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Executive Summary

The purpbse of this research was to develop procedures for
analyzing selected spatial and temporal characteristics of crime
data. Three particular problem areas were to be investigated:
(a) selected aspects of the aggregation process; (b)
confirmatory and exploratory methods for examining crime data

summarized in proximity matrices; and (c) an examination of

- spatial autocorrelation procedures. In each case an attempt was

- made to examine the problem in terms of a randomization approach

rather than by conventional statistical procedures. The
randomization procedure was based on the work of Hubert (1978a,b,
1979a,b), Hubert and Baker (1978a,b,c) Hubert and Levin (1876b) ,
and Mantel (1967). 1In the course of the general set of
investigations, spillover effects occured in that our examination
of methodologies such as hierarchical clustering and
multidimensional scaling, and the use of the combinatorial
strategies associated with the quadratic assignment procedure,
stimulated research on diverse topics such as developing a model
for roll-call cohesion methods (a combinatorial strategy)vand
examining the potential use of non-Euclidean geometries in the
study of cognitive maps (a variation of the standard Euclidean
measures used in calculating proximities and an extension of the
"perception of crime" research in paper #4). While these latter
two papers are somewhat peripheral to the main theme of the
research, they do represent areas of considerable interest in

disciplines such as‘geOgraphy, cognitive science, psychology, and

-political science.
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The major problems investigated during the' course of t::

project and outlined in the final report can be summarized as

follows:
1. Aggregationain Data Tables: Implications for

Evaluating Criminal Justice Statistics

a) SUMMARY

Datz collected on a set of objects (e.g., cities) over a set
of attributes (e.g., time points) can be subjected to a variety

of aggregation schemes. For example, if a hypothesized pattern

over the attributes is to be confirmed (e.g., a temporal increase
in homicide rate), the data could be first aggregated over cities

and then compared to the hypothesized pattern. Alternatively,

the correspondence for each city could be separately assessed and
the individual city indices aggregated. The stage at which.
aggregation takes place affects the size of the final measure of
confirmation as well as its significance, but unfortunately, in
opposite ways. Preliminary data aggregation typically leads to
larger summary statistics and larger significance levels. The
conflicting notions of size and significance are first formalized
in detail when the basic data are single numerical values
obtained for each object-attribute pair. Extensions are
presented to multi-group concordance, hierarchical aggregation

schemes, and to object data defined by‘pairwise proximities

between the attributes.
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b) DISCUSSION*

In the very first example illustrating two aggregation
schemes, a rank transformation was used within each row and on

the rank sums for each column. This process ensures that each

object or row contributes "equally" and thus, some degree of
natural comparability exists between the summary statistics
obtain-* for the two aggregation schemes. To develop more

expi .cit relationships in terms of formulas, however, the
transformations used in most of the paper were based on obtaining
z-scores. In the jargon 6f statistics, observations within rows
are aligned for location and séale. This convention allowed
precise connections to be developed between the two aggregation

schemes both in terms of summary indices (e.g., for r, and r, )

A B
and Z-statistics (e.g., for Z and ZB) (for definition of all

A
these summary indexes see pages 9-12 of the first paper presented
in the main section of this report).
Matrix extensions offer a great deal of flexibility in

defining different relationships among the attributes, but

unfortunately, the problem of defining a transformation on the

. aggregate data matrix also makes it very difficult in general to

develop precise formulas for connecting the two aggrégaticn

schemes. As an example of this problem} suppose we are given the

basic object by attribute data table and define an n x n matrix

for each object (e.g., city) as follows: th

row and vﬁh

the entry in the u

column is +1 if x. > x.
iu jv

If we treat the n{(n-l) entries in each such matrix as

; -1 if Xjy < Xayv and 0 if

X_iu. = X_iv.

a sample, normalize to z-scores in the usual way, and carry out
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the same redefinition for a criterion set of values

yl, Y. sr...r Y , the average correlation rpg is actually the
n

2

average Kendall Tau, statistic of each row against the criterion

b
(cf£. Hays, 1960). However, to obtain an analogue of Lyr @
similar transformation to signs must be performed on the
aggregated scores from the standardized object by attribute
table. This discontinuity in strategy prevents any simple way of
defining a relationship between the summary measures for the two
aggregation schemes. We would still expect data aggregation to
give a larger descriptive measure and a greater significance
level, but it is not clear how these expectations could be
formalized as a parallel to our previous equations (l) and (2)
(given on pages 10 and 11 of the first paper in the main section
of the report).

As another point of clarification, we note that the
normalization within rows of an object by attribute data table
may not be the only natural transformation to carry out.

Instead, suppose z-scores are obtained within columns and for
th

each object i we define an n x n matrix having an entry in the u

and z.,K are z-scores

Zz . Here, Z.iu iv

row and vth column of %'ziu iy
for attributes u and v, respectively. If we aggregate over the I
matrices (treating objects as if they were "subjects"), the
correlation matrix among attributes is geherated. Pattern
comparisons are important here in the context of what is called a
multi-trait multi-method matrix; consequently, some of the same
aggregation principles discussed previously appear important to

distinguish in these applications as well (see Campbell and

Fiske, 1959:; Hubert and Baker, 1978).
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The methods of data aggregation discussed in the paper
represent both ongoin¢ procedures used in geography for
aggregating data and alternatives to those standard procedures.
For example, Harries (1973) used preliminary aggregation
procedures when he averaged violent crime rates for 189 SMSA's
for the five year period 1965-69 and calculated simple
correlations between violent crime and population over the
SMSA's. Alternative procedures for determining correlations
between violent crime and population are given in our discussion
of the statistics r, and ¢

B s(ave) *
aggregation when he examined actual crime rates per 1000 persons

Pyle (1974) used correlational

for nine crime types, plus armed robberies per 1000 commercial
structures and rates of residential burglary per 1000 dwelling
units. Pyle calculated all pairwise correlations for the entire
study area (Summit County) and for a subset of the study area
(Akron) and then attempted to illustrate differences between the
correlations. This is similar to the procedures used in
discussing multiple group concordance in this paper.

Harries (1974) also used preliminary data aggregation when
he correlated city size with crime rates averaged over index
crimes for a five year time period - a procedure that could be
extended by using the matrix comparison procedures developed in:
the lattef section of this paper. Other examples of preliminary
and correlational data aggregation procedures can be found in t@e
growing literature on the use of canonical correlation in |
geography (Monmonier and Finn, 1973; Clark, 1975). However, thé
exact procedures detailed in this paper focusing on rank orders

and Z-statistics for both preliminary and correlational
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aggregation procedures, to our knowledge, have not appeared in
the geographical literature.

As one final observation, it should be noted that the
two-group discussion developed in the paper was concerned with
the concordance between two classes even though the various
summary indices were subject to modification by the degree of

internal concordance. 1In other words, we were not explicitly

interested in assessing large within group homogeneity per se.
Given the original I x I intercorrelation matrix, however, and a
hypothesized split of the I objects into T groups (e.g., into two
disjoint subsets), we may also wish to test whether there is more
concordance within the groups than expected under some chance
model. This topic has been discussed in detail elsewhere for the
null conjecture that the given partition was chosen at random
from all possible partitions with the same number of classes and
objects in each. Thus, we would hope to reject the randomness
assumption if the within group concordance was substantially
greater than the between group concordance,vi.e., the a priori

partition is reflected in the size of the correlations in the

original I x I matrix. For a complete discussion, the reader is

referred to Hubert and Levin (1976).

* References that are cited are given in the appropriate paper

presented in the main section of this report.
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2. Assessing Homogeneity in Cross-Classified

Proximity Data

a) SUMMARY

Given an arbitrary proximity matrix that is cross-classified
according to two dimensions, a nonparametric strategy
generalizing Friedman's (randomized blocks) analysis-of-variance
method, is suggested for testing the saliences of the dimensions.
Straightforward extensions of the approach can be given for more
than two dimensions and/o; when only the ordering of the

proximity values is of interest.

b) DISCUSSION

The major contribution of this paper is in the use of
arbitrary proximity measures and the development of a strategy
for blocking on the levels of onn (or more) a priori dimension (s)
when evaluating the differences over a second. The strategy
being proposed is really very general even though the
illustration we have used in explaining the method contained the

three explicit classification dimensions of space, time, and

crime type. For instance, since any two of the dimensions could

in fact have been considered the major classification facets of
interest, proximity measures could have been obtained between
profiles over the m cities and our interests directed towargd the
two dimensions of crime type and time. The basic inference
principles would remain the same and the analyses would be
carried out as before. Hopefully, our discussion will allow

researchers to assess dimensional salience in data sets that are




e

e

pac

<

not easily studied by more standard analysis-of~variance schemes
because of an unusual proximity measure. Moreover, the
possibility of relying on only nonmetric comparisons among
proximities should provide a nice tie-~in to the current emphasis
in nonmetric clustering and scaling in the social and behavioral

sciences.

3. Unidimensional Seriation: Implications for

Evaluating Criminal Justice Data

a) SUMMARY

The problem of validating a given unidimensional scale
(i.e., an ordering of a set of objects along a single dimension)
is discussed in terms of a few simple properties of the data used
to obtain the scale. Based on a set of asymuetric proximity
values as raw data, a distinction between analyzing absolute
value information or sign information is presented that leads to
a formal test of whether a given scale is being reliably
represented. 1In short, a scale is generated from absolute value
information but validated through sign information. A numerical
example which deals with the perception of homicide rate over 15
of the largest SMSA's is included as an illustration of the

general methodological discussion.

b) DISCUSSION & EXTENSION*
Given the basic context of unidimensional seriation as

developed in the earlier sections of this paper, a variety of
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additional topics could be pursued. We mention only a few in
passing to give some indication of the current research efforts
in this direction. For example, the type of inference strategy
that was proposed for evaluating the pattern of signs can be
extended to compare two arbitrary skew-symmetric matrices (see
Hubert and Schultz, 1976). Thus, it is possible to evaluate the
consistency between two skew-symmetric interaction matrices where
the latter may be based on migration data at two time points or
from two different demographic subgroups. Secondly, from a
combinatorial optimizatiop point of view, several very elegant
thecsretical paradigms have been introduced recently for
characterizing a discrepancy between a given seriation and the
original asymmetric data, e.g., see Bowman and Colantoni (1973)
and Merchant and Rao (1976). Aleong these same combinatorial
optimization lines, a general strategy has been suggested
(Hubert, 1980) for locating and seriating only a part of a
proximity matrix that appears to be most consistent with the
basic underlying spatial model. This latter technique can assist
in identifying subsets of an object set that can be seriated yell
and those subsets that are not represented satisfactorily along a
continuum,

As one example of particular importance we note that the
topic of criminal mobility could define one of the more
interesting applications for unidimensional scaling in the
criminal justice area. For example, based on movement data from
pPlace of residence to place of the ccmmittéd‘crime, we may wish
to rate a set of geographical areas in terms of criminal

attractivity, with the possible goal of comparing these rates
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over different crime types, age éroups, and so on. Typically,
the basic data are flow statistics for a set of n localities
defined by the number of people, mij' who travel from region i to
j. Our aim is to model these data in terms of the distances
among the localities and their assumed placement along an
attractivity continuum.

Following Tobler's (1979) lead, the simplést model we
consider is defined in terms of the skew-symmetric matrix

g¥ =nm - n&i, which specifies the degree to which j attracts

ij ij
more from i than it exports. We aséume that these statistics
conform to a model defined as
A, - A,
%y g (1)
1J
where dij is the distance between locations i and j and
Al’ A2’ ooy An define attractivities‘along a single dimension.
Obviously, since distances are typically known, our analysis task
is to estimate the n attractivities, which in turn scales the n
localities according to attractivity along a continuum.
Tobler (1979) discusses in detail two major approaches to
the estimation of attractivities. The first is called the

potential method in which the A 's are given implicitly by the

matrix equation

1 1 1 . e 1 A *
o= - il T4 ! RN
i#1 941 dip %3 U1 1

U S (e B e N i . ] af

A1 i#2 iz d23 Yon i
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Since this system is not of full rank, Tobler suggest letting

Al = 0 and deleting the first row and column of the coefficient
‘mgtrix. The system can then be solﬁed by inverting the reduced
coefficient matrix and using it as a premultiplier oﬁ'the

right-hand vector. The second procedure may generate different

estimates since it is based on minimizing the least~-squares

criterion:

A - A, |
I lqr, - —L—1 (2)
i, 1 %3

Again, a system of equations similar to that given above is

generated that is not of full rank. Based on the coefficient

matrix having diagonal entries

g . L
i1 4%, 42 )

and off-diagonal entries

"'(_""' +_—")s

1 1
5 5
dig i

and the right-hand vector defined by an arbitrary entry

*
TG Ui
21 i G

i #k

the deletion option for A1 Z 0 can then be used to obtain a

closed—fprm solution through matrix inversion.

11.
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Although Tobler's discussion is very elegant, seemingly
minor modifications in the way the model is stated will
eventually lead to several useful simplifications. 1In
particular, since we assume q?i should be "close" to (AjJH)/dij
and the dij's are known, it should also be true that
dij q?i is "close" to (Aj - Ai)' Thus, the original gradient

notion characterized as a division by di is redefined by a

J
distance weighting of the observed skew-symmetric proximities.
Continuing in this way it should also be true that (dij q{ﬂz is

"close” to (Aj - Ai)z . Our problem is now reduced to fitting
the entries in a symmetric matrix {(dijq?ﬁz} by a squared
distance matrix ‘HAj - Ai)z}. This latter task can be approached
by the type of eigenvector analysis introduced in the main paper.
Or, if we assume ‘dijq?jl: ]Aj - Ai]' the strategies developed py
Defays (1978) and De Leeuw and Heiser (1977) could be followed.
By taking explicit advantage of a model equivocation, we can
concentrate on the skew-symmetric proximities tij & dijqu’
which are supposedly defined by the simple differences between
attractivities. For example, a least-squares loss-function would
minimize
IRy I

1,3

which is equal to a criterion weighted by the squared distances

2
ds. :
ij (A, - A,)
7 odl. (g, - (——1))2 .
i,y 9o dij

The least-squares measure used by Tobler in (2) is similar in

general form to this latter expression but is unweighted.
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The redefinition of the estimation problem to use ﬁi‘ may
seem trivial but it leads immediately to several convenient
results. For example, the least~squares estimate of Ai subject
to the constraint that iZlAi.= 0 is given by t_i/n. This same
estimate is also obtained by the potential method, and
consequently, both methods lead to the same solution in this
context. From a slightly more general perspective, suppose we
fit a matrix of the form {C‘j - Ci} to our arbitrary
skew-symmetric matrix {tij} by maximizing the correlation between
the corresponding entriest Again, the solution is obtained when
Ci is defined as t.i/n, and when used to define the matrix

{Cj - Ci}’ these Values induce a correlation of

T

J
All of these last results are very close to some work by Noether

g .
n

-]

(1960) on paired comparison scaling.

It should be apparent that many different approaches could
be developed for estimating the attractivities Al’ ceny An from a
skew-symmetric matrix tij or q{j merely by varying the explicit
form of the model used and the loss function. This arbitrariness
is troublesome since minor variations can dramatically affect the
final estimation process (see Noether, 1960). To provide some
hedge, and as we have suggested before, it may be appropriate to
rely only on the absolute-value data in the estimation stage and
use the sign data as a strategy for validating the order of the
estimates along the continuum.

Sign information has the nice

property of being independent of the form of the gradient model

13.
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being used as long as the signs are governed by differences in

attractivities.

* References that are cited are given in the appropriate paper

presented in the main section of this report.

4., Proximity Matrix Reorganization and Hierarchical

Clustering

a) SUMMARY

Connections between hierarchical clustering and the
seriation of objects along a continuum that depend on the
patterning of entries in a proximity matrix are pointed out.
Based on the similarity between the central notion of an
ultrametric in hierarchical clustering and what is called an
anti-Robinson property in seriation, it is suggested that both
data analysis procedures are compatible. In fact, preliminary
seriation of a proximity matrix may help verify the adequacy of
the results obtained from a hierarchical clustering or suggest
A numerical example using data

alternatives that may be better.

from the criminal justice area is included.

b) DISCUSSION*

The idea of using a seriation of the object set prior to

looking for a specific clustering reappears continually in the
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- Szczotka's {1972) notion of an admissible partition.

15.
literature although in many disguised forms. The key to
recognizing this general paradigm is by the presence of some
object ordering before a final clustering is given. Obvious
examples would include Hartigan's (1975) leader algorithms,
Matula'slsequential graph coloring schemes (Matula, Marble, and
Isaacson, 1972), Fisher's (1958) single variable clustering, and
Implicitly
or explicitly all of these methods rely on an object ordering,
typically as an initial organizing step prior to a final
élustering based on partitioning the reordered matrix in some
particular way, e.g., seriating the "break points" that dgfine
the possible subsets of a partition.

We do not wish to advocate the superiority of seriation over
a particular method of HC or conversely. Instead, our aim is to
point out their complementary nature and how clustering and
seriation could be used together to justify a specific analysis.
Looking at one's data in ways that could suggest alternative
interpretations may seem to be a very obvious tactic.
Unfortunately, it is easily forgotten when a scheme is available
that promises to give a single best answer and without the

ambiguity that is usually attached to a more intuitive data

analysis strategy.

* References that are cited are given in the appropriate paper

preSented in the main section of this report.
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5. Generalized Procedures for Evaluating Spatial

Autocorrelation

a) SUMMARY

Several generalizations of the usual spatial autocorrelation
indices are developed based on the notion of matrix comparisons.
These extensions are immediate from a related literature in
biometrics and psychology, and in fact, the spatial
autocorrelation inference task can be considered a special case
of a much more general inference paradigm. The connections
between matrix comparison and spatial autocorrelation are

sketched including a way to define spatial autocorrelation

statistics that only depend on the order of the entries in a

proximity matrix.

b) DISCUSSION* ‘
Autocorrelation measures, as traditionally used by

geographers, describe the pattern of an observed variate over a

map system and imply something about the predictablity of the map
or the structure. By generalizing spatial autocorrelation

measures using the randomization model as a base, a number of
advantages accrue over the classical models based on specific

distributional assumptions for the data. In general, the model

proposed in this paper generates an immediately assessible

inference paradigm for situations that would be very difficult to
handle in a classical framework. In fact, it may well be that
standard tests of significance are at times inappropriate for

cléssical SA measures. By using a randomization model and the

16-

s R e R =

S—— ey prosermy
: t H H

e, P
| '
[——— O

H ' !
‘\—‘-——d' S

complete enumeration process, significance levels appropriate for
SA measures can be obtained.

In geography it is common to distinguish between two
different approaches to spatial autocorrelation. One is tied to
expressing spatial autocorrelation in a lagged form and depends
on calculating and expressing covariances between different data
values at different lagged distance or directional lengths. The
second approach examines spatial autocorrelation in terms of the
influence each observation is assumed to have on other
observations. Our emphasis is more in line with the second
approach rather than the first. Regardless of which appreoach is
used, similar types of problems face the individual attempting to
assess spatial autocorrelation and similar problems face
researchers attempting to use and extend the procedure, Gattrell
(1979) states the first of these as the need to specify alternate
forms of the "distance" concept that provides the base for the
calculation of spatial autocorrelation effects. At least on the
variate side of the problem we have shown how spatial
autocorrelation can be generalized to such alternate measures,
including Mahalanobis distances, correlation coefficients, and
any other arbitrarily defined indices of proximity. More general
distance measures can be handled directly by defining the weight
matrix appropriately, e.g., Mahalanobis distances in some
generalized multidimensional space.

The extension of SA measures to data structures that are
nominal or ordinal produces indices comparable with standard SA

measures without the need to adhere to the stricter parametric

assumptions necessary to generate an inference model for those

e e g e
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standard measures. Basing the spatial autocorrelation index on
randomization overcomes one of the more critical problems
currently being faced by geographers. For example, Haining
(1980) argues that with fespect to the Cliff, et al. study of
measles data for Southwest England (1973), the absence of
information on the joint sampling distribution of the average
correlations, together with the small sample sizes involved énd
the generally insignificant values assumed by the correlations,
tend to cast doubt on their interpretation of the measles
epidemic as having a central place type diffusion structure.
Developing an autocorrelation index using the randomization model
clearly overcomes the first 6f these deficiencies, although it
does not solve the second problem - that of defining a
satisfactory model base for the interpretdtion of results.

The use of spatial autocorrelation in geography to compare
observed and theoretical or expected map patterns has in the past
been limited by the problems involved in measuring the degree of
departure from randomness. As Dacey (1968b) and Cliff and Ord
(1973) have found out, rejecting a hypothesis of randomness
based on Poisson models cannot be taken as indicative of apparent
contagion. While Besag (1972, 1974) has examined this problem in
more detail, the inference problems raised in the geographic
studies can be approached using randomization procedures to
construct a reference distribution against which to measure the
magnitude of deviations. Thus by using such an index and
reaching a stage wheré a hypothesis of randomness is rejected,

the researcher may feel more at ease assuming that the patterns

examined are being produced by similar processes.

18,
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In summary, the approach we have described for meaéuring SA
has at least four major advantages. The first relates to the
generality of the paradigm and the fact that many different
measures, even those tailor-made for specific substantive
problems, can all be placed under one common framework and tested
for significance using the same type of randomization argument.
It is somewhat inappropriate, however, to view the general notion
of matrix comparison as a competitor to the traditional way of
handling SA tasks since special cases of matrix comparison have
been used for some time. Nevertheless, there is an obvious
inherent value in offering alternatives that may be more suited
for particular research applications than the I and ¢ indices.

An obvious example would be in our ébility to deal with more than
one variable at a time in assessing Sa through a multivariate
measure of distance, defining the entries in the matrix C.
Second, the randomization strategy itself can be approached
through Monte Carlo sampling, bypassing the optimistic use of
asymptotic distributional results of possibly unknown accuracy.
These latter large sample size results are very spotty and do not
cover all the SA statistics that could be defined in our
framework. Third, by placing SA into a larger matrix comparison
structure, an obvious pedagogical advantage is achieved. This is
analogous to the perspective provided by understanding the
general linear model even though the special cases of anlysis of
variance and regression may continue to be the most popular
alternatives as implemented by routineé that are specialized from
the more general structure.

Fourth, once a comprehensive

framework is understood, further work on the framework itself

e A T T ¢ o S —
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immediately suggests many associated results that are pertinent
to a class of measures. Thus, once the commonality of analysis
tasks are recognized, there is an obvious broader purpose taken

on by the research enterprise.

* References that are cited are given in the appropriate paper

presented in the main section of this report.

6. Inference Models for Roll-Call Cohesion Measures

a) SUMMARY

An inference model for the percentage voting agreement
measure is introduced that takes into account the composition of
the parent group in evaluating the cohesion of a subgroup. The
combinatorial strategy extends to a number of more general

indices related to the original agreement measure.

b) DISCUSSION#*

The problem of defining inference models for measures of
roll-call cohesion has been recognized in the literature. For
instance, as one way of developing a more reasonable inference
structure, Born and Nevison (1975) introduced a probability
measure based on the cumulative distribution of votes in the more
inclusive body. Although this is a step in the appropriate
direction, there are at least three limitations on the Born and

Nevison approach. First of all, since the probability measure
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requires a rather sophisticated understanding of Probability
theory and deviates markedly from the justification behind the
indices typically used in the literature, acceptance of the new
statistic may be very slow in coming, Particularly since
extensive tables and/or the use of specifically designed computer
programs are required for its calculation. Secondly, the
probability measure is essentially limited to votes that have
2-values (Aye and Nay) and voting options with k alternatives are
not easily incorporated within the paradigm. Finally, the
Born-Nevison measure is really a significance level, and
therefore, it is heavily dependent on the size of the subgroup
being considered. For example, two subgroups with the same
values on a more traditional 'index of cohesion could also have
very different probability values depending on the sizes of the
two subgroups.

It would seem more appropriate to consider a staﬁistic that
has properties similar to the Pearson correlation coefficient;
i.e., an index that would give an indication of the absolute
level of cohesion irrespective of sample size but have an
associated significance statement that was dependent on the
number of observations, or in ous case, on the number of voters
in the subgroup as well as in the more inclusive body. Using‘
these three concerns as our motivation, it is relatively
straightforward to carry out the original Born-Nevison goal of

providing a suitable inference model for a measure of cohesion

through the well-known percentage voting agreement measure.
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* References that are cited are given in the appropriate paper

presented in the main section of this report.

7. Some Comments on Non-Euclidean Mental Maps

a) SUMMARY*

The widespread acceptance of Euclidean geometry as the most
appropriate for representing space, predisposes a certain type of
perspective on the world. Within the Euclidean framework, space
is conceived as being isotropic - that is, the same geometric
relations hold in all parts of the space. A second important
concept is that of parallelism - that is, parallels do not
converge. Accepting these concepts readily allows us to
implement perhaps the best known and most widely used formula in
the discipline of geography, that of measuring inter-point

distances in N-dimensional Euclidean spaces. This formula is:

1
T

035 = 1 Uy = %D (1)

where: D.., 1is the distance between two arbitrarily
1J

defined points i and Jj;

X5k is the coordinate for point i on the kth
dimension;
r is the exponent to which displacement in any

dimension are taken in the particular distance
formulation (i.e., the Minkowskian Metric).
While this general Minkowskian formula is well known, almost

invariably the Euclidean (r = 2) is preferred to other
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Minkowskian metrics such as r = 1 (the Manhattan or city block
metric) or r = ©© (the dominance metric or SUP-metric) (see

Krause, 1975). 1In this latter metric, the distance between any
pair of points is defined as the longest side of the right-angled
triangle constructed in the space about the points

: = max
(i.e., dij K (xik' xik))'

aJ

In this paper we examine some characteristics of spatial
cognition that indicate that the use of any of these Minkowskian
metrics may not be appropriate for representing cognitive
information, and we present a survey of elliptical and hyperbolic
spaces

(Riemann manifolds) that could potentially be used to

represent such data.

b) DISCUSSION

If we eramine configurations of points that have been
generated using interpoint distance estimation or a set of points
located in a space which is defined solely in terms of
inter-point distances, then we are confronted with a space which
implies neither a specific dimensionality nor is there implicitly
embedded within it a coordinate system. If we can further find
key nodes in this particular space, we might imagine that as
distance increased from each key node, the probability of a fold,
crack, tear, hole, or other warpage of the space would increase
considerably. Assume further that the key nodes are not
uniformly spaced. If one were then to construct a set of
Thiessen polygons for this set of non-uniformly spaced nodes,
there would be considerable variations in the distance of the

edges of the polygons from the key nodes. One might further
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expect that, in those areas of each polygon which are most
distant from the key node, information about the area may be
least and the probability of distortion or warpage might increase
except along the dominant gradient or link path between adjacent
nodes. Using conventional ideas from probabilistic market area
analysis and the recent suggestions of Tobler (1976) concerning
non-constant warpages and the development of a probability
surface for distortions in "mental maps", one can visualize a
mental map of the previous set of locations with the major
distortions or warpings occurring away frcm: “he major nodes and
the primary paths that connect them, and increasing in
probability of occurrence in the more inaccessable or distant
paths of each Thiessen palygon. The result would be to produce a
map which associates points or key locations with error
probability surfaces. The probabil&ty of warping would,
therefore, be non-constant as direction changes from key nodes,
or as distance increases from the key node to different edge
segments of the Thiessen polygon.

The building of such a probability surface is simple in
Euclidean space, but the specification of the surface parameters
is somewhat more complicated even in a simple Riemann space of
constant curvature. Detailed examination of over 200 individual
configurations of 48 locations for the city of Columbus has shown
that location errors differs considerably across the individual
maps and that there is definitely both a directional and digtance
component to the distribution of errors (e.g., see Rivizzigno,

1976; Spector, 1978; Golledge and Spector, 1978; Gale, 1980).

What is more, this error suvface undulates depending on the

24,
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activity pattern of the individual, for as information about
different segments of the environment increases, the probability
of maintaining a constant location error diminishes. At various
time periods, therefore, the manifold in which the points are
located can be warped differentially. If one were to obtain a
cross-section through time of a series of these manifolds, one
should be able to recreate a history of the main repetitive
components of an individual's spatial behavior for that time
period.

Obviously, the first thing to be done is to attempt to
define the appropriate parameters which describe the Riemann
space in which a number of subjective configurations exist. Once
this has proved to be a feasible operation, then expanding the
work to cover manifolds produced at different stages of the
environmental learning process and recreating histories of
spatial behaviors associated with each manifold would seem to be
an intriguing direction for constructive use of current work on
mental maps.

An alternate way of envisioning the warped manifolds
suggested in the previous paragraph is to introduce the concept
of a mean information field with holes. Imagine a standard grid
with a series of familiarity measures allocated to each grid
cell. Imagine also that there are two "holes" in the mean
information field where zero information is recorded, and two
major peaks (one towards the S.W. corner of the field and another
towar?s the N.W. corner). If one contoured the mean information
field, the holes would stand out in the two dimensional Euclidean

representation of it. However, if we collapsed the field so as
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to eliminate the holes, the configuration that resulted would

more readily be described in non-Euclidean terms. Such a warped

field more closely approximates the sketch maps drawn by
individuals with incomplete information about test environments;
the consequent shortening of distances across places with low
information levels and the exaggeration of distances where
information is consistently high mirrors many of the types of
distortions recovered from indivi@ual configurations of urban
areas in other published research (Golledge and Rayner, 1975;
Golledge, Rivizzigno, and-'Spector, 1976; Rivizzigno, 1976;
Spector, 1978).

