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Introduction 

Consider two large populations each member of Will.' ch l.' s associated with a 

particular number, and suppose these numbers are obtained for random sa~ples 

from each populatio.n. Because f Ii o samp ng error, one would expect some differences 

between the two obser~ed distributions even l.'f, over the entire populations, 

the distributiod of numbers is exactly the same. Th . b us l.t ecomes interesting 

to sp!,!cify when two sample distributions differ' suffiCiently that they should 

be interpreted as reflecting genuine diffeFences b~)tween populations rather 

than fluctuations associated with sampling. 

Special cases of this question arise often in the analysis of both medi-

'cal and crime data. Th th f e au ors, or example were given certain blood-test 

results for Hodgkin's Disease patients who were divided into two categories: 

(1) early stage, for which radiotherapy is the safer treatment, (ii) later 

stages, for which chemotherapy is safer. W k e were as ed whether there was any 

disc~rnable relationship bett.veen the blood-test results and the extensiveness of 

the cancer, the hope being tllat these tests 'I ml.glt provide information now ob-

tained more dangerously through surgery. 

In the context of criminal J'ustice, one ml.'ght i want to nvestigate 

whether the distribution of prison sentences for a given crime is associated 

with, say, the race of the offender. T'~e . '1 h f 
Wli n Sl.ml. ar co orts 0 criminals are 

subject to different correctional programs, one might, be interested in dif-

ferences in the distributions of time until first reRrrest after release. 

In such situations any s·ignificant differences in the empirical distributions 

are of potential interest, not just those of mean o~ vnriance. 
, 
" 

, 



-1-

Introduction 

In this paper we propose a rank-based "omnibus" test for diffel:ences in dis-

tribution that, like the familiar test of Kolmogorov and Smirnov, aims at 

sensitivity to all kinds of differences rather than those of particular form. 

We consider the test both conceptually simple and easy to use. Below we 

will try to motivate the test procedure, derive the asymptotic distribution 

of its key statistic, and present simulated comparisons of its power versus 

both the Kolgomorov-Smirnov and some specialized tests. 

The simulation results identify some circumstances in which the pro-

! posed test is more powerful than its Kolgomorov-Smirnov counterpart. On ba-

lance, however, the two tests seem about equally matched and, indeed, they 

reached the same conclusion in the overwhelming majority of simulated cases. 

These results, coupled with certain advantages of our procedure that we will 

suggest, might lead some users to view it as a viable alternative to the Kolgo-

morov-Smirnov procedure for assessing differences in distribution. 
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I. The Test Statistic 

Suppose one has two data samples A: 

and wants to know whether one 
can reasonably assert that A ai1d B come from 

the same underlying probability distributio~. 

Let the m + n measurements be combined into 

we assume for now that m + n is a mUltiple f 4 o • 

A 

a pooled ranked sample. 

Let b. be the number of 
1 

measurements in the ith quartile of the combined sample. If the two 
samples do come from the same distribut1'on each bi should have a hyper-

geometric probability distribution with parameters (m, n, (m+n)/4): 

'i:'. 

Pr(b
i (1) 

where Q = (m+n)/4. 

Corresponding to (1) are the relationships: 

(j 
2 (b .) = 7773::..,.:m;,:,:n-=--,,-,-

1 16 (m+n-l) 

4 
Since l: b 

i=l i m, the different bi's are not independent random variables. 

Consider the random variables 5, d 

S = b
i 

+ b
4 

do = b4 b
l 

dI = b3 b
4 

o and dr defined by: 

_ I Ie 

.... _-------_ ... _--------_ .... _---------_ ..... _--_ ..... _---.;..........;......;..,---------.;..----.-,;;:.------------~----------~----- ---
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If the two data samples come from the same distribution, it is clear 

that: 

E(S) ~ m/2; E(dr ) = 

From the fact that 02(~b.) 
1 1 

E(d ) = 0 
o 

o and the expression for 02(b.) in (2), we di­
, 1 

rectly obtain the covariance of b. and b. (i:fj) as -mn/ (16 (m+n-l) . It follmvs 
1 J 

at once that: 

02(s) = mn/4(m+n-l) 

cr
2

(do) = 02(dr ) = mn/2(m+n-l) 

-We define the normalized variables S, d , and d
r 

by 
o . 

s = S-m/2 
o(S) 

where 02(S) , 02(do) , 02(d r ) are as specified in (3). 

