ESTIMATORS 6N TESTS OF VARIOUS LENGTHS AND WIDTHS

GUESSING "INVITATION =0 ITEMS HAVE 5 CHOICES
GUESSING INCLINATION = 0O ITEM DIFFICULTIES HAVE A UNIFORM
GLITCH =0 DISTRIBUTION
LENGTH (Number of Items)
10 ) 20 Lo
WIDTH
(Logits)
Ability Ability Ability
X. Low Low Med. High | X. Low Low Med, High || X. Low Low Med.. High
RaSCh . 07 -7 07 a7 n8 -8. 0'9 08 9 09 -9 . 09
Traditional .2 .1 2 .2 .1 .1 .2 L .0 A .2 .3
2 Jackkni fe 1.00 1,0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1,0 1,00 1.0
AMT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
\'“M .7 07 a7 l7 8 .9 |9 18 9 -9 t9 . .09
Rasch 8 7 .7 8 .8 8 8 .8 9 .9 9 .9
Traditional 2 .2 .2 .3 | .1 2 A4 .0 .0 2 .3
L Jackkni fe 1.0 .9 .9 1.0 1.0 9 .9 .9 1.0 1.0 .9 .9
AMT 9 1.0 1.0 1.0 ot 1.0 1.0 1.0 1.0 1.0 1.0 1.0
WIM 7 7 .6 7. . 7 8 .7 .7 .9 9 .9
. = N N X
= s .
A w o 0
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| TABLE 3
i RELATIVE EFFICIENCIES OF 5 ESTIMATORS ON TESTS OF VARIOUS LENGTHS AND WIDTHS
!
| GUESSING INVITATION =0 . ITEMS HAVE 5 CHOICES
i GUESSING INCLINATION = 0 ITEM DIFFICULTIES HAVE A GAUSS!AN
b GLITCH =0 DISTRIBUTION
it
1
i LENGTH (Number of |tems)
ﬂ 10 20 . Lo
WIDTH
(Logits)
g | Abillty Ability Ability
/ 8l X. Low Low Med. High || X. Low Low HMed. High | X. Low Low Med. High
1% Y
I :
N Rasch 7 7T 8 .9 .8 .8 9 .9 .9 .9
| Traditional 2 . 2 .2 S I .2 .3 .0 A 2 .3
% g 2  Jackkni fe 1.0 1.0 .9 .9 1.0 1.0 .9 1.0 o 1o 1.0 1.0
o AMT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10
N WIM .7 .7 .7 .7 .8 .8 .8 .8 .9 .9 .9 .9
[ .
. 8 Rasch .8 .7 .7 .7 .8 . .8 8 .8 .8 .9 .8 .8
. H Traditional 1 .2 .2 .3 1o 2 b 0 .0 .2 .3
) b Jackkni fe 1.0 1.0 .8 .9 1.0 .9 9 .9 1.0 1.0 .9 .9
e | AMT 8 1.0 1.0 1.0 9 1.0 1.0 1.0 1.0 1.0 1.0 1.0
WIM .7 7 .6 .6 8 .6 8 .7 .9 .8 .9 .8
. r
- ' ’ ﬁ
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RELATIVE EFFICIENCIES OF 5 ESTIMATORS ON TESTS OF VARIOUS LENGTHS AND WIDTHS

TABLE 4

oy

78 IR I

GUESSING INVITATION =0 ITEMS HAVE 5 CHOICES
GUESSING INCLINATION = 0 ITEM DIFFICULTIES HAVE A BIMODAL
GLITCH =0 DISTRIBUTION :
— e e e e e e — -
LENGTH (Number of Items) ‘
10 20 40
WIDTH
(Loglits)
‘ Ability Ability Ability
X. Low Low Med. High || X. Low Low Med. High || X. Low Low Med. High
Rasch 6 6 5 .6 8 .7 6 .6 9 .9 6 .9
Traditional . R E . .2 . R B .2 .0 R .1 .2
2 JaCkkni.fe .8 07 56 -8 ]-0 07 .6 -7 i‘.o l-o ..6. ]-0
AMT 1.0 1.0 1.0 1.0 .8 1.0 1.0 1.0 .8 1.0 1.0 1.0
WIM .6 .6 .5 .6 8 .6 .6 b .9 .9 .6 .9
Rasch .8 .6 .2 .8 .8 .9 2 .9 .9 1.0 .2 .9
Traditional .2 R} .0 .2 1 R .0 .3 .0 N .0 .2
4 Jackkni fe 1.0 .7 .2 .9 1.0 1.0 .2 1.0 1.0 1.0 .2 1.0
AMT 06 ‘oo '-0 ]no 33 l7 '00 09 -2 -L" ‘-0 ‘05
WIM .7 .6 .2 .7 .8 .8 2 .8 3 & *
to
* * ¥ ':
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TABLE 5

