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Executive Summarl 

The purpose of this research was to develop procedures for 

analyzing selected spatial and temporal characteristics of crime 

data. Three particular problem areas were to be investigated: 

(a) selected aspects of the aggregation process: (b) 

confirmatory and exploratory methods for examining crime data 

summarized in proximity matrices: and (c) an examination of 

spatial autocorrelation procedures. In each case an attempt was 

made to examine the probl~m in terms of a randomization approach 

rather than by conventional statistical procedures. The 

randomization procedure was based on the work of Hubert (1978a,b, 

1979a,b), Hubert and Baker (1978a,b,c) Hubert and Levin (1976b)Q 

and Mantel (1967). In the course of the general set of 

investigations, spillover effacts o.ccured in that our examination 

of methodologies such as hierarchical clustering and 

multidimensional scaling, and the use of the combinatorial 

strategies associated with the quadratic assignment procedure, 

stimulated research on diverse topics such as developing a model 

for roll-call cohesion methods (a combinatorial strategy) and 

examining the potential use of non-Euclidean geometries in the 

study of cognitive maps (a variation of the standard Euclidean 

measures used in calculating proximities and an extension of the 

"perception of'crime" research in paper #4). While these latter 

two papers are somewhat peripheral to the main theme of the 

research, they do represent areas of considerable interest in 

disciplines such as geography, cognitive science, psychology, and 

political science. 
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The major problems investigated during the' course of t ': 

project and outlined in the final report can be summarized as 

follows: 

1. Aggregation in Data Tables: Implications for 

Evaluating Criminal Justice Statistics 

a) SUMMARY 

Dat~ collected on a set of objects (e.g., cities) over a set 

of attributes (e.g., time points) can be subjected to a variety 

of aggregation schemes. For example, if a hypothesized pattern 

over the attributes is to be confirmed (e.g., a temporal increase 

in homicide rate), the data could be first aggregated over cities 

and then compared to the hypothesized pattern. Alternatively, 

the correspondence for each city could be separately assessed and 

the individual city indices aggregated. The stage at which 

aggregation takes place affects the size of the final measure of 

confirmation as well as its significance, but unfortunately, in 

opposite ways. Preliminary data aggregation typically leads to 

larger summary statistics and larger significance levels. The 

conflicting notions of size and significance are first formalized 

in detail when the basic data are single numerical values 

obtained for each object-attribute pair. Extensions are 

presented to multi-group concordance, hierarchical aggregation 

schemes, and to object data defined by pairwise proximities 

between the attributes. 
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b) DISCUSSION* 

In the very first example illustrating two aggregation 

schemes, a rank transformation was used within each row and on 

the rank sums for each column. This process ensures that each 

object or row contributes "equally" and thus, some degree of 

natural comparabili ty exists betw1een the summary statistics 

obtainr~ for the two aggregation schemes. To develop more 

exp~ _~it relationships in terms of formulas, however, the 

transformations used in most of the paper were based on obtaining 

z-scores. In the jargon of statistics, observations within rows 

are aligned for location and scale. This convention allowed 

precise connections to ~e developed between the two aggregation 

schemes both in terms of summary indices {e.g., for r A and r B 
and Z-statistics (e.g., for Z and Z ) (for definition of all 

A B 
these summary indexes see pages 9-12 of the first paper presented 

in the 'main section of this report). 

Matrix extensions offer a great deal of flexibility in 

defining different relationships among the attributes, but 

unfortunately, the problem of defining a transformation on the 

aggregate data matrix also makes it very difficult in general to 

develop precise formulas for connecting the two aggregation 

schemes. As an example of this problem, suppose we are given the 

basic object by attribute data table and define an n x n matrix 

for each object (e.9~, city) as follows: the entry in the u th 

row and vth column is +1 if x. > x. ,. -1 . f x. , and 0 if 
, U 1 V 1 Xi U < 1 v 

xiu = Xiv' If we treat the n(n-l) entries in each such matrix as 

a sample, normalize to z-scores in the usual way, and carry out 

3. 
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the same red~finition for a criterion set of values 

Y1' Y2'···' Yn' the average correlation r B is actually the 

average Kendall Tau
b 

statistic of each row against the criterion 

(cf. Hays, 1960). However, to obtain an analogue of r A, a 

similar transformation to signs must be performed on the 

aggregated scores from the standardized object by attribute 

table. This discontinuity in strategy prevents any simple way of 

defining a relationship between the summary measures for the two 

aggregation schemes. We would still expect data aggregation to 

give a larger descriptive ,measure and a greater significance 

level, but it is not clear how these expectations could be 

formalized as a parallel to our previous equations (1) and (2) 

(given on page~~ 10 and 11 of the first paper in the main section 

of the report). 

As another point of clarification, we note that the 

normalization within rows of an object by attribute data table 

may not be the only natural transformation to carry out. 

Instead, suppose z-scores are obtained within columns and for 

each object i we define an n x n matrix having an entry in the u
th 

row and vth column of tz;uZ;v Here, z;u and z;v are z-scores 

for attributes u and v, respectively. If we aggregate over the I 

matrices (treating objects as if they were "subjects"), the 

correlation matrix among attributes is generated. Pattern 

comparisons are important here in the context of what is called a 

mUlti-trait multi-method matrix; consequently, some of the same 

aggregation principles discussed previously appear important to 

distinguish in these applications as well (see Campbell and 

Fiske, 1959; Hubert and Baker, 1978). 

. , 
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The methods of data aggregation discussed in the paper 

represent both ongoing procedures used in geography for 

aggregating data and alternatives to those standard procedures. 

For example, Harries (1973) used preliminary aggregation 

procedures when he averaged violent crime rates for 189 SMSA's 

for the five year period 1965-69 and calculated simple 

correlations between violent crime and population over the 

SMSA's. Alternative procedures for determining correlations 

between violent crime and population are given in our discussion 

of the statistics rS and r ( ). Pyle (1974) used correlational 
I save 

aggregation when he examined actual crime rates per 1000 persons 

for nine crime types, plus armed robberies per 1000 commercial 

structures and rates of residential burglary per 1000 dwelling 

units. Pyle calculated all pairwise correlations for the entire 

study area (Summit County) and for a subset of the study area 

(Akron) and then attempted to illustrate differences between the 

correlations. This is similar to the procedures used in 

discussing multiple group concordance in this paper. 

Harries (1974) also used preliminary data aggregation when 

he correlated city size with crime rates averaged over index 

crimes for a five year time period - a procedure that could be 

extended by using the matrix comparison procedures developed in; 

the latter section of this paper. Other examples of preliminary 

and correlational data aggregation procedures can be found in tbe 

growing literature on the use of canonical correlation in 

geography (Monmonier and Finn, 1973; Clark, 197:5). However, the, 

exact procedures detailed in this paper focusing on rank orders 

and Z-statistics for both preliminary and correlational 

5. 
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aggregation procedures, to our knowledge, have not appeared in 

the geographical literature. 

As one final observation, it should be noted that the 

two-group discussion developed in the paper was concerned with 

the concordance between two classes even though the various 

summary indices were subject to modification by the degree of 

internal concordance~ In other words, we were not explicitly 

interested in assessing large within group homogeneity ~ see 

I X I l'ntercorrelation matrix, however, and a Given the original 

hypothesized split of the"I objects into T groups (e.g., into two 

disjolnt su se s , , b t) we may also wish to test whether there is more 

concordance within the groups than expected under some chance 

model. This topic has been discussed in detail elsewhere for the 

null conjecture that the given partition was chosen at random 

from all possible partitions with the same number of classes and 

objects in each. Thus, we would hope to reject the randomness 

assumption if the within group concordance was substantially 

greater than the between group concordance, i.e., the ~ priori 

partition is reflected in the size of the correlations in the 

original I x I matrlx. , For a complete discussion, the reader is 

referred to Hubert and Levin (1976). 

* References that are cited are given in the appropriate paper 

presented in the main section of this report. 
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2. Assessing Homogeneity in Cross-Classified 

Proximity Data 

a) SUMMARY 

Given an arbitrary proximity matrix that is cross-classified 

according to two dimensions, a nonparametric strategy 

generalizing Friedman's (randomized blocks) analysis-of-variance 

method, is suggested for testing the saliences of the dimensions. 

Straightforward extensions of the approach can be given for more 

than two dimensions and/or when only the ordering of the 

proximity values is of interest. 

b) DISCUSSION 

The major contribution of this paper is in the use of 

arbitrary proximity measures and the development of a strategy 

for blocking on the levels of on~ (or more) ~ priori dimension(s) 

when evaluating the differences over a second. The strategy 

being proposed is really very general even though the 

illustration we have used in explaining the method contained the 

three explicit classification dimensions of space, time, and 

crime type. For instance, since any two of the dimensions could 

in fact have been considered the major classification facets of 

interest, proximity measures could have been obtained between 

profiles over the m cities and our interests directed toward the 

two dimensions of crime type and time. The basic inference 

principles would remain the same and the analyses would be 

carried out as before. Hopefully, our discussion will allow 

researchers to assess dimensional salience in data sets that are 

7. 
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not easily studied by more standard analysis-of-variance schemes 

because of an unusual proximity measure. Moreover, the 

possibility of relying on only nonmetric comparisons among 

proximities should provide a nice tie-in to the current emphasis 

in nonmetric clustering and scaling in the social and behavioral 

sciences. 

3. Unidimensional Seriation: Implications for 

Evaluating Criminal Justice Data 

a) SUMMARY 

The problem of validating a given unidimensional scale 

( ' d ' of a set of obJ'ects along a single dimension) l.e., an or erlng 

is discussed in terms of a few simple properties of the data used 

to obtain the scale. Based on a set of asymmetric proximity 

values as raw data, a distinction between analyzing absolute 

value information or sign information is presented that leads to 

a formal test of whether a given scale is being reliably 

represented. In short, a scale is generated from absolute value 

information but validated through sign information. A numerical 

example which deals with the perception of homicide rate over 15 

of the largest SMSA's is included as an illustration of the 

general methodological discussion. 

b) DISCUSSION & EXTENSION* 

Given the basic context of unidimensional seriation as 

developed in the earlier sections of this paper, a variety of 

8. 
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additional topics could be pursued. We mention only a few in 

passing to give some indication of the current research efforts 

in this direction. For example, the type of inference strategy 

that was proposed for evaluating the pattern of signs can be 

extended to compare two arbitrary skew-symmetric matrices (see 

Hubert and Schultz, 1976). Thus, it is possible to evaluate the 

consistency between two skew-symmetric interaction matrices where 

the latter may be based on migration data at two time points or 

from two different demographic subgroups. Secondly, from a 

combinatorial optimization point of view, several very elegant 

the~retical paradigms have been introduced recently for 

characterizing a discrepancy between a given seriation and the 

original asymmetric data, e.g., see Bowman and Colantoni (1973) 

and Merchant and Rao (1976). Along these same combinatorial 

optimization lines, a general strategy has been suggested 

(Hubert, 1980) tor locating and seriating only a part of a 

proximity matrix that appears to be most consistent with the 

basic underlying spatial model. This latter technique can assist 

in identifying subsets of an object set that can be seriated well 

and those subsets that are not represented satisfactorily along a 

continuum. 

As one example of particular importance we note that the 

topic of criminal mobility could define one of the more 

interesting applications for unidimensional scaling in the 

criminal justice area. For example, based on movement data from 
. 

place of residence to place of the committed crime, we may wish 

to rate a set of geographical areas in terms of criminal 

attractivity, with the possible goal of comparing these rates 

,9. 



[ 

[ 

[ 

[ 

r 
\' 

r~ 

[ 
,( [ 

, 
I 

, 

l 
l 
i 

" 

I " 

7 [ : 

[ 
': 

L 
U 

,', 

f , i-l " 

n 

over different crime types, age groups, and so on. Typically, 

the basic data are flow statistics for a set of n localities 

defined by the number of people, m .. , who travel from region i to 
lJ 

j. Our aim is to model these data in terms of the distances 

among the localities and their assumed placement along an 

attractivity continuum. 

Following Tobler's (1979) lead, the simplest model we 

consider is defined in terms of the skew-symmetric matrix 

q~. = m.. - m .. , which specifies the degree to which j attracts 
lJ lJ Jl 

more from i than it expor~s. We assume that these statistics 

conform to a model defined as 
, 

A. - A. 
J 1 

d;j 
(1) 

where d .. is the distance between locations i and j and 
lJ 

A A A define attractivities along a single dimension. l' 2'· •. , n 

Obviously, since distances are typically known, our analysis task 

is to estimate the n attractivities, which in turn scales the n 

localities according to attractivity along a continuum. 

Tobler (1979) discusses in detail two major approaches to 

the estimation of attractivities. The first is called the 

potential method in which the A 's are given implicitly by the 

matrix equation 

r 
1 I 

; ;l1 dil 

1 
- d

21 

1 
- (i-

nl 

1 
d12 

l: 1 
;;l2 d;2 

1 - cr:­
n2 

1 - -,-
°13 

1 
- d

23 

1 
- d

n3 

, , 

1 
dIn 

1 
- d

2n 

1 ,) d. 
;1n ;n ~ q'!' 

1 ln 

10. 
'itl 
\, I 

I t I 
tl 

m II 
tJ 

L.w 

J ~ J 
t , 

I 
') ~ \j 

n r 

Ll 
r I 
U 

II 
IJ 

II 
II 
, I 

I' J 

U 
Ll 
rJ 

I ( J 

I u 
J 

I [) 
/ 

! 

Sirice this system is not of full rank, Tobler suggest letting 

Al = 0 and deleting the first row and column of the coefficient 

matrix. The system can then be solved by inverting the reduced 

coefficient matrix and using it as a premultiplier on the 

right-hand vector. The second procedure may generate different 

estimates since it is based on minimizing the least-squares 

criterion: 

L (q~.­
; ,j 1 J 

A. - A. 2 
J 1) 

d .. 
lJ 

(2) 

Again, a system of equations similar to that given above is 

generated that is not of full rank. Based on the coefficient 

matrix having diagonal entries 

and off-diagonal entries 

1 1 
- (--2-- + -2-- ), 

d; k dk; 

and the right-hand vector defined by an arbitrary entry 

the deletion option for Al 3 0 can then be used to obtain a 

closed-form solution through matrix inversion. 
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Although Tobler's discussion is very elegant, seemingly 

minor modifications in the way the model is stated will 

eventually lead to several useful simplifications. In 

particular, since we assume qt. should be "close" to (A.-A.)/d .. 
lJ J 1 lJ 

and the d ij 's are known, it should also be true that 

di j ~j is "close" to (A j - Ai). Thus, the or ig inal gradient 

notion characterized as a division by d ij is redefined by a 

distance weighting of the observed skew-symmetric proximities. 

Continuing in this way it should also be true that (d ij qtj)2 is 
2 "close" to (Aj - Ai> • Our problem is now reduced to fitting 

the entries in a symmetric matrix {(d .. q~.)2} by a squared 
1 J 1 J 

distance matr ix {(A. - A. )2}. This latter task can be approached 
J 1 

by the type of eigenvector analysis introduced in the main paper. 

Or, if we assume \d .. q~.l ::: lAo - A.\ 
lJ lJ J 1 

the strategies developed by 

Defays (1978) and De Leeuw and Heiser (1977) could be followed. 

By taking explicit advantage of a model equivocation, we can 

concentrate on the skew-symmetric proximities t·· = d .. q~., lJ lJ lJ 

which are supposedly defined by the simple differences between 

attractivities. For example, a least-squares loss-function would 

minimize 

L 
i ,j 

2 
(t .. - (A. - A.)) , 

lJ J 1 

which is equal to a criterion weighted by the squared distances 

2 d .. : 
lJ 2 (A. - A.) 2 L d.. (q~. _ (J 1) ) 

.. lJ lJ d .. 
1 ,J 1 J 

The least-squares measure used by Tobler in (2) is similar in 

general form to this latter expression but is unweighted. 

. \ 

12. r 

, 

I 

I 
\ I I , 

rn 
I 
~ I ~. ) 

I 
I 
I [J I 
! 
J 

[] 

u 
I [I 
U 
! , ) 

[ j 

I I 
U 

i 1 

I ! 
I ! 
, J 

! 1 

II 
r 1 

f.l 

U 
'f.] 

n 

The redefinition of the estimation problem to use t .. may 
lJ 

seem trivial but it leads immediately to several convenient 

results. For example, the least-squares estimate of A. subject 
1 

to the constraint that L A - O· . b / . 1 . - 1S g 1 ven y t . n. This same 
1 = 1 '1 

estimate is also obtained by the potential method, and 

consequently, both methods lead to the same solution in this 

context. From a slightly more general perspective, suppose we 

fU; a matr ix of the form { C . - C.} to our arbi trary 
J 1 

Skew-symmetric matrix {t .. } by maximizing the correlation between 
lJ 

the corresponding entries. Again, the solution is obtained when 

Ci is defined as t.i/n, and when used to define the matrix 

{C j - C;}, these values induce a correlation of 

~ [I t.~ 
2 

2, 
i 1 v 

- ... 2 n L 2. t .. 
j . 1 J 

1 

All of these last results are very close to some work by Noether 

(1960) on paired comparison scaling. 

It should be apparent that many different approaches could 

be developed for estimating the attractivities AI' •.. , An from a 

skew-symmetric matrix t .. or q~. merely by varying the explicit 
1 J 1 J 

form of the model used and the loss function. This arbitrariness 

is troublesome since minor variations can dramatically affect the 

final estimation process (see Noether, 1960). To provide some 

hedge, and as we have suggested before, it may be appropriate to 

rely only on the absolute-value data in the estimation stage and 

use the sign data as a strategy for validating the order of the 

estimates along the continuum. Sign information has the nice 

property of being independent of the form of the gradient model 

13. 
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being used as long as the signs are governed by differences in 

attractivities. 

* References that are cited are given in the appropriate paper 

presented in the main section of this report. 

4. proximity Matrix Reorganization and Hierarchical 

Clustering 

a) SUMMARY 

Connections between hierarchical clustering and the 

seriation of objects along a continuum that depend on the 

patterning of entries in a proximity matrix are pointed out. 

Based on the similarity between the central notion of an 

ultrametric in hierarchical clustering and what is called an 

anti-Robinson property in seriation, it is suggested that both 

data analysis procedures are compatible. In fact, preliminary 

seriation of a proximity matrix may help v~rify the adequacy of 

the results obtained from a hierarchical cl~stering or suggest 

alternatives that may be better. A numerical example using data 

from the criminal justice area is included. 

b) DISCUSSION* 

The idea of using a seriation of the object set prior to 

looking for a specific clustering reappears continually in the 
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literature although in many disguised forms. The key to 

recognizing this general paradigm is by the presence of some 

object ordering before a final clustering is given. Obvious 

examples would include Hartigan's (1975) leader algorithms, 

Matula's sequential graph coloring schemes (Matula, Marble, and 

Isaacson, 1972), Fisher's (1958) single variable clustering, and 

Szczotka's (1972) notion of an admissible partition. Implicitly 

or explicitly all of these methods rely on an object ordering, 

typically as an initial organizing step prior to a final 

clustering based on parti~ioning the reordered matrix in some 

particular way, e.g., seriating the "break points" that define 

the possible subsets of a partition. 

We do not wish to advocate the superiority of seriation over 

a particular method of HC or conversely. Instead, our aim is to 

point out their complementary nature and how clustering and 

seriation could be used together to justify a specific analysis. 

Looking at one's data in ways that could suggest alternative 

interpretations may seem to be a very obvious tactic. 

Unfortunately, it is easily forgotten when a scheme is available 

that promises to give a single best answer and without the 

ambiguity that is usually attached to a more intuitive data 

analysis strategy. 

* References that are cited are given in the appropriate paper 

presented in the main section of this report. 
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5~ Generalized Procedures for Evaluating Spatial 

Autocorrelation 

a) SUMMARY 

Several generalizations of the usual spatial autocorrelation 

indices are developed based on the notion of matrix comparisons. 

These extensions are immediate from a related literature in 

biometrics and psychology, and in fact, the spatial 

autocorrelation inference task can be considered a special case 

of a much more general in~erence paradigm. The connections 

between matrix comparison and spatial autocorrelation are 

sketched including a way to define spatial autocorrelation 

statistics that only depend on the order of the entries in a 

proximity matrix. 

b) DISCUSSION* 

Autocorrelation measures, as traditionally used by 

geographers, describe the pattern of an observed variate over a 

map system and imply something about the predictablity of the map 

or the structure. By generalizing spatial autocorrelation 

measures using the randomization model as a base, a number of 

advantages accrue over the classical models based on specific 

distributional assumptions for the data. In general, the model 

'th' generates an immediately assessible proposed ln 1S paper 

inference paradigm for situations that would be very difficult to 

handle in a classical framework. In fact, it may well be that 

standard tests of significance are at times inappropriate for 

classical SA measures. By using a randomization model and the 
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complete enumeration process, significance levels appropriate for 

SA maasures can be obtained. 

In geography it is common to distinguish between two 

different approaches to spatial autocorrelation. One is tied to 

expressing spatial autocorrelation in a lagged form and depends 

on calculating and expressing covariances between different data 

values at different lagged distance or directional lengths. The 

second approach examines spatial autocorrelation in terms of the 

influence each observation is assumed to have on other 

observations. Our emphasis is more in line with the second 

approach rather than the first. Regardless of which approach is 

used, similar types of problems face the individual attempting to 

assess spatial autocorrelation and similar problems face 

researchers attempting to use and extend the procedure. Gattrell 

(1979) states the first of these as the need to specify alternate 

forms of the "distance" concept that provides the base for the 

calculation of spatial autocorrelation effects. At least on the 

variate side of the problem we have shown how spatial 

autocorrelation can be generalized to such alternate measures, 

including Mahalanobis distances, correlation coefficients, and 

any other arbitrarily defined indices of proximity. More general 

distance measures can be handled directly by defining the weight 

matrix appropriately, e.g., Mahalanobis distances in some 

generalized multidimensional space. 

The extension of SA measures to data structures that are 

nominal or ordinal produces indices comparable with standard SA 

measures without the need to adhere to the stricter parametric 

assumptions necessary to generate an inference model for those 

17. 
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standard measures. Basing the spatial autocorrelation index on 

randomization overcomes one of the more critical problems 

currently being faced by geographers. For example, Haining 

(1980) argues that with respect to the Cliff, et ale study of 

measles data for Southwest England (1973), the absence of 

information on the joint sampling distribution of the average 

correlations, together with the small sample sizes involved and 

the generally insignificant values assumed by the correlations, 

tend to cast doubt on their interpretation of the measles 

h . a cent~al place type diffusion structure. epidemic as aVlng 

Developing an autocorrelation index using the randomization model 

h h it clearly overcomes the first of these deficiencies, alt oug 

does not solve the second problem - that of defining a 

satisfactory model base for the interpretation of results. 

The use of spatial autocorrelation in geography to compare 

observed and theoretical or expected map patterns has in the past 

been limited by the problems involved in measuring the degree of 

departure from randomness. As Dacey (1968b) and Cliff and Ord 

(1973) have found out, rejecting a hypothesis of randomness 

based on Poisson models cannot be taken as indicative of apparent 

contagion. While Besag (1972, 1974) has examined this problem in 

more detail, the inference problems raised in the geographic 

studies can be approached using randomization procedures to 

construct a reference distribution against which to measure the 

magnitude of deviations. Thus by using such an index and 

reaching a stage where a hypothesis of randomness is rejected, 

the researcher may feel more at ease assuming that the patterns 

examined are being produced by similar pro~esses. 
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In summary, the approach we have descr ibed for m(~asur ing SA 

has at least four major advantages. The first relates to the 

generality of the paradigm and the fact that many different 

measures, even those tailor-made for specific substantive 

problems, can all be placed under one common framewol~k and tested 

for significance using the same type of randomization argumen~. 

It is somewhat inappropriate, however, to view the general notion 

of matrix comparison as a competitor to the traditioncll way of 

handling SA tasks since special cases of matrix comparison have 

been used for some time. Nevertheless, there is an obvious 

inherent value in offering alternatives that may be more suited 

for particular research applications than the I and c indices. 

An obvious example would be in our ability to deal with more than 

one variable at a time in assessing SA through a multivariate 

measure of distance, defining the entries in the matrix C. 

Second, the randomization strategy itself can be approached 

through Monte Carlo sampling, bypassing the optimistic use of 

asymptotic distributional results of possibly unknown accuracy. 

These latter large sample size results are very spotty and do not 

cover all the SA statistics that could be defined in our 

framework. Third, by placing SA into a larger matrix comparison 

structure, an obvious pedagogical advantage is achieved. This is 

analogous to the perspective provided by understanding the 

general linear model even though the special cases of anlysis of 

variance and regression may continue to be the most popular 

alternatives as implemented by routines that are specialized from 

the more general structure. Fourth, once a comprehensive 

framework is understood, further work on the framework itself 

19. 
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immediately suggests many associated results that are pertinent 

to a class of measures. Thus, once the commonality of analysis 

tasks are recognized, there is an obvious broader purpose taken 

on by the research enterprise. 

* References that are cited are given in the appropriate paper 

presented in the main section of this report. 

6. Inference Models for Roll-Call Cohesion Measures 

a) SUMMARY 

An inference model for the,percentage voting agreement 

measure is introduced that takes into account the composition of 

the parent group in evaluating the cohesion of a subgroup. The 

combinatorial strategy extends to a number of more general 

indices related to the original agreement measure. 

b) DISCUSSION* 

The problem of defining inference models for measures of 

roll-call cohesion has been recognized in the liter~ture. For 

instance, as one way of developing a more reasonable inference 

structure, Born and Nevison (1975) introduced a probability 

measure based on the cumulative distribution of votes in the more 

inclusive body. Although this is a step in the appropriate 

direction, there are at least three limitations on the Born and 

Nevison approach. First of all, since the probability measure 

___ ,~;"c -"'-'>'" ",,~-,Z",-""'''-.'-

. , 
.,-

40 • 

'.' 

:'il. 

I ' , , 

,] 

1m 

WI t 

n 
u 
n 
tJ 
u 
[J 

11 

U 
[J 

U 

U 
u 
n 
n 
[J 

requires a rather sophisticated understanding of probability 

theory and deviates markedly from the justification behind the 

indices typically used in the literature, acceptance of the new 

statistic may be very slow in coming, particularly since 

extensive tables and/or the use of specifically designed computer 

programs are required for its calculation. Secondly, the 

probability measure is essentially limited to votes that have 

2-values (Aye and Nay) and voting options with k alternatives are 

not easily incorporated within the paradigm. Finally, the 

Born-Nevison measure is really a significance level, and 

therefore, it is heavily dependent on the size of the subgroup 

being considered. For example, two subgroups with the same 

values on a more traditional 'index of cohesion could also have 

very different probability values depending on the sizes of the 

two subgroups. 

It would seem more appropriate to consider a statistic that 

has properties similar to the Pearson correlation coefficient; 

i.e., an index that would give an indication of the absolute 

level of cohesion irrespective of sample size but have an 

associated significance statement that was dependent on the 

number of observations, or in ou~ case, on the number of voters 

in the subgroup as well as in the more inclusive body. Using 

these three concerns as our motivation, it is relatively 

straightforward to carry out the original Born-Nevison goal of 

providing a suitable inference model for a measure of cohesion 

through the well-known percentage voting agreement measure. 

\' 
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* References that are cited are given in the appropriate paper 

presented in the main section of this report. 

7. Some comments on Non-Euclidean Mental Maps 

a} SUMMARY * 
The widespread acceptance of Euclidean geometry as the most 

appropriate for representing space, predisposes a certain type of 

perspective on the world.' within the Euclidean framework, space 

is conceived as being isotropic - that is, the same geometric 

relations hold in all parts of the space. A second important 

concept is that of parallelism - that is, parallels do not 

converge. Accepting these concepts readily allows us to 

implement perhaps the best known and most widely used formula in 

the discipline of geography, that of measuring inter-point 

distances in N-dimensional Euclidean spaces. This formula is: 

D .. = [I (Ix. k - x. kl)rl ~ (1) 
lJ K 1, J, J 

h D l'S the distance between two arbitrarily were: , , 
lJ 

defined points i and j; 

x. k is the coordinate for point i on the kth 
1 , 

r 

dimension; 

is the exponent to which displacement in any 

dimension are taken in the particular distance 

formulation (i.e., the Minkowskian Metric). 

While this general Minkowskian formula is well known, almost 

invariably the Euclidean (r = 2) is preferred to other 
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Minkowskian metrics such as r = 1 (the Manhattan or city block 

metr ic) or r = C>O (the dominance metr ic or SUP-metr ic) (see 

Krause, 1975). In this latter metric, the distance between any 

pair of points is defined as the longest side of the right-angled 

triangle constructed in the space about the points 

( i . e., d " = max (x ,x ) ) • 
1 J k; k jk 

In this paper we examine some characteristics of spatial 

cognition that indicate that the use of any of these Minkowskian 

metries may not be appropriate for representing cognitive 

information, and we present a survey of elliptical and hyperbolic 

spaces (Riemann manifolds) that could potentially be used to 

represent such data. 

b} DISCUSSION 

If we e?amine configurations of points that have been 

generated using interpoint distance estimation or a set of points 

located in a space which is defined solely in terms of 

inter-point distances, then we are confronted with a space which 

implies neither a specific dimensionality nor is there implicitly 

embedded within it a coordinate system. If we can further find 

key nodes in this particular space, we might imagine that as 

distance increased from each key node, the probability of a fold, 

crack, tear, hole, or other warpage of the space would increase 

consideraOly. Assume furthBr that the key nodes are not 

uniformly spaced. If one were then to construct a set of 

Thiessen polygons for this set of non-uniformly spaced nodes, 

there would be considerable variations in the distance of the 

edges of the polygons from the key nodes. One might further 

23. 
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expect that, in those areas of each polygon which are most 

distant from the key node, information about the area may be 

least and the probability of distortion or warpage might increase 

except along the dominant gradient or link path between adjacent 

nodes. Using conventional ideas from probabilistic market area 

analysis and the recent suggestions of Tobler (1976) concerning 

non-constant warpages and the development of a probability 

surface for distortions in "menta: maps", one can visualize a 

mental map of the previous set of locations with the major 

distortions or warpings 06curring away frcg ~he major nodes and 

the primary paths that connect them, and increasing in 

probability of occurrence in the more inaccessable or distant 

paths of each Thiessen pcllygon. The result would be to produce a 

map which associates points or key locations with error 

probability surfaces. The probabil~ty of warping would, 

therefore, be non-constant as direction changes from key nodes, 

or as distance increases from the key node to different edge 

segments of the Thiessen polygon. 

The building of such a probability surface is simple in 

Euclidean space, but the specification of the surface parameters 

is somewhat more complicated even in a simple Riemann space of 

constant curvature. Detailed examination of over 200 indi~idual 

configurations of 48 locations for the city of Columbus has shown 

that location errors differs considerably across the individual 

maps and that there is definitely both a directional and distance 

component to the distribution of errors (e.g., see Rivizzigno, 

19761 Spector, 19781 Golledge and Spector, 19781 Gale, 1980). 

What is more, this error su~face undulates depending on the 
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activity pattern of the individual, for as information about 

different segments of the environment increases, the probability 

of maintaining a constant location error diminishes. At various 

time periods, therefore, the manifold in which the points are 

located can be warped differentially. If one were to obtain a 

cross-section through time of a series of these manifolds, one 

should be able to recreate a history of the main repetitive 

components of an individual's spatial behavior for that time 

period. 

Obviously, the first"thing to be done is to attempt to 

define the appropriate parameters which describe the Riemann 

space in which a number of subjective configurations exist. Once 

this has proved to be a feasible operation, then expanding the 

work to cover manifolds produced at different stages of the 

environmental learning process and recreating histories of 

spatial behaviors associated with each manifold would seem to be 

an intriguing direction for constructive use of current work on 

mental maps. 

An alternate way of envisioning the warped manifolds 

suggested in the previous paragraph is to introduce the concept 

of a mean information field with holes. Imagine a standard grid 

with a series of familiarity measures allocated to each grid 

cell. Imagine also that there are two "ho19s" in the mean 

information field where zero information is recorded, and two 

major peaks (one towards the S.W. corner of the field and another 

towar s e .IV. corner • d th N M ) If one contoured the mean information 

field, the holes would stand out in the two dimensional Euclidean 

representation of it. However, if we collapsed the field so as 

" 
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to eliminate the holes, the configuration that resulted would 

more readily be described in non-Euclidean terms. Such a warped 

field more closely approximates the sketch maps drawn by 

individuals with incomplete information about test environments; 

the consequent shortening of distances across places with low 

information levels and the exaggeration of distances where 

information is consistently high mirrors many of the types of 

distortions recovered from individual configurations of urban 

areas in other published research (Golledge and Rayner, 1975; 

Golledge, Rivizzigno, and'Spector, 1976; Rivizzigno, 1976; 

Spector, 1978). 

As a further step in an attempt to define the types of 

metrics most suitable for the representation of subjective 

configurations of places, current work at U.C. Santa Barbara is 

aimed at defining configurations of places in Riemann spaces such 

that an index of fit between subjective and objective 

configurations mapped onto the same space can be obtained. In 

general, it would appear that questions related to the 

suitability of representing mental maps in metric spaces need to 

be answered before much confidence can be placed in widespread 

use of such maps in conventional geographic work. 

* References that are cited are given in the appropriate paper 

presented in the main section of this report. 
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Possible Future Research 

Our experiences with proximity matrices of varying types 

leads us to suggest that considerable future research is 

warranted on developing methods to handle related proximity 

matrices (square and rectangular), asymmetric and/or 

skew-symmetric data matrices and incomplete data matrices. Each 

of these is a common occurrence when dealing with criminal 

justice data, and each presents a set of different methodological 

problems which need to be·solved. For exa~plD, a general method 

for determining which of a set of outcomes from alternative , 

analyses of the same data set best represent the structure of the 

original data matrix is needed. An example might be where two 

clustering algorithms are used on the same data set or where 

multidimensional scaling output is obtained in several 

dimensions. In several of our papers we suggested extensions of 

our methods to cover asymmetric proximity values - a topic that 

is currently being researched in many social and behavioral 

sciences. When dealing with large data sets consisting of 

subjective evaluations (preferences, choices, perceptions), it is 

frequently impractical or impossible to collect evaluations on 

all object combinations, and thus researchers are forced to use 

incomplete experimental designs in the data collection phase. 

