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PREFACE AND SUMMARY 

This work was performed under grant number 78-NI-AX-01Z9 from 

the National Institute of Justice, one of several grants awarded for 

research in criminal justice evaluation methodologies. Methods are 

developed for analyzing individuals' crime commission data and for 

drmving conclusions about (1) those individuals' crime commission 

rates and (2) the distributions of crime commission rates for groups 

of offenders with specified characteristics. The methods are illus­

trated using results from the Rand Second Inmate Survey, one of several 

other related Rand projects concerned with policy-oriented research on 

criminal careers. 

Typical survey responses about numbers of crimes committed are 

uncertain within ranges and can be treated as censored observations. 

\ve use a method by Turnbull to obtain a nonparametric maximum-likelihood 

estimate for the empirical distribution of observed crime commission 

rates, including both censored and uncensored observations. 

We then examine these empirical distributions of crime rates to 

determine whether they approximately match standard distributional 

forms--Iognormal, Pareto, or gamma. No single form is satisfactory 

for all crime types considered in this study. Some types are fit by 

excluding a portion of the respondents reporting zero crime commissions. 

Counts of crimes committed--as distinguished from rates--are tested to 

see whether they follow a negative binomial distribution. Multivariate 

generalizations are also developed and explored. 

The commonly made assumption that each offender's crime commission 

propensities AI' AZ' •••• AK (for K crime types) correspond to K Poisson 

processes is not consistent with the data. Certain types of crimes 

appear to be committed according to Poisson processes; others appear 

to occur according to spurting behavior. 

A procedure by Hudson and Tsui is adapted to estimate each indi­

vidual's crime commission propensity from information about the number 

of crimes he committed during a meas~~ement period. Offenders are first 
i 

divided into groups according to their commission or noncommission of 

--l ~~~( 
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a particular crime prior to. the measurement period. A shrinkage esti­

mator of an offender's propensity for committing that crime is then 

obtained by shrinking his observed crime rate toward a value that is 

determined by regression for his group. The independent variables in 

the regression are crime commission covariates such as age, use of 

drugs, and employment. 

Populations of offenders who can be surveyed about their crime 

commissions (e.g., prisoners) tend to be unrepresentative of target 

populations of primary interest. We therefore develop models for 

stochastic processes relating target populations to survey populations. 

These models yield estimates of sampling probabilities for members of 

the survey population, allowing estimation of crime commission rate 

distributions in target populations. 

A complete summary of this study is presented in a companion 

Ieport, Methods for Estimating Crime Rates of IndividuaZs: Executive 

Swmnary, R-2730/1-NIJ, March 1981. 
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I. INTRODUCTION 

CONTEXT AND OBJEGTIVES OF THE STUDY 

In the criminal justice system, the processing of an indiv;i,dual 

suspected of committing a crime or convicted of a particular crime 

involves many decisions based on beliefs or experiences that relate to 

the degree and seriousness of the offender's criminal behavior. These 

decisions affect the disposition of the individual's case and the 

length of time--if any--he or she will be incarcerated after conviction. 

Differentidl handling of offenders can be found in many areas of the 

system, as the following examples illustrate: 

• 

• 

Law enforcement. Some large police departments and sheriffs' 

departments operate "major offenders units" to keep track of 

certain known habitual offenders and to arrest them when they 

* commit a crime. Because of the cost nf tracking, only indi-

viduals the police anticipate will commit numerous serious 

crimes are covered by such units. 

Prosecution. Some district attorneys operate "career criminal 

prosecution units," which bring special resources to bear to 

increase the probability of conviction of certain individuals 

when they are arrested, and imprisonment when they are con­

victed (Bronx County, 1976; Dahmann and Lacy, 1977; INSLA\>l, 

1977) • 

• Sentencing. In deciding whether a convicted person should be 

given probation or be incarcerated, judges often consider 

whether the conviction crime appears to be at' i.!'l0lated inci­

dent or part of a pattern of substantial criminal activity. 

And ~n establishing the length of sentence to be imposed for 

* Pate et al. (1976) describe the Perpetrator-Oriented Patrol in 
Kansas City, Missouri, and two predecessor projects in Miami, Florida, 
and Wilmington, Delaware. Additional police programs focusing on major 
offenders were instituted in Rochester, New York; Amarillo, Te;xas; 
Pueblo, Colorado; and Norfolk, Virginia. 



• 

-2-

particular crimes and combinations of crimes, especially when 

prior criminal record is taken into account, legislators may 

be influenced by their own beliefs about the kinds of records 

that indicate a person is a high-rate offender. 

Parole. When parole boards decide whether a prisoner should 

be released, they consider the chances of "parole success," 

which essentially means the probability that the individual 

will commit a crime or violate a condition of parole during 

a specified future time period (Gottfredson et al., 1978; 

Hoffman and DeGostin, 1974). 

Although decisions based at least in part on individuals' crime 

commission rates are made daily within the criminal justice system, 

and the people who make ~hese distinctions may feel quite confident of 

the correctness of their decisions because of extensive personal expe­

rience, research shows that it is exceptionally qifficult to predict 

accurately who wiZZ be a high-rate criminal offender, or even to deter­

mine from personal descriptors and criminal records who has been a 

high-rate offender during a specified period of time in the past. None­

theless, research also shows that most people who commit crimes commit 

only a relatively small number, while a few people commit crimes at 

substantially higher rates (Wolfgang et al., 1972; Peterson et al., 
• 

1980; Greene, 1977). In short, very-high-rate offenders do exist, but 

it is not easy to identify them. 

This report describes methods that can be used to analyze crime 

commission rates and thereby shed light on the problems of distinguish­

ing between low-rate and high-rate offenders. Analytically, the problem 

divides into two general categories of questions: 

1. Given the best possible information about an offender and his 

criminal behavior during a previous period, how can we estimate 

his crime commission rates during that period? 

2. For a group of criminal offenders with specified characteris­

tics, how can we determine the average rate of committing 

various crimes, the distribution of those crime commission 

" 
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rates, and the extent to which the rates of the specified 

groups differ from those of another group? 

The second category of questions avoids the problem of identifying 
" 

particular individuals as high-rate offenders by focusing instead on 

aggregate behavior. Methods for answering questions of this type can 

be useful for determining whether rules currently being used by police, 

prosecutors, parole boards, etc., actually distinguish the intended 

target group of high-rate offenders from others. The methods described 

in this study can also help in devising better decision rules for iden­

tifying offenders who should receive special attention or punishment, 

although other considerations certainly play.a role (e.g., the equity 

of treatment of similar persons in similar circumstances, the feasibil­

ity of obtaining the necessary' information for the decision rule in a 

timely fashion, and "just deserts" as applied to the conviction crime 

(von Hirsch, 1976; Morris, 1974». 

In addition, our methods can be used to analyze groups of of­

fenders defined by characteristics that are presumably unrelated to 

their crime propensities, such as the city or state in which they 

reside. By enabling investigators to determine whether a city with 

relatively low per capita crime rates has (a) relatively fewer crimi­

nals than other cities or (b) lower crime commission rates among those 

who are offenders (or both), these methods can help in evaluating the 

effectiveness of various governmental anticrime activities and the 

deterrent effects of city- and state-level sanction policies. 

Other Rand studies are examining prediction of high-rate offenders, 

decision rules for selective handling of offenders, and deterrence 

(Greenwood, 1980). To carry out that research, self-report data were 

collected from incarcerated offenders about the crimes they had com­

mitted during specified periods of time, and both self-report and 

official data were collected about offenders' characteristics that 

presumably relate to criminal behavior (Peterson, Chaiken, and Ebener, 

forthcoming). The analyses of these data yield estimates of the crime 

commission rates of the surveyed offenders, relate these rates to their 

personal characteristics, and extrapolate the results to more general 

populations of offenders. 
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The methods described in this report can assist in policy research 

and analyses that use any source of data concerning the criminal ac­

tivity of individuals. Our illustrative examples, drawn from Rand 

inmate survey data, do not answer the major analytical questions re­

lated to that survey, but rather show how our methods can be applied 

in practice. 

METHODOLOGICAL ISSUES ADDRESSED 

Our approach is based on the following general model of criminal 

* 1 behavior: There are K types of crimes of interest, and each crimina 

offender commits each of the crimes at a speci.fied rate (possibly zero) 

when free to do so. Thus, offender i has associated with him a vector 

(Al(i), A
2
(i), .", AK(i)) giving the expected number of crimes of 

type k he commits per year of "street time," Ak(i) , k = 1, 2, ••• , K. 

We refer to these parameters as "[underlying] crime commission propen­

sities" to distinguish them from the various estimated and reported 

commission rates that we will use in the analysis. 

~fuen incar<!erated, the offender is assumed not to commit crimes at 

all, which essentially means that crimes committed in jailor prison are 

not considered in this model. Naturally, the parameters Al(i) , ••• , 

A (1) may change with the passage of time, but we assume that they 
K 

are constant over reasonably short periods--l or 2 years--that are not 

interrupted by major events (e.g., imprisonment). Eventually the indi­

vidual stops committing crimes or dies. 

We assume further that for a selected group of offenders, it is 

possible to determine the number of each of the K crimes that each 

offender committed during a specified period of time, called the "mea­

surement period." This assumption reflects the conjunction between 

our work and the other Rand studies noted above. ~fuile data obtained 

from those studies are used in our illustrative examples, the assump­

tions and methods are not tailored to these particular data and should 

apply equally to other me~hods of collecting the required information. 

* Details and variations of the model are given later. 
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Given the data as described, we address the following issues in 

this report: 

• Characterization of the distributions of observed crime com-

mission rates for the selected offenders who provided data, 

fitting the distributions by parametric forms, and summarizing 

them by meaningful statistics. We are concerned with both the 

univariate distribution of commissions for each crime type and 

the multivariate distribution for all K crime types together. 

• Estimation of the crime commission propensities for anyone of 

these individuals, taking into account the group's overall 

distribution of commission rates as well as the individual's 

reported crime commissions and other characteristics. 

• Estimation of the distribution of crime commission propensi-

ties for more general populations of criminal offenders who 

differ in known ways from the selected offenders who provided 

data. 

A COMP9UND GAMMA-POISSON MODEL 

We can illustrate the interpretation of these m.ethodological is­

sues py a simple analytic example. This example is not intended to be 

correct in all respects--indeed, the discussions that follow challenge 

the example in nearly every particular. It was chosen, rather, for its 

pimplicity and because it serves as a base of comparison from which the 

analysis that follows can show what is not a reasonable assumption. 

In this example, each individual commits only one type of crime 

(or, equivalently, crimes are not separated according to type). Of­

fender i is assumed to commit crimes according to a Poisson process 

with rate A(i), and the number of crimes Y. that he commits in a period 
1 

of time of length T is measured. The assumption of a Poisson process 

means that Y. has a Poisson distribution with parameter A(i)T: 
1 

p(Y. 
1 

y[J..(i), T) 
(A (i) T) Y 

y! 
exp (-J..(i)T), y 0, 1, 2, ••.• (1.1) 
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It should be noted that if A(i) is nonzero, there is still a chance 

that offender i does not commit any crimes during the measurement 

period: 

p(Y. 
]. 

OIA(i), T) = exp (-A(i)T). 

To incorporate into the model the fact that different offenders 

have different crime commission propensities, we assume that the pro­

pensity parameters A(i) are sampled from a gamma distribution with 

shape parameter a and scale parameter S. Then the probability density 

function for each A(i) is 

f Q (A) a,.., 
sa a-I 

rea) A exp (-SA) for A > 0, (1.2) 

where the gamma function r is defined by 

r(a) 
a-I -u 

u e duo 

The mean of the gamma distribution of crime commission propensities is 

a/S and its variance is a/S
2

• 

Even though the underlying crime commission propensities are drawn 

from a gamma distribution, the distribution of observed crime rates 

YIlT, Y
2

/T, ••• , is not. The gamma distribution is continuous, while 

the observed crime rates can obviously take on only the discrete values 

0, liT, 2/T, 3/T, •••• In fact, the compounding of the gamma distri­

bution for A(i) and the Poisson distribution for y.IA(i),T can be 
]. 

easily shown (Johnson and Kotz, 1972, Chap. 5) to yield a negative 

binomial distribution for Y.: 
]. 

p(Y. 
]. 

ylT) 
y -
y' 

y 0, 1, 2, .... 

The parameters of this negatjve binomial are a, (S/(T + S»; its mean 
2 

is aT/B; and its variance is (aT(T + B»/B • 

- i 
i 
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If the model is correct, data giving the number of crimes Y
i 

com­

mitted by a random sample of offenders during time period T would be 

fit well by a negative binomial distribution. Then the parameters for 

the underlying gamma distribution Qre the a and S that belong to the 

estimated negative binomial distribution. 

If a subsample of offenders with known characteristics, e.g., 

those that committed at least one crime in the l'neasurement period 

(Y. > 0), the parameters that best characterize the resulting truncated 
]. 

negative binomial distribution could be estimated, and the parameters 

of the underlying gamma distribution would be deduced from that bino­

mial distribution. 

Consider now a randomly selected offender who has committed Y. 
]. 

crimes during a measurement period of duration T. Given that the 

crime propensities A are assumed a priori to have a gamma distribution 

with parameters a, B, the relevant information for estimating this 

offender's A(i) is the posterior distribution of ACi) given Y. and T. 
]. 

A standard calculation (De Groot, 1970, Chap. 9) shows this distribu-

tion to be gamma with parameters (a + Y.), ZS + T). Hence the expected 
]. 

value of A(i), given Y. and T, is the mean of this distribution, or 
]. 

E(A(i)ly., T) 
]. 

a + Y. 
]. 

B + T • 

This is the Bayes estimator for the crime commission propensity of 

offender i. It differs from both the ordinary estimator Y./T and the 
]. 

a priori estimator a/B, and in fact it is a weighted average of the two: 

where w = S/CB + T). 

a + Y. 
]. 

S + T 

Y. 
(1 ) --2:. + a 

- w T w S' 

It is the "best" estimate of A., given the data 
]. 

for offender i and the assumptions of the model. 

This example has illustrated the distinction between the observed 

crime commission rate and the underlying crime commission propensity, 

the possibility of estimating the distribution of crime commission 
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propensities even if the sample of offenders is not representative of 

the entire offender population, and the possibility of using an esti­

mate of A(i) other than Y./T. These notions appear repeatedly in the 
~ 

following sections. 

• 
. 
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II. UNIVARIATE DISTRIBUTIONS OF OBSERVED CRIME COMMISSIONS 

This section presents a method for characterizing the distribution 

of observed crime commission rates and estimating parameters of the 

distribution. The task is not straightforward because of problems 

inherent in obtaining data of the type required. We begin, then, with 

an overview of the nature of those problems as they would occur in 

almost any framework for collecting data. Next we describe the idio­

syncratic difficulties associated with the particular survey instrument 

used in the Rand Second Inmate Survey (from which we obtained the data 

used to illustrate the methods in this report). We then give a non­

parametric method for representing the data, along with parametric 

distributional forms. Finally, we examine the correctness of the 

Poisson assumption that is used in some of the models. 

THE FORM OF CRIME COMMISSION DATA 

In order to focus on issues related to the for.m of the data them­

selves, rather than on problems of inaccurate data, we envision a 

nearly perfect method of data collection. Suppose that 100 invisible 

and undetectable observers were assigned to follow 100 presumed crim­

inal offenders for a year, one observer for each offender. Suppose 

further that each observer recorded all criminal offenses committed 

by the offender to whom he was assigned, listing each of the offenses 

in one of K categories. For specificity, we assume K = 8. After the 

data were assembled at the end of the year, the following issues would 

arise in the analysis. 

Too Many Zeros 

The analysts might be interested in one of the eight crime types, 

say, motor vehicle theft (or auto theft for short). Upon examining 

the data, they would immediately find that a large number of the 

offenders had not committed any auto thefts during the year. These 
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people would belong to one of three groups: 

1. People who appeared to have experience in stealing cars, con­

templated doing so from time to time, but never got around to 

it during the measurement year. Perhaps if the measurement 

period had started on a different date or had lasted longer 

than a year, these indiViduals would have been observed steal­

ing a car. In terms of our simplified model, they are people 

whose A for auto theft is nonzero but their Y (number of auto 

thefts committed) happened to be zero, 

2. People who never stole a car (or perhaps stole cars at one 

time in the past, but not recently), didn't contemplate steal­

ing cars during the measurement year, and/or didn't appear to 

know how to steal cars. In terms of the model, these are 

people whose A for auto theft is zero. Perhaps they were 

chosen for observation a t f th 1 spar 0 e samp e 100 because they 

commit assault or some other crime, but their behavior in 

regard to auto theft is essentially irrelevant to an under­

standing of auto thieves. 

3. People who were in prison, jail, or a hospital for all of 

the measurement year (or nearly all) and therefore did not 

have a genuine opportunity to steal a car. They may have 

committed various other crimes while in custody, but not auto 

theft. Basically, the fact that their Y for auto theft was 

zero is not informative. Some of them may be very active 

auto thieves when free; others, not. 

In short. the fraction of the sample who committeG no auto thefts 

in the measurement year may not logically be expected to bear any par-

ticular relationship to the fractions that committed 1, 2, 3, auto 

thefts. In fact, if the sample of 100 is strati.fied in ( any way e.g., 
by the type of crime for which the offender was previously arrested), 

the stratification design can obviously affect the number of zero 

counts for auto theft. On the other h d "t" an , 1 1S not conceptually cor-
rect simply to ignore the zeros. In particular, we cannot define a 

:r I 
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member of the sample as an "auto thief" if he stole one or more cars 

during the measurement year, and then attempt to determine the distri­

bution of propensities for auto theft by treating the data as if there 

were no other auto thieves in the sample. 

Having identified the issue of "too many zeros," we can analyze 

the data in various ways that take into account the fact that the 

offenders with Y = 0 for a particular crime are an unknown mixture of 

offenders with A o and offenders with A > O. We shall try several 

of these approaches and show empirically which of them seem most use­

ful. It will be seen that ignoring the problem--Le., assuming that 

all offenders have a nonzero propensity (perhaps very small) for every 

crime type--is not a practical approach. 