As a further step in an attempt to define the types of
metrics most suitable for the representation of subjective
configurations of places, current work at U.C. Santa Barbara is
aimed at defining configurations of places in Riemann spaces such
that an index of fit between subjective and objective
configurations mapped onto the same space can be obtained. 1In
general, it would appear that questions related to the
suitability of representing mental maps in metric spaces need to

be answered before much confidence can be placed in widespread

“use of such maps in conventional geographic work.

* References that are cited are given in the appropriate paper

presented in the main section of this. report.
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Possible Future Research

Our experiences with proximity matrices of varying types
leads us to suggest that considerable future research is
warranted on developing methods to handle related proximity

matrices (square and rectangular), asymmetric and/or

skew-symmetric data matrices and incomplete data matrices. Each

of these is a common occurrence when dealing with criminal

justice data, and each presents a set of different methodological

problems which need to be.solved. For example, a general method

for determining which of a set of outcomes from alternative
analyses of the same data set best represent the structure of the

original data matrix is needed. An example might be where two

clustering algorithms are used on the same data set or where
multidimensional scaling output is obtained in several
dimensions. 1In several of our papers we suggested extensions of

our methods to cover asymmetric proximity values - a topic that

is currently being researched in many social and behaviofal
sciences. When dealing with large data sets consisting of
subjective evaluations (preferences, choices, perceptions), it is
frequently impractical or impossible to collect evaluations on

all object combinations, and thus researchers are forced to use

incomplete experimental designs in the data collection phase.
The effect that differing levels of incompleteness have on
aggregation processes, matrix matching procedures, homogeneity

measures, and correlational type measures needs to be further

explored.
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Since subjective data is primarily non-metric, attention
could also be directed towards examining non-metric equivalents
of a variety of general matrix measures; possible alternatives
for doing these are discussed in several of the papers p:esented

in the main body of the report.
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INTRODUCTION

(Extracts_from the original proposal)

Over the course of the present century the predominant
philosophies of data analysis have taken a somewhat circular
course. Early methodologists spent a great deal of time and
effort attempting to understand empirically obtained information
from a point of view that was more or less intuitive. Data were
plotted, reorganized, and often simply inspected to determine
their structure and inherent pattern. For example, in his recent
address to the American Statistical Association, Box (1976)
provided én interesting historical account of how many of
Fisher's contributions to statistical theory arose from just such
a pragmatic approach to data analysis. As the field of
statistics matured, however, substantive researchers relied more
heavily on hypothesis testing, with the result that data analysis
was in part reduced to examining only the outcomes of
significance tests. The widespread availability of the digital
computer has further accelerated this trend, and in fact, today,
data is often collected in a computer compatible medium that is
appropriate for direct submission to some standard statistical
package. As a consequence of automation, the reseércher may have
only a limited understanding of the raw data producing the
significance tests and almost none of the practical intuition
that at one time was considered absolutely essential in
explaining any observed pattern within a given data set.

To be of maximum utility to researchers working in the crime

and criminal justice areas, the methodological studies supported
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by NIJ would ideally involve data analysis strategies that have a
simple conceptual basis, maintain a close contact with the data,
be easy to use, and be capable of providing meaningful ways of
evaluating the variables or entities of interest to the law
enforcement community. As will be indicated, one particular
nonparametric statistical orientation has been developed within
the past few years that appears to have these characteristics and
that at thg same time holds the promise of bringing data analysis
back to its intuitive beginnings. After the introduction of
several general problem areas, we will briefly review this class
of nounparametric strategies and indicate how they could be used
in attacking significant areas of concern in the fields of crime
and criminal justice that involve the patterning of data, such as
spatial and temporal variations in criminal activity and its
environmental correlates. Since much of the necessary
methodology is available in a more or less tpeoretical form in
the psychology and geography literature, the major contribution
of our research effort will be in terms of applications that have
importance for the research program of NIJ.

The statistical techniques of interest have their origins in
operations research, combinatorial ﬁathematics, and graph theory,
and for our purposes can be discussed very denerally under the
label of Generalized Concordance. Although the background
necessary for this methodology is not new and much of its basic
formulation dates back at least to the early 1950's, only the
recent access to digital computers can allow its routine use in
the analysis of data. Special cases of this orientation have

been applied most widely in disciplines such as electrical
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engineering (Younger, 1963), economics (Simpson and Tsukui,

1965), and management science (Blin and Whinston, 1975); and in
fact, only within the past five years has it been recognized that
these tcols are appropriate for the analysis of behavioral
science data as well. With this’motivation in mind, the major
goal of this research is to first introduce selected significant
topics in criminal justice'research (e.g., those concerned with
data aggregation, spatio-temporal variations, changes in scale,
and spatial autocorrelation) and then indicate in a heuristic
manner what implications a theory of Generalized Concordance
would have for these areas of analysis. The research program for
which funding is requested would illustrate and develop
exportable analytical procedures for examining these problems in

the context of crime and criminal justice data sets.

Problem Areas

Although many different data analysis tasks could be
approached with the class of strategies we envision, for the
purpose of discussion, three areas will be identified and treated
as illustrations of the type of problems we would wish to pursue,
Since our intent is to offer demonstrations of a class of
analysis schemes in the criminal justice area, our efforts are
partially dependent on previously collected data. Consequently,
the following discussion will offer some insights into our
general thinking but it is also possible to modify our efforts if
alternative and particularly important data sets are made

available, e.g., those developed under that auspices of NIJ but
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not generally referenced in the public domain.

Aggregation/Disaggregation

The aggregation problem is probably one of the most serious
unsolved difficulties faced by data analysts in both the social
and physicai sciences. In its most general form it can be
defined as the loss of information that occurs when data
collected at one level are summarized or aggregated into larger
units, or decomposed and disaggregated into smaller units. The
effects of data aggregation in statistical analysis has recently
been discussed in the geography literature (Clark and Avery,

1978) . They suggest that

1976; Smit, 1978; and Clark and Avery,
one of the most serious aggregation problems in the social
sciences occurs in "aggregation bias" in correlation and
regression analysis. This type of bias is said to be manigest as
the inflation of macro-level coefficient estimates above the
corresponding values of the coefficients estimated from
micro-level data. Blalock (1971) has argued that it is incorrect
to assume that relationships existing at one level of ‘analysis
will necessarily demonstrate the same stre.gth at another level.
Furthermore, estimates derived from aggregate data are valid only
for the particular system of observational units employed. The
consequences of using potentially biased estimates in correlation
and regression procedures as substitutes for the true micro-level
estimates are most serious when conducting causal inference
analyses on statistical output. Against this background, one
major problem of interest for us in the context of

aggregation/disaggregation is to examine the structure of data in
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collection units at various scales and at various time periods
and determine at what levels of aggregation or disaggregation the
patterns evidenced in those data sets breakdown or become
different. From the past work of the authors, it appears that
elements of such difference can be identified and studied using a
strategy called "Generalized Concordance"”, and specifically, with
those techniques that evaluate the degree of conceordance within
and between the subsets that define a partition of a set of
proximity matrices. For example, each proximity matrix could
represent the intercorrelations among a set of crime-related
variables for a particular geographic entity; the partition would
then represent a first level of possible aggregation. 1In short,
the intent will be to determine if the information contained in
data sets for various spatial units and/or for various years is
consistent or inconsistent, and to assess the interaction between
the spatial and temporal dimensions of data by analyzing changes
in data patterns as expressed in various proximity values. The
methods to be developed and/or applied will be appropriate for
fully metric data sets (such as crime occurrence statistics) or
for data sets that at best contain only ordinal information in
the available proximities.

As indicated above, the generalized concordance procedur<s
to be used in this research agenda appear appropriate in
evaluating the structure of a given data set and whether this
structure is repeatable as levels of aggregation or changes in
scale occur. As part of this project we will take selected crime

and criminal justice statistics that lave been subject to various

aggregation procedures and assess whether the aggregation process




e i e B

destroys the inherent structure of the data existing at previous

levels and superimposes a new and perhaps less meaningful

structure on the data itself.
Although a variety of methods exist within tii2 f£ield for

examining problems of aggregation (Duncan and Davis, 1953;
Goodman, 1953, 1959; Blalock, 1964, 1971; Cliff and Ord, 1973;

Curry, 1966; Hannan, 197l1a, 1971b, 1972), most of these
procedures focus on the grouping aspects of aggregation and
discuss ways in which such procedures may effect causal
relationships. The techniques most frequently discussed inc;ude
random grouping; grouping to maximize the variation in the
independent variable; grouping to maximize the variation in the
dependent variable; and grouping on the basis of spatial
proximity. The approach suggested in this proposal is different
since we are concerned with the structure of data at various
scales, between various areas, and over various temporal
dimensions. Thus, in contributing to a deeper understanding of
the aggregation problem itself, we will naturally complement the
the existing work on spatial autocorrelation. Finally, we note

the difference between the procedures suggested here that use

.proximity measures (but not necessarily direct spatial measures)

to test for similarity of structure in data matrices and the work
of Clark and Avery (1976) who used spatial measures of proximity

in their discussion of the aggregation problem in spatial data.

Spatial and Temporal Structures

A second problem area is to develop and test methods for

assessing concordance in complementary data sets at different

g ISR
i PSS AT
i < A

P el S

i

scales, for different time periods and in different spatial
contexts. Data that are assembled by geographical units over
successive time periods can be analyzed by searching for patterns
that occcur and re-occur at various spatial scales and with
varying temporal frequencies, by first generating similarity or
proximity measures of criminal activity and environmental and
socio-economic variables, and secondly, searching for similarity
of structure or pattern. The methods proposed can be used on
metric and non-metric data, and are substantially different from
other multivariate methods (such as principal components, factor
analysis, discriminant analysis, and canonical correlation)

currently used on crime statistics (see Carter, 1974; Nettler,

1974; and Pyle, 1974).

Spatial Autoco:relation and Generalized Concordance

Current treatments of spatial and temporal aspects of crime
stéﬁistics have failed to handle the autocorrelation problem that
is inherent in existing data sets. The Generalized Concordance
procedures developed in this research will allow us to évaluate
the extent of this problem in data sets and to illustrate
?rgcedures for handling this problem that are substantial
generalizations of existing methods for estimating spatial
autocorrelation effects (e.g., CLiff and Ord, 1973). 1Ideally, we
would be able to disentangle temporal effects from data
categorizations, such as those based on spatial properties, ard
vice versa, and provide answers to questions such as, "Is there

more consistency in criminal activity of type Y between years

than there is within areas of scale X?".
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The current methodological literature in geography typically

views that evaluation of spatial autocorrelation as distinct from
many of the problems encountered in analyzing data defined in
terms of proximities. 1In general, the hypothesis testing
strategy used in the assessment of spatial autocorrelation is
reserved for the relationship between geographical contiguity and
a variable available in each of the given regions, €.9.,
variables such as unemployment, proportion of elderly, wealth,
productivity, frequency of crime type, and so on. When
interpreted appropriately. however, the exact same statistical
principles provide a vefy powerful class of data analysis
strategies for confirming the presence of structure within any
matrix that contains numerical information among a set of
geographical entities. The possibility of carrying out such an
extension has been mentioned in the geographical literature
(Hubert, 1978a), but the area has not been pursued to the depth
that would identify the range of potential applications.

The link between the ideas of spatial autocorrelation and
concordance can be extended to allow the researcher to move
beyond static or cross-sectional data analysis into a dynamic or
temporal analysis. This leads to the development and use of
multitrait-multimethod analytical techniques (Hubert and Baker,
1978a) that attempt to find how information is "nested".in
various data sets - e.g., if the temporal dimension is more
significant thén the spatial or if the local dimension is more
significant than the regional. For example, a typical data
structure that would involve multitrait-multimethod techniques is

seen below (Fig. 1). In this problem, spatio-temporal

(9)

e Y e e T A T T T T T e g S e et aa e e - s e g S o A A i e S

FIGURE 1

TR

Geog. Area A © Geog. Area B Geog. Area C
Yed vr i¥r [Yr e Jyr {ve o fve dve {Yr o fve j¥e fve fye e
14 21 3}4t51]1(|2}3{4¢{5}1}12)3]4j)365
Geog. Yr 1
Area A [y, >
Yr 3
Yr 4
Yr 5
Geog. Yr 1
Area B
Yr 2
Yr 3
Yr 4
Yr 5
Geog. Yr 1 !
Area C
Yr 2
Yr 3
Yr 4
Yr 5
(10)



,f
[

8]
n,._.,.,.v.-e..‘

-

confounding in the data can be unpacked and the significant data

structure exposed (Hubert and Baker, 1978a).
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Methodology

One of the major practical difficulties faced by all
behavioral scientists in analyzing data concerns the choice of
formal techniques that are intended to be of aid in developing
reasonable substantive interpretations. Much of the time the
final selection of a statistical tool is guided either by
tradition in the researcher's field, or at the other extreme,
because one particular procedure happens to be in vogue. 1In
either case, the chosen methodology may not be the most
appropriate way to answer the specific questions posed. The
difficulty of choosing a statistical tool becomes even more acute
when a research problem cannot be easily rephrased within an
omnipotent general linear model since there are few alternative
paradigms that are broad enough to formulate sufficiently
powerful analyses. Consequently, because of the general
inflexibility of statistical schemes that do not rely on rather
strong parametric assumptions, novice researchers tend to limit
the guestions they ask to those that fit neatly within the
analysis of variance context and its derivations, or
alternatively, embrace some other familiar strategy that may not
be suitable for the particular application at hand.

The brief overview to follow sketches one special case of a
more comprehensive strategy called Generalized Concordance. This

speéial case will be referred to as the quadratic assignment

paradigm (QA) and incorporates a variety of dispusrate dats

structures that may be reflected in a proximity matrix defined on

(12)
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the objects from some set S. The term "proximity" is used
generically and merely denotes a numerical measure of
relationship between pairs of objects from S. Obviously, there
will be many instances in which the- tasks faced by an applied
scientist in analyzing a proximity matrix do not fall into one of
the categories that can be handled by the type of strategy
illustrated below; nevertheless, the quadratic assignment
approach still appears flexible enough to give a general point of
departure for many of the problems an individual faces in
choosing an appropriate methodology, and, more importantly, is
broad enough to provide a general organizing principle for an
extensive theoretical analysis of structure within a proximity
In addition, QA forms the basis for the more general

matrix.

strategy of Generalized Concordance discussed in Hubert (1979c).

Some Overview Details of the Quadratic Assignment Approach

The general quadratic assignment approach to data analysis
can be formulated in a relatively easy manner. It is assumed
that the collected data are on n objects from a set S that, for
convenience, is denoted by {0, 05, ..., 0} . The term "object" is
intended to be extremely general and could refer to individuals,
areas, societies, crime types, and so on. Furthermore, it is
assumed that the data on these n objects can be reduced to a
single numerical proximity value defined for each ordered object
pair. For instance, if the objects are individuals, the
numerical value could be an index obtained by measuring

similarity over a set of behavioral symptoms, or possibly the

objects could be cities and the numerical values could be
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measures of similarity between profiles of crime types. To

formalize this concept in more detail, a data matrix Q is defined

to be an nxn matrix, where both the uth row and the uth column
refer to object Ou’ and the entry in row u and column v is
denoted by q(Ou, OV). Typically, it is assumed that q(ql, Ou) =90
for 1< u< n.

In addition to the data matrix Q, a structure matrix C is

specified that represents the type of hypothesis the researcher
wishes to evaluate against his data or, alternatively, the type
of structure he may wish to identify in his data. These two aims
represent what can be referred td‘as the confirmatory and
exploratory data analysis problems, respectively. The rows and
columns of 9 are labeled by the integers 1, 2 ..., n, and
¢(r, s) 1is the entry in row r and column s of C; typically,
c(r, r) = 0 for l< r<n.

To connect these two matrices 9 and g in a more formal way,
suppose ¢ is an arbitrary permutation of the integers
1, 2, ..., n and 1 the identity permutation that maps each

integer back to itself. If we define

rle) = YES q(op(r)’ Op(s)) e(rss),

th i
en P(pI) 1s merely the sum of products of the corresponding
elements between Q and 9. More generally, P(pI) is ﬁhe sum of the
products of the corresponding elements between C and
Q = {é(Op(r) ' %ﬂs))}’ - where the u'? row ang column of Sb is
the row and column previously labeled p (1) in Q.
Given this notation, the exploratory and confirmatory data

analysis problems can be rephrased. In particular, the
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confirmatory problem is based on P(pI) and the researcher wishes
to determine whether the given Q matrix mirrors the structure in

-~

C. Since r(pI) is treated as an unnormalized correlation between
9 and 9, the additional problem of evaluating the relative size
of PKpI) by some significance test has to be addressed. As
mentioned below, this assessment is approached by considering all
possible indices T(pI)that could be obtained by varying the

permutation p., Alternatively, the confirmatory task merely

wishes to identify those permutations that optimize Tﬁﬁ)'

Introductory Comments on Confirmatory and Explanatory Inference

In the literature on data analysis over the last twenty
years, a distinction between exploratory and confirmatory
procedures has become very popular (see Kaiser, 1970; Hildebrand,
Laing and Rosenthal, 1977; Tukgy, 1962). An exploratory strategy
typically involves the use of an analysis technique on a given
data set with the aim of identifying interesting relationships,
patterns, and the like (Brown, Odland and Golledge, 1970; Lee and
Egan, 1972; Phillips, 1973; Harries, 1974; Pyle, 1974).
Alternatively, a confirmatory approach requires the test of an a
priori conjecture that is generated from a source distinct from
the data to be used for the purpose of validation. This latter
test in our context will be correlational, and thus the term
"confirmation” is given a limited meaning here that does not
imply the absolute correctness of a hypothesis. Since a
correlational analysis can never exclude all competing
explanations, we will argue when it is justified that the pattern

of data is not unrelated to the conjectured pattern.
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It may be obvious that confirmatory analyses would be

desirable adjuncts to many of the current exploratory methods

used in the study of proximity matrices (such as clustering and
multidimensional scaling), but very few techniques have been
proposed that could help carry out such a program with any degree
of rigor. Thus, users of the newer data reduction procedures
lack confirmatory techniques even of a correlational nature and
must rely on intuitive arguments based on whatever additional
information is available for the objects being studied. Although
this practice is commendable given the current state~of—thé—art,
it is now possible to proceed one step further using the
correlational methods presented in this proposal and incorporate
the same information relevant to a post-hoc explanation more

directly in a confirmatory manner.

EXAMPLE 1:

The field of criminal justice provides a very interesting
application that can be used to introduce some of the necessary
concepts of the confirmatory QA approach. For example, Pyle
(1974) and Harries (1974) in their studies of the connections
between crime and socio-spatial characteristics of urban areas
suggested that sets of supplementary variables can help explain
similarities of crime pPatterns among subareas of different
environments. Using a given variable {such as income level or
the predominant ethnicities in the subareas) it is possible to
divide the subareas into sets, where the objects within each set

contain the same value of the variable being considered. Here

(16)
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the inference problem of interest is whether the data produced by

the experiment reflects the partitioning of the areas according
to the given veriable. As always, we can assume that some
measure of proximity is available between areas based, for
example, on a summary measure of crime similarity.

To illustrate the conceptualizaiton with a more detailed
discussion, suppose we are given a set of 100 cities and have
obtained some type of proximity between each pair based on
These measures are contained in

similarity of committed crimes.

the matrix Q. Furthermore, assume the 100 cities can be

partitioned into K subsets based on the type of law enforcement
program in operation or any other group of variables that would
serve to characterize criminal justice systems. It could be
conjectured a priori that cities within a subset might be very
similar in the pattern of crime, whereas cities in different
subsets would demonstrate a reduced level of correspondence. As
a mechanism to embody this conjecture within QA, the second nxn
matrix E is used to specify the hypothesized organization of the
empirical proximity matrix. For example, since the partition
under consideration groups the 100 cities into K subsets, the
100 x 100 structure matrix is divided into K submatrices each of
a size that corresponds to the number of cities in the subset.
From our conjecture, cities within a subset are likely to be

similar, and thus, all elements, ~c(0Q Ov), in the on-diagonal

u 7

‘.

submatrices are set equal to unity, except that by convention the
cell elements actually on the main diagonal are set to zero.
Furthermore, it is hypothesized that a correspondence between

cities in different subsets is unlikely, and consequently, the

(17)
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cells of the off-diagonal sub-matrices are set to zero. In other
words, distinct city pairs that should be similar are assigned a
1 and all other pairs are assigned a 0 which implies that F(pI)
is merely the sum of all within subset proximities. Obviously,
other homogeneity indices could be defined by varying the
structure matrix C.

Given a data matrix Q and a structure matrix C as presented
in this example, the confirmatory problem is one of comparing Q
and g and assessing whether the pattern represented by C is also
present in 9 (or conversely). In particular, if the structure
defined by the matrix 9 is not reflected in 9 then the value of F(pI)
should not be unusually large (or small) compared to the
distribution we would expect if all labelings of the rows and
corresponding celumns of Q were equally likely. The index F(pI)
is evaluated for each permutation p and the frequency table
constructed for all n! (possibly nondistinct) values of T,
generating what is typically called a permutation distribution.
The statistic P(pI) is then cumpared to this distribution and
if P(pI) is at a suitably extreme percentage éoint, the
hypothesis of an equally likely a priori labeling is rejected in
favor of the structure defined by c. Typically, the actual
permutation distribution is too computationally laborious to
obtain each time a new data matrix is obtained; however, the mean
and variance parameters needed for approximate tests can be
obtained by formula, or alternatively, approximate permutation
tests can be constructed from random samples of the complete
permutation distribution. This latter option is illustrated in

many of the published papers listed in a later section.

(18)
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Exploratory Analyses and the Quadratic Assignment Approach

Instead of attempting to confirm whether a given partition
(such as that used in assessing similarity in crime type by area)
can be used to explain the patterning of the proximities, suppose
our concern is to locate "good"” partitions in an exploratory or
post hoc fashion. More specifically, assume our interest is in
finding possibly "good" partitions that have the same general
structure as the conjectured partition in our example. As one
possible approach, suppose the form of the structure matrix is
fixed as is, i.e., representing subsets of size Dys eoer Dyy but
we attempt to rearrange the rows and simultaneously the columns
of the proximity matrix in such a way that the patterning of
entries in the rearranged 9 matrix is similar to the fixed S
matrix. Once such a reorganization is effected, the four objects
that are now in the first n, rows (and, also, in the first nq
columns)} would represent one class, the second Ny, LOWS and
columns would define a second class, and so on.

The rather loosely defined goal of reorganizing the 9 matrix
until it "fits" the form specified by the C matrix can be made
more precise by defining two major subtasks. First of all, the
correspondence between the C matrix and a reorganized 9 matrix
must be measured in some way to determine if an adequate "fit"
has been achieved. Although a number of measures of
correspondence are available, the simple sum of the products of
corresponding elements in the two matrices used in the
confirmatory context appears to be one of the most natural

indices to consider. As a second subtask, it is necessary to

HERATE e B Ry

define some procedure that can be used to rearrange the Q matrix.
For c¢ueuj*le, the ordering of the corresponding rows and columns
of the 9 matrix could be modified by interchanging the prsitions
of those two objects that will increase (or decrease) the index T
the most. The pairwise interchange process is repeated until no
pairwise interchange can increase (or decrease) the value of I';
that is, until a local optimum has been achieved.

The basic features of an exploratory Quadratic Assignment'
approach to data analysis are evident in the example presented
above. The 9 matrix contains a measure of relationship (or
proximity) between the pairs of objects under study and serves as
the empirical information to be analyzed. The C matrix, on the
other hand, specifies the structure that the researcher assumes
the observed proximity measures to have if only the Q matrix
could be reorganized appropriately. Finally, g combinatorial
optimization heuristic is used to reorder the rowé and
corresponding columns of the Q matrix until a high degree of
correspondence with the structure matrix is obtained. Since the
end result of the exploratory mode of the QA approach is simply a
final ordering of the objects, it is up to the researcher to
develop a substantive interpretation for the obtained

reorganization of the proximity matrix.
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? AGGREGATION IN DATA TABLES : IMPLICATIONS
{ FOR EVALUATING CRIMINAL JUSTICE STATISTICS*
{ "
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Temporal Patterns of Crime Data {
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Aggregation in Data Tables: Implications for Evaluating ; lb
: . ‘ a numerical value that attribute j attaches to object i where
{_ Criminal Justice Statistics [
- J T<i<Tand1< j< n. If the objects were cities and the

. attributes were time points, X;: may give the rate of homicide
Introduction } J

for city i at time j.

T T
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. One common form of data encountered in the criminal justice area “ When faced with data organized in such a matrix, a reasonably
| can be reprgsented schematically as an object-by-attribute matrix or sophisticated researchgr may determine whether there are differences
table: . T . - among the n attribute levels (i.e., among the n columns) by using
h a repeated measures analysis of variance proéedure (see Morrison,
Attribute (e.g., crime type’) < ” ' 1976, pp. 141-153). Although our presentation deals at least
L initially with data in exactly this same form, our concerns are
! 2 3 L more detailed than performing an omnibus statistical test. Specifi-
1 X11 X102 X413 *n ‘ ‘ - cally, the discussion below develops some basic principles for
comparing the data in an‘object by attribute data matrix to a pattern’
Cob 2 Xo1 X992 Xo3 Xon | - conjectured to hold within each of the rows. Usually, we wish to
- ; B | g confirm that a conjectured pattern is present, and consequently,
‘; i Object 3 X3 X39 X33 .. - X3, | " that some a priori notion of structure is supported.
! “‘(e.g., SMSA/city/ ‘ '
' . [ 1 neighborhood)
; = ; E E E A .We start with a simple example involving real data to illustrate
o é Vg ‘ a counterintuitive result due to aggregating over the rows of an
| - f :l [ - - X3 Xgp object by attribute matrix. This first example serves the immediate
’ z Mi il purpose of motivating a formal investigation of several analysis
; . problems relating to aggregation that can be phrased for the type of
o Ei »j . . A l ‘ data matrix represented above.
A - Here, for example, the term "object" may refer to a city, prison, ,
? LE or an individual and'ihe term “"attribute" to a time point, atti- - p]
; " tudinal variable, or experimental condition..The symbol X313 denotes -
T '
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Exmple

The data given in Table 1 provide the rates of homicide (per
100,000) over a ten year period (1968 to 1977) for the fifteen largest
Standard Metropolitan Statistical Areas (SMSA's) whose geographical
regions have remained unchanged throughout this period (see Appendix I).
By inspecting the entries for each SMSA, it would appear that a general
increase is present in the homicide rate from 1968 to 1977, except
possibly for the last two or three years. In fa;t, since the trend is
strong even in the presence of the obvious inconsistencies.to a perfect
pattern,vwé may be content with a simple visual inspection and inter-
pretation. In more ambhiguous contexts, however, it would be of value
to have a formal inference strategy for confirming whether an a priori
conjecture of an increase in rate is reasonable, or more generally, for

confirming any conjecture that is kased on a source independent of the

data itself.

Table 1 here

Given the general problem of pattern confirmation, two more or

less obvious evaluation methods could be followed:

- preliminary data aggregation: If the data of Table 1 were aggregated

over rows to produce a single homicide value for each year, these
summary values could then be compared, say, to an expected pattern of
increase. Intuitively, if a general trend exists within each row, it
would also be apparent and possibly enhanced in the aggregation. As an

j1lustration of the mechanics of such a strdtegy, suppose the ratgs
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Table 1{(a)

Homicide Rates (per 100,000) for the Fifteen Largest SMSA's where
Geographical Regions have Remained Unchanged Throughout the Period

 1968-1977

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
Chicago, I11. . 10.7|11.6(12.9(13.1|11.5|14.1|15.9|13.9 | 13.4 | 13.7
tgigfggglﬁs i 8.6 9.7| 9.4|10.7|12.8|12.4|12.9|14.3|13.8] 16.0
Philadelphia 6.7 | 7.5 9.3|10.9]10.7 | 11.5{11.9|12.0{ 10.0| 8.9
oan Francisco - 7.7| 9.5| 8.3] 9.4f 8.6(10.9|11.6[12.412.2|11.9
Boston,. Mass. 4.4 4.2| 4.4 4.8| 46| 5.7| 5.6| 5.3| 3.8| 3.6
Pittsburgh, Pa. 2.9| 3.2| 4.4| 41| 3.9| 4.2] 53| 5.6| 4.8] 4.8
Baltimore, Md. 13.6 | 13.4|13.2|17.3|17.6|15.4|16.8 | 14.8|11.0| 10.2
Cleveland, Ohio 9.6|13.8]14.5|14.8]16.1]15.1]17.2|17.0| 15.1 | 14.2
fnatein-Santa Ana-| 23| 2.5| 2.7 25 47 3.0)37) 3.8) 47 4.0
San Diego, Ca. 3.8 4.2| 4.1| 5.1| 3.8 6.0| 7.4| 6.7| 6.3| 6.8
Miami, Florida 12.5{ 12.8 | 15.6| 17.1| 14.3| 15.7 | 17.4| 18.3 | 13.6 | 15.6
Milwaukee, Wis. 3.9¢ 3.3 3.8} 4.3 4.3 5.0y 5.1} 5.2} 4.8y 4.5
Seattle-Everett 46| 5.4| 4.4| 4.5| 45| 46| 6.4| 5.7 4.4| 4.3
Cincinnati 5.0 7.3] 6.4] 8.4} 7.5 7.0 7.8 6.4} 6.6} 7.5
Buffalo, N.Y. 4.1 4.4 57| 6.4| 6.6/ 5.8] 6.0 61| 5.0] 6.0

(Source: Federal Bureau of Investigation, Crime in the United States, Uniform

Crime Reports, Washington, D.C., Govt. Printing Office, 1968-1977).
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Table 1(b)

Rank Orders of

Homicide Rates (per 100,000) for the Fifteen Lﬁrgést SMSA's where

Geographical Regions have Remained Unchanged Throughout the Period

5a.

