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Abstract 

The overall goal of this paper is to describe a new. method 

of finding patterns in binary data, and to report the results of 

a number of experiments designed to evaluate the procedure with 

artificial data of a realistic type. This report is one of 

several in a series focussing on th.is problem or applying the 

methods to several important sets of data. 
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DIFFICULTIES IN CLUSTERING BINARY DATA 
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binary data, is that if one abandons the questionable product 

moment indices, the results of factoring less conventional 

indices can no longer be interpreted as representing variance 

accounted for. Since the whole rationale for factor analysis 

is to account for the maximum possible variance with a reduced 

number of variables, the entire process becomes problematic. 
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This can be especially true if the results are presented to an 

audience which attributes to them a conventional factor analytic 

interpretation. 

In seeking alternatives to conventional factor analysis 

Christofferson (1975) has turned to a hypothesis testing method 

developed by Bock and Lieberman (1970). However, in addition 

to severe practical limitations in the number of items which 

may be analyzed, it offers no alternative to the researcher who 

wishes to discover the structure of his data rather than test 

a particular hypothesis. Hofmann (1980) has taken the route, 

just criticized, of applying a non-conventional index to a con-

ventional analysis and he offers similar cautions concerning 

interpretation of results. 

An alternative to these approaches, which will be 

described here, is to select an index suitable for binary mea-

sures and to increase the homogeneity of subsets among these 

measures through an agglomerative process which clusters 

together variables measuring similar properties. This type of 

procedure is in a class which has been collectively described 

as cluster analysis methods. Although cluster analysis of binary 

measures is quite common, the data are usually taxonomic 
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criteria such as "has feathers vs. has no feathers" which do 

not reflect measurement of an underlying continuum. In fact the 

usual purpose of taxonomic cluster analysis is not to find 

groups of variables which go together but to create a tree 

structure which organizes various life forms measured by the 

variables. Application of cluster analysis to the problem of 

isolating homogsneous stab sca 1 e.i',l, of b' , \' ~nary ~ tems appear s to be 
a novel idea. 

Cluster Analysis for Binary Items 

There is enormous literature on cluster analysis metbods. 
Blashfield (1980) identifies th ' ree qu~te distinct subliteratures 
within psychology on cluster a 1 ' na ys~s, one stemming from Tryon, 

one from Johnson, and one from Ward, although the Tryon tradi-

tion (Tryon and Bailey, 1970, e.g.) is actually more like a form 

of factor analysis. In dd't' a ~ ~on, there is a virtually separate, 

biologically oriented field, exemplified by the books of Sokal 

and Sneath (1963; Sneath and Sokal, 1973). Within it, there is 

also a substantial amount of differentiation and compartmentaliza-

tion. Fortunately, there ar '1 bl e ava~ a e several books that go 

some distance toward providing an organization and unification 

of the literature (Hardigan, 1975; Everitt, 1977). 

At a broad, conceptual level the v' I ' , ar~ous c uster~ng 

methods may be viewed as attempting to group entities of some 

sort in such a way that there is considerable homogeneity within 

groups and heterogeneity between them. W' h' 
~t ~n that general 

scheme, every clustering procedure consists of the same set of 
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conceptual parts, but each of the parts takes a different form 

according to the particular method. Every clustering method uses 

an index of homogeneity or similarity, whether it takes the form 

of a Euclidean distance, a Pearson correlation, or some more exotic 

index. Every method makes a structural assumption. This is an 

assumption about the mode of organization of the entities being 

clustered. In taxonomy, the organization is heirarchical because 

it is assumed that this is the correct structure for taxonomy. 

In others it is assumed the structure is disjoint but not 

necessarily hierarchical, and in others the clusters are allowed 

to overlap. This assumption is quite fundamental to the pro­

cess, and there is probably nothing more damaging to a cluster 

analysis than to impose an inappropriate structural assumption. 

Finally, each clustering procedure has an algorithm, a 

procedure by which clusters are constructed. ~he nature of 

this procedure depends to some extent on the homogeneity index 

and the,structural assumption, but there are some common stra-' 

tegies and some commonalities across methods. The method may 

start with individual elements and work by accretion or it may 

start with the whole mass and subdivide it. It may base its 

decision on how to add subsequent entities by finding the single 

most similar or dissimilclr one, or may use some form of average 

of a number of them. Thclt is, it may Use single linkage 

(minimum diameter), complete linkage (maximum diameter) or 

average linkage. There are also a large number of details 

within each algorithm which may differ from method to method. 

The choice concerning the algorithm to use is based partly upon 

the structural assumption and partly on considerations of 

, I 



", 

'. 

- -- - -------

r, 

6 

computational efficiency. 

From all this it is reasonable to conclude that a c1us-

tering proce:dure should be tailored to the special characteris-

tics of the data on which it is employed. The index of homo­

geneity that is used should reflect the special nature of 

homogeneity that applies in a given context. The structural 

assumption should be carefully chosen as valid for the entities 

being clustered. The algorithm should be consistent with the 

structural assumption and should combine efficiency with robust-

ness in the face of error. , 

This research was undertaken with the idea that avai1-

able clustering methods were not well suited to the clustering 

of the data that were of primary inte~est to us. These data con­

sist of entities (persons) by variables matrix, where the scores 

are binary (dichotomous) and the object is to group together 

variables into homogeneous subsets. Subsequently, the persons 

may be given scores on the scales defined by the subsets of 

variables or items, but this is a secondary step. The subsets 

need not be disjoint, although this is desirable, and they cer­

tainly need not be hierarchical, although this would be inter­

esting. Thus, the overall goal we have in mind is more like 

that of factor analysis than like taxonomy. 

The program whose workings are described here is tailored 

for use with this kind of data. Considerable thought was given 

to the form of the index of association to use, and the program' 

includes several optional indices. The clusterin~ strategy used 

is a particular form of agglomeration which is based on a kind of 
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average linkage; it imposes no restrictions concerning disjoint­

ness of the final clusters. The specifics of these features are 

described in the pages that fo1low,'along with an extensive 

Monte Carlo study designed to test the overall efficacy of the 

method and the relative success of different indices and options. 

Development of a clustering method to handle binary 

data carne about in several steps. Refinement of the clustering 

algorithm allowed a closer examination of indices which led to 

more analyses, which in turn led to further refinement of the 

algorithm and so on. Once the method for clustering reached a 

sufficient level of refinement, the present evaluation of 

different indices seemed warranted using a systematic col1ec-

tion of artificial data sets. 