Multiple Crimes in a Single Incident 

Consider the clever auto thief who has devised a method for 

diverting a railroad car containing 20 automobiles, removing the auto­

mobiles, and returning the empty railroad car to the train. Suppose 

he does this ten times during the measurement year. Depending on the 

observer's instructions, the thief will be recorded with a count of 

either ten auto thefts (Y = 10) or 200 auto thefts (Y = 200). The 

models used to analyze the data then have to match the definition of 

"crime" followed by the observers. If the definition results in a 

count of Y = 200 in the above example, then evidently the Poisson 

assumption in Sec. I is inappropriate. 

The situation is more analytically troublesome in the case of a 

single incident involving several different types of crimes. For exam­

ple, an offender steals a car, robs a liquor store, and shoots the 

cashier. Standard police practice would be to record the cl'ime once, 

under the most serious category--in this case, commercial robbery. 

However, such a recording method may easily obscure the fact that this 

offender did commit an auto theft during the measurement year. Both 

the distribution of observed crime commission rates for a single crime 

type and the observed structure of covariance among the commission 

rates for different crime types will be affected by the recording 

method. 

1 
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TI1ere is no general solution to this problem. We must simply be 

alert to the ambiguity and interpret the data correctly in light of 

the definitions used. 

Nobody is Average 

Typically, data of this type indicate that among those who did a 

given type of crime during the year, the majority did very few (say, 

1, 2, or 3 crimes). At the high end of the distribution are a small 

number of people who committed the crime at very high rates: In a 

sample of 100 offenders, one or two may commit more than 200 auto 

thefts in a year. 

Figure 2.1 illustrates this phenomenon for a subsample of pris­

oners reflected in the Rand Second Inmate Survey. More than half of 

this sample of prisoners who committed any of the listed crimes did 

* fewer than 20 crimes per year. 

It can be seen that the commission rates do not tend to cluster 

around the mean; in fact, nearly all rates are either near zero or 

over 300. (This observation is succinctly, if somewhat imprecisely, 

summarized by the heading, "Nobody is Average. ") Hence the mean is 

not a satisfactory descriptor of the distribution. Moreover, the esti­

mate of the mean is highly sensitive to the observed crime rates for 

the few offenders in the high tail of the distribution. Excluding 

these high values as outliers in the analysis is not satisfactory, 

because the people with high crime commission propensities are the 

" I 

very offenders in whom the greatest policy interest resides. 

The analysis, then, has to use robust methods that are not unduly 

sensitive to the exact estimated crime rates for high-rate offenders 

but, on the other hand, do not ignore them. 

SURVEY INSTRUMENTS 

The respondents to the Rand Second Inmate Survey (which is de­

scribed in Peterson, Chaiken~ and Ebener (forthcoming)) were male jail 

* The wording of the survey questions for the crimes included in 
Fig. 2.1 is explained below. 
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and prison inmates from selected counties in California, Michigan, and 

Texas. However, only the Michigan prisoner respondents were included 

in the analysis described in the present report. Since we are con­

cerned with methods of data analysis and not with the implications of 

these particular data, we shall not describe the sample design, field 

operations, or response rates. We shall examine only those aspects of 

the survey instrument format that are relevant for understanding the 

data analysis. 

The questionnaire asked a series of questions about crimes com­

mitted by the respondent during a measurement period of from 13 to 

24 calendar months. The period ended with the (earliest) month in 

which the respondent was arrested for the crime he was then serving 

time for, and it began with January of the preceding year. The respon­

dent used a calendar printed on a separate card and followed a series 

of instructions in the survey booklet to calculate the number of 

"street months" in his measurement period, Le., the number of months 

he was not incarcerated. The number of street months varied from 1 

to 24. Some respondents made obvious calculational errors and/or 

changed their minds about the number of street months after answering 

a few questions, so the data we received and processed included a 

minimum and a maximum estimate of each respondent's number of street 

months. If the number of street months was missing in the survey book­

let, it was assigned a minimum value of 1 and a maximum of 24. 

Ten types of crimes were included in the survey, but two of them 

(related to assault and murder) followed a different format from the 

other eight and are not included in the present analysis. The first 

question for each of the eight crime types asked whether or not the 

respondent did that crime during the street months. The eight crime 

types and the wording of the opening questions were as follows: 

~, I 

Crime 1: Burglar>1J. During the STREET MONTHS ON THE CALENDAR 
did you do any burglaries? (Count any time that you broke 
into a house or a car or a business in order to take some­
thing. ) 

Crime 2: Business robbery. During the STREET MONTHS ON 
THE CALENDAR did you rob any businesses? That is, did you 
hold up a store, gas station, bank, taxi or other business? 

~ ~-------~------
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Crime 3: Person robbery. During the STREET MONTHS ON THE 
CALENDAR did you rob any persons, do any muggings, street 
robberies, purse snatches, or hold-ups in someone's house 
or car? (Do not include any business robberies or hold-ups 
during a burglary that you already mentioned.) 

Crime 4: Theft. During the STREET MONTHS ON THE CALENDAR 
did you do any theft or boosting? That is, did you steal 
from a till or cash register, shoplift, or pick pockets, 
or take something from someone without their knowledge? 
(Do not include car theft.) 

Crime 5: Auto theft. During the STREET MONTHS ON THE 
CALENDAR did you steal any cars, trucks, or motorcycles? 

Crime 6: Forgery and cards. During the STREET MONTHS ON 
THE CALENDAR did you ever forge something, use a stolen or 
bad credit card, or pass a bad check? 

Crime 7: Fraud. During the STREET MONTHS ON THE CALENDAR 
did you do any frauds or swindles (illegal cons) of a person, 
business, or the government? 

Crime 8: Drug dealing. During the STREET MONTHS ON THE 
CALENDAR did you ever deal in drugs? That is, did you make, 
sell, smuggle, or move drugs? 

Respondents who answered "yes" to one of these questions were next 

asked whether the number of crimes of that type they did was between 

1 and 10, or 11 or more. (See Fig. 2.2 for an example of the format.) 

If the number was between 1 and 10, they were asked to specify it. 

If lIar more, they were asked to tell the number of months in whi~h 

they did the crime and supply a rate (number of crimes per month, per 

week, or per day). 

Because some respondents provided a range (e.g., "3 to 5 times 

per week") and others answered the question in several different places 

(e.g., "2 times per' week" and "6 times per month"), the data we received 

and processed included both a minimum and a maximum estimate of the 

number of crimes done. In many instances, respondents checked the box 

"I to 10" but provided no further information, so the minimum was con­

sidered to be 1, and the maximum, 10. Others checked only the box 

"lIar more" so their minimum was 11, and their maximum (effectively), 

infinity. 

Data for respondents who answered "no" to a screening question 

were given a special code indicating that their number of crimes of 

1\ 
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The next questions are also only about the STREET MONTHS ON THE CALENDAR. 
Look at the calendar to help you remember what you were doing during these 
months. These are months that do not have X's or lines in them. 

1. During the STREET MONTHS ON THE CALENDAR did yqu do any burglaries? 
(Count any time that you broke into a house or a car or a business 
in order to take something.) 

2. 

3. 

YES 0 1 NO O 2 '' go on to page 18 

In all, how many burglaries did you do? 

o 11 OR MORE 

~ 
Look at the total street 
months on the calendar. 
During how many of those 
months did you do one or 
more burglaries? 

__________ Months 

o 1 TO 10 
How many? , 
L/ ________ ~/BUrglarieS 
go on to next page 

4. In the months when you did burglaries, 
how often did you usually do them? 

(CHECK ONE BOX) 

EVERYDAY OR 
ALMOST EVERYDAY 

SEVERAL TIMES 
A HEEK 

.. 
, How many 

O-per day? 

H0w many / / 
O-per week? '-______ ..J 

EVERY HEEK OR Hmv many / / 
ALMOST EVERY WEEK 0 - per month? '--__ -1 

LESS THAN 
EVERY HEEK 

How many / / o - per month? '--____ ---" 

Fig. 2.2-Format of survey questions on business robbery 
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that type was reportedly zero. Data for respondents who failed to 

answer any of the questions about a particular crime were coded "miss-

ing." 

Thus, the actual data are less satisfactory than the data that 

would be produced by our ideal data collection method, in several ways. 

First, the sample of offenders studied is not a random subset of of­

fenders in the community. Second, because the data ,-Jere not collected 

contemporaneously with the crime commissions, but later, the number of 

crimes counted is subject to response error (lack of candor, poor 

recall, uncertainty about the relationship of the crime commission to 

the measurement period, etc.). Third, if the number of street months 

and/or the number of crimes is given as a range,:the reported rate for 

the respondent is unclear. In addition, due to the format of the ques­

tions, many respondents have exactly the same range in their response. 

Elsewhere in the survey booklet, the respondents were asked 

whether or not they had done each of the same eight crimes (a) in the 

two calendar years before the measurement period and (b) in the two 

calendar years before that. These data are also used in our analysis. 

NQNPARAMETRIC REPRESENTATION OF DISTRIBUTION OF OBSERVED CRIME RATES 

In light of the ambiguities and omissions in self-report data on 

the number of crimes an individuaL commits and his street time, it is 

not at all obvious how such data should be used to generate descriptive 

statistics on observed crime commission rates. With data having miss­

ing values and ranges, the empirical cumulative-distribution function 

is not well defined. Therefore, we shall describe how methods appro­

priate for censored data can be used to estimate the distribution of 

crime commission rates. This exploratory data analysis procedure is 

an important first step toward understanding the data before turning 

t:,O statistical modeling, using specific functional forms of the dis­

tributions. The estimated empirical distribution function described 

below can serve as a standard of comparison, when fitting functional 

forms to the data. 

The data to be used for this illustrative example came from 

Second Rand Inmate Survey responses from 440 Michigan prison inmates. 

, I 
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Three types of data elements were used for each of the respondents. 

The first element, "street months," may be either a number or a range. 

The second element, "number of crimes," is provided for the eight crime 

types listed above, each of which may have a specified number or a 

range. The third element, annualized "observed crime rate," is deter­

mined for each of the eight crimes on the basis of number of street 

months and number of crimes. For example, a respondent who reports 

6 street months and 2 crimes has an annualized observed crime rate 

of 4. For interval responses, a minimum crime rate and a maximum crime 

rate are calculated. For example, if the minimum number of crimes is 1 

and the maximum is 10, and the minimum number of street months is .3 and 

the maximum is 4, then the minimum observed crime rate is 12 • 1/4 = 3 

* and the maximum observed crime rate is 12 • 10/3 = 40. 

Among the various methods available for handling this type of data, 

we chose to use a technique proposed by Turnbull (1976) for estimating, 

by maximum likelihood, the empirical distribution function with arbi­

trarily censored data. Suppose that the crime commission rate for the 

. th . d· . d 1· k f 11· h· 1 [L R] h R ~ ~n ~v~ ua ~s nown to a ~n t e ~nterva .,., were . may 
J. J. ~ 

be infinite, and L. is finite with L. ~ R.. Then for any nondecreas-
~ ~ ~ 

ing function F, we can define the likelihood 

n 
L(F) IT (F(R.+) - F(L.-», 

i=l ~ ~ 
(2.1) 

where F(R.+) is the greatest lower bound of F(x) for x > R., and 
~ ~ 

F(L.-) is defined analogously. Turnbull (1976) shows that L is maxi-
~ 

mized by a function F* which is flat on a certain number of intervals 

(depending on the censoring configuration), just as a histogram is, 

except that the intervals are of varying length dictated by the data. 

Between the "flat spots," the value of F* may be arbitrary, as long as 

* This calculation yields a conservative estimate of the range for 
observed crime commission rate. Alternatively, the number of crimes 
and the number of street months can be considered as separately cen­
sored random variables, although this would require adapting methods 
for bivariate censoring (Nuiioz, 1980). 
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it is increasing. The algorithm for computing Turnbull's maximum­

likelihood estimate is an iterative one using the self-consistency 

algorithm. It requires an initial estimate of the size of the jump 

between the flat spots of the distribution function. If there are m 

flat spots, then m initial values summing to unity must be given (for 

instance, all m values may be initialized at 11m). 

Table 2.1 and Fig. 2.3 illustrate how the Turnbull empirical 

distribution function is calculated froIn observed commission rates for 

person robbery. The second column in Table 2.1 gives the nonparametric 

estimate of the distribution function on the indicated interval. The 

locations of flat spots and gaps in Fig. 2.3 clearly highlight some 

aspects of the data-collection instrument. For example, the estimated 

cumulative distribution function is flat between 52 and 60 robberies 

per year. This occurs because if a respondent committed over 10 rob-

beries, he can give a daily, ~Jeekly, or monthly frequency. Since once 

a week yields an annualized rate of 52.0, and five times a month yields 

60.0, if a respondent is filling in the questionnaire properly, there 

is no way he can give a rate between 52.0 and 60.0. (Of course, a 

respondent who reported, say, nine crimes in 2 street months would 

have an annualized rate be(:ween 52.0 and 60.0, but combinations like 

this are rare.) 

Similarly, the instrument design implies many other such "flat 

intervals." The censoring in responses is also apparent in the "gaps" 

in the distribution function where it is arbitrarily defined. For 

example, there is a jump from .949 to .955 somewhere in the interval 

between 25.8 and 34.4 robberies per year. All the respondents whose 

commission rates may be in the interval (25.8, 34.4) gave uncertain 

responses at least as broad as the interval. 

An advantage of plots like Fig. 2.3 is that they show exactly how 

artifacts and ambiguit~es of the data-collection instrument translate 

into uncertainties and irregularities in observed crime rates. Note 

that no assumptions about the functionaZ form of the crime rate ·dis­

tribution are needed in this analysis. For this reason, plots of 

cumulative frequencies are useful as first steps in the exploratory 

analysis of crime rate data and can permit comparisons with parametric 

distributional forms, discussed in the following section. 

l 
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Interval 

0.000-0.546 
0.546-0.571 
0.571-0.600 
0.600-0.632 
0.632-0.667 
0.667-0.800 
0.800-0.923 
0.923-1. 000 
1. 000-1. 091 
1. 091-1. 200 
1. 200-1. 412 
1. 412-1. 500 
1. 500-1. 714 
1. 714-1. 846 
1. 846-1. 895 
1.895-2.000 
2.000-2.400 
2.400-2.571 
2.667-3.000 
3.000-3.429 
3.429-3.600 
3.600-3.750 
3.750-4.000 
4.000-4.500 
4.667-4.800 
4.800-5.143 
5.143-5.333 
5.333-5.455 
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"'able 2.1 

TURNBULL EMPIRICAL CUMULATIVE DISTRIBUTION FlmCTION 
FOR PERSON ROBBERIES 

I 
Value of Value of 

Distribution Distribution 
Func.tion Interval Func.tion 

0.739 5.455-5.647 0.902 
0.741 5.647-5.714 0.905 
0.747 5.714-6.000 0.909 
0.751 6.000-6.400 0.909 
0.756 6.400-6.750 0.913 
0.758 6.750-6.947 0.917 
0.761 7.200-7.333 0.918 
0.775 7.500-7.636 0.919 
0.776 8.000-9.600 0.920 
0.785 10.000-10.500 0.924 
0.788 10.500-12.000 0.929 
0.792 12.000-14.400 0.934 
0 .. 806 14.4 -18.9 0.938 
0.819 18.9 ·-20.0 0.942 
0.824 20.0 -22.5 0.943 
0.829 22.5 -24.0 0.948 
0.834 24.0 -25.8 0.949 
0.838 34.4 -50.2 0.955 
0.840 50.2 -60.0 0.961 
0.849 60.0 -68.6 0.962 
0.853 92.9 -110.6 0.963 
0.858 110.6 -183.5 0.968 
0.861 190.5 -196.1 0.971 
0.872 196.1 -206.4 0.981 
0.879 206.4 -~58.0 0.986 
0.89l 258.0 -265.4 0.990 
0.894 265.4-·2528.4 0.995 
0.898 2528.4-4024.8 0.997 
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40 
Crimes per year, x 

50 60 

Fig. 2.3-Turnbull empirical cumulative distribution function 
for person robbery 

70 



-22-

FITTING PARAMETRIC DISTRIBUTIONS TO OBSERVED CRIME RATES 

Parametric distributional forms are helpful for describing data in 

a parsimonious manner and for developing conceptual models of criminal 

behavior. We are concerned here with the annualized observed crime 

rates, Yi/T
i

, where Y
i 

is the number of crimes committed by individual i 

during a measurement period of length T .• 
1 

We are dot aware of any earlier research that determines the form 

of the distribution of crime commission rates for some sample of indi­

viduals. However, studies of measures of criminal activity that are 

closely allied with crime commission rates indicate the types of distri­

butions that might be expected. These measures include an individual's 

time between arrests (Wolfgang, Figlio, and Sellin, 1972), his arrest 

rate (Greene, 1977), and his failure time (time after first arrest after 

release itom a correctional program) (Stollmack and Harris, 1974). 

These collectively provide some support for the use of Pareto, gamma, 

and exponential distributions for the crime rate and negative binomial 

distributions for the count of crimes, but there is no compelling evi­

dence for anyone formo 

A distribution of the "total" crime rate from the Rand First 

Inmate Survey has been graphed by Peterson, Braiker, and Polich (1980, 

p. 34). The smooth superimposed curve in their graph show's the gamma 

distribution with parameters a = .3 and S = .01875, which appears 

visually to match their data well. However, a grouped chi-square test 

of fit rejects the hypothesis that the data arise from that gamma dis­

tribution. 

With limited guidance of this type, we chose to examine the 

Pareto, gamma, and lognormal forms. The two-parameter Pareto distribu­

tion with zero origin has distribution function 

x ~ 0, (2.2) 

with shape parameter a and scale parameter cr. It has such a heavy tail 

that we felt it might potentially fit the data, including counts of 

zero (Yi = 0). However, since the Pareto distribution has a density 

----------

-----------~ ---.---- ---------~ 
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function, any random variable X with this distribution has zero proba­

bility of achieving exactly the value X = 0, so it is inappropriate to 

include a large number ot individuals with Y./T. = 0 when estimating 
1 1 

the parameters of the distribution. 