1968-1977
Year
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
Chicago,I11. 1] 3 4 5 2 9 |10 8 6 7
Los Angeles - 1 3 2 4 6 5 7 9 8 10
Long Beach
Philadelphia 1|2 4 |7 6 8 9 |10 5 3
San Francisco - 2 1 3 7 10 g 8
Qakland L] S Y13 ] 8 |
Boston,Mass. 5| 3 4 7 |6 |10 9 g | 2 1
Pittsburgh,Pa. 1 2 6 4 3 5 9 10 8 7
Baltimore,Md. 5 4 3 9 10 7 8 6 2 1
- Cleveland,Ohio 1 |2 4 5 8 7- 10 9 6 3
Anaheim-Santa '
Ana-Garden Grove 1 3 4 2 10 5 6 7 9 8
San Diego,Ca. 2 4 3 5 1 6 |10 8 7 9
Miami, Fla. 112 |6 8 4 |7 9 |10 3 5
Milwaukee,lis. 3 1 |2 5 4 8 |9 10 7 6
Seattle-Everett 7/ 8 3 15 4 6 |10 9.1 2 1
Cincinnati 1 6 3 10 8 5 9 2 4 7
Buffalo, N.Y. 1 2 4 9 10 5 7 8 3 6
a) Column Sums - 32 50 54 89 85 99 129 124 81 82
b) Col-Sums Ranks | 1 2 3 7 6 8 10 9 &) s
Perfact - ‘ _ . ‘ a9 | 10
Correlation (b) and (c) = .552 = re (Spearman rho)
Z-statistic = 1.65 = \|n-1 Vg

T PSS

B
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‘ranks contrary to the expected temporal increase.

within each row are first ranked from 1 to n éccording-to their
size - ties are broken using the conservative brocedure of aséigning
The rank sums
within each column are then ranked from 1 to n according fo their
size and correlated with the integer pattern 1, 2, ..., n representing
a peffect temporal increase. This ordering process on column sums
produces what may be called a "consensus ranking” (e.g;, see Kendaldl,
1970, pp. 101-102); we are essentially using Spearman's rank order
correlation r to measure the degrée.of correspondence to our conjec-
ture. (It should be noted that we rely on the notion of a perfect
temporal increase only as an illustration and as a conjecture that
someone may wish to test. We are making no statement about the truth

of this conjecture and, in fact, the data themselves may suggest that

a non-linear relationship is more appropriate.)

Based on well-known formuias, the significance of the rank order

correlation r

g can be assessed in the usual way. For example, under

the independence hypothesis thatall n! permutations of the first n
integers are equally Tikely to be the consensus ranking, the expectation
of ro is 0 and its variance is 1/(n-1). Thus, a Z-statistic w§u1d be
defined very simply as JE:T-rg. In the example, the column sums are
32,50,54,39,85,99,129,124, 81,82, producing the consensus ranking of
1,2,3,7,6;8,10,9,4,5 and a correlation with the perfect pattern of

.552, Assuming the adequacy of a normal approximation, the associated
Z-statistic of 1.65 would be declared significant, but just barely.
Although there is an apparent decrease in the column sums for 1975 to
1977, the rather strong upward trend in the earlier years still

produces a rather substantial correlation to the pattern of a strict

et ree

temporal increase. Obviously, if we had an a priori reason to conjecture:
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the curvilinear trend that seems to be reflected in the column
sums, this pattern could have been used to define the criterion

instead.

Correlational aagregation: Instead of aggregating over cities to

obtain a single value for each year, suppose the rows of Table 1
are considered separately. In particular, the entries (i.e., ranks)
within each row are first compared (i.e., correlated) with the
expected pattern of increase; the aggregation is then carried out
over the I correlations to provide a single averaée measufe of
correspondence. It is apparent that aggregation'now formé the last
step rather than the first.

As a simple numerical example using the data of Table 1, 15
correlations would be gererated: .71,.96,.47,.87,-.08,.81,-.25,
.51,.77,.78,.42,.76,-.30,.17, .36, giving an average value, rs(ave)’
of .465. If it is assumed that all permutations of the integers within.
each row are equally Tikely, the expectation of s (ave) is 0 and its
variance is 1/I(n-1). Thus, the Z-statistic, ﬂl(n—]) rs(ave),»wou1d be
5.40, giving a much smailer (i.e., better) significance level than
the Z-statistic generated under preliminary data aggregation. Counter-

intuitively, however, rs( is smaller than ro even though the

ave)
former is more "significant”.

The stage at which aggregation takes place appears to affect
dramatically the significance of the final summary statistic as well
as its size, and unfortunately, in opposite ways. Extrapolating from
the simple example of Table 1, preliminary data aggregation will lead
to a Targer summary correlational measure. However, this 1afger

Ebrre1ation will generally be Tess significant when compared ‘to the

(29)
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~average of the separate correlations for each of the rows.

We now formalize these general conclusions in greater detail
and extend their range of validity beyond the context of simple rank
orders and the use of Spearman's correlation. Our extensions later
will incfude the possibility of comparing matrices rather than
sequences and will address the problem of multi-group concordance
as well. In this latter instance, the pattern that is used as a target
(e.g., a pattern analogous to the conjecture of homicide increase) is
only implicitly given by a second object by attribute dgta table (or
set of matrices) collected ca a second group of objects.

As one final motivating comment, we note that.the practical
implications of a more formal analysis are.importanﬁ for the way in which

crime data are reported and kept. The aggregation level at which the

strongest correlational pattern can be found may-be at odds with the level

‘of aggregation that would allow the pattern to be most easily detected

statistically. Thus, by pragmatically picking an aggregation level that

seems to "smooth out" the data the best, we also may 1imit the types -

of relationships that could Tater be determined as statistically relevant,
particularly if researchers have only the secondary summaries at hand.
These same relationships are well-known in multi-factor analysis of
variance. Once data are collapsed (agéregated) over the levels of a
factor, the associated sum of squares becomes part of a usually larger
error term needed in tests of significance; consequently, these latter

tests tend to be less sensitive.

Some Formal Details

The two schemes for aggregation presented in the last section can

(30)
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be charaterized more formally. For notation we assume the object
by attribute data table of theform{xij} given in the introduction

and'letthe predicted criterion (or pattern) over the attributes be

defined by the numerical sequence Yqs¥ps-e-¥y- Alsg, for algebraic

" convenience no secondary transformations to ranks are used; instead,

to produce comparability across rows and to allow each object to have

an equal weight, the entries within each row are standardized to

z-scores, i.e., § X, = 0 and ZX? =n for 1 < i < I. This canonical
ik % ik - -

form is assumed thoughout the paper..

Preliminary data aggregation: Based on the n column sums, inj for
1<j<n, let ra be the correlation between these sums and1the |
criterion Yis Yoo eves Y- Under the standard permutation model of
independence (see Bradley, 1968, pp. 73-76),all n! orderings‘of the

column sums are equally likely. Consequently, this assumption produces

a "nuil"” model in which ra has expectation 0 and variance 1/(n-1).

Correlational aggregation: If we denote the correlation between the

n elements in the ith row of the object by attribute data table and
the criterion by ri,'then the avekage corre]atibn over the i rows
is merely rg = %-éri; Based on the standard Friedman randomness model
(see Bradley, 1968, pp. 123-129), all orderings of thg entrieg within
each row are equally 1ike1y. This assumption generates (I!)n‘equal1y
Tikely realizations of the whole table. As for rA,‘thg expectation of
s is 0; however, the variance of rs is now TYF%TY .

Using these two aggregation schemes, the values of rAand.rB and

the associated Z-statistfcs, ZA = \In-1 rA%and ZB = ﬂI(n-]) rg can be

*_compared through simple algebra. For example, as shown in

(31)
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Appendix II,

ry = rB/G, o - (1)

where o =Jl FI-1r
I

correlations between pairs of rows. Since r
ave

equal to 1, @ must also be Tess than or equal to 1. Moreover; ¢

. . oy
and r_  is the average of all {5)

is less than or

can be 0 if and only if Fave = %%T“ which implies a lack of variance

in the column sums (i.e., the sums. are all zero) and an undefined
correlation rp- Thus, without loss of any essential generality,

it is assumed that 6 is positive and less than or equal to 1, i.e.,

0<e < 1.

The implications of (1) are somewhat surprising but are consistent
with what is generally known about aggregafion phenomena. First of a'1,
]rA[ is always greater than or equal to IrB] with equality only when
Fave = T, i.e., when all rows are identical in their standardized
scores. Consequently, any non-trivial variability across rows will result

in [rA[ being greater than [rB] . Secondly, as I + =

9

and

(32)
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This relationship is analogous to a correction for attenuation in

the psychometrics literature (see Lord & Novick; 1968, pp. 69-74).

Here, Ty can be Toosely interpretéd as a correlation between a

"true score” (definéd from column data) and an "infallible variate"

(defined by the criterion); rg is the corre]ation.between'an imperfect

measure of the "true score" (defined by an average over the separate

row data) and an infallible variate (again defined by the criterion).
In terms of Z-statistics, Appendix II proves the relation given

in (2):

Zg/Zy =1 + (1-1)ry 0 . (2)
Thus, if Tave > 0,

]ZBI'Z.IZAi'
In words, if there is some positive degree of correspondence among the

rows, i.e., r o 0, the Z-statistic for ra will be less extreme than

av
the Z-statistic for rg- Equality exists only Tfrhve = 0; at the other
extreme, if r, . = 1, 4z = JT'ZA.

In summary, the greater the internal correspondence as measured
by Tave® the greater the discrepancy between the Z-statistics and the

closer ra and rg become. This can be seen in the simple equality

11.
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discrepant. He also note that since -1 ST <+,

S (1'1)rave . <rgs T+ (I“])raVe
I o 27 I

This Tast expression provide simple bounds on the average correlation
rB,in terms of the degree of internal concordance. The less the internal
concordance or correspondence, the tighter the bounds.

Returning to the simple data of Table 1, the various relationships
developed above can be.verified numerically. Table 2 is an analogue
of Table 1 and provides the z-scores necessary for the calculations
given below. First of all, since Pave = +479, 8 = .717. Thus, ry = 727 =
rg/e = .521/.717. Similar]y,FZB/ZA = 2.776, which is equal to {T+(I-T)r___,

Tave
or alternatively, to {T'fg_.
: r
A

Finally, if we assume r is given as .479,

ave

the possible algebraic bounds on rB are from -.717 to +.717. Thus, the actual
size of .521 for g is rather substantial given the degree of observed

concordance among the SMSA's.

Table 2 here

Multiple=-Group Concordance

‘A fixed set of scores Y15 Yoseeresy, Was assumed to define the
hypothesized pattern or criterion in the Tast section. Suppose now

that nb such static conjecture is available and instead we are given
a split of the I objects into a first set of I, and a second set of

I,, where Ij + I, =1 (e.qg., a split into Eastern and Western cities).

(34)
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Table 2.

z-scores of Homicide Rates (per 100,000) Standardized within Rows

Year

1968| 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977
Chicago -1.66| -1.03 |-0.13 | 0.01 |-1.10 | 0.71 | 1.97 | 0.57 | 0.22 | 0.43
Los Angeles -1.53| -1.04 |-1.17 |-0.60 | 0.33 | 0.15 ] 0.37 | 0.99 | 0.77 | 1.74
Philadelphia | -1.87| -1.41 |-0.37 | 0.55 | 0.44 | 0.90 1.13 | 1.19 | 6.03 [-0.60
San Francisco | -1.53| -0.45 |-1.17 |-0.51 |-0.99 | 0.39 | 0.81 | 1.29 | 1.17 | 0.99
Bos ton -0.35| -0.65 |-0.35 | 0.24 |-0.06 | 1.56 | 1.41 | 0.97 |-1.24 |-1.53
Pittsburgh -1.75| -1.38 | 0.10 |-0.27 |-0.52 |-0.15 | 1.21 | 1.58 | 0.59 | 0.59
Baltimore -0.30| -0.39 |-0.47 {1.24 [ 1.36 | 0.45 | 1.03 | 0.20 {-1.39 |-1.72
Cleveland -2.54| -0.46 |-0.12 | 0.03 | 0.67 | 0.78 | 1.22 | 1.12 | 0.18 |-0.27
Santa Ana -1.26| -1.03 |-0.80 {-1.03 | 1.52 |-0.45 | 0.36 | 0.47 | 1.52 | 0.71.
San Diego -1.24| -0.93 |-1.01 {-0.24 |-1.24 | 0.44 | 1.51 | 0.98 | 0.67 | 1.05
Miami -1.49] -1.33 | 0.17 | 0.97 |-0.53 | 0.22 | 1.13 | 1.6 |-0.90 | 0.17
Milwaukee -0.88| -1.89 |-1.05 |-0.20 |-0.20 | 0.98 | 1.15 | 1.32 | 0.64 | 0.14
Seattle -0.42| 0.78 |-0.72 |-0.57 |-0.57 |-0.42 | 2.27 | 1.22 |-0.72 |-0.86
Cincinnati -z.22! 0.35 |-0.66 | 1.57 | 0.57 | 0.01 | 0.90 |-0.66 {-0.43 | 0.57
Bui falo 1000 -1.52 | 0.1 | 0.s9 1.25 | 024 | 0.49 | 0.62 |-0.77 | 0.49
Column Sums  |-20.94|-12.38 |-7.64 |+2.16 |+0.63 |+5.23 |+16.96|+13.47|+0.24 |+1.90
e ron -1.57| -1.22 |-0.87 |-0.52 |-0.17 | 0.17 | 0.52 | 0.87 | 1.22 | 1.57
ry = 727 L JEYFTIT i} \Ls(9) 521 e
ry = s ‘ -1 7y () 721

e T e
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Although each group could be discussed separately, our more immediate
concern is with measuring the concordance between the two given groups.
Intuitively, the criterion scores yj,'yz, seees Y are replaced by a set
of rows from one of the two groups. The first group then serves as a
target for the second anc conversely {see Schucany and Frawley, 1973).

Assuming the common standardization to mean 0 and variance 1 for
each row, the two aggregation schemes discussed previously have natural
analogues in the two-group context. First of all, the data in each
group could be aggregated and the two sequences of scores correlated
to obtain r; . Alternatively, each row in group 1 could be correlated
with each row in group 2 and the 1112 correlations averaged to give r;.
Obvious extension of the probfs given in Appendix II for
*
B
- [T+ (T,-Tr

*
ra and rB.would generate rather simple relationships among ra and r

* ! Z
Y‘B/GIGZ, Where 61 = ] +(I.l ])Y'

Iy

*
For example, ra avel, g, ave?,

I

and r

avel> and r

avep are the average intercorrelations within each of

* *
the two groups. Thus, ra]l > |rgl-

A Toose correspondence to reliability theory is again possible.

. * * *
If Ij » = and I, + =, ra = rB/Jravel Fave? implying that ry is an

analogue of a disattenuated correlation. In other words, to generate
* *

rp. we merely correct rg for the lack of perfect concordance within

each of the two groups separately.

Using these same ideas, we find = q 1 +(Il-1)rave1,J1+(12-1)ravez.

NL N
>x~,wx-

* J* ) * .
2 0, |Z5] EJZAI . Finally,” rp can be bounded

Thus, if Fovel 20 and rave?

by j;J L+ (13-Drayer J L+ (Ip-Draven .

Iy I

(36)
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* Returning to our numerical example, supposé we split our 15 SMSA's
into two groups - (Chicago, Philadelphia, Boston, Pittsburgh, Baltimore,
Cleveland, Miami, Milwaukee, Cincinnati, Buffalo) and (Los Angeles-Long
Beach, San Francisco;Oakland, Anaheim-Santa Ana-Garden Grove, San Diego,
Seattle-Everett) on the basis of an east-west dichotomy. Here, I1 = 10,
I, =5, el = ,558 and Yave2 = .519. Thus, 87 = f776 and 8, = .784.
The relationships among the correlations r; and r; and the E-scores Z; and
Z; are now immediate. For example, r; = .657 =r;]eiez, ;g_: %f%%% =

A

W1+ (I-Drger VT + (00 0 = 4304
*
Finally, s is bounded by *+ 016, or + .608. Thus, the actual value
*
of .399 for rg is substantial given the algebraic upper bound. As

an interesting substantive cbservation, ravel and r o are both

ave

greater than r o found in the previous section, and moreover, the

av
. * * .

values of rp and rg are both smaller than their counterparts r and

rB.'Descriptive1y, there appears to be a greater correspondence between

all the SMSA profiles and a strict temporal increase than there is between

the SMSA profiles grouped according to an east-west dichotomy.

The two-groups results given above can themselves be extended to
T groups in an obvious way. We give some of the necessary formulas
but omitvany numerical example since it w0u1d parallel the two-group
split very closely. Suppose now there are T groups with Il, 12, oo
IT objects in each. Moreover, let rﬁ denote the average of the
intercorrelations of the type rz among the T sequences obtained by
aggregating within each of the groups separately; let ré denote a
similar average using correlations of the form r; . More Specifiqa]ly,

* * ’
if A denotes the correlation (of the form rA) for groups u and v
uv : .

e

e

16.
* .
:::anuv :en?te:'the Cor:e1ationA(oj.fhezform*r;) for groups u and v,
e (35 E;V rAuv N (;) u<y rBuv s and
*
rﬁ B %‘ ) ' uv . No immediate simplification i i
(2) Ly 5;6;' _ mplification is passible, however,

. *
since the terms
rg and euev depend on the same subscripts. If ye

assume that all compo ati *
ponent correlations rBuv are non-negative (as they

typically would be), then it is easy to show that r » p2 0
B 2rp> 0.

Finally, a related expyession holds for the associated Z-statistics-

Although we have implicitly assumed that our initially given objects
were elemental in some given sense, it should be clear that the T group

analysis merely sets up another object by attribute data matrix that

could be analyzed as such. In this case, each group would correspond

to . .
a single object and the aggregate sums once standardjzed define

the observations within a row.

We might also note in passing another alternative for measuring

the concordance among T groups.. Schucany and Frawley (1973) consider

an index based on the products of the T aggregated sums rather than

averaging over the pairwise statistics appropriate in two-group

splits. An analysis similar to that given above ‘could be formulated for

these a]ternatives Qyt since the extension is peripheral, it will not

be pursued.

e g e o e
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Alternative Null Models

In testing average correlations, such as R and r;, the emphasis
throughout has been 6n a2 null model that assumes all permutations of
the observations within rows of an object by attribute data matrix are
equally likely (referred to as the Friedman assumption). . Other models
are possible, however, baéedAon weaker conditions. For example, éuppose
we wish to test the significance of ﬁB for a perfect tempqra] trend.
For each of the I rows of the object by attribute matrix we first obtain

the correlation to the set of criterion scores Yi» Yoreees ¥y, and to its

‘exact'ppposite Yo Y1070 00 Y- This proéess generates two correlations

of equal absolute value but of opposite sign, i.e., if rs denotes the
correlation of row i to Yy Yoseues¥ps then -rs is the correlation to
Yy yn_l,...;yl. In short, two dependent samples are obtained consist-
ing of I pairs of observations. If the conjecture is correct that the
pattern Yir Yos-oes ¥y is reflected across the rows, then the first
member of each pair should be positive and the second negative. Thus,
the pattern can be confirmed aS a special case of the common two-
dependent sample framework. ‘

To be more specific, we choose as our test statistic

]

= - =1 - . X
T = 77 ¥ (,1.1 - riz) =1 ? rs rgs where riq is the correlation

between the ith row and Y1o +--s ¥ and riz is the correlation between
the ith row and Yoo E If our conjecture is approximate]y correct,
the values of T should be relatively large and positive. (To those

readers familiar with non parametric statistics, it shéu]d be apparent

that our problem could also be phrased in terms of a singie sample of

correlatiaons rl;..., ris for example, see Bradley, 1968, pp. 76-79).

18.

Assuming a "null" hypothesis that all ZI assignments of signs
to the ahsolute differences Iril - T | in the statistic T are
equa11y Tikely, i.e., that there is no correspondence between the
rows of the object by attribute mafrix and the criterion or its
inverse, the expectation and variance of T can be found easily (see

Hubert and Schu]ti, 1976). The approximate significance test is
T-Em _ I

Y V(T) I 2
o i

= Irs. In terms of the previous example,Z, = 3.178 which is
I™ i

based on Z,

» where E(T) =0, V(T) =

. 2

L res
substantially smaller than ZB = 6.052. In fact, as long as i S
I

_1 ., this later Z-statistic,Z4, will be Tess than that obtained under
n-1 :

the previous Friedman model. However, since Z, is based on a weaker
condition, it still may be preferable. Obviously, this newer model is
irrelevant when preliminary data aggregation is considered since only
the two values of i.rA would be available. Finally, an extension of'

these ideas to the multi-group case is immediate. For instance, for

two groups E(r*) = 0; V(r*) S . 2 ) r2. . where r
B B (I1I2) ie group 1 T 1
J e group 2

is the correlation between the ith row in group 1 and the jth row in
group 2. Thus, for our numerical example, the associated Z-statistic
would be 5.740 which is again substantially less than the

: *
Z~-statistic, Z

B > of 8.484.

(40)



Hierarchical Clustering (Aggregation)

: * %*
The algebraic relations between the ra and rg correlations

developed in the context of two group concordance have rather siéni-
ficant implications for how déta should be reduced and interpreted.

In particular, these distributions are relevant to how the objects are
classified and clustered. In general, given an object by attribute
data matrix and the associated (é) correlations between the I rows,

we may wish to cluster or partition the objects (e.g., cities) in

such a way that similar cities are placed together in a single class
and dissimilar cities are kept apart. We have assumed up to this pbint
that any such grouping of the cities would be given a priori, whereas

now, our interest shifts to identifying such groupings post hoc. As

a convenience, we emphasize only hierarchical strategies, i.e., clustering

schemes that define complete sequences of partitions of the object set.
Many of the comments we make, however,‘can be extended rather easily

to alternative methods.

Most hierarchical clustering procedures start with a-trivia1
partition of the object set in which each object forms a separate
class by itself. As the clustering progresses, pairs of classes that
are the "closest" are successively united until a second trivial
partition is reached with all I objects placed together. Thus, if there
are K classes at a given stage, that particular pair is united to form
a new class if it is the most similar among all possible (g) pairs that
are candidates for consolidation. Consequently, if we start with the
I x I intercorrelation matrix among the I objects, we need a procedure

for continué11y respecifying the similarity between a new class formed

(a1)
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at a particular state and all remaining classes. Once such a
definition is available, the partition sequence’ is constructed

more or less automatically.

Some notation may help clarify the intuitive description of
the c1ustering‘process given abové. Suppose the K classes at a given
-stage are labelled by Cl’ CZ""’ CK, and the measure of similarity
or proximity (as yet undefined) for the pair Cu and'CV chosen from

K . . ;
the (2) possibie matchings is denoted by S, Initially when K=I,

Ve
Suv is provided by the correlation between rows u and v. At a later
stage we can assume without loss of generality that the pair C1 and

C, 1s the most similar, and consequently, the subsets C; and C2 are

UC, and C

united to form CIUCZ' The proximities between C C

1772 3>
have to be redefined, which implies that different procedures for

K

calculating the new proximities will lead to different hierarchical

sequences and differenf'c]ustering methods.

. * *
The differences between A and rg characterize two different

processes when used to define the similarity between C,UC, and C

1772 k*

. R *
‘For correlations of the form rp» We can aggregate over the rows

encompassing the sets C1 and C2 and over the rows encompassing Ck.
A]terngtive]y, if we treat C1UC2 as one class and Ck as a second,

thé average correlation r; specifies a second possible measure of
similarity. Obviously, the clustering result may vary as a consequence
of these two options éince r; and r; differ as a function of the
internal concordances within ClUC2 and Ck' There is no "right" way

to proceed, however, aﬁd in fact, both procedures lead to rather

simple formulas for redefining the similarity between ClUC2 and Ck

(42)
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For example, let €3 be the sum of all intercorrelations from C; to Cj’ Cij the

carresponding averége, and Ii and Ij the number of objects in Ci’and Cj’

* - - - .
respectively. Then, for the ra option, t2e similarity bg%:i?n any two
= Xk -

o * - .
distinct groups Ck and Ck' is rAkk' —,EE;E;T;T %;;E;T;T

Thus, it is trivial to show that the similarity between Ck and C1UC2 is

C1k * Cox . Computationally, at the stage of K classes,
J-Ckk‘cll+_C22+ £Cq1,)

Cl,...,CK,we need the K x K matrix that has entries Cuv in the uth row
and the vth column. At the new stage involving K-1 classes CIUCZ’C3""’CK’

only the collapsed K-1 x K-1 matrix given below has to be retained:

c

c,uc, Cy . K
e
5 C11+C22+2C12 c1tcox C1K™CzK
: c
Ck C1ktCok cen Crk R kK
' es c
| ik “kK K

Since the original I x I matrix does not have to be stored and referred to
‘ * ) 3 -
' i inatorial in
as the clustering procedes, the procedure based on ry is combin

" the sense of Lance and Williams (1967).

g T S e
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*

Analogous results hold for the rg option if we define the similarity
between ény two distinct groups C, and Ck' as r* =c ,-. It is easy

‘ c +c
M . 1k 2k
to show that the similarity between ¢,UC, and Cy s TTI;TETTE—

At the stage of K classes, only a K x K matrix need be retained with class

sizes on the main diagonal and Cij's in the off—d%agona] positions. Thus,

this second procedure is also combinatorial.

Using Ta51e 2 for a numerical example, the two clustering alternatives
would lead to partition sequences that are identical except for a minor
di fference early in the hierarchy that affects only the order in which these
small groups were eventually merged together. In each case, the Tevel at
which the three groups were defined produced the same decomposition: one
object set containing Cincinnati alone; a second object set containing

Seattle-Everett, Baltimore,and Boston; and a third containing the rest.

‘Looking at the rank correlations to a perfect temporal increase for an inter-

pretation, the three object set is defined by negative correlations, Cincinnati
has the lowest positive value, and the large object set contains those SMSA's

with the largest positive correlations.

Comparisons of Matrices

The previous discussion has been phrased for sequences of n numerical

variables defined for each member of a set of I objects. The same correla-

~tional relationships also ho}d_when matrices are available containing pairwise

relationships among the n attributes. For example, consider the data in
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_Table 3. This matrix is defined for the Chicago SMSA (others have

been compiled for all other cities used in the sample), and contains g"
the correlations among the seven index crimes based on data over the B _ )
ten years from 1968 to 1977. | | | | l}
¥ o mees
Table 3 here | o TABLE 3
Given some similar results in the geographical literature (e.g., Harries, .J CORRELATIONS (7 CRIMES) SMSA #
: _ : 1
1974, p. 39), we could expect the correlations among the 7 crimes for {]
each city to demonstrate the well-known subdivision into crimes against - ' QDiEQQQ
persons and crimes agafnst property. Or in other words, the correlations 7 {I
within the two sets, (murder, rape, robbery, assault) and (burglary, o _ 1.000§0.753{0.519]0.714 0.852{0.763{0.772
larceny, auto theft), should be Targer than the correlations across sets. \ ll 0.75
-75311.000{0.893]0.906 0.6
To formalize this conjecture in a comparison paradigm, a target or [) -690 0.439/0.282
criterion could be set up as a matrix of the following form: - _ 0.519/0.893{1.000{0.781 0.308/0.021]0.039
Crime ,{J ' N
AN » 0.714{0.906
o 0.78111.000{0.670 0.520] 0.240
> + Fay > 'E ’
st = s 0.852]0. - .
ig . -E = {; g - IJ 0.690{0.308}0.670/1.000 0.938i 0.622
1 jo L [7,] | 5 S +
= = & 2 & 3 2 .
” 0.76310.439/0.021{0.520{0.938 1.000 0.684
Murder X 1 1 1 0 0 0 :
Rape 1 X 1 1 0 0 0 [] 0.772}0.282}0.039 0.240 0.62210.684 1.000
Robbery 1 1 X 1 . 0 0 0
Assault 1 1 1 X Q 0 0 _ ) N ’ TJ
Burglary 0 0 | 0 0 X i 1
Larceny 0 0 0 0 1 X 1
Auto theft .0 0 0 0 1 1 X .

Rather substantial correlations would be expected between each of the
5 matrices and this given pattern if the person versus property split

vere represented in the correlations between crime types.

(45)

(46)
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In general, we treat the (;) entries above the main diagonal in each
city matrix as a sequence and the (;) such entries in the hypothesized
matrix as a pattern. If the standard normalization to z-scores‘is performed
on each such sequence, a value of .167 would be obtained for ra and a smaller
value of '.096 for.rB. Exactly the same reasons for this difference in
correlations exist as before since we have merely reinterpreted each matrix
as a sequences of values. In both cases, the correlatjons are positive
(as expected) but they are also very small. This last fact suggests that a
spiit into property and person crime is not very salient when the profiles
are correlated over time, particularly when the size of these correlations
are compared to the strong split observed for profiles correlated over

localities, e.g., see Harries (1974, pp. 41-43).

When devising descriptive statistics it may be appropriate to destroy
the matrix character of the entries and operate as if we merely had sequences.
In terms of Z-statistics, however, the two aggregation schemes would ‘need
different variance terms that réspect the internal structure of the matrices
for each city or for their aggregate sum. Such variance terms are available
in the literature (see Hubert and Schultz, 1976) and would generally lead
to the same type of relationship among Z-statistics as obtained in the
sequence context. Since the variance terms are much more complicated and do
not lead to any simple algebrafc results, ‘this extension is'not discussed

in any formal way.