Indices of Association 

Traditional Indices 

Of the multitude of indices of association which may be 

applied to data composed solely of ones and zeros, most are 

felt to have defects for defining subscales or factors. Most, 

including the product moment indices and the X
2 

association 

measure, were initially devised for very different purposes, and 

their application in this context, though mathematically possible, 

has remained conceptually clouded at best (Carroll, 1961). 

There are three common measures of association that can 

be considered as the bases for defining scales with binary data; 

two that measure association between pairs of variables, and one 

measuring the overall consistency among a groups of variables. 
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The product-moment correlation, which is the phi coefficient in 

the binary case, may be computed between pairs of variables, and 

the consistency of a set can be measured by the average inter-

item correlation. It has the apparent disadvantage that the 

phi coefficient is influenced by the similarity of frequencies 

of the two items; thus, it is likely that variables of equal 

frequency tend to cluster together, over and above the influence 

of similarity of what they measure. 'Nonetheless, the Pearson r 

is so familiar and so widely used, that it is essential to 

include it as one alternative for forming clusters. 

An index that is not influenced by similarity of mar­

ginal frequencies is the Goodman-Kruskal (Goodman and Kruskal, 

1954) gamma (y). If Table 1 is used to refer to the joint fre-

quencies of two variables, the y coefficient is defined as 

y = ad - bc 
ad + bc (1 ) 

It can have the range ± 1.0 regardless of the item marginals, 

and is zero when the items are independent. It has two other 

names in the literature; one is Yule's q (Yule, 1912). It is 

also a specialized form of Kendall's tau with ties (Kendall, 

1970). The average inter-item gamma is a promising index on 

which to form clusters. 

The third index which suggests itself as a measure of 

association among a group of items is the I<uder-Richardson 

Formula 20 coefficient of int.ernal consistency. (e. g., Guilford 

and Fruchter, 1978; Lord and Novick, 1968; Nunnally, 1970). It 

is defined by the formula 
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Table 1 

Schematic Fourfold Table 

Item 2 

Item 1 Correct Incorrect 

Correct a b n 1 

Incorrect c d n-n 1 

n 2 
n-n 2 

It, 
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r S~ 

j=1 J 
10 

(2) 

where s; is the variance of total scores across the k items in 

the cluster and S~ is the variance of an individual item ln it, J 

i. e., PJ, (l - P,) where p, is the proportion endorsing or passing J J 

item j. Clustering items so as to,maximize the within cluster 

KR20 is also a plausible strategy, and so it too Was studied. 

Like the Pearson r or ~ coefficient, similarity of item marginal 

frequencies influences KR20, so it too may have a tendency to 

fo~ clusters on this basis. It also has the disadvantage that 

it tends to increase with the number of items in the cluster, 

So it is difficult to ascertain cluster boundaries when it is 
used. 

These three indices are implemented in the clustering 

program studied here, along with a fOurth to be described in 

the next section. There are a number of others that might have 

been Used, but we feel that these are the ones that offered the 

greatest promise. A notable omission, perhaps, is Guttman's 

coefficient of reproducibility (Rep). It is omitted because of 

the controversy that has surrounded it since its early days 

(Green, 1954), White and Saltz, 1957) and also because of the 

comPlexity of programming it and the computer time involved. 

The clustering strategy, however, could be applied with Rep Or 
any other form of association index. 

Quality Incgccs 

Recently Cliff (1979) has provided a fresh 
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which allows many to be 
' of binary indices , s Cliff conceptualizat10n d on order relat10n . 

a common framework base 

described in tried subclass of indices 
that a heretofore un. (or 

also suggests , bina~y variables 
useful for select1ng may have properties 

, 1 scale. make a unidimens10na items) to 

Conceptual Framework 

The on a group of persons or that information 
We assume The basic 

S ample of variables. ' 'lable for a 
t'ties 1S ava1 , f the person or 

en 1 ta 4 ns to a rat1ng 0 t' then per ... , 
unit of inforrna 10n ariety of plausible exper1-

according to any of a v arise 
the variable a particular datum may 

For example, mental procedures. 

by rating a pe~son on 

certain trait applies 

'th a "1" denoting that a a variable, W1 

to the person, the con­and zero denoting 

verse. testing, a person 
In ability In criminol-

who correctly answers a 

question scores 1, and receives a zero otherwise. 

ogy, we d t he fact that a recor 1 has engaged articular juveni e 
p h t , by a 'f' kind of cr1me 'n a spec1 1C 1. use zerc to show t a 1, and 

no t hat each of these It is clear h 'r has been noted. 
such be aV10 of providing 

'mental procedures exper1 shares the common feature 

, form of recording the most bas1c ahsence of the presence or 

traits for the persons. 

In his approach indices, Cliff begins to association 

lations created as with the order re h Variable divides eac 

obJ'ects into two people or 

d l is ordered ahead score , 

but within each of the two 

categories. mb of the group Each me er 

the group scored 0, of each member of 

d is established. groups no or er 
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This is the description of a single item's order relations. 

When a second item has created its ordered groups, the order 

relations existing for any two persons must fall into a limited 

set of arrangements according to their joint relations (see 

Table 1). If the pair of persons is not ordered by either 

item, no relations are available at all. If the pair is ordered 

identically by both items (one person is scored 1 on both, while 

the other is twice scored 0) the orders are said to be "Redun­

dant." If one item distinguishes between the persons while the 

other does not, the ordering item is said to provide a "Unique" 

relation relative to the non-ordering item. If the ordering of 

one item is opposite that of the second item then they are 

"Contradictory." 

Between all possible pairs of items, these three kinds 

of order information--redundant, unique and contradictory--can 

be calculated. Now one purpose to which this information can 

be applied is to identify subsets of variables among binary data. 

For example, it is of interest to know to what extent patterns 

of offenses may occur in criminal records. Surely what one 

would seek is a categorization of offenses which are internally 

consistent and which provide differentiation among the offenders. 

In the present terminology, such a categorization would be char­

acterized by having a small number of contradictory relations 

relative to 'the redundant ones, and by having ~nough unique 

relations to provide differentiation. To produce such a cate­

gorization, an index is sought which utilizes all three sources 

of information. 
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The class of indices we will recommend below reguire 

that the redundant, unique and contradictory relations be 
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11 One strategy (which we do not recommend!) aggregated forma y. 

is to simply count the number of relations of the three types 

which occur in some data set. Considering all the possible com­

binations of items for a large sample of 1000 persons ,and 100 

offenses seems an impossible task--nearly 2.5 billion compari­

sons! Fortunately, it turns out not to be necessary to follow 

this procedure. Instead, the required information can be 

deduced from summary information such'as is contained in Table 1. 