We further define the variable D by: 

The quantity D is the test statistic in our propost~d procedure for invcsti-

(3) 

gating differences in distribution. Before discussing it further, ~e will I 

obtain the asymptotic distribution for D under the null hypothesis H that 
o 

the A and B samples arise from exactly the same distribution. 

A straightforward application of Theorem 19 in Lehmann [1, P.393] shows 

that, as m and n increase, the jointly generalized hypergeometric variates 

(bl , b2 , b3 , b4) approach a singular multivariate normal distribution; the 

means,variances, and covariances of this ciistribution are as specified above. 

Since S, do' and dr' are all linear combinations of the bits, they in turn 

approach a multivariate normal distribution; the fact that these variates are 

uncorrelated thus implies their asymptotic independence. _2 _ 2 
Since S ,d , and 

o 

~ ... -"..... . .... ''''' ----.~ ~'----

-
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d- 2 h . d d X 2 . . f 11 h t D I approac 1n epen ent -var1ates 1t 0 ows t a 

X
2
-distributed with 3 degrees of freedom. 

is asymptotically 

In' the Appendix we present evidence in that, even for. moderately large 

m and n, the asymptotic distribution for D is a good approximation to its 

actual distribution. Thus a test of H whose Type r error is close to a 
o 

takes the form: Reject H if and only if D > C , where C is the 100 (1 _ a) 
o a a 

1 f h 2 d' 'b' . h 3 d f f d percenti eo' t.e X - 1str1 ut10n W1t egrees 0 ree om. 

The statistic D is potentially sensitive to various differences 

in the two distributions from which one has empirical samples. Should the 

contributions of either data set gravitate.towards the tails of the combined 

sample, rt high 8
2 

value should reflect this; should either sample tend to 

- 2 "rise to the top" of the merged data, a high d should result. Nonuniform­
o 

ities in the interior of the combined samp~e should genera1ly.show up in 

- 2 
higher-than-usuat dr values. Thus whether two distributions differ in lo-

cation (e.g. mean or median), dispersion (e.g. variance) or some complex com­

bination of both, a high D-statistic might well reflect the disparity. * 

* Of course, the D statistic is insensitive to nonuniformities within the 
quartiles. Suppose two densitites f1 (x) and f? (x) follo\v: 

k k+l -
fl (x) = 1/4, when 8'< x< 8"" for k 0, 2, 4, 6. 

k k+l 
f 2 (x) = 1/4, when 8' < x < 8"" for k 1, 3, 5, 7. 

Faced with such a ~ifference, a D-test approaches total ineffectiveness, 
But this situation is Udusual if not pathological; the power of D in more 
realistic settings is considered later in the paper. 

'." , - ' , 

. , 

, 
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II. Some Other Rank Tests 

The D-test is by no means the first rank-based procedure for indenti-

fying differences in distribution. Below we briefly review three others with which 

the power of the D-tests will soon be compared. We define Ho as the null 

hypothesis that two data samples, A and B, come from the same distribution. 

As before', we assume the sizes of the A and B samples are m and n respective-

lye We will discuss the two-sided versions of each of the tests described. 

Among omnibus tests for difference in distribution, the procedure of Kolgo-

morov and Smirnov (hereafter K-S) is' so w~dely known and used that it seems 

proper to consider it, the standard approach. It begins with the preparation 

of a combined, ranked sample of the A and B measurements. For each K from 

I to m+n, one looks at the K lowest numbers in the combined ,group and counts 

how many of them came from .the A-distribution. (Let this number be SK)' The!"! 

one calculates the quantity W
K 

defined by 

SK 
W = 1-K m 

Note that SKim and (K-SK)/n are the fractions of all A and B measure­

ments, respectively, that fall in t~e lowest K places of the pooled sample. 

Under Ho one would expect that, except for fluctuations, W
K 

would be near zero. 