(47)
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26.
Discussion

In the very first example illustrating the two aggregation schemes,
a rank transformation was used within each row and on the rank sums for
each column. This process ensures that each object or row contributes
"equally" and thus, some degree of natuial comparability ex:¢.. between
the summary statistics obtained for the two aggfegation schemes. To develop
more explicit relationships in terms of formulas, however, the transformations
used in most of the paper wére based on obtaining z-scores. In the jargon
of statistics, observations within rows are aligned for location and scale.
This convention allowed precise connections to be developed between. the two
aggregation schemes both in terms of summary indices (e.g., for A and rB)

and Z-statistics (e.g., for Zy and ZB).

Matrix extensions offer a great deal of flexibility in defining different
relationships among the attributes, but unfortunately, the problem of defining
a transformation on the aggregate data matrix also makes it very difficult in
general to develop precise formulas for connecting the two aggregation schemes.
As an example of this problem, suppose we are given the basic object by
attribute data tdb1e and define an n x n matrix for each object (e.g., city)
as follows:the entry in the uth row and the vth co1umh is +1 if Xiy > X5¢0

-1 §if Xig < Xjy and 0 if Xy = X

iy’ If we treat the n(n-1) entries in each

iv’
such matrix as a sample, normalize to z-scores in the usual way, and carry
out the same redefinition for a criterion set of values Y1 y2,..., Yo the
average correlation s is actually the average Kendall Tauy statistic of

each row against the criterion (cf. Hays, 1960). However, to obtain an

analogue of ry> @ similar transformation to signs must be performed on the

(48)
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aggregated scores from the standardized object by attribute table. This
discontinuity in strategy prevents any simple way oifdefin%ng a re1;tf0nsﬁip
between the summary measures for the two aggregation schemes. We would still
expect data aggregation to give a larger descriptive measure and a greater

significance level, but it is not clear how these expectations could be

formalized as a parallel to our previous equations (1) and (2).

As another point of clarification we note that the normalization within

rows of an object by attribute data table may not be the only natural trans-

formation to carry out. Instead, suppose z-scores are obtained within columns
and for each object i we define an n x n matrix having an entry in the uth

row and vth column of %—2 Here, Z:, and 2 are z-scores for attributes

iufiv
u and v, respectively. If we aggregate over the I matrices (treating objects
as if they were "subjects"), the correlation matrix among attributes is
generated. Pattern comparisons are important here in the context of what is
called a multi-trait multi-method matrix; consequently, some of the same
aggregation principles discussed previously appear important to distinguish

in these applications as well (see Campbell and Fiske, 1959; Hubert and Baker,
1978). Since a separate paper isbplanned 6n this topic. it will net be pursued

any further now. We merely comment that different normalizations of an object:

by attribute table may be appropriate for different purposes.

The methods of data aggregation discussed in the paper represent both
ongoing procedures used in geography for aggregating data and alternatives
to those standard procedures. For examnle, Harries (1973) used preliminary.
aggregation procedures when he averaged violent crime rates for 189 SMSA's

for the five year period 1965-69 and calculated simple correlations between

(49)
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~ violent crime and population over the SMSA's. Alternative procedures for

determining correlations between violent crime and population are given

in our discussion of the statistics rg and r Pyle (1974) used

s{ave)"
correlational aggregation when he examined actual crime rates per 1000 .
persons for nine crime types, plus armed robbéries per 1000 commercial
structures and rates of residential burglary per 1000 dwelling units.
Pyle calculated all pairwise correlations. for the entire study area

(Summit County) and for. a subset of the area (Akron) and then attempted

to illustrate differences between the correlations. This is similar to

‘the procedures used in discussing multiple group concordance in this paper.

Harries (1974) also used preliminary data aggregation when he
correlated city size with crime rates averaged over index crimes for a
five year time period - a procedure that could be extended by-using the
matrix comparison procedures developed in the latter section of this paper.
Other examples of preliminary and correlational data aqgregation proce-
dures can be found in the growing literature on the use of canonical .

correlation in geography (Monmonier & Finn, 1973; Clark, 1975). However,

'the exact procedures detailed in this paper focusing on rank orders and

.Z-statistics for both preliminary and correlational aggregation procedures,

to our knowledge, have not appeared in the geographical Titerature.

As one final observation, it should be noted that the two group
discussion was concerned with the concordanceé between two classes even
though the various Summary indices were subject to modfficati&h‘by the
degree of internal concordance. In other words, we were not expTicit1y

interested in assessing large within group homogeneity per se. Given .
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the original I x I intercorrelation matrix, however, and a hypothgsiz%d

sprt of the I objects into T groups (e.g., into two disjofnt subsets),

we may also wish to test whather there is more concordance within the

groups than expected under some chance mode1. This topic has been = =
discussed in detail eTSewhére for the hu11 conjecture that the given

partition was chosen at random from all possible partitions with the same
number of classes and objects in each. Thus, we would hope to reject the
randomness assumption if the within group concordance were substantially
greater than the between group concordance, i.e., the a priori partition

is reflected in the size of the correlations in the original I x I matrix.

For a more complete discussion, the reader is referred to Hubert and Levin

(1976).

29.
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Appendix I: Definitions

1. Standard Metropo]itan.StatisticaT Area (SMSA):

Most standard’metropo1itan,statisticai areas include at least

one city of 50,000 inhabitants or more. This is not an absolute

requirement as it was for the standard metropolitan area. Instead,
two cities with contiquous boundaries and with a combined population
of at Jeast 50,0004(often referred to as twin cities) may serve the
purpose if they constitite, for general economic and social purposes,
a single community, and if the smaller of the two has a population of

at Teast 15,000. There is also the provision that where, in two or

more adjacent counties, each has a city of 50,000 inhabitants or

more (or twin cities such as those just described) and if the cities

lie within 20 mitles of each other (city limits to city Timits), they

will be included in a single Standard Metropolitan Statistical Area
unless there is definite evidence that the two urban areas are not

economically and socially integrated.

2. rs = Spearman's rank order correlation coefficient. Defined by

cumulative ianks within each column and correlating the

rank order of the column sums with an expected temporal rank

order.

r's(ave) -

the ranks in each row with an expected temporal rank order

and averaging the vector of individual correlation

coefficients.

rank order correlation coefficient obtained by correlating

32.
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ry = Pearson correlation coefficient defined as in (2) above but

substitutingAz-scores for ranks.

=

gﬁ ' 5. rg = Pearsan correlation coefficient obtained as in (3) above but

substituting z-scores for ranks.

— 6. 8 = statistic defined to illustrate algebraic relations between ra &

and Z, & Z..

g A B For large data sets, 8 - v .

rave

= a "correlation" coefficient representing a statistical relation

{f ' between two groups defined on a single data set in which data
are first transformed to z-scores within rows and then summed
{ over columns fdr each group. The resulting column sums are correlated.
{ |
= a "correlation" coefficient representing a statistical relation
f; : between two groups defined on a single data set in which data’
are first transformed to z-scores within rows. Al1 between row

correlations across groups are calculated and averaged.

= a "correlation" coefficient representing a statistical relation

Correlations of

{i among T-groups defined on a single data set.
the form r; are averaged over a11'(;) pairs of groups.

*
10. r, = a "correlation” coefficient with form similar to g (above) but

oW &

SRS ~ averaged over all (;) pairs of groups.

gxik A
;(X-'Zk = ;ykz =n.
J By definition,

n;ckyk ) %Cé%{f

g |
] /e 40T o - ]
|

whe =
re Ck Z]xik

- Using the restrictsi i
g estricticns on Xik and Y\ given above,

¥k

]
” a %Cke /n—/%xizk +% 1-;1-ux1'kx1"k
{

%Ckyk %Cky k

Yn/ nl -]
/n *+ nI(I 1)rave nI/] + (I'])rave

I
r
B -
. :i/tlg+ (II])rave

. 1 m— -
e ey
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Aggendix II
(i) Show: ry = EB/G, where
- 1+ (12
gl . _ 0 = J (1 1)rave .
H N I .
} l We assume the followin icti
| g restrictions on X5k (as always) and, without
{% loss of generality, similar constraints for Yi:
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(ii) Show: 7, = \j1 *(I-1) rove —F ry | | IL
We know ZB = \l I (n-1) rg and ZA = yn-1 ra- I
- N /S
A‘I -1 r ) v .
Thus 7./2 = E—(j——)———ﬁ = ‘(-I-—B- [z ASSESSING HOMOGENEITY IN CROSS-CLASSIFIED PROXIMITY DATA
’ BT7A n-1 Ly A , :
Y‘A ; {
Using the relationship r, = rp/e, Lo/l = I 9';; = \11 *{I-Dr - - b ;
]
0 .
}J ) i
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Assessing Homogeneity in Cross-Classified Proximity Data

It is common to see data classified according to various a_priori
dimensions. For example, a set of_]atency measures may be cross«classified
according to subject and task, a given crime rate may be coded by city, year,
and type of offense, and school achievement scores may be presented in terms
of sex and SES level. Since classification facets supposedly provide infor-
mation useful in explaining the variability inherent in the measure under
study, one of the first problems faced by any applied statistician interested
in analyzing such data is to-develop suitable methods for evaluating the-
effects of'é.griori'c1a$sfficétions. ‘Mu1fiva;%a£é-énaiysis-éfQQarfénéé'éﬁé
its specialization to the study of profiles [Morrison, 1976] are obvious

strategies to consider. In fact, they may even be too obvious since their

. general applicability could 1imit our concern with exploring alternative

inference paradigms that might be more appropriate in specific instances.

- Standard analysis-of-variance methods and their correlates are all rather
specialized and keyed to particular ways of interpreting data and to certain
measures of proximity (e.g., covariances) among the objects under study.

More pointedly, classical statistical inference may not complement in any
natural way many of the newer data reduction strategies of 'scaling and cluster
analysis that are becoming very popular in the social and behavioral sciences.
These latter methods have proved highTy successful in describing structure
within an object set and have been implemented with a variety of arbitrary
measures of proximity having few if any well-developed parallels within the
traditional confines of statistics. Because of these substantive developments,
it wou]d'be of obvious value to have confirmatory inference strategies for
testing the saliency of a priori dimensional constraints based on an unspecified

proximity function.
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In recent years various analysis-of-variance analogues have been proposed
for arbitrary proximity measures when the object set is subject to a single
classification dimension [Hubert & Levin, 1976; Mielke, Berry, & Johnson, 1976].
Since Tittle work has addressed the more difficult task of two or more
classification dimensions, we use this Tack as a basic motivation for the paper.
The problem emphasized is one of analyzing an arbitrary proximity matrix that
contains cross-classified information on the similarities within a set of N
objects. For convenience, the initial discussion assumes that the N objects
are actually N space-time units, i.e., m cities observed over n years so mn = N.
The proximity information per se will be given by a Euclidean distance measure
between the profiles defined over the seven index crimes for each pair of
space~-time units. Based on this structure and data, the aim is to evaluate
temporal and spatial homogeneity; that is, to assesé whether any evidence
exists for an increased similarity among profiles associated with the same
levels in the temporal or spatial variables. It is important to remember,
however, that the space-time interpretation is used here solely for convenience
of exposition. Any cross-classification héving a similar form and/or any

measure of proximity is subject to the same analysis schemes to be developed

in the following pages.

Background

The most convenient way to introduce our approach to the assessment of
profile homogeneity in cross-classifications is to introduce an example that
can be used throughout the discussion. Table 1 presents a 30 by 30 symmetric
matrix containing measures of proximity between the profiles for 6 cities
(Chicago, Los Angeles, Philadelphia, San Franciscé, Boston, and Pittsburgh)
at 5 time points (1969, 1971, 1973, 1975, 1977). Each entry in the matrix

corresponds to a Euclidean distance measure between the profites for two city-
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time units-over the seven-index crimes (murder and non-negligent manslaughter, -
forcible rape, robbery, aggravated assault, burglary, larceny/theft, motor

vehicle theft). The entries across crimes were first made comparable by a

transformation to Zfscores, i.e.; normalizing the rates within each particular
crime type to mean O and variance 1. The final proximity or distance between
profiles was then obtained by taking the square root of the sum of the squared
differences over the seven index crimes. Obviously, other measures could be
used as well, e.g., Mahalanobis distances, correlations, and so on. In all

cases, however, the analysis procedure to be presented remains the same.

Table 1 here

Considering the complete 30 by 30 matrix of proximities in Table 1, the
assessmant of spatial homogeneity should depend on the level of é]evation for
the entries in the 6 "same-city" blocks (each of size 5 X 5) on the main
diagenal. Similarly, if we reorganize‘Tab1g.i_appropr{ate1y, temporal homogenaity
should be 1_flected in +#, level of elevation for each of the 5 "same-time"
blocks (each of size 6 X 6) on the mrin diagonal. In either case a natural
evaluation strategy would first define an index for the degree of elevation in
the on-diagonal blocks, and then specify a procedure for assessing the relative
size of the observed index compared td some chance model.

Numerous procedures have been proposed for analyzing data of the form

represented in Table 1 when the proximities are actually correlations. In this
case the tables are usually referred to as multitrait-multimethod matrices ' ¥ 5
[Schmitt, Coyle, & Saari, 1977]. A]tﬁough the literature in this areéAis véry | ;. ]
extensive, the work of Hubert and Baker [1978, 1979] is the most relevant to ‘ ?jif ‘ ‘ i
our discussion since both of thése Tast papers develop indices of elevation 8

for the entries within the on-diagonal blocks as well as associated signifi- ’ i:7{

cance tests. The significance tests are based on generating a reference

- (61)
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distribution under the assumption that all possible assignments of the space-
time variables are equally-likely (a random assignment of the N objects to the
m cities and n times). If the observed index is extreme with respect to this
reference model, a conjecture of randomness is rejected, implying a statisti-
cally significant degreevof spatial (or temporal) homogeneity. In Hubert and
Baker [1978], indices based on average within-group proximities are used; non-
metric comparisons are developed in the second paper by comparing the size of
the proximities within the on-diagonal blocks to those outside. For further
details, the reader is referred to the two original sources.

The approach to evaluating space or time coherence just sketched hés two
unfortunate drawbacks. First of all, the null model assumes that a11'assign-
ments of the N objects to the space-time classifications are carried out at -
random. Thus, an index that supposedly measures spatial homogeneity must be
evaluated against a reference distribution contaminated with temporal homo-
geneity. We, in fact, compare the observed index for a given classification
dimension (a partition of the N object set) with all possible partitions having
the same number of classes and number of objects in each. No attempt is made
to control for the second classification facet. For example, if there are
strong spatial effects and moderate temporal effects, it may be imﬁossib]e
to detect the latter since the reference distribution used for evaluating
temporal homogeneity does not remove the effects of sﬁat1a1 homogeneity.
Secondly, the extensions of these notions to nonmetric comparisons among the
proximities in the original N X N matrix requires a substantial amount of
computation; even simple moment formulas for the indices are very cumbersome
to derive. A]thbugh the sole reliance on the ordering of the proximities
in a matrix may be desirable in defining a measure of elevation for the on-
diagonal blocks, the computational burden is so great that the practical

usefulness of these extensions is limited. As before, the developments to

“@
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date in the non-metric context confound spatial and temporal homogeneity in
the construction of the appropriate reference distribution.

Given a cross-classified matrix, such as Table 1, there is a very simple
device for solving both of the difficulties of confounding and nonmetric
computation at the same time. The strategy can be viewed as a direct extension
of well-known principles in multi-factor analysis-of-variance since we will
block on the level of the spatial classification when assessing temporal
similarity and conversely. The next section introduces the paradigm in

greater detail and illustrates the increased sensitivities of the method.

Formal Details

To provide some simple notation, suppose that N profiles are defined aver
a set of T variables. As always, the N profiles are cross-classified by m
levels of factor A (Al’ AZ’ cers Am) and n Tevels of factor B (Bl’ Bos «nns Bn)
so that N = mn. In terms of the previous example from Table 1, factor A
corresponds to city, factor B to time, m = 6. n =5, and N = 30. The proximity
function is assumed to be some distance measure between the profiles corres-
ponding to different city-time pairs, where each of the T variables is typically
standardized to mean zero and variance one. Based on this notation, the complete

proximity information can be represented in the schematic form given in Table 2.

The main diagonal is assumed irrelevant and will always consist of zeros.

Table 2 here

Since the roles of factors A and B are interchangable, our discussion can
be Timited to the assessment of profile homogeneity within the levels of factor
A, e.g.,tc spatial homogeneity if the levels of A correspond to m cities. One
obvious index is the sum of proximities within the levels of A represented by

the proximities within the m triangles indicated in Table 2. If we rewrite

(63)
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Table 2 as Table 3, the appropriate proximities are now represented by the
three indicated diagonal strips. In either case, we denote the observed sum

by robs‘

Table 3 here

One possible null model for evaluating T obs that is not affected by the
homogeneity within Tevels of the nuisance factor B is best explained using
the form of Table 3. Within each level of factor B the m! reorderings of

the levels of factor A are assumed equally likely. Since there are n levels

of B, this implies (m!)" equally likely realizations of the complete matrix.

Each such fea]ization leads to a value for T, and when tabled, these values

form a reference'distribution‘ﬁo'eva1uate the size of the observed index, Tobs'r
In the usual interpretation, the hypothesis of randomness. (blocking on factor

B) would be rejected if T ps Were sufficiently small; the proportion of
realizations giQing vé]ues of T aS shalT or smaller than r;bs would be reported
directly as the significance level.

As an alternative explanation for the null model, we note that T obs is an
index calculated for a partition of the N objects inta m groups of n objects
each. The reference distriﬁution is a tabling of the index T over all partitions
of exactly this same form that are subject to the blocking on time. Each such
partition has the property that the n objects in each group are representative
of all n levels of factor B. Or in other words, the partitions so constructed
are intended as possible comparisons for the original decomposition into cities
in which the Tevels of the second temporal factor are balanced.

Besides controlling for the effect of factor B in assessing homogeneity
within the m levels of A, blocking also decomposes the inference problem in
a very convenient way. In Table 3, the cities within levels of factor B are
permuted to obtain the reference distribution but never across the levels of

factor B. If we look at an arbitrary section of Table 3 for the u and v levels

of factor B, and permute the rows and columns separately and at random, part
of the variability in the overall index T can be identified. In fact, if

I,y represents this contribution, then
r =
Zruv.

MO eove s .nC i ] ‘
Y Y 1 e the saeparate 1nd1c i i i
s p es of the form T are lndependent m pairs,

the first two moments of I can be obtained very simply:

) = ] Er,);
V(P) = uzv V(Fuv).

The complete enumeration ‘of T requires an evaluation over all (m!)n

possib]e‘realizations of Table 3, but the formulas given above show that

moments can be cbtai i ‘
ned for each separate index T v and then merely summed

to obtain those for r.

B
v
Al A2 . Am
A dip b1z -e- dp
A2 d21 d22 .o dZm
B )
’ )
A .
m dml dmZ o dmm

Then from the literature [Puri & Sen, 1971],

E(ruv) = 1/m ; § dij
V(PUV) = 1/’(m(m”1)) {(1/m) Ql - (Qz + 03) +'nQ4}

(65)
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In terms of our Table 1 data reorganized in the form of Table 3 for evaluating

spatial homogeneity, we obtain Tops = 101.75 = Tpp ¥ Tgp + .0 + T, = 5.64 +

11.03 +7.78 + 16.85 + 13.32 + 6.74 + 14.87 +12.45 + 6.91 + 6.16. Thus, since
the corresponding expectations would be 17.987, 20.490, 19.382, 23.797, 22.155,

19.873, 22.985, 21.990, 20.047, 20.637, E (r) = 209.340.

Analogously, V (r) = V (Tzi) * ... +V (rg,). Therefore, V (r) = 108.174

and the associated Z-statistic for Tobs 1S

- E (1)
obs . 101.75 - 209.38 _ 4 34

YV (T) v108.174

A simple numerical example

The data given in Table 1 are too extensive to illustrate the specifics

of a complete enumeration. Consequently, a much smaller artificial example

is presented in this section before we return to the more realistic illustration

Tater on.
Suppose we have three cities and two time points and are provided with the

following proximity information:
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obtain P21 4, P31 5, r32 =3, and T
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City 1 City 2 City 3
Time 1 Time 2 - ) S

City 1 Time 1  Time 2 Time 1 Time 2
Time 1 0

Time 2 1 0

City 2

Time 1 2 4 0

Time 2 3 2. 2 0
City 3

Time 1 2 3 2 )

, 0

Assuming our concern is with temporal homogeneity, we would sum the entries

in the diagonal strips of this matrix (see Table 3) and obtain r =12, i.e.
based on the three city to city matrices of size 2 X 2 from the m:tr1x we

obs = 4 +5+3 =12, Blocking on the
spatial variable (and Considering the three city to city blocks), there are
(2') = 8 equally Tikely realizations of the matrix that are usad for generating
the reference distribution, i. e., the two time points within city 1 can be

r
eordered, the two within city 2, and finally, the two within city 3.

City 1 City 2 City 3

TITZ TlTé T1T2

2" Ml T

T, Tz+1 -,_Tlfz L.
T1T2t TITZ TZTI

12 T2 T2l

T,T, T, ‘ T,

T2T1 T1T2 T2T1

TZTI T2h T)Ty

(57)
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From our previous formulas
E (I‘21)‘ =.11/2 ;..
E (P31) = 15/2 ;
E (P32) = 9/2 ;

E (r) = 11/2 + 15/2 + 9/2 = 35/2,

and
v (r21) = 9/4 ;

V(T

31) = 25/4 3

9/4

RIACEYY

V (r) = 9/4 + 25/4 + 9/4 = 43/4,
A11 of these numerical relationships can be verified from the complete
enumeration.

If our inﬁerest is in spatial homogeneity, a similar procedure could be
followed. The on-djagonal triangles in the matrix give Tops =1 +2+1=4.
Blocking on the time variable there are (3!)2 = 36 equa11y Tikely realizations
of the matrix. The associated index values could be tabled in the same manner

as for the temporal variable.

Clarifications and Extensions

Complete Enumeration Versus Approximate Tests

If the size of the cross-classification matrix is small enough, the exact
distribution of Tops €an be obtained by a complete 1isting under the hypothesis
of randomness. Typically, however, the problem is so large Fﬁat approximat?ons
of some sorf aré necesséry. For example, a simple Cantelli bound assures us
that the significance level for any form of reference distribution whatsoever

2

will be no larger than 1/(Z° + 1), where Z is the standardized value of Tob

S

- based on thé exact moments. The adequacy of an assumed normal approximation is

(68)
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still unknown; consequently, it is probably best to rely either on this crude

bound whenever possible, or better yet, construct an approximation to the

complete enumeration by sampling. Here, M partitions of the required form

would be selected at random and with replacement and the r indices obtained
for each. The significance Tevel reported is the number of indices as small
or smaller than robs' In fact, since robs can itself be treated as a random
draw under the null hypothesis, the sample itself is assumed to be of size
M+ 1 and includes the actual value of Tops+ For a more extensive discussion
of these Monte Carlo testing strategies, the reader is referred to Edgington
[1969].

For the data in Table 1 and based on an M of 999, the following signifi-

cance levels would be obtained for the assessment of spatial and temporal

homogeneity.

Spatial Temporal
Tobs 101.75 271.03
E (r) : 209.34 285.063
vV (r): 108.174 4.837
z : -10.34 -6.38
Monte Carlo significance Tevel .001 .001
Cantelli significance .01 .03

As is apparent, the Cantelli values are very conservative but would suffice
for rejection of the randomness conjecture at the traditional .05 significance
Tevel. In fact, since tables of the 999 values of the statistic in both cases.
display patterns that are very close to normal, an optimist might even compare
the observed Z-statistics to the standard normal percentage points.

The Z-statistics given above are obviously very large in absolute value

.and indicate that both the spatial and temporal classifications could help

(69)
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explain some of the differences in the proximities. It is interesting to note
that different conclusions would result without blocking if the Hubert-Baker

null model discussed in the introduction were followed. In particular, the
spatial statistic would be given a very large Z-value of -11.13 and the

temporal statistic would produce a positive Z-value of .72, Since the latter

is obvious1y'non-significant (Tower tail), temporal differences are over-
whelmed by spatial differences in the construction of the reference distril ition.
Unless the spatial distinction is introduced as an explicit blocking variab e,

the temporal factor is not identified as being salient.

-Connections to Randomized-Block Designs

To illustrate how the blocking strategy is really a generalization of
what is already done routinely in randomized-block analyses-of-variance,
suppose we are interested in evaluating spatial homogeneity and use the
symbo1l Oij to denote city j and time i. In terms of a simple cross-classified

table, these symbols can be written as:

City
A1 Ay : A
ST I TR A T
B2 | % %2 - O

I_’i_m_e_ .
B, 07 Oy - O

Except for the use of non-numerical objects, this table resembles the form

of a two-way analysis-of-variance layout with one observation per cell. Ip

(70)
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fact, if the objects Oij‘were actually numerical values and our.proximities
in Table 1 were actualiy squared distances, then our prévious assessment

procedure reduces to a test of the A factor based on Friedman's null model.

'More specifically, we block on the B factor and consider all permutations of

~the observations with each row equally likely. The measure Tobs is obtained

over all (g) ordered row pairs as
T ) [Z (0.-0 )%]
obs : uj vi ’

which is numerically equal to n times the within column sum of squares.
Since the total sum of squares is constant, I . varies as a direct function
of the sum of squares attributable to factor A.

In the more general context discussed earlier in which an arbitrary measure

. of proximity identifies the relationship between objects, exactly the same

Friedman model is being used. Since the index Pbbs can be written as

I T o
usy W
the 'possibly more complex term I  takes the place of } (0 . -0 .)2.
. ; uv 3 uj v
We also note that a complete enumeration for, say, the A spatial factor,

would actually require (‘m!)n'1

realizations of the cross-classified table
rather- than (m!)". As in the standard Friedman context, the first row of
objecﬁs‘can be considered constant. For instance, in our simple example of
a complete enumeration, (2!)3 = 8 partitions were listed, but only (2!)2 =4

were necessary since each index value in the listing is repeated (a multiple .

of) 2! = 2 times.

(71)
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Nonmetric Extensions

The analysis procedure we have described for a cress-classified proximity

matrix is based on measures of the form ruv’ and more specifically, on the

submatrices from which they are derived. Consequently, the assessment of

spatial homogeneity inm our example depends on the component indices Toys Tgp»
--s Ty since T obs is defined by their sum. To take one simple illustration,

the following 6 X 6 submatrix is used to generate Tyt

1969

Chicago L.A, Phil. S.F. Boston Pitts.
Chicago .59 3.03 3.32 3.22 3.97 3.84
Los Angeles 3.54 1.02 5.36 | 1.69 5.25 5.48
Philadelphia 1.46 3.62 1.67 3.81 2.46 2.34
San Francisco 3.06 1.96 4.75 .90 4.54° 4.77
Boston 3.21 4.07 2.55 3.82 A 1.02 2.08
Pittsburgh | 3.12 4.48 .96 4.87 1.65 .44

It.shoh1d be apparent that any tran§fofﬁation cbu]d be‘ca}riéd out on these
submatrices and the analysis developed in exactly the same manner. As
possibly the most relevant definitfon, each entry could be replaced by an
integer that specifies how many proximities are strictly smaller Within'that
entry's given row and column. Based on the 6 X 6 matrix given above, this

would give 1969

o |3 |6 |4 |8 |7

7 0 9 2 8 10

1 7 2 8 | 5 4
1971

4 P4 8 0 7 9

4 9 | 4 7o |2

6 9 1 10 3 | o
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Obviously, transformations of this nonmetric form would lead to an inference

strategy that depends only on the order of the proximities in a cross-classified

~ matrix and not on their actua] numerical values. Most importantly, such redefi-

nitions are trivial to accomodate and no major changes are required in the

-assaciated inference strategy.

Extensions to More than Two Dimensions

The cross-classified matrices we have considered up to this point have

only included two dimensions. Extensions to more than two are immediate,

however, and offer no major difficulties. For example, suppose we have three
‘factors A,>B, and C with m, n; and t Tevels, régbectively. If an evé]ua%ioh
of A is desired, then factors B and C are simply combined to produce an
aggregate factor with nt levels. Otherwise, the evaluation process remains
unchanged. It should be apparent that any number of dimensions and levels
could be handled by the simple expedient of constructing aggregate factors

from all dimensions except the particular one under test.

n , . Discussion

The major contribution of this paper is in the use of arbitrary proximity
measures and the development of a strategy for blocking on the Tlevels of one
(or more) a priori dimension(s) when evaluating the differences over a second.
The strategy being proposed is really very general even though the illustration
we have used in explaining the method contained the three explicit classifica-
tion dimensions of space, time, and crime type. For instance, since any two
of the dimensions could in fact have beén considered the major classification
facets_of Tnterest, proximity measures could have been obtained between

profiles over the m cities and our interests directed toward the two dimensions
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of crime type and time. The basic.inference principles would remain the same
and the analyses would be carried out as before.. Hopefully, our discussion
will allow researchers to assess dimensional salience in data sets that are
not easily studied by more standard analysis-of-variance schemes because of
an unusual proximity measure. Moreover, the possibility of relying on only
nonmetric compariscns among prokimit1es should provide a nice tie-in to the

current emphasis in nonmetric clustering and scaling in the social and

bzhavioral sciences.
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Table 2 : , ‘ , Table 3
Reordered Form of the Matrix in Table 2
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Schematic Form for the Cross-cl assified Proximity Matrix
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Unidimensional Seriation:
Implications for Evaluating Criminal Justice Data’

Introduction

The term "unidimensional seriation" refers +o the task of ordering a
set of objects along a continuum based on some measure of proximity or
sihf]ari{y defined between all tiembers of the set. Typically, such orderiﬁgs
are constructed by a computational procedure that optimizes the correspondence
between the given proximities and the distances between the 6bjects generated
by a specific placement. Since the optimization strategy, the induced
distances, the index of correspondence, and the original proximity measures

are as yet unspecified, many different variations on the seriation task can

-be (and have been) proposed. To Timit the scope of our discussion, however,

we emphasize only a few general tactics that seem particularly relevant to
the studonf criminal justice data. Our goal in the process is to develop
several methodological points that are important to keep in mind when applying
these methods.