The product ad in Table 1 is the number of relations 

that are redundant between the two items, and bc is the number 

h t The S um ac + bd is the that are contradictory between t e woo 

, t ;tem 1, whereas ab + cd is the number unique number un~gue 0 • 

to item 2. Thus the basic quantities are derivable from this 

c'k' and u'k stand for the number of information. We let ~jk' -J -J 

redundant, contradictory, and unique relations on a given pair 

of items. Then, considering all pairs of items within a par-

ticular set 

r = L L r jk 
(3) 

j k 

c = L L c jk 
(4 ) 

j k 

u = L L u jk 
(5) 

j k 

Using only these quantities, it is possible to express 

Pearson's r, the Goodman-Kruskal Gamma, and KR20; 



Pearson r = 

- c., JK 
Goodrnan-Kruskal Gamma = r jk + c jk 

x(Er jk - Ec jk ) 

KR20 = 

where x F the number of crimes or items. 
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(6) 

(7) 

(8) 

One may note that similarities exist among these three 

indices regarding the treatment of the three types of relations. 

The numerator in each case is either the difference between Re-

dundant and Contradictory relations or, in the case of KR20, a 

multiple of this figure. The denominators of the three indices are 

generally more complex, but a major difference between them is the 

inclusion of Unique relations in the denominator of the two product 

moment indices, KR20 and r, but not in the denominator of the 

Goodrnan-Kruskal Gamma. The presence of Unique relations in the 

denominator accounts for the well-known property of r to be 

reduced when the frequencies of the variables are different, 

and the equally well-known fact'that KR20 reaches its maximum 

value only when all items in a set have eq~al frequencies. In 

the psychometric literature this topic has been examined under 

the name of the attenuation paradox. This property of the 

product moment indices makes ordinary factor analysis suspect 

when applied to binary measures, since the association due to 

common levels of item frequency act to confound the association 

due to measurement of common properties. When the effects of 

i' i . , • 
I 

\,.' , 
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item frequency entirely overwhelm those of substantive measure­

ment, the reSUlting factors in psychometrics are spoken of as 

"difficulty factors" (Carroll, 1961), and they are of course 

useless for any of the purposes to which factors are ordinarily 

applied. 

By excluding Unique relations in its denominator, Gamma 

handles all items without regard for their frequencies. Although 

this would seem to be far better than the approach offered by 
• 

rand KR20, there is another possibility which can be ~xplored. 

One of· the problems with describing associations between 

items with the product moment indices is that, in the extreme 

case, items of a uniform frequency tend to separate all subjects 

into two homogeneous groups. Items such as these do not pro­

vide sufficient differentiation among the subjects, and are 

usually undesirable for that reason. Gamma, although it does 

not promote the accumulation of items at the same frequericy, 

does nothing to prevent it, or to recover a cluster with items 

spread out at a variety of levels. Within the framework dis­

cussed here this can be accomplished by putting Unique relations, 

which encourage clustering items with a broad range of fre­

quencies, into the numerator of a new index and to give them a 

positive weight. One such index is shown in Equations (9) and 

(10). In Equation (9) t is the familiar difference between 

Redundant and Contradictory relations 

t = Lr jk - LC jk + .25EUjk 

tjk = r jk - c jk + .25ujk + .25Ukj (9) 

, 



.. 

16 

but now with the addition of the Unique relations with a modest 

positive weight of .25. The quantities in Equation (9) are 

defined for a single pair of items. They may be summed across 

all the pairs of items in a scale to form an overall total t. 

The possible combinations of weights for all three relations 

are infinite and this combination is necessarily arbitrary, but 

it does retain the character of Gamma with the addition of a 

fraction of the Unique relations to test their effect. tb and 

t in Equation (10) serve to scale the index q between a maximum c 
of 1 and a minimum of minus 1 with a rational zero point which 

represents statistical independence. tb is the best or ~axim~ 

t which would occur in a Guttman scale having the same marginals 

as the actual data. tc is the value of t which would be 

expected if the items were unrelated. 

The three indices, q, gamma and r are included here 

because they represent different levels of encouragement of 

measurement at different levels of difficulty: a positive 

attitude (q), a neutral attitude (gamma), and discouragement of 

measurement at different levels of difficulty (r). KR20 is also 

included although it behaves similarly to r, because of its 

widespread influence on the evaluation of binary items in the 

testing field. 

q = (10) 

T I . , 

,,1. 
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The Clustering Algorithm 

The clustering process was designed to occur in an 

agglomerative fashion (Sneath and Sokal, 1973). Each of the 

variables begins its own cluster, and individual variables are 

added to each of the original variables until each cluster con-

tains the entire set of variables. At any point in the accre­

tion process the variable added is the one which has the high­

est average index with each of the variables already contained 

in the cluster. In the selection of the bes~ variable to add, 

no attention is paid to whether that variable is included in 

any other cluster. With well-defined clusters, it can be 

expected that clusters will duplicate each other at some point. 

For example,' a cluster consisting of variables 1 and 2 adds 

nurrber 3, and one consisting of 2 and 3 adds item 1~ They are 

the same, and their subsequent histories must be also. Th~s is 

important for judging the clarity of a solution. Each of the. 

cluster histories is formed independently from all the others. 

Each history is described by a set of variable names or numbers 

and the average index value when it entered the cluster. 

Because th~s process results in completely overlapping 

sets of variables, it cannot be represented by the familiar 

tree-like dendrogram of taxonomic cluster analysis. Unlike the 

biologists who wish to find a tree-like structure in the data, 

the purpose here is to define subscales, so the loss of the 

tree diagram should not trouble us. What is required however, 

is a "stopping rule" for deciding when the end of a cluster 

has been reached and later items do not belong, short of the 
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point where all the clusters contain all the items. 

Currently, we use two methods for stopping the cluster­

ing process. One method uses the often observed fact that if 

clusters exist in the data which are in an intuitive sense 

genuine, then in spatial terms, areas of high density will be 

separated by "moats ll of empty space. When all the variables 

within a region of high density belonging to a cluster have been 

included, reaching across the moat for the next best variable 

should be a'ccompanied by a large drop in the average index for 

this entering variable. One method, then, o~ stopping the 

cluster history at th~ proper point is to cut the list of vari­

ables where the largest drop in the average index occurs {Wainer 

and Schacht, 1979}. 

When the data do not exhibi t such clean-cut clusters, but 

rather consist of only vaguely defined areas of high density 

separated by regions of gradual thinning and rethickening, a 

more arbitrary approach must be adopted. When this is the case, 

an absolute value is selected for the average index, below 

which no item may be added. 