The effect that differing levels of incompleteness have on 

aggregation processes, matrix matching procedures, homogeneity 

measures, and correlational type measures needs to be further 

e:l{plored. 
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Since subjective data is primarily non-metric, attention 

could also be directed towards examining non-metric equivalents 

of a variety of general matrix measures; possible alternatives 

for doing these are discussed in several of the papers presented 

in the main body of the report. 
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INTRODUCTION 

(~xtr~ct~_fro'l1 the original proposal) 

Over the course of the present century the predominant 

philosophies of data analysis have taken a somewhat circular 

course. Early methodologists spent a great deal of time and 

effort attempting to understand empirically obtained information 

from a point of view that was more or less intuitive. Data were 

plotted, reorganized, and often simply inspected to determine 

their structure and inherent pattern. For example, in his recent 

address to the American Statistical Association, Box (1976) 

provided an interesting historical account of how many of 

Fisher's contributions to statistical theory arose from just such 

a pragmatic approach to data analysis. As the field of 

statistics matured, however, substantive researchers relied more 

heavily on hypothesis testing, with the result that data analysis 

was in part reduced to examining only the outcomes of 

significance tests. The widespread availability of the digital 

computer has further accelerated this trend, and in fact, today, 

data is often collected in a computer compatible medium that is 

appropriate for direct submission to some standard statistical 

package. As a consequence of automation, the researcher may have 

only a limited understanding of the raw data producing the 

significance tests and almost none of the practical intuition 

that at one time was considered absolut&ly essential in 

explaining any observed pattern within a given data set. 

To be of maximum utility to researchers working in the crime 

and criminal justice areas, the methodological stUdies supported 

(2). 
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by NIJ would ideally involve data analysis strategies that have a 

simple conceptual basis, maintain a close contact with the data, 

be easy to use, and be capable of providing meaningful ways of 

evaluating the variables or entities of interest to the law 

enforcement community. As will be indicated, one particular 

nonparametric statistical orientation has been developed within 

the past few years that appears to have these characteristics and 

that at the same time holds the promise of bringing data analysis 

back to its intuitive beginnings. After the introduction of 

several general problem areas, we will briefly review this class 

of nOuparametric strategies and indicate how they could be used 

in attacking significant areas of concern in the fields of crime 

and criminal justice that involve the patterning of data, such as 

spatial and temporal variations in criminal activity and its 

environmental correlates. Since much of the necessary 

methodology is available in a more or less theoretical form in 

the psychology and geography literature, the major contribution 

of our research effort will be in terms of applications that have 

importance for the research program of NIJ. 

The statistical techniques of interest have their origins in 

operations research, combinatorial ~athematics, and graph theory, 

and for our purposes can be discussed very generally under the 

label of Generalized Concordance. Although the background 

necessary for this methodology is not new and much of its basic 

formulation dates back at least to the early 1950's, only the 

recent access to digital computers can allow its routine use in 

the analysis of data. Special cases of this orientation have 

been applied most widely in disciplines such as electrical 

(3) 
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engineering (Younger, 1963), economics (Simpson and Tsukui, 

1965), and management science (Blin and Whinston, 1975); and in 

fact; only within the past five years has it been recognized that 

these tools are appropriate for the analysis of behavioral 

science data as well. With this motivation in mind, the major 

goal of this research is to first introduce selected significant 

topics in criminal justice research (e.g., those concerned with 

da~a aggregation, spatio-temporal variations, changes in scale, 

and spatial autocorrelation) and then indicate in a heuristic 

manner what implications ~ theory of Generalized Concordance 

would have for these areas of analysis. The research program for 

which funding is requested would illustrate and develop 

exportable analytical procedures for examining these problems in 

the context of crime and criminal justice data sets. 

Problem Areas 

Although many different data analysis tasks could be 

approached with the class of strategies we envision, for the 

purpose of discussion, three areas will be identified and treated 

as illustrations of the type of problems we would wish to pursue. 

Since our intent is to offer demonstrations of a class of 

analysis schemes in the criminal justice area, our efforts are 

partially dependent on previously collected data. Consequently, 

the following discussion will offer some insights into our 

general thinking but it is also possible to modify our efforts if 

alternative and particularly important data sets are made 

avail~ble, e.g., those developed under that auspices of NIJ but 

(4) 
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not generally referenced in the public domain. 

Aggregation/Disaggregation 

The aggregation problem is probably one of the most serious 

unsolved difficulties faced by data analysts in both the social 

and physical sciences. In its most general form it can be 

defined as the loss of information that occurs when data 

collected at one level are summarized or aggregated into larger 

units, or decomposed and disaggregated into smaller units. The 

effects of data aggregatiqn in statistical analysis has recently 

been discussed in the geography literature (Clark and Avery, 

1976; Smit, 1978; and Clark and Avery, 1978). They suggest that 

one of the most serious aggregation problems in the social 

sciences occurs in "aggregation bias" in correlation and 

regression analysis. This type of bias is said to be manifest as 

the inflation of macro-level coefficient estimates above the 

corresponding values of the coefficients estimated from 

micro-level data. Blalock (1971) has argued that it is incorrect 

to assume that relationships existing at one level of ~nalysis 

will necessarily demonstrate the same str6.~th at another level. 

Furthermore, estimates derived from aggregate data are valid only 

for the particular system of observational units employed. The 

consequences of using potentially biased estimates in correlation 

and regression procedures as substitutes for the true micro-level 

estimates are most serious when conducting causal inference 

analyses on statistical output. Against this background, one 

major problem of interest for us in the context of 

aggregation/disaggregation is to examine the structure of data in 
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collection units at various scales and at various time periods 

and determine at what levels of aggregation or disaggregation the 

patterns evidenced in those data sets breakdown or become 

different. From the past work of the authors, it appears that 

elements of such difference can be identified and studied using a 

strategy called "Generalized Concordance", and specifically, with 

those techniques that eval~ate the degree of concordance within 

and between the subsets that define a partition of a set of 

proximity matrices. For example, each proximity matrix could 

represent the intercorrelations among a set of crime-related 

variables for a particular geographl'c t't h en 1 Yi t e partition would 

then represent a first level of possible aggregation. In short, 

the intent will be to determine if the information contained in 

data sets for various spatial units and/or for various· years is 

consistent or inconsistent, and to assess the interaction between 

the spatial and temporal dimensions of data by analyzing changes 

in data patterns as expressed in various proximity values. The 

methods to be developed and/or applied will be appropriate for 

fully metric data sets (such as crime occurrence statistics) or 

for data sets that at best contain only ordinal information in 

the available proximities. 

As indicated above, the generalized concordance procedur~s 

to be used in this research agenda appear appropriate in 

evaluating the structure of a given data set and whether this 

structure is repeatable as levels of aggregation or changes in 

scale occur. As part of this project we will take selected crime 

and criminal justice statistics that have been subject to various 

aggregation procedures and assess whether the aggregation process 

(6 ) 
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destroys the inherent structure of the data existing at previous 

levels and superimposes a new and perhaps less meaningful 

structure on the data itself. 

Al though a var iety of methods exist wi thin tiie field for 

examining problems of aggregation (Duncan and Davis, 1953; 

Goodman, 1953, 1959; Blalock, 1964, 1971; Cliff and Ord, 1973; 

Curry, 1966; Hannan, 1971a, 1971b, 1972), most of these 

procedures focus on the grouping aspects of aggregation and 

discuss ways in which such procedures may effect causal 

relationships. The techniques most frequently discussed include 

random grouping; grouping to maximize the variation in the 

independent variable; grouping to maximize the variation in the 

dependent variable; and grouping on the basis of spatial 

proximity. The approach suggested in this proposal is different 

since we are concerned with the structure of data at various 

scales, between various areas, and over various temporal 

dimensions. TI1US, in contributing to a deeper understanding of 

the aggregation problem itself, we will naturally complement the 

th@ existing work on spatial autocorrelation. Finally, we note 

the difference between the procedures suggesced here that use 

proximity measures (but not necessarily direct spatial measures) 

to test for similarity of structure in data matrices and the work 

of Clark and Avery (1976) who used spatial measures of proximity 

in their discussion of the aggregation problem in spatial data. 

Spatial and Temporal Structures 

A second problem area is to develop and test methods for 

assessing concordance in complementary data sets at different 
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scales, for different time periods and in different spatial 

contexts. Data that are assembled by geographical units over 

successive time periods can be analyzed by h' searc ~ng for patterns 

that occur and re-occur at various spatial scales and with 

varying temporal frequencies, by first generating similarity or 

proximity measures of criminal activity and environmental and 

socio-economic variables, and secondly, searching for similarity 

of structure or pattern. The methods proposed can be used on 

metric and non-metric data, and are substantially different from 

other multivariate methods (such as principal components, factor 

analysis, discriminant analysis, and canonical correlation) 

currently used on crime statistics (see Carter, 1974; Nettler, 

1974; and Pyle, 1974). 

Spatial Autocorrelation and Generalized Concordance 

Current treatments of spatial and temporal aspects of crime 

statistics have failed to handle the autocorrelation problem that 

is inherent in existing data sets. The Generalized Concordance 

procedures developed in this research will allow us to evaluate 

the extent of this problem in data sets and to illustrate 

procedures for handling this problem that are substantial 

generalizations of existing methods for estimating spatial 

autocorrelation effects (e.g., Cliff and Ord, 1973). Ideally, we 

would be able to disentangle temporal effects from data 

categorizations, such as those based on spatial properties, ar.d 

vice versa, and provide answers to questions such as, "Is there 

more consistency in criminal activity of type! between years 

[1 than there is within areas of scale X?". 

i I 
(8) 
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The current methodological literature in geography typically 

views that evaluation of spatial autocorrelation as distinct from 

many of the problems encountered in analyzing data defined in 

terms of proximities. In general, the hypothesis testing 

strategy used in the assessment of spatial autocorrelation is 

reserved for the relationship between geographical contiguity and 

a variable available in each of the given regions, e.g., 

variables such as unemployment, proportion of elderly, wealth, 

productivity, frequency of crime type, and so on. When 

interpreted appropriately_ however, the exact same statistical 

principles provide a very powerful class of data analysis 

strategies for confirming the presence of structure within any 

matrix that contains numerical information among a set of 

geographical entities. The possibility of carrying out such an 

extension has been mentioned in the geographical literature 

(Hubert, 1978a), but the area has not been pursued to the depth 

that would identify the range of potential applications. 

The link between the ideas of spatial autocorrelation and 

concordance can be extended to allow the researcher to move 

beyond static or cross-sectional data analysis into a dynamic or 

temporal analysis. This leads to the development and use of 

multitrait-multimethod analytical techniques (Hubert and Baker, 

1978a) that attempt to find how information is "nested" in 

various data sets - e.g., if the temporal dimension is more 

significant than the spatial or if the local dimension is more 

significant than the regional. For example, a typical data 

structure that would involve multitrait-multimethod techniques is 

seen below (Fig. 1). In this problem, spatio-temporal 
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FIGURE 1 

Geog. Area A Geog. Area B Geog. Area C 

Yr Yr I Yr Yr Yr Yr Yr Yr IYr Yr Yr i Yr Yr Yr Yr 
r 2 3 4 5 1 2 3 I 4 5 1 I 2 3 4 5 

Geog. Yr 1 I 
Area A Yr 2 I 

Yr 3 

Yr 4 

Yr 5 

Geog. Yr 1 
Area B 

Yr 2 

Yr 3 

Yr 4 

Yr 5 

Geog. Yr 1 I 

Area C 
Yr 2 

Yr 3 

Yr 4 

Yr 5 
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confounding in the data can be unpacked and the significant data 

structure exposed (Hubert and Baker, 1978a). 
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Methodolog:l, 

One of the major practical difficulties faced by all 

behavioral scientists in analyzing data concerns the choice of 

formal techniques that are intended to be of aid in developing 

reasonable substantive interpretations. Much of the time the 

final selection of a statistical tool is guided either by 

tradition in the researcher's field, or at the other extreme, 

because one particular procedure happens to be in vogue. In 

either cade, the chosen methodology may not be the most 

appropriate way to answer the specific questions posed. The 

difficulty of choosing a statistical tool becomes even more acute 

when a research problem cannot be easily rephrased within an 

omnipotent general linear model, since there are few alternative 

paradigms that are broad enough to formulate sufficiently 

powerful analyses. Consequently, because of the general 

inflexibility of statistical schemes that do not rely on rather 

strong parametric assumptions, novice researchers tend to limit 

the questions they ask to those that fit neatly within the 

analysis of variance context and its derivations, or 

alternatively, embrace some other familiar strategy that may not 

be suitable for the particular application at hand. 

The brief overview to follow sketches one special case of a 

more comprehensive strategy called Generalized Concordance. This 

special case will be referred to as the guadratic assignment 

paradigm (QA) and incorporates a variety of disp~;ate data 

structures that may be reflected in a proximity matrix defined on 
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t S The te rm "proximity" is used the objects from some se • 

and merely denotes a numerical measure of generically 

relationship between pa~rs 0 0 ]ec • , f b' ts from S Obviously, there 

will be many instances in which the'tasks faced by an applied 

scientist in analyzing a proximity matrix do not fall into one of 

the categories that can be handled by the type of strategy 

illustrated below; nevertheless, the quadratic assignment 

approach still appears flexible enough to give a general point of 

departure for many of the problems an individual faces in 

choosing an appropriate methodology, and, more importantly, is 

broad enough to provide a general organizing principle for an 

extensive theoretical analysis of structure within a proximity 

matrix. In addition, QA forms the basis for the more general 

strategy of Generalized Concordance discussed in Hubert (1979c). 

Some Overvie~ Details of the Quadratic Assignment Approach 

The general quadratic assignment approach to data analysis 

can be formulated in a relatively easy manner. It is assumed 

d d t are on n ob]'ects from a set S that, for that the collecte a a 

. {a a } The term "ob]' ect II is convenience, is denoted by 01, 2"'" n • 

intended to be extremely general and could refer to individuals, 

areas, societies, crime types, and so on. Furthermore, it is 

assumed that the data on these n objects can be reduced to a 

single numerical proximity value defined for each ordered object 

pair. For instance, if the objects are individuals, the 

numerical value could be an index obtained by measuring 

a set of behavioral symptoms, or possibly the similarity over 

objects could be cities and the numerical values could be 

(13) 
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measures of similarity between profiles of crime types. To 

formalize this concept in more detail, a data matrix Q is defined -
to be an nxn matrix, where both the u th row and the u th column 

refer to object 0u' and the entry in row u and column v is 

denoted by q(Ou' 0v). 

for 1< u< n. 
Typically, it is assumed that q(O , 0 ) = a 

u u 

In addition to the data matrix Q, a structure matrix C is 

specified that represents the type of hypothesis the researcher 

wishes to evaluate against his data or, alternatively, the type 

of structure he may wish to identify in his data. These two aims 

represent what can be referred to as the confirmatory and 

exploratory data analysis problems, respectively. The rows and 

columns of ~ are labeled by the integers 1, 2 . . . , n, and 

c(r, s) is the entry in row r and column s of C; typically, 

c (r, r) = 0 for 1 < r < n. 

To connect these two matrices Q and C in a more formal way, 

suppose p is an arbitrary permutation of the integers 

1, 2, •.• , nand Pr the identity permutation that maps each 

integer back to itself. If we define 

r(p) = I 
r,s 

then r (Pr) is merely the sum of products of the corresponding 

elements between Q and C. More generally, r(P
r
) is the sum of the 

products of the corresponding elements between Sand 

9 = [q(Op(r) ,Op(s»}. where the uth row and column of 9
p 

is 

the row and column previously labeled P (u) in Q. 

Given this notation, the exploratory and confirmatory data 

analysis problems can be rephrased. In particular, the 

(14) 
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confirmatory problem is based on r(PI) and the researcher wishes 

to determine whether the given 9 matrix mirrors the structure in 

C. Since r(PI) is treated as an unnormalized correlation between 

C and Q, the additional problem of evaluating the relative size 

of rIP
I

) by some significance test has to be addressed. As 

mentioned below, this assessment is approached by considering all 

possible indices r(PI) that could be obtained by varying the 

permutation p. Alternatively, the confirmatory task merely 

wishes to identify those permutations that optimize r(PI). 

Introductory Comments on Confirmatory and Explanatory Inference 

In the literature on data analysis over the last twenty 

years, a distinction between exploratory and confirmatory 

procedures has become very popular (see Kaiser, 1970; Hildebrand, 

Laing and Rosenthal, 1977; Tukey, 1962). An exploratory strategy 

typically involves the use of an analysis technique on a given 

data set with the aim of identifying interesting relationships, 

patterns, and the like (Brown, Odland and Golledge, 1970; Lee and 

Egan, 1972; Phillips, 1973; Harries, 1974; Pyle, 1974). 

Alternatively, a confirmatory approach requires the test of an a 

Eriori conjecture that is generated from a source distinct from 

the data to be used for the purpose of validation. This latter 

test in our context will be correlational, and thus the term 

"confirmation" is given a limited meaning here that does not 

imply the absolute correctness of a hypothesis. Since a 

correlational analysis can never exclude all competing 

explanations, we will argue when it is justified that the pattern 

of data is not unrelated to the conjectured pattern. 

(15) 

... 

! 
t 

~ 
II 
I 
f 

-~""""~'-: ~--:-~ 

I 

Y I 
] 1 

i I L 
II 

~~ I 
I L 

I 
[J 

r I 

/i , I 

I I I I 
\ I 

! \ 
I ! 
l ; 

JJ 

U 
r I ,J 

U 

1J 

II 
[J 

U 

U 

U 

U 

U 

" 

It may be obvious that confirmatory analyses would be 

desirable adjuncts to many of the current exploratory methods 

used in the study of proximity matrices (such as clustering and 

multidimensional scaling), but very few techniques have been 

proposed that could help carry out such a program with any degree 

of rigor. Thus, users of the newer data reduction procedures 

lack confirmatory techniques even of a correlational nature and 

must rely on intui tive arguments based 0:1 l,fhatever additional 

information is available for the objects being studied. Although 

this practice is commendable given the current state-of-the-art, 

it is now possible to proceed one step further using the 

correlational methods presented in this proposal and incorporate 

the same information relevant to a post-hoc explanation more 

directly in a confirmatory manner. 

EXAMPLE 1: 

The field of criminal justice provides a very interesting 

application that can be used to introduce some of the necessary 

concepts of the confirmatory QA approach. For example, Pyle 

(1974) and Harries (1974) in their studies of the connections 

between crime and socio-spatial characteristics of urban areas 

suggested that sets of supplementary variables can help explain 

similarities of crime patterns among subareas of different 

environments. Using a given variable (such as income level or 

the predominant ethnicities in the subareas) it is possible to 

divide the subareas into sets, where the objects within each set 

contain the same value of the variable being considered. Here 
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the inference problem of interest is whether the data produced by 

the experiment reflects the partitioning of the areas according 

to the given variable. As always, we can assume that some 

measure of proximity is available between areas based, for 

example, on a summary measur.e of crime similarity. 

To illustrate the conceptualizaiton with a more detailed 

discussion, suppose we are given a set of 100 cities and have 

obtained some type of proximity between each pair based on 

similarity of committed crimes. These measures are contained in 

the matrix 9. Furthermore, assume the 100 cities can be 

partitioned into K subsets based on the type of law enforcement 

program in operation or any other group of variables that would 

serve to characterize criminal justice systems. It could be 

conjectured ~ Eriori that cities within a subset might be very 

similar in the pattern of crime, whereas cities in different 

subsets ~ould demonstrate a reduced level of correspondence. As 

a mechanism to embody this conjecture within QA, the second nxn 

matrix C is used to specify the hypothesized organization of the 

empirical proximity matrix. For example, since the partition 

under consideration groups the 100 cities into K subsets, the 

100 x 100 structure matrix is divided into K submatrices each of 

a size that corresponds to the number of cities in the subset. 

From our conjecture, cities within a subset are likely to be 

similar, and thus, all elements, c(O, a ), in the on-diagonal 
, . U v 

submatrices are set equal to unity, except that by convention the 

cell elements actually on the main diagonal are set to zero. 

Furthermore, it is hypothesized that a correspondence between 

cities in different subsets is unlikely, and consequently, the 

(17) 
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cells of the off-diagonal sUb-matrices are set to zero. In other 

words, distinct city pairs that should be similar are assigned a 

1 and all other pairs are assigned a a which implies that r(Pr) 

is merely the sum of all within subset proximities. Obviously, 

other homogeneity indices could be defined by varying the 

structure matrix C. -
Given a data matrix Q and a structure matrl'x C _ _ as presented 

in this example, the confirmatory problem is one of comparing Q 

and ~ and assessing whether the pattern represented by f is also 

present in ~ (or conversely). In particular, if the structure 

defined by the matrix C is not reflected in Q then the value of r(Pr) 

should not be unusually large (or small) compared to the 

distribution we would expect if all labelings of the rows and 

corresponding columns of Q were equally likely. The index r(Pr) 

is evaluated for each permutation P and the frequency table 

constructed for all n! (possibly nondistinct) values of r , 

generating what is typically called a permutation distribution. 

The statistic r(Pr) is then c0lnpared to this distribution and 

if r(Pr) is at a suitably extreme percentage point, the 

hypothesis of an equally likely ~ Eriori labeling is rejected in 

favor of the structure defined by C. Typically, the actual 

permutation distribution is too computationally laborious to 

obtain each time a new data matrix is obtained; however, the mean 

and variance parameters needed for approximate tests can be 

obtained by formula, or alternatively, approximate permutation 

tests can be constructed from random samples of the complete 

permutation distribution. This latter option is illustrated in 

many of the published papers listed in a later section. 

(18) 
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Exploratory Analyses and the Quadratic Assignment Approach 

Instead of attempting to confirm whether a given partition 

(such as that used in assessing similarity in crime type by area) 

can be used to explain the patterning of the proximities, suppose 

our concern is to locate "good" partitions in an exploratory or 

post hoc fashion. More specifically, assume our interest is in 

finding possibly "good" partitions that have the same general 

structure as the conjectured partition in bur example. As one 

possible approach, suppos~ the form of the structure matrix is 

fixed as is, i.e., representing subsets of size nl' ••• , n K, but 

we attempt to ~earrange the rows and simultaneously the columns 

of the proximity matrix in such a way that the patterning of 

entries in the rearranged Q matrix is similar to the fixed C 

matrix. Once such a reorganization is effected, the four objects 

that are now in the first n 1 rows (and, also, in the first nl 

columns) would represent one class, the second n2 rows and 

columns would define a second class, and so on. 

The rather loosely defined goal of reorganizing the Q matrix 

until it "fits" the form specified by the C matrix can be made 

more precise by defining two major subtasks. First of all, the 

correspondence between the C matrix and a reorganized Q matrix 

must be measured in some way to determine if an adequate "fit" 

has been achieved. Although a number of measures of 

correspondence are available, the simple sum of the products of 

corresponding elements in the two matrices used in the 

confirmatory context appears to be one of the most natural 

indices to consider. As a second subtask, it is necessary to 
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define some procedure that can be used to rearrange the Q matrix. 

For E:..~1;Q..;(,\le, the order ing of the corresponding rows and columns 

of the ~ matrix could be modified by interchanging the pr/sitions 

of those two objects that will increase (or decrease) the index r 

the most. The pairwise interchange process is repeated until no 

pairwise interchange can increase (or decrease) the value ofr 

that is, until a local optimum has been achieved. 

The basic features of an exploratory Quadratic Assignment 

approach to data analysis are evident in the example presented 

above. The Q matrix contains a measure of relationship (or 

proximity) between the pairs of Objects under. study and serves as 

the empirical information to be analyzed. Th~ ~ matrix, on the 

other hand, specifies the structure that the researcher assumes 

the observed proximity measures to have if only the 9 matrix 

could be reorganized appropriatelyu Finally, ~ combinatorial 

optimization heuristic is used to reorder the rows and 

corresponding columns of the Q matrix until a high degree of 

correspondence with the structure matrix is obtained. Since the 

end result of the exploratory mode of the QA approach is simply a 

final ordeiing of the objects, it is up to the researcher. to 

develop a substantive interpretation for the obtained 

reorganization of the proximity matrix. 

(20) 



[ 

[ 

[ 

[ 
r 
L 

[ 

r 
[ PART I 

[ 
i 

[ 
Methodologies for Examining Spatial and 

Temporal Patterns of Crime Data 

C 
C 'I 

[ I 
('~ 

l " 
" [ 

[ " '1 

" 

[ 

[ 

[ (21) 

-.-'(""'::: ;,c, 

------- ---------

/ 

;\''1 
\: \ 

tJ 'Ql 
\/ dU ~ 

[] 

U 

[1 

U 
Ll 
f 1 

!l 
U 

U 
r I 
l ) 

U 

I ) 
H 

Ll 
{ I 
U 

L1" 

U 

* 

, I 

/ 
AGGREGATION IN DATA TABLES : IMPLICATIONS 

FOR EVALUATING CRIHINAL JUSTICE STATISTICS* 

by 

L.J. Hubert, R.G. Golledge, 
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Aggregation in Data Tables: Implications for Evaluating 

Criminal Justice Statistics 

Introduction 

One common form of data encountered in the criminal justice area 

can be represented schematically as an object-by-attribute matrix or 

tab 1 e: 

Attribute (e.g., crime type') 

1 2 3 n 

1 

2 x2l x22 x23 x2n 

3 x3l x32 x33 x3n 
(e.g., SMSA/city/ [J neighborhood) 

.~ [,-," q 
'\ 
'I 
.! 
11 

.'i I 

.. ' 

I 

Here, for example, the term "object" may refer to a city, prison, 

or an individual and the term "attribute" to a time point, atti­

tudinal variable, or experimental condition .. The symbol xij de"notes 
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a numerical value that attribute j attaches to object i where 

1 ~ i ~ I and 1 ~ j ~ n. If,the objects were cities and the 

attributes were time points, x .. may give the rate of homicide lJ 
for city i at time j. 

When faced with data organized in such a matrix, a reasonably 

sophisticated researcher may determine whether there are differences 

among the n attribute levels (i .e., among the n columns) by using 

a repeated measures anqlysis of variance procedure (see Morrison, 

1976, pp. 141-153). Although our presentation deals at least 

initially with data in exactly this same form, our concerns are 

more detailed than performing an omnibus statistical test. Specifi­

cally, the discussion below develops some basic principles for 

comparing the data in an object by attribute data matrix to a pattern 

conjectured to hold within each of the rows. Usually, we wish to 

confirm that a conjectured pattern is present, and consequently, 

that some ~ priori notion of structure is supported. 

.We .:;tart with a simple example involving real data to illustrate 

a counterintuitive result due to aggregating over the rows of an 

object by attribute matrix. This first example serves the immediate 

purpose of motivating a formal investigation of several analys~s 

problems relating to aggregation that can be phrased for the type of 

data matrix represented above. 
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The data given in Table 1 provide the rates of homicide (per 

100,000) over a ten year period (1968 to 1977) for the fifteen largest 

Standard M~tropolitan Statistical Areas (SMSA's) whose geographical 

regions have remained unchanged throughout this period (see Appendix I). 

By inspecting the entries for each SMSA, it would appear that a general 

increase is present in the homicide rate from 1968 to 1977, except 

possibly for the last two or three years. In fact, since the trend is 

strong even in the presence of the obvious inconsistencies to a perfect 

pattern, w~ may be content with a simple visual inspection and inter­

pretation. In more ambiguous contexts, however, it would be of value 

to have a formal inference strategy for confirming whether an ~p'riori 

conjecture of an increase in rate is reasonable, or more generally, for 

confirming any conjecture that is based on a source independent of the 

data itself. 

Table 1 here 

Given the general problem of pattern confinnation, two more or 

less obvious evaluation methods could be followed: 

'Preliminary'data aggregation: If the data of Table 1 were aggregated 

over rows to produce a single homicide value for each year, these 

summary values could then be compared, say, to an expected pattern of 

increase. Intuitively, if a general trend exists within each row, it 

would also be apparent and possibly enhanced in the aggregation. As an 

il.lustration of th'e- mechanics of such a strategy, suppose the rates 

(25) 
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Table 1(a) 

Homicide Rates (per 100,000) for the Fifteen Largest SMSA's where 
Geographical Regions ,have Remained Unchanged Throughout the Period 

1968-1977 

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 . 
Chi cago, Ill. 10.7 11.6 12.9 13 .1 11.5 14.1 15.9 13 .9 13.4 13.7 

Los Angeles - 8.6 9.7 9.4 10.7 12.8 12.4 12.9 14.3 13 .8 16.0 lon~ Beach 

Philadelphia 6.7 7.5 9.3 10.9 10.7 11.5 11.9 12.0 10.0 8.9 
. 

San Francisco - 7.7 9.5 8.3 9.4 8.6 10.9 11.6 12.4 12.2 11.9 Oakland 

Boston,. Mass. 4.4 4.2 4.4 4.8 4.6 5.7 5.6 5.3 3.8 3.6 

Pittsburgh, Pa. 2.9 3.2 4.4 4.1 3.9 4.2 5.3 5.6 4.8 4.8 

Sal timore, Md. 13.6 13.4 13.2 17 .3 17.6 15.4 16.8 14.8 11.0 10.2 

Cleveland, Ohio 9.6 13.8 14.5 14.8 16.1 15.1 17 .2 17 .0 15.1 ' 14.2 

Anaheim-Santa Ana- 2.3 2.5 2.7 2.5 4.7 3.0 3.7 3.8 4.7 4.0 Garden Grove 

San Diego, Ca. 3.8 4.2 4.1 5.1 3.8 6.0 7.4 6.7 6.3 6.8 

Miami, Florida 12.5 12.8 15.6 17 .1 14.3 15.7 17.4 18.3 13.6 15.6 , 

Milwaukee, Wis. 3.9 3.3 ,3.8 4.3 4.3 5.0 5.1 5.2 4.8 4.S 

Seattle-Everett 4.6 5.4 4.4 4.5 4.S 4.6 6.4 5.7 4.4 4.3 

Cincinnati 5.0 7.3 6.4 8.4 7.S 7.0 7.8 6.4 6.6 7.5 

Buffa 10. N.Y. 4.1 4.4 SJ 6.4 6.6 5.8 6.0 6.1 5.0 6.0 

(Source: Federal Bureau of Investigation. Crime in theUntted States, Uniform 
Crime Reports, Washington, D.C., Govt. Printing Office, 1968-1977). 
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Tab1e'1(b) 

Rank Orders of 

Homicide Rates (per 100,000) for the Fifteen Larr,est SMSA1swhere 

Geographical Regions have Remained Unchanged Throughout the Period 

1968-1977 

Year 

1968 lq69 10 70 1971 1972 1973 1974 1975 1976 1977 - -' 

Chi caqo, I11 . 1 3 4 5 

Los Angeles - 1 3 2 4 Long Beach 

Phil adel ohi a 1 ·2 4 7 

San Francisco - 1 5 2 4 
Oakland 

Boston ,Mass. 5 3 4 7 

Pittsburqh,Pa. 1 2 6 4 

Ba 1 timore ,Md. 5 4 3 9 

Cleveland,Ohio 1 2 4 5 

Anaheim-Santa 
1 3 4 2 Ana-Garden Grove 

San Di eqo ,ea. 2 4 3 5 

Mi ami, Fl a. 1 2 6 8 

Milwaukee,Uis. 3 1 2 5 

Seattle-Everett 7 8 3 5 

Cincinnati 1 6 3 10 

.Buffalo, N. Y. 1 2 4 9 

Column Sums 32 50 54 89 85 

Col-Sums Ranks 1 2 3 7 6 

Perfect Te~-
poral Ran ing 1 ,2 3 4 5 

Correlation (b) and (c) = .552 = rs (Spearman rho) 

Z-stati sti c = 1.65 = P r·s 

(27) 

2 9 10 8 6 7 

6 5 7 9 8 10 

6 8 9 10 5 3 

,3 6 7 10 9 8 

6 10 9 8 2 1 

3 5 9 10 8 7 

10 7 8 6 2 1 

8 7 10 9 6 3 

10 5 6 7 9 8 

1 6 10 8 7 9 

4 7 9 10 3 5 

4 8 9 10 7 6 

4 6 10 9 ' 2 1 

8 5 9 2 4 7 

10 5 7 
I 

8 3 6 

99 129 124 81 82 

8 10 9 4 5 

6 -7 8, .9 ' ,10 

~'·I \ 

II ~ 
\1 

Sa. 

I 

~ 1 
1 

1 
'I 

[ 1 
I 

[ ! 

r I 

I, 

f I 
I J 

r J 

l.l 

[I 
I ,J 

[ 1 
1 

[ i 

[ I 

[ I 

U 

[J 

[J 

L1 
i, ••• 

/ 

within each row are first ranked from 1 to n accordi,ng to their 

size - ties are broken using the conservative procedure of assigning 

'ranks contrary to the expected temporal increase. The rank sums 

within each column are then ranked from 1 to n according to their 

size and correlated with the integer pattern 1, 2, ..• , n representing 

a perfect temporal increase. This ordering process on column sums 

produces what may be called a "consensus ranking" {e.g., see Kendall, 

1970, pp. 101-102); we are essentially using Spearman's rank order 

correlation r to measure the degree of correspondence to our conjec-s 

ture. (It should be noted that we rely on the notion of a perfect 

temporal increase only as an illustration and as a conjecture that 

someone may wish to test. We are making no statement about the truth 

of this conjecture and, in fact, the data themselves may suggest that 

a non-linear relationship is more appropriate.) 

Based on well-known formulas, the significance of the rank order 

correlation r can be assessed in the usual way. For example, under s 

the independence hypothesis that all n! permutations of the first n 

integers are equally likely to be the consensus ranking, the expectation 

of rs is 0 and its variance is l/(n-l). Thus, a Z-statistic would be 

defined very simply as ~ r s. In the exampl e, the col umn sums are 

32,50,54,89,85,99,129,124,81,82, producing the consensus ranking of 

1,2,3,7,6,8,10,9,4,5 and a correlation with the perfect pattern of 

.552. Assuming the adequacy of a normal approximation, the associated 

Z-statistic of 1.65 would be declared significant, but just barely. 