Although a specific numerical illustration is given in a later section
to suggest how parts of our discussion are relevant to the perception of levels
of criminal activity over a set of SMSA's, it may help the reader now if a
few other possible applications are mentidnéd. For example, if thé objects
in the set S are attitudinal statements regarding the possible treatment of
suspects, the proximity measure could denote the proportion of individuals
who endorse one statement over a second, or possibly, the proportion who
believe one statement represents a more lenient position than a second. In
either instance, the concern is with ordering (or scaling) the statements
along a lenient-strict dimension based on the observed proportions: in the

former case of asking for differential endorsement, it may also be desirable
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to place individuals at their "ideal" points along the same continuum as a
procedure for evaluating variation in attitude. As a second possible appli-
cation, we may be interested in the degrée to which various groups or types
of criminals view different crimes, and specificalfy, with whether their
ordering of crimes according to, say, seriousness reflects a perception of
anti-social behavior contrary to the legal code or usua1 community norms.
Each individual, for example, could first provide a rank order of the seriousness
of a set of criminal situations; the degree of differential ‘evaluation would
then be defined by the proportion of the group who assess one behavior as
more serious than a second. Adain, single dimension scalings could be
constructed and compared to various conjectures as to how the objects being
scaled should be ordered and spaced. As a final introductory application, the
objects could represent geographical Tocatinns and the proximities could
indicate the degree of spatial interaction in terms of the movement of
criminals from the location of residence tc the Tocation of the committed
crime. Here, the placement of the spatial Tocations along the sihg]e dimension
would represent differential degrees of attractivity fo} criminal behavior.

The topic of unidimensional seriation is vefy broad indeed; consequently,
our presentation can in no way be seen as complete although we do spend a
substantial amount of time reviewing relevant background material that is
not explicitly represented in the later numerical example. It is hoped that
our generality will convince the reader that many alternatives could be reasonably
followed when attempting to validate a given seriation even when we are
restricted to using internal evidence or information from the available

proximities. Throughout the presentation an effort is made to rely on models
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and procedures with minimal assumptions; in fact, much of the discussion is

concerned with simple schemes for testing whether a spacific reordering of the

proximity information displays a conjectured pattern, or alternatively, whether

any reordering whatsoever will display it. This concern with simplicity is
carried over into a numerical example that deals with the perception of
homicide level in 15 major SMSA's. We will use this illustration later as a

concrete referant for the general orientation to be developed below.

Cross-Yalidation

The problem of cross-va1idating a given statistical result reoccurs
continually in the applied methodological Titerature, particularly for the
newer multivariate procedures that are becoming commonplace in the behavioral
and social sciences, e.g., regression, discriminant analysis, canonical
correlation, and so on. All of these techniques have the property of opti-
mizing a model with respect to a single sample; consequently, since it is
always hoped that our statistical models have some greater generality, it
1s important to assess the loss in "fit" that would result when an estimated
model is applied in a new context. In the simple regression framework, for
instance, the resulting prediction equation does the "best" it can with the
available data but there is a great likelihood of a lower correlation between
the predicted and actual scores in a different sample. In the current Jjargon,
there should be "shrinkage" in the size of the corre1$tion when the regression
equation is cross-validated against a new data set.

Estimates of shrinkage are obviously important in any model that requires
optimization with respect to fallible information, but unfortunately, the
collection of new data is usually very expensive. Because of these costs,
various procedures have been suggested over the years to obtain reasonable

measures of shrinkage without replicating a complete study. In regression,
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for instance, the‘most obvious scheme requires a reasonably large data base

and a split of the available data into two parts - the first set is used to

find the equation and the second operates as a replication. More recently,

"sample reuse” procedures have been suggested that successively eliminate

single observations (or groups) and then recalculate the desired equation

on what remains. Since the resulting equation at each stage can be used to

predict various characteristics of the eliminated observations, an estimate of

shrinkage can be defined by aggregating various functions of these predictions

over all possible observations (or groups) that are subject to elimination. As

one important application, this sample reuse strategy is part of a well-known BMDP

program for estimating misclassification probabilities in discriminant analysis.
From a more general perspective, the methods of sample reuse all try

to evaluate the adequacy of a given result based on internal evidence within

a single data set. Our task in the seriation context is similar since it

would be very helpful if we could rely on internal information to validate

the basic unidimensional model being assumed. Although we may have to be

more subtle when dealing with the large class of schemes that can be proposed

for the ambiguous task of unidimensional seriation, it still appears possible

to define several general principles of assessment that can help in attacking

the problem of scale cross-validation. At the very least, we should be able

to emphasize different aspects of a proximity measure collected on a set of

objects, or alternatively, use different optimization criteria that should

Tead to the same (or different) scales if the basic unidimensional conjecture

is approximately correct. Unfortunately, what we can propose is not a

routinized algorithm that will provide a definitive and final conclusion

in all cases. As a more modest objective, an orientation toward unidimen-

sional models is pointed out that should sensitize the applied researcher

to the problems of cross-validation and suggest several heuristic quidelines

that may help the process along.
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Simple unidimensional models

To provide.a general introductory context for discussing what is meant
by internal cross-validation and how it can be carried out informally in a
familiar behavioral research paradigm, suppose we havé a set of five atti-
tudinal statements regarding the rights of suspects. It is conjectured that
these statements fall along a graded continuum from left to right, with
the Teft representing a greater protection of individual liberties and, for
the Tack of a better label, the right representing a greateﬁ protection of

- ' ) - N
society's concerns. For each pair of statements, a proportion, p.., of

1]
individuals is available representing the number who have assessed statement
1 as being more protective of individual rights than statement j; we assume

pij + Pji = 1. Thus, the complete set of proportions can be organized into

a2 matrix P of the form

Statement

Statement 3

If the spatial model is appropriate and the five statements are correctly
ordered according to their numerical indices, i.e., statement 1 is most

supportive of individual rights and statement 5 least supportive, then the

manifest proportions should reflect this ordering up to a reasonable level
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of random variability or error. In particular, the propositions should

become more extreme as the distance between the statements increases and
whenever statement 1 s placed to the left of j, pij should be larger
than Ps3
of the main diagonal should all be greater than or equal to .50 and

. Furthermore, within each row of P, the entries to the right

increase (or at least never decrease) moving away from the diagonal.
Conversely, the entries to the left of the main diagonal should all be less
than or equal to .50 and decrease (or at least never increase) moving

to the left. As a simple example, the matrix given below displays a perfect

pattern:

Statement
1 2 3 4 5
1 X | .55 .60 | .65 .70
2 1.45 X .55 .60 | .65
Statement 2 .40 .45 X .55 .60

Since simple spatial models of the type just proposed place very severe
constraints on the manjfest data, it is conceivable that these constraints
could also help in verifying the reasonab1eness‘or unreasonableness of the
model itself. For instance, if a matrix of proportions is reordered as well
as possible to obtain an appropriate gradient on only the above diagonal
entries, the basic spatial model that assumes the proportions should become
Tess extreme as distances decrease should also produce other patterns in
the reordered matrix. Specifically, the set of entries either above or

below the main diagonal should all be greater than or equal to .50 and
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moving to the left away from the main diagonal within a row, the entries
should display a gradient opposite that obtained moving toward the right.
In other words, if we reorder the matrix to obtain an explicit gradient
above the main diagonal, the degree to which these other two properties
also hold is an informal indication of the correctness of the basic model.
For a more genera? discussion of these spatial assumptions, the reader should
consult Coombs (1956; 1964).

To illustrate the important point that not all matrices of proportions
must necessarily demonstrate the characteristics we would be looking for,
it is easy to construct an alternative spatial scheme that generates propor-
‘tions having an'Above—diagona1 gradient but not the other two properties.
In particular, suppose the proportions follows a Coombsian model in which
the statements are ordered from 1 fo 5 along a continuum but the 60 individuals
who generate the proportions are also placed along the scale according to

the fol?owing distribution (indicated below the Tine):

‘Statement

3
0 15 s |5 5:r5i57f[5|5

¥

10

Number of subjects in various intervals

Each subject chooses or endorses statement i over statement J if his/her.
(ideal) point is closer to i than j. Summing over all 60 individuals,

<

the following matrix of proportions would be obtained:
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Statement
1 2 3 4 5
1 X 25 .33 42 50

Statement 3 .0f i .58 X .58 .67

Even though the necessary above-diagonal gradient is achieved, the gradient
below the diagonal is the exact opposite of what was expected before; more-
over, not all the above- (or below-) diagonal entries are greater than or
equal to .50. The above-diagonal gradient is perfect but the failure of

the other two conditions suggests correctly that all subjects do not respond

- to the statements in exactly the same way. In fact, if we initially believe

that our proportions follow a Coombsian model of this type, an informal
evaluation of the‘conjectere could be developed around the presence of a
below-diagonal gradienf that is the same as the one forced on the above-

diagonal elements. For a mere complete discussion of the patterns in a

Coombsian model of this latter form, the reader is referred to Greenberg {1965). -

Extensions to general asymmetric oroximities

Although the illustration just used deals with a rather specific context,

the procedures generalize easily to arbitrary asymmetric measures of proximity.

For example, suppose our ohjects are spatial Tocations and qij represents

the degree of interection or flow from i to Jj, e.g., a function of the

number of people who move from i to - j, and possibly, the interpoint distance

o T
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between 1 and J. In general, if the basic asymmetric measure qij is

defined appropriately in terms of the unidimensional spatial model being

assumed, the skew-symmetric measure q?i = qij - qji can play the role of

the previous proportions. Again, the conditions we would Took for are

algebraic, and real data may only approximately represent these perfect

patterns even when our conjecture of a particular underlying spatial model

is reasonably correct. Error-free algebraic conditions, however, still

provide a perspective on what to Took for in assessing whether a conjectured

model is contradicted by the data.

Given the usual spatial mode] without individual ideal points, it is
apparent that the proportions pij’ or the possibly more general skew-
symmetric measures ~q$j,‘ contain two types of information.. The signs of
pij "_pji or of q?i indicate the ordering of object 1 relative to j
from Teft to right; the magnitudes Ipij - pjil or [q’i*j indicate the
degree of spatial separation between i and j. If we relied on the sign
information only and reordered the matrix to achieve all +'s, say, above
the main diagonal, we would then expect the entries to display particular _
patterns when reordered in the same way, e.g., the values of lpij - pji[
or ]q?j within each row should never decrease moving away from the main

diagonal in either direction. Conversely, if an appropriate pattern can be

achieved in, say, the absolute values, then based on the sign information,'

all the +'s should be either above or below the main diagonal (due to the
symmetric nature of the matrix of absolute values, the position of the +'s
in this last case is not specified and the direction of the ordering is
arbitrary). In summary, an effective assessment strategy would force one
pattern using the signs or absolute values and then proceed to evaluate the
degree to which the second pattern is also achieved. Compared to many of

the data-reduction strategies in the behavioral sciences, this procedure s
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allowed to fail and carries with it the possibf1ity of at least an informal
internal cross-validation.

The type of informal assessment procedure we suggest can be described
rather succinctly. It is conjectured that a particular model holds and will
generate an (approximately) perfect matrix pattern characterized by a set of
necessary algebraic conditions. If one such condition is selected and used
as an optimization criterion, the degree to which the other properties are
aTso satisfied is an informal indication of the validity of the basic model.
Ideally, the necessary conditions are selected in such a manner that optimizing
with respect to one does not automatically optimize a second unless the model
is reasonably correct. At least intuitively, for example, the gradient
conditions using the original proportions within rows above and below the main
diagonal, or the sign and absolute-value information for p

- *
p or gy

iJ i i’
satisfy such a general independence condition. From a more operational per-

spective, we could first use the absolute-value data to obtain one seriation

by any method that uses a symmetric matrix as input; the sign information

would then provide an appropriate source of information for evaluating the

resulting scale. This general tactic will be the one used later.

Some Computational Details -on

Informal Cross-Validation

The obvious computational problem posed by the scheme of informal cross-
validation is to reorder the matrix of proximities to display one of the
patterns expected under the assumed model. For example, if the sign and

magnitude information are considered separately in a matrix that originally

th th

contains q$j in the i row and J column, two different optimization

tasks can be defined - using signs, the matrix could be reordered to force all

10.
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+'s above the main diagonal, or in terms of absolute magnitudes, the matrix
could be reordered to produce the desired gradient within each row. In
either case, a host of computational strategies is available, ranging from
integer programming and branch-and-bound to eigenvector analyses and heuristic
methods. For reviews the reader is referred to Hubert (1976), Baker and
Hubert (1977), and Hubert and Schultz (1976).
Since data sets that would be of interest in the criminal justice area
may be very large, we present only one well-known alternative for scaling
symmetris matrices and use it in our later example. We assume that s..
N
denotes a general symmetric measure of proximity (e.g., the absolute values
lpij - pjil or [q$j[) and Ay, Ay, ..., A denote positions for the n
objects along a continuum. Obviously, our concern is with estimating the
]
Ai 5.
As one approach, suppose f 1is some function and we wish to estimate ‘
Aps Aps et A, such that ' i
|
} (s ) (A, - A,)2 '
iy 3
- - - - n
1s maximized subject to the normalization constraint = A? = 1. The solution ’
. ] i=1
is the largest eigenvector (normalized to unit length) of the matrix .
%f(slj) -f(sq,) -flsy3) oo -f(sy))
~F(sy,) % f(SZj) -f(s,3) -f(s,,)
~F(sq5) ~F(s,4) § f(s3j) - =f(sg)
-f(sln) -f(szn) —f(s3n) R § f(snj)J B
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and the largest eigenvalue is the maximum (see Hall, 1970; Guttman, 1968;
Morse, 1972). The sum of the estimates can be shown equal to 0. Obviously,
the estimates provide a seriation of the n objects along the single dimension
in addition to spacing information. Although we are now removed from an
explicit consideration of algebraic conditions, it is hoped that the seriation
induced by the eigenvector analysis would still lead to an appropriate pattern
on the signs. Tﬁis latter information was not used in abtaining the estimates

for Al’ A2, eees An’ and consequently, it provides a source of data that

could be used in verifying the adequacy of the eigenvalue seriation.

Formal Cross-Validation

In our previous discussion of informal cross-validafion, it was hoped
that optimizing one property would also lead to the optimization of a second.
Although the degree to which this goal is achieved can be evaluated more or
less intuitively, it may be straightforward to proceed one step further and
carry out a formal test. For example, suppose T = {tij} denotes an arbi-
trary skew-symmetric matrix-- tij may represent q$j or be defined as
pij - pji if we use proportions. Hhen T is reordered on the basis of
absolute-value information only, it is possible to assess statistically
whether a preponderance of +'s or -'s appear above the main diagonal.

More exp1i;it1y, the number of +'s can be compared to what is expected

under the null conjecture that the ordering of T produced by optimizing

the first property was actually chosen at random from all possible orderings.
In the discussion that follows we emphasize only a test on signs even though
the same principles could be used more generally for other consistency measures
once some seriation is generated by optimizing a second property. The test

on signs is particularly simple to implement and has some very nice relation-

ships back to the 1iterature on nonparametric statistics.
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To be more explicit about the formal inference problem on signs, suppose

-~ we define, based on the matrix T, a "sign" matrix A = {a..}:

1)

\%
o
we

I}
-]

Fl if ot
ij

»aij - 0 if tij
L:l if t..
ij

Furthermore, let S denote the sum of the above-diagonal elements in ‘A

A
o .

when A is reafranged to conform to the best reordering of T constructed
from absolute-value information. If we assume, under a null model, that
the sign data bears no relationship to the absolute-value data, then S
should not be unusually extreme compared to its distribution when A is
reordered-af raﬁdéﬁ.. Convérée]y: 1afge positivé or négét{ve va1ﬁes of S would
imply a consistency in the sign and absolute-value data that in turn would Tend
some formal credence to the reasonableness of the underlying spatial model.

From published Monte Carlo studies (see Hubert and Schultz, 1975) and
discussions of similar statistics that appear in the literature (e.g., Ager
and Brent; 1978), it appears that under the conjecture of randomness and for
reasonably large n, the S statistic can be considered normal with mean

zero and a variance defined by

V(s) = %»{Z_ agj + 2y [y aijjz}'

3 >

1, 13

[A formal proof of asymptotic rormality could follow Kendall's discussion

(Kendall, 1970, p. 72-74) assuming §
1,3,k

. 3
3;5 85, Is of order n ].
As a final descriptive measure of the degree to which the matrix A is
reordered appropriately, a measure suggested by Ager and Brent (1978) can
p- —IsL__ .

2
) al.
i<j 1

be adopted:

(93)
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Here, |S| denotes the absolute difference between the number of +'s and

-'s above the diagonal. The term .E_aij is the number of above-diagonal
i<
non-zero entries, and thus, defines the maximum value of the numerator.

Several special cases of these formulas deserve particular mention. If
there are na off-diagonal zeros in A and no intransitivities (i.e., an intran-
sitivity is a triple {i,j,k} for which aij = 41, a‘].k
then our inference problem is equivalent to the comparison of two united

= +1 and a5y = -1),

rankings based on Kendall's tau statistic. The numerator of tau is S and

the variance term reduces to n{(n-1)(2n+5)/18, which is the standard
expression used for a significénce test (Kendall, 1970). The general variance
term given above is also appropriate Qhen there are ties in one of theirankings
and this ranking defines the matrix A, or even when intransitivities exist:
in A. A particularly simple formula results when there are T intransitive
triples and no off-diagonal zeros: T%(n(n-l)(2n+5)-4§T). Obviously, for

T =0 this latter formula reduces to the standard expression for untied
rankings. Also, when T dis 0, the well-known Goodman-Kruskal Gamma

statistic is equivalent to our measure D up to an absolute value.

Example

As an illustration of the ideas we have just presented, Table 1 gives a

" matrix of proportions among 15 of the larger SMSA's. The entries in Table 1

were obtained from a group of 101 undergraduate and graduate students at the
University of California, Santa Barbara by first asking each person to rank
the 15 SMSA's in terms of perceived homicide rate per 100,000, and then
evaluating the number of times a particular SMSA was ranked Tower than a
second. For instance, since the Boston (row) - Buffalo (column) proportion

is .32, 32 percent of the students ranked Boston lower than Buffalo and
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64 percent ranked Boston higher than Buffalo. The order of the SMSA's in
the rows and co]umné was obtained from the eigenvaiue analysis presented
earlier using the identity function for f(-) and the absolute difference
matrix generated from Tab}e'l. These estimated locations Al’ A2’ veay A15
are also given in the table.

As is apparent from Table 1, the gradient conditions on the absolute
differences are almost perfect. Similarly, the sign matrix clearly
represents an abundance of +'s above the main diagonal (in fact, the pattern
in this case is exact). ATthough somewhat obvious here, the index value D
of 1.00 generates a highly significant Z-value of 5.20, based on a variance
of 408.33 for S. In summary, a strong unidimensional scale underlies the

Table 1 data; the pattern is very clear when the SMSA's are ordered according

to the estimates Al’ AZ’ v A15 generated from the eigenvector analysis.

Table 1 here

Since the scale just demonstrated is subjective, it is of some Substantive
interest to compare this aggregate perception with reality. Based on the homi-
cide rate per 100,000 in 1977, the 15 SMSA's should have been ordered as

follows (rates are given in brackets):

Los Angeles-Long Beach (16.0), Miami (15.6), Cleveland (14.2), Chicago (13.7),
San Francisco-Oakland (11.9), Baltimore (10.2), Philadelphia (8.9), Cincin-
nati (7.5), San Diego (6.8), Buffalo (6.0), Pittsburgh (4.8), Milwaukee (4.5),
Seattle-Everett (4.3), Anaheim-Santa Ana-Garden Grove (4.0), Boston (3.6).
Obviously, some SMSA's are perceived as having a much higher homicide rate
than they actually do (e.g:, Boston and Pittsburg), and some are underrated
(e.g., Miami). Overall, however, there is a fair degree of consistency in

the objective and subjective orderings. The Spearman rank order correlation

between the two rankings for the 15 SMSA's is .507, which is significant
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TABLE 1
Matrix 'of Proportions Among 15 SMSA's Based on 101»$ubjgct;:‘” o
The Rows and Columns are Ordered According to the Eigenvector Estimated of Location
Eigenvector ‘

Bi'S) (a) (1) (c) (@) (e) () (@) () (1) () (k) (1) (m) (n) (o)
(a): Seattle-Everett -.26.. | X .631..63| .76 .69 >.78 .83| .85 .871.92].93].89].92 .92 |.97
(b): San Diego -.18 371 X .51} .63 .62 .67| .76| .83| .84} .87 | .86 | .86 | .86 {.93 |.96
(c): Anaheim-Santa Ana-Garden Grove ‘.'-.17 37| .49(. X.| .58 .59 .68 .74| .81 .83| .80 | .84 | .80 | .88 | .90 {.97
(d): Milwaukee -.14 24 .37 .42 X | .54 .58 .66| .72 .77 | .76 | .84 | .84 | .82 | .88 [.97
(e): Miami -.10 . 31 .38 .41] .46 X | .54 ..73. .63 .71 .67 | .73 | .72 {.74 | .83 |.%%
(f): Buffalo -.08 221 .33 .321 .42 46| X .55| .55| .64 .68 .70 | .72 | .75 | .80 | .92
(g): Baltimore -l07 A7 .24 .26 .34 .27 .45 X | .51 .62 .59 .65} .72 | .70 ‘.79 ;93
(h): Cincinnati -.05 .15: A7 .19 .28 .37 .45 .49 X | .62 .63| .72 | .68 .68 ) .81 | .88
(i): Cleveland -.02 131 .16 .17 .23} .29 .36 .38 .38 X .52 ) .54} .56 |} .64 | .68 | .86
(j): Boston -.02 .08 .13 ‘.20 241,331 .32 .41 .37 f48 X | .53 .59 .61} .72 | .87 '
(k): Pittsburgh - +,01 .07 .14} .16} .16 .27 | .30 .35{ ,28] .46 .47 | X .55 .62 | .66 | .82
(1): Philadelphia +.02 A1) .14 .20 .16 .28 .28 .28| .32| .44} .41| .45 X | .55 | .66} .78
(m): San Francisco-Oakland +.03 .081 .14 121} .18 .26} .25] .30} .32 .46 .39 .38 .45 X A1 1 .77
(n): Los Angeles-Long Beach C+.11 081 .07 .10| .12{ .17 .20 .21 | .19| .32| .28 .34 .34| 39| X | .70
(0): Chicago - +.80 .031 .04} ,03} .03| .06 '.08 07 .12 141 131,18 .22} .23 .30 X

(96)
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(one-tailed) at the usual .05 level (e.g., a Z-statistic of 1.90 is generated).

Discussion and Extensions

Given.the basic context of unidimensibnal seriation as deve]&ped in the
earlier sections, a variety of additional topics could be pursued. We mention
only a few in passing to give some indication of the current research efforts
in this direction. For example, the type of inference strategy that was
probosed for evaluating the pattern of signs can be extended to compare two
arbitrary skew-symmetric matrices (see Hubert and Schultz, 1976). Thus, it is
possible to evaluate the éonsistency between two skew-symmetric interaction
matrices where the latter may be based on migration data at two time points
or from two different demographic subgroups. Secondly, from a combinatorial
optimization point of view, several'very elegant theoretical paradigms have
been introduced recently for characterizing a discrepancy between a given
seriation and the original asymmetric data, e.g., see Bowman and Co]antoni.
(1973) and Merchant and Rac (1976). Along these same combinatorial optimiza-
tion lines, a general strategy has been suggested (Hubert, 1980) for locating
and seriating only a part of a proximity matrix that appears to be most
consistent with the basic underlying spatial model. This latter technique
can assist in identifying subsets of an object set that can be seriated well
and those subsets that are not represented satisfactorily along a continuum.

As one example of particular importance we note that the topic of criminal
mobility could define one of the more interesting applications for unidimen-
sional scaling in the criminal justice area. For example, based on movement
data from place of residence to place of the committed crime, we may wish to
rate a set of geographical areas in terms of criminal attractivity, with the

possible goal of comparing these rates over different crime types, age groups,

(97)
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and so on. Typically, the basic data are flow statistics for a set of n

localities defined by the number of people, mij? who travel from region

i to J. Our aim is.to model. these data in terms of the distances amang

the Tocalities and their assumed placement along an attractivity continuum.
Following Tobler's (1979) lead, the simplest model we consider is defined

| The mji’ which specifies the

degree ta which J atracts more from i than it exports. We assume that

in terms of the skew-symmetric matrix q$j =m

these statistics conform to a model defined~as

iJ

where dij is the distance between locations i and j and Al’ Az,b..., An
define attractivities a]oﬁg a single dimension. Obviously, since distances
are typically known, our analysis task is to estimate the n atftractivities,
which in turn scales the n Tlocalities according to attractivity along a

continuum.

Tobler (1979) discusses in detail two major approaches to the estimation

of attractivities. The first is called the potential method in Whiéh the

Ai's are given implicitly by the matrix equation

SRR SIS N S [ ¥ s
q.
i#1 941 dp dy3 din | ; il
1 1 1 . 1 A
- — — - — - 2 q
doy 1&2 i2 dos dop ; i2
1 1 1 1 A
U U O N I LW
dnl dn2 dn3 i#n din i
L 1
(98)
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Since this system is not of full rank, Tobler sugge.is letting A1 =0 and
deleting the first row and column of the coefficient matrix. The system can
then be solved by inverting the reduced coefficient matrix and using it as
a premultipiier on the right-hand vector. The second procedure may generate
different estimates since it is based on minimizing the least-squares criterion:
A, - A,
2
(2) I (et - L%
Lo J .
i,5d iJ
Again, a system of equations similar to that given above is generated that

is not of full rank. Based on.the coefficient matrix having diagonal entries’

n
1
15+
=l ody dyy
and off-diagonal entries
1
a2l
e g

and the right-hand vector defined by an arbitrary entry

* i%
Yk _
S—— - fa—‘:- 3 -

7
i=1 - Y4k ki
i#k

the deletion option for A1 = 0 can then be used to obtain a closed-form
solution through matrix inversion.

Although Tobler's discussion is very elegant, seemingly minor modifi-
cations in the way the model is stated will eventually Tead to several useful
simplifications. In particular, since we assume q§j should be "close" to
(Aj'Ai)/dij and the dij's are known, it should also be true that dij q?i is

"close" to (A.-A.). Thus, the original gradient notion characterized as a division
. i

(99)
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by dij‘ i; redefined by a distance weighting of the observed skew-symmetric
proximities. Continuing in this way it should also be true that (dijq$j)2

is "close" to (Aj - Ai)z. Our problem is now reduced to fitting the entries

in a symmetric matrix '{(dijq$j)2} by a squared distance matrix {(Aj - Ai)z}.

This latter task can be approached by the type of eigenvector analysis intro~-

duced earlier. Or, if we assume ldijq$j 3 IAj - Ail’ the strategies

developed by Defays (1978) and De Leeuw and Heiser (1977) could be followed.
By taking explicit advantage of a model equivocation, we can concentrate

on the skew-symmetric proximities = d,.q*¥ which are supposedly defined

tij 137§
by the simple differences between attractivities. For example, a least-

squares loss-function would minimize

(t,. - (A, - A))2,
2 (g - g a0

which is equal to a criterion weighted by the squared distances dfj:

Ry d?j(q?j - ((A.d;.Aiz'Jz

i, ij
The least-squares measure used by Tobler in {2) is similar in general form
to this Tatter expression but is unweighted.

The redefinition of the estimation problem to use tij may seem trivial
but it leads immediately to several convenient results. For example, the
least-squares estimate of Ai subject to the constraint that izlAi =0 Is
given by t.i/n. This same estimate is also obtained by the potential method,
and consequently, both methods lead to the same solution in this context. From
a slightly more general perspective, suppose we fit a matrix of the form

{Cj - Ci} to our arbitrary skew-symmetric matrix {tij} by maximizing the

(100)
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correlation between the corresponding entries. Again, the solution is
obtained when Ci is defined as t-i/"’ and when used to define the matrix

{Cj - Ci}’ these values induce a correlation of

Sro

[0 e B (N g

A1l of these last results are very close to some work by Noether (1960) on
paired comparison scaling.

It should be apparent that many different approaches could be developed
for estimating the attractivities Ays ---s A from a skew-symmetric matrix

t..
i
Tois function. This arbitrariness is troublesome since minor.variations can

dramatically affect the final estimation process (see Noether, 1960). To
provide some hedge, and as we have suggested before, it may be appropriate
to rely only on the absolute-value data in the estimafion~stage and use the
sign.data és a strategy fbr validating the order of the estimates along the
eontinuum. Sign information has the nice property of being independent of

the form of the gradient model being used as long as the signs are governed

by differences in attractivities.

or q$j merely by varying the explicit form of the model used and the .