Let u = max {'';l(}' The K-S test is of the form: reject H if and only 
o K 

if u exceeds some threshold C. The distribution of u under H as a fune­
o 

tion of m and n has been extensively tabulated ([2]); one typically 

chooses c so as to achieve a particular significance level for the test. 

A simple and familiar test for difference in location is the median 

test. Under it one focuses on X , the number of the m measurements from 

the A distribution that fall above the median of the pooled, ranked sam-

-

, ' 

,t, 

"'"Ir'. 
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ple. X is hypergeometrically distributed under Ho with a mean of m/2. The 

median test rejects H if IX - m/21 exceeds some threshold c; once again c 
, (') 

is chosen to achieve a desired significance level. 

The Siegel-Tukey test, an offshoot of the Wilcoxon rank-sum procedure, 

is'aimed at detecting differences in dispersion. The rank one is assigned to 

the largest measurement in the pooled A-B sample, two to the smallest mea-

surement, three to the second largest, etc. The test statistic X is the 

sum of the ranks of the m A-measurements; under H , the expected value of 
o 

X is (m+n+l) 
m 2 • From tables for the Wilcoxon rank-sum test (e.g. [3), 

one determines if IX - m(m+n-I)/21 is so large that H should be rejected 
o 

at a desired level of significance. 

I 



.. 

~_'Or'""~~----~-~---'-~ _____________ ~ ___ '." 

-7-

III. A Comparison of the D and Kolgomorov-Smirnov Omnibus Tests 

We describe here a simulated comparison of the power of the D and K-S 

teste in various circumstances. The general procedure is to perform the 

two tests on H at the same significance level (a.), and to see how often each 
o 

calls for the rejection of H when confronted with data samples generated 
o 

from different probability distributions (i.e. we are estimating 8~values). 

Before presenting any results, we will discuss both the details and rationale 

of the simulation performed. 

Sample Sizes: When both m and n are very large, both D and K-S should be 

highly effective at picking up differences in distribution. When m and/or 

n are small, on the other hand, neither test should be especially powerful. 

The the most "interesting" m and n values for comparing the power of the 

two tests are those that are. moderately large; pursuant of this view, we focus 

our attention on the two cases m = n = 24 and m = 24, n = 36. 

Computer Use: To generate random data samples for various A and B distri-

bution pairs, we used subroutines for particular probability distributions in 

the INSL Statistical Computing Package. * The pooling and ranking of the data 

and calculation of te.Elt statistics Y,'as done under' a computer program we wrote 

and tested extensively. The work was performed at MIT on the Multics Computer 

System. 

Distributions Used: Altogether we used 20 different pairs of A and B distri-

but ions in our comparisons; all are listed in Table 1. The distributions we 

* IMSL, Subroutive Chapter G, "Generation and Testing of Random Numbers," , ! 

... 
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chose came from the normal, exponential, uniform, beta, and linear families; 

the differences we explored ranged from one-dimensional (e.g. members of tre 

same family with different means) to very extensive. Because of its impor­

tance in statistics the normal distribution received more attention than the 

others. Foe each pair of distributions. we generated 1000 random samples for 

m = n = 24 and separately for m = 24, n= 36. Thus in total we compared D and K-S 

40,000 (20 x 2 x 1000) times. While we cannot claim that our comparisons 

exhausted all possibilities we believe they tell a great deal about how D 

and K-S fare in a broad range of realistic settings. 

The Form of the Test·. We us d D d K S " e an - stat~st~cs to test H against the 
o 

alternative of any difference in the distributions that spawned the A and 

B samples. The critical regions in the tests were chosen so as to achieve 

a Type I error rate (a.) of .05 under both procedures. Since the null distri­

butions of D and K-S were discrete, attaining an a. of exactly .05 required 

randomized decision rules ~vhen "borderline values" arose for the test statistics. 

(S\J.ch rules, of course, would have been needed to achieve equality at any a.-level 

chosen. ) 

When m = n = 24, for example, the K-S test we used for difference in 

distribution was: 

(i) 

(ii) 

Reje~t H if u > 3 
o 8 

Do not reject H if u < 3 
o 8 

3 
If u = 8' select a random number x from the uniform distribution 

on [O,lJ. 