Although there is an apparent decrease in the column sums for 1975 to 

1977, the rather strong upward trend in the earlier years still 

produces a rather substantial correlation to the pattern of a ~trict 

temporal increase. Obviously. if we had an a priori reason to conjecture 

(28) 
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the curvilinear trend that seems to be reflected in the column 

sums, this pattern could have been used to define the criterion 

instead. 

Correlational aqgregation: Instead of aggregating over cities to 

obtain a single value for each year, suppose the rows of Table 1 

are considered separately. In particular, the entries (i .e., ranks) 

within each row are first compared (i.e., correlated)' with the 

expected pattern of increase; the aggregation is then carried out 

over the I correlation~ to provide a single average measu~e of 

correspondence. It is apparent that aggregation now forms the last 

step rather than the first. 

As a simple numerical example using the data of Table 1,15 

correlations would be generated: .71,.96,.47,.87,-.08,.81,-.25, 

.51,.77,.78,.42,.76,-.30,.17,.36, giving an average value r ( ) , save' 

of .465. If it is assumed that all permutations of the integers within. 

each row are equally likely, the expectation of rs(ave) is 0 and its 

variance is l/I(n-l). Thus, the Z-statistic, ~I(n-l) rs(ave)' would be 

5.40, giving a much smaller (i.e., better) significance level than 

the Z-statistic generated under preliminary data aggregation. Counter­

intuitiv~ly, however, rs(ave) is smaller than rs even though the 

former is more "significant~. 

The stage at which aggregation takes place appears to affect 

dramatically the significance of the final summary statistic as well 

as its size, and unfortunately, in opposite ways. Extrapolating from 

the simple examp~e of Table 1, preliminary data aggregation ,will lead 

to a larger summary correlational measure. However, this larger 

c6rrelation will generally be less significant when compared 'to the 

(29) 
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average of the separate correl at; ons for each of the rows. 

We now formalize these general conclusions in greater detail 

and extend their range of validity beyond the context of simple rank 

orders and the use of Spearman's correlation. Our extensions later 

will inc'tude the possibility of comparing matrices rather than 

sequences and will address the problem of multi-group concordance 

as well. In this latter instance, the pattern that is used as a target 

(~.g., a pattern analo~ous to the conjecture of homicide increase) is 

only implicitly given by a second object by attribute data table (or 

set of matrices) collec'ted Of! a second group of objects. 

As one final motivating comment, we note that the practical 

implications of a more formal analysis are important for the way in which 

crime data are reported and kept. The aggregation level at which the 

str6ngestcorrelational pattern can be found may'be at odds with the level 

'of aggregation that would allow the pattern to be most easily detected 

statistically'. Thus, by pragmatically picki,ng an aggregation level that 

seems to "smooth out" the data the best, we also may limit the types' 

of relationships that could later be determined as statistically relevant, 

particularly if researchers have only the secondary summaries at hand. 

These same relationships are well-known in multi-factor analysis of 

variance. Once data are collapsed (aggregated) over the levels of a 

factor, the associated sum of squares becomes part of a usually larger 

error term needed in tests of significance; consequently, these latter 

tests tend to be less sensitive. 

Some Formal Details 

The two schemes for aggregation presented in the last 'section can 

(30) 
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be charateri zed more formally. For notation \'le assume the object 

by attribute data table of theform{x .. } g'iven in the introduction lJ 
and letthe predicted criterion (or pattern) over the attributes be 

defined by the numerical sequence Yl'Y2""Yn" Also, for algebraic 

convenience no secondary transformations to ranks are used; instead, 

to produce comparability across rows and to allow each object to have 

an equal weight, the entries within each row are standardfz~d to 

z-scores, i.e., rX' k = 0 'and rik = n for 1 < i < I: This canonical 
k 1 k 1 

form is assumed thoughou~ the paper .. 

Prel1minary data aggregation: Based on the n column sums, Ix .. for 
i 1 J 

1 ~.j ~ n, let rA be the correlation between these sums and the 

criterion Yl' Y2' ..• , Yn. Under the standard permutation model of 

independence (see Bradley, 1968, pp. 73-76),all n! orderings of the 

column sums are equally likely. Consequently, this assumption produces 

a "null ll model in which rA has expectation 0 and variance l/(n-l). 

Correlational aggregation: If we denote the correlation between the 

n elements in the ith row of the object by attribute data table and 

the criterion by r i , then the average correlation over the I rows 

is rnerely rB = i 4 r i · Based on the standard Friedman randomness model 
T 

(see Bradley, 1968, pp. 123-129), all orderings of the entries within 

each row are equally likely. This assumption generates (Il)n'equfflly 

likely realizati.ons of the whole table. As for rA, th~ expectation of 
1 rB is 0; however, the variance of rB is now I(n-1) . 

Using these two aggregation schemes, the values of rAand.rB and 

the associated Z-statistics, ZA = 'In-l rA and ZB = ~I(n-l) r B can be 

compared through si~ple algebra. For example, as shown in 

(31) 
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Appendix II, . 

where e = 1 + (I-1)r ave 
r' 

(1) 

and rave is the average of all {~) 

correlations between pal'rs of rows. S' . lnce r 1S less than or ave 
equal to 1, e must also be less than 1 1 or equa to'.. Moreover; e 

can be 0 if and only if r - -1 h' h' l' 1 ave - I-I' w lC lmp les a ack of variance 

in the column sums (i.e., the sums. are all zero) and an undefined 

correlation rA. Thus, without loss of any essential generality, 

itis assumed that e is positive and less than or equal to 1, i.e., 

The implications of (1) are somewhat surprising but are consistent 

with what is generally known about aggregation phenomena. First of a1l, 

IrAI is always greater than or equal to IrBI with equality only when 

rave = 1, i.e., when all rows are identical in ~heir standardized 

scores. Consequently, any non-trivial variability across rows will result 

in IrAI being greater than IrBI . Secondly, as 1+00, 

and 

(32) 

10. 



\ 
• I 

~ 

'J 

[ 

r 

Lj 

l ; 
{l 

L 
[1 

L: 
1 ! 

U 

This relationship is analogous to a correction for attenuation in 

the psychometrics literature (see Lord & Novick, 1968, pp. 69-74). 

Here, rA can be loosely interpreted as a correlation between a 

"true score" (defined from column data) and an "infallible variate ll 

(defined by the criterion); rS is the correlation. between an imperfect 

measure of the "true score" (defined by an average over the separate 

row data) and an infallible variate (again defined by the criterion). 

In terms of Z-statistics, Appendix II proves the relation given 

in (2): 

(2) 

Thus, if rave ~ 0, 

In words. if there 1s some positive degree of correspondence among the 

rows, i.e., rave> 0, the Z-statistic for rA will be less extreme than 

the Z-statistic for rB. Equality exists only if ruve = 0; at the other 

extreme. if rave =1, ZB = iT ZA· 

In summary, the greater the internal correspondence as measured 

by r " the greater the discrepancy between the Z-statistics and the 
ave 

closer r
A 

and rB become. This can be seen in the simple equality 

suggesting that as rS and rA get closer togeth~~, ZB and 'ZA get m6r~ 

(33) 

, 
" , 

11. 

,-'" -~'-~--~--'--

'" 

[J 

In 
[j 

f 1 

11 

tJ 

U 

u 
u 

!] 

tl 
f I 

U 

U 
[J 

[ I 

discrepant. We also 'note that since -1 ~ rA ~ ~l, 

1 + (I-1)rave 
I 

1 + (I-l)rave 
I 

.... 

This last expression provide simple bounds on the average correlation 

rS in terms of the degree of internal concordance. The less the internal 

concordance or correspondence, the t~ghter the bounds. 

Returning to the simple data of Table 1, the various relationships 

developed above can be.verified numerically. Table 2 is an analogue 

of Table 1 and provides the z.-scores necessary for the calculations 

given belm'l. First of all, since rave = .479, .8,= .717. Thus, rA = .727 = 

rB/9 = .521/.717. Similarly, ZB/ZA = 2.776, which is equal to ~l+{I-l)rave' 

or alternatively, to fI ~ Finally, if we assume rave is given as .479, 
r A 

the possible algebraic bounds on rB are from -.717 to +.717. Thus, the actual 

size of .521 for r B is rather SUbstantial given the degree of observed 

concordance among the SMSA's. 

Table 2 here 

Multiple-Group Concordance 

A fixed set of scores Yl' y2' •... 'yn was assumed to define the 

hypothesized pattern or criterion in the last section. Suppose now 

that no such static conjecture is available and instead we are given 

a split of the I objects into a first set of II and a second set of 

12: where Ii + 12 = I (e.g., a split into Eastern and Western cities). 

(34) 
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Tab1 e 2 

z-scores of Homicide Rates (per 100,000) Standardized within Rows 

1968 

Chicaqo -1 .66 

Los Angeles -1 .53 

Philadelphia -1 .87 

San Francisco -1 .53 

Boston -0.35 

Pittsburqh -1 .75 

Baltimore -0.30 

Cleveland ·2.54 

Santa Ana -1 .26 

San Di ego -1 .24 

Miami -1 .49 

f1ilwaukee -0.88 

Seattle . -0.42 

Cincinnati .-. ~" - t:. • Cc.. • 

BUl ,:alo -1.90 
,~ f-'-

Column Sums -20.94 
Criterion: 

z-scores -1.57 

rA = .727 

r B = .521 

1969 1970 1971 

-1 .03 -0.13 0.01 

-1.04 -1 .17 -0.60 -

-1 .41 -0.37 0.55 

-0.45 -1 .17 -0.51 

-0.65 -0.35 0.24 

-1 .38 0.10 -0.27 

-0.39 -0.47 1.24 

-0.46 -0.12 0.03 

-1.03 -0.80 -1.03 

-0.93 -1 .01 -0.24 

-1.33 0.,17 0.97 

-1 .89 -1.05 -0.20 

0.78 -0.72 -0.57 

0.35 -0.66 1.57 -
:"'1 .:'52 0.11 0.99 

-12.38 -7 .64 +2.16 

-1.22 -0.87 -0.52 

~I(n-1) rB 
-'r;:T r

A 

= 

(35) 

Year 

1972 1973 1974 1975 1976 

-1 .10 0.71 1.97 0.57 0.22 

, 0.33 0.15 0.37 0.99 0.77 

0.44 0.90 1.13 1.19 0.03 

-0.99 0.39 0.81 1.29 1.17 

-0.06 1.56 1.41 0.97 -1.24 

-0.52 -0.15 1.21 1.58 0.59 

1 .36 0.45 1.03 0.20 -1 .39 

0.67 0.18 1.22 1.12 0.18 

1.52 -0.45 0.36 0.47 1.52 

-1.24 0.44 1.51 0.98 0.67 

-0.53 0.22 1.13 1.61 -0.90 

-0.20 0.98 1.15 1.32 0.64 

-0.57 -0.42 2.27 1. 22 -0.72 

0.57 0.01 0.90 -0.66 -0.43 
! 

1.25 0.;;:4 o 49 o 62 -0.77 

+0.63 +5.23 +16.96 +13.47 +0.24 

-0.17 0.17 0.52 0.87 1.22 

.521 
= 2.776 

-~ (9) .72T 

1977 

0.43 

1.74 

-0.60 

0.99 

-1 .53 

0.59 

-1 .72 

-0.27 

0.71 

1.05 

0.17 

0.14 

-0.86 

0.57 

04Q 

+1.90 

1.57 

--~--- ---~ ---------------
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Although each group caul d be· d·i scussed separately, our more immediate 

concern is with measuring the co.nco.rrlance between the blo. gi ven groups. 

Intuitively, the criterion scores Yl' Y2' .... , Yn are replaced by a set 

of rows from o.ne of the two groups. The first group then serves as a 

target for the seco.nd anc co.nversely (see Schucany and Frawley, 1973). 

Assuming the common standardization to. mean 0 and variance 1 for 

each row, the two aggregation schemes discussed previously have natural 

analogues in the two-group context. First of all, the data in each 

group co.uld be aggregated and the two sequences of scores correlated 

* to o.btain rA . Alternatively, each row in gro.up 1 cauld be carrelated 

with each row in group 2 and the 1112 correlations averaged to. give r;. 

Obvious extension of the proofs given in Appendix II for 

rA and rBwould generate rather among r; and 

14. 

* * ~~~~----- .. ~-r~~----
For example, rA = r B/818z, where 81 = 

and ravel' and rave2 are the average intercorrelations within each of 

the twa groups. Thus, 

A loose co.rrespandence to reliability theory is again possible. 

* * * If II + 00 and 12 + "P, rA ~ rB/~ ravel r ave2 ' implying that rA is an 

analogue of a disattenuated correlation. In other words, to generate 

* * rA, we merely correct r B for the lack of perfect cancordance within 

each of the two groups separately. 

Using these same ideas,' we find 

* * Thus, if r 1 > 0 and r > 0 I ZB·' _>, Z.A' ave - ave2 - , 

by ± 1 + (I1-1)ravel 

II 

(36) 

* .' Finally, r B can be bounded 
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. Returnfng to otir numerical example, suppose we split our 15 SMSA's 

into two groups - (Chicago, Philadelphia, Boston, Pittsburgh, Baltimore, 

Cleveland, Miami, Milwaukee, Cincinnati, Buffalo) and (Los Angeles-Long 

Beach, San Francisco-Oakland, Anaheim-Santa Ana-Garden Grove, San Diego, 

Seattle-Everett) on the basis of an east-west dichotomy. Here, II = 10, 

12 = 5, ravel = .558 and r ave2 = .519. Thus, 81 = .776 and 82 = .784. 

* The relationships among the correlations rA and 

* * ZB are now immediate. For example, rA = .657 

~l + (Il-l)ravel ~l + ,(I2-l)rave2' = 4.304. 

* Finally, rB is bounded by :!: 8182 or :!: .608. Thus, the actual value 

* of .399 for rS is substantial given the algebraic upper bound. As 

an interesting substantive cbservation, ravel and rave2 are both 

greater than rave found in the previous section, and moreover, the 

, * * values of rA and rB are both smaller than their counterparts rA and 

and 

rB. Descriptively, there appears to be a greater correspondence between 

all the SMSA profiles and a strict temporal increase than there is between 

the SMSA profiles grouped according to an east-west dichotomj. 

The two-groups results given above can themselves be extended to 

T groups in an obvious way. ~Je give some of the necessary formulas 

but omit any numerical example since it would parallel the two-group 

sp1 it very closely. Suppose now there are T groups with II' 12, ... , 

IT objects in each. Moreover, let r~ denote the average of the 

* . intercorre1ations of the type rA among the T sequences obta1ned by 

aggregating within each of'the groups 'separately; let r~ denote a 

* similar average using correlations of the form rS . ~10re :specifically, 

* denotes the correlation (of the form rA) for gro,ups u and v 

(37) 
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and rs 
uv denotes the cor~elati~n (of the form r*) f 

/::, '1 * _1' * B or groups u and v, 
r A = T l rA r/::'B -(T) l rB ; and 

(2) u<\' uv 2 u<v uv 
then 

L 
u<v 

since the terms 

assume that all 

typically would 

No immediate Simplification is POSSible, however 

* 
rS and 8 uSv depend on the ~ame subscripts. If we 

uv 
* c~mponent correl ati ons rsuv are non-negative (as they 

be), then it is easy to show that ~ ) r/::' a 
J.\ - B ~ • 

Finally, a related expression holds for 
the associated Z-statistics: 

I _1 
u<v I I u v 

, 

Although we have impliCitly assumed that our ,"n,"tl"ally 
given objects 

were elemental in some given sense, it should be clear 
that the T group 

analysis merely sets up th 
ana er object by attribute data matrix that 

could be analyzed as su h I the 
c. n 1S case, each group would correspond 

to a Single object and the aggregate sums once standardized define 

the observations within a row. 

the 
We might also note in passing another alternative for measuring 

concordance among T groups. Schucany and Frawley (1973) consider 

an index based on the products of the T aggregated sums rather than 

averaging over the pairwise statistics appropriate in two-group 

splits" An analySi's similar to that given above could be formulated for 

these alternatives but" th Slnce e extension is peripheral, it will not 
be pursued. 

(38) 
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Al ternative Null ~10del s 

* In testing average correlations, such as r B and rB, the emphasis 

throughout has been on a null model that assumes all permutations of 

the observations within rows of an object by attribute data matrix are 

equally likely (referred to as the Friedman assumption). - Other models 

are possible, however, based on weaker conditions. For example, suppose 

we wish to test the significance of rB for a perfect temp~ral trend. 

For each of the I rows of the object by attribute matrix we first obtain 

the correlation to the'set of criterion scores Y1' Y2"'" Yn and to its 

17. 

exact 'opposite Yn' Yn- 1,···, Y1. This process generates two correl,ations, 

of equal absolute value but of opposite sign, i.e., if r i denotes the 

correlation of row i to Y1, Y2""'Yn' then -ri is the correlation to 

Y , Y l' ... ,Y1· n n- In short, two dependent samples are obtained consist-

ing of I pairs of observations. If the conjecture is correct that the 

pattern Y1' Y2"'.' Yn is reflected across the rows, then the first 

member of each pair should be positive and the second negative. Thus, 

the pattern can be confirmed as a special case of the common two­

dependent sample framework. 

To be more specific, we choose as our test statistic 
1 

=1 
between the ith row and Yl' 

L r. = rB, where r i1 is the correlation 
i ' 

•.. , y and r' 2 is the correlation between n , _ 

th~ ith row and Yn"'" Yl' If our conjecture is approximately correct, 

the values of T should be relatively large and positive. (To those 

readers familiar with non parametric,statistics, it should be apparent 

that our problem could also be phrased in terms of a single sample of 

correlations r1, ... , r I ; fOr example, see Bradley, 1968, pp. 76-79). 

(39) 

.' 

[] 

[J 

1[J 

U 

Ll 
tJ 

U 

lJ 

U 
U 
U 

Ll 

[1 

U 
U 

.l U 

~ 

~ 
! 

~ , _Ii! 

I U 

Assuming a flnullfl hypothesis that all 21 assignments of signs 

to the ahso~ute differences I rn - r i2 I in the statistic Tare 

equally likely, i.e., that there is no correspondence betwe,en the 

rows of the object by attribute matrix jt''ld the criterion or its 

inverse, the expectation and variance of T can be found easily (see 

Hubert and Schultz, 1976). The approximate significance test is 
T - E(T) IrB based on Z* = -;::;:;::;::;;=:= -:: , where E(T)::: 0, VeT) = 

I V(T) ~~ri2 
1 L 2 
-12 r i i 

In terms of the previous example,Z* = 3.178 which is 

L r? 
substantially smaller than ZB = 6.052. In fact, as long as i ' 

-1-
> 

1 , this later Z-statistic,Z*,will be less than that obtained under 
n-l 

the previous Friedman model. However, since Z* is based on a weaker 

condition, it still may be preferable. Obviously. this newer model is 

irrelevant when preliminary data aggregation is considered since only 

the two values of ~ rA would be available. Finally, an extension of 

these ideas to the multi-group case is immediate. For instance, for 

* * 1 2 two groups E(rB) = 0; VerB) = (y-y-)2 L r ij , where r ij 1 2 i e:. group 1 
j E: group 2 

is the correlation between the ith row in group 1 and the jth row in 

group 2. Thus, for our numerical example, the associated Z-statistic 

would be 5.740 which is again substantially less than the 

* Z~statistic, ZB ' of 8.484. 

(40) 

18. 



,. 

.-:.' --

r 
[ 

r 
[, 

,i [ 
.J 

, L 
z',: 

. i [l 

U 
).1 

u 
[J 
[i - , 

\ 

, ~ i. 

P ., 

J 

U 
v 
• ' ,I ~ 

,1 

Hierarchical Clustering (Aggregation) 

The algebraic relations between the r; and r; correlations 

developed in the co~text of two group concordance have rather signi­

ficant implications for how data should be reduced and interpreted. 

In particular, these distributions are relevant to how the objects are 

classified and clustered. In general, given an object by attribute 

data matrix and the associated (~) correlations between the I rows, 

we may wish to cluster or partition the objects (e.g., cities)' in 

such a way that similar cities are placed together in a single class 

and dissimilar cities are kept apart. We have assumed up to this point 

that any such grouping of the cities would be given a priori, whereas 

now, our interest shifts to identifying such groupings post hoc. As 

19. 

a convenience, we emphasize only hierarchical strategies, i.e., clustering 

schemes that define complete sequences of partitions of the object set. 

Many of the comments. we make, however, can be extended rather easily 

to alternative methods. 

Most hierarchical clustering procedures start with a trivial 

partition of the object set in which each object forms a separate 

class by itself. As the clustering progresses, pairs of classes that 

are the "closest" are successively united until a se!cond trivial 

partition is reached with all I objects placed together. Thus, if there 

are K classes at a given stage, that particular pair is united to form 

a new class if it is the most similar among all possible (~) pairs that 

are candidates for consolidation. Consequently, if we start with the 

I x I intercorrelation matrix among the I objects, we need a procedure 

for continually respecifying the similarity between a new class formed 

(41) 
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at a particular state and all remaining classes. Once such a 

definftion is available, the partition sequence'is constructed­

more or less automatically. 

Some nota~ion may help clarify the intuitive description of 

the clustering process given above. Suppose the K classes at a given 

stage are labelled by C1, C2, ... , CK, and the measure of similarity 

or proximity (as yet undefined) for the pair C and'C chosen from 
K u v 

the (2) possible matchi.ngs is denoted by suv' Initially It/hen K=I, 

suv is provided ,by the correlation between rows u and v. At a later 

stage we can assume without loss of generality that the pair C
1 

and 

C2 is the most similar, and consequently, the subsets C1 and C
2 

are 

united to form C1UC2. The proximities beh~een C1UC 2 and C
3

, ..• , C
K 

have to be redefined, which implies that different procedures for 

calculating the new proximities will lead to different hierarchical 

sequences and different clustering methods. 

* * The di fferences b'etween r A and rB characteri ze two di fferent 

processes when used to define the similarity between C UC and Cke. 1 2 
, * 

For correlations of the form t'A' we can aggreQate over the rows 

encompassing the sets C1 and C2 and over the rows encompassing C
k

. 

Alternatively, if we treat C1UC2 as one class and Ck as a second, 

* the average correlation rB specifies a second possible measure of 

similarity. Obv;ously~ the clustering result may vary as a consequence 

* * of these two options since rA and r B differ as a function of the 

internal concordances within C1lJC2 and Ck. There is no "right" way 

to proceed, however, and in fact, both procedures lead to rather 

simple formulas for redefining t'he similarity between C1UC 2 and C' 
k. 

(42) 
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1 b th of all inter-correlations from C,. to C., c .. the For example, et cij e' e sum - J ,J 

corresponding average, and Ii and I j the number of objects in Ci and Cr 
respectively. Then, for the r; option, the similarity between any two 

* ckk ' = ckk ' 
distinct groups Ck and Ck'~ is rA =1 ,~;;=====-

kk' ,ckkck'k' ~ckkck'k' 

Thus, it is trivial to show that the similarity between Ck and C1UC2 is 

J ckk (c11+ c22+ 2C12 } 
Computationally, at the stage of K classes, 

C e we need the K x K matrix that has entries cuv in the uth row 1"'" K' . 

and the vth column. At the new stage involving K-l classes C1UC 2,C3, .•• ,CK, 

1 X K-l matr,'x given below has to be retained: only the collapsed K-

C UC 1 2 · .. 

cn+c22+2c 12 · .. cl k +c2k · .. cIK+c2K 

· · · 
· · · 
· · · 

c1k +C 2k · .. ckk · .. c kK 

· · · 
· · · 
· · · 

c' lK+c 2K · .. c kK · .. cKK 

Since the original I x I matrix does not have to be stored and referred to 

* as the clustering proce es, e d th procedure based on rA is combinatorial in 

the sense of Lance and Williams (1967). 

(43) 

I 

II J I ~ 

I 
i 
! I 1 

11 J 

. I I J 

l1 
U 

U 
U 

, 

LI 

U 
U 

Ll 
U 
[] 

L1 

III 
lU 

U 
~ 

U 
-'";;' .. ~-.... ' ~ 

I 

* Analogous results hold for the rB option if we define the simila.rity 

* between any two distinct groups C
k 

and C
k

, as r
B kkt 

to show that the similarity between C
1

UC
2 

and C
k 

is 

= Ckk,·. It is easy 

At the stage of K classes, only a K x K matrix need be retained with class 

sizes on the main diagonal and cij's in ~he off-d~agonal positions. Thus, 

this second procedure is also combinatorial. 

Using Table 2 for a numerical example, the two clustering alternatives 

would lead to partition sequences that are identical except for a minor 

difference early in the hierarchy that affects only the order in which these 

small groups were eventually merged together. In each case, the level at 

which the three groups were defined produced the same decomposition: one 

object set containing Cincinnati alone; a second object set containing 

Seattle-Everett, Baltimore,and Boston; and a third containing the rest. 

22. 

Looking at the rank correlations to a perfect temporal increase for an inter­

pretation, the three object set is defined by negative correlations, Cincinnati 

has the lnwest positive value, and the large object set contains those SMSA's 

with the largest positive correlations. 

Comparisons of Matrices 

The previous discussion has been phrased for sequences of n numerical 

vari abl es defi ned for each member of a set of I objects. The same carrel a-

tional relationships also hold when matrices are available containi.ng pai.rwise 

relationships among the n attributes. For example, consider the data in 

(44) 
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Table 3. This matrix is defined for the Chicago SMSA (others have .... ,. .. ,- . 

been compiled for all other cities used in the sample), and contains 

the correlations among the seven index crimes based on data over the 

ten years from 1968 to 1977. 

Table 3 here 
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Given some similar results in the geographical literature (e.g., Harries, 

1974, p. 39), we could expect the correlations among the 7 crimes for 

each city to demonstrate the well-known subdivision into crimes against 

persons and crimes against property. Or in other words, the correlations 

within the two sets, (murder, rape, robbey'y, assaul t) and (burgl ary, 

larceny, auto theft), should 

To formalize this conjecture 

criterion could be 

Murder 

Rape 

Robbery 

Assault 

Burglary 

Larceny 

Auto theft 

s-
CIl 

"'0 
s-
:l 

:::E 

X 

1 

1 

1 
-

0 

0 

0 

set up as 

>, 
s-
CIl 

CIl .0 
o.. .0 

"' 0 
c:: c:: 

1 1 

X 1 

1 X 

1 1 - .. 

0 0 

0 0 

0 0 

be larger than the correlations across 

in a comparison paradigm, a target or 

a matrix of the foll o\'1i ng form: 

Crime 
+l 
'+-

>, <1J 
+l s- >, . .: 
r- IO t:: +l 
:l r- <1J 

"' t:n 0 0 
VI s- s- +l 
VI :l "' :l 

c:C co ....I c:C 

1 0 0 0 

1 0 0 0 

1 0 0 a 

X 

:~ 
0 ..... 

0 1 

0 1 X 1 

0 1 1 X 

Rather substantial correlations would be expected between each of the 

5 matrices and this given pattern if the person versus property split 

were represented in the correlations between crime types. 
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TABLE 3 

CORRELATIONS (7 CRIMES): SMSA #1 

Chicago 

1.00 o 0·.753 0.519 0.714 0.852 0.763 0.772 

0.753 1.000 0.893 0.906 0.690 0.439 0.282 

0.519 0.893 1.000 0.781 0.308 0.021 0.039 

0.714 0.906 0.781 1.000 0.670 0.520 0.240 

0.852 0.690 0.308 0.670 1.000 0.938/0.622 

0.763 0.439 0.021 0.520 0.938 1.000 0.684 

0.772 0.282 0.039 0.240 0.622 0.684 1.000 

(46) 
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In gene. ra 1, _we t~eat the (7) entri es above the mai n di ag~_na 1 in each 
2" 

city matrix as a sequence and the (~) such entries in the'hypothesized 

matrix as a pattern. If the standard normalization to z-scores is performed 

on each such sequence, a va~ue of .167 would be obtained for rA and a smaller 

value of '.096 for r
B

• Exactly the same reasons for this difference in 

correlations exist as before since we have merely reinterpreted each matrix 

as a sequences of values. In both cases, the correlations are positive 

(as expected) but they are also very small. This last fact suggests that a 

split into property and person crime is not very salient when the profiles 

are correlated over time, particularly when the size of these correlations 

are compared to the strong split observed for profiles correlated over 

localities, e.g., see Harries (1974, pp, 41-43), 

When devising descriptive statistics it may be appropriate to destroy 

the matrix character of the entries and operate as if we merely had sequences. 

In terms of Z-statistics, however, the blo aggregation schemes would 'need 

different variance terms that respect the internal structure of the matrices 

for each city orfortheir aggregate sum. Such var;an~e terms are available 

in the literature (see Hubert and Schult?, 1976) and would generally lead 

to the same type of relati~nship among Z-statistics as obtained in the 

sequence context. Since the variance terms are much more complicated and do 

not lead to any simple al'gebrafc results, 'this extension is"not dis'cussed 

in any formal way. 
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Di sc'uss i on 

In the very first example illustrating the two aggregation schemes, 

a rank transformation was used within ea'ch row and on the rank sums for 

each column. This process ensures that each object or row contributes 

"equally" and thus, some degree of natui'al comparability ext~~.:.., between 

the summary statistics obtained for the two aggregation schemes. To develop 

26 .. 

more explicit relationships in terms of formulas, however, the transforma.tions 

used in most of the paper werE based on obtaining z-scores. In the jargon 

of statistics. observations within rows are aligned for location and scale. 

This convention allowed pretise connections to be developed between the two 

aggregation schemes both in terms of summary indices (e.g., for rA and rB) 

and Z-statistics (e.g., for ZA and ZB)' 

Matrix extensions offer a great deal of flexibility if! defining different 

re"lationshi ps among the attri butes, but unfortuna tely ~ the problem of defi ni ng 

a transformation on the aggregate data matrix also makes it very difficult in 

general to develop precise formulas for connecting the two aggregation schemes. 

As an example of this problem, suppose we are given the basic object by 

attribute data table and define an n x n matr1x for each object (e.g., c1ty) 

as follo~s:the entry in t~e uth row and the vth column is +1 if x;u > xiv; 

-1 ,"f x,'u < x .' and 0 if x" = x, , If we treat tne n{n-l) entries in each iv' lU'V 

such matrix as a sample, normalize to z-scores in the usual way, and carry 

out the same redefinition for a criterion set of values Y1' Y2"'" Yn' the 

average correlation rB is actually the average Kendall Taub statistic of 

each row against the criterion (cf. Hays, 1960). However, to obtain an 

analogue of r
A

, a similar transformation to signs must be performed on the 

(48) 
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aggregated scores from the standardized object by attribute table. This 

discontinuity in strategy prevents any simple way of defining a relationship 

between the summary measures for the two aggregation schemes. ~le woul d sti 11 

expect data aggregation to give a lrnrger descriptive measure and a greater 

significance level, but it is not clear how these ~xpectations could be 

formalized as a para1lel to our previous equations (1) and (2). 
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As another point of clarification we note that the normalization within 

rows of an object by attribute data table may not be the only natural trans­

formation to carry out. Instead, suppose z-scores are obtained within colu'mns 

and for each object i we define an n x n matrix having an entry in the uth 

d th 1 of 1 z z Here, z,.u and z,.v are z-scores for attributes rowan v co umn Y iu iv· 

u and v, respectively. If we aggregate over the I matrices (treating objects 

as if they were flsubjectsll), the correlation matrix among attributes .is 

generated. Pattern comparisons are important here in the context of what is 

called a multi-trait multi-method matrix; consequently. some' of the same 

aggregation principles discussed previously appear important to distinguish 

. 11 (see Campbell and Fiske, 1959; Hubert and Baker, in these applicat,ons as we -

1978). Since a separate paper is planned on this topic= it will not be pursued 

any further now. We merely comment that different normalizations of an object' 

by attribute table may be appropriate for different purposes. 

The methods of data aggregation discussed in the paper represent both 

ongoing procedures used in geography for aggregating data and alternatives 

to those standard procedures. For exam?le, Harries {1973} used preliminarY 

aggregation procedures when he averaged violent crime rates for 189 SMSA's 

for the five year period 1965-69 and calculated simple correlations bet\'1een 

(49) 

. " .. 

I 
I 
! 

~ 

I 

\' I I, 

I I ] " 

~ U~ 

[J 
--1 L 
f ] 

I i 
1. J 

tl 
r \ .J 

U 
U 
[J 

U 
I ) _ J 

U 
r J 

U 

P \.1 

f 1 

[I 
/i 

:violent crime and population over_ the SMSA's. Alternative procedures for 

determining correlations between violent crime and population are given 

in. our discussion of the statistics r B and rs(ave). Pyle (1974) used 

correlational aggregatio.n when he examined actual cr.ime rates per 1000 

persons for nine crime types, plus armed robberies per 1000 commercial 

structures and rates of residential burglary per 1000 dwelling units. 

Pyle calculated all pairwise correlations, for the entire study area 

(Summit County) and for a subset of the area (Akron) and then attempted 

to illustrate differences between the correlations. Thi~ is similar to 

the procedures used in discussing multiple group concordance in this paper. 

Harries (1974) also used preliminary data aggregation when he 

correlated city size with crime rates averaged over index crimes for a 

five year time period - a procedure that could be extended by, using the 

matrix comparison procedures developed in the latter section of this paper. 

Other examples of preliminary and correlational data a1gregation proce­

dures can be found in the growing literature on the use of canonical 

correlation in geography '(Monmonier & Finn, 1973; Clark. 197,5). However, 

the exact procedures detailed in this paper focusing on rank orders and 

Z-statistics for both preliminary and correlational aggregat'ion procedures, 

to our knowledge, have not appeared in the geographical literature. 

As one final observation, it should be noted that the two group 

discussion was concerned with the concordance between two classes even 

though the various summary indices were subject to modification by the 

degree of internal concordance. In other words, we were not explicitly 

interested in assessing large within group homogeneity per~. Given 

(50) 
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the original I x I intercorrelation matrix, however, and a hypothesized 

split of the I objects into T groups (e.g., into two disjoint subsets), 

we may also wish to test whether there is more concordance within the 

groups than expected up.der some chance model. Th~s topic has ~een 

discussed in detail elsewhere for the null conjecture that the given 

part; tion was chosen at random from all possi bl e partiti ons with the same 

number of classes and objects in each. Thus, we would hope to reject the 

randomness assumption if the within group concordance were substantially 

greater than the between grQup concordance, i.e., the ~ priori partition 

is reflected in the size of the correlations in the original I x I matrix. 