An Example 

Table 2 illustrates the clustering process using a small 

set of computer-generated data. The data consists of eight 

hypothetical items. The first six belong in a cluster and the 

last two are expected to be outliers. The first 8 x 8 matrix 

shows the q indices between the items. In the second matrix 

is the record of average q values as each successive item is 
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Table 2 

An Artificial Example with Eight Variables 
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1 
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1 
1 
1 
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o 
o 
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Membership by > .10 
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added to a cluster. Each column represents the 
the item wh cluster begun by 

ose number is recorded in the first row. Below the 

initial item number in each column is the 

h 

average q value for 

t e next item added , then the third item , then the fourth and 

so on until all eight items are recorded for all eight clusters 

In general the clustering . process proceeds from higher 

lower index values as ~t does for the dluster recorded 

column one of in the second matrix . However, if a cluster beg;ns 

at a point of I · 

to 

re ative low density and moves into 
high density, a region of 

• and rise. Th' the index may reverse direct 4 0n 

condition is most I ~s ~n the record of c early demonstrated ' 
seven and eight. clusters 

Because these items t h are essentially unrelated 

o·t e others, the first , additions to their clusters 
w>th are made 

very low indices, .01 and .06. Subsequent items obtain 

due to their association higher averages primarily 
other and in "t with each 

sp~ e of near zero relations 
eight. Th t with items seven and 

e pa tern demonstrated by items 
is an indication, when seven and eight then 

it occurs, that the ' 

I 

. ~tem beginning the 

custer is an outlier. 

The third matrix is a record of the clustering which 

indicates the identifying number of the items added ' 
index values shown w~th the 

above in the second matrix. Here it is 

clearly shown that items 7 and 8 are the last to enter every 

cluster except the ones which each began. 

The final pair of matri ces which contain only ones and 

zeros represents the items retained. in h 1 eac of the eight 

c usters after selection of a c'.ltoff or st ' opp~ng point, beyond 

, , 

i 

.,l. 
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which. no new items were accepted. The columns in these 

matrices refer, as in matrices 2 and 3, to clusters begun 

with items 1 through 8. The rows this time refer to items 

1 through B also so a one in row 7, column 7, means item 7 was 

included in cluster seven before the stopping rule intervened. 

Matrix 4 is the membership which resulted from stopping 

each cluster where the larg~st drop in the average index occurred. 

All the clusters contain items 1 through 6 and cluster seven 

also cont,ains item 7. Cluster eight also contains item 8. 

One might conclude at this point that a legitimate cluster con­

sists of items 1 through 6 and that 7 and 8 entered clusters 

only because they were the starting items. The low index values 

with which clusters seven and eight began should also have 

indicated to the investigator that they represented outliers. 

Nevertheless, matrix 5 displays the correct cluster solution 

without requiring any such reexamination. Matrix 5 is the 

result of simply cutting off the clusters when the indices 

dipped below .10. Here items 7 and 8 are clearly outliers and 

1 through 6 form a solid block as before. 

Evaluation with Artificial Data 

Evaluating the success of a clustering scheme is gener-

ally aided by use of artificial data analyses. Because the data 

can be generated from a known underlying cluster structure, com-

pariso
n 

of the cluster results to the known underlying model 

may be relatively unambiguoUS compared with an analysis of 

empirical data where a plausible structure must be assumed 

, 
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according to the subjec~ive judgment of the researcher. Even 

with artificial data, the evaluation remains somewhat alTI.biguous 

for the majority of clustering methods that do not provide an 

objective stopping rule. When such methods are evaluated, 

typically the researcher allows himself the privilege of select­

ing the cluster solution which best fits the correct answer. 

Since this benefit is allowed for all competing methods no pre­

dictable bias is present. Such a procedure neglects the real • 

question; however, of how well any such methods will behave when 

the optimal stopping poin.t must be deduced from the data alone. 

Simulation Model 

In order to examine these methods with artificial data, 

one of course needs a model by which to 9'enerate simulated per­

sons and variables. An appropriate model would be one which 

plausably represents many of the phenomena to which the method 

might apply. As mentioned earlier, such data may arise from 

rating the presence or absence of certain traits in a sample of 

individuals, or may occur when a group of subjects responds to 

items in a questionnaire, or may be represented in the offense 

histories of a sample of delinquents. The common features of 

such data are that the observed binary variables should be based 

on known underlying clusters, that there be a mechanism for 

specifying very clear clusters, very loose ones and essentially 

independent variables, and that there be a process for inject­

ing a random component of error into the data. A number of 

latent trait models exist in the social sciences which fit 
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these requirements, but one with which we have had experience is 

the Birnbaum (1968) latent trait model for psychological tests. 

This model postulates that a binary variable is based 

upon an underlying probabilistic function of four compone'nts, 

only three of which are relevant here. It states 

with 

where 

p .. 
~J 

x .. 
~J 

xij 

p .. 
~J 

g. 
~ 

b. 
J 

a. 
J 

= 

= 

= 

= 

= 

1 

1+ -1. 7 a . (g. - b . ) 
e J ~ J 

1 if P ~ t ij 

o if P < t, ij 

the probability, ranging from 0 to 1, that person 

i will receive a score of 1 on variable j 

the ability of person i 

= the difficulty of item j 

. = a consistency or discrimination score for variable 

j, which pertains to the precision of its cluster 

x.. = the observed score for person i on variable j, 
~J 

which is set to 1 if p .. is greater than a 
~J 

stochastic threshold t. 

t refers to the myriad external things that can influ­

ence whether a high p .. is actually recorded as 1. For example, 
~J 
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a rater may be temporarily distracted when a behavior should 

• 
have been recorde , as a d J'uvenile about to snatch a purse might 

, trolman The person's be deterred by viewing a pass~ng pa • 

to t he overall likelihood that a given indi­• ability, g i refer 

vidual will tend to be rated 1 on all variables. For example, 

highly gregarious types are extremely likely to be rated 1 on 

all variables of a sociability questionnaire, whereas "wall-

" tare u·n1 4kely to receive many ratings of 1. flower ypes ... In 

criminology, recidivists w~ ... 'th h 4 stories of many felonies have a 

'f ' whereas for a group of social general propens~ty or cr~me, 

workers even mild misdemeanors may be infrequent. 