As an ad hoe procedure for avoiding this zero problem while still 

seeing whether the Pareto distribution is suitable as an approximate 

description of the data, we converted responses with Y./T. = 0 into 
1 1 

interval responses with a lower terminal of 0 and an upper terminal 

of 1/(12 Ti +1). (Here, 12 Ti is the number of street months in the 

measurement period for individual i.) The parameters of the Pareto 

distribution were then estimated for each of the eight crime types, 

using a method of maximum likelihood that takes into account all the 

observations, uncensored as well as censored (see Appendix A). 

The Pareto distributions with the maximum-likelihood parameters 

were then compared with the estimated empirical distribution functions 

by grouped chi-square test. The results showed that the Pareto form 

could be accepted for four of the eight crime types (see Table 2.2). 

However, the mean of the Pareto distribution (Eq. (2.2» is finite 

only when the shape parameter a > 1, which is not the case for the 

shape-parameter values shown in Table 2.2. Hence, although the Pareto 

Table 2.2 

FIT OF PARETO DISTRIBUTION TO ILLUSTRATIVE CRIME RATE DATA 

I Parameters of Pareto 
Number of Distribution Including 

Observations all Zero Values 

Crime Type Nonzero Zero a cr 
. 

Burglary 174 225 -- --
Business robbery 108 325 0.582 0.0867 
Person robbery 109 325 0.485 0.0525 
Theft (other than auto) 166 261 -- --
Auto theft 87 321 -- --
Forgery/credit cards 56 365 0.389 0.0087 
Fraud/swindles 69 368 0.457 0.0156 
Drug dealing 163 254 -- --
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form i§ statistically acceptable as a description of four crime types, 

inf.!Juding t.heir zero counts, it is not a practically satisfying descrip­

t:Lon of th2 data, because it has an infinite mean. (Since no other 

functional form fits the data with zero values of Y./T. treated as if 
1. 1. 

they wexe very small positive values, the infinite mean of the fit 

Pareto distribution suggests that the problem of "too many zeros" must 

be handled in some other way.) 

The possibility of a lognormal distributional form for the eight 

crime types was examined by transforming the data and examining stan­

dard probability plots and statistical tests for the normal distribu­

tion. The lognormal form was rejected for all eight crime types. 

To examine 'the fit of the gamma distributional form (Eq. (1.2)) 

to observed crime rates, we took advantage of the fact that quantile 

ratios of the gamma distribution are independent of the scale param-

eter S. (For example, in all gamma distributions with shape parameter 

a = 0.40, the ratio of the 75 th percentile to the 50 th percentile is 

3.48, and the ratio of the 50 th percentile to the 25 th percentile is 

6.16; see Fig. 2.4) • By selecting three quantiles (we chose the 25 th , 
th 

the 50 , and the 75 th) and calculating two quantile ratios from the 

empirical distribution, it is possible to determine whether there is 

any possibZe value of a for which a gamma distribution with shape 

parameter a might match the data. (For example, if the ratio of the 

empirical 75 th percentile to the empirical median is 3.5, and the 

ratio of the empirical median to the empirical 25 th percentile is 6.2, 

the data might possibZy correspond to a gamma distr.ibution with a = 
0.40. But if the first ratio is 3.5 and the second ratio is 10.0, 

there is no gamma distribution that matches the data.) 

We chose this "quartile ratio" method primarily for its simplicity 

and robustness. As described earlier, very large and very !=rma.ll obser-

vations can have considerable influence in the fit, and we wish to 

restrict this influence. Using the middle half of the distribution 

seems a good way to do this. 

If a candidate value of the shape parameter a exists by this sim-

pIe consistency test, the corresponding value of the scale parameter S 
can be estimated by the method of Sarndal (1964), \.,hich uses the best 
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linear function of the order statistics used in the calculation. Again, 

Once th th th '1 ( Ad' A) we used the 25 ,50 • and 75 percentl es see ppen lX • 

the values of a and S have been estimated, the question of whether the 

gamma distribution with parame'ters a, S fits the empirical distribution 

can be tested by probability plots or grouped chi-square test, as in 

the case of the Pareto distributions. 

When we carried out this process using data from Rand's Second 

Inmate Survey, we found that none of the eight crime types studied 

have a gamma diAtribution when all zeros are included, and only two 

(business robbery and drug dealing) have a gamma distribution when all 

zeros are excluded. However, when we varied the number of zeros in­

cluded from 1 to the maximum possible, we found that three additional 

crime types fit the gamma form when some zeros are included, and busi­

ness robbery fit a second distribution when some zeros are included. 

(Inclusion of zeros shifts the quartiles and hence changes the candi­

date values of a.) Table 2.3 summarizes the results and also shows 

the values of the means of the estimated distributions. In contrast 

to the Pareto distributions, the gamma distributions have finite means 

and are useful for smoothing the data and estimating means. 

Table 2.3 

FIT OF GAMMA DIS'TRIBUTION TO ILLUSTRATIVE CRIME RATE DATA 

1. 

Gamma Dis tribution 

Observations Zeros Mean of 
Included Nonzero 

Crime Type Nonzero Zero in Fit CL 13 Values 

Burglary 174 225 -- --
Business r:obbery 108 325 0 .80 .107 7.4 

20 .58 .086 8.0 
Person robbery 109 325 13 .60 .078 8.6 
Theft (other than auto) 166 261 -- --
Auto theft 87 321 24 .40 .040 12.8 
Forgery/credit cards 56 365 -- --
Fraud/swindles 69 368 14 .45 .051 10.7 
Drug dealing 163 254 0 .22 .00034 645.5 

-------~------------- --------~--
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Figure 2.5 illustrates three different parametric distributions 

that fit the empirical distribution of annualized crime commission 

* rates for business robbery. For clarity, only the truncated distri-

butions are shown; that is, individuals with Y. = 0 are excluded from 
1 

the figure even though they may have been included when fitting the 

distributions. The ordinate shows the estimated percentage of respon­

dents in each interval of width 2, i.e., Yi/Ti E (0, 2), [2, 4), [4, 6), 

etc., and the percentage with Yi/Ti ~ 20. 

The Pareto distribution was fit to data for all respondents, in­

cluding those who reported zero business robberies during the measure­

ment period. Figure 2.5 shows that this distribution overestimates 

the frequency of small, but nonzero crime commission rates, but it 

gives an excellent fit in the tail of the distribution (where crime 

commission rates ~ 20). By contrast~ the two gamma distributions are 

closer to the empirical distribution at the low end, but they under­

estimate the tail. One of the gamma distributions was fit to all 108 

nonzero values of Y/T, while the other was fit to the original 108 non­

zero values plus 20 zero values. Although the parameters of the two 

gamma distributions are substantially different, they are nearly iden­

tical for practical purposes. 

Comparison of Tables 2.2 and 2.3 shows that two crime types (bur­

glary and theft other than auto) were not fit by any of the parametric 

distributional forms we tried. They are presumably probabilistic mix­

tures of distributions, so the data for subgroups of offenders (defined 

by some distinguishing characteristics) might well match one of these 

functional forms. 

FITTING PARAMETRIC DISTRIBUTIONS TO CRIME COUNTS 

For those crime types whose observed annualized commission rates 

appear to fit a gamma distribution approximately, a reasonable hypoth­

esis is that the distribution of counts of crimes committed, conditioned 

on the length of the measurement period, is negative binomial. This 

,'t 
Another example is shown in the Executive Summary of this study, 

R-2730/l-NIJ. 
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distribution could arise from a compound gamma-Poisson model or in 

other ways. If we use the compound gamma-Poisson model, then esti­

mating the parameters of the negative binomial distribution yields 

estimates of the parameters of the underlying gamma distribution. The 

negative binomial model has the potential of being formally correct, 

whereas the observed crime commission rates cannot, in principle, be 

* exactly modeled as having been drawn from a gamma distribution. 

In contrast with the development of the negative binomial distri­

bution, we here permit each individual to have a different length 

measurement period T., and we allow some individuals to have A(i) = O. 
1. 

This implies that the Yi's are not a random sample from a single ~~ga-

tive binomial distribution. Rather, for individuals with A. > 0, the 
1. 

Y.'s are independent draws from negative binomial distributions, each 
1. 

with parameters a,P., where p. = S/(T. + S). 
, 1 1. 1. 

NJw, let ~ be the proportion of individuals with A(i) = 0, and 

1 - ~ the proportion of offender individuals whose A(i)'s are assumed 

to be gamma-distributed. The resulting marginal distribution is nega­

tive binomial with some extra mass at zero. That is, 

ify o 
P(Y. 

1. 
y) (2.3) 

ify 1, 2, 3, ••• 

This equation shows explicitly how the zero counts arise from both 

individuals with A(i) = 0 and those with A(i) > O. An estimate of ~ 

then specifies how many "real zeros" there are. However, it is less 

complicated to estimate the parameters a and S (or o. and P.) from the 
1. 

valUES of Y. that are positive, and then estimate ~ separately. That 
1. 

is, we do not ignore the offenders whose A(i) is positive and whose Y. 
1. 

is zero, out we exclude them from the estimation procedure. The ob-

served frequency function for nonzel~O values of Y. is then a tY'uncated 
1. 

* The observed crime commission rates are quantized. For example, 
in the data from the Rand Second Inmate Survey, they cannot have posi­
tive values smaller than 0.5 (i.e., 1/(2 years». 
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negative binomiaZ and is given by 

P(Y. 
1 

(1 P.)Y P~ 
Y Iy > 0) = (a : ~ ~ 1) --l-_l_p_~ __ l 1, 2, 3, •••• (2.4) y 

1 

The use of a truncated distribution is a convenient way to solve 

the "zero problem." The method is perfectly general, although we apply 

it here only in the negative binomial case. The idea is to estimate 

the parameters of the full distribution from the truncated (at zero) 

sample. The parameter estimates are-then used to' infer thE' number of 

zeros that "belong" to the full distribution. The number of zero A's 

is then estimated as the total number of observations minus the above 

estimate. 

Unfortunately, even in the apparently simple case of the truncated 

distribution shown in Eq. (2.4), the exact computation of the maximum­

likelihood estimators of f3 (which is hidden in the P.'s) and a is 
1 

intractable. For computational simplicity, then, we analyze a subset 

of the data, consisting of individuals having the same (or nearly the 

same) value of T .• The parameters of the truncated negative binomial 
1 

can then be fit by maximum likelihood as described in Hartley (1958), 

and the size of the truncated sample can be estimated as shown in 

Sanathanan (1977). 

We illustrate the method by analyzing reported drug deals from 

the Rand Second Inmate Survey. The data used are observed frequencies 

(midpoints of ranges, actually) that occurred with street months = 13, 

14, 15, or 16. We treat the data as if all cases involved 14.5 street 

months. Table 2.4 lists the observed y's and the corresponding fre­

quen.cies n. Two individu'als reporting over 4500 drug deals per year 
y 

were deleted from the analysis as outliers, which left a total of 

m = 40 nonzero observations. A total of 78 individuals with street 

months 13, 14, 15, or 16 claimed not to have done'drug deals. 

We can then estimate the size of the truncated sample (Sanathanan, 

1977) as follows: Let N be the total sample size, n the negative 

binomial sample size, m the number of nonzero observations, and 

.~' . 

" 

; 
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Table 2.4 

TRUNCATED NEGATIVE BINOHIAL FIT TO DRUG DEALINGa 

2 
(x5 (.10) = 9.236) 

Observed 
Chi-Square Test Number Number of 

of Crimes, Individuals, Class -
(0-E)2/E Y ny Intervals Expected Observed 

1 1 1-2 5.266 4.0 .304 
2 3 3-7 4.931 6.0 .232 
3 1 8-18 4.817 8.0 2.103 
4 1 19-42 5.038 3.0 .824 
5 3 43-90 4.991 3.0 .794 
6 1 91-188 4.975 7.0 .824 
8 3 189-422 4.995 3.0 .797 
9 1 423-0) 4.987 6.0 .206 

10 1 6.084 
11 1 
12 1 
16 1 
21 1 
24 1 
32 1 
52 2-
77 1 

103 1 
120 1 
129 1 
146 1 
150 1 
172 1 
181 1 
323 1 
360 1 
391 1 
482 1 
542 1 
587 1 
697 1 

1032 1 
1264 1 

m= 40 

aTruncated negative binomial was fit by maximum likelihood 
according to the method described in Hartley (1958). For 
T. = 14.5, the maximum-likelihood estimators are P = .00143, 
"1 a = .1698. 
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no = (n - m) the number of zeros from the negative binomial. The con-

ditional maximum-likelihood estimate n of the true sample size n is 
"eX 

then the integer part of m/(J. - p). Using m = 40, P = .00143, and 

eX = .1698 yields the estimate, n = 59. Hence, we estimate the number 

of zeros in the negative binomial as nO = n - m = 59 - 40 = 19. We 

therefore estimate that of the 78 people who claimed zero drug deals 

and had 13, 14, 15, or 16 street months, 19 have nonzero A(i) for drug 

deals and the remaining 59 have A(i) = O. 

Table 2.4 shows a chi-square goodness-of-fit test for the truncated 

negative binomial. The fit is satisfactory at the level of aggregation 

used, so the approach is satisfactory for the subset of data concerning 

drug dealing that we analyzed. To the extent that drug deal offenders 

with street times of 13, 14, 15, or 16 months can be considered repre­

sentative, these estimates of a and S can be used for all drug deal 

offenders. Otherwise, we recommend the much less tractable procedure 

of computing maximum-likelihood estimates from the complete data set, 

using Eq. (2.4). 

Remarkably enough, although it would seem that 59 "true zeros" is 

a large proportion of the 78 observed zeros, the data do not permit 

rejecting the hypothesis that all the observed zeros come from a nega­

tive binomial distribution. We tested the hypothesis HO: ~ = 0 

against the alternative hypothesis HI: ~ I O. Under HO' t~e maximum­

likelihood estimates of the parameters are a
O 

= .06135 and Po = .00125. 

Defining the function u by 

u(z, a, P, ~) 
N 
IT 

i=l 
Prob(Y. 

~ 

where each term on the right is given by Eq. (2.3), the test statistic 

is 

" 
u(Z' aO' PO' 0) 

-2 log A " n) , 
u(,' a, P, 

,:: .. ,." 

which is asymptotically distributed as chi-square ",ith 1 degree of 
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freedom. The value of the statistic for our data is 1.32, which is not 

statistically significant. 

We also fit the negative binomial distribution to the data for 

person robbery. In this case, n = 84, m = 37, and nO = 47, and the 

maximum-likelihood algorithm was numerically unstable. An alternative 

method, that of moments estimation (Sampford, 1955), was used to get 

the values eX .108 and P = .00485. Table 2.5 gives the data, the 

fitted values, and associated chi-square values. 

Table 2.5 

TRUNCATED NEGATIVE BINOMIAL FIT TO PERSON ROBBERY 

Number Observed Chi-Square Test 
of Number of 

Crimes, Individuals, 
Class (O_E)2 

n 
Intervals Observed a y y Expected E 

1 7 1 7 5.11 0.70 
2 5 2-3 7 4.79 1.02 
3 2 4-9 12 6.29 5.18 
4 2 ::= 10 11 20.82 4.63 
5 3 

11.53 6 4 
7 0 
8 2 

L 9 1 
::= 10 11 

I m = 37 

NOTE: 2 
X (.01) = 6.63. Reject truncated negative binomial. 

1 

aparameters estimated by method of moments; a = 0.108 and 
P = 0.00485. 

The difficulties with person-robbery data illustrate the short­

comings of fitting the negative binomial by the truncation method. 

However, the truncation method can be used for any functional form--

it does not have to be negative binomial. Thus if the truncated nega­

tive binomial fit is not satisfactory for given data sets, other func­

tional forms can be tried with the truncation approach. A satisfactory 

fit solves the problem of "too many zeros o " 
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APPROPRIATENESS OF THE POISSON ASSUMPTION 

In examining the applicability of the compound gamma-Poisson model 

(at least to certain crime types), it is important to verify not only 

that the consequences of the model are correct (e.g., that the distri­

bution of counts of crimes, conditioned on the length of the measurement 

period, is negative binomial), but also that the assumptions of the 

model are correct. One of these assumptions is that each offender com­

mits crimes according to a Poisson process when he is "on the street," 

i.e., free to commit crimes. In examining the data, however, we find 

that the Poisson assumption may be correct for some types of crimes but 

not for others. 

To carry out a formal test of the validity of the Poisson assump­

tion (i.e., the "Poissonicity") of crime occurrences, it would be 

desirable to have interval data--that is, data showing'the exact dates 

on which each individual's crimes were committed and the exact periods 

when he was on the street. By stringing together the street periods 

of numerous offenders who have approximately the same crime commission 

rates, we would obtain a realization of a stochastic process with enough 

data points to test whether the process is Poisson. (Such a test is 

carried out for fire alarms by Carter and Rolph, 1979.) 

However, the data from the Rand Second Inmate Survey do not include 

the dates on which crimes were committed, and in the absence of our 

ideal observation method, it is difficult to imagine how such data could 

be successfully obtained. The survey responses simply provide an esti­

mate of the total count of crimes committed. However" the responses 

also tell us how many street months the offender had during the measure­

ment period, and for those offenders who committed 11 or more crimes of 

a given type during the measurement period, the number of months during 

\l7hich those crimes were committed. We shall discuss here what can be 

learned from such data on counts and duration of activity. See Cox and 

Lewis (1966) for a more general discussion of tests of Poissonicity. 

Recall that the respondent's measurement period ended with the 

month he was arrested for his current conviction crime. This could be 

any month between January and December and, apart from possible seasonal 

variations in arrests, is essentially randomly chosen for each offender. 
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Hence ,one would expect that offenders with long street time would have 

higher counts o~ crimes Yi than offenders with short street time, al­

though their rates YilTi would ~e (collectively) approximately the same. 

(The argument is not entirely correct, because it ignores the fact that 

offenders with high arrest rates would be more likely to be arrested 

early in the year or to lose street time by incarceration. But the 

basic pattern should be as described.) 