For Ct more complete discussion, the reader is referred to Hubert and levin 

(1976) . 
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Appendix I: Definitions 

1. Standard Metropolitan Statistical Area (SHSA): 

Most standard metropolitan statistical areas include at least 

one city of 50,000 inhabitants or more. This is not an absolute 

requirement as it was for the standard metropolitan area. Instead, 
two cities with, contiguous boundaries and with a combined population 

of at least 50,000 (often referred to as t\'1in cities) may serve the 

purpose if they constitute, for general economic and social purposes, 

a single community, and if the smaller of the two has a population of 

at least 15,000. There is also the provision that where, in two or 

more adjacent counties, each has a city of 50,000 inhabitants or 

more (or blin cities such as those just described) and if the cities 

lie within 20 miles of each other (city limits to city limits), they 

will be included in a single Standard Metropolitan Statistical Area 

unless there is definite evidence that the two urban areas are not 

economically and SOCially integrated. 

2. rs = Spearman1s rank order correlation coefficient. Defined by 

cumulative i'anks wit"r!'n each column and correlating the 

rahk order of the column sums with an expected temporal rank 

order. 

3. 
rs(ave) = rank order correlat~o~ ~oefficient obtained by ~orrelating 

the ranks in each row with an expected temporal rank order 

and averaging the vector of individual correlatirin 

coeffici ents. 

(54) 
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4. rA = Pearson correlation coefficient defined as in (2) above but 

substituting z-scores for ranks .. 

5. rB = Pea~son correlation coefficient obtained as in {3} above but 

substituting z-scores for ranks. 

6. e = statistic defined to illustrate algebraic relations between rA & 

r B and ZA & ZB' For large data sets, e + Irave . 

* 7. rA = a "correlation fl coefficient representing a statistical relation 

between two groups defined on a single data set in which data 

are first transformed to Z-$cores within rows and then summed 

33. 

over columns for each group. The resulting column sums are correlated. 

* 8. r B = a "correlation" coefficient representing a statistical relation 

between t'110 groups defined 0\"1 a single data set in which data' 

are first transformed to z-scores within rows. All between row 

correlations across groups are calculated and averaged. 

9. r~ = a flcorrelationfl coefficient representing a statistical relation 

10. 

, .' 

among T-groups defined on a single data set. Correlations of 

the form r; are averaged over all' (~) pairs of groups. 

r~ = a IIcor-relationll coefficient with form similar to r; (above) but 

averaged over all (~) pairs of groups. 

(55) 

----- ---

/ 

n 
r I 

I rn 11 ..... 

r
l ~ . u 

:1 dn ~ ~-
I 

H 
['1 

r I 
Ll 
11 

U 
,U 

U 

fl 
f I .... - .' 

U 

I 1 

U 
fJ 
[J 
" ':--

~ 

Appendix II 

(1) Show: rA = rBIs, where 

~ 1 + (I-l)r 
s = ave 

I 

We assume the following restrictions on 
xik (as always) and, without 

loss of generality, similar constraints f 
or Yk = 

By definition, 

where ck = ~ x
ik 

. 
1 

Using the restricticns on 

;-~nI + nI(I-1)r . ave 

(56) 

xik and Yk given above, 

= 

= 

. -~-~ --- --. 
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(ii) Show: '~1 + 0-1) rave 

We know 

Thus, / 
ASSESSING HOMOGENEITY IN CROSS-CLASSIFIED PROXIMITY DATA 

Using the relationship rA = r
B
/8, .11 + (I-l)r . 
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Assessing Homogeneity in Cross-Classified Proximity Data 

It is common to see data classified according to various a priori 

dimensions. For example, a set of latency measures may be cross-classified 

according to subject and task, a given crime rate may be coded by city, year, 

and type of offense, and school achievement scores may be presented in terms 

of sex and SES level. Since classification facets supposedly provide infor-

mation useful in explaining the variability inherent in the measure under 

study, one of the first problems faced by any applied statistician' interested 

i'n analyzing s'Uch data- is to-develop suitable methods for evaluating the' 

effects of a priori classifications. Multivariate analysis-of-variance and 

its specialization to the study of profiles [Morris~n, 1976] are obvious 

strategies to consider. In fact, they may even be too obvious since their 

general applicability could limit our concern with exploring alternative 

inference paradig~s that might be more appropriate in specific-instances. 

Standard analysis-of-variance methods and their correlates are all rather 

specialized and keyed to particular ways of interpreting data and to certain 

measures of proximity (e.g., covariances) among the objects under st~dy. 

More pointedly, classical statistical inference may not complement in any 

natural way many of the newer data reduction strategies of's'ca'ling and cluster 

analysis that are becoming very popular in the social and behavioral sciences. 

These latter methods have proved highly successful in describing structure 

within an object set and have been implemented with a variety of arbitrary 

measures of proximity having few if any well-developed parallels within the 

traditional confines o'f statistics. Because of these substantive developments, 

it would be of obvious value to have confirmatory' inference strategies for 

testing the saliency of a priori dimensional constraints based on an unspecified 

proximity function. 
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In recent years various analysis-of-variance analogues have been proposed 

for arbitrary proximity measures when the object set is subject to a single 

classification dimension [Hubert & Levin, 1976; Mielke, Berry, & Johnson, 1976]. 

Since little work has addressed the more difficult task of two or more 

classification dimensions~ we use this lack as a basic motivation for the paper. 

The. probl em emphasi zed is one of ana lyzi ng an ~rbitrary proximity matrix that 

contains cross-classified information on the similarities within a set of N 

objects. For convenience, the initial discussion assumes th,at the N objects 

are actually N space-time units, i.e., m cities observed over n years so mn = N. 

The proximity information per se will be given by a Euclidean distance measure 

between the profiles defined over the seven index crimes for each pair of 

space-time units. Based on this structure and data, the aim is to evaluate 

temporal and spatial homogeneity; that is, to assess whether any evidence 

exists for an increased similarity among profiles associated with the same 

levels in the temporal or spatial variables. It is important to remember, 

however, that the space-time interpretation is used here solely for convenience 

of exposition. Any cross-classification having a similar form and/or any 

measure of proximity is subject to the same analysis schemes to be developed 

in the following pages. 

Background 

The most convenient way to introduce our approach to the assessment of 

profile homogeneity in cross-classifications is to introduce an example that 

can be used, throughout the discussion. Table 1 presents a 30 by 30 symmetric 

matrix containing measures of proximity between the profiles for 6 cities 

(Chicago, Los Angeles, Philadelphia, San Francisco, Boston, and Pittsburgh) 

at 5 time points (1969, 1971,1973, 1975, 1977). Each entry in the matrix 

corresponds to a Eucl i dean distance measure between the profil es for two city-

(60) 
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time ~nits 'over the seven-index crimes (murder and non-negligent manslaughter, 

f0rcible rape, robbery, aggravated assault, burglary, larceny/theft, motor 

vehicle theft). The entries across crimes were first made comparable, by a 

transformation to Z-scores. i.e., normalizing the rates within each particular 

crime type to mean 0 and variance 1. The final proximity or distance between 

profiles was then obtained by taking the square root of the sum of the squared 

differences over the seven index crimes. Obviously, other measures could be 

used as well, e.g., Mahalanobis distances, correlations, and so on. In all 

cases, hO\l/ever, the analysis procedure to be' presented remains the same: 

Tab1e 1 here 

Considering the complete 30 by 30 matrix of proximities in Table 1, the 

assessment of spatial homogeneity should depend on the level of elevation for 

the entries in the 6 IIsame-city" blocks (each of size 5 X 5) on the main 

3. 

diagonal. Similarly, if we reorganize Table 1 appropriately, temporal homogeneity . . .. 

should be l ..... flected in t"', level of elevation for each of the 5 "same-time ll 

blocks (each of size 6 X 6) on the rli.';n diagonal. In either case a natural 

eval,uation strategy would first define an index for the degree of elevation in 

the on-diagonal blocks, and then specify a procedure for assessing the relative 

size of the observed index compared to some chance model. 

Numerous procedures have been proposed for analyzing data of the form 

represented in Table 1 when the proximities are actually correlations. In this 

case the tables are usually referred to as multitrait-multimethod matrices 

[Schmitt, Coyle, & Saari, 1977]. Although the literature in this area is very 

extensive, the work of Hubert and Ba.ker [1978" 1979] is the most relevant to 

our discussion since both of these last papers develop indices of elevation 

for the entries within the on-diagonal blocks as well as associated signtfi-

cance tests •. The significance tests are based on generating a reference 

(61) 
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distribution under the assumption that all possibl e assignments of the space~ 

time variables are equally-likely (a random assignment of the N objects to the 

m cities and n times). If the observed index is extreme with respect to this 

reference model, a conjecture of randomness is rejected, implying a statisti-

cally significant degree of spatial (or temporal) homogeneity. In Hubert and 

Baker [1978], indices based on average within-group proximities are used; non­

metric comparisons are developed in the second paper by comparing the size of 

the proximi·ties within the on-diagonal blocks to those outside. For further 

details, tr.e reader is referred to the two original sources. 

The approach to evaluating space or time coherence just sketched has two 

unfortunate drawbacks. First of all, the null model assumes that all assign­

ments of the N objects to the space-time classifications are carried out at . 

random. Thus, an index that supposedly measures spatial homogeneity must be 

evaluated against a reference distribution contaminated with temporal homo­

geneity. We, in fact. compare the observed index for a given classification 

dimension (a partition of the N object set) with all possible partitions having 

the same number of classes and number of objects in each. No attempt is made 

to control for the second classification facet. For example, if there are 

.strong spatial effects and moderate temporal effects, it may be impossible 

to detect the latter stnce the reference distribution used for evaluating 

temporal homogeneity does not remove the effects of spatial homogeneity. 

Secondly. the extensions of these notions to nonmetric comparisons among the 

proximities in the original N X N matrix requires a sUbstantial amount of 

computation; even simple moment formulas for the indices are very cumbersome 

to derive. Although the sole reliance on the ordering of the proximities 

in a matrix may be desirable in d~fining a measure of elevation for the on­

diagonal blocks, the computational burden is so great· that the practical 

usefulness of these extensions is limited. As before, the developments to 
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date in the non-metric context ,confound spatial and temporal homogeneity in 

the construction of the appropriate reference distribution. 

Given a cross-clas·sified matrix, such as Table 1, there is a very simple 

device for solving both of the difficulties of confounding and nonmetric 

computation at the same time. The strategy can. be viewed as a direct extension 

of well-known principles in multi-factor analysis-of-variance since we will 

block on the level of the spatial classification when assessing temporal 

s:ind 1 arity and conversely. The next section introduces the paradi gm in 

greater detail and illustrates the increased sensitivities of the method. 

Formal Details 

To provide some simple notation, suppose that N profiles are defined over 

a set of T variables. As always, the N profiles are cross-classified by m 

levels of factor A (AI' A2, ... , Am) and n levels of factor B (B1' B
2

, ...• Bn) 

so that N = mn. In terms of the previous example from Table I, factor A 

corresponds to city, factor B to time, m = 6, n = 5, and N = 30. The proximity 

function is assumed to be some distance measure between the profiles corres­

pondi ng to different city-time pairs, where each of the T variabl es is typically 

standardized to mean zero and variance one. Based on this notation, the complete 

proximity information can be represented in the schematic form given in Table 2. 

The main diagonal is assumed irrelevant and will always consist of zeros. 

Table 2 here 

Since the roles of factors A and Bare interchangable, our discussion can 

be 1 imited to the assessment of profile homogeneity within the levels of factor 

A, e.g.,to spatial homogeneity if the levels of A correspond to m cities. One 

obvious index is the sum of proximities within the levels of A represented by 

the proximities w"ithin the m triangles indicated in Table 2. If we rewrite 

(63) 
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Table 2 as Table 3,. the appropriate proximities are now represented by the 

three indicated diagonal strips. In either case, we denote the observed sum 

by robs' 
Tabl e 3 here 

One possible null model fG~ evaluating robs that is not affected by the 

homogeneity within levels of the nuisance factor B is best explained using 

the form of Table 3. Within each level of factor B the m! reorderings of 

the levels of factor A are assumed equally likely. Since there are n levels 

of B, this implies (m!)n equally likely realizations of the complete matrix. 

Each such realization leads to ~ value for r, and when tabled, these values 

form a reference distributionto'evaluate the size of the observed index, robs' 

In the usual interpretation, the hypothesis of randomness. (blocking on factor 

B) would b~ rejected if robs were sufficiently small; the proportion of 

realizations giving values of r as small or smaller than robs would be reported 

directly as the significance level. 

6. 

As an alternative explanation for the null model, we note that fobs is an 

index calculated for a partition of the N objects into m groups of n objects 

each. The reference distribution is a tabling of the index r over all partitions 

of exactly this same for~ that are s~bject to the blocking on time. Each such 

partition has the property that the n objects in each group ar.e representative 

of all n levels of factor B. Or in other words, the partitions so constructed 

are intended as possible comparisons for the original decomposition into cities 

in \I/hich the levels of the second temporal factor are balanced. 

Besides controlling for the effect of factor B in assessing homogeneity 

wi'thin the m"le'/els o.f A, blocking also decomposes the inference problem in 

a very convenient way. In Table 3, the cities within levels of factor Bare 

permuted to obtain the reference distribution but never across the levels of 

factor B. If we look at an arbitrary section of Table 3 for the u and v levels 
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of factor B, and permute the rows and columns separately and at random, part 

of the varirbility in the overall index r can be identified. 

ruv represents this contribution, then 

r = l: r uv . 
u>v 

In fact, if 

Moreover, since the separate indices of the form r uv are independent in pairs, 

the first two moments of r can be obta,"ned very simply: 

E(r) = L 
u>v 

V(r) = \ V(r L ) • u>v uv 

The complete enumeration "of r requires an evaluation over all (m!)n 

possible realizations of Tab1e 3, but the formulas given above show that 

moments can be obtained for each separate . d d ,n ex ruv an then merely summed 

to obtain those for r. 

A m 

B v 

d mm 

Then from the literature [Puri & Sen, 1971J, 

E(r uv ) = 11m lId .. 
i j 1 J 

(65) 
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where 

Q1 = (~ 1; 
1 J 

dij ) 2 

Q2 = I (I d .. 2 
j i 

ij) 

= r (4 2 Q3 dij ) ; 
1 J 

Q = L L 2 dij 4 i j 

In terms of our Table 1 data reorganized in the form of Table 3 for evaluating 

spatial homogeneity, we obtain Tobs = 101.75 = r 21 + r 31 + .' •. + r 54 = 5.64 + 

11.03 + 7.78 + 16.85 + 13.32 + 6.74 + 14.87 +12.45 + 6.91 + 6.16. Thus, since 

the corresponding expectations would be 17.987, 20.490, 19.382. 23.797, 22.155, 

19.873, 22.985, 21.990, 20.047, 20.637, E (r) = 209.340. 

Analogously, V (r) = V (r 21 ) + ... + V (r 54). Therefore, V (r) = 108.174 

and the associated Z-statistic for r b is o s 

robs - E (r) 
Z = = 

Iv (r) 

A simple numerical example 

101.75 - 209.34 = -10.34. 
1'108.174 

The data given in Tablt 1 are too extensive to illustrate the specifics 

of a complete enumeration. Consequently, a much smaller artificial example 

;s presented in this section before we return to the more realistic illustration 

1 ater on. 

Suppose we have three cities and two time points and are provided with the 

following proximity information: 

(66) 
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City 1 9. 
City 2 City 3 

Time 1 Time 2 Time 1 Time 2 City 1. Time 1 Time 2 
Time 1 0 

Time 2 1 0 
City 2 
Time 1 2 4 0 
Time 2 3 2 2 

City 3 ' 0 

Time 1 2 3 2 2 0 Time 2 7 3 4 1 1 0 

Assuming our concern is with temporal h 
. omogeneity, we would sum the entries 
1n the diagonal t· . 

. s nps of this matrix (see Table 3) and obtain r = 12 . , 
b obs ' 1. e., 
ased on the three city to city matrices of size 2 X 

2 from the matrix, we 
obtain r 2I = 4, r 3I = 5 r - 3 d 

, 32 - , an robs = 4 + 5 + 3 = 12. Blocking on the 
spatial variable (and 'd' 

3 conSl erlng the three city to city blocks), there are 
(2!) = 8 equally likely realizations 

of the matrix that are used for generating 
the reference distrib t' . 

U lon, l.e., the two time points within city 1 can be 

reordered. the two ~/ithin city 2, and finally, the t\vO within city 3: 

City 1 City 2 City 3 

TI T2 TI T2 TIT2 

T2TI TIT2 TIT2 
, 

TIT2 ~2TI TIT2 ", 

TI T2 TITZ T2TI 

Tl T2 T2TI T2Tl 

T2Tl T 2 Tl TIT2 

T2 Tl TIT2 T2Tl 

T2Tl T2Tl T2Tl 

. . 

(67) 
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From our previous formulas 

and 

All of these numerical 

enumeration. 

E (r 21)' =, .11/2 ," 

E (r 31 ) = 15/2 ; 

E (r32 ) = 9/2 

E (r) = 11/2 + 15/2 + 9/2 = 35/2, 

V (r 21) = 9/4 ; 

V (r 31) = 25/4, ; 

V '1' ) \~ 32 = 9/4 ; 

V (r) = 9/4 + 25/4 +.9/4 = 43/4. 

relationships can be veri fi ed from the complete 

If our interest is in spatial homogeneity, a similar procedure could be 

followed. The on-diagonal triangles in the matrix give robs = 1 + 2 + 1 = 4. 

Blocking on the time variable there are (3!)2 = 36 equally likely realizations 

~. The associated index values could be tabled in the same manner of th,e matrlx. 

as for the temporal variable. 

Clarifications and Extensions 

Complete Enumeration Versus Approximate Tests 

If the size of the cross-classification matrix is small enough, the exact 

distribution of r b can be obtained by a complete listing under the hypothesis o s 
of randomness. Typically, however, the problem is so large that approximations 

of some sort are necessary. For example, a simple Cantelli bound assures us 

that the significance level for any fOl'm of r'eference distribution whatsoever 

will be no larger than 1/(Z2 + 1), wher'e Z is the standardized value of robs 

based on the exact moments. The adequacy of an assumed normal approximation is 

(68) 
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still unknown; consequently, it is probably best to rely either on this crude 

bound whenever possible~ or better yet, construct an approximation to the 

complete enumeration by sampling. Here, ~1 partitions of the required form 

would be selected at random and with replacement and the r indices obtained 

for each. The significance level reported is the number of indices as small 

or smaller than robs' In fact, since robs can itself be treated as a random 

draw under the null hypothesis, the sample itself is assumed to be of size 

M + 1 and includes the actual value of r b' For a more extensive discussion o s 
of these Monte Carlo testing strategies, the reader is referred to Edgington 

[1969]. 

For the data in Table 1 and based on an M of 999, the following signifi­

cance levels would be obtained for the assessment of spatial and temporal 

homogeneity. 
Spatial Temporal 

robs 101.75 271.03 

E (r) 209.34 285.063 

V (r) 108.174 4.837 

Z -10.34 -6.38 

Monte Carlo significance 1 evel .001 .001 

Cantelli significance .01 .03 

As is apparent, the Cantelli values are very conservative but would suffice 

for rejection of the randomness conjecture at the traditional .05 significance 

level. In fact, s.ince tables of the 999 values of the statistic in both .cases 

display patterns that are very close to normal, an optimist might even compare 

the observed Z-statistics to the standard normal percentage points. 

The Z-statistics given above are obviously very large in absolute value 

and indicate that both the ~patial and ~emporal classifications could help 

(69) 
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explain some of the differences in the proximities. It is interesting to note 

that different conclusions would result without blocking if the Hubert-Baker 

null model discussed in the introduction were followed. In particular~ the 

spatial statistic would be given a very large Z-value of -11.13 and the 

temporal ~tatistic ~6uld prbduce a po~itiveZ-value of .72. S~nce the 'latter 

12. 

is obviously non-significant (lower tain, temporal differences are over­

It/helmed by spatial differences in the construction of the reference distrit ltion. 

Unless the spatial distinction is introduced as an explicit blocking variab e, 

the temporal factor is not identified as being salient. 

Connections to Randomized-Block Designs 

To illustrate how the blocking strategy is really a generalization of 

what is al rea:dy done routi nely in random; zed-bl ock analyses-of-variance~ 

suppose we ar'e interested in evaluating spatial homogeneity and use the 

symbol O;j to denote city j and time i. In terms of a simple cross-classified 

table, these symbols can be written as: 

Time 

U Except for the use of' non-numerical objects, this table resembles the form 

of a two-way analysis-of-variance layout wHh one observation per cell. In 
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fact"if the objects 0ij,were actually numerical values and ourproximities 

in Table 1 were actually squared distances, then our previous assessment 

procedure reduces to a test of the A factor based on Friedman's null model. 

'More specificaliy~ we block on the B factor and consider all permutations of 

the observations with each row equally likely. The measure robs is obtained 

over all (~) ordered row pairs as 

robs = I [I (0 . - 0 . )2J ' u>v j UJ VJ 

which is numerically equal to n times the within column su~ of squares. 

Since the total sum of squares is constant~ robs ,varies as a direct function 

of the sum of squares attributable to factor A. 

In the more general context discussed earlier in which an arbitrary measure 

of proximity identifies the relationship between objects, exactly the same 

Friedman model is being used. Since the index robs can be written as 

I 
u>v 

the possibly more complex term r",v takes the place of I (0 . - 0 .)2. 
'" j UJ v J 

We also note that a complete enumeration for, say, the A spatial factor, 

would actually require (~!)n-1 realizations of the cross-classified table 

rather· than (m!)n. As in the standard Friedman context, the first row of 

objects can be considered constant. For instance, in our simple example of 

a ~omplete enumeration, (2!)3 = 8 partitions were listed, but only (2!)2 = 4 

were necessary since each index value in the listing is repeated (a multiple 

of) 2! = 2 times. 

,0, 

(71 ) 
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Nonmetric Extensions 

The analysis procedure we have described for a cross-classified proximity 

matrix is based on measures of the form r ,and more specifically, on the uv 
submatrices from which they are derived. Consequently, the assessment of 

spatial homogeneity in our example depends on the component indices r 21 , r 31 , 

... , r 54 since robs is defined by their sum. To take one simple illustration, 

the following 6 X 6 submatrix is used to generate r 21 : 

i969 

Ch· lcago L A . . Phil . S F . . Boston Pitts -
Chicago .59 3.03 3.32 3.22 3.97 3.84 

Los Angeles 3.54 1.02 5.36 1.69 5.25 5.48 

Philadelphia 1.46 3.62 1.67 3.81 2.46 2.34 

San Francisco 3.06 1.96 4.75 .90 4.54 4.77 

Boston 3.21 4.07 2.55 3.82 1.02 2.08 

Pittsburgh 3.12 4.48 .96 4.87 1.65 .44 

It should be apparent that any transformation could be carried out on these 

submatrices and the analysis developed in exactly the same manner .. As 

possibly the most relevant definition, each entry could be replaced by an 

integer that specifies how many proximities are strictly smaller within that 
. . 

entry's given row and column. Based on the 6 X 6 matrix given above, this 

would give 1969 
, , 

0 3 6 4 8 7 

7 0 9 2 8 10 

1 7 2' 8 5 4 
1971 

4 2 8 0 7 9 

4' 9 4 T -- .. 0 '2 

6 9 1 10 3 0 
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Obviously, transformations of this nonmetric form would lead to p'n inference", 

strategy that depends only on the order of the proximities in a cross-classified 

matrix and not on their actual numerical values. Most importantly, such redefi­

nitions are trivial to accomodate and no major changes are required in the 

, associated inference strategy. 

Extensions to More than Two Dimensions 

The cross-classified matrices we have considered up to this point have 

on1y included two dimensions. Extensions to more than bID are immediate, 

however, and offer no major difficulties. For example, suppose we have three 

factors A, B, and C with m~ n, and t levels, respectively. If an evaluation 

of A is desired, then factors Band C are simply combined to produce an 

aggregate factor with nt levels. Otherwise, the evaluation process remains 

unchanged. It should be apparent that any number of dimensions and levels 

could be handled by the simple expedient of constructing aggregate factors 

from all dimensions except the particular one under test. 

Discussion 

The major contribution of this paper is in the use of arbitrary proximity 

measures and the development of a strategy for blocking on the levels of one 

(or more) a priori dimension(s} when evaluating the differences over a second. 

The strategy being proposed is really very general even though the illustration 

we have used in explaining the method contained the three explicit classifica­

tion dimensions. of space, time, and crime type. For instance, since any t\'10 

of the dimensions could in fact have been considered the major classification 

facets of interest, proximity measures could have been obtained between 

profiles over the m cities and our interests directed toward the two dimensions 

(73) 
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of crime type and time. The basic.inference principles would remain the same 

and the analyses would be carried out as before. Hopefully, our discussion 

will allow researchers to assess dimensional salience in data sets that are 

not easily studied by more standard analysis-of-variance schemes because of 

an unusual prox-imity measure. Moreover, the! possibi1 ity of relying on only­

nonmetric comparis.ons among pro'ximities shou'ld provide a nice tie-in to the 

current emphasis in nonmetric clustering and scaling in the social and 

behavioral sciences. 

'of" • 

(74) 
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Table 1 

30)(30 Syullletric Hatrix Containing Measures of Proximity Between the Profiles for 6 CHles at 5 TIme Points 

ChicAgo los Angeles Philadelphia San Francisco ~ Pittsburgh 

1969 1971 1973 1975 1977 1969 1971 1973 1975 1977 1969 1971 1973 1975 1977 1969 1971 1973 1975 1977 1969 1971 1973 1975 1911 1969 1911 1973 1975 1977 
ChlcaUQ. 

1969 0 
1971 .59 0 
19132.06 1.83 0 
1975 2.81 2.60 .93 0 
1977 2.53 2.48 1.39 1.12 0 

los An!l!lill 
1969 3.07 3.03 2.83 2.99 3.11 0 
1971 3.54 3.39 3.02 3.15 3.53 1.02 a 
19134.02 3.19 2.78 2.62 3.28 1.17 1.36 0 
19754.47 4.162.962.77 3.59 2.62 2.04 .94 0 
19775.07 4.76 3.66 3.59 4.36 3.062.53 1.59 1.19 0 

Phil ade 1 ph la 
1969 2.66 3.32 4.34 4.66 3.67 4.565.36 5.90 6.54 7.22 0 
1911 1.46 1.62 2.98 3.42 2.74 3.62 4.234.16 5.30 6.00 1.61 0 
1913 1.50 1.11 2.39 2.71 1.96 3.16 3.81 4.154.70 5.40 2.06 .89 0 
1975 1.63 1.68 1.74 1.93 1.36 2.06 3.41 3.55 4.03 4.80 2.82 1.59 .87 0 
1977 2.15 2.45 2.64 2.72 2.05 3.07 3.04 4.05 4.66 5.42 2.12 1.66 1.04 ],16 9.1--------+---------+---------

San Francisco 
19693.39 3.22 3.16 3.21 3.44 1.96 1.69 2.44 3.04 3.71 5.00 3.81 3.52 3.13 3.63 0 
1911 3.06 2.88 2.69 2.10 3.03 1.96 1.17 2.29 2.80 3.65 4.15 3.53 3.20 2.68 3.23 .90 0 
1973 3.8e 3.71 2.52 1.91 2.41 2.41 2.42 1.71 2.10 3.05 5.31 4.28 3.58 2.84 3.27 2.50 2.05 0 
1975 4.54 4.30 2.89 2.21 2;99 3.09 2.93 1.86 1.88 2.76 6.12 5.05 4.34 3.54 4.05 3.17 2.74 .93 0 
1977 4.524.31 2.922.303.04 2.82 2.68 1.55 1.69 2.516.10 5.064.333.58 4.03 :.:3.c=.0!-7..:.2.:..:.7...:..1--..!..9O<.J,11'--'~4=_5_..:.0i_-------_t_-------__:_ 

Oesten 
19693.523.974.77 4.97' 4.154.575.255.946.637.39 1.94 2.462.74 3.372.74 4.584.54 5.306.196.13 0 

1911 3.21 3.60 4.28 4.47 3.74 4.07 4.60 5.33 5.986.78 2.55 2.39 2.60 3.06 2.70 3.82 3.80 4.72 5.61 5.56 1.02 0 
19733.20 3.40 3.77 3.07 3.26 3.61 3.99 4.63 5.25 6.04 3.40 2.81 2.73 2.93 2.01 3.15 3.24 4.04 4.09 4.02 2.09 1.23 0 
19754.69 4.004.634.604.33 4.22 4.164.72 5.19 5.90 5.54 4.124.534.464.63 3.283.64 4.40 5.06 4.95 4.15 3.24 2.16 0 
19713.844.103.993.983.51,3.433.114.284.895.674.28 3.74 3.50 3.523.353.17 3.27 3.U3 4.634.40 ;.;l.~O .... I~2;.;;.2"""3_1_.l~Z;..._...1. .... 74 ____ 0t_--------

ill~burg!!. 

1969 3.34 l.84 ~.74 4.99 4.26 4.70 5.40 6.08 6.17 7.51 1.21 2.34 2.67 3.29 2.45 5.00 4.77 5.41 6.27 6.23 1.382.08 3.03 5.14 3.79 0 
1971 3.12 3.61 4.534.79 4.09 4.48 5.29 5.87 6.55 7.27 .96 2.12 2.43 l.05 2.19 4.81 4.61 5.226.066.02 1.652.27 3.16 5.283.91 .44 0 
19733.14 3.634.44 4.61 3.93 4.59 5.395.906.56 7.30 1.032.152.362.97 2.09 4.964.61 5.17 5.99 5.97 1.682.29 3.12 5.253.81 .53 .42 
19752.66 3.11 3.66 3.02 3.09 3.96 4.73 5.12 5:75 6.54 1.40 1.81 1.76 2.22 1.29 4.37 4.02 4.34 5.15 5.13 1.90 2.17 2.72 4.78 l.37 1.201.11 
19712.96 3.42 4.03 4.19 3.41 4.14 4.96 5.386.05 6.79 1.21 2.082.01 2.57 1.56 4.62 4.31 4.635.44 5.40 1.91 2.36 2.99 5.01 3.62 1.06 .84 

o 
.91 0 
.66 .50 o 
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ReorMered Form of the Matrix in Table 2 
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Unidimensional Seriation: 
Implications for Evaluating Criminal Justice Data' 

Introduction 

The term "unidimensional seriation" refers to the task of ordering a 

set of objects along a continuum based on some measure of proximity or 

similar'ity defined between all members of the set. Typically, such orderi~gs 

are constructed by a computational procedure that optimizes the correspondence 

bet\'/een the given proximities and the distances between 'the ~bjects generated 

by a specific placement. Sinc~ the optimization strategy, the induced 

distances, the index of correspondence. and the original proximity measures 

are as yet unspecified, many different variations on the seriation task can 

be (and have been) proposed. To limit the scope of our discussion, however, 

we emphasize only a few general tactics that seem particularly relevant to 

the study of criminal justice data. Our goal in the process is to develop 

several methodological points that are important to keep in mind when applying 

these methods. 

Although a specific numerical illustration is given in a later section 

to suggest how parts of our discussion are relevant to the perception of levels 

of criminal activity over a set of SMSA's, it may help the reader' now if a 

few other possible applications are mention~d. For example, if the objects 

in the set S are attitudinal statements regarding the possible treatment of 

suspe:cts, the proximity measure coul d denote the proportion of indivi dual s 

who lendorse one statement over a second, or possibly, the proportion who 

believe one statement represents a more lenient position than a second. In 

either instance, the concern is with ordering (or scaling) the statements 

along a lenient-strict dimension based on the observed proportions: in the 

former case of asking for differential endorsement, it may also be desirable 

(81) 

.. , ----------~~--~----------------------~------------~------~,~.----------~--~------------------



I 
I. 
[ 

[ 

[ 

r 

l' 
L 
L 
u 

to place indiViduals at their "ideal" points along the same continuum as a 

procedure for evaluating variation in attitude. As a second possible appli­

cation, we may be interested in the degree to which various groups or types 

of criminals view different crimes, and specifically, with whethe~ their 

ordering of crimes according to, say, seriousness reflects a perception of 

anti-social behavior contrary to the legal code or usual community norms. 

Each individual, for example, could first provide a rank order of the seriousness 

of a set of criminal situations; the degree of differential 'evaluation \'lOuld 

then be defined by the proportion of the group who assess one behavior as 

more serious than a second. Again, single dimension scalings could be 

constructed and compared to various conjectures as to how the objects being 

scaled should be ordered and spaced. As a final introductory application, the 

objects could represent geographical locati0ns and the proximities could 

indicate the degree of spatial interaction in terms of the movement of 

criminals from the location of residence to the location of the committed 

crime. Here, the placement of the spatial locations al~ng the single dimension 

\',ould represent differential degrees of attractivity for criminal behavior. 

The topic of unidimensional seriation is very broad indeed; consequently, 

our presentation can in no way be seen as complete although we do spend a 

substantial amount of time reviewing relevant background material that is 

not explicitly represented in the later numerical example. It is hoped that 

2. 

. th d that many alternatives could be reasonably our generality will conVlnce e rea er 

followed when attempting to validate a given seriation even when we are 

restricted to using internal evidem:e or information from the available 

proximities. Throughout the presentation an effort is made to rely on models 
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and procedures with minimal assumptions; in fact, much of the discussion is 

concerned with simple schemes for testing whether a specific reordering of the 

proximity information displays a conjectured pattern, or alternatively, whether 

any reordering whatsoever will display it. This concern with simplicity is 

carried over into a numerical example that deals with the perception of 

homicide level in 15 major SMSA's. He will. use this illustration later as a 

concrete referant for the general orientation to be developed below. 