RELATIVE EFFICIENCIES OF 5 ESTIMATORS ON TESTS OF VARIOUS LENGTHS AND WIDTHS

GUESSING INVITATION
GUESSING INCLINATION

GLITCH

.5
5
0

1TEMS HAVE 5 CHOICES

ITEMS DIFFICULTIES HAVE A UNIFORM

DISTRIBUT{ON

LENGTH (Nuriber of Items)

TS A |

N — ]

10 20 40
WIDTH
(Logits)
Ability Ability Ability
X. Low Low Med. High | X.Llow Low Med. High | X. Low Low Med. High
Rasch .8 .8 .7 .6 1.0 .9 .9 .8 1.0 1. .9 .8
Traditional .2 .3 .3 L IS .5 .5 5 1. 7 1.0
2 Jackkni fe 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .9
AMT 1.0 1.0 1.0 1.0 1.0 1. 1.0 1.0 1.0 1. 1.0 1.0
WIM .8 .8 .7 .6 1.0 .9 8 1.0 1. 9 .8
Rasch .9 8 .7 .6 9 1.0 .8 8 .8 1.0 9 .7
Traditional A .5 .3 L i) .6 .7 5 it 1.0 .7 .8
A Jackkni fe 1.0 .9 .8 .9 9. 1.0 .9 .8 8 1.0 .9 .8
AMT 1.0 1.0 1.0 1.0 9 1.0 1.0 1.0 .8 .9 1.0 1.0
WIM .8 .8 6 .5 1.0 1.0 .8 .6 1.0 1.0 .9 .7
k L . "i‘, %
R " N ) "4/ . b
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! _ TABLE 6
| RELATIVE EFFICIENCES OF 5 ESTIMATORS ON TESTS OF VARIOUS LENGTHS AND WIDTHS
? GUESSING INVITATION = .5 ITEMS HAVE 5 CHOICES
I GUESSING INCLINATION = .5 ITEM DIFFICULTIES HAVE A GAUSSIAN
l GLITCH = 0 DISTRIBUTION
3: LENGTH (Number of |tems)
i
I 10 20 Lo
%i WIDTH, :
{ (Logits) ' '
5 Ability Ability Ability
s , .
3 X. Low Low Med. High || X. Low Low Med. High | X. Low Low Med. High
i
: Rasch .8 .8 .7 .6 1.0 9 .8 7 1.0 -9 -8 -8
P : Traditional 3 3 g A B b .6 .5 50 1.0 710
i 2 Jackkni fe 1.0 1.0 1 .9 1.0 1.0 .9 9 1.0 .9 .9 .8
£ AMT 1.0 Lo 1 1.0 “1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
, a ;;‘: WIM .8' 08 -7 a6 ].0 9 '8 07 '00 09 09 .8
"
5 Rasch 1.0 .9 .7 .5 1.0 1.0 7 .6 1.0 .8 .8 .8
QA, Traditional L .5 L .3 .6 7 .6 qh 5 1.0 .7 .8
: i A Jackkni fe 1.0 1.0 .9 .8 .9 10 .8 .8 to .8 .8 .8
: - - AMT .9 1.0 1.0 1.0 .9 1.0 1.0 1.0 .9 .8 1.0 1.0
) IR WiM .8 .8 .7 .5 1.0 1.0 .7 .6 1.0 .9 .9 8
- ’ 2} ot oo e St o
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TABLE 7
RELATIVE EFFICIENCIES OF 5 ESTIMATORS ON TESTS OF VARIOUS LENGTHS AND WIDTHS