Surprisingly, the data confirm this expectation only for certain 

crime types. For example, Table 2.6 shows crime counts against street 

months for person robbery, and Table 2.7 gives analogous information 

for business robbery. The variation for person robbery is generally 

in the direction anticipated, although it is not statistically signifi­

cant, and the same is true for auto theft, forgery, fraud, and drug 

deals. (The pattern for drug deals is statistically significant because 

of the large number of "doers" in the sample.) B y contrast, Table 2.7 

shows a complete lack of variation in business robbery counts with the 

number of street months, and we found a similar, but less striking lack 

of pattern for burglaries and thefts. We conclude, then, from this 

superficial e2!:amination of the data, that at least three crime types 

are probably not committed according to a Poisson process. 

Table 2.6 

RELATIONSHIP OF CRIME COUNTS TO STREET TIME: 
PERSON ROBBERya 

Number of Robberies 

1-3 4-6 7-9 10 or more Total 

Street Months N Percent N Percent N Percent N Percent N Percent 

1-3 4 67 10 40 16 38 12 34 42 39 
4-6 2 33 10 40 9 21 7 20 28 26 
7-9 0 0 2 8 5 12 3 9 10 9 

10 or more 0 0 3 12 12 29 13 37 28 
, 

26 

a The pattern is similar for auto theft, forgery, fraud, and drug deals. 

l 
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Table 2.7 

RELATIONSHIP OF CRIME COUNTS TO STREET TIME: 
BUSINESS ROBBERY a 

Number of Robberies 

1-10 11 or more Total 

Street Months N Percent N Percent N Percent 

1-6 8 11 3 12 11 11 
7-12 15 20 5 20 20 20 

13-18 33 43 10 40 '43 43 
19-24 20 26 7 28 27 27 

a The pattern is similar for burglary and theft. 

A more precise test of Poissonicity can be obtained by examining 

whether offenders who do numerous crimes tend to concentrate their 

criminal activity in short time periods. The advantage of this test 

is that no assumption need be made about the similarity of crime rates 

* between offenders with long and short street times. The test is based 

on the observation that if events occur according to a Poisson process, 

and N of them occur during a period of length T, then each of the N 

events is independently uniformly distributed over the interval of 

length T. Thus, if an offender committed 18 crimes according to a 

Poisson process during 12 months, it is unlikely that he committed them 

all during one, two, or three of those months. In fact, let p(tIN, T) 

denote the probability that all N crimes occur in exactly t of T months. 

Then 

p(t IN, T) t 1, 2, ••• , min(N, T). 

p(t IN, T) 0, t > min(N, T). 

* For the data from the Rand Second Inmate Survey, this test has 
the disadvantage that it applies only to those who reported 11 or more 
commissions of the crime type in question. 
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If Ni and Ti are the number of crimes committed and the duration 

of the measurement period for individual i, then ~ P(t.lN
i

, T
i

) is the 

expected number of individuals whose crimes were ~ommitted in t months. 

This expected distribution can be compared with the actual data by a 

chi-square test. 

\ To obtain an adequate sample size when applying this test to the 

Rand Second Inmate Survey data, we l,lsed data from all respondents 

(inmates of prisons and jails in three states, not just the l1ichigan 

prisoners whose data were used elsewhere in this study). The test 

showed that the Poisson hypothesis could be rejected at the .01 level 

of significance for all crime types other than person robbery and auto 

theft. The data revealed that offenders ordinarily committed the other 

crimes (burglary, business robbery, theft, forgery, fraud, and drug 

dealing) in a much smaller fraction of their street time than would be 

the case if commissions followed a Poisson process. Table 2.8 shows 

an example for theft. 

Consequently, we conclude that the Poisson assumption, while not 

rigorously tested by these data, appears to be tenable only for certain 

crime types. Other crime types may require treatment by a "switching 

model," i.e., from time to time the crime commission process turns on 

and off, and within the "on" periods a high-rate Poisson process applies. 

Such a model has been proposed and used by Maltz and Pollock (1980). 

They envision two behavioral states for an offender, which they call 

"quiescent" and "active." In either state, the offender commits crimes 

according to a Poisson process, with a state-dependent rate, and transi­

tions between states occur according to a continuous-time Markov process. 

The offender's long-term average crime commission rate (e.g., the rate 

observed in the Rand survey) is then a function of his transition rates 

between states as well as his commission rates in each of the states. 
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Table 2.8 

TEST OF POISSON ASSUMPTIONS FOR 
COMMISSIONS OF THEFTS 

Number of Individuals With 
All Crimes Committed 

Number of in t M(mths 
Months, 

t Expected Observed 

1 10.1 < 16 

2 4.6 < 17 
3 5.1 < 20 
4 7.6 < 19 
5 8.0 < 12 
6 15.1 < 27 
7 11.0 < 16 
8 13.1 < 14 
9 12.2 > 3 

10 12.5 < 21 
11 9.1 > 6 
12 10.0 < 15 
13 18.1 > 9 
14 10.3 > 9 
15 21. 7 > 13 
16 10.9 > 7 
17 13.5 > 4 
18 9.3 > 5 
19 7.4 > 2 
20 16.4 > 8 
21 12.1 > 9 
22 9.2 > 2 
23 4.0 > 1 
24 5.6 > 2 --

Total 257 

x2 = 167 with 23 degrees of freedom. 

NOTE: Only individuals who committed 
lIar more thefts and reported the number 
of months in which they did those thefts 
are included. 
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III. ESTIMATES OF INDIVIDUAL CRIME PROPENSITIES: 
SHRINKAGE ESTIMATORS 

In Sec. II, we emphasized fitting a distribution to a sample of 

reported crime rates or to reported numbers of crimes. But frequently, 

more micro-level questions are of interest. These range from needing 

good estimates of individual crime propensities, say, for evaluating 

incapacitation strategies (Chaiken and Rolph, 1980), to needing esti­

mates of crime propensities for small groups of offenders with similar 

characteristics. In this section, we combine Bayesian and shrinkage 

estimators with regression methods to derive estimators of individual 

crime propensities that are appropriate for both purposes, 

The problem of estimating individual crime commission propensities 

is nontrivial. Let us consider the kind of situation we postulated 

in the gamma-Poisson model, namely that the A(i)'s have a probability 

distribution, rather than being all the same o The gamma distribution 

of the A(i)'s implies a particular distribution of the usual estimator 

of A, ~(i) = Y./T .• 
1 1 

Because each ~(i) is equal to A(i) plus a random error, the spread 

of the ~(i)'s is greater than the spread of the distribution of the 

A(i)'s. Figure 3.1 illustrates this phenomenon in an example of the 

compound gamma-Poisson model n Note the greater spread of the observed 

counts, as compared to the gamma distribution. From this example, it 

is intuitively plausible that a better estimate of A(i) than Y./T. can 
1 1 

be obtained.by some sort of shrinking of Y./T. toward the center. In 
1 1 

the following, we present such estimators of A(i) that are superior 

to Yi/Ti • 

BAYES ESTIMATORS 

Description 

With the assumption that the A(i)'s have an a priori distribution, 

the relevant information for inference about A(i), given the data, is in 
/ 

the a posteriori (or posterior) distribution of A(i), given Yi and Ti" 

1'-." 

I 
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We have shown that under the negative binomial model, this distribution 

is gamma with parameters (a + Y., B + T.). Therefore, the mean and 
1 1 

variance of the posterior distribution of A(i), given Y
i 

and T
i

, are 

(a + Y.)/(B + T.) and (a + Y.)/(B + T.)2, respectively. The Bayes 
1. 1. 1 1 

estimator of A(i) is defined to be the mean of this posterior distri-

bution, or 

~ (i) 

where 

Y. 
1 a 

(1 - w.) -T + w .• -B' 
1. i 1 

W. 
1 

B 
B + T • 

i 

(3.1) 

In this case, the usual estimator Y./T. is shrunk toward the a priori 
1 1. 

mean of A(i), namely a/B. Note that the longer individual i is observed 

(the larger T.), the closer ~(i) is to the usual estimator ~(i) = Y./T .. 
1. 1. 1 

Thus, the estimated A(i) for a criminal whose behavior is observed for 

a very short time, T., will be close to alB, since w. = B/(B + T.) is 
111. 

close to 1. (While Eq. (3.1) depends on the gaw~a-Poisson assumptions 

for its optimality properties as a Bayes estimator, more generally it 

is a linear Bayes estimator (Hartigan, 1969).) If the parameters a and 

B are known a priori, e.g., from earlier studies or from experience, 

Eq. (3.1) can be used as an estimator of A(i). Otherwise, a, B, and 

wi in Eq. (3.1) must themselves be estimated from the data, so that 

We can then estimate A(i) by 

~ (i) , 
y. ~ 

" 1. "u. 
(1 - w.) -T + ~\1, ". 

1 i 1. B 

Such an estimator is called an empiricaZ Bayes estimator of A(i). 

(3.2) 

(3.3) 

, '.-,-,' 
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Hhere the data themselves are uncertain, as in the Rand Second 

Inmate Survey, the above formulation can easily allow for the uncer­

tainty--the Y.'s being interval data. Since in our formulation we 
~ 

condition on the values of T., allowing for uncertainty in the street 
~ 

time is more difficult and will not be discussed here. Suppose obser-

vation i comes in the form IL
i

, Ri J as the minimum and maximum counts 

during street time T .• Then it is straightfoL~ard to show that the 
~ 

density of the posterior distribution of A(i) is 

where 

f(AIL. ~ Yi ~ R., T.) 
~ ~ ~ 

r 
R. 

C = L~ T~+:y-l 
y=L. .... ~ 

The mean of this dis tribu tion. analogous to Eq. (3.1), .is 

E(AIL. ~ Yi ~ R., T.) 
~ ~ l 

where 

w(y) 

R. 
~ a + 

L w(y) (3 -I­
y=L. 

~ 

~ {w(y), j, R. 

i y=L. 
~ 

Thus the posterior expected crime propensity, given that y is in the 

interval IL., R.J, is a weighted average of the posterior expected 
~ l 

values for each value of y in that interval. 

An Example 

In Sec. II, we fit a truncated negative binomial distribution to 

reported drug deals and got ~ = 0 0 1698 and P(lL •• 5) = 0.00143. Since 

P. = (3/(T. + (3), we take T to be the average T., or 14.5 months. Then 
~ ~ ~ 

B = TP/(l - P) = 0.02076. 

~. ~~ ------~--~ ---~-.,..,....---,-----------~--'---

~. 

',,, !~ 
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P, we have for T. 14.5, ~(i) = 0.99857 Y./T. + 
~ ~ ~ 

Since w 

0.00143 x 0.1698/0.02076. In this case, the values of Y/T
i 

are shrunk 

less than 1 percent of the way tQ the estimated average rate. The 

weights wi = (3/«(3 + T
i

) differ accordingly for other values of T
i

• 

The gamma-Poisson example is a particularly simple shrinkage esti­

mator. The form of the estimator of A(i) itself, Eqo (3.3), depends 

on how a and (3 are estimated. The optimality properties of either the 

Bayes estimator (Eq. (3.1» or the empirical Bayes estimator (Eq. (3.3» 

depend critically on the assumption that the A(i)'s have a gamma dis­

tribution. In the past few years, the problem of simultaneously esti­

mating Poisson means has received increasing attention in the statistical 

literature. The emphasis has been on finding estimators (or families 

of estimators) that perform well, in the sense of imprf'ving the expected 
, t;.;. 

squared-error of estimation as compared to the estimator Y./T., no matter 
~ ~ 

wb . ..,~ the values of A(i) are. Clevenson and Zidek (1975) gives Bayes 

and empirical Bayes estimators of A(i). The work of Peng (1975), Tsui 

(1978), Tsui and Press (1977), Hudson (1978, 1980), and finally Hudson 

and Tsui (1981) has produced successive improveme~lts in simultaneously 

estimating a set of Poisson means. 

MORE GENERAL SHRINKAGE ESTIMATORS 

He turn now to adapting some results of Hudson and Tsui (1981) and 

Hudson (1980) to the ~stimation of underlying crime propensities. 

Historical Background 

The concepts underlying our methods were first developed by James 

and Stein (1961) in their work on simultaneously estimating the means 

of n normal distributions (111 , ••• , l1n). The James-Stein estimator 

dominates (in the sense of minimizing mean-square error) the usual 

(maximum-likelihood) estimator (MLE) for all values of )ll' ••• , )In. 

In contrast to the usual estimator, the benefits of the James-Stein 

estimator are greatest when )ll' ••• , )ln are all close to zero. This 

result can be extended so that it has important practical consequences 

whenever hypotheses exist about how the )l.'s are related to one another, 
~ 

e.g., the means are close to some specified values or, less specifically, 

, 
,i 
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the means follow a trend or are similar in value. Equation (3.3) is 

an example in the Poisson case, where the n means are the values of 

A(i) for n individuals and the estimators are all shrunk toward the 

same number, namely, the estimated mean of the gamma distribution. 

In the same spirit, the James-Stein theory has been applied where 

the means are adjusted for covariates (see Efron and Morris (1975) and 

Fay and Herriot (1979)). For normal distributions, this amounts to 

choosing the preassigned values of the ~. 's by fitting a linear regres-
1 

sion to the data and shrinking toward the predicted values given by 

the regression in the same way the James-Stein estimator shrinks toward 

zero. 

No matter what predicted values are used in either the normal or 

the Poisson case, the shrinkage estimators have a smaller expected 

squared error of estimation than th~ MLE when all n means are being 

estimated simultaneously. That is, when the estimation procedure is 

being used collectively--say, by an agency such as a major offenders 

unit--shrinkage does much better on average than the alternative methods. 

However, there is no guarantee that the shrinkage estimators will out­

perform the MLE for every individual. They improve on average, but not 

necessarily for every single component ~.. Since a judge who is cor~-
1 

fronted with specific cases would want to operate on a "case-by-case" 

criterion, shrinkage estimators mayor may not be helpful in SUC'Ll a 

context. 

When estimating individual crime propensities for a collection of 

n offenders, we must simultaneously estimate the means of n Poisson 

distributions. Developing shrinkage estimators for n Poisson means 

that are uniform improvements on the maximum-likelihood estimators is 

considerably more complicated than the analogous problem for n normal 

means, as described above. Only in the past few years have statisti­

cians made any real headway in the Poisson case. Clevenson and Zidek 

(1975) developed the first improvement, while Peng (1975) derived the 

estimators that are basis for the Hudson-Tsui estimator used in this 

study (Hudson and Tsui, 1981, and Hudson, 1980). As will be shown 

below, the form of the estimator is both complex and not intuitively 

transparent. 

" 

\' 
\ 

J~ 
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,) 
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In the Poisson case, as in the normal case, the improved esti­

mators can shrink toward zero, toward some grand mean, or toward some 

predicted value obtained from a regression. The problem of estimating 

underlying crime propensities A(i) in a Poisson model is usually fa­

cilitated by the availab~lity of a considerable amount of background 

information on offenders, including age, race, $,ocioeconomic charac­

teristics, and previous criminal behavior. 

Some General Theory 

, We begin by describing some estimators derived by Hudson (1980) 

and Hudson and Tsui (1981). Suppose there are n individuals in the 

group. Let Yi and Ti be the reported number of crimes and street 

time, and let B., ... , B be the values we wish to shrink toward 
1. n 

(in a 'transformed space to be described). The values of Ii will vary 

with the application and are discussed below. Th . th en, assumlng at 

Yi ~ Poisson(A(i)Ti ), 1 = 1, ••• , n, the Hudson-Tsui estimator of 

A(i)T. is given by 
1 

where 

H.) 
1 

for i 1, 0 •• , n, 

Y. 
1 

~ r: CYi
) 

L (l/j) for Y. a positive integer, 
Hi j=l 1 

for Y. 0, 
1 

R max(O, n - No - 2 - q), 

the number of observed zeros, 

n 
S = L (H. 

i=l 1 

'" 2 H.) , 
1 

(3.4) 

and q depends on the application and is to be spec.ified. For estimating 
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A (i) , we divide Eq. (3.4) by Ti to get 

~(i) = Zo R (H 0 - Ho) for i 1, ... , n. (3.5) 

1 ST 0 1 1 
1 

where Zo = Yo/To. 
1 1 1 methods to 

For estimating reported crime rates, we use three 

specify values of Hi: Hi = 0; Hi = li, the mean of HI' ••• , Hn; and 

Hi is the appropriate predicted value of Hi from a regression. These 

methods are described below. 

Choosing Groups and Shrinkage Centers 

1 d b the analyst is faced with In applying the theory out ine a ove, 

h 1d th ff nders be broken into sepa-
two sets of choices. First, s ou e 0 e 

wl0th l0ndependent shrinkage estimators for each group? If rate groups 
so, on what basis should these groups be defined? Second, in a given 

That is, how is group, what should the counts Yi be shrunk toward? 
" the shrinkage center H defined? We will discuss the rationale for 

these choices in some detail in the discussion of applications that 

follows. 

If the offenders are divided into subgroups according to charac­
of shrinkage Ho can be 

1 teristics other than their data Yo, the centers 
1 

estimated differently for each subgroup. It is desirable to make such 

a division into subgroups if the relationship between individual char­

acteristics and crime rates is believed to differ among subgroups. 

(See Carter and Rolph (1979) and Efron and Morris (1973a). for a dis-

o l°nto subgroups l°n the case of normally distributed cussion of divislon 
variables.) In our illustrative applications, we divide the data ~nto 
three subgroups and compare three methods for obtaining values of Hi: 

1. 

2. 

3. 

~. I 

Ho is set to zero for all individuals in the subgroup. 
1 " 

Ho is the mean of the transformed counts; that is, Hi 
1 

where n is the size of the subgroup. 

1 
n 

" is the value of H. predicted from a regression equation 
Hi 1 . 

as follows: The dependent vector in the regression is 

EH 0' 
1 

f' 

H' = (HI' H2 , ••• , Hn) where n is the number of offenders 

in the subgroup. If p independent variables describing 

characteristics of individuals are considered relevant for 

predicting crime commission propensities, the regression has 

an n by (p + 1) design mat.rix X. (It incorpGlrates a row of 

l's for the constant term, as well as the values of the p 

independent variables for the n individuals.) The vector of 
A A A A 

estimates H' = (HI' H2 , ••• , lin) is determined by the least-

squares fit a.s H' = X(X'X)-l Xli'. 