The difficulty (or easiness) scores for variables, b
j

, are 

exactly like the a l ~ Y b 'l't score for persons. They index the 

h var 4able will be scored 1 in some overall probability t at a ... 

population. For exa~ple, in a certain population, some vari­

ables from a sociability questionaire may almost always be 

whereas other variables might be checked checked for the persons, 

infrequently. Criminologically, one might suppose that driving 

while legally intoxified occurs relatively frequently, while 

other offenses, such as homicide, have a characteristic infre-

quency. 

It is clear that the parameters gi and b j must be defined 

relative to each other. A given set of gi will be judged as 

~ extreme as the distribution of b j is shifted. For instance, 

the frequency with which a given sociability variable is checked 

depends upon the sample of persons who are rated. If the sample 

contains mostly extroverts, a variable's frequency will be much 

~ I 
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higher than when the sample contains mostly introverts. Simi­

larly, if a juvenile is rated on a self-report questionnaire of 

delinquency, he may show a high propensity on status offenses, 

but a near-zero propensity on index charges. 

In the simulation model, the scores for g, and b, may 
~ J 

range over the domain of real numbers, and may assume any con-

venient mathematical distribution. Since gi and b
j 

are scaled 

relative to each other, in the following studies we arbitrarily 

fixed the gi to have a mean of zero and standard deviation of 

1, and modified the b j in relation to this standard. For the 

most part we assumed that the distributions were normally dis-

tributed, but at times produced scores for the latent gi and b
j 

which were uniformly distributed or bimodal. It is possible to 

also sample a j , the index of consistency of the variable within 

its cluster, Drom a variety of distributions, but for the most 

part we fixed these parameters to values of .5, 1 and 3, CClrre­

sponding to low, medium and highly consistent clusters, respec-

tively. 

Taken as a whole, it can be seen that this simulation 

model is adequate for our purposes. It allows a variety of 

different kinds of data sets to be generated which have proper-

ties much like the real data which clustering methods might 

analyze. We also think that these properties of the model are 

sufficiently general as to be common in mnny fields of the 

social sciences. Manipulating the ~eans, standard deviations, 

and distributions of the parameters in the model allows the 

simulation of an infinite variety of types of data. In our 

, 
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experiments a few of these possibilities were selected as 

interesting or realistic cases, and thus no attempt was made to 

cover an exhaustive set of possible parameters. 

Procedure 

In the experiments which follow, a common procedure was 

used. We generated data whimp produced 24 variables, assigned 
,J 

as follows: variables 1 through 4 came from one cluster, vari­

ables 5 through 10 formed a second cluster, variables 11 through 

18 made up a third, and variables 19 through 24 were completely 

independent of the three clusters and of each other. With the 

true membership of these variables always known, we could judge 

the accuracy of the method by noting the number of items 

rectly placed in their original clusters. 

A particular data set was created in steps. 

First we generated a distribution of gi' for each cluster 

independent, most frequently using a sample size of 

500 cases. Next we decided upon typical values for a .• 
J 

These values were fixed for all variables. Then we 

cor-

Ie 

sampled a group of 4 b j , then independently sampled a second 

group of 6, then produced another independent group of 8, then 

six additional independent values for the singletons in the data 

set. With these vectors of initial parameters, the Birnbaum 

model produces a data set of 500 rows and 24 columns of p ..• 
~J 

Then using a process for uniform random numbers in the interval 

(0, 1) denoted t, we created the matrix of binary values by 

scoring 1 if p .. ~ t and zero otherwise. 
~J 

:r , . , 

This matrix of binary 
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values was used as the raw data in the clustering program. For 

every condition in the experiments we generated several indepen­

dent data sets using the above procedure and recorded the pro-

gram's performance over all replications. 

Dependent Variables 

Two types of dependent variables were devised for this 

study. The present method is a non-hierarchical cluster analysis 

in which each variable begins a cluster, and other variables are 

added to it according to the highest within-cluster average. 

Typically, the average within-,cluster index value decreases as 

items of decreasing similarity are added. At some point an 

optimal or statistical decision must be made regarding where 

the true cluster members have stopped entering, and outside mem­

bers have begun to intrude. One method, the optimal one, is 

to stop all clusters known to have k leqirnate members when 

they contain k members of whatever identity. This rule is 

applied to all clusters, and in the simUlation case, one may then 

ascertain how many variables have been correctly recovered in 

each cluster. Typically, in any single cluster the members thus 

identified will contain a preponderance of correct variables, 

and perhaps a few false choices also., This first method uses 

only the number of correctly selected variables, expressed as a 

proportion of the true number known to be in the cluster. 

A second dependent variable used the largest gap rule 

discussed above. Here we employed a very stringent rule which 

required that the largest gap exactly identify only the true 

,~-- .. - --.--
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I 
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cluster members and never include a non-member. Considering the 

fact that this rule required the true cluster to be identified 

only statistically it can be appreciated that this procedure is 

very stringent indeed. 

Computer Program: BINCLUS 

We operationalized the clustering procedure into a com-

puter routine called BINCLUS (for Binary Clustering) . BINCLUS 
~ 

consists of three distinct phases. The first part generates the' 

original raw data of b~nary variables according to the parameters 

described above, and calculates the redundant, unique and con-

tradictory order relations among all items. The second step 
,. 

uses these r's, u's and CIS to construct one of four kinds of 

association index; Pearson r (which is also the Phi coefficient 

- -----------

with binary data), the Goodman-Kruskal gamma, the Kuder-Richardson 

20 coefficient, and the quality index, q. The third section 

which is the heart of the program, performs the non-hierarchical 

clustering. The clustering routine can be applied to any conven-

ient set of association indices, so each of the four measures 

were used in some of the simulations. 

The following sections describe three experiments. 

These represent a logical progression, with each experiment 

elaborating and extending the findings of the former studies. 

In certain studies our interest centered around the performance 

of the clustering algorithm, and addressed the question: Does 

the method correctly recover clusters of known ~tructure? At 

other times, our interest was in the relative performance of q 

. 
. , 

. compared to the other indices. At these times the question 

became: What is the relative per.formance of the q index given 

its use in our non-hierarchical clustering method? 

Experiment 1 

Purpose of the study 

'{ -
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The first study was intended to test the effectiveness 

of BINCLUS using only the q index. It will be remembered that q 

includes not only positive weight for redundant and negative 

weight for contradictory order relations, but also a positive 

weight for unique relations. Its use, then, is designed to 

cluster groups of variabl~s insofar as they approach the ideal 

of the Guttman scale. Consistent with this ideal, the benchmark 

tb is here used as the value t would have if a collection of 

variables with the ~ frequencies as possessed by the variables 

in the cluster were a perfect Guttman scale. Correspondingly, 

we define t , the other benchmark, as the value t would have if 
c· 

a collection of variables with the same frequencies were com-

pletely independent of each other. 