21.
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Proximity Matrix Reorganization and Hierarchical Clustering

Introduction

In recent years various substantive journals in the social and behavioral

sciences have published a number of empirical studies that rely on the newer

data reduction techniques of hierarchical clustering (HC). For one example

in the field of criminal justice the reader is referred to Megargee and Bohn's

(1979) extensive typology of criminals based on MMPI profiles. In much of

this work, it is common for a researcher to present the results of a cluster

analysis in a form produced more or less directly by the output of some

standard computer program. In fact, certain representations have now become

so well-known in the literature that a novice might easily confuse what is

a rather arbitrary graphic device with the operation of the method itself.

Our interest will be in one such strategy for reporting the results of a HC

that can be defined by a particular reorganization of the proximity matrix

used in the original analysis. This reordering scheme, besides being a very

convenient way for the researcher to report the results of a HC, leads to

i i i ] cess and several
a basic theoretical caonnection between the clustering pro

areas of current interest in operations research that study the partitioning

of "flow" matrices. In turn, the relationship to flow suggests a very

interesting commonality between HC and another data analysis problem concerned

with unidimensional scaling or seriation. It is this latter relationship

that can be exploited as an effective data analysis scheme.

The basic intent of what we have to say appears in several re];ted
Sneath and sokal (1973},
s Cattell (1944).

(but informal) discussions, such as

Johnson {1972), Forsyth and Katz (1946), or as far back a

The strategy to be reviewed and made more precise requires a preliminary

(105)
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reorganization of the original matrix of proximity values to "fit" as close
as is possible a particularly convenient form, and secondly, an inspection

of the reordered matrix to suggest a reasonable HC that may have a convincing
substantive justification. Our interest is not to define another new clustering
method touted to be the best, but instead, to suggest how an investigator

can organize and rely on his/her own intuitiv. in a relatively efficient
manner. Even though it may be easier to depend on an arbitrary computer
program that analyzes a proximity matrix in some mysterious way and accept
the results of such an analysis without question, this mechanical process may
also 1imit the possibility of examining a given data set in its entirety and
could conceivably lead to inappropriate interpretations. Our goal is

similar to that now being stressed in areas such as Tocation-allocation
modelling (Adrian, 1979; Church, 1980); i.e., to reemphasize the importance
of insight and commonsense and to develop a procedure that could help this
judgemental process along. Since cluster analysis methods typically give
precise answers to data analysis tasks that are not very well defined, it
should be standard policy to reorganize the manifest proximity matrix itself

as a way of verifying the presence of an assumed clustering pattern.

In areas such as criminal justice, the importance of developing simple
procedﬁres for presenting the results of research in a form that is close to
the raw data cannot be overstated. Typically, the audience for which such
research has serious policy implications does not have the same methodological
sophististication as the original investigator. Thus, the research conclusions
could either be dismissed since the analysis is not very understandable, or at
the otber exgﬁeme, accepted too uncritically. We consjder it a'virtuejto
reduce raw data as little as possible and yet have it in a form that féci]i—
tates a substantive argument. And it appears that the use of seriation as an

adjunct to HC has this latter characteristic.

(lps)
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Background

Hierarchical Clustering (HC)

As a very_brief summary of the purpose behind HC, suppose S is a set
of n objects,'{ol, 055 wees Oh}, and s(-,-) is some symmetric non-negative
(proximity) function defined on SxS that specifies the relationship
between object pairs. For example, s(Oi, Oj) may denote some type of
correlation or distance measure between Oi and Oj' Given this latter index
of correspondence, a specific HC procedure, such as the well-known complete-
1ink technique (cf., Johnson,.1967), will reproduce a sequence of partitions
of S, denoted by 20, 21, cees Lye The first partition 24 contains n object
c]as;es each including a singie element of S, zK contains a single object
class encompassing all of the members of S, and 2y 41 is constructed by
uniting certain of the subsets from %y - Typically, K will equal n-1 and
only two subsets in Ly will be united at any one time to form the new subset
Ryqq - For convenience, we assume the proxjhity function s{-,*) is defined in
such a way that large proximity values are assigned to dissimilar object pairs.

Given a sequence of partitions 10, 21, vens ZK’ a second funcfion d(-,-)

can be constructed on SxS that has the properties of an ultrametric. Formally,

Tet

d(0,, Oj) =min {k | 0, and 05 are first placed together in a single

subset in' lk},

then, using this definition, d{-,-) can be shown to satisfy the following

four properties, the last of which is clearly the most restrictive:

T W et T —_— -

ii) d(0., Oj) = 0 if and only if 01 = Oj;

(107)
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1i1) d(Oig 0.) =d(0,, 0.);

iv) d(o;, oj) < max {d(0;, 0,), d(0,, oj)}.

It should be apparent that any strictly monotone increasing function of
d(-,+) that maps zero to zero would also be an ultrametric.

If the original proximity function s(-,+) has the strict monotone
property mentioned above with respect to d(-,-), then s(-,*) is itself
an ultrametric and the sequence of partitions Rgs &35+ QK represents
a perfect structure for s(-,*). An example is given by the matrix of Table 1.
This proximity function satis%ies the four properties for an ultrametric

and corresponds to the following sequence of partitions:

{{01},{02},{03},{04},{05},{06},{07}}

81 = {10y, 0,, 05}, {0,}, {0;}, {0.}, {0, 1}

%, = {0y, 05, 05, 0,3, {0p3, {0;1, {07}}
24 = {10, 0,5 0g, 0,3, {0, Op, 0,1}
24 = 11075 055 035 0y Op, Og 31

Table 1 here

For this set of partitions, the function d{°,-) is given in Table 2, and as

should be clear after inspection, is monotone with respect to s{-,°).

Table 2 here

Most proximity functions that would be encountered in actual data analysis

situations will not satisfy an ultrametric condition perfectly. Nevertheless,

(108)
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TABLE 1

I1lustrative Proximity Function Having

the Ultrametric Property

L

= =

RTTII T  TR

- 1 2 3 O 5 6 7
. . 0 2.30 2.30 4.15 6.35 6.35 6.35
-
, | 230 0 2.30 4.15 6.35 6.35 6.35
. 5 | 2.30 2,30 0 4.15 6.35 6.35 6.35
| 4 4.15 4.15 4.15 0 6.35 6.35 6.35
[V s | 6.35 6.35 6.35 6.35 0 .01 6.0
' 6 6.35 6.35 6.35 6.35 6.01 0 6.01
5 6.35 6.35 6.35 6.35 6.01 6.01 O
TABLE 2
Ultrametric Function d{-,*) Derived From
the Sequence of Partitions Given in the
Text for the n=7 Illustration
0, 0, 05 0, O 0 O
; 2 4 4 4
0, | 1 0 1 2 4 4 4
0, | 1 1 0 2 4 4 4
. 0, | 2 2 2 0 4 4 4
o 0| 4 4 4 4 0 3
T 3
i 0, | 4 4 4 4
] 0, | 4 4 4 4 3 3 0
]
5 (109)
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any HC method will still attempt to locate a "good" sequence of partitions
usually by some set of heuristic rules, based on whatever proximities are
available. For our purposes, it is important to note that the resultant
sequence of partitions produced by any HC procedure could 5til1l be used to
obtain a function d(*,*) as in (1). Furthermore, the degree to which d(-,-)
is monotone with respect to the original function s{-,*) could be formalized
by some index and used to measure the extent to which the imperfect patterning
of the original proximity values matches the perfect ultrametric structure of
the integers assigned by d(-,-).

For a more complete development of this

goodness-of-fit notion, the reader is referred to Baker and Hubert (1975).

Partitioning matrices

Given an arbitrary proximity function s(-,*) and the sequence of partitions
constructed by some HC, one rather well-known graphic technique used in

representing the analysis rearranges the original proximity matrix in a.very

specific way (cf. BMDP program manual: Dixon, 1977, p. 621-632). In particular,

suppose a HC is carried out and the defining ultrametric function d(-,-) is
obtained. If the values assigned by d(-,-) are organized into the form of an

nxn matrix D = {d(Oi, Oj)}’ then there exists an ordering (not unique) of the

rows and simultaneously the columns of D that will put the reordered matrix

into a form with the following properties:
*
If D 'is an appropriate rearrangement of N, then

*
i) D can be partitioned as

* *
g By
* e . - . .
D = T ! . -
- * *
Doy iy
L. wnad
(110)



* * .
where all the elements of D19 and 921 are equal to the single largest

element of D;

*

ii) the submatrices D11 and D,, are once again partitionable as in (i);

iii) the partitioning process can be repeated until all the resulting

submatrices are of order 1.

* - - -
Given the reorganized matrix D , the original proximity matrix, say

P = {5(01,

ordering. If for notational purposes this recrdered matrix is denoted by

Oj)}, can also be restructured by using the same row and column

2

~

structure as did D* will give some indication of adequacy for the hierarchical

* ) -
then the degree to which P does not have the exact same partition

clustering represented by the ultrametric function d(-,-). From a more practical
point of view, it is of interest to note that many of the standard programs
for hierarchical clustering, such as the routines given in BMDP (see Dixon,
1977) and by Johnson (1967), automatically provide an object ordering to
transform D to Q*. Consequently, an inspection of a reordered proximity matrix
provides no extra computational burden for the applied user.

Although we will not go into any detail, the general type of partitioning
operation performed on p* is also discussed in electrical engineering under
the title of "principle partitioning”, and specifically, in stating an equiva-
lence between a terminal capacity matrix for a flow network and what are
essentially ultrametric conditions on the entries in a matrix (the proximities
are keyed in the opposite direction for flow, but the basic ideas are the same.

For a more complete discussion, see Frank and Frisch, 1971). It should also

be noted that many order1ngs can ex1st for transforming D to D and our,

dwscuss1on on]y assumes that any one such order1ng is des1red For 1nstance,

n-1

if K equals n-1 in the original sequence of partitions, then 2 possible row

* ..
(and column) orderings of the objects in S would produce a D of the. necessary
form.

(111)
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Object sequencing

Once the ultrametric values assigned by d(-,-) are organized into a
matrix that has the ?* form, the entries themselves display an interesting
pattern that has great importance in unidimensional scaling. Specifically,
the entries in Q* are monotonically nondecreasing when moving away from the
main diagonal within a row or within a column. A condition of this general
type is called an anti-Robinson property and is discussed in detail in the
seriation literature when characterizing a "perfect" ordering along a single
dimension (cf. Kendall, 1971).

To be more precise, suppose the n objects in S are placed in some order
at the n integer positions 1, 2,..., n along a continuum. As a notation, a
permutation, p{-), on the first n integers will be used to specify the given
orderings; thus, position 1 is occupied by Op(l)’ position 2 is occupied by
Op(z), and so on. As a further convention, any ordering used in defining D*
will be denoted by p*(').

Now, given a proximity matrix {s(0., Oj)} , the seriation probiem involves

;
Tocating a permutation p(-) and reordering the proximity matrix using o(-) that
will satisfy the anti-Robinson property as "close" as possible. In other words,
if D denotes the reorganized proximity matrix, then the ith row and column of pp
contains the object labeled p(i). As an index of "closeness" to the anti-
Robinson property, we choose what is essentially an unnormalized form of a
correlation statistic:

r (D) = -iz:j S(Op(i)’ Op(j)) I'l‘JI

Thus, larger values of r(p) supposedTy denote "better" sequencings. For a
more coﬁb]ete'Hiscussion of this measure as a goodness-of-fit index, the

reader is referred to Hubert and Schultz (1976) and Szczotka (1972). (Although

(112)



we will rely on T(-) as our index-of-fit for a given object sequencing through-
out, we note that many other possibilities also exist. For.examp1e, several
statistics that depend only on the order of the proximity values are discussed
in Hubert (1978)). Returning to the reorganized matrix Q* and treating

d(-,-) as a proximity function, the index r({-) reaches its global maximum for

* .
any of the permutations p (-). A more formal statement of this fact could

be developed by first converting the optimization task into the one-dimensional

module placement problem discussed by Lawler (1975) and the details are

Teft to the reader.

An informal approach to HC

Using the background material of the previous sections as a motivation,
suppose'we begin with an arbitrary (not necessarily ultrametric) proximity
function s{-,+) and we wish to find a HC that "fits" the function well. The
standard analysis procedure would require the use of some single c1ustering
method, such as the complete-link technique, and selecting the resultant
sequence of partitions as the appropriate HC. A more ideal but obviously
infeasible alternative would require a search among all possible HC's of the
object set S, and then based on the correspondence between s{-,-) and the
induced ultrametric d(-,-), a choice of some final HC for the purpose of
a later substantive interpretation. Obviously, this search strategy is
computationally impossible except for very trivial object sets. However, if
the search is limited to only certain HC's that are probably the most adequate
from other ~onsiderations, the reliance on a single constructive HC procedure
can be avoided, or at least augmented by some further study of the patterning
of the given-proximity values.

To effect a Timited search within all possible HC's and based on the

HC's and seriations through the anti-Robinson

connections . " between:

condition, suppbse we use the jnitial proximity function s(-,") to sequence

(113)
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the objects in S along a continuum based on the index r(-). Seéond]y, for

Some permutation, say o'(-), that leads to a very large value for an index
such as r(-), those HC's that are defined by partitioning the proximity matrix
reordered by p'(+) could then be evaluated in more detail. 1In particular, certain
representations could be chosen merely from substantive considerations or on

the basis of some further index of fit between s(-,-) and the reconstructed
ultrametric. In general, once the matrix {s(Oi, Oj)} is reorganized to fit

the anti-Robinson condition as close as possible, then a secondary partitioning

procedure (possibly Judgemental) can be implemented to elicit the particular

type of structure desired.

The notion of using a condition basic to unidimensional scaling for
effecting a cluster analysis may seem rather obvious. However, some theoretical
work by Holman (1972) and Bunemap (1970) would suggest that clustering and
unidimensional scaling are Tnherently incompatibie. An ultrametric reguires
a higher dimensional space :ur a perfect imbedding even though our context
relys on a somewhat contrary connection (from an anti-Robinson condition)
between a single dimension representation and the property of being an ultra-
metric. In fact, since an independently constructed HG should produce a
satisfactory seriation when the matrix of proximities is appropriately
reordered to reflect the induced partitioning, seriation procedures based

on clustering have also been suggested in the literature (see Schuler and

Ulrich, 1972).

- Some Operational Details

For a given proximity matrix of moderate size, say greater than 12, the
task of finding a globally optimal permutation maximizing-r(-).,is computationally -
very difficult. Consequently, various heuristics have been suggested in the

Titerature that seek Tocal optima through a set of 1imited operations that
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attempt to better a given permutation. As one véry powerful scheme, suppose
some random permutation pl(-) is used as a starting point anrd an attempt is
made to transform pl(') to p2(-) by performing the pairwise interchange of
objects that maximizes the increase in p(*). Continuing, p3(°) is constructed
from pz(') in the same way, and so on until no pairwise interchange can increase
the chosen index, i.e., until a Tocal optimum, say p (-), has been achieved.
Other operations could then be tried to modify o (-) and increase the index;
for example, an insertion of a set of k consecutively ordered objects between
two others or at either endpoint. Repeating this process over ??d over, a
Tocal optima is again achieved and the final permutation, say p (-), is
resubjected to the pairwise operation, and so on. Some final permutation
will be located that is both "pairwise" and "insertion" Tocally optimal.

It should be obvious that many different variations of this general
heuristic scheme could be tried -- incluaing altering the type of local
operations performed and how they are sequenced, changing the number of
starting permutations used, and so on. However, the use of the pairwise and
insertion operations just described appear to work very well and will be
the method used in the later numerical example. For a simple dynamic programming

appfoach to maximizing o (-) that is feasible when n is less than, say, 12,

the reader is referred to Lawler (1975).

Numerical example

As an example of how a reordered matrix appears as generated by the complete

Tink procedure in BMDP, the upper triangular portion of Table 3 presents a set
of proximity values obtained between the 15 largest SMSA's whose statistical
areas have remaiped unchanged for the last 10 years. Alphabetically these are:
ga]timore.k15;-865;06 (2), Chicago (3), Dallas-Fort Worth (4), Detroit (5),

. - £
Honolulu (6), Los Angeles-Long Beach (7), Minneapolis-St. Paul (8), Nassau-Suffolk

N.Y. (9), New York (10), Philadelphia (11), Pittsburgh (12), San Fransisco-Oakland (13),
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St. Louis (14), Washington, D.C. (15). These proximities were obtained by

calculating the Euclidean distance between each SMSA pair using their profiles

over the seven index cr1me$ for 1977: murder and non-negligent manslaughter,

forcible rape, robbery, aggravated assault, burglary, larceny-theft, and
motor vehicle theft. Fach crime rate in the profile is a rate per 100,000
standardized to mean zero and variance 1 over the 15 SMSA's. As mentioned,
the order of the cities in Table 3 is generated by the procedure used in

the standard BMDP program in conjunction with a compiete-1ink clustering; the
partitioning represented in the matrix is defined according to the induced

ultrametric Tisted in the Tower triangular portion of the matrix.

TABLE 3 HERE.

Using the interchange heuristic discussed earlier and 10 random starts,
only ane local optimum was identified, which was used to reorder the Table 3

matrix to the form given in Table 4. Although the pattern of entries in

TABLE 4 HERE

Table 4 is far from satisfying a perfect anti-Robinson condition, the general
trend is clear. 1In faét, if the final Cross-product index is normalized to

obtain the Pearson product-moment correlation between the reorganized proximity

matrix and the perfect target, a rather substantial value of .87 is achieved.
More to the point, the reorganized Table 4 matrix can be used to identify
partitions of the 15 SMSA's that are "better" than. that obtained with the
complete~link method even when we use as our cr1ter1on the same subset
d1ameter cond1t1on the comp]et=-11nk proceduve is attempt1ng to optimize in ~
a heuristic manner. For instance, by using the order of the rows in Table 4,

14 different two-group partitions can be identified by merely splitting the
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TABLE 3

Proximity Matrix (Upper Triangle) Among 15 SMSA's
as Reordered by the Complete-link Bi-DP Procedure -
the Induced Ultrametric is Represented in the Lower Triangle

1 4 13 3 14 15 5 6 7 10 2 8 9 11

12

1 X 2.84 2.76 2.83 1.94 2.39 2.21 3.45 3.09 3.76 4.63 3.67 4.82 3.68
4 8 X 1.79 3.13 2.32 2;53 2.70 2.36 3.55 4.78 5.38 3.55 4.78 4.32
13 8 5 X 3.68 2.73 3.07 2.11 2.83 2.63 3.76 5.02 4.07 5.46 4.89
31 11 11 11 X - 1.56 1.78 2.39 2.35 4.49 4.67 3.55 2.61 3.18 2.25

141 11 11 11 X 1.47 1.70 1.85 3.30 4.00 3.85 2.61 3.73 2.37

=

15 11 11 11 1 X 242 2.32 4.32 4.83 4.45 2.06 3.24 2.44
51 11 11 11 7 7 7 X 204 2.41 2.91 3.95 3.74 4.95 3.63
6| 11 11 11 7 7 7 6 X 3.52 4.45 4.57 3.38 4.49 -3.29

7 13 13 13 13 13 13 13 13 X 2.87 5.26 5.42 6.78 5.27

10 13 13 13 13 13 13 13 13 9 X 5.31 6.15 7.15 5.79
2| 14 14 14 14 14 14 14 14 14 14 X 3.80 4.04 3.74
g 14 14 14 14 14 14 14 14 14 14 12 X‘ 1.64 2.19
g{ 14 14 14 14 14 14 14 14 14 14 12 3 X 2.57

11} 14 14 14 14 14 14 14 14 14 14 12 10 10 X

12| 14 14 14 14 14 14 14 14 14 14 12 10 10 2

4.97

3.60
3.89
3.80
5.13
4.76
6.64
7.07
4.25
3.01

(117)

RPN

7

oty e

g

RN P
PRUNOSE——

10

13

14
15

12

14,
TABLE 4
Proximity Matrix Among 15 SMSA's
as Reordered by the Seriation Heuristic

10 7 13 4 1 5 6 14 15 3 8 11 2 9 12
X 2.87 3.76 4.78 3.76 2.91 4.45 4,00 4.83 4.67 6.15 5.79 5.31 7.15 7.07
2.87 X 2.63 3.55 3.09 2.41° 3.52 3.30 4.32 4.49 5.42 5.27 5.26 6.78 6.54
3.76 2.63 X 1.79 2.76 2.11 2.83 2.73 3.07 3.68 4.07 4.89 5.02 5.46 6.33
4,78 3.55 1.79 X 2.84 2.70 2.36 2.32 2.53 3.13 3.55 4.32 5.38 4.78 5.78
3.76 3.09 2.76 2.84 X 2.21 3.45 1.94 2.39 2.83 3.67 3.68 4.63 4.82 4.97
2.91 2.41 2.11 2.70 2.21 X 2.0 1.70 2.42 2.39 3.74 3.68 3.95 4.95 5.13
4,45 3.52 2.83 2.36 3.45 2.04 X 1.86 2.32 2.35 3.38 3.29 4.57 4.49 4.76
4,00 3.30 2.73 2.32 1.94 1.70 1.85 X 1.47 1,56 2.61 2.37 3.85 3.73 3.89
4.83 4.32 3.07 2.53 2.39 2.42 2.32 1.47 X 1.78 2.06 2.44 4.45 3.24 3.80
4.67 4.49 3.88 3.13 2.83 2.39 2.35 1.5 1.78 X .61 2.25 3.55 3.18 3.60
6.15 5.42 4.07 3.55 3.67 3.74 3.38 2.61 2.06 2.61 X 2.19 3.80 1.64 3.01
5.79 5.27 4.89 4.32 3.68 3.68 3.29 2.37 2.44 2.25 2.19 X 3.74 2.57 1.55
5.31 5.26 5.02 5.38 4.63 3.95 4.57 3.85 4.45 3.55 3.80 3.74 X 4.06 4.25
7.15 6.78 5.46 4.78 4.82 4.95 4.49 3,73 3.24 3.18 1.64 2.57 4.04 X 2.73

7.07 6.64 6.33 5.78 4.97 5.13 4.76 3.89 3.80 3.60 3.01 1.55 4.25 2.73 X
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matrix into two parts, i.e., {{New Yrrk}, {Los Angeles-lLong Beach,..., Pittsburgh}},
{{New York, Los Angeles-Long Beach}, {San Francisco-Oakland,..., Pittsburgh}},

and so on. In this example, the complete-link result for two groups happens

to be equivalent to one of these splits: {{New York,..., Chicago}l, {Minneapolis-
St. Paul, ..., Pittsburgh}} and the maximum diameter (i.e., the largest proximity

within a subset) over these two subsets is 4.83. However, the immediately

preceding partition constructed from Table 4, {{New York, ..., Washington, D.C.},
{Chicago, ..., Pittsburgh}}, has exactly this same maximum diameter and the
three partitions that precede this one have a slightly smaller maximum diameter
of 4.78. 1In short, we can use the same optimization criterion that the complete-
1ink method is attempting to satisfy and find better partitions according to

this index by simply inspecting the matrix reordered by our seriation heuristic.
For our'purposes, the question of a best substantive interpretation can be left
unanswered since our concern is only to suggest that the choice of a single best
result constructed by some given clustering method could be more or less arbi-
trary. At the very least, it would seem prudent to inspect a reordered
matrix to verify whatever substantive 1interpretations we would Tike to obtain

from the use of a clustering strategy.

Discussion

The idea of using a seriation of the object set prior to looking for a
specific clustering reappears continually in the literature although in many

disguised forms. The key to recognizing this general paradigm is by the

presence of some object ordering before a final clustering is given. Obvious

examples would include Hartigan's (1975) leader algorithms, Matula's sequential
graph co]or%ng schemes (Matula, Marble, and Isaacson, 1972), Fisher's' (1958)

single variable clustering, and Szczotka's (1972) notion of an admissible

partition. Implicitly or explicitly all of these methods rely on an object
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ordering, typically as an initial organizing step prior to a final clustering

_based on partitioning the reordered matrix in some particular way, e.g
seriating the "break points" that define the possible subsets of a partition
Ye do not wish to advocate the superiority of seriation over a particular

method of HC or conversely. Instead, our aim is to point out their comple-

mentary nature and how clustering and seriation could be used together to
Justify a specific analysis. Looking at one's data in ways that could suggest
alternative interpretations may seem to be a very obvious tactic. Unfortunately,
it is easily forgotten when a scheme is available that promises to give a
single best answer and without the ambiguity that is usually attached to a

more intuitive data analysis strategy.
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Generalized Procedures for Evaluating Spatial Autocorrelation

Introduction

Given a set S containing n geographical units, spatial autocorrelation
(SA) refers to the relationship between some variable observed in each of
the n localities and a measure of geographical proximity defined for all
n(n-1) pairs chosen from S. Statistical methods developed for indexing
this correspondence have traditionally been associated with the field of
geography and more specifically with the subfield concerned with the assess-
ment of spatial pattern ([6], [8], [12], [17]). The techniques for analyzing
the effects of geographical proximity, however, are really very general, and
when interpreted appropriately they.offer a valuable set of inference
strategies in many other disciplines and for problems that are far removed
from a concern with spatial phenomena. Some of these broader implications
have now been recognized in a few areas such as biology ([37], [38]) and
sociology [2], but undoubtedly, more didactic papers will appear once the
wide-spread applicability of these techniques becomes well-known.

Turning this assessment around, it is also true that work done in other
fields such as epidemiology ([27], [28], [29]) and psychology[26] has significant
implications for extending the SA methodology itself. We will emphasize this
latter perspective throughout the paper and review a general context that
includes as special cases many of the approaches used in the literature.
Although some of these connections have already been suggested indirectly
([207, [22], [371), there appears to be no single published source that
seriously fevieWs thé'generé1rfie1da; o .

Since the literature on SA is rather extensive, a complete review of

the area is well beyond the boundaries of this paper. A]thpugh we do give
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a very brief overview of several SA ideas that will be of importance later

on, we assume a basic familjarity with the seminal monograph by Cl1iff and

Ord [8]. The reader interested in pursuing the topic more thoroughly

should refer to this monograph, the papers cited earlier, and those by

Cliff, Haggett, Ord, Bassett, and Davies [10]; Dacey [13]; Royaltey, Astrachan,
and Sokal [31]; Winsborough, Quarantelli and Yutzy [40]; Campbell, Kruskal,
and Wallace [7]; and Freeman [16]. Furthermore, we ignore the problems
debated by Sen [32], C1iff and Ord [9], Sen [33], and Sen and Soot [34]
regarding asymptotic normality for several of the well-known SA measures.

Much of this newer distributional work can be considered peripheral since

our emphasis will be on an alternative randomization model. For some possibie
connections between these asymptotic results and the development here, the
recent paper by Shapiro and Hubert [36] may be helpful, particularly since

it is based on work not usually cited in the geographical literature.

Finaily, it should be noted that most of the discussion below introducing
generalizations of the SA concept already appears in some form in the psycho-
logical and biomedical Titerature. Consequently, we can merely refer to
other published papers for a more complete development. The titles in this
other literature usually do not convey the possible anplications to SA;
therefore, it is important to have a §ing1e source that helps the interested
reader develop the necessary relationships. Ue also réfer the reader to the
forthcoming second edition of C1iff and Ord's monograph [8]. This latter source
independently uses an approach to SA similar in general form to the one

presented here although the details are different.
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Spatial Autocorrelation

Descriptive problems

As mentioned earlier, SA is concerned with the relationship between
geographical proximity for a set of n localities, {01, 02, e On}, and
some variable measured on each of the single elements in the set S. The
observed variables are denoted by X1s Xos wens X0 and the notion of
geographical proximity is expressed through a (possibly asymmetric) n x n
weight matrix y in which the entry in the 1th row and jth column, wij,
represents the relationship between Oi and Oj' As a technical convenience,
larger weights are assigned to pairs that supposedly are "more related”;
for example, wij could be 1 if Oi and Oj were adjacent localities and O
otherwise; or more generally, wij could specify the inverse of the actual
physical distance from Oi to Oj‘ Since\"se1f—weights" are irrelevant, the
main diagonal in W is assumed to consist of all zeros, thus, wii = 0 for all
i.

The presence of SA implies that the pattern of weights in W is relateq
to the variate values X1s Xos =eeo xn. Traditionally, two measures of this

relationship have been used -- Moran's I statistic and Geary's ¢ coefficient

[8l:

oMy (x - %) (g5 - )

I = n i,
) PR 5 (x, - %)
iy i
2
n-1 1%j wij (xi Xj)
cC = >
—2
2 ) M. Y (x; = x)
ivj M i
(127)

e S D e ]

s

where X =[1/ﬂ2 Xs -
i

Both measures are normalized cross-product

coefficients in  which each weight W
).