GUESSING INVITATION = .5 ITEMS HAVE 5 CHOICES
GUESSING INCLINATION = .5 ITEM DIFFICULTIES HAVE A BIMODAL,
GLITCH = 0 DISTRIBUTION

e

LENGTH (Number of |tems)
10 . 20 40
WIDTH .
(Logits) .
Ability . Ability Ability
X. Low Low Med. High || X. Low Low Med. High |[ X. Low Low Med. High
Rasch 8 .6 .5 .5 1.0 8 .6 5 1.0 .8 6 A4
Traditional 3 . .3 .3 2 N:) 6 WA 3 A_ 1.0 L .6
2 Jackknife 1.0 .7 .7 .7 1.0 .8 .6 .5 1.0 .8 .6 .5
AMT 1.0 1.0 1.0 1.0 .9 1.0 1.0 1.0 8 - .8 1.0 1.0
WiM 8 .6 .5 .5 .9 8 .6 .5 1.0 8 .6 o
Rasch .9 .6 .2 .7 7 1.0 2 .8 1. .8 2 .5
Traditional L L .1 L4 yh .8 .2 .5 . .6 1.0 1 .6
I Jackkni fe 1.0 .6 .2 .9 .7 1.0 .2 1.0 1.0 .8 .2 .5
AMT ‘ .6 1.0 1.0 1.0 L9 1.0 1.0~ A .6 1.0 1.0
WIM .8 4 .2 .5 1.0 1.0 2 .7 3 o S %
vy ha # “‘;'
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! TABLE 8
f RELATIVE EFFICIENCIES OF 5 ESTIMATORS ON TESTS OF VARIOUS LENGTHS AND W1DTHS
; GUESSING INVITATION = .9 ITEMS HAVE 5 CHOICES
| GUESSING INCLINATION = .9 ITEMS DIFFICULTIES HAVE A UNIFORM
i GLITCH = 0 DISTRIBUTION
[
il LENGTH (Number of ltems)
it 10 20 Lo
! WIDTH '
i (Logits)
Ability Ability Ability
;
.i X. Low Low Med. High X. Lew Low  Med. High | 'X. Low Low Med.. High
: Rasch .8 8- .7 .6 1.0 9 .8 .8 .7 .5 .8 .6
i Traditional T e N .5 7 9 1.0 .8 1.0 1.0 1.0 1.0
; 2 Jackknife 1.0 1.0 1.0 1.0 1.0 1.0 .9 1.0 g5 .8 .7
i AMT 1.0 1.0 1,0 1.0 1.0 1.0 9 1.0 7 .5 .8 .7
i WiN 8 8 .7 .6 1.0 9 .8 .8 7 .5 .8 6
|
B Rasch 1.0 .9 .7 .6 9 1.0 .6, 6 6 .5 7.7
5}: Traditional .6 .8 5 L 9 -9 1.0 6 1.0 1.0 1.0 1.0
g 4 Jackkni fe 1.0 1.0 .8 .9 8 1.0 .7 .7 .6 .5 .7 .8
| AMT 1.0 1.0 1.0 1.0 t .8 1.0 8 1.0 .5 .5 8 1.0
) WIM .8 .8 6 .5 1.0 .9 .6 5 .7 .6 7. .6
{ | b ‘ X ’
” v - ) ‘ 3 .‘f"
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TABLE 9
RELATIVE EFFICIENCIES OF 5 ESTIMATORS ON TESTS OF VARIOUS LENGTHS AND WIDTHS
GUESSING INVITATION = .9 ITEMS HAVE 5 CHOICES
GUESSING INCLINATION = .9 ITEM DIFFICULTIES HAVE A GAUSSIAN
GLITCH = 0 DISTRIBUTION :
LENGTH (Number of 1tems)
10 20 Lo
WIDTH
(Logits) :
Ability Ability Ability
X. Low Low Med., High X. Low Low Med. High X. Low Low Med, . High
Rasch .9 .8 ;7 .5 1.0 .9 .8 .7 7 .5 .7 .6
Traditional .5 N A i .6 8 .9 7 1.0 1.0 1.0 1.0
2 Jackkni fe 1.0 1.0 .9 .9 1.0 1.0 .9 .9 .7 .5 8 .7
AMT 1.0 1o 1.0 1.0 1.0 1.0 1.0 1.0 .7 .6 8 .8
W'M -9 ‘o8 .7 .5 ]-0 9 08 07 -7 AS 7 -6
Rasch 1.0 .9 .6 .4 1.0 10 .6 .5 6 5 .6 .6
Traditional .6 9 .5 " 1.0 .8 1.0 5 1.0 1.0 1.0 .8
L Jackkni fe 1.0 1.0 .8 .8 9 1.0 .7 .7 .6 .5 7 .6
AMT ].0 l.o ‘.O l.o .9 ° ].0 08 '.o .6 05 .8 l.o
WINM 1.0 .8 .5 N 1.0 9 .6 L 1.0 .9 7 .5
S i i ) i -;‘
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TABLE 10
RELATIVE EFFICIENCIES OF 5 ESTIMATORS ON TESTS OF VARIOUS LENGTHS AND WIDTHS