Design 

Two different levels of within-cluster consistency, a j , 

were chosen, corresponding to high and low consistency. These 

values, 3.0 and .5, are perhaps the extremes of range of values 

which might be expected in real data. A set of variables with 

a. = 3 actually corresponds to a nearly perfect Guttman scale, 
J 

while a j = .5 is perhaps the lowest value that can occur for a 

set of variables to be recognizable as a cluster • 



30 

The parameters for the 24 variables, b., were selected 
. J 

so that the frequencies of cases scoring 1 approached 1/2. Data 

of this kind are good approximations of questionnaire or rating 

scale data, and are so common in the social sciences that we 

deemed it essential for BINCLUS to accurately recover these data 

sets before more stringent tests were undertaken. 

Results and Discussion 

There were three independent replications at the low 

consistency and two at the high. In all five cases, the clusters 

were identified exactly in every case. That is, each starting 

element added all the members of its own cluster before adding 

any from other cluster's or any of the singletons. Furthermore, 

in most cases there seemed to be a definite drop in the value 

of the index after the last true member of the cluster was added, 

so that a user who was ignorant of the true identity and size 

of the clusters would have made the correct decisions concerning 

the extent of each cluster. 

These results were most encouraging, particularly since 

the low a. condition was felt to simulate the kind of consistency 
J ' 

that is often found in real data, and real data of a poor ish sort 

at that. Thus, it appears that where there are definite clusters 

or scales, the program with the q index will find them, even 

when there is considerable error in the data. 

These results raised two questions. One concerned how 

well the program would perform with low-frequency data, since it 

will be remembered that the first study used variables with a 
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mean frequency of .5, although there was some variability. The 

second question had to do with the association index. We had 

started with the type of consistency index that seemed most 

appropriate for these data, but it was conceivable that the 

others would have worked as well. 

Consequently, it was decided that a second, more elaborate 

study would be appropriate. It would use all four indices as 

the basis for clustering and would generate low-frequency as 

well as middle-frequency data. These data would be a closer 

approximation to those typically found in criminological inves­

tigations. 

Experiment 2 

Purposes of the Study 

The basic aim of the second study was to examine the 

performance of BINCLUS using variables with low frequency. 

This is a more difficult condition because there is simply less 

information present when only five or two percent of the sample 

have positive scores on a variable. All of the association 

indices are based on joint-occurrence tables like Table 1, and· 

when two variables have low frequencies, most of the observations 

are concentrated in the no-no cell, with the remainder scattered 

among the other three. Consequently, moving a single observation 

either to or from one of these three cells can have 90nsiderable 

effect on the index. For items that are stochastically inde­

pendent of each other, one with a frequency of 5 percent and the 
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n er 0 cases with a score other with 2 percent, the expected umb f 

of 1 on both is .1 percent, one in a thousand. Nevertheless, 

this is often the type of data that one has in the criminal jus­

tice field, and it was necessary to investigate it. 

This research was undertaken with the idea that q would 

have none of the defects that ar~ felt to characterize the more famil-

iar indices in dealing with this type of data. Nonetheless, 

• or ess, and have the ones discussed here are famil;ar, more 1 

wide use. 

Pearson r 

Consequently, it was decided to try BINCLUS based on 

(the Phi coefficient), Kuder-Richardson 20, which is 

_ consistency of a so widely used as a measure of the intern~l 

mental test, and the Goodrnan-Kruskal gamma. It was felt that 

• since at least it exacted the latter might behave much l;ke q, 

no penalty for unique relations. 

Procedure 

The general procedure differed only slightly from the 

original experiment. Again the clusters created according to 

the Birnbaum model contained 4, 6 and 8 variables. Together 

with the 6 unrelated variables there were a total of 24 as before 

and also 500 persons, as before. In addition to the high and low 

consistency data a moderate consistency conqition was added. In 

the Birnbaum model th e a j parameter for low, moderate and high 

were .5, 1 and 3. Fi t ve se s of data were analyzed at each level 

of consistency. 

The actual fr d' equency ~stributions for the g. and b. 
. ~ J 

rema~ned normally distributed but th f , e requency of the variables 

:r I . , 
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was lowered from SO percent to 10 percent. 
In the Birnbaum model 

the average'parameter b. was raised to 2.0 in the low and moder­
J 

ate consistency cases and to 1.5 in the high consistency cases. 

Each of the 15 artificial data sets was submitted to the 

BINCLUS program using each of the four indices. Whereas in 

Experiment 1 the dependent variable had been the count of v'ari­

abIes within a cluster recovered without error, in this study 

both the optimal percent correctly recovered and the percent 

recovered by using the largest gap rule were used. 

Results 
The mean proportions of correctly recovered clusters and 

a repeated m,easures analysis of variance for each of the 

dependent variables are shown in Tables 3 and 4. 

Overall recovery rates as measured by the proportion of 

clusterns correctly placed was encouragingly high. Recovery for 

q, gamma, rand KR
20

, respectively, are .91, .91, .92 and .92. 

Differences between the four indices, which can be seen to be 

rather minute" are in fact shown by analysis to be statistically 

nonsignificant. 
Recovery as measured by the second criterion was lower, 

being .51, .48, .51 and .39 for the four indices in the same 

order as before. Here again the differences are not signifi-

cant. The particularly low value for KR 20 is due to its tendency 

to increase with cluster size, and therefore to interact badly 

with the largest gap rule. A rescaling of KR 20 might improve its 

performance, but seemed unnecessary for the present investigation . 
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In other respects KR 20 followed closely the behavior of Pearson's 

r and might be assumed to do so with regard to the stopping rule 

had such a rescaling taken place. 

Discussion and Conclusions 

The clustering method was again very successful accord­

ing to the less stringent of the two criteria, even with low­

frequency data which simulates actual criminal records. Over 

90 percent of the variables were correctly included among the 

first k elements of a k-element cluster. The more stringent 

criterion that requires the identification of the boundary of a 

cluster by the largest gap was also supportive. About half the 

time, an objective rule that identifies the cluster boundary 

would identify as clusters exactly the k items that belong to 

them. 

However,. as a ~ethod for demonstrating the sUperiority 

of one index over another, Experiment 2 was certainly not suc­

cessful. Performance of BINCLUS in recovering each of the 

clusters seemed to be quite robust to changes in the association 

index. The single departure from this uniformity was the failure 

of KR 20 to function with the largest gap stopping rule as well 

as the other three indices. Even this departure can probably 

be minimized if there were sufficient incentive to rescale KR
20 

to fit the stopping rule. 