If x < .526, do not reject H 
o 

If x > .526~ reject H • 
o 
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Tables in [2] on the exact null distribution of the K-S statistic show that 

the test rules above yield an a of exactly .050. Similar randomizations were 

performed for the K-S test in the 24-36 case and for the D-test in both cases. 

(The simulation results excerpted in the Appendix were the basis of the lat-

ter randomization.) 

The results of the simulation are presented in Tables 1 and 2. We show 

ebserved S-values of D and K-S, how frequently the .tests reached different 

conclusions, and the statistical significance of their differences in pmoJer as 

measured by the familiar McNemar test. The strongest difference that emerged 
~ 

occurred when the two distributions differed primarily in variance, «c), (d), 

(i), (q» in which case D is decisively superior to K-S. In other cases, the 

two tests are about equally powerful or K-S has the edge. But even when,accord-

ing to the McNemar test on the differences, K-S does significantly better than 

D -( (a), (b), (e), (k), (1), (m), (r), (s), (t», its "margin of victory" tends to be 

small. In these particular cases, D ~nd K-S reached the same conclusion 87% 

of the time and,when they differed, it was D and not K-S that was right about 

one-quarter of the time. 

Over the total of 40,000 simulations, D erred 17184 times; the comparable 

figure for K-S was 17102, a mere 82 lower. D and K-S agreed in their conclu-

sions 7/8 of the time. And both tests reduced their S-values by similar 

areounts (roughly 6%) when sample sizes increased from 24-24 to 24-36. One would 

hardly expect such res'uts to be invariant across different sets of test dis-

tributions. However, coupled with the individual outcomes, they strengthen 

the impre~1sion that for assessing differences in distribution with no prior 

i~ea where the differences might arise, the D and K-S procedures are about 
~ 

equally powerful. 

. , 
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Table 1: 

.'- ".,. .. ,."._- . --_ .. ----~--,-
Comparative Performance of KS and 

D Tests for Various Distribution Pairs (Sample Si _ 
zes n = m = 24; 1000 Simulations for Each 

Distribution 
A B 

a) N(O,l) N(l,l) 

b) N(O,I) N(1,2) 

c) K(O,l) 

d) N(O,l) 

e) N(O,l) 

f) N(O,l) 

g) N(O,l) 

h) N(l,l) 

i) N(l, .09) 

j) N(l.5,1) 

k) e(l) 

1) eel) 

m) e(l) 

n) B(lD ,4) 

0) B(10,4) 

p) B (10 ,4) 

q) B(1O,4) 

r) L(0,4) 

s) L(0,5) 

t) L(O,l) 

Notes: -

N(0,2.25) 

N(0,4) 

N(.5, .5) 

N (1,4) 

N(2,1) 

eel) 

e(l) 

u(Q,3) 

e( .5) 

u(0,2) 

u(0,3) 

u(O,I) 

B(8,6) 

B(16,6) 

L(O,l) 

U (0,1) 

U(0,4) 

L*(O,l) 

Type II 
D 

.235 

- 1.1.6 

.860 

.640 

.636 

.359 

° .882 

.133 

.941 

.625 

.858 

.570 

.017 

.006 

.909 

.187 

.679 

.159 

.051 

Error (13) Rates 

.172 

.314 

.919 

.815 

.579 

.362 

° .862 

.290 

.950 

.574 

.827 

.440 

.029 

·9°3 
.927 

.492 

.588 

.115 

.032 

N(1l ,0'2) means Gaussian with mean 11 d 2 ,.. an variance 0' • 
u(a,b) means uniform a and b. 

B(c,d) means beta with parameters c and d. 

e(j) means exponential ~vith p arameter j. 