The values of q in the definition of R (Eq. (3.4» are as follows: 
.... 

In Case 1 (Hi = 0), q is also zero. In Case 2, q is equal to one. 

In Case 3, q is the rank of the design matrix in the regression, namely 

p + I--that is, one more than the number of regressor variables. (Note 

that p = 0 obtains in Case 2, so that q = 1.) 

SOME APPLICATIONS 

We return to the Rand Second Inmate Survey to illustrate the use 

of these methods. Several practical issues must be dealt with before 

the shrinkage estimators can be applied. First, the subgroups must be 

selected. In this example we will simply define three subgroups, 

although elaborations involving more subgroups are possible and would 

be desirable in analyzing the survey data. Second, where regression 

. me thods are to be used toes tima te the H 0 's, we mus t specify what se t 
1 

of regressors will bE~ entered into the regression. 

Grouping of Offenders 

Ideally, the division of offenders into subgroups would separate 

offenders with Ak(i) = 0 from those with Ak(i) > O. (Obviously, 

personal characteristics are not needed to predict the value of Ak 

for those with Ak(i) = 0.) However, we have repeatedly observed that 

offenders cannot be separated into "doers" and "nondoers" of crime k 

simply on the basis of , .. hether their crime k count during the measure­

ment period is zero or nonzero. The theory underlying the Hudson-Tsui 

estimator assumes that Y
i 

given (Vi), Ti ) has a Poisson distribution, 
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not a truncated Poisson distribution, so some zero counts should nor­

mally occur among the "doers." Moreover, it is not appropriate to 

select H. = 0 purely because Yi = O. 
1 

In light of these considerations, we decided to separate indi-

viduals into a "previous doer" group and a "previous nondoer" group 

according to whether or not they had committed the crime in question 

f period J'ust preceding the measureme~.t period for during the our-year 
the survey. We expected the "previous nondoer" group to have primar-

ily (but not entirely) zero Yi'S, and the "previous doer" group mostly 

positive Yi's. 
The "previous doers" were further subdivided by separating out 

f d · ts we had some reason to sus-offenders whose sel -reporte crlme coun 

pect. An external validity check (to be reported in later publications 

by the Rand survey group) compared responses to questions concerning 

age, arrests, race, education, prior prison terms, and similar items 

with external data for the same items. Individuals whose external 

validity was especially poor were assumed to have potentially invalid 

self-reported crime counts also. 

Regression to Obtain Hi 

The procedure for obtaining Hi will be illustrated for our earlier 

crime-type example~ business robbery. A regression model for predict­

ing H. was generated for the 53 individuals in the "previous doer" 
1 

group who had not been excluded for poor validity. Intuitively, we 

would expect the Hudson-Tsui estimator to pe~form best if the Yi's for 

the "previous nDndoer" group are shrunk according to Eq. (305), with 

" h y' for the "previous doer" group are shrunk using H. = 0, while t e i s 
1 " B the value of H. estimated from the regression on covariates. y carry-

1 

1 h 11 show that thl'S expectation is correct. ing out the ana ysis, we s a 
. bl we used for the regression are shown :tn The independent varla es 

3 1 * Construction of the variables was guided by sociological Table •• 
theory and was carried out primarily by Guttman scaling techniques 

(Responses related to the crime rates, Zl" applied to survey responses. 

*These variables were constructed and provided to us by M. Chaiken. 

~ ~ -- - ----~--- ~---

e., 

f ~ 

1 
3" 

t 
:"\" 

Variable 

Intercept 
Badkid 
Kid crime 
Pent job 
Longwk1 
Longwk2 
AgeJ..6-17 
Logst 
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Table 3.1 

FITTED REGRESSION MODEL FOR PERSON ROBBERY: 
DOERS WITH GOOD VALIDITY 

(Number of observations = 50; dependent 
variable: Hi; R2 = .32) 

Estimate t-statistic Significance 

-.6931 -0.51 0.61 
-.5988 -1. 77 0.08 

.5990 2.03 0.05 
-2.7305 -2.13 0.04 

1.5938 1.88 0.07 
1.3128 1.23 .23 
1.7932 1.89 .07 

.6624 1.42 0.16 

...,;. 

Standard Error 
of Estimate 

1.3606 
0.3375 
0.2957 
1.2793 
0.8487 
1.0670 
0.9506 
0.4671 

were not considered in constructing the independent variables.) 

"Badkid" is a scaled variable taking on integer values from ° to 4 

indicating the degree to which the individual had contact with the 

juvenile justice system. "Kid crime" is similarly scaled and indicates 

the degree to which individuals committed criminal offenses as juve­

niles. "Pent job" ranges in value from ° to 1 and reflects the percent­

age of street time the offender was legally employed. "Longwkl" and 

"Longwk2" are 0-1 dummy variables, the first indicating partial employ­

ment during a period beginning four years prior to the survey measure­

ment period, the second indicating full employment. "Age16-17" is a 

0-1 variable telling whether an individual's age during the measurement 

period was 16 or 17, used to indicate that the juvenile variables have 

been declared missing. (If the offender was 16 or 17 years old during 

the measurement period, then "Kidcrime" and "Badkid" cannot be viewed 

as predictors of Z.; rather, 
1 

"Logst" is log(T.). We 
. 1 

they are alternative descriptions of Z .• ) 
1 

transformed the number of street months 

Ti by the logarithm because the other independent variables are con-

ceptually related to the crime rate Z. = Y./T., not the crime count Y., 
1 1 1 1 

whereas the dependent variable is a transformation h(Y.). Since the 
1 

transformation h in Eqo (3 0 4) is very similar to a logarithmic 

',i 
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transformation up to an additive constant (except near zero), we have 

h (Y .) ~ log (Y . ) 1. 1. 

Y. 
= log T1. + 10g(Ti ). 

i 

Table 3.1 shows that much residual variation remains unexplained 

after the regressions are carried out. However, our purpose here is 

simply to demonstrate the use of regression techniques with the Hudson­

Tsui shrinkage estimator. Using regression to choose the center of 

shrinkage for empirical Bayes estimators frees the analyst from the 

rigidity usually present in regression modeling. That is, to the extent 

that the regression equation is misspecified or has omitted important 

explanatory variables, the empirical Bayes estimator compensates ~y 

shrinking the observations less. (See Efron and Morris (1975) for a 

discussion of this point.) 

As stated earlier, we shrink the 2i for those in the "previous 
,.. 

nondoer" group toward zero by choosing H = 0, while for those in the 

"previous doer" group we choose Hi = ~Xi in Eq. (3.5). The regression 

equation in Table 3.1 was fit to the "previous doer with good validity" 

group. In the estimates presented below, both the good validity and 

poor validity "previous doer" groups are shrunk independently toward 

this regression surface. The offenders with poor validity were excluded 

because their values for dependent variables are considered untrust­

worthy. However, application of the regression equation to their values 

of independent variables could potentially yield reasonable estimates 

of their crime commission rates. 

Note that the shrinkage is actually taking place with respect to 

Y. and is then translated to shrinkage on 2i upon division by Ti • Also, 

1. "h'k" tk in shrinking toward the regression surface, the s r1.n.age can a e 

place in either direction. That is, if Hi is greater than Hi' ~(i) 
will be greater than Zi; otherwise it will be the same as 2i or less. 

In particular, if 2. is zero for offender i in the "previous doer" 
1. A 

group, ~(i) is very likely to be greater than zero, since Hi is usually 

posi tive. On the other hand, si1rinkage will always be toward zero for: 

the previous non doer group, and, in particular, ~(i) is the 'same as 2i 

if 2. = o. 1. 

~ I 

---~---~---

I 
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As we stated earlier, considerable gains can be made by applying 

the estimator separately to relatively homogeneous groups with respect 

to the variable of interest. We have identified three such groups: 

previous nondoers, previous doers with good validity, and previous 

doers with poor validity. Although the zero group estimates are shrunk 

toward zero and the nonzero group estimates are shrunk toward the re­

gression surface, we apply the estimator to each of the three groups 

independently. 

Estimates are tabulated separately for each group and each crime 

type~ Tables 3.2, 3.3, and 3.4 present estimates for the three groups 

for person robbery. The number of observations in the group and the 

values of Rand S as defined in Eq. (3.4) are given at the head of each 

table. The column headed T is street time (midpoint); Y is the number 

of crime' commissions (midpoint); 2 = Y/T; and Hudson-Tsui is the value, 

~, of the Hudson-Tsui estimator. A total of 350 instances of person 

r9bbery were reported in the previous nondoer group, so only a repre­

sentative subsample of this group is shown in Table 3.2. 

Table 3.2 shows that for the previous nondoer group, values of 2i 

equal to zero are unmoved, while positive values are pulled closer to 

zero, as expected. The amount of shrinking depends critically on the 

values of Rand S and, more specifically, on Rls. In turn, the values 
" of Rand S depend not only on the sample values, but on the values Hi 

used in the estimator as well. As explained earlier, it is most bene-
" ficial to use shrinkage estimators when the Hi are close to Hi. With 

this in mind, it is interesting to compare values generated using dif-
" ferent values of H. ~Yi thin a group. 

1. 
While Tables 3.2 through 3.4 show only one version of the Hudson-

Tsui estimator for each of the three groups, it is possible to calculate 

other alternatives and compare them. Table 3.5 presents information on 

three different versions of the Hudson-Tsui estimates. It shows an 

estimated lower bound on the improvement in mean square error that the 

Hudson-Tsui shrinkage estimators give over the maximum-likelihood esti­

mators, Yl , ••• Y
n 

(Hudson, 1980), and it shows an estimated bound on 

the percentage gain achieved, by comparing the lower bound of the mean­

square-error gain of the Hudson-Tsui estimator to the mean square error 

j, 
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Table 3.2 

PERSON ROBBERY DATA FOR 48 PREVIOUS NONDOERS 
(Total observations = 350) 

R = 51.0 
S = 275.020508 

a 
T Y Z Huiison-Tsui 

14.00000 0.0 0.0 0.0 

15.00000 0.0 0.0 0.0 

8.00000 1.00000 0.12500 O. 1066 7'~'" 

5.00000 0.0 0.0 0.0 

10.00000 0.0 0.0 0.0 

21.00000 0.0 0.0 0.0 

24.00000 5.50000 0.22917 o .21471'~ 
22.00000 0.0 0.0 0.0 

14.00000 6.00000 0.42857 0.40291'~ 

22.00000 1.00000 0.04545 0.03879#* 

14.00000 2.00000 0.14286 0.12715""" 

13.00000 3.00000 0.23077 0.21009* 

19.50000 16.00000 0.82051 0.79509 

8.00000 1.00000 0.12500 o .10661M , 

24.00000 0.0 0.0 0.0 

16.00000 5.50000 0.34375 0.32206* 

24.00000 0.0 0.0 0.0 

10.00000 0.0 0.0 0.0 

15.00000 0.0 0.0 0.0 

15.00000 0.0 0.0 0.0 

14.00000 0.0 0.0 0.0 

4.00000 0.0 0.0 0.0 

3.00000 0.0 0.0 0.0 

12.00000 0.0 0.0 0.0 

21.00000 0.0 0.0 0.0 

14.00000 0.0 0.0 0.0 

15.00000 0.0 0.0 0.0 

19.00000 1.00000 0.05263 0.04491'':* 

10.00000 0.0 0.0 0.0 

8.00000 0.0 0.0 0.0 

24.00000 0.0 0.0 0.0 

14.00000 0.0 0.0 0.0 

22.00000 0.0 0.0 0.0 

13.50000 0.0 0.0 0.0 

16.00000 0.0 0.0 0.0 

17.00000 0.0 0.0 0.0 

19.00000 0.0 0.0 0.0 

19.00000 0.0 0.0 0.0 

24.00000 0.0 0.0 0.0 

18.50000 7.00000 0.37838 0.35783* 

17.00000 0.0 0.0 0.0 

22.50000 0.0 0.0 0.0 

12.00000 6.00000 0.50000 0.47006'" 

8.00000 0.0 0.0 0.0 

23.50000 9.00000 0.38298 0.36533 

21.00000 1.00000 0.04762 0.04064** 

11.00000 0.0 0.0 0.0 

9.00000 0.0 0.0 0.0 

~stimates followed by double asterisks indicate at 
least 10 percent shrinkage; a single asterisk indicates 
at least 5 percent. If Y = 0, a single asterisk indi­
cates that ~ > .01. 

-------~ --- . ..."...-------------......... -- -----------.. --_. 
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Table 3.3 

PERSON ROBBERY DATA FOR 53 PREVIOUS DOERS WITH GOOD VALIDITY 
(Total observations = 53) 

R = 23.0 
S = 158 486069 

a 
T Y Z Hudson-Tsui 

13.50000 1.00000 0.07407 o . 06463"'''' 
6.00000 1. 00000 0.16667 o .15444'~ 

10.50000 2.00000 0.19048 o ,16974'~"r 
12.00000 0.0 0.0 0.03529"'''' 
17.50000 43.00000 2.45714 2.43930 
15.00000 0.0 0.0 0.01279'''''' 
13.00000 1.00000 0.07692 0.08403'" 

6.00000 2.00000 0.33333 0.35237'" 
20.00000 84.00000 4.20000 4.18830 
19.50000 322.50000 16.53845 16.51846 
5.00000 0.0 0.0 o .05048'~* 
6.00000 0.0 0.0 0.0 

14.00000 0.0 0.0 0.02952""" 
18.00000 1.00000 0.05556 0.06536** 
16.00000 0.0 0.0 0.00061 
3.00000 3.00000 1. 00000 0.99973 

10.00000 4.00000 0.40000 0.38044 
13.50000 0.0 0.0 0.00338 
23.00000 0.0 0.0 0.00873'': 
5.00000 6.00000 1. 20000 1. 14920 

21.00000 464.39990 22.11427 22.09216 
19.50000 8.00000 0.41026 0.40621 

9.00000 424.00000 47.11110 47.04543 
7.00000 1.00000 0.14286 0.14121 

11.00000 5.00000 0.45455 0.46782 
1.00000 0.0 0.0 o .16021'~* 

17.00000 0.0 0.0 0.01331""" 
12.00000 5.50000 0.45833 0.46675 
20.00000 5.50000 0.27500 0.27589 
10.00000 4.00000 0.40000 0.39054 
19.00000 3.00000 0.15789 0.15694 
8.00000 7.00000 0.87500 0.83324 

13.00000 0.0 0.0 0.01730*'" 
13.00000 154.79993 11. 90769 11.89161 
15.00000 0.0 0.0 0.01279** 
23.50000 0.0 0.0 0.01091'''* 
5.00000 0.0 0.0 0.06287'':* 

16.00000 0.0 0.0 0.02664'''* 
9.50000 3.00000 0.31579 0.32737 

11.00000 8.00000 0.72.727 0.69142 
21.00000 10.00000 0.47619 0.47562 
17.00000 0.0 0.0 0.02541'':* 
24.00000 6.00000 0.25000 0.25595 
13.50000 275.19995 20.38518 20.36606 
10.00000 0.0 0.0 0.01464** 
16.00000 4.00000 0.25000 0.24147 
10.00000 0.0 0.0 0.02398** 
15.00000 B.0G900 0.53333 0.51468 
14.00000 0.0 0.0 0.00724* 
13.50000 232.19995 17.19998 17.16554 
16.00000 318.00000 19.87500 19.85393 
4.00000 2.00000 0.50000 0.46812* 

22.00000 0.0 0.0 0.01155'\,* 
, 

~stimates followed by double asterisks indicate at 
least 10 percent shrinkage; a single asterisk indica~es 
at least 5 ~ercent. If y = 0, a single asterisk indi­
cates that A > .01. 
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Table 3.4 

PERSON ROBBERY DATA FOR 29 PERVIOUS DOE~S WITH POOR VALIDITY 
(Total observations = 29) 

R = 11.0 
S 188.600 4 4 9 

T Y Z Hudson -Tsuia. 

20.00000 40.00000 2.00000 ,1. 99312 

16.00000 344.00000 21.50000 21.48146 

14.00000 129.00000 9.21428 9.18725 

14.50000 42.59999 2.93793 2.92227 

20.00000 i..00000 0.05000 0.05885*'~ 

20.00000 25.50000 1.27500 1.26671 

13.00000 0.0 0.0 0.01961m~ 

21.00000 0.0 0.0 0.00538* 

11.00000 0.0 0.0 0.03320'''* 

20.0'J000 6.00000 0.30000 0.30717 

16.01)000 2.00000 0.12500 0.13266* 

13.00000 45.50000 3.50000 3.48816 

6.00000 0.0 0.0 0.04670** 

11.00000 0.0 0.0 0.02394'''* 

18.00000 8.00000 0.44444 0.44585 

10.50000 14.00000 1.33333 1.31194 

12.50000 1.00000 0.08000 0.09210** 

12.50000 180.00000 14.40000 14.38551 

12.00000 5.50000 0.45833 0.45417 

12.50000 0.0 0.0 0.00110 

12.00000 4.00000 0.33333 0.33482 

20.00000 326.80005 16.34000 16.32600 

10.50000 5.50000 0.52381 . 0.51675 

22.00000 958.89990 43.58635 43.56403 

16.00000 9.00000 0.56250 0.55233 

3.00000 5.50000 1.83333 1.76606 

2.00000 0.0 0.0 0.02532** 

16.00000 0.0 0.0 0.01248** 

13.00000 27.95000 2.15000 2.13304 

~ timates followed by double asterisks indicate at 
s . i 1 asterisk indicates 

least 10 percent shrinkage, a s ng e i k indi-
at least 5 percent. If Y = 0, a single aster s 
cates that A> .01. 

" 

j 

1 

1 
; 

l 
j 

, .. 
I 

\ 
I 
\ 

/ 

( 
1 C 

= 

-55-

of the maximum-likelihood estimator. This mean square error is 

which must be estimated because its valu'~ depends on the unknown param­

eters AI' ••• ' An. One easy way to estimate the mean square error of 

the maximum-likelihood estimator is 

/'-... P 
MSE = 1 I Y .• 

P i=l ~ 
(3.6) 

This is the denominator used in computing the bound on the estimated 

percentage gain shown in Table 3.5. 