Cross-Validation 

The problem of cross-validating a given statistical result reoccurs 

continually in the applied methodological literature, particularly for the 

newer mUltivariate procedures that are becoming commonplace in the behavioral 

and social sciences, e.g., regression, discriminant analysis, canonical 

correlation, and so on. All of these techniques have the property of opti-

mizing a model with respect to a single sample; consequently, since it is 

al\<Jays hoped that our statistical models have some greater generality, it 

is important to assess the loss in "fit" that would result when an estimated 

model is applied in a new context. In the simple regression framework, for 

instance, the resulting prediction equation does the "best" it can with the 

available data but there is a great likelihood of a lower correlation between 

the predicted and actual scores in a different sample. In the current jargon, 

there should be "shrinkage" in the size of the correlation when the regre~sion 

equation is cross-validated against a new data set. 

Estimates of shrinkage are obviously important in any model that requires 

optimization with respect to fallible information, but unfortunately, the 

collection of new data is usually very expensive. Because of these costs. 

various procedures have been suggested over the years to obtain reasonable 

measures of shrinkage without replicating a complete study. In regression, 
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for instance, the most obvious scheme requires a re~sonably large data base 

and a split of the available data into two parts - the first set is used to 

find the equation and the second operates as a replication. More recently, 

"sample reuse" procedures have been suggested that successively eliminate 

single observations (or groups) and then recalculate the desired equation 

on what remains. Since the resulting equation at each stage can b~ used to 

predict various characteristics of the eliminated observations, an estimate of 

4. 

shrinkage can be defined by aggregating various functions of these pre~ictions 

over all possible observations (or groups) that are subject to elimination. As 

one important appl i cati on, thi s· sampl e reuse strategy is part of a well-known B~mp 

program for estimating misclassification probabilities in discriminant analysis. 

From a more general perspective, the methods of sample reuse all try 

to evaluate the adequacy of a given result based on internal evidence within 

a single data set. Our task in the seriation context is similijr since it 

would be very hel pful if we could rely on internal information to validate 

the basic unidimensional model being assumed. Although we may have to be 

more subtle when dealing with the large class of schemes that can be proposed 

for the ambiguous task of unidimensional seriation, it still appears possible 

to define several general principles of assessment that can help in attacking 

the problem of scale cross-validation. At the very least, we should be able 

to emphasize different aspects of a proximity measure collected on a set of 

objects, or alternatively, use different optimization criteria that should 

lead to the same (or different) scales if the basic unidimensional conjecture 

is approximately correct. Unfortunately, what we can propose is not a 

routinized algorithm that will provide a definitive and final conclusion 

in all cases. As a more modest objective, an orientation toward unidimen-

sional models is pointed out that should sensitize the applied researcher 

to the problems of cross-validation and suggest several heuristic guidelines 

that may help the process along. 
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Simple unidimensional models 

To provide a general introductory context for discussing what is meant 

by internal cross-validation and how it can be carr,'ed out informally in a 

familiar behavioral research paradigm, suppose we have a set of five atti-

tudinal statements regarding the rights of suspects. It is conjectured that 

these statements fall along a graded continuum from left to right, vJith 

the left representing a greater protection of individual liberties and, for 

the lack of a better label, the right representing a greater protection of 

society's concerns. For each p.air ot'statements, a proportion, p", of 
lJ 

individuals is available representing the number who have assessed statement 

i as being more protective of individual rights than statement j; we assume 

Pi j + p ji = 1. Thus, the campl ete set of proportions can be organ; zed into 

a matrix P of the form 

1 2 

1 X PI2 

2 P2I X 

Statement 3 P3I P32 

4 P4I P42 

5 PSI PS2 

Statement 

3 

PI3 

P23 

X 

P43 

P53 

4 5 

PI4 PIS 

P24 P25 

P34 P35 

X P45 

PS4 X 

If the spatial model is appropriate and the five statements are correctly 

ordered according to their numerical indices, i.e., statement 1 is most 

supportive of individual rights and statement 5 least supportive, then the 

manifest proportions should reflect this ordering up to a reasonable level 
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of random variability or error. In particular, the propositions should 

become more extreme as the distance between the statements increases and 

whenever statement ; is placed to the left of j, p .. shoul d be 1 arger 
lJ 

than Furthermore, within each rOVI of P, the entries to the right 

of the main diagonal should all be greater than or equal to .50 and 

increase (or at least never decrease) moving away from the diagonal. 

Conversely, the entries to the left of the main dia90nal should all be less 

than or equal to .50 and decrease (or at least never increase) moving 

to the left. As a simple example, the matrix given below displays a perfect 

pattern: Statement 

1 2 3 4 5 

1 X .55 .60 I .65 .70 

2 .45 X .55 .60 .65 

Statement 3 .40 .45 X .55 .60 

4 .35 .40 .45 X .55 

5 .30 .35 .40 .45 X 

Since simple spatial models of the type just proposed place very severe 

constraints on the ma'njfest aata, it is conceivable that these constrairits 

could also help in verifying,the reasonableness or unreasonableness of the 

model itself. For instance, if a matrix of proportions is reordered as well 

as possible to obtain an appropriate gradient on only the above diagonal 

entries, the basic spatial model that assumes the proportions should become 

less extreme as distances decrease should also produce other patterns in 

the reordered matrix. Specifically, the,set of entries either above or 

below the main diagonal should all be greater than or equal to .50 and 
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moving to the left away from the main diagonal within a row, the ent:ies 

should display a gradient opposite that obtained moving toward the right. 

In other words, if we reorder the matrix to obtain an explicit gradient 

above the main diagonal, the degree to t'lhich these other two properties 

also hold is an informal indication of the correctness of the basic wodel. 

For a more general discussion of these spatial assumptions, the reader should 

consult Coombs (1956; 1964). 

To illustrate the important point that not all matrices, of proportions 

must necessarily demonstrate the characteristics we would be looking for, 

it is easy to construct an alte'rnative spatial scheme that generates propor­

tions having an~bove-diagonal gradient but not the other two properti~s. 

In particular, suppose the proportions follows a Coombsian model in which 

the statements are ordered from 1 to 5 along a continuum but the 60 individuals 

who generate the proportions are also placed along the scale according to 

the foliowing distribution (indicated below the line): 

Statement 

1 2 3 4 5 

10 5 I 5 5 5 5 I 5 .I 5 5 10 

Number of subjects in various intervals 

Each subject chooses or endorses statement i over statement j if his/her 

(ideal) point is closer to i than j. Summing over all 60 individuals, 

the following matrix of proportions would be obtained: 

(87) 

7. 

, f 



r 
[ 

[ 

r 
I 
[ 

f. ,: 

., [-
,! 

l_ '; 

Statement 

1 2 3 4 5 

1 X .25 .33 .42 .50 

2 .75 X .42 .50 .58 

Statement 3 .07 .58 X .58 .67 

4 .58 .50 .42 v .75 1\ 

5 .50 .42 .33 .25 X 

Even thoug e necessary h th above-dl'agonal gradient is achieved, the gradient 

below the diagonal is the exact opposite of what was expected before; more­

over, not all the above- (or below-) diagonal entries are greater than or 

equal to .50. The above-diagonal gradient is perfect but the failure of 

the o';:her, two conditions suggests correctly that all subjects do not respond 

to the statements in exactly the same way. In fact, if we initially believe 

that our proportions fo11ow a Coombsian model of this type, an informal 

evaluation of the conjecture could be developed around the presence of a 

below-diagonal gradient that is the same as the one forced on the above-

di agona 1 el ements • For a mere compl ete di scus.si on of the patterns ina 

8. 

Coombsian model of this latter form, the reader is referred to Greenberg (1965). ' 

Extensions to general asymmetric proximities 

Although the illustration just used deals with a rather specific context, 

the procedures generalize easily to arbitrary asymmetric measures af proximity. 

For example, suppose our objects are spatial locations and qij represents 

the degree of interaction or flow from i to j, e.g., a function of the 

number of people who move from i to j, and possibly, the interpoint distance 

(88) 
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between i and j. In general, if the basic asymmetric measure q.. is lJ 
defined appropriately in terms of the unidimensional spatial model being 

assumed, the skew-symmetric measure q~. = q .. _ q .. 
lJ lJ Jl can play the role of 

the previous proportions. Again, the conditions we would look for are 

algebraic, and real data may only approximately represent these perfect 

patterns even when our conjecture of a particular underlying spatial model 

is reasonably correct. Error-free algebraic conditions, however, still 

provide a perspective on what to look for in assessing whether a conjectured 

model is contradicted by the data. 

Given the usual spatial model without individual ideal points, it is 

apparent that the proportions or the possibly more general skew-

symmetric measures· qij',contain two types of information., The signs of 

p .. - p .. or of q*l'~ indicate the ordering of object i relative to J' 1 J Jl u 

from left to right; the. magnitudes Ip·. - p .. 1 or Iq*l'J. I indicate the 
1 J Jl 

degree of spatial separation between i and j. If we relied on the sign 

information only and reordered the matrix to achieve all +'s, say, above 

the main diagonal, we would then expect the entries to display particular 

patterns when reordered in the same way, e.g., the values of Ip·· - p .. ! lJ Jl 
or Iqijl within each row should never decrease moving away from the main 

diagonal in· either direction. Conversely, if an appropriate pattern can be 

achieved in,. say, the absolute values, then based on the sign information, 

all the +'s should be either above or below the main diagonal (due to the 

symmetric nature of the matrix of absolute values, the position of the +'s 

in this last case is not specified and the direction of the ordering is 

arbitrary). In summary, an effective assessment strategy would force one 

pattern using the signs or absolute values and then proceed to evaluate the 

degree to which the second pattern is also achieved. Compared to many of 

the data-reduction strategies in the behavioral sciences, this procedure is 

(89) 
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allowed to fail and carries with it the possibility of at least an informal 

internal cross-validation. 

The type of informal assessment procedure we suggest car. be described 

rather succinctly. It is conjectured that a particular model holds and will 

generate an (approximately) perf~ct matrix pattern characterized by a set of 

necessary algebraic conditions. If one such condition is selected and used 

as an optimization criterion, the degree to which the other properties are 

also satisfied is an informal indication of the validity of the basic model. 

Ideally, the necessary conditions are selected in such a manner that optimizing 

with respect to one does not alltomatically optimize a second unless the model 

is reasonably correct. At least intuitively, for example, the gradient 

conditions using the original 'proportions within rows above and below the main 

diagonal, or the sign and absolute-value information for Pij - Pji 

satisfy such a general independence condition. From a more operational per­

spective, we could first use the absolute-value data to obtain one seriation 

by any method that uses a symmetric matrix as input; the sign information 

would then provide an appropriate source of information for evaluating the 

resulting scale. This general tactic will be the one used later. 

Some Computational Details"on 
Informal Cross-Validation 

The obvious computational problem posed by the scheme of informal cross­

validation is to reorder the matrix of proximities to display one of the 

patterns expected under the assumed model. For example, if the sign and 

magnitude information are considered separately in a matrix that originally 

contains q~. in the ith row and jth column, two different op.timization 
lJ 

tasks can be defined - using signs, the matrix could be reordered to force all 

(90) 
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+'s above the main diagonal, or in terms of absolute magnitudes, the matrix 

could be reordered to produce the desired gradient within each row. In 

either case, a host of computational strategies is available, ranging from 

integer programming and branch-and-bound to eigenvector analyses and heuristic 

methods. For reviews the reader is referred to Hubert (1976), Baker and 

Hubert (1977), and Hubert and Schultz (1976). 

Since data sets that would be of interest in the criminal justice area 

may be very lar.ge, we present only one well-known alternative for scaling 

symmetric matrices and use it in our later example. We assume that s .. 
lJ 

denotes a general symmetric measure of proximity (e.g., the absolute values 

!Pij - Pji ! or !qij!) and AI' A2, ... , An denote positions for the n 

objects along a continuum. Obviously, our concern is with estimating the 

Ai's. 

As one approach, suppose f is some function and we wish to estimate 

AI' A2, .•• , An such that 

I 
i ,j 

f(s .. )(A. - A.)2 
1 J J 1 

n 
is maximized subject to the normalization constraint r A~ = 1. The solution 

i =1 1 
is the largest eigenvector (normalized to unit length) of the matrix 

2 f( s 1 .) 
j J 

-f(sI2 ) -f(sI3) -f(sln) 

-f(sI2) 2 f(s2') 
j J 

-f(s23) -f(s2n) 

-f(s13) -f(s23) L f(s3j) -f(s3n) 
j 

-f(sln) 

(91) 
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and the largest eigenvalue is the maximum (see Hall, 1970; Guttman, 1968; 

Morse, 1972). The sum of the estimates can be shown equal to O. Obviously, 

the estimates provide a seriation of the n objects along the single dimension 

in addition to spacing information. Although we are now removed from an 

explicit consideration of algebraic conditions, it is hoped that the seriation 

induced by the eigenvector analysis would still lead to an appropriate pattern 

on the signs. This latter information was not used in obtaining the estimates 

for AI' A2, ••• , An' and consequently, it provides a source of data that 

could be used in verifying the adequacy of the eigenvalue seriation. 

Formal Cross-Validation 

In our previous discussion of informal cross-validation, it was hoped 

that optimizing one property would also lead to the optimization of a second. 

Although the degree to which this goal is achieved can be evaluated more or 

less intuitively, it may be straightforward to proceed one step further and 

carry out a formal test. For example, suppose T = {t .. } 
lJ 

denotes an arbi-

trary skew-symmetric matrix-- t ij may represent qij or be defined as 

p .. - p .. if we use proportions. When T is reordered on the basis of lJ Jl 

absolute-value information only, it is possible to assess statistically 

whether a preponderance of +IS or _IS appear above the main diagonal. 

More explicitly, the number of +IS can be compared to what is expected 

under the null conjecture that the ordering of T produced by optimizing 

the first property was actually chosen at random from all possible orderings. 

In the discussion that follows we emphasize only a test on signs even though 

the same principles could be used more generally for other consistency measures 

once some seriation is generated by optimizing a second property. The test 

on signs is particularly simple to implement and has some very nice relation­

ships back to the literature on nonparametric statistics. 
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To be more explicit about the formal inference problem on signs, suppose 

we define, based on the matrix 

f~ a .. 
lJ = II 

T, a "sign" matrix 

if t .. > 0; lJ 
if t .. 

lJ = 0; 

if t .. < O. lJ 

A = {a .. } : 
lJ 

Furthermore, let S denote the sum of the above-diagonal elements in A 

when A is rearranged to conform to the best reordering of T constructed 

from absolute-value information. If we assume, under a null model, that 

the sign data bears no relationship to the absolute-value data, then S 

should not be unusually extreme compared to its distribution when A is 

reordered at random. Conversely, large positive or negative values of S would 

imply a consistency in the sign and absolute-value data that in turn \'Iould lend 

some formal credence to the reasonableness of the underlying spatial model. 

From published Monte Carlo studies (see Hubert and Schultz, 1975) and 

dis~ssions of similar statistics that appear in the literature (e.g., Ager 

and Brent, 1978), it appears that under the conjecture of randomness and for 

reasonably large n, the S statistic can be considered norma1 with mean 

zero and a variance defined by 

V(S) = -61 {I a? +2I CL a .. ]2}. 
• • 1 J '. 1 J 
1, J 1 J 

[A formal proof of asymptotic rorma1ity CQuld follow Kendall IS discussion 

(Kendall, '1970, p. 72-74) assuming I a .. a.
k 

is of order n3]. 
i,j,k lJ 1 

As a final descriptive measure of the degree to which the matrix A is 

reordered appropriately, a measure suggested by Ager and Brent (1978) can 

be adopted: 
D = lsi 

La? 
i<j , J 
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Here, lSi denotes the absolute difference between the number of +'s and 

_IS above the diagonal. The term 2 I a.. is the number 0 f iibove-d i agona 1 
i<j 1 J 

non-zero entries, and thus, defines the maximum value of the numerator. 

Several special cases of these formulas deserve particulalr mention. If 

there are no off-diagonal zeros in A and no intransitivities (i.e., an intran­

sitivity is a triple {i,j,k} for which aij = +1, ajk = +1 and aik = -1), 

then our inference problem is equivalent to the comparison of two united 

rankings based on Kendall's tau statistic. The numerator of tau is Sand 

the variance term reduces to n(n-l)(2n+5)/18, which is the standard 

expression used for a signific~nce test (Kendall, 1970). The general variance 

term given above is also appropriate when there are ties in one of the rankings 

and this ranking defines the matrix A, or even when intransitivities exist 

in A. A particularly simple formula results when there are T intransitive 

triples and no off-diagonal zeros: 1~(n(n-l)(2n+5)-4~T). Obviously, for 

T = a this latter formula reduces to the standard expression for untied 

rankings. Also, when T is 0, the well-known Goodman-Kruskal Gamma 

statistic is equivalent to our measure D up to an absolute value. 

Example 

As an illustration of the ideas we have just presented, Table 1 gives a 

matrix of proportions among 15 of the larger SMSA's. The entries in Table 1 

were obtained from a group of 101 undergraduate and graduate students at the 

University of California, Santa Barbara by first asking each person to rank 

the 15 SMSA's in terms of perceived homicide rate per 100,000, and then 

evaluating the number of times a particular SMSA was ranked lower than a 

second. For instance, since the Boston (row) - Buffalo (column) proportion 

is .32, 32 percent of the students ranked Boston lower than Buffalo and 
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64 percent ranked Boston higher than Buffalo. The order of the SMSA's in 

the rows and columns was obtained from the eigenvalue analysis presented 

earlier using the identity function for f(·) and the absolute difference 

matrix generated from Table'l. These estimated locations AI' A2, ..• , A15 
are also given in the table. 

As is apparent from Table 1, the gradient conditions on the absolute 

differences are almost perfect. Similarly, the sign matrix clearly 

represents an abundance of +'s above the main diagonal (i,n fact, the pattern 

in this case is exact). Although somewhat obvious here, the index value 0 

of 1.00 generates a highly significant Z-value of 5.20, based on a variance 

of 408.33 for S. In summary, a strong unidimensional scale underlies the 

Table 1 data; the pattern is very clear when the SMSA's are ordered according 

to the estimates AI' A2, . . . , generated from the eigenvector analysis . 

Table 1 here 

Since the scale just demonstrated is subjective, it is of some substantive 

interest to compare this aggregate perception with reality. Based on the homi-

cide rate per 100,000 in 1977, the 15 

follows (rates are given in brackets): 

SMSA's should have been ordered as 

Los Angeles-Long Beach (16.0), Miami (15.6), Cleveland (14.2), Chicago (13.7), 
San Francisco-Oakland (11.9), Baltimore (10.2), Philadelphia (8.9), Cincin­
nati (7.S), San Diego (6.8), Buffalo (6.0), Pittsburgh (4.8), Mih/aukee (4.5), 
Seattle-Everett (4.3), Anaheim-Santa Ana-Garden Grove (4.0), Boston (3.6). 

Obviously, some SMSA's are perceived as having a much higher homicide rate 

than they actually do (e.g., Boston and Pittsburg), and some are underrated 

(e. g., Mi ami) • Overall, however, there is a fair degree of consistency in 

the objective and subjective orderings. The Spearman rank order correlation 

between the blo rankings for the 15 SMSA's is .507, which is significant 
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TABLE 1 ----

Matrix bf Proportions Among 15 SMSA's Based on 101 Subjects: 
The Ro'tls and Columns ilre Ordered According to the Eigenvector Esi'ihlafes"6r L'oc~ti~n~ 

Ei-genvector 
(A's) i (a) (b) (c) (d) {e} (f) (g) (h) (i) (j) (k) (l) 

(a) : Seattle-Everett -: .26 , X .63 ,.63 .76 .69 .78 .83 .85 .87 .92 .93 .89 

(b) : San Diego -.18 .37 X .51 .63 .62 .67 .76 .83 .84 .87 .86 .86 

(c): Anaheim-Santa Ana-Garden Grove -.17 .37 .49 ' X .58 .59 .68 ~74 .81 .83 .80 .84 .80 

(d) : Mil waukee -.14 .24 .37 .42 X .54 .58 .66 .72 .77 .76 .84 .84 

(e): Miami -.10 .31 .38 .41 .46 X .54 .73 .63 .71 .67 .73 .72 

(f) : Buffalo -.08 .22 .33 .32 .42 .46 X .55 .55 .64 .68 .70 .72 

(g): Baltimore -.07 .17 .24 .26 .34 .27 .45 X .51 .62 .59 .65 ,72 

(h) : Cincinnati -.05 .15' .17 .19 .28 .37 .45 .49 X .62 .63 .72 .68 

, , 
(i) : Cleveland -.02 .13 .16 .17 .23 .29 .36 .38 .38 X .52 .54 .56 

(j) : Boston -.02 .08 .13 .20 .24 .33 .32 .41 .37 .48 X .53 .59 

OJ 

,~ (k) : Pittsburgh +.01 .07 .14 .16 .16 .27 .30 .35 .28 .46 .47 X .55 

(1) : Philadelphia +.02 .11 .14 .20 .16 .28 .28 .28 .32 .44 .41 .45 X 

(m) : San Francisco-Oakland +.03 .08 .14 .12 .18 .26 .25 .30 .32 .46 .39 ,38 .45 

(n) : Los Angeles-Long Beach ' +.11 .08 .07 .10 .12 .17 ' .20 .21 .19 .32 .28 .34 .34 

(o) : Chicago +.90 .03 .04 .03 .03 .06 .08 .07 .12 .14 .13 .18 .22 

" 
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(one-tailed) at the usual .05 level (e.g., a Z-statistic of 1.90 is generated). 

Discussion and Extensions 

Given.the basic context of unidimensional seriation as developed in the 

earlier sections, a variety of additiona1 topics could be pursued. We mention 

only a few in passing to give some indication of the current research efforts 

in this direction. For exampl,e, the type of inference strategy that vias 

proposed for evaluating the pattern of signs can be extended to compare t\,/O 

arbitrary skew-symmetric matrices (see Hubert and Schultz, 1976). Thus, it is 

possible to evaluate the consistency between two skew-symmetric interaction 

matrices where the latter may be based on mi.gration data at two time points 

or from two different demographic subgroups. Secondly, from a combinatorial 

optimization point of view, several very elegant theoretical paradigms have 

been introduced recently for characterizing a discrerancy between a given 

seriation and the original asymmetric data, e.g., see Bowman and Colantoni 

(1973) and Merchant and Rao (1976). Along these same combinatorial optimiza­

tion lines, a general strategy has been suggested (Hubert, 1980) for locating 

and seriating only a part of a proximity matrix that appears to be most 

consistent with the basic underlying spatial model. This latter technique 

can assist in identifying subsets of an object set that can be seriated well 

and those subsets that are not represented satisfactorily along a continuum. 

As one example of particular importance we note that the topic of criminal 

mobility could define one of the more interesting applications for unidimen-

sional scaling in the criminal justice area. For example, based on movement 

data from place of residence to place of the committed crime, 'lIe may \'1ish to 

rate a set of geographical areas in terms of criminal attractivity, with the 

possible goal of comparing these rates over different crime types, age groups~ 
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and so Orl. Typically, the basic data ate flo".! statistics for a set of n 

localities defined by the number of people, m .. , who travel from region 
lJ 

i to j. Our aim is to model these data in terms of the distances among 

the localities and their assumed placement along an attractivity continuum. 

Following Toblerls (1979) lead, the simplest model we consider is defined 

in terms of the skew-symmetrl'c matrl·x * h· h 'f' h qij = mij - mji , w lC speCl les t e 

degree to \'/hich j atracts more from i than it exports. He assume that 

these statistics conform to a model defined as 

__ A.-A. 
J 1 
d .. 
lJ 

wh9re dij is the distance between locations i and j and AI' A2, ... , An 

define attractivities along a single dimension. Obviously, since distances 

are typically known, our analysis task is to estimate the n attractivities, 

which in turn scales the n localities according to attractivity along a 

continuum. 

Tobler (1979) discusses in detail two major approaches to the estimation 

of attractivities. The first is called the potential method in which the 

Ails are given implicitly by the matrix equation 

L _1 
HI dn 

1 
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Sinc~ this system is not of full rank, Tobl~~ sugge~ts letting Al = 0 and 

deleting the first row and col~mn of the coefficient matrix. The system can 

then be solved by inverting the reduced coefficient matrix and using it as 

19. 

a premultiplier on the right-hand vector. The second procedure may generate 

different estimates since it is based on minimizing the least-squares criterion: 

(2) 

Again, a system of equations similar to that given above is generated that 

is not of full rank. Based on'the coefficient matrix having diagonal entries 

~"( _1_ + --L) 
. 1 d2 d2 
1 = ki i k 

and off-diagonal entries 

1 1 ) . 
(-2-+-2-' 

d;k dki 

and the right-hand vector defined by an arbitrary entry 

* ff* n qik '1ki 
L -d -cr), 

i=l ik ki 
Hk 

the deletion option for Al = a can then be used to obtain a closed-form 

solution through matrix inversion. 

Although Toblerls discussion is very elegant, seemingly minor modifi­

cations in the way the model is stated will eventually lead to several useful 

1 · q* shoul d be "close" to simplifications. In particu ar, Slnce we assume ij 

(A .-A. )/d • • and the d. ,IS are known, it should also be true that dij qij is 
J 1· lJ lJ 

IIclos e" to (A.-A.). Thus, the original gradient notion characterized as a division 
. J 1 
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by dij' i~ redefined by a distance weighting of the observed skew~symmetric 

proximities. Continuing in this way it should also be true that {d .. q~.)2 
lJ lJ 2 

is "close" to (Aj - Ai) . Our problem is now reduced to fitting the entries 

in a symmetric matrix {{dijqij)2} by a squared distance matrix {(A
j 

_ Ai)2}. 

This latter task can be approached by the type of eigenvector analysis intro-

duced earlier. Or, if we assume / d .. q~./ :: / A. - A./ , 
lJ lJ J 1 the strategies 

developed by Defays (1978) and De Leeuw and Heiser (1977) could be followed. 

By taking explicit advantage of a model equivocation. we can concentrate 

on the skew-symmetric proximities t ij = dijqij' which are supposedly defined 

by the simpl~ differences between attractivities. For example, a least­

squares loss-function would minimize 

L (t .. 
" 1 J 1 ,J 

2 (A. - A.)} , 
J 1 

which is equal to a criterion weighted by the squared distances 

2 (A. - A.) 2 I d .. (q~. - ( J d 1 ) 
• • 1 J 1 J .. 
1 ,J 1 J 

2 d .. : 
lJ 

The least-squares measure used by Tobler in (2) is similar in general form 

to this Tatter expression but' is unweighted. 

The redefinition of the estimation problem to use t.. may seem trivial 
lJ 

but it leads immediately to several convenient results. For examp'!e, the 
n 

least-squares estimate of A. subject to the constraint that L A. = 0 is 
1 i=l 1 

given by t.i/n. This same estimate is also obtained by the potential method, 

and consequently, both methods lead to the same solution in this context. From 

a slightly more general perspective, suppose 'tie fit a matrix of the form 

{C. - C.} to our arbitrary skew-symmetric matrix {t .. } by maximizing the 
J 1 1 J 

(lao) 
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correlation between the corresponding entries. Again, the solution is 

obtained when Ci t ·/n, and when used to dEfine the matrix 
'1 

is defined as 

{c. - C.}, these values induce a correlation of 
J 1 

L [I t. 'J2 
2 . . 1 J _ J 1 

n I I t? 
. . 1 J 
J 1 

All of these 1 ast results are very close to some work by Noether (1960) on 

paired comparison scaling. 

It should be apparent that many different approaches could be developed 

for estimating"~he attractivitie~_ AI' ... , An from a skew-symmetric matrix 

t". or q"!. merely by varyi ng the expl i cit form of the model used and the _ 
lJ lJ 

loss function. This arbitrariness is troublesome since minor variations can 

dramatica1ly affect the final estimation process (see Noether, 1960). To 

provide some hedge, and as we have suggested before, it may be appropriate 

to rely only on the absolute-value data in the estimation stage and use the 

sign data as a strat~gy for validating the order of the estimates along the 

continuum. Sign information has the nice property of being independent of 

the form of the gradient model being used as long as the signs are governed 

by differences in attractivities. 
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Proximity Matrix Reorganization and Hierarchical Clustering 

Introduction 

In recent years various substantive journals in the social and behavioral 

sciences have published a number of empirical studies that rely on the newer 

data reduction techniques of hierarchical clustering (HC). For one example 

in the field of criminal justice the reader is referred to Megargee and Bohn's 

(1979) extensive typology of criminals based on r1MPI profiles. In much of 

this work, it is common for a'researcher to present the results of a cluster 

analysis in a form produced more or less directly by the output of some 

standard computer program. In fact, certain representations hav~ now become 

so well-known in the literature that a novice might easily confuse what is 

a rather arbitrary graphic device with the operation of the method itself . 

Our interest will be in one such strategy for reporting the results of a HC 

that can be defined by a particular reorganization of the proximity matrix 

used in the original analysis. This reordering scheme, besides being a very 

convenient way for the researcher to report the results of a HC, leads to 

a basic theoretical connection between the clustering process and several 

areas of current interest in operations research that study the partitioning 

of "flow ll matrices. In turn, the relationship to flow suggests a very 

interesting commonality between HC and another data analysis problem concerned 

with unidimensional scaling or seriation. It is this latter relationship 

that can be exploited as an effective data analysis scheme. 

The basic intent of what we have to say appears in several related 

(but informal) discussions, such as Sneath and Sokal (1973 ). 

Johnson (1972), Forsyth and Katz (1946), or as far back as Cattell (1944). 

The strategy to be reviewed and made more precise requires a preliminary 
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reorganization of the original matrix of proximity values to IIfitll as close 

as is possible a particularly convenient for~, and secondly, an inspection 

of the reordered matrix to suggest a reasonable He th t h a may ave a convincing 

substantive justification. Our interest is not to define another new clustering 

method touted to be the best, but instead, to suggest how an investigator 

can organize and rely on his/her m'm intuitlull in a relatively efficient 

manner. EVen though it may be easier to depend on an arbitrary computer 

program that analyzes a proximity matrix in some mysterious way and accept 

the results of such an analysis without question, this mechanical process may 

also limit the possibility of' examining a given data set in its entirety and 

could concei~ably lead to inappropriate interpretations. Our goal is 

similar to that now being stressed in areas such as location-allocation 

modelling (Adrian, 1979; Church, 1980); i.e., to reemphasize the importance 

of insight and commonsense and to develop a procedure that could help this 

judgemental process along. Since cluster analysis methods typically give 

precise anS\'1ers to data analysis tasks that are not very \'1ell defined, it 

should be standard policy to reorganize the manifest proximity matrix itself 

as a vvay of veri fyi ng the presence of an assumed cl usteri ng pattern. 

In areas such as criminal justice, the importance of developing simple 

procedures for presenting the results of research in a form that is close to 

the raw data cannot be overstated. Typically, the audience for which such 

research has serious policy implications does not have the same methodological 

sophististication as the original investigator. Thus, the research conclusions 

could either be dismissed since the analysis is not very understandable, or at 

th~ ot~er ex~fe~e, accepted too uncritically. We consider it a virtue-to 

reduce raw data as little as possible and yet have it in a form that facili­

tates a substantive argument. And it appears that the use of seriation as an 

adjunct to HC has this latter characteristic. 
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Background 

Hierarchical Clustering (HC) 

As a very brief summary of the purpose behind HC, suppose S is a set 

of n objects; {aI' O2, .•. , O~}, and s(·,·) is some symmetric non-negative 

(proximity) function defined on SxS that specifies the relationship 

between object pairs. For example, s(Oi' OJ) may denote some type of 

correlation or distance measure between O. and 0 .. Given this latter index 
1 J 

of correspondence, a specific HC procedure, such as the well-known complete-

link technique (cf., Johnson, 1967), will reproduce a sequence of partitions 

of S, denoted by lO' iI' ... , £K' The first partition £0 contains n object 

classes each including a single element of S, ~K contains a single object 

class encompassing all of the members of S, and £k+l is constructed by 

uniting certain of the subsets from lk' Typically, K will equal n-1 and 

3. 

only two subsets in £k will be united at anyone time to form the new subset 

i
k
+
l

. For convenience, we assume the proximity function s(',') is defined in 

such a way that large proximity values are assigned to dissimilar object pairs. 

Given a sequence of partitions i O' iI' ... , i K, a second function d("') 

can be constructed on SxS that has the properties of an ultrametric. Formally, 

1 et 

d(O., 0.) = min {k I O. and O. are first placed together in a single 
1 J 1 J 

subset in lk}, 

then, using this definition, d(',') can be shown to satisfy the following 

four properties, the last of which is clearly the most restrictive: 
::""'--=. --=-..:.'': ~-~-. --, 

"- .. 
~ .., -' 

i) d(O., 0.) ~ 0; 
1 J 

(lo7) 

O. ; 
J 

~] ~ 
I 

I In I I 

\ 

Ij ! I 
11 
l 
\ 

I I J 

~ ,I 
1 1 
J [I 
1 

1,·[ I 
r 1 ,J 

I ! I 
r 1 
l I 

tl 

( I 
U 

[1 

U 

1[1 

iii) d(Oi' OJ') = d(O., 0.); 
, J 1 

It should be apparent that any strictly monotone increasing function of 

d(·~·) that maps zero to zero would also be an ultrametric. 

If the original proximity function s(·,·) has the strict monotone 

property mentioned above with respect to d(·,·), then 5(',') is itself 

an ultrametric and the sequence of partitions la, iI' ... , lK represents 

a perfect structure for s(·,·). An example is given by the matrix of Table 1. 

This proximity function satisfies the four pr'operties for an ultrametric 

and corresponds to the following sequence of partitions: 

£1 = {{aI' O2, 03}' {04}' {O's}, {O~}, {O~}} 

l2 = {{ 01 ' O2 , 03, °4 }, { 05 }, {0'6}' {07'}} 

£3 = {{aI' O2, 0
3

, O~}, {a 5' 06, °7 }} 

i 4 ={{01'02' 03, 04, oS' o~'}} 

Tabl e 1 here 

For this set of partitions, the function d(',') is given in Table 2, and as 

should be clear after inspection, is monotone,with respect to s(·,·). 

Table 2 here 

4. 

