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ABSTRACT 

The building of empirical models for space-time systems via 
.1 

(J-'f(!, ~-:.,.(,'I • .... ~v •• ~, .;;. , 
identi~ication procedures for unknown system mechanifms is-de-

scribed~ The space-time models of the autoregressive moving average 

form (STARMA) are displayed in various system control-related con-

siderations and problems such as forecasting, intervention analysis 

and transfer function modeling. 
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I. INTRODUCTION 

A flexible class of empirical models is the multiplicative 

autoregressive moving average family. These models along with the 

model building procedure co~only referred to as the Box-Jenkins 

method [1] have proven very useful in a wide spectrum of statistical 

analyses which have focuse~ on system description [2,3,4], fore-

casting [2,5,6], intervention analysis [7,8,9,10,11] and process 

control [1,12,13,14 J,. 

Since these models are univariate they are only (!.pplicable to 
I' 

a single stream of time series data. Recently the univariate time 

series model class and the three-stage model building procedure bas 

been extended to space-time systems by Pfeifer and Deutsch [15,16, 

17,18,19,20,21,22,23]. These space-time autoregressive integrated 

moving average models (STARIMA models) describe N series, where each 

series represents the pattern from one of N regions, along with the 

interrelationships between the regions. The use of the space-time 

models in forecasting [24,25] and intervention analyses [26,27] has 

been described. 

The purpose of this paper is to describe the use of space-time 

models in developing empirical input-output models of unknown systems 
\\ 
'''-, 

'for process control. It should be noted that, in these cases the 

underlying structure of the transfer function for the system is un-

known but must be determined from system data by apptopriate 
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identification and estimation procedures. In the following section 

an overview of the STARIMA model class and the three-stage model 

building procedure is presented. The adoption of these models for 

prelimL,ary process control through forecasting and intervention 

analysis is described in section three. In the last section, the 

procedures for extending STARIMA modeling capability to building 

the STARIMA transfer function model from which control schemes can 

be described are presented. 

II. THE SPACE-TIME AUTOREGRESSIVE MOVING AVERAGE MODEL 

The STARMA model class is characterized by linear dependence 

lagged in both space and time. Assume that observations z (t) of 
i 

the random variable Zi(t) are available at each of N fixed locations 

in space (i-l,2, ••• N) over T time periods. The N locations in space 

will be referred to as sites and can represent a variety of situa-

tions. The autoxegressive form of the space-time model would express 

the observation at time t and site i, zi(t) as a linear combination 

of past observations at zone i and neighboring ~orr~s. If the same 

relationship holds for every site in the system, the process is said 

to exhibit spatial stationarity and is thus amenable to these forms 

of space-time models. 

To assist in the formulation of this space-time model, the 

following definition of the spatial lag operator is needed. Let 

L(1) ~ the ,spatial lag operator of spatial order 1, be such that 

1,\ 



L(O) zi(t) = 

L (1) z. (t) = 
~ 

z. (t) 
~ 

where wi11 )are a set of weights with 

3 

(1) th for all i and w
ij 

nonzero only if sites i and j are 1 order neighbors. 

The matrix representation of the set of weights w (1) is W(1) an N by N 
1"': ' , ) 

square matrix with each row summing to one. If ~(t) ,is an (Nxl) column vector 

of the observations z1(t), i = 1,2, •.• N, then 

and 

(t)' 
The specification of the form of weights wij for various positive l's 

is a matter left up to the model builder who may choose weights to reflect the 

configuration. The wi~l) may be chosen to reflect physical properties of 

the observed system such as the length of the common boundary of the dis-

tance between contiguous sites i and j. 

• These weights, however, must reflect a hierarchical ordering of spatial . :. 

neighbors. First order neighbors are, thc,se "closest" to the site of 

interest. Second order neighbors should be "farther" away than first order 

neighbors, but "closer" than third order neighbors. Figure 1 shows the 

first four spatial order neighbors of a' particular site for both a two-

dimensional grid system and a one-dimensional line of sitlZ~'.~,,,,Tchis definition 
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t ordering in terms of cucltl~ean dis tance of all of spacial order represen s an 

sites surrounding the location of interest. 