Shrinkage 

Zero 
Mean 
Regression 

Table 3.5 

A COMPARISON OF MEAN-SQUARE-ERROR-GAIN BOUNDS OF 
DIFFERENT VERSIONS OF THE HUDSON-TSUI ESTIMATOR 

FOR THREE GROUPS OF PERSON ROBBERS 

Group 

Previous Doers 

Previous 
Nondoers Good Validity Poor Validity 

Center 
:MSE Gain % Gain 

MSE Gain % Gain MSE Gain % Gain Bound Bound Bound 

.021 .16 .043 .09 .031 .01 

.002 .02 .032 .07 .025 .01 
estimate .006 .04 .063 .14 .057 .02 

NOTE: The first number in the entries ~.'" the tab~e is the estimated 
bound on the mean-square-error gain, given by (l/n)R Is. 'The second 
number is the estimated percent-gain bound given by 100 x R2/(S4Y.). 
All regression estimates are derived from the group of previous d6ers 
with good validity. 

• 
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Table 3.5 shows that the lower bound on the mean-square-error gain 

may not be sharp--that is, it may not be very close to the actual gain. 

(Unfortunately, good estimates of the gains are not available.) But 

the relative sizes of the bounds show that the regression center of 

shrinkage is best for the two previous doer groups, and the zero center 

of shrinkage is best for the previous nondoers. 

~ve shall now compare the amount of shrinking between groups of 

" data. Regression estimates are employed to set values of II. for both 
~ 

of the previous doer groups (good validity and poor validity), so we 

can easily compare them. One would expect the good validity group to 

be rather more homogeneous than the poor validity group. One would also 

expect the values H. of the good validity group to be closer on the 
" ~ 

average to H., since the H.'s are the very values used in estimating 
~ ~ 

the regression. We therefore expect to realize relatively more shrink-

age and higher mean-square-error gains when estimating in the good 

validity group. This is in fact the case for person robbery, where 

l R/S2 = .0630 for the good validity group, and l R2/S = .0568 for the 
n n 
poor validity group. 

The Hudson-Tsui estimator involves shrinking the transformed counts 

H. toward a regression surface and then reversing the transformation. ~ 

Hudson (1980) proves that this estimator is superior to Y. itself for 
~ 

estimating A(i)T. in the sense that it has a smaller mean square error 
~ 

of estimation for all values of A(i), if n ~ 3. Hudson's (1980) em-

pirical comparison of this estimator to one that is analogous to the 

empirical Bayes estimator (Eq. (3.3)) shows that the Hudson-Tsui esti­

mator (Eq. (3.4)) dominates, although not by much. Since the empirical 

Bayes estimator does not necessarily dominate Y. for alZ A(i), we con-
~ 

clude that the Hudson-Tsui estimator is the best that can be used in 

these circumstances o 

While the Hudson-TsuiOestimator is not derived directly from 

explicitly considering a probability distribution on the A's, Hudson 

(1980) shows that his estimator is quite close to one derived from a 

stochastic model in which A(i)T. varies around a predicted value from 
~ 

a regression in a lognormal-like wayo He compared the empirical Bayes 

estimator from this lognormal model to his "H" estimator and showed 
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that they give similar values. s· h 1 
~nce t e ognormal distribution and 

gamma distribution are similar, it is not 
surprising that as a practical 

matter, the gamma-Poisson empirical Bayes estimators and the Hudson-Tsui 
estimators are similar. 
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IV. MULTIVARIATE MODELING: THE RELATIONSHIPS 
AMONG SEVERAL CRniE TYPES 

The methods presented thus far consider,each crime type individ­

ually. In analyzing and modeling the behavior of groups of offenders, 

understand how crime rates for different crime types it is important to 
are related. That is, some, but not all, burglars do robberies. Some 

robbers deal in drugs, etc. Depending on the crime types being analyzed, 

the interrelationships will vary. It is apparent, from the data we 

obt'ained from the Rand Second Inmate Survey, that there are varying 

amounts of overlap in doing different types of crimes. Table 4.1 shows 

the number of individuals in our subs ample who said they did zero 

through 8 of the different crime types. Even this crude summary shows 

that a fairly rich family of distributions is needed to represent multi-

variate frequencies of crime commissions. 

Table 4.1 

NUMBER OF TYPES OF CRIMES 
DONE BY INDIVIDUAL OFFENDERS 

(Total sample = 440) 

. Number of 
Crime Types 

o 
1 
2 
3 
4 
5 
6 
7 
8 

Number of 
Offenders 

79 
85 
84 
66 
57 
36 
18 
11 

4 

Modeling the joint distribution of commissions of several different 

crime types is substantially more difficult than modeling the distribu­

tion of single crime types because of the need for a flexible, analyti­

cally tractable representation of the dependence structure across crime 

- - -----~--- -----,.- --=-,...-----
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types. Further, the "zero problem" is not amenable to the sample­

truncation method, as it was-in the univariate case. For K crime types, 

there are 2K - 1 potential combinations of "zeros," ranging from doing 

all but one type of crime to doing none of them. Separate truncation 

estimation for each crime type does not produce a consistent multi­

variate model. 

In this section we attempt to solve the above problems. The zeros 

are handled in the same way as in Sec. III--we include only those indi­

viduals who have a prior history of committing one of the types of crime 

in question. That is, the data for the measurement period are not trun­

cated. Assuming that the individual crime types have univariate nega­

tive binomial distributions (the gamma-Poisson process), we derive a 

multivariate generalization of that distribution. Finally, we fit this 

distribution to three crime types from the Rand Second Inmate Survey. 

THE GENERALIZED MULTIVARIATE NEGATIVE BINOMIAL DISTRIBUTION 

Suppose there are data for n individuals and K types of crime. 

Individual i is observed for period Ti' during which he corr~its Y
ik 

crimes of type k. We shall now_develop a generalization of the uni­

variate negative binomial distribution and present a method of esti­

mating the parameters of- this distribution. We call this distribution 

the generalized multivariate negative binomial (GMNB) distribution. 

Assumptions. Let!~ = (Yil , ••• , YiK) and ~(i)' = (Al(i), ••• , 

AK(i». Then YikIAk(i)i~d Poisson (Ak(i)Ti ); i = 1, •.• , n; k = 1, ... , 

K; and 

A .. = y,O + y •. 
1J 1 1J 

ind 
where Yi £ gamma(a£, B) for £ 0, ••• , K. 

The notation "~d,, means "is independently draWll from." Note that the 

distribution of A is multivariate gamma, thus allowing for correlations 
"-

of Ak(i) and A£(i), individuai i's propensity for co~~itting type k 

and type £ crimes, respectively. For reference, the mean propensity 
2 

for crime type k is (aO + ak)/B, the variance is (aO + ak)/B , and the 
2 

covariance between Aik and Ai£ is aO/S • 

,-
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In Appendix B, we derive the probability-generating function and 

the moments of the GMNB distribution. Th", moments are given by 

and 

(ao + ak)Ti(Ti + 6) 

6
2 

aOT. (T. + 6) 
l l 

for k =f £. 

Appendix B also gives an iterated weighted least-squares method for 

estimating the parameters aO' ••• , ak and 6. 

AN APPLICATION OF THE GMNB DISTRIBUTION 

The data from the Rand Second Inmate Survey will be used to illus­

trate the fitting of the GIv1NB distribution. Let Y
il

, Y
i2

, Y
i3 

be the 

number of business ro erles, bb ' person robberl' es, and frauds, respectively, 

that individual i reports in period T
i

• We have restri'cted ourselves 

to the 105 individuals who have committed at least one of these three 

crime types in the period prior to the measurement period. The GMNB 

distribution was fit to these data using the method outlined above and 

d · B The estimated parameter values are described more fully in Appen lX • 

given in Table 4.2. 

. to note that the pairwise correlations implied It is interestlng 

f ~ ~ ~ d ~ are close to 0.1 for all pairs. by the values 0 aO' aI' a 2 , an a 3 
These are shown in the correlation matrix in Table 4.2. 

It was shown in Sec. II that the univariate negative binomial may not 

give a good fit to the reported counts of crimes. The GMNB distribution 

imposes the additional constraint that the scale parameters of each of 

the marginal univariate distributions be the same. Thus, a py~ori, we 

poor agreement between the data and the fitted GMNB migh t expe c t 
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£ 
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Table 4.2 

THE GMNB DISTRIBUTION FIT TO THREE CRIlill TYPES 

Crime Type, k ~ 

" ak ].lk 

1 0.03432 -0.18219 
2 0.04390 0.34103 
3 0.03475 -0.15883 

,., ,., ,., 
a

O 0.00387, 6 0.01831, J1 ::: 2.26810 

Correlation matrix estimated from the model: 

1.000 
0.09 
0.10 

0.09 
1.00 
0.09 

0.10 
0.09 
1.00 

distribution. In addition, poor agreement might be due to fitting the 

full GMNB distribution rather than some truncated version, as in the 
univariate case. 

Approximate chi-square tests were computed to check the fit of 

each of these marginal univariate distributions. These were all sta­

tistically significant, confirming our expectations. The contributions 

to chi-square indicate that if the zero problem could be handled better, 

the fit might ,veIl improve. Thus, there is reason to hope for better 
fits with other data sets. 

ALTERNATIVES TO THE GMNB DISTRIBUTION 

There are several possible ways of generalizing the GMNB distri­

bution to get a richer, more flexible family of distributions. Such 

generalization may be desirable when working with data sets that are 

not fit well by the GMNB distribution. One of the possible methods is 
described below. 

The GW~B distribution constrains the scale parameter 6 of the uni­

variate NB distributions to be the same for all crime types. It also 

constrains the underlying propensities to be sy~~etric, in that there 
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is one unique gamma variable YiO shared by all crime types. We use 

some concepts from the literature on individuals' proneness to acci­

dents (e.g., automobile accidents) to present a generalization of the 

univariate negative binomial distribution (called the negative binomial 

beta) that allows for a more general distribution of the underlying A's 

and to indicate how this distribution can be made into a multivariate 

distribution. 

:bar the univariate case, we can assume that the gamma scale param­

eter f3 follows some distribution. If we choose a "Beta II" density for 

S, namely, 

1 So-l 
f (13) = Be 0, y) (1 + (3) o+y , O<S<"" o,y > 0 

where 

1 
B(a, b) = f xa-l(l - x)b-l dx , 

o 

the resulting final distribution of counts is called c: "negative 

binomial beta" or a "generalized \varing" distribution: 

Pr[Y 
= r(o + y)r(a + y) r(y + a)r(y + 0) 

y] r(y)r(a)r(o) r(y + l)r(y + a + a + y) 

where 

o > 0, y > 0, a > 0 

y 0, 1, 2, •••• 

(4.1) 

(4.2) 

Irwin (1968) used these assumptions to model numbers of accidents expe­

rienced by. individuals. He showed that the variance of the negative bi­

nomial beta distribution can be split into three components arising from 

1. Differences in an individual's "proneness" to have an accident 

(internal factors). 
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2. Differences in an individual's "liability" to have an accident 

(external factors/environment) • 

3. Random fluctuation. 

(In the case of criminal behavior, "proneness" corresponds to inherent 

propensity t..:> commit crime, and "liability" corresponds to opportunity.) 

Irwin regarded the negative binomial as the distribution for individuals 

with pron,eness 13 arising from a Poisson distribution with parameter 

Als, where Ais represents an individual's liability A at a given fixed 

level of proneness S, 'and where Ais ~ gamma(a, S). Irwin then let 

proneness S have the Beta II distribution (Eq. (4.1». The variance 

of the final generalized Waring distribution is then the sum of three 

variance components due to proneness, liability, and randomness. 

Other properties of this distribution are also described by IniTin 

(1975) • 

In applying this model to counts of crimes cOlrrmitted by individuals, 

the implied distribution of crime propensities is not a gamma distribu­

tion but is a three-parameter distribution called the gamma product­

ratio distribution CPR (a, 0, y) with dE.'nsity 

few) rCa + y)r(o + y) wa- l U(N + y, ~ + 1 ) 
r(a)r(o)r(y) ~ a - u , W , 

o < w < "" a,o,y > 0 

where U is a solution for Kummer's equation and is defined by 

U(a + y, a - a + 1, w) = 1 J"" 
rea + y) 0 

-wt ta+y-l 
e ----0- dt. 

(1 + t) +y 

(4.3) 

(.~.4) 

This distribution is naturally more flexible than the gamma for fitting 

crime commission propensities. 

A multivariate generalization of the Waring distribution (also 

called the multivariate inverse Polya-Eggenberger distribution) has 

been described and analyzed by Sibuya (1980). Its frequency function 

is 
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P(Y = yia, 13, y) 
,... '" '" 

r(a+ + y)r(s + y) 
= r(a+ + 13 + y)r(y) 

where 

Yi = 0, 1, 2, ••• 

K 

L Yi' 
i=l 

K 

L ai' 
i=l 

K 
IT 

i=l 

a. > ° l 

(4.5) 

( ) ( 0 1) (0 + 1) Additional properties of this and 13, y = 13 f.J + • • . f.J Y - - • 

distribution are presented in Sibuya (1980), including a treatment of 

truncating zero. h can be estimated by maximum likelihood T e parameters 

in a straightforward way. Thus, Eq. (4.5) offers an attractive general­

ization of the GMNB distribution that appears to be an excellent candi­

date for future work on modeling crime counts. 

------~~----------
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V. EXTRAPOLATION TO TARGET POPULATIONS OF OFFENDERS 

Thus far, we have treated the data as if the distribution of crime 

rates for the sampled offenders was itself of general interest. This 

would be true if the sample had been drawn randomly from a large popu­

lation--for example, all offenders in a given city or county. However, 

rarely if ever can data about crime commissions be obtained from a 

representative population. Data about appests for a representative 

population are more easily obtained, especially in jurisdictions that 

compile criminal career histories from official records. 

For practical reasons, self-reported data on the number of crimes 

of various types committed by individuals have been systematically col­

lected only from offenders who have come into official contact with 

the criminal justice 3ystem. Such persons are necessarily nonrepresen­

tative of offenders in general, because the probability that a particu­

lar offender will be arrested (or convicted, or incarcerated) in a 

given time period depends on the types of crimes he commits, how often 

he commits them, and various other factors. The Rand survey respondents, 

whose data have been used here, are clearly nonrepresentative, because 

they were all incarcerated in prison at the time they answered the sur­

vey questions. 

The general impression of incarcerated offenders--and especially 

imprisoned offenders--is that they are an extraordinarily atypical 
~~ 

group, the "losers" among criminals., For this reason, most people 

who are interested in individual crime commission rates want to know 

the distribution of rates for groups other than prisoners. For. example, 

prosecutors might be interested in the crime commission propensities of 

aPpestees or the characteristics of high-crime-propensity arrestees. 

Researchers concerned with deterrence or the sociodemographic factors 

related to crime would be more interested in a general population of 

active offenders than in arrestees. Judges, on the other hand, might 

* Wolfgang called them a "subservience of captured and confined 
sinners" (private cotiununication, 1979). 

.-
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like to know the characteristics of convicted persons with high crime 

* commission propensities. 

In order for data collected from one group of offenders, such as 

prisoners, to be extrapolated into estimates of distributions for some 

other target population, it is not necessary for the sample to be col­

lectively, or on the whole, a representative group. Rather, it is only 

necessary that members of·the target population have a nonzero proba­

bility of appearing in the sampled population and that the sampling 

probabilities of respondents can be estimated. 

We have therefore developed models for estimating a surveyed of­

fender's sampling probability with respect to a target population that 

differs from the surveyed population in specified ways. By weighting 

each respondent's estimated crime commission propensity according to 

.his sampling probability, we obtain an empirical estimate of the dis­

tribution of crime. ,commission propensities in the target population. 

In extrapolating distributions of c,-ime commission rates from 

sampled populations to target populations, the sampling probability is 

not necessarily strongly related to the crime in question. For example, 

suppose the target population includes auto thieves. In most states 

an arrest for auto theft is very unlikely to lead to a prison sentence, 

so it might be argued that auto thieves have practically no chance of 

being in a sampled population of prisoners. But in fact, some offenders 

who are primarily auto thieves wind up in prison upon conviction for 

assault, manslaughter, or other crimes. Such offenders provide infor­

mation about the distribution of crime commission rates for auto theft, 

even though they are not incarcerated for auto theft. 

The following discussion gives several examples of target popula­

tions and sampled populations. The first example has fairly uncompli­

cated mathematical assumptions, but it does not correspond to the Second 

Rand Inmate Survey sample. 

* "Convicted persons" is I):ot synonymous with "prisoners," because 
many convicted persons do not go to prison. 
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MODELS FOR A SAMPLED ARREST COHORT 

Parameters of ,the Model 

Consider a sampled population drawn randomly from an arrest cohort, 

that is, from all individuals who were arres.ted in a given jurisdiction 

* in a given time period (say, 1 year). The target population is defined 

to consist of everyone who had a nonzero chance of being in the cohort, 

i.e., everyone who had a nonzero commission propensity for crimes for 

which it is possible to be arrested in that jurisdiction. 

Assume that when offender i is not incarcerated, his arrests occur 

according to a Poisson process with rate ~(i). This situa~~on could 

arise in many different ways. For example, offender i commits crime 

type k according to a Poisson process with rate Ak(i), k = 1, "', K, and 

each of his commissions of crime k results in an arrest with probability 

Qkl(i), independent of prior events. In this case, his arrest rate is 

~ (i) 

This model is quite general, since it does not assume that of­

fender i has the same arrest probability for different crimes, nor does 

it assume that different offenders have the same arrest probability for 

the same crime k. Nonetheless, the model may not be valid for several 

reasons, including possible invalidity of the Poisson assumption for 

crime commissions, as discussed in Sec. II, and possible increases or 

decreases in arrest probabilities immediately following an arrest. 