Most proximity functions that would be encountered in actual data analysis 

situations will not satisfy an ultrametric condition perfectly. Nevertheless, 
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TABLE 1 

Illustrative Proximity Function Having 
the Ultrametric Property 

o 2.30 2.30 4.15 6.35 6.35 6.35 

2.30 0 2.30 4.15 6.35 6.35 6.35 

2.30 2.30 o 4.15 6~35 6.35 6.35 

4.15 4.15 4.15 o 6.35 6.35 6.j5 

6.35 6.35 6.35 6.35 o 6.01 6.01 

6.35 6.35 6.35 6.35 6.01 a 6.01 

6.35 6.35 6.35 6.35 6.01 6.01 a 

TABLE 2 

Ultrametric Function d(',') Derived From 
the Sequence of Partitions Given in the 

Text for the n=7 Illustration 

01 a 

O2 1 

03 1 

04 2 

Os. 4 

06 4 

07 4 

1 

o 

1 

2 

4 

4 

4 

~ .-~.~.~-~~- . .,.-.- _.- .~ .. , .. ,~. . 

1 2 

1 2 

a 2 

2 0 

4 4 

4 4 

4 4 
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any He method will still attempt to locate a "good" sequence of partitions 

usually by some set of heuristic rules, based on whatever proximities are 

available. For our purposes, it is important to note that the resultant 

sequence of partitions produced by any He procedure could still be used to 

obtain a function d(',') as in (1). Furthermore, the degree to which d("') 

is monotone with r:~spect to the original function s("') could be formalized 

by some index and used to measure the extent to which the im~erfect patterning 

of the original proximity values matches the perfect ultrametric structure of 

the integers assigned by d(·,·). For a more complete development of this 

goodness-of-fit notion, the rea~er is referred to Baker and Hubert (1975). 

Partitioning matrices 

Given an arbitrary proximity function s(·,·) and the sequence of partitions 

constructed by some He, one rather well-known graphic technique used in 

representing the analysis rearranges the original proximi,ty matrix in a.very 

specific way (cf. BMDP program manual: Dixon, 1977, p. 621-632). In particular, 

suppose a He is carried out and the defining ultrametric function d("') is 

obtained. If the values assigned by d("') are organized into the form of an 

nxn matrix ~ = {d(Oi' OJ)}' then there exists an ordering (not unique) of the 

rows and simultaneously the columns of n that will put the reordered matrix 

into a form with the following properties: 

* If Dis an appropriate rearrangement of g, then 

* i) D can be partitioned as 

* Pll 
'* D 

.~ --
* ~21 

(110) 
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* * where all the elements of 01~ and e21 are equal to the single largest 

element of 0; 

ii) the submatrices e11* and ~22* are once again partitionable as in (i); 

iii) the partitioning process can be repeated until all the resulting 

submatrices are of order 1. 

* Given the reorganized matrix g , the original proximity matrix, say 

( 0 )} 1 b res tructured by using the same row and column p = {s 0., . ,can a so e 
- , J 

ordering. If for notational purposes this reordered matrix is denoted by 

p*, then the degree to which p* does not have the exact same partition 

structure as did 0* will give some indication of adequacy for the hierarchical 

clustering represented by the ultrametric function d(·,·). From a more practical 

point of view, it is of interest to note that many of the standard programs 

for hierarchical clustering, such as the routines given in BMDP (see Dixon, 

1977) and by Johnson (1967), automatically provide an object ordering to 

transform D to 0*. Consequently, an inspection of a reordered proximity matrix - -
provides no extra computational burden for the applied user. 

Although we will not go into any detail, the general type of partitioning 

f d 0* ,'s also d,·scussed in electrical engineering under operation per orme on_ 

the title of "principle partitioning", and specifically, in stating an equiva­

lence between a terminal capacity matrix for a flow network and what are 

essentially ultrametric conditions on the entries in a matrix (the proximities 

are keyed in the opposite direction for flow, but the basic ideas are the same. 

F k d F · h 1971) It should also For a more compl ete di scussion, see ran an r, sc , . 

* be noted that many orderi~gs can exist for transforming p ~o p and our~ 

discussion only'ass~mes that anyone 'such 'ordering is desired ... For instanc'e, 

n-l ·bl if K equals n-l in the original sequence of partitions, then 2 poss, e row 
* ., 

(and column) orderings of the objects in S would produce a g of the. necessary 

form. 
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Object sequencing 

Once the ultrametdc values assigned by d(·,·) are organized into a 

* matrix that has the 0 form, the entries themselves display an interesting 

pattern that has great importance in unidimensional scaling. Specifically, 

* the entries in ~ are monotonically nondecreasing when moving away from the 

main diagonal within a row or within a column. A condition of this general 

type is called an anti-Robinson property and is discussed in detail in the 

seriation literature when characterizing a "perfect" ordering along a single 

dimension (cf. Kendall, 1971). 

To be more precise, suppose the n objects in S are placed in some order 

at the n integer positions 1, 2 •... , n along a continuum. As a notation, a 

permutation, p(.)' on the first n integers will be .used to specify the given 

orderi.ngs; thus, position 1 is occupied by 0p(1)' position 2 is occupied by 

* 0p(2)' and so on. As a further convention, ~ ordering used in defining D 

* will be denoted by p (.). 

Now, given a proximity matrix {s(O., O.)} , the seriation problem involves 
1 J 

locating a permutation p(.) and reordering the proximity matrix using p(.) that 

will satisfy the anti-Robinson property as "close" as possible. In other \'Iords, 

if D denotes the reorganized proximity matrix, then the ith row and column of Q
p 

contains the object labeled p(i). As an index of "closeness" to the anti-

Robinson property, we choose what is essentially an unnormalized form of a 

correlation statistic: 

Thus~ larger values of r(p) supposedly denote "better" sequencings. For a 
- ~. 

more complete discussion of this measure as a goodness-of-fit index, the 

reader is referred to Hubert and Schultz (1976) and Szczotka (1972). (Although 

( 112) 
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we will rely on r(·) as our index-of-fit for a given object sequencing through-

out, we note that many other possibilities also exist. For example, several 

statistics that depend only on the order of the proximity values are discussed 

* in Hubert (1978)). Returning to the reorganized matrix Q and treating 

d("') as a proximity function, the index r(·) reaches its global maximum for 

* any of the permutations p (.). A more formal statement of this fact could 

be developed by first converting the optimization task into the one-dimensional 

module placement problem 

left to the reader. 

An informal approach to HC 

discussed by Lawler (1975) and the details are 

Using the background material of the previous sections as a motivation, 

suppose we begin with an arbitrary (not necessarily ultrametric) proximity 

function s( .,.) and we ,,/ish to find a He that "fits" the function well. The 

standard analysis procedure would require the use of some single clustering 

method, such as the complete-link technique, and selecting the resultant 

sequence of partitions as the appropriate He. A more ideal but obviously 

infeasible alternative would require a search among all possible HC's of the 

object set S, and then based on the correspondence between s(·,·) and the 

induced ultrametric d(·,·), a choice of some final HC for the purpose of 

a later substantive interpretation. Obviously, this search strategy is 

computationally impossible except for very trivial object sets. However, if 

the search is limited to only certain He's that are probably the most adequate 

from other ~onsiderations, the reliance on a single constructive HC procedure 

can be avoided, or at least augmented by some further study of the patterning 

of the given proximity values. 

To effect a limited search within all possible He's and based on the 

connections , between' HC's and seriations through the anti-Robinson 

condition, suppose we use the initial proximity function s("') to sequence 
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the objects in S along a continuum based on the index r(·). Secondly, for 

SDlllt. permutation, say p'(.), trat leads to a very large value for an index 

such as r(·)s those He's that are defined by partitioning the proximity matrix 

reordered by p' (.) could then be evaluated in more detail. In particular, cel'tain 

representations could be chosen merely from substantive considerations or on 

the basis of some further index of fit between s(·,·) and the reconstructed 

ultrametric. In ge 1 th () nera , once e matrix {s 0., o. } is reorganized to fit 
1 J 

the anti-Robinson condition as close as possl"ble, then ad' secon ary partltioning 

procedure (possibly judgemental) can be implemented to elicit the particular 

type of structure desired. 

The notion of using a condition basic to unidimensional sc~ling fOt' 

effecting a cluster analysis may seem rather obvious. However, some theoretical 

work by Holman (1972) and Bunema~ (1970) would suggest that clustering and 

unidimensional scaling are inherently l·ncompatl"b·,I~. An 1 ~ u trametric requires 

a higher dimensional space :ur a perfect imbedding even though our context 

relys on a somewhat contrary connection (from an anti-Robinson condition) 

between a single dimension representat,·on and th + b e proper~y of eing an ultra-

metric. In fact, since an independently constructed He should produce a 

sati sfactory seri ati on when the mat;-ix of proximiti es is appropri ately 

reordered to reflect the induced partitioning, seriation procedures based 

on clustering have also been suggested in the literature (see Schuler and 

Ulrich,1972). 

. Some Operational Details 

For a given proximity matrix of moderate size, say greater than 12, the 

task of finding a globally optimal perm~tationmaxim~zing·:().is computationally 

very difficult. Consequently, various heuristics have been suggested in the 

literature that seek local optima through a set of limited operations that 
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attempt to better a given permutation. As one very powerful scheme, suppose 

some random permutation P1(·) is used as a starting point ard an attempt is 

made to transform P1(·) to P2(·) by performing the pairwise interchange of 

objects that maximizes the increase in p(.). Continuing, P3(·) is constructed 

from P2(') in the same way, and so on until no pairvJise interchange can increase 

the chosen index, i.e., until a local optimum, say p '(.), has been achieved. 

Other operations could then be tried to modify p '(.) and increase the index; 

for example, an insertion of a set of k consecutively ordered objects between 

two others or at eit er en po,n . h d · t Repeat,"ng th,"s process over and over, a 
, , 

local optima is again achieved' and the final permutation, say p (.), is 

resubjected to the pairwise operation, and so on. Some final permutation 

will be located that is both I1 pa irwi,se" and "inse'ftion" locally optimal. 

It should be obvious that many different variations of this general 

heuristic scheme could be tried -- incluaing altering the type of local 

h ced changing the number of operations performed and how t ey are sequen , 

d d 0 However, the use of the pairwise and starting permutations use, an so n. 

insertion operations just described appear to work very well and will be 

the method used in the later numerical example. For a simple dynamic programming 

·bl h n is less than, say, 12, approach to maximizing p(.) that is feas, e w en 

the reader is referred to Lawler (1975). 

Numeric~l '~xample 

As an example of how a reordered matrix appears as generated by the complete 

1 t" of Table 3 presents a set link procedure in BMDP, the upper triangu ar por 10n 

obta,·ned between the 15 largestSMSA's whose statistical of proximity values 

areas have remaiDed unchanged for the la~t 10 years. Alphabetic~lly these are: 

~altimore'~I),-Bos;on (2), Chicago (3), Dallas-Fort Worth (4), Detroit (5), 

() . 1· St Paul (8). Nassau-Suffolk Honolulu (6), Los Angeles-Long Beach 7 , M,nneapo ,s- . 

N.Y. (9), New York (10), Philadelphia (11), Pittsburgh (12), San Fransisco-Oakland 
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St. Louis (14), Washington, D.C. (15). 
These proximities were obtained by 

calculating the Euclidean distance between each Sr~SA pair using their profiles 

over the seven index crimes for 1977: 
murder and non-negligent manslaughter, 

forCible rape, robbery, aggravated assault, burglary, larceny-theft, and 

motor vehicle theft. 
Each crime rate in the profile is a rate per 100,000 

standardized to mean zero and variance lover the 15 SMSA's. As mentioned, 

the order of the cities in Table 3 is generated by the procedure used in 

the standard BMDP program in conjunction with a complete-link clustering; the 

partitioning represented in the matrix is defined according to the induced 

ultrametric listed in the lower"triangular portion of the matrix. 

TABLE 3 HERE 

Using the interchange heuristic discussed earlier and 10 random starts, 

only one local optimum was identified, which was used to reorder the Table 3 

matrix to the form given in Table 4. Although the pattern of entries in 

TABLE 4 HERE 

Table 4 is far from satisfying a perfect anti-Robinson condition, the general 

trend is clear. In fact, if the final cross-product index is normalized to 

obtain the Pearson product-moment correlation between the reorganized proximity 

matrix and the perfect target, a rather substantial value of .87 is achieved. 

t10re to the point, the reorganized Table 4 matrix can be used to identify 

partitions of the 15 SMSA's that are "better" than.that obtained with the 

complete-link method even when we use as our criterion the same subset 

"diameter ·condltio·n the complet~-link- pro~edufe is attempti~g to 'optimize in 

a heuristic manner. For instance, by using the order of the rows in Table 4, 

14 different two-group partitions can be identified by merely splitting the 
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TABLE 3 

Proxi~ity Matrix (Upper Triangle) Among 15 SMSA's 
as Reordered by the Campl ete-1 ink m:;)p Procedure -

the Induced Ultrametric is Represented in the Lower Triangle 

13 3 14 15 5 6 7 10 2 8 

13. 

9 11 12 

1 

4 

X 

8 

2.84 2.76 2.83 1.94 2.39 2.21 3.45 3.09 3.76 4.63 3.67 4.82 3.68 4.97 

13 

3 

14 

15 

5 

'6 

7 

10 

2 

8 

9 

11 

8 

11 

11 

11 

11 

11 

13 

13 

14 

14 

14 

14 

X 

5 

11 

11 

11 

11 

11 

13 

13 

14 

14' 

14 

14 

12 14 14 

1.79 3.13 2.32 2.53 2.70 2.36 3.55 4.78 5.38 3.55 4.78 4.32 5.78 

X 

11 

11 

11 

11 

11 

13 

13 

14 

14 

14 

14 

3.68 2.73 3.07 2.11 2.83 2.63 3.76 5.02 4.07 5.46 4.89 6.33 

X 

4 

4 

7 

7 

13 

13 

14 

14 

14 

14 

14 14 

I ' 
~ 

1.56 1.78 2.39 2.35 4.49 4.67 3.55 2.61 3.18 2.25 3.60 

X 

1 

7 

7 

13 

13 

14 

14 

14 

14 

14 

1.47 1.70 1.85 3.30 4.00 3.85 2.61 3.73 2.37 3.89 

X 

7 

7 

13 

13 

14 

14 

14 

14 

14 

2.42 2.32 4.32 4.83 4.45 2.06 3.24 2.44 3.80 

X 

6 

13 

13 

14 

14 

14 

14 

14 
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2.04 2.41 2.91 3.95 3.74 4.95 3.68 5.13 

X 

13 

13 

14 

14 

14 

14 

14 

3.52 4.45 4.57 3.38 4.49 3.29 4.76 

X 

9 

14 

14 

14 

14 

14 

2.87 5.26 5.42 6.78 5.27 6.64 

X 

14 

14 

14 

14 

14 

5.31 6.15 7.15 5.79 7.07 

X 

12 

12 

12 

12 

3.80 4.04 3.74 4.25 

X 

3 

10 

10 

1. 64 2 .19 3.01 

X 

10 

10 

2.57 2.73 

X 

2 

1.55 

X 

t, 

LJ L 1 

I { j 
5 

6 

i 1 14 
15 

[j 3 

8 

[I 11 

X 

2.87 

14. 

TABLE 4 

Proximity Matrix Among 15 SMSA's 
as Reordered by the Seriation Heuristic 

13 4 1 5 6 14 15 3 8 11 2 9 12 

2.87 3.76 4.78 3.76 2.91 4.45 4.00 4.83 4.67 6.15 5.79 5.31 7.15 7.07 

X 2.63 3.55 3.09 2.41' 3.52 3.30 4.32 4.49 5.42 5.27 5.26 6.78 6.64 

3.76 2.63 X 1.79 2.76 2.11 2.83 2.73 3.07 3.68 4.07 4.89 5.02 5.46 6.33 

4.78 3.55 1.79 X 2.84 2.70 2.36 2.32 2.53 3.13 3.55 4.32 5.38 4.78 5.78 

3.76 3.09 2.76 2.84 X 2.21 3.45 1.94 2.39 2.83 3.67 3.68 4.63 4.82 4.97 

2.91 2.41 2.11 2.70 2.21 X 2.04 1.70 2.42 2.39 3.74 3.68 3.95 4.95 5.13 

4.45 3.52 2.83 2.36 3.45 2.04 X 1.85 2.32 2.35 3.38 3.29 4.57 4.49 4.76 

4.00 3.30 2.73 2.32 1.94 1.70 1.85 X 1.47 1.56 2.61 2.37 3.85 3.73 3.89 

4.83 4.32 3.07 2.53 2.39 2.42 2.32 1.47 X 1.78 2.06 2.14 4.45 3.24 3.80 

4.67 4.49 3.68 3.13 2.83 2.39 2.35 1.56 1.78 X 2.61 2.25 3.55 3.18 3.60 

6.15 5.42 4.07 3.55 3.67 3.74 3.38 2.61 2.06 2.61 X 2.19 3.80 1.64 3.01 

5.79 5.27 4.89 4.32 3.68 3.68 3.29 2.37 2.44 2.25 2.19 X 3.74 2.57 1.55 

5.31 5.26 5.02 5.38 4.63 3.95 4.57 3.85 4.45 3.55 3.80 3.74 X 4.04 4.25 

7.15 6.78 5.46 4.78 4.82 4.95 4.49 3.73 3.24 3.18 1.64 2.57 4.04 X 2.73 

II II 12 7.07 6.64 6.33 5.78 4.97 5.13 4.76 3.89 3.80 3.60 3.01 1.55 4.25 2.73 X 
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matrix into two parts, i.e., {{New Yrrk}, {Los Angeles-Long Beach, ... , Pittsburgh}}, 

{{New York, Los Angeles-Long Beach}, {San Francisco-Oakland, ... , Pittsburgh}}, 

and so on. In this example, the complete-link result for two groups happens 

to be equivalent to one of these splits: {{New York, ... , Chicago}, {Minneapolis­

St. Paul, ... , Pittsburgh'}} and the maximum diameter (i.e., the largest proximity 

\'iithin a subset) over these two subsets is 4.83. Hm'lever, the immediately 

preceding partition constructed from Table 4, {{Ne\'l York, ... , Washington, D.C.}, 

{Chicago, ... , Pittsburgh}}, has exactly this same maximum diameter and the 

three partitions that precede this one have a slightly smaller maximum diameter 

of 4.78. In short, we can use the same optimization criterion that the complete­

link method is attempting to satisfy and find better partitions according to 

this index by simply inspecting the matrix reordered by our seriation heuristic. 

For our purposes, the question of a best SUbstantive interpretation can be left 

unanswered since our concern is only to suggest that the choice of a single best 

result constructed by some given clustering method could be more or less arbi­

trary. At the very least, it would seem prudent to inspect a reordered 

matrix to verify whatever substantive interpretations vie \'JOuld like to obtain 

from the use of a clustering strategy. 

Discussion 

The idea of using a seriation of the object set prior to looking for a 

specific clustering reappears continually in the literature although in many 

disguised forms. The key to recognizing this general paradigm is by the 

presence of some object ordering before a final clustering is given. Obvious 

examples would include Hartigan's (1975) leader algorithms, Matula's sequential 

gr'aph coloring schemes (Matula, Marble, and Isaacson, 1972), Fisher's' (1958) 

single variable clustering, and Szczotka's (1972) notion of an admissible 

partition. Implicitly or explicitly all of these methods rely on an object 

(119 ) 

ordering, typically as an initial organizing step prior to a final clustering 

based on partitioning the reordered matrix in some particular way, e.g., 

seriating the "break pdints" that define the possible subsets 

We do not wish to advocate the superiority of seriation 

of a partiti on. 

over a particular 
method of HC or conversely. Instead, our aim is ~o point out their comple-

mentary nature and how clustering and seriation could be used together to 

justify a specific analysis. Looking at one's data in ways that could suggest 

alternative interpretations may seem to be a very obvious tactic. Unfortunately, 

it is easily fo~gotten when a scheme is available that promises to give a 

single best answer and without the ambigUity that is usually attached to a 

more intuitive data analysis strategy. 
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Generalized Procedures for Evaluating Spatial Autocorrelation 

Introduction 

Given a set S containing n geographical units, spatial autocorrelation 

(SA) refers to the relationship between some variable observed in each of 

the n localities and a measure of geographical proximity defined for all 

n(n-l) pairs chosen from S. Statistical methods developed for indexing 

this correspondence have traditionally been associated with the field of 

geography and more specifically with the subfield concerned with the assess­

ment of spatial pattern ([5J, [8J, [12J, [17J). The techniques for analyzing 

the effects of geographical proximity, however, are really very general, and 

when interpreted appropriately they offer a valuable set of inference 

strategies in many other disciplines and for problems that are far removed 

from a concern with spatial phenomena. Some of these broader implications 

have nO\,1 been recogni zed ina few areas such as bi 01 ogy ([37J, [38J) and 

sociology [2J, but undoubtedly, more didactic papers will appear once the 

wide-spread applicability of these techniques becomes well-known. 

Turning this assessment around, it is also true that work done in other 

fields such as epidemiology ([27J, [28J, [29J) and psychology[25J has significant 

implications for extending the SA methodology itself. We will emphasize this 

latter perspective throughout the paper and review a general context that 

includes as special cases many of the approaches used in the literature. 

Although some of these connections have already been suggested indirectly 

([20J, [22J. [37J), there appears to be no single published source that 

'Seriously reviews the generalfi el d·. ' 

Since the literature on SA is rather extensive, a complete review of 

the area is well beyond the boundari es o,f thi spaper. Although we do give 
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a very brief oveY'view of several SA ideas that will be of importance later 

on, we assume a basic familiarity with the seminal monograph by Cliff and 

Ord [8J. The reader intere~ted in pursuing the topic more thoroughly 

should refer to this monograph, the papers cited earlier, and those by 

Cliff, Haggett, Ord, Bassett, and Davies [10J; Dacey [13J; Royaltey, Astrachan, 

and Sakal [31J;;Winsborough, Quarantelli and Yutzy [40J; Campbell, Kruskal, 

and Wallace [7J; and Freeman [15J. Furthermore, vie ignore the problems 
1111 

debated by Sen [32J, Cl iff and Ord [9J, Sen [33J, and Sen and Soot [34J 

regarding asymptotic normality for several of the well-known SA measures. 

Much of this newer distributional work can be considered peripheral since 

our emphasis will be on an alternative randomization model. For some possible 

connections between these asymptotic results and the development here, the 

recent paper by Shapiro and Hubert [35J may be helpful, particularly since 

it is based on work not usually cited in the geographical literature. 

Finally, it should be noted that most of the discussion below introducing 

generalizations of the SA concept already appears in some form in the psycho­

logical and biomedical literature. Consequently, we can merely refer to 

other published papers for a more complete development. The titles in this 

other literature usually do not convey the possible a~plications to SA; 

therefore, it is important to have a single source that helps the interested 

reader develop the necessary relationships. ~/e also refer the reader to the 

forthcoming second edition of Cliff and Ordls monograph [8J. This latter source 

independently uses an approach to SA similar in general form to the one 

presented here although the details are different • 

" 
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Spatial Autocorrelation 

Descriptive problems 

As mentioned earlier, SA is concerned with the relationship between 

geographical proximity for a set of n localities, {01' 02' ... , On}' and 

some variable measured on each of the single elements in thp. set S. The 

observed variables are denoted by x1' x2, ••• , xI)' and the notion of 

geographical proximity is expressed through a (possibly asymmetric) n x n 

weight matrix ~ in which the ~ntry in the ;th row and jth column, W;j' 

represents the relationship between 0i and OJ' As a technical convenience, 

larger \'/eights are assigned to pairs that supposedly are "more related ll
; 

for example, ~Jij could be 1 if 0i and OJ were adjacent localities and ° 
otherwise; or more generally, \~ij could specify the inverse of the actual 

physical distance from 0i to OJ" Since IIself-weights" are irrelt~vant, the 

main diagonal in H is assumed to consist of all zeros, thus, W .. = 0 for all 11 

; . 
The presence of SA implies that the pattern of weights in ~ ;s related 

to the variate values xl' x2' ... , xn' Traditionally, two measures of this 

relationship have been used -- Moran's I statistic and Geary's c coefficient 

[8J: 

L w .. ( x. - x) (x. - x) 
n ; ,j lJ 1 J 

I = 
I(x.-x)2 I H .. 

. . 1 J . 1 
1 ,J 1 

L H •. (x. - 2 xj ) 

~ n-1 ] 
i ,j 1,J 1 

c 
= 2 L W .. L (x. - x)2 

•• 1 J i 1 , ,J 
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\>/here x = ~/j ~ Xi' Both measures are normalized cross-product 

coefficients in 

either to (x. - x) 
1 

which each weight 
;2 

(x j - x) or to (xi - xj ) . 

W. . is compared 
1J 
Based on expectations tr.at 

can be derived from the inference model of the next section, positive SA 

is obtained .,."hen lis greater than - (n:l) or when c i~ it:ss than 1; 

negative SA is obtained when I is less than - (n:J.T or when c is greater 

than 1. 

Although I and c are based on normalizations that standardize the 

measures in particular ways, the crucial quantity in both is a cross-product 

statistic that relates the weight matrix W to some function on the variates 

xl' x
2

' ..• , xn ' In Moran's I, the important cross-product statistic is 

I W.. ( x. - x) (x. - x) 
. • 1 J 1 J , ,J 

and for Geary's c we use 

2 I Hq (X. - x.) . . I... 1 J 
1 ,J 

Viewed in a slightly different fashion, the weight matrix ~ is compared to 

a second matrix that we will denote by C. For Moran's I, the entry in the 

.th d .th column f C 1 rowan J 0 _, 

Geary's c, c .. = (x. 
1 J 1 

2 - xj ) , 

products of the form W •• c .. lJ lJ 

Cij , is defined as (xi - x) (X j - x), and for 

In both cases, since W .. = 0 for i = j and all 
1J 

are zero when i = j, we can also assume without 

loss of generality that C .. = ° for i = j. As a very brief summary, the 
lJ 

general problem of indexing spatial autocorrelation can be phrased in terms 

4. 

of comparing two matrices ~ and ~ using a cross-product statistic r = L C •• li ... i.j 1J lJ 
This raw index is then:'subject to various standardizations to produce 

a final descriptive measure. (We might note that the idea of matrix comparison 

(128) 
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does not correspond to any of the usual matrix algebra operations such as 

taking an inverse, matrix multiplication, and so on. This distinction between 

matrix comparison and typical matrix algebra operations should be kept in 

mind to avoid any possible confusion). 

What We have just reviewed very tersely could be expanded in much greater 

detail. In fact, several of the references cited in the introduction do just 

that and show how to define a number ofdiff~rent special cases of r when the 

numerical variables xl' x2' ... , X are from various levels of measurement. 
n 

All such measures, however, rely on a matrix comparison through r plus a more 

or less arbitrary standardization that can safely be ignored since it remains 

invariant under the specific inference model we choose to work with. In short, 

the notion of matrix comparison should not be viewed as an alternative to the 

traditional ways of assessing SA but merely as a generalization that allows 

additional flexibility. Although both the usual I and c measures essentially 

5. 

form special cases of the cross-product index T , other types of matrix comparison, 

as we will see, can also be framed in the same context. 

Inference problems 

Even though we may be able to calculate rather easily the value for some 

SA measure, the task still remains to assess the relative size of the descrip­

tive ina.m compared to some chance mechanism. Because of its generality, we 

emphasize what has Decome known as the randomization model in which r is 

evaluated with respect to a reference distribution constructed by randomly 

permuting the rows and columns of .!; together (or what is equivalent, the rows 

and columns of ~). If the matrix f is constructed from the sequence xl' x2'···, xn' 

and k is the number of di sti nct entri es in thi s set and ni the -frequency of the 

ith value, then an equally likely distribution. q~er the n! indices will produce 

an equally likely distribution over at most n!/i~lni distinct_values .. Even in 
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this latter set, however, some of the r statistics may be the same depending 

on the structure of~. Ideally, n! possible values of r would be generated 

(not necessari ly di stinct) by rel abel i ng the rm'/s and simultaneously the 

columns of C in all n! possible ways. The tabled frequency distribution of 

these rls is then used in the same way as the exact sampling distribution 

for any test statistic, i.e., we reject the null model of randomness if the 

observed cross-product statistic is sufficiently extreme with respect to 

the constructed reference distribution. 

The computational burden that complete enumeration imposes is usually 

so great that various approximations must be pursued. For completeness, we 

mention four different approaches that have been suggested in the literature: 

(a) Since exact moments of the randomization distribution can be derived, 

crude Chebyshev or Cantelli bounds may be appropriate if the observed statistic 

is large. Specifically, when Z = [r - E (r)Jjy'V[f) , then a two-tailed 

significance level is at most 1/Z2 and a one-tailed level at most 1/(Z2 +1). 

General formulas for E (r) and V (r) are available in Mantel [27J for arbitrary 

C and W matrices. 

(b) Although not always appropriate, normal approximations to Z are 

sometimes justified by rigorous convergence theorems subject to certain 

regularity conditions on ~and ~ ([lJ, [34J, [36J). Some recent results, 

ho'tlever, suggest that care must be taken in assuming the triviality of 

the t'egularity requirements. It is not true that they can safely be ignored 

in most practical applications [30J. 

(c) Higher-order moments (third and fourth) have been derived for 

indices such as r when both C and ~ are symmetric. Consequently, various 

curve fitting procedures could be used to approximate the complete enumeration 

accurately [35]. 
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(d) Complete enumeration can be approximated by random sampling and 

the significance level estimated by the number of generated f's that are 

as extreme or more extreme than the cbserved index (for example, if we assume an 

upper one-tailed test is appropriate, we count those f's that are as large 

or larger than the observed index). This topic is discussed in more detail 

by Besag and Di ggl e [5], Edgington [IS], and Cl iff and Ord [8]" 

The use of a randomization model offers a number of distinct advantages 

over the usual alternatives that rely on distributional assumptions for the 

observations xl' ... , xn ' For example, the randomization model can be used 

for a wide variety of rather complex SA statistics that would be very 

difficult to handle in a classical parametric framework, e.g., those 

that require more than pairwise functions on S x S. Second, accuracy 

estimates for the approximations obtained by random sampling can be dealt 

with rigorously by standard non-parametric techniqur:, such as confidence 

intervals on percentile points or Kolmogorov-Smirnov bounds on the exact 

cumulative distribution function calculated from sample distributions. 

Under the typical dist.ributional models for Xl' x2, ... , xn and even though 

it is known that a particular statistic is asymptotically normal, bounds 

on the degree of accuracy for such an approximation are very difficult to 

obtain. Third, the normalizations that define the statistics such as I 

and c are typically invariant under randomization. Thus, the much simpler 

cross-product terms can be dealt with separately in making inferences 

regarding the significance of any given statistic. Finally, the randomization 

model is very easy to explain to a layman whereas the more classical distri­

butional theory approaches are usually more "mysterious". In fact, even in 

the most rigorous papers that deal with distributional assumptions, very 

subtle errors appear that could invalidate the stated theorems. For instance, 

it is not true that the asympototic normality for two random variables auto-
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matically insures th t e asympo otic normality for their sum; such a result, 

however, has been impliCitly relied on in at least one proof for the asymptotic 

normality of Geary's c ([32], p. 181). 

~umerical Example 

As a very simple illu t t" f h s ra 10n 0 t e spatial autocorrelation concepts 

just introduced and of what a complete enumeration \'Iould look like, suppose 

the set S consists of 4 localitles {01' ° ° O} d 2' 3' 4 an the weight matrix 
is of the form 

°1 °2 °3 °4 

°1 ° 1 2 5 

°2 4 0 4 6 
W = 

°3 I 2 ° 3 

°4 3 5 6 ° 

representing some asymmetric pattern f o proximities among the four localities. 

If the variable measured on each of the four objects has values Xl = 1, 

x2 = 2, x3 = 3, x4 = 4, then for the Geary c coefficient we would define 

a matrix C as follows: 

°1 °2 03 °4 

°1 ° 1 4 9 

°2 1 0 I 4 
C = 

°3 4 1 0 1 

°4 9 4 I 0 

(132) 
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and a raw cross-product statistic r between Wand C of 148. If we fix the 

matrix C as is and randomly permute the rows and simultaneously the columns 

of W in all 4! = 24 possible ways (or equivalently, permute t~e rows and 

columns of C with \~ fixed), the following distribution over r would be 

obtained: 

Rowand column permutation of W r 

3241, 3421, 1243, 1423 108 

2431, 2341, 1432, 1342 124 

2143, 3142, 2413, 3412 132 

1234, 4231, 432t, 1324 148 

3124, 3214, 4213, 4123 156 

4132, 4312, 4314, 2134 172 

The proportion of indices in this distribution that are as large or larger 

than th9 observed index of 148 is 12/24. This value defines the significance 

level (we assume that negative SA is of interest, and thus, because of the 

way c is keyed, an upper one-tailed test is appropriate). Exactly the same 

distribution would be obtained if W were held fixed and the rows and columns 

of C permuted. 

Although a significance level can be given for the raw index itself, 

it may also be appropriate to obtain a final descriptive measure by normalizing 

r to define c: (~[4~j). (1~8) ~ 1.06. This value is very close to the 

expectation under randomness. The I measure could be handled in the same 

manner by generating an exact reference distribution for the defining cross-

product measure. 
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Generalized SA Measures 

Using the general cross-product statistic r = L ~~ .. C. " there are 
1· . 1J lJ ,J . 

a"number of very obvious generalizati('lf<;'~ of the standard indices for SA. 