. . is compared
i P

either to (Xi - X) (xj - %) or to (x. - X, Based on expectations that

1 J
can be derived from the inference model of the next section, positive SA
is obtained when I is greater than - TE%T) or when ¢ is less than 1;
negative SA 1s obtained when I is less than - TF%TS'Or when ¢ is greater
than 1.
Although I and c are based on normalizations that standardize the
measures in particular ways, the crucial quantity in both is a cross-product

statistic that relates the weight matrix W to some function on the variates

X1s Xos wees Xpgo In Moran's I, the important cross-product statistic is

i%j wij <Xi - X) (xj - X)

and for Geary's c we use

Viewed in a slightly different fashion, the weight matrix W is compared to

a second matrix that we will denote by C. For Moran's I, the entry in the

™ vow and jth column of C, Cij’ is defined as (x; - x) (Xj - x), and for

Geary's ¢, Cij = (xi - xj)za In both cases, since wij =0 for i = J and all
products of the form wij Cij are zero when i = j, we can also assume without

loss of generality that Cij =0 for i = j. As a very brief summary, the

general problem of indexing spatial autocorrelation can be phrased in terms

of comparing two matrices C and W using a cross-product statistic T = .Z. Cij“ij'

.3
This raw index is then-subject to various standardizations to produce

a final descriptive measure. -(We might note that the idea of matrix comparison

(128)
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does not correspond to any of the usual matrix algebra operations such as
taking an inverse, matrix multiplication, and so on. This distinction between
matrix comparison and typical matrix algebra operations should be kept in
mind to avoid any possible confusion).

What we have just reviewed very tersely could be expanded in much greater
detail. In fact, several of the references cited in the introduction do just

that and show how to define a number of diffarent special cases of I when the

i i 2 measurement.
numerical variables Xps Xos «nes xn are from various levels of

A1l such measures, however, rely on a matrix comparison through T plus a more -

or less arbitrary standardization that can safely be ignored since it remains
jnvariant under the specific inference model we choose to work with. In short,

the notion of matrix comparison should not be viewed as an alternative to the
traditional ways of assessing SA but merely as a generalization that allaws
additional flexibility. Although both the usual I and c measures essentially

form special cases of the cross-product index T , other types of matrix comparison,

as we will see, can also be framed in the same context.

Inference problems

Even though we may be able to calculate rather easily the value for some
SA measure, the task still remains to assess the relative size of the descrip-
tive indux compared to some chance mechanism. Because of its generality, we
emphasize Qhat has become known as the randomization model in which T is
evaluated with respect to a reference distribution constructed by randomly
permuting the rows and columns of C together (or what is equivalent, the rows
and columns of W). If the matrix G is constructed from the seguence Xl’ Xpseees
a;d k fs fhe nuﬁbef»of'digtinét éntries ih this set and ns the frequency of the
1th value, then an équa]]y Tikely distribution‘q{er the n!  indices will produce
an equally 1ikely distribution over at most n!/.E ns distinct.values. . Even in

i=1

(129)

——

P
L

, 5
e R ]

Ty .
[P

this latter set, however, some of the I' statistics may be the same depending
on the structure of W. Ideally, n! possible values of I would be generated
(not necessarily distinct) by relabeling the rows and simultaneously the
to1umns of E in all n! possible ways. The tabled frequency distribution of
these T''s is then used in the same way as the exact sampling distribution
for any test statistic, i.e., we reject the null model of randomness if the

observed cross-product statistic is sufficiently extreme with respect to

The computational burden that complete enumeration imposes is usually
so great that various approximations must be pursued. For completeness, we

J
1
|
\
|
|
the constructed reference distribution. |
\
|
|
|
mention four different approaches that have been suggested in the literature: {

\

(a) Since exact moments of the randomization distribution can be derived,
crude Chebyshev or Cantelli bounds may be appropriate if the observed statistic ‘
is large. Specifically, when Z = [T - E(T)]WVV(T) , then a two-tailed ‘
significance level is at most 1/Z2 and a one-taiied level at most 1/(Z2 +1). | ‘

General formulas for E (') and V (') are available in Mantel [27] for arbitrary

C and W matrices.

(b) Although not always appropriate, normal approximations to Z are
sometimes justified by rigorous convergence theorems subject to certain
regularity conditions on € and W ([11, [34], [361). Some recent results,
however, suggest that care must be taken in éssuming the triviality of

the regularity requirements. It is not true that they can safely be ignored

in most practical applications [30].

(c) Higher-order moments (third and fourth) have been derived for
fndices'sﬂéh'as ' when both‘g and W are symmetric. Consequently, various
curve fitting procedures could be used to approximate the complete enumeration

accurately [35].
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(d) Complete enumeration can be approximated by random sampling and
the significance Tevel estimated by the number of generated T''s that are
as extreme or more extreme than the'cbserved index (for example, if we assume an
upper one-tailed test is appropriate, we count those T's that are as large
or larger than tﬁe 6bserved index). This topic is discussed in more detail

by Besag and Diggle [5], Edgington [15], and Cliff and Ord [8].

The use of a randomization model offers a number of distinct advantages

over the usual alternatives that rely on distributional assumptions for the
observations Xpo eoes X For example, the randomization model can be used
for a wide variety of rather complex SA statistics that would be very
difficult to handle in a classical parametric framework, e.g., those
that require more than pairwise functions on S x S. Second, accuracy
estimates for the approximations obtained by random sampling can be dealt
with rigorously by standard non-parametric techniquez, such as confidence
intervals on percentile points or Kolmogorov-Smirnov bounds on the exact
cumulative distribution function calculated from sample distributions.
Under the typical distributional models for Xys Xos eees X and even though
it is known that a particular statistic is asymptotically normal, bounds
on the degree of accuracy for such an approximation are very difficult te
obtain. Third, the normalizations that define the statistics such as I
and ¢ are typically invariant under randomization. Thus, the much simpler
cross-product terms can be dealt with separately in making inferences
regarding the significance of any given statistic. Finally, the randomization
model is very easy to explain to a layman whereas the more classical distri-
butional theory approaches are usually more "mysterious". In fact, even in
the most rigoréus papers that deal with distributional assumptions, very

subtle errors appear that could invalidate the stated theorems. For instance,

it is not true that the asympototic normality for two random variables auto-
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matically insures the asympototic normality for their sum; such a result

however, has been implicitly relied on in at least one proof for the asymptotic

normality of Geary's c ([32], p. 181).

Numerical Example

As a very simple illustration of the spatial autocorrelation concepts
Just introduced and of what a complete enumeration would look 1ike, suppose
the set S consists ity i
of 4 localities {01, 02, 03, 04} and the weight matrix

is of the form

0, 0, 0, O,
0, 0 1 2 5
0 4 9
- ) 4 6
0, 1 2 0 3
0, 3 5 § o

representing some asymmetric pattern of proximities among the four localities

If the variable measured on each of the four objects has values Xy = 1

Xy = 2, Xy = 3, x4 = 4, then for the Geary ¢ coefficient we would define

a matrix Q as follows:

0, 0, 03 0,
0, 0 1 4 g
0 1 o0
. ) 14
0, 4 1 o0 1
0, 9 4 1 9
(132)
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and a raw cross-product statistic T between W and C of 148. If we fix the
matrix E as is and randomly permute the rows and simultaneously the columns
of ﬁ in all 4! = 24 possible ways (or equivalently, permute the rows and
columns of E with E fixed), the following distribution over I would be

obtained:

Row and column permutation of W T
3241, 3421, 1243, 1423 108
2431, 2341, 1432, 1342 124
2143, 3142, 2413, 3412 132
1234, 4231, 4321, 1324 148
3124, 3214, 4213, 4123 156
4132, 4312, 4314, 2134 172

The proportion of indices in this distribution that are as large or larger
than the observed index of 148 is 12/24. This value defines the significance
level (we assume that negative SA is of interest, and thus, because of the
way ¢ is keyed, an upper one-tailed test is appropriate). Exactly the same
distribution would be obtained if W were held fixed and the rows and columns
of C permuted.
Althbugh a significance level can be given for the raw index itself,
it may also be appropriate to obtain a final descriptive measure by normalizing

T to define ¢ : Té%il%j" il%§l.: 1.06. This value is very close to the

expectation under randomness. The I measure could be handled in the same
manner by generating an exact reference distribution for the defining cross-

product measure.
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Generalized SA Measures

Using the general cross-product statistic T = iEj wij Cij’ thgre are
a~number of very obvious generélizatieﬁﬁ of the standard indices for SA.
In much of the previous work (e.g., [8]), the emphasis was in developing
SA indices that could accomodate an arbitrary weight matrix W. However, very
specific forms of what we refer to as the § matrix were required. In particular,
the values in C were assumed to be rather simple functions of the univariate
observations X1s Xos eves Xo obtained for each of the n elements in S (for
exampie, the number of milch cows in a set of areal units). It should now be
apparent that Cij could also be a more comprehensive measure based on, say,
vectors of observations for Oi and Oj, e.g., Mahalanobis distances, Fuclidean
distances, or correlations. The randomization inference strategy remains the
same since the multivariate data on each object are first reduced to a single
numerical value for each object pair. Other axtensions could be developed for
the concordance context discussed by Hubert [24], in which the degree of internal
concordance among a set of matrices, say, gl’ ves QK’ could be evaluated. Here,
a sum over all pairwise indices for the K matrices could be obtained and
tested using the same type of inference model that justifies Kendall's
coefficient of concordance. Alternatively, the K matrices could be compared
to a single weight matrix W, and possibly a single target matrix fitted to
the set. These problems can be rephrased as a combinatorial optimization
task - for which an extensive literature exists (for example, see the
references in [24]). A1l of these extensions, however, are rather immediate;
consequently, it may be of greater interest to sketch several other variations

that move beyond the cross-product measures that depend on simple pairwise

functions S x S.
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Replacing c¢ross-products by 4-place functions

The raw cross-product measure T defines the relationship between two
matrices through a specific function on each pair of corresponding entries
in W and C. In other words, if we consider the object pair Oi and Oj’ the
simglarity between the two entries wij and Cij is defined by the product

As one generalization,

W.. C.. and forms part of the overall index T.

s;ipo;i we replace such products by 4-place functions of agl+,,"5"), where
the first two arguments relate to the ith row and jth column of W and the
last two arguments relate to the kth row and 1th column of C. Thus, if
q(i,j,k,1) is defined as Nij Ck]’ then our earlier statistic I is equivalent
to ] q(i,j,i,j). The first and last two arguments in q(-,-.,-,-) are both
i ané,g since the observed index is concerned with a function of entries in
the two matrices that are in comparable positions. More generally, we denote
Y a(i,j,i,j) as A and apply the same type of randomization model followed

LER

for T'. This inference strategy is discussed in detail by Hubert [25]

including exact formulas for the first two moments of A.

As an example of how A could be used, suppose that the elements in W .
and C take on a small number of values, possibly on a nominal scale, and
our concern is with the number of times an entry in W is equal to its corres-
ponding entry in C. If we define q(i,j,k,]) = 1 when wij = Ck! and 0 otherwise,
the index A counts the number of such perfect matches. As a second illustration,
suppose the elements in W and C are reasonably commensurable and we wish to
define a meésure of SA through the size of the absolute differences between
corresponding entries. If q(i,j,k,1) is specified as [wij - Ck1" then A

i?aizjtkgijifacijlf' Clearly, the number of possible choices for g(",",",")

is limitless and the spatial autocorrelation index can be tailored specifically

for the aims of a given research project and data set.
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12.
SA measures that only depend on order
Several of the more interesting generalizations of the traditional SA
statistics are to measures that only require the order of the entries in W
and C. Prior to developing an explicit example to illustrate such generali-
zations, we concentrate on two paradigms -- the first is based on object triples

and the second on object quadruples.
Assuming that only the order of the entries in C and Y are meaningful

(or of immediate interest), suppose a cross-product statistic Q is defined

by
Q = Z a(i’j3k) b(-i’j’k)s
i.d,k
14f i,j,k are distinct and W.. < W.,:
where a(i,j.k) = " A
0 otherwise,
114if i,j.k are distinct and C.. > C.k;
b(i,3,k) = R

0 otherwise,

_Intuitive]y, since large values in W usually denote closeness in some geographical

space and small values in E indicate closeness in some variable space, @ counts
the number of consistent object triples between E and H. Here, a triple is
consistent if and only if the weight from i to j is less than the weight

from i to k and an opposite order exists for Cij and Cik‘ It should be noted
that comparisons are based within the rdws of H and S only, and consequently,
No across row comparisons are carried out. Therefore, since eaéh row can be
defined by its own metric, only the entries within a single row need be commen-

surable.. The index Q gives a way of comparing two conditional proximity matrices

in the sense of Coombs [11].
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In the very simple 4 x 4 illustration given earlier, there are
n(n-1) (n-2) =4 -3 .2 =24 distinct triples and both the functions

a(+, -, ) and b(-, +, *) take on the value of 1 ten times. Since there are
five triples that generate 1's for both functions {(3, 1, 2), (3,1, 4),
(4, 1, 2), (4, 1, 3), and (4, 2, 3)}, the index Q has the value 5. For

example, the triple (3, 1, 2) is consistent since W< Wap and Cqq> Cap

Alternatively, if across row comparisons are meaningful, it may be more

appropriate to use this added information in defining a different index 6:

r(i,3,k,1) s(i,i.k,1)

o -

1,3.k,1

where

1 4f i#3, k#1 and w1j< wk];

r(i,i.k,1)
0 otherwise,

1if i#j, k#1 and Cij> Ck1;

s(i,3,k,1)
0 otherwise.

With this interpretation, we count the number of consistent quadruples in the

same manner that f counted consistent triples. Now, however, comparisons are

carried out across rows. In the 4 x 4 illustration, for instance, there are

[n{n - 1)]2 =[4 - 3]2 = 144 quadruples. The functions r(-, *, *) and

s(-, +, *) take on the common value of 1 for 17 of these, and thus, 8 = 17.

For example, the quadrupie (1, 4, 2, 4) is consistent since Wy,< Moy and Cy,> C
The randomization model remains the same as before for both @ and 8.

The matrix W is merely heTd fiXed and the rows and columns of c are reorganized

in all poﬁsib]e ways. The iaterested reader is referred to Hubert [23] for an

extended discussion of other 3 and 4 place cross-product statistics.
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An Application

As a simple numerical illustration of the ideas given earlier, we will
use the data for 26 counties of Eire originally given by Geary [19] and
reanalyzed by Cl1iff and Ord [8]. The two major variables are the number of
milch cows per 1,000 acres of crop and_pasture in 1952 and the town and
village populations as a percentage of toté1 population in 1951. The conti-
guity matrix for the counties given by C1if{ and Ord [8, p. 53] specifies
the weight matrix H.

Defining the entries in C by the absolute value of the difference between
the values for two counties on a given variable and using the mean and
variance formulas given by Mantel [27], we obtain the following results:

Milch Cows Population

Observed T = 3024.00 Observed T = 1721.59
E(r) = 4679.33 E(r) = 2259.80

V(r) = 441.851 AN{TY = 221.556

L = -3.75 Z= -2.43

In both cases, positive spatial autocorrelation exists (defined by relatively
small index values) and the results are generally consistent with those
obtainad by CT1iff and Ord [8] based on the ¢ and I statistics. Similariy,

using the three-place measure Q defined earlier we would obtain indices of

1481 and 1369 for miich cows and popualtion, respectively. Both indices are
significant at the usual (upper-tails) levels obtained from a Monte Carlo
testing'strategy based on samples of 99 permutations (assuming the observed
va1ue'of‘an inaex is another observation d%awn at random -- see the’distribufion

of Table 1). 1In both cases, the 0-1 structure of W implies that there are
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E 2344 distinct triple comparisons for which wij< Nik" Qut of this number, the
index @ indicates how many also have the property that Cij> Cik: 1481 for
i milch cows and 1369 for population. Again, these results are similar to
- those relying on other indices even though a very different form of index
is now being considered.

l‘ Table 1 here
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Table 1

Approximate Permufation Distribution for the @
Index Using Geary's Data - Sample Size of 99

Cumulative Frequencies

Q Milch Cows Population
1000 2
1020 3
1040 5
1060 15 8
1080 20 16
1100 30 21
1120 34 26
1140 43 33
1160 51 39
1180 59 52
1200 66 64
1220 72 74
1240 86 83
1260 89 90
1280. g2 50
1300 94 91
1320 97 94
1340 98 95
1360 98 97
1380 99 98
1400 99 99
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Discussion

Autocorrelation measures, as traditionally used by geagraphers, describe
the pattern of an observed varfate over a map system and imply something
about the predictability of the map or the structure. By generalizimg spatial
autocorrelation measures using the randomization model as a base, a number of
advantages accrue over fhe classical models based on specific distributional
assumptions for the data. In general, the model proposed in‘this paper
generates an immediately assessible inference paradigm for situations that
would be very difficult to handle in a classical parametric framework. In fact,
it may well be that standard tests of significance are at times inappropriate
for classical SA measures. By using a randomization model and the camplete
enumeration process, significance levels appropriate for SA measures can be
obtained.

In geography it is common to distinguish between two different approaches
to spatial autocorrelation. One is tied to expressing spatial autocorrelation
in a lagged form and depends on»calcu1a§1ng and expressing covariances
between different data values at different lagged distance or directional
lengths. The second approach examines spatial autocorrelation in terms of
the influence each observation is assumed to have on other observations.

Qur emphasis is moré in line with the second approach rather than the

first. Regardless of which approach 1is used, similar types of problems

face the individual attempting to assess spatial autocorrelation and similar
problems face researchers attempting to use and extend the procedure. Gattrell
[18].states the first of these as the need to specify alternate forms of the
"distance" éoncept that provides the base for the calculation of spatial
autocorrelation effects. At least on the variate side of ‘the problem we

have shown how spatial autocorrelation can be generalized to such alternate
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measures, including Mahalanobis distances, correlation coefficients, and
any other arbitrarily defined indices of proximity. More general distance
measures can be handled directly by defining the weight matrix appropriately,
e.g., Mahalanobis distances in some generalized multidimensional space.

The extension of-SA measures to data structures that are nominal or
ordinal produces indices comparable with standard SA measures without the
need to adhere to the stricter}paramet?jc assumptions neces.a:y to generate
an inference model for those standard measures. Basing the spatial auto-
correlation index on randomization overcomes one of the more critical problems

currently being ced by geographers. For example, Haining [21] argues

“that with respect to the C1iff, et al. study of measles data for Southwest

England [10] the ahsence of information on-the joint sampling distribution
of the average correlations, together with the small sample sizes involved
and the generally insignificant values assumed by the correlations, tend to
cast doubt on their interpretation of the measles epidemic as having a central
place type diffusion structure. Developing an autocorrelation index using
the randomization model clearly overcomes the first of these deficiencies,
although it does not spTve fﬁe second preblem - that of defining a satisfactory
model base for the interpretation of results.

The use of spatial autocorrelation in geography to compare observed
and theoretical or expected map patterns has in the past been limited by
the problems involved in measuring the degree of departure from randomness.
As Dacey [14] and C1iff and Ord [8] have found out, rejecting a hypothesis
of randomness based on Poisson models cannot be taken as indicative of apparent
contagion. While Besag [3; 47 has examined this problem in more detail, the
inferencefprobTems rafsed'¥n'the geographic studies c¢an be approached using
randomization procedures to construct a reference distribution against which

to measure the magnitude of deviations. Thus by using such an index and
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reaching a stage where a hypothesis of randomness is rejected, the researcher

may feel more at ease assuming that the patterns examined are being produced

by similar processes.

In summary, the apprbach we have described for measuring SA has at least

four major advantages. The first relates to the generality of the paradigm

arnd the fact that many different measures, even those tailor-made for specific

substantive problems, can all be placed under one common framework and tested

for significance using the same type of randomization argument. It is somewhat

inappropriate, however, to view the general notion of matrix comparison as a

competitor to the traditional ‘way of hahd1ing SA tasks since special cases of

matrix comparison have been used for some time. Nevertheless, there is an

obvious inherent value in offering alternatives that may be more suited for

particular research applications than the I and c indices. An obvious example

would be in our ability to deal with more than one variable at a time in

assessing SA through a multivariate measure oF dictance , defining the entries

in the matrix C. Second, the randomization strategy itself can be approached

through Monte Carlo sampling, bypassing the optimistic use of asymptotic

distributional results of possibly unknown accuracy. These latter large sample

size results are very spotty and do not cover all the SA statistics that could

be defined in our framework. Third, by placing SA into a larger matrix

comparison structure, an obvious pedagogical advantage is achieved. This is

analogous to the perspective provided by understanding the general Tinear

model even though the special cases of analysis of variance and regression

may continue to be the most popular alternatives as * implemented by

routines that are specialized from the more general structure. Fourth, once

z comprehengive framework 1s unaerstood, further work on the framework=itsel f
immejdataly suggests many associated results that are pertinent to a class of

measures. Thus, gnce the commonality of analysis tasks are recognized, there

ijs an obvious broader purpose raken on by the research gnterprise.
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h, tahles f marginal information were ignored an? expected valuas
Inference Models for Rol1-Call Cohesion Meastres g« were obtaired from an equallv-likelv asgumpntion on the cell
- probabilities.
] The oroblem of Aefining inferenace mndels for measures of
Introaugtion roll-call cohesion has heen recognized in the 7iterature. For
: instance, as one wav of develovihg a more reasonahle infarence
e asures of rTeqislative rall-catl anhesion have heen widelw structure, Born and Nevison (1°75Y introfuced a nrobahilitkvy
used in the political science literatuve t0 index khe Feares of i measura hased on the cumulative Jdistribution of vetes in the mora
ColiAarity manifasted by a Aefinable subgroup of voters (see | ) inclusive heody. Although this is 2 sten in the zporonriate
MacRae, +279, for a review). Unfortunately, tha most novular ‘ . | ! direction, there are at ieast three limitations on the Baorn anAd
acures have also heen plagued by the lank of infarence mofels . g Nevison apprcach. First of all, since the nrobahility measura
me . .
that can take into account the Asgree of cohesion oresent 1 the requires a rather sovhisticated un”erstanding of prnhahility
larger unit ~ontaining the suharoun. For example, Pice's | theorv and rfeviates markedly from the Justification hehlind the
o1 1-tnown measure nf Suhgzoun cohesion is defined (uo £o a indices typicallv used in the literature, accentance of the ney
oltiplicative copstant) hy the ahsolute Aiffarence hetween the X L statistic may he verv slow in coming, varticn?arlv since
Sroportions of A sositive and A neqative votA. ~hance cohesion } extansive tahles and/or the use of specifically Aesiane” comnuter
fa)s _ . e, .ach vpronortion & - - ¥ : : @ h
(s supposedly indicated by a 50 50 golit (i.2., @A E Drograms are reguired for its ca’fuTatzon. Seconflv, the
has a value of 1/2) and deviations from the 50-50 split Are % ’ probability measure is essentially limited to vntes that have
intarpreted as evidence for an inareasad cchesinr Among the q 2-values (Aya and Nav) and voting optiong with % a'kernatives
surgroup membhers. Thig equallwv-likelv hasaeline ig assume’ even . are not easilv incorporated within the varadiagm. Finallv, the
though the comolete oapul Atinn mav not have A narfact. 50-50 ; | Rorn=Nevison measure is really a sianificanne leyel, 3nA
R Conseqiently, it 15 magsinlae for the Targer ponulation £0 i C - therafore, it i3 heavilv denendent on the size ~f the subarnun
Aamonstrate more Aphegion than the anhagronm, even kthoudh the 3 ' heing considared. For example, two subarauns with thae game
1arter hv itself may appeAar ta he hiqhlv cohasive whan evaluated ' . u . values on a more traditional index of cnhesion acould alsen have
against khe null assumotion of a 50-50 split. A similar problsm ! B very Aifferent orobahility values Aevending on the sizes of tha
wonld exist in narforming qoofness—of-fit teats in contingency 4 «i two subgronvs. It wquH seem more apouronriate ko considar 3
_ J
R
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statistic that has promerties similar to the Pearson correlation

coefficient; i.e an index that would give an indication of the

o T e p

i

absolute level of cohesion irrespective of sample size hut have
an associated significance statement that was dependent on the
number of observations, or in our case, on the number of voters
in the subgroup as well as in the more inclusive bkody. Using
these three concerns as our motivation, it is relatively
straightforward to carry out the original Boru-Nevison goal of
oroviding a suitable inference model for a measure of'qohesion

through the well-known percentage voting agreement measure.
Background

To provide some introductory notation, we assume that a bodv
of n individuals P = {Il' Int eees In} has voted on an issue
and the cohesion of a subgroup S of size m 1is of interest.

If there are %k voting options, then the percentage voting
agreement measure is defined as (Born and Nevison, 1975):
k

T = Z mj (mj-‘ - .‘-\) /m(m - 1-) ’
j=1

where mj is the number of individuals in S using voting
" ‘

alternative 3j, 1lgic k, andm = j m;. Inother words, I' is
=1

the ratio of the number of pairs of individuals in S who vote

in the same way tc the total number of pairs in S.

'
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Since T is A “descrintive sktatistic anA should ha interpreoted
h

in relation to the Aistribution of votes in P , the nul’ madel

we assume conlectures that S5 was constructed at random from P
Thus, the Aistribution of T under +hies null model can be ahtained
from the enur i n d

ne enumeration of T over all (m\ subgsets of size mnm

h 13 .
that could he formed from P. Increased cohesinn igs tvnically
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the raw measure significant.

S

==

nce complete enumeratinn is very time consmuming ard must
he redone for each zevarate test of I' , it is convanient to rely
on exact mean and variance parameters and an annroximate
normalitv (when m is not too large or small) for evaluating the
size of T (Bloemena, 1954)., 1In particular, the litevatyure

gives (Hubert and Levin, 1977\

it B~15%

B = MLo(M, = 1 -1
Loy Y /nin ARS
J
where Mj is the nuriher OE voters in the mopulation ? using
alternative § and n = )1 Mi' The variance can he calen’aterd
J= )
exactly using the expression
2
1 2
V(r) = - |- A, +
n{n-1 1Y Wy mmeT) A

4(n-2)
N AR S ]

(m-2) (m-3)

t RG) (n-2)(n=3) m(m-1)

[A1 - 4A2 + 2A3] s
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where
K 2
A, =] 7 MM, -1)1;
1 j=1 JJ
k
Ay = T oMM - 1
j2p 9
k
Ay = ) M.(M,-1)
3045z 3

Finallv, the Z-statistic

Z=(r- BT

could be referred to the standard normal Aistribution to find the
significance level that should be attached t> T |

It might also be noted that the probability of obtaining a
Z-value as large or larger than the one observed corresponds
closely in role to the vprobability measure ucsed by Born and
Nevison. The raw index I' , however, can also he given a verv
simple descriptive interpretation that is indepencdent of its
significance level; i.e., the proportion of pairs in the subgrouv
that vote in the same way. As we will see, this descriptive
capahility extends to much more general measures as well.

There is one modification of the T measure that should be
mentioned that involves how the self-pairs in a subgroup are

counted, i.e., pairs that are defined bv the same voter with
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himself. For example, supopnse there are 2 voting options and a
group of size 4 splits 2 and 2 giving a T of 1/3. A group of
40 splitting 20 and 20, however, would generate a larger T of
19/39. Consequently, even though the splits are the same in hoth
cases, the size of the group being evaluated produces Aifferent
values since the number of self-pairs that are not counted Aiffer
in each case. If a correction is desired, the self-pairs could
be included and a new index, say T' * , defined as

} n?

j=1 9

I!*:__.:_.._____._
m2

Thus, in the small example given ahbove, T' * would be 1/2 in

both instances. 'In general, the mean and variance of T * are

immediate since T * is a simple linear transformation of I' :

_ (.m=-1 1
r*-= ( m ) T+a
Specifically,

E(T*)

[{]

) wed

and

V(T*)

EGE

The major disadvantage of this correction is that E(T'*) now

deovends on m whereas E(r) did not.
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In summarv, the oarcentage vnting agareement measiure acan be
evaluated directlv against what could he suvected from the
distribution of vntes in the mnpulation. 1If we reject the
conjecture that § was constructed at random (hv having the
7-value be nositive and large), the ohvionsg substantive
implication is that the suhgronn has some votina cohesion aver
and above what could he expectad merelv hv forming a aroun of
this size at random £rom the larger vonulation, °

There are numerous extensions of th's same mofe? that can
orovide strateqiss for e&alnatinq the relntive 3ize of a host of
voﬁing correspondence measures. For examnle, supnose we have Lwo

Aisjoint groups S, and S, containina r and g

individuals in each. The statistic

is the ratio of the number of mairs of individyals hetween the

two groups who vote the same to the total number of mairs. Hare,

A , - E o mros :
mlj and mzj are the number of indiviAdualg in Sl anﬂk P
. . kR . .

respaectivelv, who use the 7t' voting antion. Thne, X M «

K : Lo

j=1

= r and Z rn,,_.J = 8. Assuming §; an? 3, are formed at

§=1 ‘ | |
random f{(and without revlacement) from P , the expeckakinn nf A

k
is the same as that for T ; i.e., ) M. /M, = 1)/nin - 1),

. 3

Lo J 1 :
. but the variance is now

h]

| 2
- V(n) = - | now L,
[ n(n-T) 1 n(n-Trs "3
“E (r+s-2)

* n(n-1)(n-2)rs - [Ag - A3]
j (r-1)(s-1) |
: * n(n-l)(n-Z)(n_:g)rs [Al - 4A2 + 2A3] .
B
- (156)
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The Z-statistic could he €ormed as héfore and its significance
Tevel apvroximated bv using the standard normal Aistrihution.
As we will see in the next section, one general procedure

for comparing two mAtrices includes hoth T and A  as special

cases., More imoortantly, this comparison strateqv sugaests an

13

enormous variety of other aralvsis options for assegsing vnkino

natterns that cannot He handled in anv aonvenient way with more

traditional statistical methnfs,

Some Fvtensions

e

As mentioned ahcve, hoth the T an? A indices introduced

he orevious gection can he ohtained as snecial cases of 2

de
3
it

more general matrix commarison strategv., To bhegin with, we Tet

0 and C cdenote two nxn matrices with zeros along the main

If the entries in the ith

diagonal. row 3anAd 1 column are

and c.. , vesvnectively, a qgeneral! incdax *etwean

denoted by ., i
s

i
the two matrices can ke Adefined hv the cross-»nroduct statistic

(157)
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where the 1's and 0's represent

of the matrix, then o becomes

3

0

s defined in the following schematic Form

o_ 1
0 o |- |\

generic entries

r when C fis

in the indicated sections

defined as
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Again, th ! ‘ L
’ e 0's anA mim=1) danote generic elements.