The high level of recovery shown by the proportion of 

variables correctly placed is encouraging. This is especially 

true because only 500 cases were used in Experiment 2. At first 
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glance the roughly 50 percent recovery rates with the-stopping 

rule are much less reassuring. However, it may be noted that if 

half the variables in an eight-member cluster, for example, lead 

to clusters which not only contain all the correct variables but 

only the correct variables, and 90 percent of the variables in 

every cluster are correc~ly located, the final decision regard­

ing membership in the cluster, made after examination of all 

eight cluster histories is probably going to be correct or very 

nearly so. 

In total then, the results of the first two experiments 

provide a solid basis for optimism regarding the performance of 

BINCLUS. It appears to be successful in recovering data which 

are frequently encountered in many kinds of social science 

research settings. Moreover, it does not require variables to 

be highly frequent, which is an asset for a potential tool in 

criminological studies. 

Experiment 3 

Purpose of the Study 

In Experiments land 2, the feasibility of analyzing 

prototypical criminological data with BINCLUS was demonstrated 

using artificial data. The similarity of performance using four 

different indices, however, did not answer the question of 

whether the indices would remain more or less interchangeable 

if analyses were undertaken with data having characteristics 

different from the ones used to generate the data of Experiment . 
2. The purpose of Experiment 3 was to provide some information 

, 
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about the performance of BINCLUS with non-normal distributiobS. 

Procedure 

In many respects the details of Experiment 3 were similar 

to those of Experiment 2. The same dependent measures were 

used; the proportion of variables correctly placed and the number 

of perfectly recovered clusters using the stopping rule. The . 

cluster structure was not changed. There was a cluster with four 

members, one with six and one with eight, as well as six outliers 

as in the previous experiments. The Birnbaum consistency 

parameter a. was again set to .5, 1 and 3 to create low, moder-
J .. 

ate and highly consistent data. The overall frequencies of the 

variables were raised again to 50 percent as it had been in 

Experiment 1. However, the number of cases in the low, moderate 

and high consistency conditions was reduced to 100, 75 and 50, 

respectively, to study the program's performance with smaller 

samples and to push apart the four indices. 

Unlike Experiments 1 and 2, here the shape of the dis­

tributions for the person characteristic q. and the variables' 
~ 

characteristic bj were altered so that in addition to normal dis-

tributions having means at zero and standard deviations of 1, 

there was also a condition which used rectangular distributions 

for both qi and b j ; a condition which mixed a normal distribu-

tion of q. with a 
~ 

a condition which 

bimodal b' J 

rectangular distribution for b.; and finally 
J 

paired a normal qi distribution with a 

distribution. All the distributions had means 

of zero, but the bimodal distribution, instead of having a 
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standard deviation of 1 like all the others, consisted of two 

normal distributions whose means were -1 and +1 and whose 

standard deviations were .25. 

As in Experiment 2, 5 data sets were created for each 

level of consistency under each type of distribution, so a total 

of 5 x 3 x 4 = 60 data sets were analyzed. 

Results 

Tables 5 and 6 display the repeated measures analysis 

of variance with the two dependent measures. Figure 1 displays granhi­

cally the means of the o~timal dependent variable collapsed across 

cluster size. Clus~er size was entered in the analysis as an 

independent variable in case the indices performed differen-

tially ~epending on the cluster size. This ~id not happen. 

Cluster size did not have a significant interaction with index, 

but it did have a substantial main effect. Larger clusters were 

recovered better. The mean recovery rates for 4, 6 and 8 vari-

able clusters are • 71, .79 and .89. Here there is also a sig-

nificant main effect for index used. The means for q, gamma, r 

and KR 20 are • 77, . 78, .81 and .82, showing that the overall dif-

ferel1ces are small and in the direction opposite from what was 

expected. The interaction of the effect of index is significant 

with the level of cluster consistency (here confounded with the 

number of cases) and the type of distribution. 

Figure 2 shows the corresponding means for the stopping 

rule recovery rate. Here there is also a significant, and 

larger, effect for the index used. The means for q, gamma, rand 



38 

KR 20 are .24, .28, .21 and .07. Here they are in the 
di t' expected 

rec ~on, though with the exception of KR 20 the diffe~ences 

are still small. Th e effect of index aga;n , • has a significant 

~nteraction with 1 evel of cluster consistency/numb f 
but no ' " er 0 cases, 

~ ype of distribution. s~gn~f~cant interaction w'th t 

Overall Discussion and Con~lusions 

Overall Success 

ou come of this The overall t 

is that the 1 c ustering method works 

tryout with artificial data 

very well, but that it makes 

surprizingly little d;ff ... erence what index it is based on. W;th 

realistic data ... , success rates of correctly identifying clusters 

were as high as 100 percent. This rate of success can be 

degraded by making the data less reliable and by shifting 

~riterion of success to one that requires th at it include 

the 

cor-

rect identification of 

the frequencies of the 

the number of ,elements in the cluster. 

simulated variables are reduced to near 

10 percent, this has an effect. Also, if the 

assumed are made 11 sma er, again performance 

of the data also has an inte£~al consistency 

sample sizes 

is affected. The 

effect, but only 

when these other factors have had an opportunity to have an 

influence. 

One of the key problems in the application of any clus-

identification of the number of 

If 

tering procedure is the correct 

elements in the cluster. Usually, the invest~.'gator ' 
a sub' t' ~s left with 

Jec ~ve decision as t o where to make the cut-off for a 

cluster or in how many 1 c usters to accept. Here, we investigated 
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the effect of incorporating an objective rule: the end of a 

cluster is defined as the point at which the cluster-consistency 

index takes the largest drop. Thus, one makes a very stringent 

requirement of the procedure. Naturally, this reduces the 

success rate, but even so it is highly.encouraging except under 

the most degraded conditions. 

comparison of Indices 
The order of performance of the four indices was not 

consistent between the various designs and dependent measures. 

Because of the theoretical susceptibility of rand KR 20 to dis­

turbances caused by frequency differencies in the variables, it 

had been expected that q and perhaps gamma would consistently 

outperform them. This did not happen. In most instances the 

differences between the indices were small, too small to be 

important in empirical investigations. In case of a draw 

between indices when their performance is measured strictly by 

percent of item recovery, it might be argued that gamma is 

preferable because of its neutral attitude toward differences in 

fr'equency. An argu.-nent could be made for q, that by selecting 

variables of different frequencies, which gamma does not do, we 

may increase validity with some hypothetical external criteria. 