In much of the previous work (e.g., [8J), the emphasis was in developing 

SA indices that could accomodate an arbitrary weight matrix W. However, very 

specific forms of what we refer to as the ~ matrix were required. In particular, 

the values in C were assumed to be rather simple functions of the univariate 

observations xl' x2' ... , xn obtained for each of the n elements in S (for 

example, the number of milch cows in a set of areal units). It should now be 

apparent that Cij could also be a more comprehensive measure based on, say, 

vectors of observations for O. and 0., e.g., Mahalanobis distances, Euclidean 
1 J 

distances, or correlations. The randomization inference strategy remains the 

same since the multivariate data on each object are first reduced to a single 

numerical value for each object pair. Other extensions could be developed for 

the concordance context discussed by Hubert [24J, in which the degree of internal 

concordance among a set of matrices, say, ~l' ... , ~K' could be evaluated. Here, 

a sum over all pairwise indices for the K matrices could be obtained and 

tested using the same type of inference mode1 that justifies Kendall's 

coefficient of concordance. Alternatively, the K matrices could be compared 

to a single weight matrix ~'l, and possibly a single target matrh fitted to 

the set. These problems can be rephrased as a combinatorial optimization 

task - for \'/hich an extensive literature exists (for example, see the 

Y'eferences in [24J). All of these extensions, hO\,/ever, are rather i\1lll1ediate; 

consequently, it may be of greater interest to sketch several other variations 

that move beyond the cross-product measures that depend on simple pairwise 

functions S x S. 
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Replacing cross-products byo4~place funetions 

The raw cross-product measure r defines the relationship between two 

matrices through a specific function on each pair of corresponding entries 

in Wand C. In other words, if we consider the object pair 0i and OJ' the 

similarity between the two entries Wij and Cij is defined by the product 

W .. C .. and forms part of the overall index r. As one generalization, 
1J 1J 

. b 4 1 f ti ons of q ( .•. , . ,. ). \'/here suppose we replace such products y -p ace unc . 

. th .th W d th the first two arguments relate to the 1 row and J column of _ an e 

last two arguments relate to the kth row and lth column of~. Thus, if 

q(i,j,k,l) is defined as Wij Ckl ' then our earlier statistic r is equivalent 

to I q(i,j,i,j). The first and last two arguments in q(.,.,.,.) are both 
i ,j . 