% of Time D 
and KS Differ 

.113 

.160 

.123 

.259 

.179 

.177 

° .108 

.219 

.065 

.177 

.131 

.180 

.028 

.003 

.086 

.357 

.169 

.096 

.033 

Pair) 

McNemar Test 
Significance Level 

* 
* 
* 
* 
* 

*** 

*** 
*** 

* 
*** 
* 

** 

* 
** 

. **~~ 

*** 
* 
* 
* 
* 

L(a,b) means line~r( ~i)stribution with density function f(x) 
f(x) = x a . ( 

{b_a)2 1n a,b), and is ° outside (a,b). 
that fo1lo~V's: 

L*(l,O) means density function is 2(1-x) in (0 1) . 
, and 1S 0 

McNemar Test: 
* 

** 

*** 
means significant at .01 level 
means significant at .05 but not .01 
means not significant at .05 level. level 

outside (0,1). 

, 
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Table' 2: 
for Various 

Comparative Performance of KS and D 
Distribution Pairs with Sample Sizes m = 24, n =36 

(1000 Simulations for each pair) 

Distribution 
A. B 

a) N(O,l) 

b) N(O,l) 

c) N(O ,1) 

d) N(O,l) 

e) N(O,l) 

f) N(O,l) 

g) N(O,l) 

h) N(l' ,1) 

i) N(0,.09) 

j) N(1.5,1) 

k) eel) 

1) eel) 

m) eel) 

n) B(10,4) 

0) B(10,4) 

p) B(10,4) 

q) B(10,4) 

r) L(O ,4) 

s) L(O ,5) 

t) L(O ,1) 

N(l,l) 

N (1,1) 

N(0;2.25) 

N(O ,4) 

N(.5,.5) 

N(1,4) 

N(2,1) 

eel) 

eel) 

U(0,3) 

e( .5) 

U(0,2) 

U(0,3) 

U(O ,1) 

B(8,6) 

B(16,6) 

L(O,l) 

U(0,4) 

U(O ,4) 

L*(O ,1) 

Combined results of 
all simulations 
(m = n = 24· and 
m = 24, n = 36) 

Type II Error (8) Rates % of Time D 
D KS and KS Differ 

.156 

.279 

.815 

.576 

.554 

.219 

o 

.857 

• 102 

.927 

.559 

.802 

.467 

.006 

o 

.899 

.164 

.554 

.071 

.014 

.429 

.091 

.183 

.913 

.786 

.463 

.199 

o 

.813 

.159 

.. 943 

.455 

.762 

.320 

.011 

o 

.913 

-
.311" 

• .439 

.047 

.004 

.427 

.083 

.142 

.146 

.284 

.165 

.144 

o 

.138 

.119 

.074 

.182 

.152 

.187 

.013 

'0 

.100 

.215 

.171 

.044 

.012 

.126 

HcNemar Test 
Significance Level 

* 
* 
* 
* 
* 

*** 

* 
* 

*** 

* 
.* 

* 
*** 
*** 
*** 
* 
* 

** 

.. 

" 
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At this point, an obvious question arises: if D does no better than the 

standard K-S procedure, what advantage is there in using it? We see three 

possible advantages: 

i) D involves less calculation. 

Once a ranked sample exists, the user of the D-test need only count the 

number of A-measurements in each quartile, and then do four or so simple compu-

tations to obtain a D-statistic. Except for small m and n, the significance 

2 level of the statistic can be approximated from a X -table for 3 degrees of free-

dom. (See Appendix.) K-S, by contrast, requires substantially rrore counting, and in prin-

ciple m + n computations to obtain the test statistic. While one can reduce 

such computations with graphical methods, they themselves are time-consuming 

when m and n are large. 

ii), The reasoning behind the D-test might be more transparent to nonstatisticians ' . 

Both K-S and D are based on pooling and ranking' the data from the two 

populations, and on the notion that the A-measurements should fall uniformly 

over the combined sample. But D relies heavily on the simple notion that 

each quartile of the pooled data should contain roughly 1/4 of the A-measure-

ments. The reasoning behind K-S, while hardly obscure, is perhaps less trans-

parent to someone unfamiliar with such statistical concepts as cumulative distri-

bution and order statistics. It would seem that conceptual simplicity, when 

not accompanied by loss of accuracy~ is a virtue in statistics as elsewhere. 

iii) D is more directly informative about how two distributions differ. 