Aside from continuing a tradition of long misuse, no reason 

Suggests itself for preferri~g r or KR 20 . 
The question of whether the indices actually do perform 

the same is open to argument. When considering ~he results of 

EXperiment 3, the outcome is confused by multiple interactions 



.. 

40 

of the distributions of g. and b., as well as the level of 
~ J 

cluster consistency/number of cases factor. Most of the differ-

ences within cells of the first dependent variable analysis are 

on the order of .05 and the overall means have a range also 

equal to only .05. The results of the second dependent variable 

show much larger differences, and there is a good reason for 

weighting these results more heavily. The first dependent mea­

sure depends on the cluster histories being cut at an optimum 

level. This can be done because tne cluster structure is known 

before hand. The second dependent variable is based on the cut 

point chosen automatically by the program, and therefore is more 

like the process which would occur in real data analysis. The 

largest consistent differences in the second dependent variable 

o~cur in the high cluster consistency cell of Experiment 3. Here 

4~~~erences are as high as .59 in favor of q and gamma 

against rand KR 20 . The overall means for this analysis differ 

only by .07, if KR 20 is removed. KR20 worked particularly badly 

with the gap rule since it is an overall index rather than an 

average for only the candidate item. Nevertheless, if one 

obtained data with high consistency within clusters it would be 

an extremely bad idea to use r instead of q or gamma to find 

cluster boundaries. In all other cases the indices are more 

closely matched with the above mentioned exception of KR 20 . 

Comparison among the indices in the low frequency condi­

tions, which are most relevant for analysis of criminological 

,data, snows almost no differences at all. The range of the 
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means for the first dependent variable is .01 (.91 to .92). 

The range for dependent variable two is only .03 if we eliminate 

KR 20 , with the means being .51, .48, .51 and .39 for q, gamma, 

rand KR 20 , respectively. 

The results o~ a clustering of typical data from a 

criminological study using police reports could probably ~e 

carried out equally well by q, gamma or r. 

The overall performance of the method is encouraging in 

an absolute sense. Number of cases in the moderate frequency 

conditions had to be reduced to 100, 75 and 50 to prevent 

unvarying perfect recovery (with the first dependent variable 

at least). Performance of the low frequency conditions using 

500 hypothetical cases may be revised upward~ if one considers 

that the actual low frequency criminological data the program 

is to anlayze, contains 28,000 cases. 
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Table 3 

Analysis of the Proportion of Variables Correctly Located 
within Clusters in Low Frequency Data 

Source SS df MS F 

Degree of Consistency Ca. ) 
J 

3305.07778 2 1652.53889 2.52 

Cluster Si ze 3411. 81111 2 1705.90556 2.60 

DC x CS 1500.98889 4 375.24722 0.57 

Error 23648.60000 36 656.90556 

Indices 66.44444 3 22.14815 0.72 

I x DC 163.85556 6 27.30926 0.89 

I x CS 79.12222 6 13.18704 0.43 

I x DM x CS 499.27778 12 41.60648 1. 36 

Error 3305.80000 108 30.60926 

Means for the four indices: 

q = .91 
ganuna = .91 

r = .92 
KR20 = .92 

. , 

0.0949 

0.0884 

0.6852 

0.5400 

0.5034 

0.8570 

0.1968 

I 

• 

I' 
I 
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Table 4 

Analysis of the Number of Clusters Exactly Recovered by the 
Automatic Stopping Rule in Low Frequency Data 

Source 

Degree of Consistency Ca.) 
J 

Error 

Indices 

I x DC 

Error 

SS 

226.90000 

597,70000 

48.85000 

255.90000 

327.50000 

Mean proportions for the four indices: 

q = .51 
ganuna = .48 

r = .51 
KR20 = .39 

df MS F 

2 113.45000 2.28 

12 49.80833 

3 16.28333 1. 79 

6 42.65000 4.69 

36 9.09722 

0.1450 

0.1665 

0.0013 
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Table 5 

Analysis of the Percent of Variables Correctly Located within 
Clusters in Moderate Frequency Data 

Source SS df MS F 

Distribution 5938.96111 3 1979.52037 2.11. 

Degree of Consistency (a. ) 59913.90833 29956.95417 2 31.99 
J 

Cluster Size 37446.17500 2 18723.08750 19.99 

D x DC 8304.88056 6 1384.14676 1.48 

D x CS 2537.68056 6 422.94676 0.45 

DC x CS 1677.71667 4 419.42917 0.45 

D x CD x CS 8973.02778 12 747.75231 0.80 

Error 134869.30000 144 936.59236 

Indices 2598.96111 3 866.32037 16.59 

I x D 1327.53889 9 147.50432 2.83 

I xDC 884.38056 6 147.39676 2.82 

I x CS 361. 01389 6 60.16898 1.15 

I x D x DC 1428.91944 18 79.38441 1. 52 

I x D x CS 857.48611 18 47.63812 0.91 

I x DC x CS 1062.79444 12 88.56620 1. 70 

I x D x DCx CS 2214.10556 36 61. 50293 1.18 

Error 22554.30000 432 52.20903 

Mean proportion for the four indices: q = .77; gamma = .78; r = .81; 

Mean proportion for three cluster sizes: 4 = .71; 6 = .79; 8 = .89 

T 

, , 

0.1011 

0.0000 

0.0000 

0.1898 

0.8429 

0.7738 

0.6516 

0.0000 

0.0031 

0.0105 

0.3310 

0.0785 

0.5635 

0.0648 

0.2263 

KR 20 = .82 

i ' 
I 

• 
• 
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Table 6 

Analysis of the N~mber of Clusters Exactly Recovered by the 
Automatic Stopping Rule in Moderate 

Frequency Data 

Source SS df MS F 

Distribution 48.98333 '3 16.32778 0.63 

Degree of Consistency (a. ) 983.12500 2 491. 56250 18.85 
J 

D x DC 181.64167 6 30.27361 1.16 

Error 1251.90000 48 26.08125 

Indices 507.08333 3 169.02778 21.44 

I x D 82.85000 9 9.10556 1.17 

I xDC 469.84167 6 78.30694 9.93 

I x D x DC 187.92500 18 10.44028 1. 32 

Error 1135.30000 144 7.88403 

.-
Mean proportions for the four indices: 

q = .24 
gamma = .28 

r = .21 
KR 20 = .07 

'I""'· 

0.6017 

0.0000 

0.3429 

0.0000 

0.3201 

0.0000 

0.1810 

-------------------------------------------.---
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