i and j since the observed index is concerned with a function of entries 1n 

the two matrices that are in comparable positions. More generally, we denote 

I q(i,j,i,j) as A and apply the same type of randomization model followed 

~~~ r. This inference strategy is discussed in detail by Hubert [25J 

including exact formulas for the first two moments of fl.. 

As an example of how A could be used, suppose that the elements in W 

and C take on a small number of values, possibly on a nominal scale, and 

11. 

our concern is with the number of times an entry i n ~ is equal to its corres­

ponding entry in C. If we define q(i,j,k,l) = 1 when Wij = Ck1 and ° otherwise, 

the index A counts the number of such perfect matches. As a second illustration, 

suppose the elements in ~ and ~ are reasonably commensurable and we wish to 

define a measure of SA through the size of the absolute differences between 

corresponding entries. If q(i,j,k,l) is specified as IWij - Ck11, then fI. 

i_~; i~rJ~'i.t~'oCijl: Clearly, the num~er of possible choices for q(.,.,.,.) 

is limitless and the spatial autocorrelation index can be tailored specifically 

for the aims of a goiven researeh project and data set. 
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SA measures that only depend on order 

Several of the more interesting generalizations of the traditional SA 

statistics are to measures that only require the order of the entries in W 

12. 

and C. Prior to developing an explicit example to illustrate such generali­

zations, we concentrate on two paradigms -- the first is based on object triples 

and the second on object quadruples. 

Assuming that only the order of the entries in ~ and ~ are meaningful 

(or of immediate interest), suppose a cross-product statistic n is defined 

by 

n = I a(i,j,k) b(i,j,k) , 
i ,j , k 

=(: if i,j,k are distinct and \L. < Hik ; where a(i,j,k) 1J 
otherwise, 

b(i,j,k) =~ if i,j,k are distinct and c .. > Ci k; 1J 
otherwise. 

Intuitively, since large values in W usually denote closeness in some geographical 

space and small values in C indicate closeness in some variable space, Q counts 

the number of cOnsistent object triples between C and W. Here, a triple is 

consistent if and only if the weight from i to j is less than the weight 

from i to k and an opposite order exists for Cij and C
ik

. It should be noted 

that comparisons are based within the rows of Wand C only, and consequently, - -
no across row comparisons are carried out. Therefore, since each row can be 

defined by its own metric, only the entries within a single row need be commen­

suraele. 0 Jhe index Qgives a way of comparing. two conditional pro.xin'lfty matrices 

in the sense of Coombs [11J. 
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In the very simple 4 x 4 illustration given earlier, there are 

n(n - 1) (n - 2) = 4 . 3 . 2 = 24 distinct triples and both the functions 

a(.,.,·} andb(·,·,·) takeonthevalueofl ten times. Since there are 

five triples that generate lis for both functions {(3, 1,2)' (3,1,4), 

(4,1,2), (4,1,3)' and (4, 2, 3)}, the index n has the value 5. For 

example, the triple (3, 1, 2) is consistent since W31< W32 and C31> C32 · 

Alternatively, if across row comparisons are meaningful, it may be more 

appropriate to use this added information in defining a different index 8: 

e = I 
i,j,k,l 

where 

r(i,j,k,l) 

s(i,j,k,l) 

r(i,j,k,l) s(i,j,k,l) 

{

I if ifj, kf1 

= 0 otherwise, 

r 1 if; i j, k #1 

= t other,,;se. 

With this interpretation, we count the number of consistent quadruples in the 

same manner that Q counted consistent triples. Now, however, comparisons are 

carried out across rows. In the 4 x 4 illustration, for instance, there are 

[n{n - 1)]2 = [4 • 3]2 = 144 quadruples. The functions r(', " .) and 

s(', " .) take on the common value of 1 for 17 of these, and thus, e = 17. 

13. 

For example, the quadruple (1, 4, 2, 4) ;s consistent since W14< Vl24 and C14> C24 · 

The randomization model remains the same as before for both nand 8. 

The matri£W"i's' merely held fixed "and t'h'e- rows an'd co1um~s' of Care reorgariiz'ed 

in all possible ways. The i,\terested reader is referred to Hubert [23] for an 

extended discussion of other 3 and 4 place cross-product statistics. 
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An Application 

As a simple numerical illustration of the ideas given earlier, we will 

use the data for 26 counties of Eire originally given by Geary [19J and 

reanalyzed by Cliff and Ord [8]. The two major variables are the number of 

milch cows per 1,000 acres of crop and pasture in 1952 and the town and 

village populations as a percentage of total population in 1951. The conti­

guity matrix for the counties .given by Cliff and Ord [8, p. 53] specifies 

the weight matrix W. 

Defining the entries in C by the absolute value of the difference between ... 
the values for two counties on a given variable and using the mean and 

variance formulas given by Mantel [27], we obtain the following results: 

Milch Cows Popul ati on 

Observed r = 3024.00 Observed r = 1721.59 

E(r) = 4679.33 E (r) = 2259.80 

IV\fT = 441.851 1V{rT= 221.556 

Z = -3.75 Z = -2.43 

In both cases, positive spatial autocorrelation exists (defined by relatively 

small index values) and the results are generally consistent with those 

obtained by Cliff and Ord [8] based on the c and I statistics. Similariy, 

using the three-place measure n defined earlier we would obtain indices of 

14. 

1481 and 1369 for milch cows and popualtion, respectively. Both indices are 

significant at the usual (upper-tails) levels obtained from a Monte Carlo 

te~ting strategy based ~n samples of 99 permutations (assuming the observed 

value of an index is another observation drawn at random -- see the distribution 

of Table 1). In both cases, the 0-1 structure of W implies that there are 
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15. 

2344 distinct triple comparisons for which W .. < W. k" Out of this number, the 
1 J 1 

; ndex n i ndi cates how many also have the property that C
i 

/ Cn : 1481 for 

milch cows and 1369 for population. Again, these results are similar to 

those relying on other indices even though a very different form of index 

is now being considered. 

.-

Table 1 here 
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Table 1 

Approximate Permutation Distribution for the n 

Index Using Geary·s Data - Sample Size of 99 

Cumulative Frequencies 

Milch Cows Population 

1000 3 2 
1020 4 3 
1040 8 5 
1060 15 8 
1080 20 16 
1100 30 21 
1120 34 26 
1140 43 33 
1160 51 39 
1180 59 52 
1200 66 64 
1220 72 74 
1240 86 83 
1260 89 90 
1280 92 90 
1300 94 91 
1320 97 94 
134Cl 98 95 
1360 98 97 
1380 99 98 
1400 99 99 
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Discussion 

Autocorrelation measures, as traditionally used by geographers., describe 

the pattern of an observed variate over a map system and imply something 

about the predictab'ility of the map or the structure. By generalizing spatial 

autocorrelation measures using the randomization model as a base, a number of 

advantages accrue over the classical models based on specific distributional 

assumptions for the data. In general, the mo~el proposed in this paper 

generates an immediately assessible inference paradigm for situations that 

would be very difficult to handle in a classical parametric frameworK .. In fact, 

it may well be that standard tests of significance are at times inapp'\':'opriate 

for classical SA measures. By using a Nndomization model and the complete 

enumeration process, significance levels appropriate for SA measures can be 

obta i ned. 

In geography it is common to distinguish betv/een two different approaches 

to spatial autocorrelation. One is tied to expressing spatial autocorrelation 

in a lagged form and depends on calculating and expressing covariances 

bebJeen different data values at different lagged distance or directional 

lengths. The second approach examines spatial autocorrelation in terms of 

the influence each observation is assumed to have on other bbservations. 

Our emphasis is more in line with the second approach rather than the 

first. Regardless of which approach is used, similar types of problems 

face the individual attempting to assess spatial autocorrelation and similar 

problems face researchers attempting to use and extend the procedure~ Gattrell 

[ISJ states the fiY'st of these as the need to specify alternate forms of the 
. ' 

"distance" concept that provides the base for the calculation of spatial 

autocorrelation effects. At least on the variate side of 'the problem\'Je 

have shown how spatial autocorrelation can be generalized to such alternate 
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measures, including Mahalanobis distances, correlation coefficients, and 

any other arbitrarily defined indices of proximity. r~ore general distance 

measures can be handled directly by defining the weight matrix appropriately, 

e.g., Mahalanobis distances in some generalized multidimensional space. 

The extension of SA measures to data structures that are nominal or 

ord~nal produces indices comparable with standard SA measures without the 

need to adhere to the stricter paramet~ic assumptions necoi~a~y to generate 

an inference model for those standard measures. Basing the spatial auto­

correlation index on randomization overcomes one of the more critical problems 

currently being ced by geQg~aphers. For example, Haining [21] argues 

that \'lith respect to the Cliff, et~. study of measles data for Southwest 

England [10J the absence of information on ·the joint sampling distribution 

of the average correlations, together with the smell sample sizes involved 

and the generally insignificant values assumed by the correlations, tend to 

cast doubt on their interpretation of the m~asles epidemic as having a central 

place type diffusion structure. Developing an autocorrelation index using 

the randomization model clearly overcomes the first of these deficiencies, 

although it does not s?'ve the second problem - that of defining a satisfactory 

model base for the interpretation of results. 

The use of spatial autocorrelation in geography to compare observed 

and theoretical or expected map patterns has in the past been limited by 

the problems involved in measuring the degree of departure from randomness. 

As Dacey [14J and Cliff and Ord [8J have found out, rejecting a hypothesis 

of randomness based on Poisson models cannot be taken as indicative of apparent 

contagion. While Besag [3, 4J has examined this problem in more detail, the 
, ~~ 

inference problems raised -Tn 'the geographicst1Idies- can"be approached using 

randomization procedures to construct a reference distribution against which 

to measure the magnitude of deviations. Thus by using such an index and 
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reaching a stage where a hypothesis of randomness is rejected, the researcher 

may feel more at ease assuming that the patterns examined are being produced 

by similar processes. 

In summary, the approach 'lIe have described for- measuring SA has at least 

four major advantages. The first relates to the generality of the paradigm 

and the fact that many different T~!t~aSures, even those tailor-made for specific 

19. 

substantive problems, cao all be placed under one common framework and tested 

-for significance using the same type of randomization argument. It is somewhat 

inappropriate, however, to view the general notion ~f matrix comparison as a 

competitor to the traditional 'way of handling SA tasks since special cases of 

matrix comparison have been used for some time. Nevertheless, there is an 

obvious inherent value in offering alternatives that may be more suited for 

particular research applications than the I and c indices. An obvious ex~mple 

would be in our ability to deal with more than one variable at a time in 

assessing SA through a multivariate measure of distance, defining the entries 

in the matrix C. Second, the randomization strategy itself can be approached 

through Monte Carlo sampl ing, bypassi ng the optimi sti c use of asymptoti c 

distributional results of possibly unknown accuracy. These latter large sample 

size results are very spotty and do not cover all the SA statistics that could 

be defined in our frame'lJOrk. Third, by placing SA into a larger matrix 

comparison structure, an obvious pedagog;cal advantdge is achieved. This is 

analogous to th~ perspective provided by understanding the general linear 

model even though the special cases of analysis of variance and regression 

may continue to be the most popular alternatives as . ~mpl emented by 

routines that are specialized from the more general structure. Fourth, once 
, 

a cornpf'ehensive framework is unders.tood, further work on the frame\'lOrk d.ts~ 1 
f 

immeidCl.tc'ly suggests many associated results that are pertinent to a class of 

measures. Thus, once the commonality of analysis tasks are recognized, there 

is an obvious broade~ ~urpose taken on by the research c~terprise. 
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~, for, Ro"-Call ~Ohpqton ~8as~res 
Inf er ence ~V1(jne S -

l-.,::J "" of 
, 1 i tl"r;:;J.ture tf) inr'ex t .. e! 8qr:e.~ SC'. ence '.. ~., . ~ 

t~e ~~g~ee 0~ co~esion 'Oresent 
that can take into account 

pice's 

; !" 

(UD to a 

, ~O"stant) ~' ... T the ahso~ute lTIu1,tipU.cat'.ve 'J " -

proportions ()f a 'Oosi.. tive anr'l rt 1iecp.ti..ve ~Jf)t~. 
C1:la.nce C'o'1es1.on 

.:I ' of-.:I h',l. 2 50 - 5 f) s '? 1. i, t (i. '? • , 
is sU'.;)l?o'?e'~l~! ln r.1',ca .ev 

has 2 value of t/2) 
anfl 0e'Tiati..ons FrOITl t1.e SO-50 sp',i.t ::J.re 

~ h 'o~ ~-.nnq t~8 an ; ncreas~r: CO .es'" lO_ 

equal.' u-l i.kGl v 
Sllhqr.OUP ITlI?!tIners. Tb1.s 

t ~~V"" ~ ry'?rf~ct 50-Sn 
, t1.. .. _ com. 'O',ete 'QOOU l ~ti on Tfl2~T no. thong" :1<:: . 

en' it. 

0'?:r10nstr'7.te more 

assu'ITlotion of a 50-50 Sp'.i.t. 

, f inq goo~n8ss-of-£it would exist 1.n ~8tn1.:'m, ~ 
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t.:::hl.es i.f m2rg~,na' i,nformation ','ere i,gnorer'! ,::m': '?xnecter'! val,u~s 

probab~, li t.1.es. 

~o~'-ca~l cohesion has been ~ecogntze~ in t~e 'ite~atu~e. For 

instance, as one wav o~ ~eve~o'Oihg a mo~e reasonah~e inference 

:neasure hase0. on the cUffin' ative r.istri,huti.on 0-:: V0tl?S ~ n t 11e mor;o. 

inclustve hoay. Atthouqh this is a steo in t~e 2Porooriate 

c1irectj.on, tltere are <'tt l.east three 1,imit;>.ti,0ns on the 130"'" -3nr'l 

Nev'i..son "tPproach. Fir.st of .::1' l, since t>,e urobe";' ~,tu mo..=tRure 

inc';.cF!S tYU i .C2J, '.y user:l in the '. i.te'='i?,tll~e, E'lCCeDtElnCe of t~e "e'l' 

statj,sti,c 'TIi'l.y r,e very S',OT07 i,n corning, n;:p:-tiCll'-3.~',V qince 

nrograms ar.e rea:l.li r.er for its .-::a'cll'at i,on. 

prohabi.l)t~' mer.lstlre 1S essf:mti.i11'.v li~it.eo to v0tes t~,::)t ~Fl.ve 
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statistic that has pronerties similar to the Pearson correlation 

. an 1,'.n-'3ex tha.t ~'lol1Jn g1 ve an i.nni.ci."tion of the coefficient; l.e., ~l 

absolute level of cohesion ~.rrespective of sc.!TI,?le si.ze but have 

an associ.ated signifi.cclnce statement that t'7as cepenr..ent on the 

number of obser.vations, or in our case, on the number of voters 

in the subgroup as well as in the more inclusive body. Using 

these thr ee concer ns as our moti vat ion, t t i. s relat i ve1 y 

straightfon"'B;rd to carry out the origi.nal BOr'.I-Nevi.son goa'~ of 

oroviding a suitable infer~nce mo~el for a measure of ·cohesi.on 

through the well-known percentag1c vot5.ng agr.eement measure. 

Backq rounrl 

3 

To provide some introductory notation, \'Ie aSnume that a oocly 

of n i ndi vi clual s ... , has vot ed on an i ssne 

. f b oup S of si.ze m is of interest. and the coheslon o. a su gr 

If there are k vottng options, then the percent"3.ge votinq 

agr.eement measure i.s nefine0. ali; (Born and Nevi,son, 1975): 

whe-: e m. 1. s the 
J 

a1 ter nat i ve j, 

r = 
k 

I 
j=l 

m. (m i - l} /m (m - 1.), 
J . 

number of inr:li'd.cluals in 
k 

s using 'Toting 

l.::;j.$,. k, and m = I mi. In otl-l'?r. 
j=l . 

t .... orc'ls, r is 

the ratio of the number of pairs of ~.nni,vi.nual,s in S ~., ho ',,'ot e 

in the same way to the total, number of 1?airs i.n S. 
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i.n relation to the ~istri.hlltion of vntes in P, th~ nu',' ~0~e' 

from the enumpration nf r subsets of 

tvn; C'~, 1, v 

of i.nterest; consecf1l~ntly, i.~ the ohserv~r! ""1'.ue nf r i,5 

the ra,·, rneaStlt:'e signi..fi.c~nt. 

Since cornp"!.ete enu':TIerati.nn is vet:'y ti.i'1e cons11ming a:-r. :':lust 

~e redone for each sep~tate tes~ 0f r , it is conV9~;ent to rely 

on exact mean aD,1 var i "lnce par aT'!l~te:::s an(1 2T1 i'!T)l?17o'{i.mat~ 

normality (~'7hen 1T\ is not too large ot:' ST'fl~.',1) ·t:or eva'uC'ltinq t1:e 

si.ze o~ r (B'oemenq, 1.'=154). 

g~ves (Hubert and Levin, 1977' 

~!her e '-1. . J 

a], ter. na t i. ~7e 

k 
E(f) = I 

j=l 

j ant:'! n = 

of 
k 
I 

j=l 

voters in thr;> lXlpU 1 ('!,t~,on 

2 

V(r) = - [ii(~-ll] Al + 2 A 
n(n-1) m(m-1) 3 

+ 4(m-2~ [A A] 
n(n-1)(n-2 m(m-1) 2 - 3 

l) u.s i ng 

+ (m-2) (m-3~ [A 4A + 2A ] 
n(n-1)(n-2)(n-3 m(m-1) 1 - 2 3' 
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5 

where 

Al 
[ k = I 
j=l 

M. {M. -
J J l

lf 
k 

A2 I 2 = M . (M. - 1) 
j=l J J 

k 

A = L Mj{Mj - 1) 3 j=l 

Finally, the Z-statisti.c 

z = (r- E{r)/1VTfT 

could be referred to the standard norma'. r,istd.bution to finn the 

significance level that should be attac~ed t~ r 

It might also be noted that the l?rohabiU.ty of obtaining a 

Z-value as large or larger than the one observeit cor:respon0.s 

closely in role to the -probability measure l.lse('1 by Born anr'i 

Nevison. The raw index r , however, can also he gi ven a 'Terv 

s1.mple c'1escriptive interpretation that is inCle-penilent of its 

significance level: i.e., the proportion of pairs 1.n the subgroup 

that vote in the same way. As we will see, this descriptive 

capa hili ty extenns to much more generaJ meas ur. es as ,,,eJ.l. 

There is one modification of the r measure that should be 

mentioned that involves how the self-pairs in a subgroup are 

counted, i.e., pairs that are defined by the same 'Toter. with 

U
'! 

:\ 

[·~.1 
;\ 
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himself. For exampl.e, sllol?o~e t~ere are 2 voting options and a 

group of si ze 4 spli ts 2 and 2 giving a r of 1/3. A group of 

40 splitting 20 and 20, however, would generate a larger r of 

19/39. Consequently, even though the splits are the same in both 

c~ses, the size of the group being evaluated proituces Clifferent 

values since the number of self-pairs that are not counted aiffer 

in each case. If a correction is desired, the self-pairs could 

be included and a new index, say r *, def.ined as 

r * = 

k 
2 m. 2 

j=l J 

Thus, in the small example given above, r * ,,,ould be 1/2 in 

both instances. In general, the mean and variance of r * are 

immediate since r * is a siml?le "linear transformation of r 

Specifically, 

and 

E(r*) = E m;l ~ E(r) + 1 
m 

2 
V(r*) = tm~l~ V(r) 

The major disadvantage of this correction is that E(r*) now 

deoends on m whereas E(r) did not . 
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?--value he oositi.~,e ;:mr'! l.argA), t~e onv i.01JS suhsta1"1tjve 

im?H.cati.on i.s t~at t~e S1.1lJqt'OllD has some voti.na cohesion oyer 

Tl:~ere 3.re n1lmerous Axt<;;'1s1.ons of th~.s !-7'a!'le mor~r:;1 t~S!.t can 

~' , . ~ S lsJ01n_ groups 1 conta~ninq ~ an~ s 

inftv!r'!ua~s in eac~. ~he stAtistic 

k 
A I m"TTl?l,/rs 

j=1 '"]-, 
= 

blO groups ~.,ho vote tl:e S 3me to t1-}e tot.al nUm'')Ar of y?3. i r.s. Hp,.-o -.. ,. .. '- , 

ffi1 ' .. J anc'l R!'e the numbet of in~~vir'!u~'s in 81 an~ s~ 

k 
~70t i. ng nnt i.on. '\'hnc::, I mI' 

j=l J 
S, an~ s~ Rre ~o~mef ~t 

, , ,t~ resnecttve_y, who UAe the , 
k 

= r ani1 I TIl". = s. Assllmi.nq 
j=l ~l 

r 2.n ~OTIl (ani,! ~·7i. t h0lJt t en'.o.cement ) 
k 

is t~e same as that ~Ot .I 
J=l 

r 

hut the v;:u:t .'mce i.s now 

V(p..) 

2 

[n(~-I)] Al + n(n:l)rs A3 

+ (r+s-2) [ 
n(n-l)(n-2)rs A2 - A3] 

+ (r-l)(s-l) 
n(n-I)(n-2)(n-3)rs [AI - 4A2 + 2A3] . 
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As we will see in the next sect~on, one genetal ptocefure 

-eor comT,?ar~.ng ty,'o m?tr~.ces inc'.u0es !)oth r c.nr'l A 

cases. Hor.e irn!=,ortant'.V, t\.d.A cOITlpa:ison strat"!qv sugClests an 

eno~~ous variety of othe~ ara~ys~s optio~s fo~ asse~s~ng yntina 

Datter-ns that cannot '0e ~i'!n(:ne('1 in al1V r.0rp1en~.ent TNay ·.'r~ th mote 

tra~it~onal statiRt~cal ~et~o~s. 

Some Ev:tensloY's 

As ment i.one("' Rhove, hath. the r an·-1 A ; n~'i.ces ; nt ~O,,:lllC'?'-' 

in the nrevious !-7'er.tion can be o~taine~ as sDecial c~ses of a 

mo~e genera1 matri.x com?arison strateav • '\'0 hegin ~it~, we let 

Q and C eel10te two nxn matrices with zeros ~Jong t~e ~a;n 

Cliagonal. If tl-Je el1tri.es i.n the i_ t~ ~Ot., '3.110 ; th co' urnn .::Ire 

denoted '0y q. , 
1J 

an rl 

e = C,· • , 1 
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r'- 'V " -o 1 
0 

1""0 
0 ... 

9 = 

0",,-1 
0 ... 0 

1 0 

· · · · · · · · · 
o 1 

k 0 0 ... 
1"0 

'-L .J 

M 

generic entries in the indicated sections where the l's and O's represent 

of the matrix, then e becomes r when C is defined as 

m 

r A 

"" 
1 

m(m-1) 
o 

m 

o (2) c = 

o o 
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(1) 

j 
~~ j h j I ... , 

1 f') 

I 

1 ~] 
1 u, 

[J 
Again, the O's an~ 1 

m(m-l) 

In a similar fashion, A ~s ohta~n~~ when ~ ... 5. S S 'Oe c i. 1" ~ e r"l 

as 

j[J 

1 ! I 

s r 
,---J---..~ ... --... -oL'--_' 

r 

r~ -
1 

~ 0 2rs 0 

t c = \ 

I 
1 '0 0 --

~ 2rs s 

( I 

\ 

0 0 0 

[ 
, 

..... -
l 
l 

using 1 as a generic entry. 
2rs 

. 

U 
To ~evelop an ~nference structure ha8e~ on t~~ genera' 

Ll 
~or all n! oossible ways o~ reo~ganizing t~e rOWR an~ 

si.!Tlultaneollsly tJ,e CnlUl11nS 0€ c ... (or e<:p.1;fJEll.ent1.v, '<le COI1'(l F~x 

U ~ an~ reorder n). If C has the RoectFic structureR q~V~" ,.. 

0 a~9ropriate nu~l ~istrihution for both r and A Fo!:" 

U 
eXr.imple, ·,,,,1t~n C i. s ref i.n~r'l as in ( 2) , the n! 1?OS s 1. lJ'. e 

"-

r.eoroerings o~ C inrtuce (n, subs ets of the !1 0h;pcts i. !1 :? 'm' 

U 
u 
I 11 
,~ --, 

, , 
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C i.nduce an eaua1.'.y-li.kely ~i.str.i.l:·1l1ti.on ('wp.'7 13'.', possible nai.rs 

of subsets with r an~ s ohi~cts in p.ac~. 

Sinc~ formulas for the first b<1O moments of the qenera'. 

innex e ar.e avai:1.abJe in the li.te:r.atur.e even when 0 anr c 

are asymmetric (Mantel, l. Cl(!;7; Hubert ani! Schu1.tz, 1976), the 

expectation an~ var.iancp. eor r an~ A can ~e r.er;. v~r'I as 

special cases of very comprehens5.ve exnresf35.r:ms. "tore 

significantly, the ~atrices Q .':Inn C can a1.so be re(lefi.nen to -
obt.a:i.ii i.nnices that are ~7.ery s1?ecific anr'l/or are c9i.recterl tO~'lar-0 

oifferent aspects of analyzing rol 1.-cal 1. cnhesion. For j nstf.lnce , 

(a) the Q mat rix coulc'!. be ('Ief ine r1 as a ~l1m over- a set of roll. 

l' .::I C .::I &:' r'I s 'n ("J) aT'lt1 (3) Hl'?re, ~,Te arE" interesterl ca .. s an·,! ue,. '.ne, a~ ~.'~. • -
i.n assessing cohesion for mOr:'e than a si.na'.e i ssne. (b) TlJe 

matrix C couV:l n~oresent the resuJ. ts of. a secone" ro'.l-c~l.'. Or:' 

set of roll-calls. NOt,ol, our. inter.ests ~.,ou'.G he in assessinq the 

correspondence between bro sets of r.ol '.-ca'.1.s. r,:ri th t~5.s 1.atter 

in!cerpretation, '9articu'.ar.ly Yllhen both an" 
,.. 
'" r. enr es ent 

partitions of the form qiven :i.n (1'/, Ne ha'le a N::l.Y of ana1.yz1.ng 

1?olitical c1.er:tvages as cefi.ned 11'1 Rae ant'! 'J"ay' or Cl970). (c) 'J'~e 

simultaneous cohesion with~n more than one oarty (w~ether they 

exhaust P or not' can l)e r;leve 1.operJ QV merelv ~xt~nr1inq (2) to 

~.nc'.uc1e mor.e than one "block" of non-zero vC1.1.ues aJong t':.p. "Yl;;dl1 

i!tagonal. Similarlv, cross-connections between ~ore t~an two 

t ' lc'! 'b I=> qlu2ter1 ryV evrenr'linq (3) in tht? Oh~li..OI.lS NoV. l?ar les cou . e _~l . "" .. "'~~ ,. 

(r'! .• ) I_r Q' , '" 'n {1, rhe C matrix could be r'lefiner'l hv J. s gJ. 'len a . .,.... . ,... . 

some :?t'oxi.mi ty measure bet"leE"n voters, e.g., t~~ ~hso1.ute 

. - .-."~- ~~-- -
- -", 
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~ifferences between r:tge, vears of e~ucationr ~nr1 so on. Ou~ 

concern here Noul~ be in rel.~ting vot~nq patterl1 to a 

non-r'l~ chotomol1s variah'.e. 

~uality between vote~8 anrJ issues, the Q an~ C rnatt'~ces couJ~ 

re?resent t~e :o:elationsh5.os amonq is:::mE's (I=> a ror "'''''-'1, ...... .t:: 
• -. • • • , - <-:- r" ~. ,:-,;:J'. r. a l~ 

issues we cou\~ calculate RS a ryroxim~tv meaRur~ t~e P~OpoTtjon 

,;':er'l to e\TaJ nate 'vhether a str1.1cture py; "'tc: t' 
• c •• ., " am0na .1e 

e.g., whethe~ there is subRet homoqenejty o~ an ~onatent 

implicitly in relRte~ osvcholoq~cal contexts, t~e r.eq~er is 

referre~ to this literature 

In a~~ition, extensions to sets of matrices anA,/or. to t . - nOnllE' .!'1.C 

matrix comnarisons that only reau~~e the or~er 0f ~~e el1tries in 

Q and C are available in Ru\:)ert (J.97Bi 1.979). For SO!l1e 

these more qeneral statistics, the ~ea~~r shou'~ cons~'t the 

recent paper by Mielke (1978). 
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SOME COMMENTS ON 

NON EUCLIDEAN MENTAL MAPS 

by 

Reginald G. Golledge 
Department of Geography 

& 

Lawrence J. Hubert 
Department of Education 
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Santa Barbara 
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the distorted grid and street systems. 
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that claims to have space as its central theme, geography is 

at best myopic. Throughout the greater part of their eXistence, geographers have 

represented spatial phenomena in simple Euclidean space. While a few brave souls 

have ventured into the non-Euclidean realm (e.g., Bunge, 1962; Tobler, 1972, 1976; 

lau, 1978), there is a remarkable reluctance within the discipline as a whole to 

think of spatial concepts in' anything but Euclidean terms. Our models use 

Euclidean measures of distance, the bulk of our maps are constructed on a Euclidean 

coordinate system, and out theories of spatial organization are summarized carto­

graphically and mathematically in·'Euclidean terms. 

The widespread acceptance of Euclidean geometry as the most appropriate for 

representing space, predisposes a certain type of perspective on the world. ~!ithin 

the Euclidean framework, space is conceived as being isotropic - that is, the same 

geometric relations hold in all parts of the space. A second important concept is 

that of parallelism - that is, parallels do not converge. Accepting these concepts 

readily allows us to implement perhaps the best known and most widely used formula 

,in the disCipline of geography, that of measuring inter-point distances in 

N-dimensional Euclidean spaces. This formula is: 

where: 

Dij = [~( h,k - Xj,k I {J ~ (1) 

Dij is the distance between two arbitrarily defined points i and j; 

xi,k is the coordinate for point i on the kth dimension; 

r is the exponent to which displacements in any dimension are taken in 

the particular distance formulation (i.e., the Minkowskian Metric). 

While this general Minkowskian formula is \'Iell known, almost invariably the 

Euclidean (r = 2) is preferred to other Minkowskian metrics such ar r = 1 (the 

Manhattan or city block metric) or r =~ (the dominance metric or SUP-metric) 

(see Krause, 1975 ). In this latter metric, the distance between any pair of points 

is defined as the longest side of the right-angled triangle constructed in the space 

about the points (i.e., dij = m~X(xik' Xjk). 
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The Euclidean metric is in many ways a convenient one for abstracting from 

reality and summariz'ing it in the form of a map, It,hich for geography is the 

commonly used model. For many years we have accepted the fact that most maps 

come on flat sheets of paper and geographers have spent considerable time and 

ingenuity on procedures for transforming occurrences on the surface of the earth 

into appropriately represented schema on flat sheets of paper. 

In contrast to this, if one examines the perceptual mechanism of the human 

eye, then it becomes obvious that divergences from the Euclidean metric are 

evi'dent even at the local scale. If physical space is Eucl idean then perceptual 

space must be non Euclidean and even the simple task of recognizing a straight 

line as str~ight must be learned (see Roberts and Suppes, 1967). Admittedly, 

one can argue that the curvature of the earth is such that it can be interpreted 

as be~ng locally Euclidean, but it is also evident that if one looks along a 

railway track stretchi~g along a plain, the parallels of the track appears to converge. 

If one looks at a series of telephone lines stretching away into the distance, 

the poles become smaller. Distance itself is conceived by a process of intel-

lectual synthesis that involves an equalibration of both motoric experiences 

and ~isual effects. When one perceives objects becoming smaller or parallels 

conve,rging, it is assumE!d that a greater amount of effort is requiredl to reach 

such objects. Thus we are faced with a fundamental conflict between our senses 

and our knowledge that we need to resolve on a day by day basis. However, we 

make very little attempt to constructively incorporate the essential differ.ences 

into our day by day experiences. At the very least, one can argue that the 

internal geometry of the world of perception and cognition may have very few 

of the attrtbutes of Eucl idean, geometry and may more 1 i kely be represented in 

non-Euclidean formats (e.g., see Luneburg, 1950; Zautinsky, 1959; Blank, 1961; 

Leeuwenberg and Buffart, 1978; and Indow, 1979). 

If this is the case, then the adoption of the Euclidean perspective for 

our maps, our models, and our theories, involves not only complex abstraction 
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from the real worl~ but a conscious distortion of perceptual data. As an 

example of this, imagine an ind~vidual traversing most North American cities. 

He is forced to move for the most part in right angle steps but most frequently 

has to provide information in terms of straight line distances. "Distance" 

then becomes an experience which should not necessarily lead to a response 

that is best represented 'in Euclidean terms. If, therefore, we can claim that 

there is nothing inherently Euclidean about space or about spatial concepts 

developed and used by geographers, why should we not pay an increasing amount 

of attention to non-Euclidean spaces? For the balance of this paper, we would 

like to address ourselves to presenting a selection of alternative spaces which 

seem appropriate for use in the context of cognitive mapping and its relation 

to spatial behavior. 

Some General 'Pt6p~tties·6f Spaces 

General space is an'abstract set possessing a topology. Given such a 

definition, one can expect that the space is a set over which concepts of 

continuity and proximity may be given meaning. For an abstract set E with 

elements p, q it is possible to specify a set of correspondence rules which 

define a measure on ordered pairs, denoted (pq). Such a distance space can 

be called'semi~met~ic if ei) the measure (pq) is a non-negative real number; 

Oi) (pq) = 0 if and only if p = q, and (iii) there is symmetry such that (pq) = (qp). 

(For a more detailed discussion of the development of geometry and 30m~ comments on 

General spaces, 'see Spiro & Nosh'iro, 1966; Golos, 1968; or Skl ar, 1977). 

Semi-metric spaces in general are characterized by two undesirable 

properties: a) the discontinuity of the distance function, and b) »unnatural" 

distance properties. With respect to (a), given the possibility for discon­

tinuous distance functions, one may finish up with an indefinabl e topology so 

that the space as a whole cannot be characterized and may be identified only 
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in local terms. With regard to the second of these properties, one of the 

"unnatural" distance properties may relate to the concept of continuity in 

such a space. Continuity may be ensured if the following characterization 

hol ds. 

Let p,q be elements of semi-metric space S. If, for any two sequences Pn' 

of elements of this semi-metric space, lim Pn = P and lim qn = q implies qn 

d f t · l·S said to be continuous at the lim Pn qn = pq, then the istance unc 10n 

p,q. The distance function is contlnuous on . S if and only if it is continuous 

at each point pair of S. 'mag1ne I . a serl·es of poly' gons inscribed in this space 

such that, as the number of sides of the polygons approaches infinity, the 

distances between consecutive vertices approaches zero (i .e., implying that 

in the limit the distance between two distinct points goes to zero), then this 

leads to a contradiction of our intuitive feelings about distance. To avoid 

the problem of unusual distance properties (particularly those relating to 

continuity), the independence of the distance function-point assignment must be 

eliminated. To do this, we must make the distance assignment of a given point 

pair dependent o~ the distance assignments for previous point pairs. One common 

. dd't' t the assump\tions of identity way is to impose the triangle inequality 1n a 1 10n 0 

and symmetry. Stated formally, the requirements would then be: 

1) if p = q, then (pq) = a 

2) ; f' p 'I q, then ,( pq) > a 

3) (pq) = (qp) 

4) for any p, q, r, (pq) + (qr) ~ (pr) 

't ia is a metric space, i.e., Any semi-metric space satisf."~"g the four cn er 

the space is positive definite (criteria 1 & 2), symmetric (criteria 3) , 

. 4) Given some of these and satisfies the triangle inequality (criter1a • 
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characteristics of distances in a general metric or semi-metric space, it is 

possible to develop examples of distance relations for a variety of such metric 

spaces (see Love and Morris, 1972; and Gower, 1977). 

Let us now tUrn to a discussion of some critical properties of mental maps 

that strongly suggest the use of non-Euclidean modes of representation as their 

most appropriate form. 

Isotropy, Incompleteness, and Curvature 

Space may not be isotropic. If isotropy does not hold, then the rotation 

of a set of objects about any given point will change distance relationships 

even though relative location itself is not affected. Thus in contrast to the 

Euclidean case where an orthogonal rotation of axes will maintain constant 

inter-point distance relationships, such a rotation in a Manhattan space, for 

example, will change the coordinate values and the distances. While a Manhattan 

space is metric, it is not isotropic since distance depends on angular orienta­

tion. Using a dominance metric, distance once again is related to the coordinate 

system and distance values vary depending on axis location. 

Within a given population~ one might expect that~ because of differences in 

physiological and motoric skills, differences in exposure to sociological, 
\ 

psychological. and educational experiences, and differences in other personal, 

functional,an~ structural variables, some proportion of the population will 

more readily be described by one or another of these three general sub-classes 

of the Minkowskian metric. In a sample of 60 residents in the city of Columbus, 

Ohio (Golledge and Rayner~ 1975) approximately 64% of individuals made inter-

point distance jU.dgments amo,ng selected pairs of 48 locations which were "best" 

represented in Euclidean space (i.e., when "best" was defined in terms of multi­

dimensional scali,ng CMOS) "STRESS" statistics). Approximately 18% of the popUlation 

each give distance judgments' which conformed more to Manhattan or to dominance 

metrics than to Euclidean. In a later study (Spector, 1978); 121 out of 153 

individuals gave information which produced correlations of greater than .S 
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between configurations of points reconstructed from their scaling of the two­

dimensional inter-point distance relationships among the points and a 

representation of the same point set in two dimensional Euclidean space. 

Considering this evidence it is tempting to argue that at the scale of intra­

urban analysis the use of a Euclidean metric can be supported for the 

construction of mental maps of such environments. But at this stage we still 

don't know whether a different form of geometry may'be ev~n more appropriate. 

For example, reappraisal of the data used in Spector's study produced an abrupt 

reversal of his re~ults. Taking the MDS-derived configurations in a range of 

Minkowskian metrics for the 48'points as a base~ the entire set of inter-point 

distances were calculated, then ranked, and a Spearman rank correlation coef­

ficient between this set of distances and the set of objective inter-point 

distances was calculated •. Distances in each point set were calculated using 

Manhattan, Euclidean, and Dominance metrics (see equation 1). The results 

indicated that the Euclidean metric has the highest correspondence between 

'subjective and objective configurations only 18.7% of the time; city block and 

dominance metrics provided best fits for 49.6% and 31.7% of the subjects, 

respectively. Other tests, using regression procedures and clustering methods 

confirmed the significance of the city block metric and the poorer fit of·the 

Euclidean (Richardson, 1979). In light of these conflicting results it would 

seem appropriate to speculate on some of the different forms of geometry that 

may be suitable for investigating the structure of cognitive representations. 

Space is described through the use of the concept of curvature perhaps 

more frequently than through the use of the concept'of straight lines. In 

Euclidean geometry a fundamental assumption is that of parallelism - i.e., 

that parallel lines do not meet. In spherical metrics, parallel lines not 

only eventually meet but in some curved spaces (such as hyperbolic space) they 

diverge. The perceptual experiences that individuals have when travelling 
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through space characteristically reflects a spherical geometry (Luneberg, 

1950; Indow, 1974, 1979). In a sense, then, one acts as though while traversing 

a surface,the slope of the normal to the surface successively changes in a 

constant manner. With a positive change in a Cartesian coordinate and if 

the slope of the normal successively increases, the plane can be described in 

terms of spherical space; but if the slope successively decreases. the space 

is said to be hyperbolic. 

We previously suggested that our concern with space should be at least 

in part tied to the way that individuals experience space. To adequately 

represent cognitive images, we 'need mental maps that truly reflect the internal 

geometry of people's perceptions (see Wood, 1978). ~/hi1 e we have just 

described the case of a space of constant curvature (i.e., a spherical space), 

Riemann showed us that curvature need not be constant and that a geometry 

based on distance formulation may incorporate the idea that at a local level, 

or over very small displacements, a space of non-constant curvature can be 

closely approximated by a Euclidean space. Riemann utilized the concept of 

a tensor - i.e.~ a magnitude which can be used to transform a given set of 

points of an arbitrarily defined coordinate system to a new coordinate system. 

The definition of a general distance tensor on a plane is: 

ds 2 = gxdX2 + 2gxydxdy + gydy2, 

where ds is a small distance displacement, 

dx and dy are displacements along two arbitrary axes x and y, and 

, gx~ gy,. gxy is the we,ighti,ng or tensor applied to each term of the 

squared elements of the distance displacement. 

(5) 

This fundamental tensor is frequently referred to as a covariant tensor of the second 

rank. Obviously, when one is concerned with examining a configuration composed of 

relative locations based on individual subjective estimates of location and proximity, 
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the nature of the set of tensors used to map the subjective judgments is extremely 

important. Some of the implications of the Riemann tensor that are particularly 

significant relate to the fact that space can be stretched or compressed as if it 

were elastic at different locations. The implication for this is obvious. If one 

takes a uniform set of points and stretches them differentially depending on 

location i~ the point set and direction from some particular origin, then distances 

between adjacent points can be either very small or very large. ~/hat this in turn 

implies is that if distance evaluations made by a subject and incorporated into 

his/her mental map are not based on the Euclidean formulation, then there is some 

warpage or disturbance of this space in which the judgments are made, and a Riemann 

tensor may be more appropriate for describing the occurrence of breaks or 

discontinuities in any mapping that is produced. If an individual uses notions of 

curved space in making his evaluations of prox;mities, then fitting his judgments 

to a EUclidean surface can only lead to seeming inconsistencies or "error" when we 

evaluate his/her judgments in the context of Euclidean space. 

One of the criti cal differences between Eucl i dean geometri es and geometri es 

based on curved spaces is simply that the curved spaces are bounded whereas the 

Euclidean spaces are theoretically infinite. In a spherical space, no matter what 

direction one travels one should always be able to return to the origin point •. This 

is clearly not the case in Euclidean space. 

Perhaps the most innovative contributions concerning the use of non-~uclidean 

geometries for representing mental maps is contained in a recent article by Tobler 

on the IIGeometry of Mental Maps" (Tobler, 1976). Even considering the relatively 

large scale mappings typical of urban ar(~as, Tobler examines the possibility of 

using Riemannian tensors to transform what is normally regard,ed as a Euclidean 

urban space to preserve most of the critical topological features that dominate 

empirical examples of mental maps. The application of a Riemann tensor of course 

maintains the essential topological properties ,that can be recovered through a 
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variety of simple experimental designs based on subjective evaluations of inter-

point distances or controlled sketching procedures. However, it distorts some of 

the directional, distance, and areal relationships that exist in the Euclidean 

representation. Tobler also suggests that the use of incomplete experimental designs 

and methods such as paired and triadic comparisons may produce holes, folds, cracks, 

and tears in the fabric of the cognitive image because of "fuzziness" with respect to 

the subject's conceptualization of place location. In other words, he suggests that 

the Euclidean plane be replaced with a topological manifold that for some individuals 

may be somewhat fluid and may vary in its structure either from time to time or as one 

changes the major origin node of the individual. Given the ephemeral nature of such 

a manifold" Tobler suggests that the wholesale adoption of purely metric assumptions 

may be unrealistic for the construction of mental maps. 

Since folds or tears in the manifold representing an individual's knowledge of 

an area vary with the knowl~dge content of space, a third dimension (such as familia­

rity)should be used as a weight in the construction of the maps. Figures 1 and 2 

show samples of individual cognitive con1igurations of 48 locations in Columbus, and 

familiarity ratings of the same points (subject #141 'and #217). Uhen examining such 

map pairs for the 126 subjects in the Columbus sample, it became quite obvious that 

major distortions in the cognitive configuration are correlated with the ar~as of 

lowest familiarity. Recent work by Rivizzigno(1976), Spector (1978) and Golledge 

and Spector (1978) has shown clear relationships between the si~e of location 

errors for places subjectively located in an urban environment, distance from the 

home place (i .e., the key primary node in the individual's spatial structure), and 

familiarity with the places. 

An increase in the fuzziness component of location error as distance from 

a central origin increases~ makes the geometric description of a mental map 

quite complex (e~g., see MacKay and Zinnes, 1978; Gale, 1980). Admittedly, 

one can summarize the trends of the distance distortion by the simple method 
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of transforming grids [pioneered once again by Tobler (1965) (see Fig. 3)J, 

but a more feasible suggestion [once again from the work of Tobler (1976)J 

is to describe the mental map in terms of a small set of tensors that summarize 

the varying nature of the transformation between map locations and images of 

those locations (see Fig. 4). This would mean that the mathematical model 

describing the geometry of such a surface would have all the attributes of a 

tensor probability surface. To date, the closest existing descriptor along 

these lines is summarized in Tobler1s recent work on directional components of 

flows in which he embeds a vector field on an isotropic Riemann manifold (Tob"'er, 

1977; 1980). Applications of this work to cognitive maps can be seen in Gale 

(1980) and Gale and Golledge (1980). 

From this initial discussion, there are a number of critical points that 

have been raised concerning the geometry of mental maps. First is the fundamental 

question of whether or not mental maps should be constructed as isotropic spaces. 

A second and equally important question is whether or not such a map can be 

rotated, scale transformed, or reflected without disturbing the distance relation­

ship among key points on it. A third question concerns whether the most 

appropriate space for the construction of mental maps is an infinite plane or 

a bounded curved space. Following this is the question of .whether the space 

has constant curvature or whether the curvature varies considerably from place 

to place or from sector to sector on the map. A question intuitively raised by 

almost everyone concerned with mental mapping is simply whether such maps 

have ~ metric proper-ties whatsoever or whether they are only locally metric. 

As a first step towards answering some of these questions, we suggest that a 

variety of non-Euclidean metrics be considered for representing cognitive infor­

mation. We start by presenting some of the features of perhaps the simplest 

curved spaces which may be appropriate for examining mental maps - ; .e., R'iemann 

s,paces with constant curvature (see Ahl fors and Sario, 1960). 
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A Riemann space with coordinate system (xl' x2 ' ••• , xn) has a metric represen-

tation in terms of local derl·vatl·ves. A d t' f . s a qua ra lC orm lt is represented as: 

2 ds =~. g.. dx. dx. 
ij lJ 1 J (6) 

The gij coefficients must satisfy the followi,ng conditions: 

1. Each gij is a real si,ngle valued function of the coordinates and 

2. 

3. 

possesses continuous partial derivatives. 

The axiom of symmetry holds (i.e., g .. = g .. ) 
lJ Jl 

The quadratic form determines both the local and global geometric structure of a 

Riemannian space. What is of most critical importance as far as mental mapping is 

concerned, however, is that the most important parameter of a Riemann space is its 

curvature at each point. The Gaussian or total curvature at any point is defined 

as a product of the maximum and minimum curvature of all the geodesics passing through 

the point - (i .e., the maximum and ~inimum of all the curves of minimum distance 

passing through the point). The Riemann space itself is a hypersurface or manifold 

S in a higher dimension space T. The tangent space at points X in S sep'arates T 

into two regions. The curvature of a geodesic through X arbitrarily is called 

"positive" if its center of curvature is in one region, and "negative" if its center 

is in the other region. Riemann spaces ~fith constant curvature are called elliptic 

or spherical if the parameter of curvature K > b, hyperbolic if K < 0, and Euclidean 

if K = o. 

While the quadratic form completely specifies any Riemann space, our familiarity 

with l.,tlclidean spaces sometimes makes it more convenient to specify a Riemann space 

by a global equation. Lindman and Caelli (1978, p. 91) specify the form of such an 

equation as: 
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(7) 

where 

r k = the coordinates of the higher dimension space I; 

K = the Gaussian or total curvature. 

The equation given by Lindman and Caelli represents the elliptic hyperspace 

of K > O. They point out, however, that when at least one squared term of 

the quadratic is negative then the space is hyperbolic with' K < o. When the 

manifold ~ is embedded in the higher dimension space, the distances in the two 

spaces are related by the following equations (Li ndma'n and Cae 11 i, 1978, p. 92): 

!.: 
q •. =2/(K)2 
lJ 

= d .. 
1J 

t· (K~ di ')J Sl n J 
2 

q .. 
1J = 2/(J Kill:; [Sinh (J KIl:; dij) 1 

K > 0 (8) 

K = 0 (9 ) 

K < 0 (10) 

In the above formulation, dij is the d.istance arc measured in the manifolds, 

and q .. is the distance measured in the space in which the manifold is embedded. 
lJ 

Note particularly that when the space is complex, the qij may not be metric, 

but the dij will be metric if the complex space has exactly bne imaginary 

dimension. 

Some Alternate Metrics 

In his discussion of a range of metrics suitable for representing structure 

in similarity data, Shepard (1974, p. 405) describes a hierarchy with increasing degrees 
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of generality. At the base of this hierarchy are the specific Minkowskian r metrics 

which include the Euclidean, Manhattan or city block, and Dominance metric (see 

equation 1). Each of these relates to metrics developed in isotropiC infinite 

spaces. At a similar specific level are the hyperbolic and spherical spaces 

which are derivates of spaces bf co~stant curvature. A space of constant 

curvature is seen as a special ~ase of a General Riemann space. A constant 

curvature space is both curved and locally Euclidean, but unlike the General 

Riemann space it is also isotropiC. This last condition holds because the unit 

'spheres on whi ch the space of constant curvature are based are uniformly 

spher-i'cal. A similar level to the General Riemann space is that space in which 

a General Minkbwski metric applies; such'a space is isotropic, flat and locally 

non-Euclidean. The isotropic and flat characteristics follow from the fact that 

the spheres underlying it are of constant size and shape. The General Riemann 

space is curved and locally Euclidean with ellipsoid unit spheres. Next in this 

hierarchy of generality is a Finsler space; this pre~upposes a continuous under­

lying coordinate space with its own intrinsic dimensionality. This space is 

curved, locally Minkowskian, but the unit spheres change continuously with 

'location. The General Riemann space is a derivative of Finsler space • 

The most general of all spaces in Shepard's classification are general metric 

and semi-metric spaces in which the spaces are defined solely in terms of inter­

point distances; they do not imply a specific dimensionality and do not implicitly 

embed coordinate systems within them. Postulates underlying the general metric 

space are too general by themselves to allow the development of rigid theoretical 

, geometrical constructions. Shepard suggests that the most appropriate space for 

the representation of cognitive information is one which is not too particular 

and maintains a level of structure, yet allows for non-trivial investigation 

and conclusion. This would imply that the fundamental metric axioms of, 
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triangularity, symmetry, and positiv'ity and identity at least have to be main­

tained within the fabric of the space. Such a space must be finitely compact 

or boundedly infinite: in other words, a finite dimensioned space such as 

this one cannot be extended without increasing its dimensionality. Further, 

such a space shoul d be convex and incorporate the noti on of betweenn(!5s: 

i.e., given two distinct poirlts X and Z then it is possibl e for a point Y to 

exist between those two locations. Given these brief notions, one can immediately 

see that both Riemann spaces and those spaces suited to th~ use of all Minkowskian 

metrics are particular subclasses of a general metric space. 

Conclusions and Speculations 

If we examine configurations of points that have been generated using inter­

point distance estimation or Ita set of points located in a space which is defined 

solely'in terms of inter-point distances, then we are confronted with a space 

which implies neither a specific dimensionality nor is there implicitly embedded 

within it a coordinate system. If we can further find key nodes in this particular 

space, we might imagine that as distance increased from each key node, the 

probability of a fold, crack, tear, hole, or other warpage of the space would 

increase consideraly. Assume further that the key nodes are not uniformly 

spaced. If one were then to construct a set of Thiessen polygons for this set 

of non-uniformly spaced nodes, there would be considerable variations in the 

distance of the edges of the polygons from the key nodes (Fig. 5). One might 

further expect that, in those areas of each polygon which are most distant from 

the key node, information about the area may be least and the probability of 

distortion or warpage might increase except along the dominant gradient or link 

path between adjacent nodes. Using conventional ideas from probabilistic ~arket 

area analysis and the recent suggestions of Tobler (1976) concern~ng non-constant, 
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warpages and the development of a probabil ity surface for distortions in "mental 

m~ps It 0 • 1 . a ,ne can Vlsua lze a mental map of the previous set of locations with the 

major distortions or warpings occurring away from the major nodes and the 

primary paths that connect them, and increasing in probability of occurrence in 

the more inaccessable or distant paths of each Thiessen polygon (Fig. 6). The 

result would be to produce a map which associates points or key 1ocations with 

error probability surfaces. The probability of warping would, therefore, be 

non-constant as direction changes from key nodes, or as distance increases from 

the key node to different edge segments of the Thiessen polygon. 

The building of such a py'obability surface is simple in Euclidean space, 

but the specification of the surface parameters is some\'Ihat more complicated 

even in a simple Riemann space of constant curvature. Detailed examination of 

over 200 individual configurations of 48 locations for the city of Ce" . 'bus has 

shown that location errors differs considerably across the individual maps and 

that there is definitely both a directional and distance component to'the 

distribution of errors (~.g., see Rivizzigno~ 1976; Spector~ 1978; Golledge 

and Spector, 1978;Gale, 1980)(~ig. 4.' shows location errors for subject 100). 

What is more, this error surface undulates depending on the activity pattern 

of the individual, for as information about different segments of the environment 

increases, the probability of maintaint.ng a constant location error diminishes. 

At various time periods, therefr.re, the manifold in which the points are located 
, .. 

can be warped differentially [e.g., see ~ig. 7 - an example of the street map of Fig. 4 

warped to fit the c.ognitive configuration obtained for sUbj'ect 100). If one 

were to obtain a cross-section through time of a series of these manifolds, 

one should be able to recreate a history of the main repetitive components of 

an individual's spatial behavior for that time period. 

Obviously, the first thing to be done is to attempt to define the appropriate 

parameters which describe the Riemann space in which a number of subjective 
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configurations exist. Once this has proved to be a feasible operation, then 

expanding the work to cover manifolds produced at different stages of the er.viron­

mental learning process and recreating histories of spatial behaviors associated 

with each manifold would seem to be an intriguing direction for constructive 

use of current work on mental maps. 

An alternate way of envisioning the warped manifolds suggested in the 

previous paragraph is to introduce the concept of a mean information field 

with holes. Figure 8, for example, shows a standard grid with a series of 

familiarity measures allocated to each grid cell. As one can see, there are 

two holes in the mean information field where zero information is recorded, and 

two major peaks - one towards the S JL corner of the fi eld and another towards 

the N.W. corner. If one contoured the mean information field, the holes would 

stand out in the two dimensional Euclidean representation of it. However, if we 

collapsed the field so as to eliminate the holes, the configuration that resulted 

would more readily be described in non-Euclidean terms. Such a warped field more 

closely approximates the sketch maps drawn by individuals with incomplete 

information about test environments; the consequent shortening of distances across 

places with low information levels and the exaggeration of distances where 

information is consistently high mirrors many of the types of distortions 

recovered from indiVidual configurations of urban areas in earlier works (Golledge 

and Rayner, 1975; Golledge, Riviz~igno, and Spector~ 1976; Rivizzigno, 1976; 

Spector, 1978). 

As a further step in an attempt to define the types of metrics most suitable 

for the representation of subjective configurations of places, current work at 

U.C. Santa Barbara is aimed at defining configurations of places in Riemann spaces 

such that an index of fit between subjective and objective configurations 

mapped onto the same space can be obtained. In general, it would appear that 

questions related to the suitability of representing mental maps in metric spaces 
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need to be answered before much confidence can be placed in widespread use 

of such maps in conventional geographic work. 
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1) 

Summary of Selected Computer Programs 

Programs used in paper "Aggregation in Data Tables: Implications 

for Evaluating Criminal Justice Statistics"* 

a) Program to correlate each row of a ranked matrix with a 

perfect pattern, then to find the average correlation and its 

associated Z-statistic. 

b) Same as above except used for raw data, not ranks. 

c) Computation of aggregated correlation coefficients between 

a standardized data matrix and a perfect pattern. 

d) Multiple group concordance. 

e) Hierarchical clustering based on R*A and R*B. 

f) Pre and post aggregation correlational analysis. 

* Programs available on request from PI's 
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2) Program XBLOK used in paper #2 "Assessing Homogeneity 

in Cross-Classified Proximity Data"* 

PROBLEM-- Given an arbitrary proximity matrix which is 

cross-classified according to two dimensions, the problem is to 

assess the salience of each dimension individually. 

ALGORITHM-- The basic strategy is to block on the level of one 

dimension while assessing saliency in the other dimension. 

Suppose that N profiles are defined over a set of T 

variables, and that the N profiles are cross-classified by m 

levels of factor A and n levels of factor B, so that N = mn. Any 

measure of proximity, such as correlations or Euclidean 

distances, may be used to produce a symmetric N x N proximity 

matrix. One appropriate ordering of the N profiles would be to 

have the n levels of factor B repeated for each of the m levels 

of factor A down the rows and across the columns ~f the proximity 

matrix. The main diagonal of the matrix would contain measures 
. 

of similarity between same levels of both factors. There would 

also be m blocks (submatrices) of size n x n straddling the main 

diagonal and these blocks would contain measures of proximity 

between same levels of factor Ai however, the off-diagonal 

elements of these blocks would all be measures of proximity 

between different levels of factor B. Similarly, there would be 

m(m - 1) blocks away from the main diagonal which contain 

proximities that are all between different levels of factor A. 

And the main diagonal elements of these off-diagonal blocks would 
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each be a measure of similarity between same levels of factor B. 

Thus by focussing attention on those latter elements, 

homogeneity within the levels of factor B may be 

regard to the confounding effects of homogeneity 

assessed without 

within the 

levels of factor A. In particular, those elements may be summed 

to produce an index of homogeneity within factor B and this 

index, called robs, may be compared to its expected value under 

the assumption of randomness to determine its statistical 

significance. 

The Significance tes~s utilized are of two varieties and 

both are non-parametric l'n nature. W'th' 1 ln each level of factor 

A, the n! possible reorderings of the levels of factor Bare 

assumed equally ll'kely. Sl'n th 1 ce ere are m evels of A, this 

implies (n!f equally likely such realizations of the complete 

matrix. Each such realization leads to a value for r , and when 

tabled, these values form a reference distribution to evaluate 

the size of the observed index. In the usual interpretation, the 

hypothesis of randomness (blocking on factor A) would be rejected 

if robs were sufficiently extreme with respect to the reference 

distribution; the proportion of realizations giving values of r 

as great or more extreme than robs would be t d d' repor e lrectly as 

the Significance level. 

An alternative test is also available. First note that 

robs is an index calculated for a partition of the N objects 

into m groups of n objects each, and the overall index is the sum 

of the elements corresponding to the n same levels of factor B 

within groups corresponding to different levels of factor A. If 

the sum of the diagonal elements of one such block is denoted as r uv ' 
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then the first two moments of an arbitrary value of this form is 

giv~n in the literature (Puri and Sen, 1971) as~ 

E 

Moreover, 

(r ) = lin uv 

where 

I I d .. 
. . 1 J 
1 J 

Q1 = 

Q2 = 

Q3 = 

Q4 = 

~ 
J 

~ 
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~ 
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~ I d .. ) 2 
1 . 1 J 
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since the separate indices of the form ruv 

independent in pairs, the first two moments of rare: 

E (r ) = I E ( ru) 
u>v 

V ( r ) = L V ( r uv) 
u>v 

the associated Z-statistic for r obs is: 

Z = robs - E (r) 

.; V (r) 

are 

and a simple Cantelli bound conservatively assures that the 

significance level for any ~orm of reference distribution 

2 whatsoever will be no larger than 1/(Z + 1). 
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INPUT 

Deck Make-up: 

1. System Cards 

2. Source or object program deck 

3. System cards 

4. Control Card 1 

5. Control Card 2 

6. Control Card 3 

7. Control Card 4 

s. Data cards 

9. System Delimiter Card 

Card Format: 

Control Card 1 -- (I4,D12.0) 

cols. 1-4 Number of random permutations wanted 

(right adjust) 

cols. 5-16 Integer random permutation seed 

Control Card 2 -- (4A4,I4) 

cols. 1-16 Name of factor A 

cols. 17-20 Number of levels (m) of factor A 

(r ight adj ust) 

Control Card 3 -- (4A4,I4) 

cols. 1-16 Name of factor B 

cols. 17-20 Number of levels (n) of factor B 

(right justify) 

Control Card 4 -- (lSA4) 

cols. 1-72 Variable format for a logical row of input 

(must be F or E format) 
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Data Cards 

The data consists of an arbitrarily-defined symmetric 

proximity matrix. The entire matrix should be input, and it 

should be ordered such that each level of factor A contains all n 

levels of factor B. (note: mn ~ 100) 

COMPUTATION-- As the matrix is symmetric, all computations are 

performed below the main diagonal. Four general descriptive 

averages are computed first. These include: 1) the average 

proximity among elements corresponding to same level of factor A 

and different level of factor B: 2) the converse average; 3) the 

average proximity among elements corresponding to different 

levels of both factors; and 4) the average proximity in the 

matrix as a whole, excluding the main diagonal. 

Then robs for factor B is computed by summing the diagonal 

elements of all the lower diagonal blocks of the matrix. 

Following that is the computation of E (r) and V (r), which in 

turn allow the calculation of the Z-statistic and a Cantelli 

significance level. 

A reference distribution for r is then produced by randomly 

permuting the r.ows and separately the columns of each of the 

below-diagonal blocks of the matrix and recalculating the index. 

This is done as many times as is requested by control card 1. 

The matrix is then reordered such that the m levels of 

factor A are contained within each level of factor B. The same 

computations are repeated, except that now homogeneity within the 

levels of factor A are being assessed while blocking on factor 

B. 
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OUTPUT-- The proximity matrix is printed out in exactly the same 

format as it was input. This requires two points of caution on 

input: 1) Column one should be left blank on input if the output 

will be to a line printer, since this column is omitted by the 

printer; 2) One extra space per value must be allocated for a 

decimal point on output if the data is input in F format without 

decimal points. 

Following the proximity matrix is output a table containing 

the four descriptive averages discussed at the beginning of the 

previous section. 

The statistics for assessing homogeneity within factor B 

while blocking on factor A are then outputted. These include 

robs, E (r), v (r) and the standard deviation of r, the Z-value, 

and the Cantelli significance level. 

Finally the reference distribution of random indices which 

has been sorted from least to greatest is printed. 

Having completed the assessment of homogeneity in factor B, 

the matrix is reordered to assess the same in factor A. The 

matrix is printeu out in its reordered from and the statistics 

pertaining to factor A are pointed out in the same sequence as 

were those pertaining to factor B. 

LIMITS AND COMPATABILITY-- The program is designed to operate on 

any symmetric proximity matrix of order 100 x 100 or less. It 

requires a region in core of approximately l40k bytes. The 

sample run of a 6 x 6 matrix required 2.7 seconds of CPU time, 

while the original application on a 30 x 30 matrix required 4.5 
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The program is written in IBM FORTRAN, and has been executed 

on the level H-extended compiler. It must be linked with IMSL 

subroutine GGUBS for the purpose of random number generation. 

The input and output devices may vary. While they are set 

at units 5 and 6, respectively, those unit numbers may be easily 

changed by altering the data statement at the front of the 

program. 

* Program listings available on request from PI's 

* QAP is currently not fully exportable and is specific to the 

U.C.S.B. Itel AS-6. Those interested in following its 

development to exportable stage should contact Professor L.J. 

Hubert, Graduate School of Education, U.C.S.B. 
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A) Pen: onnel 
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1) Reginald G. Golledge, Professor of Geography, U.C.S.B. 

(Co-PI) 

2) Lawrence J. Hubert, Professor of Education, U.C.S,B. 

(Co-PI) 

3) Waldo Tobler, Professor of Geography, U.C.S.B. 

4) Richard Church, Assoc. Professor of Civil Engineering, 

University of Tennessee 

5) G. Donald Richardson, Geography Graduate student, 

D.C.S.B. 

6) C.M. Costanzo, Geography Graduate student, D.C.S.B. 

7} Scott Davis, Geography Graduate Student, U.C.S.B. 

8) Trish Foshi, Geography Graduate Student, U.C.S.B. 

9) T. Kenney, Education Graduate Student, U.C.S.B. 

10) Patricia Fenwick, Senior Typist-Clerk 

The project was administered through the Social Processes 

Research Insitute (SPRI) at U.C.S.B. under the management of 

Patricia Griffith, Administrative Assistant. 
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B) List of papers presented at conferences 

1) "Aggregation in Data Tables: Implications for Criminal 

Justice Statistics" presented at NIJ Conference on Research 

Methodologies and Evaluation Methods, Baltimo~e, March 1980; at 

the Association of American Geographers, annual conference, 

Louisville, April 1980; and at the Society for Multivariate 

Experimental Psychology, Los Angeles, November~ 1979. 

2} "Assessing Homogeneity in Cross-Classified Proximity Data" 

presented at I.G.U. Commission on Quantitative Methods, Nagoya, 

Japan, August 1980; and the Department of Psychology, 

University of Illinois, Urbana, December, 1979. 

3) "Unidimensional Seriation: Implications for Evaluating 

Criminal Justice Statistics" presented at the International 

Geographical Union Congress, Tokyo, Japan, September 1980. 

4) "A Heuristic Method for Analyzing Proximity Data" 

presented at the Annual Meetings, Regional Science Association, 

Milwaukee, November 1980. 

C) Papers published and submitted for publication 

1) "Aggregation in Data Tables: Implications for Evaluating 

Criminal Justice Statistics," Environment and Planning Ar 1981, 

in press. 
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2) "Assessing Homogeneity in Cross-Classified Proximity Data," 

Geographical Analysis, 1981, in press. 

3} "Unidimensional Seriation: Implications for Evaluating 

Criminal Justice Statistics,R Environment and Planning A, 1981, 

in press. 

4) "Generalized Procedura3 for Evaluating Spatial 

Acitocorrelation," Geographical Analysis, 1981, in press. 

5) "Some Commeftts on Non-Euclidean Mental Maps," Environment 

and Planning A, 1981, in press. 

6) "Inference Models for Roll-Call Cohesion Measures" submitted 

to Quantity and Quality, November 1980. 

7) "Proximity Matrix Reorganization and Hierarchical 

Clustering" submitted to Environment and Planning A, November, 

1980. 

D) proj~~~ed MA theses and Ph.D. dissertations 

1. C.M. Costanzo - "Aggregation and Spatial Autocorrelation 

Effects in Crime Data: The Case of Homicide Rates" 

MA thesis, Department of Geography, U.C~S.B. (projected 

completion d~te: Spring 1980). 
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2. T. Kenney - "Methodological Investl'gatl'ons l'n N on-Parametric 
Data Analysis Strategies" 

Ph.D. dissertation, Graduate School of Education, U.C.S.B. 

(projected completion date: Spring 1982). 
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