(Once an offender has been arrested for crime k, the police might be 

more likely to pick him up for subsequent crimes of the same type; ovhe 

may gradually learn what he does wrong and take steps to decrease his 

arrest probability.) 

* As a practical matter, it may be difficult to obtain data from 
arrestees, since they have merely been charged by the police with com­
mitting a crime and have not necessarily been prosecuted or convicted. 
However, the example is intended only to illustrate the method. 

" 
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Actual data collected from offenders ordinarily show that each 

individual has only a small number of arrests, so it is practically 

impossible to test at an individual level whether there is any correla-

offender 's arrests at one time and his prior arrests. tion between an 

o arrests correspond to a small subset of crime commis-Horeover, S1.nce 

sions, a so-called "thinning process," they are closer to a Poisson 

process than the original crimes are (Maltz, 1980). Consequently, the 

o have adopted--that the se~uence of arrests for offender i assumptlon we "1 

constitutes a Poisson process with rate l1(i) when he is free--will be 

generally consistent (o1ith the data. 

h number of a rrests for crimes of type k Given information about t e 

Ck = 1, ••• , K) for each sampled offender during the measurement period, 

the total arrest rate l1(i) for offender i can be estimated by shrinkage 

methods analogous to t ose h descr1.°bed 1.°n Sec. III for estima~ing crime 

'Co) The key question of judgment is how the commission propensities Ak 1. • 

" ... b bt 0 d "'--"0 suitable procedures "center of shrinkage 110 is to e 0 alne. Hv 
1 

follow: 

't f 

1. Estimate the average arrest probability Q
kl 

for crime k in 

the jurisdiction from data external to the survey of offenders, 

and take as the center of shrinkage 

where ~k(i) is the previously estimated value of offender i's 

commission propensity for crime type k. 

2. Consider the average arrest probabilities for the sampled 

offenders as coefficients ql' q2' ••• , qk in a regression 

whose j.ndependent variables are ~l' ••• , ~K' namely 

where Eo is the unexplained error for offender i. Then the 1. 
center of shrinkage for. offender i is his expected value of 11 

from this regression. 

------- -----------
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Although it would also be possible to snrink toward a rate estimated 

by taking into ar.count the characteristics of each offender, this ap­

proach does not appear attractive thus far, since we have not yet found 

any independent covariates that are significantly related to arrest 
probabili ties. 

Probability of Being in the Sample 

An offender who is a membe, of the target population is eligible 

for the arrest cohort sample if ile is arreRted during the year. If 

offender i happens to be on the street at the beginning of the year, 

then his probability of eligibility is simply 

P(eliglon the street) 1 - exp(-l1(i)). 

However, there is a nonzero probability that he was incarcerated 

at the beginning of th~ year. To estimate this probability we introduce 

the cumulative distribution function Fk(i) for the length of time "off 

the street" when offender i is arrested for crime type k. The distribu­

tion Fk(i) includes mass at zero, reflecting the fact that the offender 

might not be incarcerated after an arrest, and is assumed to have finite 

mean tk(i). Although this distribution is permitted to vary according 

to the characteristics of offender i, the available data SQ1,.1rtes provide 

such distributions only for large groups, such as all arrested individ­

uals in a jurisdiction or state. 

Let F(i) be the cumulative distribution function for the incarcer­

ation time of offender i, given arrest, namely, the probabilistic mixture 

and let tei) be its mean. (In practice it is ordinarily not possible 

to identify the dependence of Fk(i) and Qkl(i) on i, but t(i) can differ 

from tCj) if the crime commission propensities of offender i are differ­

ent from those of offender j.) Then, assuming a steady state, the prob­

ability that offender i is incarcerated at any given moment is 

l: ,-
I 
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z(i) 

Hence z(i) is the probability that offender i was incarcerated at the 

start of the year for which the arrest cohort is defined. Given that 

he is incarcerated, his probability of release by time x is 

1 fX rex) = t(i) SF(u) du 
o 

o ~ x ~ 1, 

where SF is the survivor function 1 - F(i). Given release at x, his 

probability of arrest in the year is 1 - exp(-~(i)(l-x». Bence, 

the overall probability of eligibility for the sample, given incarcera­

tion at the start of the year, is 

P(eliglincarcerated) = fl t~i) SF(x)(1 - e-~(i)(l-x» dx. 
o 

In sum, the probability that offender i is eligible for the sample 

is 

P(elig) 
lit (i) 

~(i) + l/t(i) [1 
e-~(i) + ~(i) fl SF(x)(1 - e-~(i)(l-x» dx]. 

o 

The probability of his being in the sample is simply the overall sampling 

fraction times this P(elig). An illustrative application of this formula 

is given below. 

SM'WLING FROM AN INCOMING COHORT TO INCARCERATION 

Calculating Eligibility for "':he Sample 

Instead'of selecting from arrestees, we might select a sample of 

people who become incarcerated in a given jurisdiction during a given 

year. In this case, the target population consists of individuals with 

nonzero commission propensity for crimes for which it is possible to 

" 
) 

! 
, '/ 
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be incarcerated. The above results for an arrest cohort apply here 

with the following modifications: 

1. Replace Qkl(i) with Qk(i) , the probability that offender i is 

incarcerated, given com.nission of crime type i. Consequently, 

~(i) = L Ak(i)Qk(i) is the average rate at which offender i 

i~ incarcerated, or the inverse of his average time between 

incarcerations. 

2. Interpret Fk(i) to be the cumulative distribution function of 

incarceration time for crime k, given incarceration, and tk(i) 

as the mean incarceration for crime k, given incarceration. 

(Consequently, F(i) and t(i) are reinterpreted.) 

For an incoming cohort to incarceration, it is somewhat reasonable 

to assume, as an approximation, that the distribution of incarceration 

time is negative exponential. Chaiken (1980) showed that the duration 

of prison terms in California in 1976 corresponded approximately to 

an offset exponential distribution. The offset can be interpreted as 

arising from the fact that individuals sentenced to terms of less than 

a year go to jail, not prison. Hence the overall distribution (includ­

ing j ail and prison) could well be exponential. (In 1976, California 

prisoners were sentenced to indefinite terms, with release determined 

by a parole board. Subsequently, California legislation was changed 

to provide for determinate sentences. The distributional form that was 

correct for California in 1976 is more likely to be valid for states 

having indeterminate sentences than for California at the present time.) 

Under the exponential assumption, we have 

-u/t 
e , 

where t stands for t(i), dropping the index i (below, we also use ~ for 

~(i». Hence, 
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P(elig!incarcerated) iII e-x/t(l - e·-~(l-x)) dx 

o 

P(elig) 

= 1 -
lit 

e 
1 

1 ~t 
( -~ -lit) e - e .. 

]It [(1- -lit) 1 (e -~ _ e -lit)] 
+ 1 + ]It e ~ 1 - ]It 

1 -
1 e-~ + (]It)2 e-l/t 

1 - (]It)2 1 - (]It)2 

As a very different alternative to the exponential assumption, we 

-------------

can assume that all incarcerations have the same length to > 1 year, i.e., 

Then P(elig) = ~/(l + ~to)' which is simply the steady-state probability 

of ente1"-tng incarceration. (Under this assumption, it is impossible to 

enter incarceration twice or more in the sampling year.) 

We have now derived two different equations for P(elig), based on 

two assumptions about the form of the distribution of incarceration 

time, and we have indicated how either of these probabilities can be 

estimated for an individual member of an incoming cohort to incarcera-

tion, using 

• 

• 

1 I 

Estimates of his crime commission propensities for crimes 

1, 2, ••• , K. 

Estimates of the probabilities of incarceration and average 

inca'rceration times in the jurisdiction for crimes 

1, 2, ••• , K. 
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This is all the information we need to estimate the sampling proba­

bility of each member of the incoming cohort, relative to the target 

population. The sample can now be weighted to estimate characteristics 

of the target population. 

Example of Estimating Procedure 

Suppose, for simplicity, that there are only two crime types. 

The first (which we shall call robbery) will be assumed to have Q = 

(0.2)(0.4) = 0.08 and tl = 4 years; the second (which we shall call bur­

glary) will have Q = (0.08)(0.3) = 0.024 and t2 = 2 years. Different 

combinations of crime commission result in different values of mean 

incarceration time t, as well as of arrest rate ~ = .08A(robbery) + 
.024A(Burglary). The results for P(elig) are shown in Fig. 5.1. 

Offenders with very low crime rates (say, less than one burglary per 

year and one robbery per 5 years) have less than a 2 percen~ chance of 

eligibilitYt while those with high crime rates have from about a 25 to 

35 percent chance of eligibility. The two different models of the distri­

bution of time served (exponential and constant) yield nearly identical 

estimates of P(elig) when both A(robbery) and A(burglary) are less than 

10 per year, and they do not yield substantially different estimates 

of P(elig) for any values of the crime commission rates. Hence the 

details of the assumptions are immaterial in a practical sense. 

As shown in Fig. 5.1, offenders who have high robbery rates as 

well as high burglary rates are less likely to be sampled than those 

..•. who simply have high burglary rates (because high-rate robbers are more 

likely to be in prison at the start of the year). 

Example Showing Effect of Heighting on the Distribution of Crime 
Commission Propensities 

Assume that there is a group of offenders who commit only one crime 

type, and their distribution of crime commission propensities is gamma 

with mean 2 per year. Figure 5.2 shows an example of such a distribu­

~ion with parameters a = 0.4, S = 0.2. The more widely spread dis­

tribution represents the distribution of crime commission rates in an 

incoming cohort to incarceration. This distribution was obtained by 



-74-

0.3 

0.1 

--~--- -- - --

,.'" ,.'" 
", 

........ 
,." 

A robbery = 0.2 

-­_ .... ---- 2 __ - O. 

/'-::/;;/~;::::::::::::;'---

Assumptions: 

Q (robbery) = 0.08 
a. (burglary = 0.024 
t (robbery) = 4 years 
t (burglary) = 2 years 

Exponential model 
Constant model 

0;0---------7,~------~~--------L---------J 
10 20 30 40 

Annualized crime commission rate for burglary 

Fig. 5.1 - Illustrative probability of eligibility for sample 
( incoming cohort to incarceration) 

---------~-------

\ 

" 

------ --------~---------- --------- -------- .. 

> 
.~ .. 
C 
III 

'C 

> 
~ 
:c 

C'CI .c 
0 

ct: 

, ' 

-75-
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Fig. 5.2 - Application of model for incoming cohort to incarceration 
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applying the incoming-cohort model described above with the parameters 

Q = 0.08 and t = 4 years. Although the distribution of crime commission 

propensity in the sample cannot be exactly gamma (under our assumptions), 

it is almost indistinguishable from a gamma distribution with parameters 

(1. 3, 1/3). 

The distribution for the sample shows a distinct dropoff below 

A 0.9 even though 50 percent of the target offender population has 

A < 0.7. An extraordinary concentration at low values of A in the 

target population produces only a modest concentration at low values 

in the distribution of crime rates in the sampled population. Since 

typical distributions of crime commission rates in sampled populations 

have fairly heavy concentrations near zero, the implication of the model 

is that the target population has an even more dramatic concentration 

near zero and a less substanti.al tail. 

AN IN-PRISON SAMPLE 

The case of selecting a sample of offenders in prison was described 

by Chaiken.(1980). A model for estimating an offender's probability of 

eligibility for such a sample must incorporate three additional features 

not included in the previous two models: 

'I I 

1. In an adult prison there are no prisoners under the age of 18, 

so there are strong age dependencies in the probability of 

18-, 19-, and 20-year-olds being sampled in prison. 

2. An offender may remain in prison past the time when he would 

have stopped doing crime if he weren't in prison. Hence the 

phenomenon of criminal career termination, which is somewhat 

irrelevant for the pre!vious models, becomes important in this 

case. (To avoid confusion concerning whether an inactive of­

fender is or is not in the target population, we will include 

all imprisoned individ'uals in the target population.) 

3. The sentence lengths for members of the sample are typically 

longer than average, due to time-biased sampling. Hence, if 

we wish to estimate the parameters t l , t 2 , ••• , tK (lengths 

of sentences) from the data for the sampled population, addi­

tional models are needed. 

". 

.--
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The third feature is illustrated by Fig. 5.3, which shows simulated 

crim.inal careers of 20 offenders, 10 of whom have a "low" crime rate of 

9 per year and 10 of whom have a "high" rate of 18 per year. The light 

line indicates time not in prison; the heavy line, time in prison. 

Different offenders start committing crimes at different times in rela­

tion to the sampling date. For each crime, the probability of (arrest 

and) incarceration is assumed to be 0.02. The length of time spent in 

prison was simulated as an offset exponential distribution, with an 

average of 38 months and a minimum of 20 months. Figure 5.3 shows that 

high-rate offenders are oversampled in relation to low-rate offenders 

and that the sampled prisoners have much longer terms than the average 

term. 

Adapting the notation above, let Ak(i) be the annualized crime 

commission propensity for offender i, Qk(i) his probability of (arrest, 

conviction, and) imprisonment, given commission of a crime of type k, 

Fk(i) his distribution of staying time in prison, given imprisonment 

for crime type k, and tk(i) the mean of Fk(i). As before, the distri­

bution F(i) is defined as 

where ~(i) = LAk(i)Qk(i) is the inverse of the average time between 

imprisonments, and t(i) is ·the mean of F(i). Time spent incarcerated 

in facilities other than prison is ignored in this version of the model, 

since prison terms are substantially longer than jail terms, but it 

can be incorporated without much difficulty. The largest population 

consists of offenders, imprisoned or not, who have nonzero commission 

propensities for crimes for which it is impossible to be imprisoned, 

together with all other imprisoned offenders. 

To account for termination of criminal careers, we assume that the 

duration of criminal activity for offender i has a distribution G(i), 

and an offender can become inactive either while on the street or while 

in prison o 

To derive an analytic expression for the probability that of­

fender i would be found in prison at a specified age, we must make 
," 
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further simplifying assumptions. As an illustration, we adopt the 

following (not very realistic) assumptions, recognizing that the result 

will be only approximately correct: 

• The distribution F(i) of the length of time that offender i 

* spends in prison is exponential. 

• Offender i ends his criminal activity after an exponentially 

distributed time whose mean is l/w(i), unless his end-of­

career time occurs when he is in prison. That is, offenders 

be'come inactive at a constant rate (w(:i,) for offender i) when 

they are on the street. 

• When in prison, offender i can be "labeled" as having become , 

inactive at the same rate wei), but he remains a member of the 

target population until he leaves prison. (For the model to 

work, we must have wei) < l/t(i).) 

• All offenders start their criminal activity before age 18 and 

become eligible for (adult) imrl~isonment beginning with crimes 

committed after their 18th birthday. 

Under these assumptions, the offender's status as a function of 

time can be modeled as a Markov process with these states: in prison, 

active on the street, and inactive. Denote by Pl (18 + x) the probabil­

ity that offender i is in prison at age 18 + x, and P
O

(18 + x) the 

probability that he is active and on the street. Then the assumptions 

listed above imply the following differential equations t for Po and PI: 

dPl (18 + x) 

dx 

- (w(i) + ~(i»PO(18 + x) + (- wei) + 1/t(i»Pl (18 + x), 

* This assumption is not literally possible, since F(i) is a proba-
bilistic mixture of distributions, and an exponential distribution is 
not a mixture of any plausible individual distributions o 

tThese are called the equations of detailed balance. 
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For those who are still members of the target population at age 

18 + x, the fraction in prison is 

<1>. (18 + x) 
1. 

P
l

(18 + x) 

By solving the differential equations for Po and PI' we obtain the 

resul t for <1>.: 
1. 

<1>.(18 + x) 
1. 

}l (i) 
}lei) - 00(1) + l/t(i) (1 - exp(-(}l(i)-w(i)+l/t(i))x)). 

Thus <1>. = 0 at age 18 and gradually increases to the asymptotic value 
1. 

}l(i)/(}l(i) - wei) + l/t(i)). Ignoring the age of offenders, the 

average probability that offender i is in prison can be shown to be 

}l(i)t(i)/(l + }l(i)t(i)). 

Comparing the probabilities across offenders, we see that the 

functional form has the desired properties. All other things being 

equal: 

• Offenders with high Ak(i) are oversampled in a prison popula­

tion, compared 1:0 offenders with average or low Ak(i). 

• Offenders with high incarceration probabilities Qk(i) are 

oversampled, compared to other offenders (because }lei) = 
LAk (i) Q

k 
(1) ) • 

• Offenders who do crimes that yield long prison terms t(i) are 

oversampled, compared to other offenders. 

• Old offenders are oversampled, compared to young ones. 

• Offenders with short career lifetimes l/w(i) are oversampled, 

compared to offenders with long lifetimes. 

Since the quality of available data for estimating Qk(i) , tk(i), 

and (especially) wei) is ordinarily rather poor, the improvements that 

could be made by introducing more realistic assumptions in the model 

do not appear to be warranted. Moreover, since the inverses of the 
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sampling probabilities are used as sampling weights, any improvement 

in the model that results in simply multiplying most offenders' sampling 

probabilities by approximately a constant factor has essentially no ef­

fect on the analysis. Chaiken (1980), applying these methods to data 

from the Rand First Inmate Survey, showed that the weighting scheme 

resulted in estimated mean Ak'S fot active offenders that differed from 

the means for the in-prison sample by 60 to 80 percent; changing the 

details of the model affected the adjusted means by less than 10 per­

cent. Hence, models that capture the essence of the sampling process 

under simplifying assumptions should ordinarily be sufficiently accurate 

for typical applications. 
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Appendix A 

ESTIMATION OF PARAMETERS OF DISTRIBUTIONS 

PARETO DISTRIBUTION 

The Pareto cumulative distribution function is 

where a is the shape parameter, and a is the scale parameter. We esti­

mated these two parameters by a method of maximum likelihood, using the 

censored data for annualized crime commission rates. Before processing 

the data, responses· of "zero crimes" were converted to interval re­

sponses with lower terminal 0 and upper terminal 1/(12 T + 1). Four 

types of observations then entered the likelihood function: 

10 Complete or exact observations for which the minimum rate 
equals the maximum rate. 

2. Closed-interval observations ~Yith nonnegative left endpoint 
and finite right endpoint. 

3. Left-closed and right-open interval observations (e.g., we 

know only that at least 11 crimes were committed). 