In a similar fashion, A

as
r
C =
S
. 1
using
2rs

To develop an inference

measure § ,
for all n!
simultaneously

g an® reorder

akove in (2)

aporopriate null distrihution for hoth

example, when

3
)
3
(@]

igs obhtained when

r ——y
1
0 . 2vs 0
1 ;
2rs 0 a
0 0 0

as a generic entry. -

n

sunnose we €iv the makrix ( as

the anlumns of

% Y. If €  Thas

and (3), this nermutation mode!?

St

~

T is gnecified

tructure hased on t%e general

ig and avaluateae

bossihle w -
Dossible ways of reorganizing the vows anA

(or aanivalentlv, we con'd fix

the snerific structures giwvan

generates the

' and A . TFor

C is defined as in (2}, the nl! nossihle
C induce (I subsets of the n onhiects in P
the same numher cf timeg). Similarlv,
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C induce an edquallv-likelv Aigtribuntion over all possible mairs U ?ifferences between ade, vears of education, an? o on our
of subsets with r and s objects in each. | gg cencern here would he in relating voting pakkern to a
Since formulas for the first two moments of the general non-dichotomous variahla, (e) Finallv, since there is a ha=ic
index @ are available in the literature even when O anf C fi Auality between voters and issues, the Q and C matrices aould
. , anA a feg .
are asymmetric (Mantel, 1967; Hubert and Schultz, 1976, the r represent the relationshivs among issues (a.9., for each oair of
expectation and variance for T and A can be Aderived as J issues we could caleculate as a DroXimityv measure the oroportion
special cases of very comprehensive expressions. More ' ] of voters who qive the same resonnse ontion), and € ~oulsd we
significantly, the matrices Q and C can also he redefined to J 387 to evaluate whether a Structure exists ameng ;19 i senes
‘e exists among the iasueg:
obt.ain indices that are very smecific and/or are directed toward , } #.9., whether there is subset homogeneitv or an AomArent |
different aspects of analyzing roll-call conhesion. Tor instance, ' ‘ ) partitioning. Since the.oot4ops are fevelonaA at-ieast
(a) the 9 matrix could he defined as a sym over a set of roll ,j implicitlv in related osvchological contents, the reader §g
calls anAd C defined as in (2) amd (3). Here, we are interested referred to this literature fe.g., Hahert and Schultz, 1877
in assessing cohesion for more than a sinale issue. (b) The J In addition, extensions to sets 0f matrices and/or to nommetrie
matrix € could reoresent the results of a second roll-eall or J matrix comparisons that only recuire the order nf the entries in
set of roll-calls. DNow, our interests would he in assessing the 9 and E are available in Huhert (1978; 1979) . For some
correspondence bhetween two sets of roll-calls. With this latter U comments on nossible oroblems with asvmnotot4$ normality far
interpretation, varticularly when both € and O revresent ) these more general statistics, the reader should congult the
partitions of the form given in (17, we have a way of analvzing } J recent paper bv Mielke (1978).
political cleavages as defined hv Rae and Tavlor (1970). (e} The ;
simultaneous cohesion within more than one vartv (whether they J
exhaust P or not) can he developed hv merelv extending (2) to
include more than one "block" of non-zero values along the main
diagonal. Similarlv, cross-connections between more than two [
parties could be evalnated hy extending (3) in the obvious wav.
(4 If Q is given as in (1), the C matrix could bhe Aefined hv ]
some proximity measure between voters, e.g., the ahsolute ) {
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Introduction

For a science that claims to have space as its central theme, geography is
at best myopic. Throughout the greater part of their existence, geographers have

represented spatial phenomena in simple Euclidean space. While a few brave souls

have ventured into the non-Euclidean realm (e.g., Bunge, 1962; Tobler, 1972, 1976;

Lau, 1978), there is a remarkable reluctance within the discipline as a whole to

think of spatial concepts,in'anything but Euclidean terms. Our models use

Euclidean measures of distance, the bulk of our maps are constructed on a Euclidean

coordinate system, and out theories of spatial organization are summarized carto-

graphically and mathematically in-'Euclidean terms.

The widespread acceptance of Euclidean geometry as the most appropriate for

representing space, predisposes a certain type of perspective on the world. Within

the Euclidean framework, space is conceived as being isotropic - that is, the same

geometric relations hold in all parts of the'space. A second important concept is

that of parallelism - that is, parallels do not converge. Accepting these concepts

readily allows us to implement perhaps the best known and most widely used formula
in the discipline of geography, that of measuring inter-point distances in

N-dimensional Euclidean spaces. This formula is:
1

Pij T [E( EREE )r] r | (1)

where: Dij is the distance between two arbitrarily defined points i and Js
X5k is the coordinate for point i on the kth dimension;

r is the exponent to which displacements in any dimension are taken in
the particular distance formulation (i.e., the Minkowskian Metric).

While this general Minkowskian formula is well known, almost invariably the
Euclidean (r = 2) is preferred to other Minkowskian metrics such ar r = 1 (the

Manhattan or ¢ity block metric) or r =©Q (the dominance metric or SUP-metric)

(see Krause,1975 ). In this latter metric, the distance between any pair of pojnts

is defined as the longest side of the right-angled triangle constructed in the space

about the points (i.e., dij = mEx(Xik, Xjk))'

(165)
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The Euclidean metric is in many ways a convenient one for abstracting from
reality and summarizing it in the form of a map, which for geography is the
commonly used model. For many years we have accepted the fact that most maps
come on flat sheets of paper and geographers have spent considerable time and
ingenuity on procedures for transforming occurrences on the surface of the earth
into appropriately represented schema on flat sheets of paper.

In contrast to this, if one examines the perceptual mechanism of the human
eye, then it becomes obvious that divergences from the Euclidean metric are
evident even at the local scale. If physical space is Euclidean then perceptual
space must be non Euclidean and even the simple task of recognizing a straight
1ine as straight must be learned (see Roberts and Suppes, 1967). Admittedly,
one can argue that the curvature of the earth is such that it can be interpreted

as being locally Euclidean, but it is also evident that if one looks along a

railway track stretching along a plain, the parallels of the track appears to converge.

If one looks at a series of telephone lines stretching away into the distance,
the poles become smaller. Distance itse1f is conceived by a process of intel-
lectual synthesis that involves an equalibration of both motoric experiences

and visual effects. When one perceives objects becoming smaller or paraliels
convgfging, it is'assumed that a greater amount of effort is required to reach
such gbjects. Thus we are faced with a fundamental conflict between our senses
and our knowledge that we need to resolve on a day by day basis. However, we
make very little attempt to constructively incorporate the essential differences
into our day by day experiences. At the very least, one can argue thgt the
internal geometry of the world of perception and cognition may have very few

of the attributes of Euclidean geometry and may more likely be represented in

non-Euclidean formats (e.g., see Luneburg, 1950; Zautinsky, 1959; Blank, 1961;
Leeuwenberg and Buffart, 1978; and Indow, 1979). |
If this is the case, then the adoption of the Euclidean perspective for

our maps, our models, and our theories, involves not only complex abstraction

(166)
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from the real world but a conscious distortion of perceptual data. As an
example of this, imagine an individual traversing most North American cities.
He is forced to move for the most‘part in right angle steps but most frequently
has to provide information in terms of straight line distances. "Distance"
then becomes an experience which should not necessarily lead to a response
that is best representéd in Euclidean terms. If, therefore, we can claim that
there is nothing inherently Euclidean about space or about spatial concepts
developed and used by geographers, why should we not pay an increasing amount
of attention to norn-Euclidean spaces? For the balance of this paper, we would
like to address ourselves to presenting a selection of alternative spaces which
seem appropriate for use in the context of cognitive mapping and its relation

to spatial behavior.

Some General 'Propérties ‘'of Spaces

General space is an abstract set possessing a topology. Given such a

definition, one can expect that the space is a set over which concepts of

continuity and proximity may be given meaning. For an abstract set E with
elements p, q it is possible to specify a set of correspondence rules which
define a measure on ordered pairs, denoted (pg). Such a distance space can

be called semi-metric if (i) the measure (pq) is a non-negative real number;

(1) (pq) = 0 if and only if p = q, and (iii) there is symmetry such that (pq) = (qp).

(For a more detailed discussion of the development of geometry and some comments on
General spaces, 'see Spiro & Noshiro, 1966; Golos, 1968; or Sklar, 1977).
Semi-metric spaces in general are characterized by two undesirable
properties: a) the discontinuity of the distance function, and b) "unnatural®
distance properties. N%th respect to (a), given the possibility for discon-
tinuous distance functions, one may finish up with an indefinable topology so

that the space as a whole cannot be characterized and may be identified only
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in Tocal terms. With regard to the second of these properties, one of the
"unnatural" distance properties may relate to the concept of continuity in

such a space. Continuity may be cnsured if the following characterization
holds.

Let p,q be elements of semi-metric space S. If, for any two sequences Pye

a9, of elements of this semi-metric space, lim P, =P and Tim 9, = 9 implies
the Tim P, 9, = P35 then the distance function is said to be continuous at
p,q. The distance function is continuous on S if and only if it is continuous
at each point pair of S. ‘Imagine a series of polygons inscribed in this space
such that, as the number of siaes of the polygons approaches infinity, the

distances between consecutive vertices approaches zero (i.e., implying that

in the limit the distance between two distinct points goes to zero), then this
Teads to a contradiction of our intuitive feelings about distance. To avoid

the problem of unusual distance propertfes (particularly those relating to
continuity), the independence of the distance function-point assignment must be
eliminated. To do this, we must make the distance assignment of a given point

pair dependent oﬁ the distance assignments for previous point pairs. One common
way is to impose the triangle inequality in addition to the assumﬁtions ot identity

and symmetry. Stated formally, the requirements would then be:

1) if p = q, then (pg) = 0

2) ifp # g, then (pg) > 0

3) (pq) = (ap)

4) for any p, q, r, {pg) + (ar) > (pr)
‘Any semi-metric space satisfviag the four criteria is a metric space, i.e.,
the space is positive definite {criteria 1 & 2), symmetric (criteria 3) .

and satisfies the triangle inequality (criteria 4). Given some of these
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Characteristics of distances in a general metric or semi-ﬁetric space, it is
possible to develop examples of distance relations for a variety of such metric
spaces (see Love and Morris, 1972§ and Gower, 1977).

Let us now turn to a discussion of some critical properties of mental maps

that strongly suggest the use of non-Euclidean modes of representation as their

most appropriate form.

Isotropy, Incompleteness, and Curvature

Space may not be isotropic. If isotropy does not hold, then the rotation
of a set of objects about any given point wi11.change distance relationships
even though relative location itself is not affected. Thus in contrast to the
Euclidean case where an orthogonal rotation of axes will maintain constant
inter-point distance relationships, such a rotation in a Manhattan space, for
example, will changevthe coordinate values and the distances. While a Manhattan
space is metric, it is not isotropic since distance depends on angular orienta-
tion. Using a dominance metric, distance once again is related to the coordinate
system and distance values vary depending on axis location.

Withiﬁ a givén population, one might expect that, because of differences in
physio]ogicai‘and motoric skills, differences in exposure to sociological,
psychological, and educational experiences, and differencés in otﬁer personal,
functional, and structural variables, some proportion of the population will
more readi]y be described by one or another of these three general sub-classes
of the Minkowskian metric: In a sample of 60 residents in the city of Columbus,
Ohio (Golledge and Rayner, 1975) approximately 64% of individuals made inter-
point distance judgments among selected pairs of 48 locations which were "best"
represented in Euc]idéan space (i;e., when "best" was defined in terms of multi-
dimensional scaling (MDS) "STRESS" statistics). Approximately 18% of the population

each give distance Judgments which conformed more to Manhattan or to dominance

. metrics than to Euclidean. In a later study (Spector, 1978), 121 out of 153

individuals gave information which produced correlations of greater than .3

(169)
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between configurations of points reconstructed from their scaling of the two-
dimensional inter-paint distance relationships among the points and a
representation of the same point set in two dimehsional Euclidean space.
Considering this evidence it is tempting to argue that at the scale of intra-
urban analysis the use of a Euclidean metric can be supported for the
construction of mental maps of such environments. But at this stage we still
don't know wﬁether a different form of geometry may be ggég_mggg appropriate.
For example, reappraisal of the data used in Spector's study produced an abrupt
reversal of his results. Taking the MDS-derived configurations in a range of
Minkowskian métrics for the 48 points as a base, the entire set of inter-point
distances were calculated, then ranked, and a Spearman rank correlation coef-
ficient between this set of distances and the set of objective inter-point
distances was calculated. . Distances in each point set were calculated using
Manhattan, Euclidean, and Dominance metrics (see equation 1). The results

jndicated that the Euclidean metric has the highest correspondence between

-subjective and objective configurations only 18.7% of the time; city block and

dominance metrics provided best fits for 49.6% and 31.7% of the subjects,
respectively. Other tésts, using regression procedures and clustgring methods
confirméd the significance of the city block metric and the poorer fit of the
Euclidean (Richardson, 1979). In light of these conflicting results it would
seem appropriate to speculate on some of the different forms of geometry that
may be suitable for investigating the structure of cognitive representations.
Space is described through the use of the concept of curvature perhaps

more frequently than through the use of the concept of straight lines. In
Euclidean geometry a fundamental assumption is that of parallelism - i.e.,

that parallel lines do not meet. Iﬁ spherical metrics, parallel lines not

i t"—‘"!??:
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geometry of people's perceptions (see
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through space characteristically reflects a spherical geometry (Luneberg,
1950; In@ow, 1974, 1979). 1In a sense, then, one acts as though while traversing
a surface,the slope of the normal to the surface successively changes in a
constant manner. With a positive change in a Cartesian coordinate and if
the slope of the normal successively increases, the plane can be described in
terms of spherical space; but if the slope successively decreases, the space
is said to be hyperbolic.

We previously suggested that our concern with space should be at least
in part tied to the way that individuals experience space. To adequately
represent cognitive images, we need mental maps that truly reflect the internal
Wood, 1978). While we have just
described the case of a space of constant curvature (i.e., a spherical space),
Riemann showed us that curvature need not be constant and that a geometry
based on distance formulation may incorporate the idea that at a local level,
or over very small displacements, a space of non-constant curvature can be
closely approximated by a Euclidean space. Riemann utilized the concept of
a tensor - i.e., a magnitude which can be used to transform a given set of
points of an_arbitrari]y defined coordinate system to a new coordinate system.

The definition of a general distance tensor on a plane is:

ds2 = gxdg2 + 2gxydxdy + gydyz
where ds is a small distance displacement,
dx and dy are displacements along two arbitrary axes x and y, and
. 9X, gy, gXy is the weighting or tensor applied to each term of the

squared elements of the distance displacement.

only eventua11y meet but in some curved spaces (such as hyperbolic space) they This fundamental tensor is frequently referred to as a covariant tensor of the second

diverge. The perceptual experiences that individuals have when travelling L rank. Obviously, when one is concerned with examining a configuration composed of

relative locations based on individual subjective estimates of location and proximity,
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the nature of the set of tensors used to map the subjective judgments is extremely
important. Some of the implications of the Riemann tensor that are particularly
significant relate to the fact that space can be stretched or compressed as if it
were e]aétic at different locations. The implication for this is obvious. If one
takes a uniform set of points and stretches them differentially depending on
location in the point set and direction from some particular origin, then distances
between adjacent points can be either very small or very large. What this in turn
implies is that if distance evaiuations made by a subject and incorporated into
his/her mental map are not based on the Euclidean formulation, then there is some
wafpage or disturbance of this space in which the judaments are made, and a Riemann
tensor may be more appropriate for describing the occurrence of breaks or
discontinuities in any mapping that is produced. If an individual uses notions of
curved space in making his evaluations of proximities, then fitting his judgments
to a Euclidean surface can only lead to seeming inconsistencies or "error" when we

evaluate his/her judgments in the context of Euclidean space.

One of the critical differences between Euclidean geometries and geometries
based on curved spaces is simply that the curved spaces are bounded whereas the |
Euclidean spaces are theoretically infinite. In a spherical space, no matter what
direction one travels one shoﬁld always be able to return to the origin point. " This
is clearly not the case in Euclidean space.

Perhaps the most innovative contributions concerning the use of non-Euclidean
geometries for representing mental maps is contained ih a recent article by Tobler
on the "Geometry of Mental Maps" (Tobler, 1976). Even considering the re]ative]y
large scale mappings typical of urban areas, Tobler examines the possibility of
using Riemannian tensors to transform what is normally regarded as a Euclidean
urban space to preserve most of the critical topological features that dominéte
empirical examples of mental maps. The application of a Riemann tensor of course

maintains the essential topological properties that can be recovered through a
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variety of simple experimental designs based on subjective evaluations of fnter-
point distances or controlled sketching procedures. However, it distorts some of
the dfrectiona], distance, and areal relationships that exist in the Euclidean
representation. Tobler also suggests that the_use of incomplete experimental designs
and methods such as paired and triadic comparisons may produce holes, folds, cracks,
and tears in the fabric of the cognitive image because of "fuzzinéss" with respect to

the subject’s conceptuaTization of place location. In other words, he suggests that

the Euclidean plane be replaced with a topological manifold that for some individuals

may be somewhat fluid and may vary in its structure either from time to time or as one

changes the major origin node of the individual. Given the ephemeral nature of such
a manifold,. Tobler suggests that the wholesale adoption of purely metric assumptions
may be unrealistic for the construction of mental maps.

Since folds or tears in the manifold representing .an individual's knowledge of
an area vary with the knowledge content of space, a third dimension (such as familia-
rity)should be used as a weight in the construction of the maps. Figures 1 and 2
show samples of individual qoénitive configurations of 48 locations in Columbus, and

familiarity ratings of the same points (subject #141 and #217). When examining such

map pairs for the 126 subjects in the Columbus sample, it became quite obvious that
major distortions in the cognitive configuratfon are correlated with the areas of
Towest familiarity. Recent work by Rivizzigno (1976), Spector (1978) and Golledge
and Spector (1978) has shown clear relationships between the size of Tocation
errors for places subjectively located in an urban environment,‘distance from the
home place (i.e., the key primary node in the individual's spatial structure), and
familiarity with the'pIaces.
An increase in the fuzziness component of location error as distance from
a central origin increases, makes the geometric description of a mental map

quite complex (e.g., see MacKay and Zinnes, 1978; Gale, 1980). Admittedly,

one can summarize the trends of the distance distortion by the simple method
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of transforming grids [pioneered once again by Tobler (1965) (see Fig. 3)],
but a more feasible suggestion [once again from the work of Tobler (1976)]
is to describe the mental map in terms of a small set of tensors that summarize
the varying nature of the transformation between map locations and images of
those locations (see Fig. 4). This would mean that the mathematical model
describing the geometry of such a surface would have all the attributes of a
tensor probability surface. To date, the closest existing descriptor along
these Tines is summarized in Tobler's recent work on directional components of
flows in which he embeds a vector field on an isotropic Riemanh manifold (Tobler,
1977; 1980). Applications of this work to cognitive maps can be seen in Gale
(1980) and Gale and Golledge (1980). |

From this initial discussion, there are a number of critical points that
have been raised concerning the geometry of mental maps. First 1; the fundamental
éuestion of whether or not mental maps should be constructed as isotropic spaces.
A second and equally important question is whether or not such a map can be
rotated, sca]e transformed, or reflected without disturbing the distance relation-~
ship among key points on it. A third question concerns whether the most
appropriate space for the construction of mental maps is an infinjte plane or
a bounded curved space. Following this is the question of whether the space
has constant curvature or whether the curvature varies considerably from place
to place or from sector to sector on the map. A question intuitively raised by
a]most.everyohe concerned with mental mapping is simply whether such maps
have any metric properties whatsoever or whether they are only locally metric.
As a first step towards answering some of these questions, we suggest that a
variety of non-Euclidean metrics be considered for representing cognitive infor-
mation. We start by presenting some of the feétures of perhaps the simplest
curved spaces which may be appropriate for examining mental maps - j.e., Riemann

spaces with constanf curvature (see Ahlfors and Sario;'1960).
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A Riemann space with coordinate system (xl, Xos eos xn) has a metric represen-

tation in terms of Tocal derivatives. As a quadratic form it is represented as:

ds? = I gy dx dxj | (6)
1J

The gij coefficients must satisfy the following conditions:

1. Each 93 is a real single valued function of the coordinates and

possesses continuous partial derivatives.

2. The axiom of symmetry holds (i.e., 95 = gji)

3. det {gij} # 0.
The quadratic form determines both the local and global geometric structure of a
Riemannian space. What is of most critical importance as far as mental mapping is
concerned, however, is that the most important parameter of a Riemann space is its

curvature at each point. The Gaussian or total curvature at any point is defined

as a product of the maximum and minimum curvature of all the geodesics passing through

the point - (i.e.; the maximum and hinimum of all the curves of minimum'distance
passing through the point). The Riemann space itself is a hypersurface or manifold
S in a higher dimension space T. The tangent space at points X in S separates T
into two regions. The curvature of a geodesic through X afbitrar11y is called
"positive” if its center of curvature is in one region, and "negative" if its center
is in the other region. Riemann spaces with constant curvature are called elliptic
or spherical if the parameter of curvature K > 0, hyperbolic if K < 0, and Euclidean
if K= 0.

While the quadratic form completely specifies any Riemann space, our familiarity

with Luclidean spaces sometimes makes it more convenient to specify a Riemann space

by a global equation. Lindman and Caelli (1978, p. 91) specify the form of such an

equation as:
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where

= the coordinates of the higher dimension space T;

K = the Gaussian or total curvature.

The equation given by Lindman and Caelli represents the elliptic hyperspace
of K> 0. They pointvdut, however, that when at Teast one squared terﬁ of
the quadratic is negative then the space.is hyperbolic with " K < 0. When the
manifold S is embedded in the higher dimension space, the distances in the two

spaces are related by the fo11owing equations (Lindman and Caelli, 1978, p. 92):

(k2 d..)
a5 = 2/(K)* sin —n K>0 (8)
2
%3 = 3 K=0 (9)
a5 = 2/(IK] Y% |sinh (|K|Z ds5) K< 0 (10)

In the above formulation, dij is the distance arc measured in the manifolds,

and qij is the distance measured in the space in which the manifold is embedded.
Note -~ particularly that when the space is complex, the qij may not be metric,
but the dij will be metric if the complex space has exactly one imaginary

dimension.

Some Alternate Metrics

In his discussion of a range of metrics suitable for representing structure

in similarity data, Shepard (1974, p. 405) describes a hierarchy with increasing degrees
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of generality. At the base of this hierarchy are the specific Minkowskian r metrics

which include the Euclidean, Manhattan or city block, and Dominance metric (see

equation 1). Each of these relates to metrics developed in isotropic infinite

spaces. At a similar specific level are the hyperbolic and spherical spaces

which are derivates of spaces of coristant curvature. A space of constant

curvature is seen as a special ‘case of a General Riemann space. A constant

curvature space is both curved and Tocally Euclidean, but unlike the General
Riemann space it is also isotropic. This last condition holds because the unit
Spheres on which the space of constant curvature are based are uniformly
spherical. A similar Jevel to.the General Riemann space is that space in which
a General Minkowski metric applies; such'a space is isotropic, flat and locally
non-Euclidean. The isotropic and flat characteristics follow from the fact that

the spheres underlying it are of constant size and shape. The General Riemann

space is curved and locally Euclidean with ellipsoid unit spheres. Next in this

hierarchy of generality is a Finsler space; this presupposes a continuous under-

lying coordinate space with its own intrinsic dimensionality. This space is
curved, locally Minkowskian, but the unit spheres change continuously with
‘location. The General Riemann space is a derivative of Finsler space.

The most general of all spaces in Shepard's classification are general metric

and semi-metric spaces in which the spaces are defined solely in terms of inter-

point distances; they do not imply a specific dimensionality and do not implicitly
embed cpordinate systems within them. Postulates underlying the general metric
space are too general by themselves to allow the development of rigid theoretical

. geometrical constructions. Shepard suggests that the most appropriate space for
the representation of cognitive information is one which is not too particular
and maintains a Tevel of structure, yet allows for non-trivial investigation

and conclusion. This would imply that the fundamental metric axioms of .

- (177)
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triangularity, symmetry, and positivity and identity at least have to be main-
tained within the fabric of the space. Such a space must be finitely compact

or boundedly dinfinite: din other words, a finite dimensioned space such as

this one cannot be extended without increasing its dimensionality. Further,

such a space should be convex and incorporate the notion of betweenn¢ss:

j.e., given two distinct points X and Z then it is possible for a point Y to

exist between those two locations. Given these brief notions, one can immediately
see that both Riemann spaces and those spaces suited to the use of all Minkowskian

metrics are particular subclasses of a general metric space.

Conclusions and Speculations

If we examine configurations of points that have been generated using inter-
point distance estimation or "a set of points located in a space which is defined
solely in terms of inter-point distances, then we are confrontad with a space
which implies neither a specific dimensionality nor is there implicitly embedded
within it a coordinate system. If we can further find key nodes in this particular
space, we might imagine that as distance increased from each key node, the
probability of a fold, crack, tear, hole, or other warpage of the'space would
increase consideraly. Assume further that the key nodes are not uniformly
spaced. If one‘were then to construct a set of Thiessen polygons for this set
of non-uniformly spaced nodes, there would be considerable variations in the
distance of the edges of the polygons from the key nodes (Fig. 5), One might
further expect that, in those area§ of each polygon which are most distant from
the key node, information about the area may be least and the probability of
distortion or warpage might increase except along the dominant gradient or link

path between adjacent nodes. Using conventional jdeas from probabilistic market

area analysis and the recent suggestions of Tobler (1976) concerning non-constant -

(178)

i
Rt

T 0 &2 &= bod e

o PR KA Rk

warpages and the development of a probability surface for distortions in "mental
maps", one can visualize a mental map of the previous set of locations with the
major distortions or warpings occurring away from the major nodes and the
primary paths that connect them, and increasing in probability of occurrence in
the more inaccessable or distant paths of each Thiessen polygon (Fig. 6). The
result would be to produce a map which associates points or key locations with

error probability surfaces. The probability of warping would, therefore, be

non-constant as direction changes from key nodes, or as distance increases from

the key node to different edge segments of tiie Thiessen polygon.

The building of such a probability surface is simple in Euclidean space,

. but the specification of the surface parameters is somewhat more complicated

even in a simple Riemann space of constant curvature. Detailed examination of
over 200 individual configurations of 48 locations for the city of Cc". ~bus has
shown that Tocation errors differs considerably across the individual maps and
that there is definitely both a directional and distance component to the
distribution of errors (e.g., see Rivizzigno, 1976; Spector, 1978; Golledge
and Spector, 1978;Gale, 1980)(Fig. 4. shows location errors for subject 100).
What is more, this error surface undulates depending on the activity pattern
of the individual, for as information about different segments of the environment
increases, the probability of maintaining a constant location error diminishes.
At various time periods, therefere, the manifold in which the points are Tocated
can be warped differentially (e.gr, see Eig: 7 - an example of the street map of Fig.
warped to fit the cognitive configufation obtained for subject 100). If one
were to obtain a cross-section thrqujh time of a series of these manifolds,
one should be able to recreate a history of the main repétitive components of
an individual's spatial behavior for that time period.

Obviously, the first thing to be done is to attempt to define the appropriate

parameters which describe the Riemann space in which a number of subjective

(179)




SRR NPAY S W

by GRS

- =3

R

5

configurations exist.  Once this has proved to be a feasible operation, then
expanding the work to cover manifolds produced at different stages of the erviron-
mental Tearning process and recreating histories of spatial behaviors associated
with each manifold would seem to be an intriguing direction for constructive
use of current work on mental maps.

An alternate way of envisioning the warped manifolds suggested in the
previous paragraph is to introduce the concept of a mean information field
with holes. Figure 8, for example, shows a standard grid with a series of
familiarity measures allocated to each grid cell. As one can see, there are
two holes in the mean information field where zero information is recorded, and
two major peaks - one towards the S.W. corner of the field and another towards
the N.W. corner. If one contoured the mean information field, the holes wéu]d
stand out in the two dimensional Euclidean representation of it. However, if we
cd11apsed the field so as to eliminate the holes, the configuration that resulted
would more readily be described in non-Euclidean terms. Such a warped field more
closely approximates the sketch maps drawn by individuals with incomplete
information about test environments; the consequent shortening of distances across
places with low information levels and the exaggeration of disténces where
information is consistently high mirrors many of the types of distortions
recovered from individual configurations of urban areas in earlier works (Golledge
and Rayner, 1975; Golledge, Rivizzigno, and Spector; 1976; Rivizzigno, 1976;

Spector, 1978).
As a further step in an attempt to define the types of metrics most suitable

fof the representation of subjective configurations of places, current work at
U.C. Santa Barbara is aimed at defining configurations of places in Riemann spaces
such that an index of fit between subjective and objective configurations

mapped onto the same space can be obtained. In general, it would appear that

questions related to the suitability of representing mental maps in metric spaces
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need to be answered before much confidence can be placed in widespread use

of such maps in conventional geographic work.
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