If a D-statistic is judged significant. examining which of its components 

is (are) particularly large can indicate how two distributions differ. If 82 

is large 
~ 2 - 2 

but do and d
I 

are not, for example, the distributions are probably 

. more dissimilar in divergence than in location. In the K-S test, examining 

I 

I 
t 
} i , ' 

, 
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individual WK's when the test statistic u is significant seems not as 

directly illuminating about where the disparity arose. 

IV. Comparison of D with Some Specialized Tests 

We have also compared the power of D to those of two specialized tests: 

the median test for difference in location and the Siegel-Tukey. test for dif-

ference in dispersion. Our results are summarized in Table 3; ,they are based on . ,) 

the same randomly-generated data that led to the previous tables. 

With the lone exception of distribution pair (m), there were no situations 

in which the median test did substantially better than D. The Siegcl-Tukey test, 

on the other hand, was clearly superior to the D-test when one distribution 

essentially "surrounded" the other (Le. (c), (d), (i), (q». But except in 

this general setting, the Siegel-Tukey test was strikingly ineffective in pick-

ing up differences within the distribution pairs we studied. 

Especially since other specialized tests exist for differences in distri-

bution, we should avoid extreme statements based on Table 3. Yet certain re-

marks are suggested by the results. If one has strong prior knowledge on how 

two distributions would differ if in fact they do, a test that focuses on this 

discrepancy is probably preferable to an omnibus test like D. But if one has 

weak or even moderately strong prior feelings one might do well to use an omni-

bus test, for specialized procedures seem to lose power rapidly as one departs 

f~om their bailiwicks. 

-~ .... ... _ . ...., ... _ . ., '-. -.,., .~ .. "", .. ~., .. 
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Table 3: Comparative Performances of D, Median, and Siegal-Tukey Tests 

for Various Distribution Pairs 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

i) 

j) 

k) 

1) 

m) 

n) 

0) 

p) 

q) 

r) 

s) 

t) 

Note: 

(Combined Results m = n = 24 and m = 24, n = 36; 
2000 Simulations for each pair) 

Distribution Type II Error (S) Rates 
A B D Median Siegal-Tukey 

N(O,I) 

N(O,l) 

N(O,I) 

N(O,l) 

N(O ,1) 

N(O,I) 

N (0,1) 

N(I,I) 

N(l.09) 

N(l.S,I) 

eel) 

eel) 

e(l) 

B(10,4) 

B{lO ,4) 

B(10,4) 

B(10,4) 

L(O ,4) 

L(O,S) 

L(O,l) 

N(l,l) 

N(1,2) 

N(0,2.2S) 

N(0,4) 

N(.S,.S) 

N(1,4) 

N(2,1) 

e(l) 

eel) 

U(0,3) 

e( .S) 

U(0,2) 

U(0,3) 

U(O,l) 

B(8,6) 

B(16,6) 

L(O,l) 

U(0,4) 

U(O ,4~) • 

L*(O,I) 

.196 

.,347 

.838 

.608 

.S95 

.289 

o 

.870 

.118 

.934 

.592 

.830 

.S19 

.012 

.003 

.904 

.176 

.617 

.115 

.033 

.184 

.347 

(.946) 

(.931) 

.641 

.499 

o 

.856 

.673 

(.951) 

.574 

.805 

.423 

.330 

.007 

.933 

.924 

.603 

.198 

.034 

( ). around p-value for median test means A and 
distributions had the same median; t.hus the test is 
inheren~ly insensitive to their difference. 

.961 

.876 

.670 

.299 

.737 

.454 

.943 

~863 

.032 

.949 

.917 

.. 818 

.943 

.040 

.988 

.866 

.025 

.872 

.977 

.982 

B 

, 
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V. When m + n is not a Multiple of Four 

The discussion about D so far has assumed that m + n = 4R, where R 

is some, positive integer. We propose below some minor modifications of the 

procedure in cases where this assumption is not satisfied. 

i) rf m + n = 4R + 1, form the ranked, pooled sample, delete the median 
measurement, and then calculate the bi'S in the usual way. 

ii) rf m + n = 4R + 2, no measurements are deleted but the pooled sample 
is divided into its lowest R measurements, the next lowest R + 1, 
the next R + 1, and the highest R. The bi'S for the four groups 
continue to record the number of A-measurements in each. 

iii) When m + n = 4R + 3, deleted the median measurement and then pro­
ceed as in the 4R + 2 case above. 