4. Zero observations, which were converted to interval observa­

tions ~Yith left endpoint zero and right endpoint finite. 

Suppose there are nl observations of the first type, n
2 

of the 

second, n3 of the third, and n4 of the fourth. Then the likelihood 
function is given by 

nl n
2 

L = IT f(x
i

) IT 
i=l i=l 

[F(r.) _ 
~ 

n3 
F(R..)] IT 

~ i=l 
(1 - F(y.» 

~ 
F(~y.) , 

~ (A.l) 

where x. is the ith observation of the first type, R.. is the left end-~ l 

point and r. the right endp(;;int of the ith observation of the second ~ 
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type, y. is the 
1 

left endpoint of the ith observation of the third type, 

endpoint of the ith observation of the fourth type, w. is the right 
1 

f is the density function, and F is the distribution function. The 

maximization was performed by a computer program employing an IMSL 

(International Mathematical and Statistical Library) subroutine using 

a quasi-Newton method for minimizing a function of any number of 

parameters. 
~~ 

Table A.I shows the Turnbull empirical distribution function and 

the values of the fitted Pareto distribution for the crime of person 

robbery. The Pareto distribution function is evaluated at the interval 

" midpoints. The fitted parameters for burglary rates are a = 0.48512 
" and a = 0.05254. 

Since the column labeled "Turnbull" is the estimated value of the 

nonparametric distribution function on the indicated interval, comparing 

this with "P(midpoint)" gives some idea of the agreement between the 

nonparametric distribution function and the Pareto (~, ;) distribution. 

More formally, we tested the fit of the estimated dis-tribution to 

determine whether the Pareto form is appropriate. The arbitrary censor­

ing poses problems in applying the usual goodness·-of-fit tests. One 

possibility is to use only the exact observations to test the fit, but 

this method presents two problems: First, depending on the crime type, 

only between 8 and 27 percent of the total 440 observations were exact 

(not given as intervals). (Recall that those offenders who responded 

that they did not do the crime were included as interval responses.) 

Second, in accepting this approach we assume that criminals yielding 

exact observations are a fair representation of the criminals responding 

with interval observations, an assumption which is difficult to test. 

Another course of action, the one we have taken, is to use the estimated 

Turnbull empirical distribution function by comparing it to the esti­

mated Pareto distribution function. 

Our formal comparison here is a chi-square goodness-of-fit test. 

We estimate the observed number of observations falling into a cell 

using the nonparametric distribution function and the expected number 

* This Turnbull function differs from the one. in Table 2.1 because 
we have smeared the zero values in order to fit the Pareto distribution. 
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Table A.I 

TURNBULL EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTION 
AND PARETO FITTED CUMULATIVE DISTRIBUTION FUNCTION 

FOR PERSON ROBBERIES 

Turnbull i7(midpoint) Interval Midpoint 

0.675 0.678 0.48000 to 0.50000 0.49000 
0.680 0.684 0.50000 to 0.52170 0.51085 
0.686 0.690 0.52170 to 0.54550 0.53360 
0.693 0.696 0.54550 to 0.57140 0.55845 
0.704 0.702 0.57140 to 0.60000 0.58570 
0.713 0.709 0.60000 to 0.6S160 0.61580 
0.722 0.716 0.63160 to 0.66670 0.64915 
0.732 0.727 0.66670 to 0.75000 0.70835 
0.738 0.737 0.75000 to 0.80000 0.77500 
0.745 0.745 0.80000 to 0.85710 0.82855 
0.751 0.754 0.85710 to 0.92310 0.89010 
0.763 0.762 0.92310 to 1.00000 0.96155 
0.769 0.771 1.00000 to 1.09090 1.04545 
0.779 0.781 1. 09090 to 1.20000 1.14545 
0.785 0.791 1.20000 to 1.33330 1.26665 
0.789 0.798 1.33330 to 1.41180 1. 37255 
0.793 0.804 1.41180 to 1.50000 1.45590 
0.806 0.813 1.50000 to 1. 71430 1. 60715 
0.818 0.821 1. 71430 to 1.84620 1. 78025 
0.823 0.826 1.84620 to 1.89470 1. 87045 
0.827 0.829 1.89470 to 2.00000 1. 94735 
0.834 0.838 2.00000 to 2.40000 2.20000 
0.840 0.848 2.40000 to 2.57140 2.48570 
0.846 0.857 2.66670 to 3.00000 2.83335 
0.854 0.865 3.00000 to 3.42860 3.21430 
0.859 0.871 3.42860 to 3.60000 3.51430 
0.863 0.874 3.60000 to 3.75000 3.67500 
0.867 0.877 3.75000 to 4.00000 3.87500 
0.876 0.882 4.00000 to 4.50000 4.25000 
0.883 0.888 4.66670 to 4.80000 4.73335 
0.891 0.891 4.80000 to 5.14290 4.97145 
0.895 0.893 5.14290 to 5.33330 5.~3810 

0.898 0.895 5.33330 . to ".;'45450 5.39390 
0.900 0.896 5.45450 to 5.64110 5.55080 
0.903 0.897 5.64710 to 5.71430 5.68070 
0.906 0.899 5.71430 to 6.00000 5.85715 
0.907 0.902 6.00000 to 6.40000 6.20000 
0.911 0.904 6.40000 to 6.75000 6.57500 
0.914 0.906 6.75000 to 6.94740 6.84670 
0.915 0.909 7.20000 to 7.33330 7.26665 
0.916 0.911 7.50000 to 7.63640 7.56820 
0.920 0.917 8.00000 to 9.60000 8.80000 
0.925 0.923 10.00000 to 10.50000 10.25000 
0.929 0.926 10.50000 to 12.00000 11.25000 
0.934 0.932 12:00000 to 11 •. 40000 13.200UU 
0.939 0.939 14.40000 to 18.947ljj 16.67369 
0.943 0.%3 18.94740 to 20.00000 19.47369 
0.944 0.946 20.00000 to 22.50000 21.25000 
0.947 0.948 22.50000 to 24.00000 23.25000 
0.948 0.950 24.00000 to 25.80000 24.89999 
0.957 0.961 34.39999 to 50.39999 42.39999 
0.961 0.966 50.39999 to 60.00000 55.20000 
0.963 0.968 60.00000 to 68.57140 64.28569 
0.966 0.975 92.87990 to 110.57130 101. 72560 
0.971 0.979 110.57130 to 183.46660 147.01892 
0.975 0.981 190.52299 to 196.07990 193.30139 
0.980 0.982 196.07990 to 206.39990 201.23987 
0.983 0.983 206.39990 to 257.99976 232.19983 
0.986 0.984 257.99976 to 265.37109 261.68530 
0.994 0.993 265,37109 to2528.39746 1396.88428 
0.997 0.995 2.528.397:.6 to4024.79785 3276.59766 
1.000 4024.79785 and greater 
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using the estimated Pareto distribution function. We then calculate 

the chi-square statistic as usual and compare it to the chi-square 

distribution with P - 3 degrees of freedom, where p is the number of 

cells used in the test (2 degrees of freedom are subtracted for esti­

mating the parameters a and a). Of course, the assumptions for the 

usual chi-square test are not satisfied exactly, since we are esti­

mating the number of observations that fall into a cell via the estimated 

nonparametric distribution function, but for this type of exploratory . 

analysis that detail can be overlooked. 

Table A.2 gives the calculation of the chi-square statistic for 

person robberies. The column labeled "I.nterval" defines the cells for 

calculating the statistic. The first cell has left endpoint zero and 

right endpoint p(z), where P is the Pareto (~, ~) distribution function 

and z is the value that gives the closest multiple of 5 percent exceed­

ing the value P(MIDPOINT) on the first interval on which F(x) has value. 

The remaining intervals are constructed so that the expected relative 

frequency is 5 percent. The two columns labeled "Observed" and 

"Expected" under "Interval Relative Frequency" show the observed and 

Table A.2 

CHI-SQUARE TEST OF FIT OF PARETO DISTRIBUTION 
TO RATES OF PERSON ROBBERY 

Interval Relative Interval 
Interval Frequency Frequency 

From To Observed Expected Observed Expected 
-

0 .5760 .70 .70 308 308 
.5760 .8627 .05 .05 22 22 
.8627 1.3973 .04 .05 17.6 22 

1. 3973 2.5708 .06 .05 26.!.t 22 
2.5708 5.9986 .06 .05 26.4 22 
5.9986 25.2033 .04 .05 17.6 22 

25.2033 (X) .05 .05 22 22 

Totals 1.00 1.00 440 440 

(O-E) 2 
E 

0.0 
0.0 

.88 

.88 

.88 

.88 
0.0 

3.52 

2 
NOTE: Observed X = 3.52 with 4 degrees of freedom. Do not re-

ject Pareto at the 5 percent significance level. 

-, 
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expected fraction of observations for the corresponding interval cell. 

The columns under "Interval Frequency" show observed and expected num­

ber of observations in the corresponding inter.val. The last column, 

"(O_E)2/E," is the contribution to the chi-square statistic for that 

cell and is calculated as 

(Observed interval frequency - Expected interval frequ~ncy)2 
Expected interval frequency 

For the crime of person robbery, the fit of Pareto is fairly good 

as measured by the chi-square test. However, this same procedure 

yielded a less satisfactory fit for the other seven crime types. Based 

on the chi-square tests, the Pareto model was rejected at the 5 percent 

level for four of the eight crimes (see Table A.3). The estimated 

Pareto has a slightly too heavy tail for the crime types for which it 

was rej ec ted. 

Table A.3 

FIT OF PARETO DISTRIBUTION 

Crime Type " " 2 
0: a X Result 

Burglary .390 .153 19.75 Reject at 1 percent 
Business robbery .582 .087 0.0 Do not reject 
Person robbery .485 .053 3.52 Do not reject at 5 percent 
Theft Cother than auto) .375 .082 44.07 Reject at 1 percent 
Auto .theft .373 .024 9.74 Reject at 5 percent 
Forgery/credit cards .389 .009 0.0 Do not reject 
Fraud/swindles .457 .016 1. 76 Do not reject at 5 percent 
Drug dealing .217 .016 94.24 Reject at 1 percent 

GAMMA DISTRIBUTION 

The gamma density function is 

sO: 0:-1 
f(x) = reo:) x exp(-ex), 
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with shape parameter. a and scale parameter a. (This scale parameter 

is the inverse of the scale parameter given in Sarndal (1964).) The 

parameter a was estimated by a quartiles ratio comparison described in 

·Sec. II. Given this assumed value of a, Sarndal' s estimate of a from 

the sample quartiles is as follows: 

quartiles of the gamma distribution with shape 
parameter a and scale parameter 1 

sample quartiles 

1 a-I 
u(x) = rea) x exp(-x) 

Numerator 

Denominator 

" 

+ z3U(x3) (2x3u(x3) 

2 
(xlu(xl )) 

2 + (x2u(x2) -. x1u(xl )) 

+ (x3u(x
3
)) 2 

1 Numerator - = 
a Denominator· 

" 

• 
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Appendix B 

DERIVATION AND ESTIMATION OF THE GMNB DISTRIBUTION 

DISTRIBUTION OF Y. 
""'J. 

Marginally, Yik is negative binomial with parameters (~O + a
k

, Pi)' 

where P. = a/CT. + a): 
J. J. 

P(Y
ik 

y = 0, 1, (B .1) 

Now the distribution of ~(i) is multivariate gamma, type I (Johnson 
and Kotz, 1970, Chap. 40) • To get the distribution of Y, observe that 

'" Y. has the same distribution as X
iO + Xik , where J. 

I ind XiO YiO '" Poisson (YiOTi ), 
ind 

Y iO '" r (aO ' S) , (B.2) 

and 

X I indp . 
(Y ikTi) , 

ind 
(3) • (B.3) ik Y ik '" OJ.S son Y ik '" r (ak ' 

Thus, XiO and Xik have independent negative binomial distributions with 

parameters (aO' Pi) and (ak , Pi)' respectively. The probability­

generating function of !i can be obtained from the probability-generating 

function of the univariate negative binomial, which is 

(B.4) 

where Q = 1 - P and Y '" NB(a, P). Thus, the multivariate probability­

generating fUnction is 



P Y (tl , ••• , t K) 
""i 

.~~~--~--- - - -
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( 

K y i .) 
E II t. J 

j=l J 

E II t. II t. • [( K )XiO (K Xij)] 
j=l J j=l J 

By independence we get 

where 

1 - p. and t 
1 

(B.5) 

We call this the generalized multivariate negative binomial (G}lliB) 

distribution, in contrast to the multivariate negative binomial dis­

tribution of Johnson and Kotz (1972, Chap. 11). The formula for the 

frequency function is fairly complicated and will not be presented here. 

The moments of Y. follow easily from the probability-generating 
",,1 

function or from the negative binomial representation of the distribu-

tion: 

E(Y
ik

) 
(aO + ak)Qi (aO + ak)Ti = 

13 P. 
1 

I ' 

(aO + ak)Qi (aO + ak)Ti(Ti + ,13) 
Var(Y

ik
) 

p~ 13
2 

1 

(B.6) 

for k :f i 

---,-- . 

~----~~-------~----~------------------------------------------------~.~-----------------' 

" 

Ii 
tJ 
J 

) 

! 
j 

1 
l ' : 
1 
J 
I 
( 

I I I 

J 

\ 
i 
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so that 

for k :f i. 

ESTIMATION OF PARAMETERS 

As noted above, the likelihood function of Y. is quite complicated, 
",,1 

thus making;maximum-likelihood estimation of the parameters an unattrac-

tive option. Our alternative is to write the expected value of Z .. as 
1J 

a particular variance component-like model and use least Rquares to 

estimate the various expected values. There are some added complica­

tions in getting back to the original parameters (a
O

' aI' ••• , a
K

, 13), 

but this method of estimation should be quite efficient. 

Let Y Y be a random sample from the above G~lliB distribu-",,1' ••• , ",n 

tion, so that 

X,O + X· k , 
•. 1 

where Xii"" NB(ai , Pi)· It will be convenient to use Zik = Yik/T
i 

as the dependent variable. Now E(Zik) = (a
O 

+ ak)/s, so that 

where 

and 

1 K 
~ = (aO + u)/S, a = K La., 

j=l J 

~. 
J 

(a. 
J 

K 
a)/S, L ~. = 0, 

j=l J 

(B.7) 
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The covariance matrix of E, has elements 
--..1 

if k :f t, 

ifk 

where 

(B.8) 

9.., 

Thus the correlation matrix of the errors E, has off-diagonal elements 
--..1 

Note that Eik could also be written as a random-effects or 

components-of-variance model as 

where Vi and eik are independent, and 

Using Eq. (B.7), we could estimate ~, ~l' ••• , ~K in a minimum­

variance unbiased way if the covariance matrix of E, were known, using 
--..1 

generalized least squares. Two modifications are needed. First, the 

covariance matrix depends on the unknown parameters being estimated; 

and second, Eq. (B.7) gives estimates of only K parameters, while we 

need estimates of the K + 2 parameters aO' aI' ••• , ~,S. Our modifi­

cations are as follows: Initially, fit Eq. (4.7), using a one-way 

analysis-of-variance model with ordinary least squares. This will give 

initial estimates of ~, ~l' ••• , ~K. Form the residuals r
ik 

and estimate 

j 

t 
! 
l 
! 

------,.--
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n K 2 
(aO + U)T = I L r, ,/K(n-l), 

i=l j=l 1J 

~ 
,,? ~ \' / K(K-l) (n-l) 
cr-CV = ao, = L L r" r , t 2 

i=l j<9.. 1J 1 

" " " Solve for values of aO' aI' ••• , aK, S as described below. Rerun 

the one-way analysis-of-variance model using generalized least 

'th ' t' "(i) "" 'f'.J.n d"(i) squares W1 covar1ance rna r1X cr" = aO" 1 J ~ ~ an cr" = 
" "" 1J 1. JJ 

(B.9) 

(aO + a,)" if j = 9... For exploratory purposes, one iteration should 
J 1· 

be sufficient; for a final model, we may want to iterate to convergence. 

We may also want to consider using a weighted average in Eq. (B.9) to 

estimate the average variances and covariances. 

Equation (B.9) and the estimates from Eq. (B.7) can be combined 

as follows: To keep the formulas less cluttered, we drop the "hats" 

that indicate the quantities are estimates. From Eqs. (B.7) and (B.9), 

we have 

~ (aO + ;,)/S, 

~j (ak u)/S; k 1, ... , K, 

-2 (aO + a)T, crv 

-2 cr
CV aO" 

2 Since, = (l/n)E(T, + S)/T.S , where Tl , ••• , T are known, we have 
. 1. 1 n 

effectively K + 2 equations with K + 2 unknowns that can be solved 

straightforwardly. In particular, 

, = 
1 n 

I 
n i=l 

T, + S 
1. lIn 1 

=-+- L 
S2 nS i=l Ti 

,I 
li 
}: 

j 
it 
i i 
, I 
I'; 
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Substituting the above expression for T, the equations are 

)l 

)l •. = (a. - u)/S, 
J J 

(aO + a) 2"" + Q L T ' - (lIn 1) 
S nl-> i=l i.' 

a = a -+- L - • -2 (1 1 ¥ 1 \ 
CV 0 S2 nS i=l Ti) 

To get estimates, substitute Eq. (B.lO) into Eq. (B.12) to get 

a =)l - + - L - -~S -2 -(lIn 1) ,., 
V S n i=l Ti 

Now substitute S into Eq. (B.13) to get 

,., ,., 

)l 

_ 1 n 1 
aV-)l-n L T 

i=l i 

Then SUbtl\:1,tute aO and f3 into Eq. (B.lO) to ge.t 

~ = 11 S - ~O. 

Finally, substitute S and ~ into Eq. (B. 11) to get 
a 

a. 
J 

I' 
< 
I 

" 

,1 

J 
i 
~ 

~.o/ 
\ 
t 
, 
q 
f-i 
[ 

1 .~. , , 
'0 
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