GUESSING 'INVITATION = .9 ITEMS HAVE 5 CHOICES
GUESSING INCLINATION = .9 ITEM DIFFICULTIES HAVE A BIMODAL
GLITCH = 0 DISTRIBUTION :
LENGTH (Number of |tems)
10 : 20 Lo
WIDTH
(Logits) ‘
Abtlity Ability Ability
X. Low Low Med. . High X. Low Low Med. High || X. Low Low Med. High
Rasch 7 .6 .5 U 1.0 .9 .6 5 .6 .5 .6 .5
) Traditional L A .2 L .8 .8 .8 L 1.0 1.0 1.0 .9
2 Jackknife .9 .7 .6 .6 1.0 .9 .7 .6 .6 .5 .7 .6
AMT . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 L6 6 1.0 1.0
WIM .7 .6 .5 A 9 .9 .6 5 .6 5 .6 .5
Rasch . 1.0 6 .2 i .6 9 20 .5 5L .2 .3
Traditional .9 .5 .2 R .7 1.0 L6 1.0 1.0 R .5
N Jackknife 1.0 .6 .3 .6 .6 .9 .2 .6 .5 yn .2 .3
. AMT .9 1.0 1.0 1,0 L1000 1.0 1.0 .2 R 1.0 1.0
. WIM 1.0 5 2 L 1.0 .9 .2 .5 ¥ % 0 %
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i TABLE 11
I , ,
| RELATIVE EFFICIENCIES OF VARIOUS ESTIMATORS OF ABILITY FOR A TEST WITH 20 ITEMS
; 'WHOSE DIFFICULTIES ARE UNIFORMLY DISTRIBUTED
! THERE 1S A RANDOM NOISE COMPONENT OF 10% (GLITCH = .1)
| 100 ENTRIES SAMPLED PER CELL N DESIGN
E WIDTH (Logits) '
|
i ' Amount 2 L 6
i of
i Estimator
i Guessing
i (v, C) Abllity Ability Ability
\f/}' v A
;; X. Low Low Med. High X. Low Low Med., High X. Low Low Med, High
. n »
1 .
éf Rasch 1.0 .9 .9 .8 - 1.0 .8 .8 .9 o7 .9 .5 .9
i Traditional .2 .1 .2 .3 B . .2 .3 .8 .2 .1 .3
o (0,0) Jackknife 1.0 1.0 1.0 1.0 .9 .9 .9 1.0 .6 1.0 .6 1.0
i . AMT 1.0 1.0 1,0 1.0 .9 1.0 1.0 1.0 L9 10 .9
B ; w'M l.o 09 09 -8 lco u6 c8 .8 ) ] ‘.0 07 -3 07
Rasch 1.0 9" .9 .8 .6 1.0 .8 .8 L9 6 .8
. Traditional .9 .5 .6 A 1.0 .6 .6 .3 1.0 .7 4 4
. (.5,.5) Jackknife 1.0 1.0 1.0 1.0 .6 1.0 .9 .9 R .9 .6 1.0
N ' AMT - 1.0 1.0 1.0 1.0 6 1,0 1.0 , 1,0 .3 .8 1.0 1.0
| WINM 1.0 .9 .9 .8 7 1.0 8 .6 8 1.0 .5 .6
Rasch 1.0 .9 .9 .8 7.9 .8 7 .3 .7 .6 .9
- ! Traditional .8 1.0 .7 .5 1.0 1.0 .7 L 1.0 1.0 .5 .3
| (.9,.9)  Jackknife 1.0 1.0 1.0 1.0 7.9 .9 .9 .3 .7 .6 1.0
! AMT 1.0 1.0 1.0 1.0 6 1.0 1.0 1.0 .3 7 1.0 .8
;}" W‘M ].0 .9 39 17 :8 ].0 u8 .8 -7 -9 .L‘ .6
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