The quantities S, do and dr retain their usual definitions in terms of the 

bi's. 

Under the rules above, do and dr continue under Ho to have means of zero. 

But the mean of S and the variances of all three quantities are diffe.re~t in the 

cases above than when m + n = 4R. Their new values under H , which are obtained 
o 

straightforwardly, are listed below. 

m + n = 4R + 1: N = m + n in all results below.) 

(8) = meN - 1) 
l.l 2N 

2 2 
o (do) = 0 (d r ) = 

02(S) = mo(N + 1) 
4N2 

m + n = 4R + 2: 

l.l (S) = m (N - 2) 
2N 

2 mn(3N - 4) 
o (do) = 2N(3N + 2) 

2 _ mn'(N + 2) 
o (dr ) - 2N(N _ 1) 

mn 
2N 

't. 

2 mn(N2 - 4) 
o (8) = 4N2(N _ 1) 

m ;:. n = 4R + 3: 

peS) = meN 3) 
2N 

02(d ) = meN -
0 

3) [3nN(N + 1) 

2N2 (N - 1)(3N 
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2m(N 

+ 2) 

02 (dr ) = meN + 1)[N~(3N- 1) + meN 

2N
2

(N - 1)(3N - 1) 

02(S) = mn(N2 
9) 

4N2(N 1) 

- 1)] 

- 1)] 

- -With the expressions above, the standardized variables S, do, and d
r 

can be calculated directly. The statistic D = 82 + d
0

2 + d
r

2 continues to 

have an asymptotic distribution that is X2 with 3 degrees of freedom. 
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Appendix: The Null Distribution of the D Statistics for Moderately 
Large m and n Values 

It 'is of interest how rapidly the probability distribution of D under 

H approaches its asymptotic form of x2 with 3 d.f. Simulation-based evidence o 

presented below suggests that, even for moderately large m and n values~ 

the actual distribution of D is rather well approximated by the asymptotic 

distribution. This circumstance makes somewhat superfluous the construction 

of elaborate tables that detail the significance levels of outcomes of D-

tests. 

For the special cases m = n = 24 and m = 24, n = 36, we~andomly generated 

A and B data samples from the same (unit normal) probability distribution. 

CI'he samples came from the llISL Computer Package on HIT's Hultics' Com-. 

puter System). Then a computer program caluculated the D - value 

in each of 10,000 trials for the case m = n = 24, and in 10,000 separate 

trials for m = 24, n = 36. We observed how many of the obtained D- values 

fell below 6.25, 7.81, and 11.34, the 90th, 95th, and 99th percentiles of the 

X 2 distribution with 3 d. f. These percentiles, of course, correspond to the 

10%, 5% and 1% significance levels of a test of H and thus warrr.nt particular 
o 

attention. The results of the simulation appear in the chart below . . -. ',_.-

Expected under 
asymptotic distri­
bution of D 

Actual for 
- case m=n=24 

Actual for case 
m=24, n=36 

D-Stat is tics in 10,000 Simulations in tVhich Ho is Correct 
Number of Outcomes Number of Outcomes Number of Outcomes 

Below 6.25 Below 7.81 Below 11.34 

9000 9500 9900 

9038 9445 9921 

8986 9543 9919 

-

"' 

:\ 
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In the chart, most of the observed fractions of D-values below the 

listed levels did not differ significantly from those predicted from D's 

asymptotic distribution. Even where the differences were statistica.lly sig-

nificant, they were still only a fraction of a percentage point. Taken to-

2 gether, the results clearly suggest that using a X table to approximate 

the significance level of a D-test outcome is not a procedure prone to 

serious inaccuracy, even at the upper tail of the null distributipn where 

such inaccuracy might be most feared. 

c 

---!1 
I 

.,' 

't, 

I 
\ 
I 
h 

{ , 
1.-
1 