With this definition of spatial order in hand, we are now ready to 

~resent the STARMA model. Analogous to univariate time series, zi(t) will be 

expressed as a linear combination of past observations and errors. Here, how-

ever, instead of allowing dependence of zi(t) only with past observations and 

errors at site i, dependence is allowed with neighboring sites of various 

spatial or.der. In particular 

P. Ak L(R.) zi (t-k) zi (t) =. E E <Pk9o 
k=l 1=0 

q mk 
L (1) £i(t-k) £i (t) E E ek~ + 

k::sl 90=0 

where 

p is the autoregressive order 

q is the moving-average order 

Ak is the spatial order of the 
'. th 
k autoregressive 

th',' 
is the spatial order of the k moving-average 

~ 

~k1 \ are parameters 
°kt 

(''I 
and ~'he £. (t) are random normal errors with 

~ 

E [£.(t)] z 0 
~ 

i=j, s=O 

otherwise 

term 

term 

f d t as a STAlU,1A (p , ",,0' ) This model is re erre 0 A
1

, A
2

, ... Ap-'1I1l' ~2' ••• mq 

the same model in vector form is 

P Ak wet) z (t) = E E' ~ (t-k) 

(1) 

model. 

.. 

'" 11.=1 2.=0 
<Pkt 

(2) 

f q ~ w(t) £ (t-k) + F; (t) ,. 
I E 6k Jl. 

'" '" k=l 1"'0 

""~ .t ~ ,_,.,_,~.;;:,'_,:.,. ,-' 

... CO\'---------------------~-

.~ 

\ 
q 
I 
i 
J 

II' 

with ~(t) normal with mean zero 

and E [£{t)e.:(t+s}'] :: 
n,. '" 1

021 

o 
N 
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s=O 

otherwise 

Giv.en observations from a sp!lce-time system, the model bui~.ding 

problem is the selection and analysis of an appropriate form of 

~del from the general STARlMAelass. The model building procedure, 

then, is the method by which the experimental data leads to a par­

ti~ular model form and particular parameter values from the total 

family of S'r~HA models. It is a three-stage iterative procedure 
1 ~ 

of identification, estimation and diagnostic checking. 

Identification is the first seage of the model building process. 

In STARIMA model building, the prbdry tools in identification are 

the space~time autocorrelation and space-time partial autocorrelation 

functions (15,18,20,23]. 

In a manner completely analogous to that of univariate time 

series, STARIMA processes are each .characterized by a distinct 

space-time partial and autocorrelation function. Whereas univariate 

autoregressive models exhibit autocorrelation functions that decay 

exponentlally with time and partial correlation functions that cut 

,off after p lags, the STAR process· exhibits a space-time correlation 
~. . 

( 

function that trails off with both spil.ce <;lnd time and partial auto-

correlati,?ns that cut off after.p lags in time and), lags in space. 
p 

Similarly, univariate moving average models have just the opposite, 

autocorrelations that cut off after q lags and partials that decay 

.. 

, 
,~ 
/! 

~ 
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ove1.' time. The STMA (q ) model similarly is characterized 
,~, ••• ,mq 

by an autocorrelation function that cuts off after q temporal lags 

and m spatial lags and partials that tail off spatially and tem-
q i 

pora11y. Mixed models exhibit partials and autocorre1ations that 

both tail off. In the univariate case, they tail off only in time. 

whereas space-time mixed ARMA processes have space-time autocorre-

1ation functions that decay both with time and space. These 

general characteristics form the basis of the identification stage. 

Further discussion of the identification considerations is con-

tamed in [18]. 

After a tentative model from the STARMA model family has been 

chosen by comparison of sample to theoretical autocorrelation pat-

terns in the identification phase, it is necessary to estimate the 

parameters. The best estimates of the t and ~ from many points of 

~iew are the maximum likelihood estimates, but because of the 

start-up difficulties associated with time series estimation, con-

ditiona1 maximum likelihood (CML) is usually employed. A comparison 

of alternate estimation procedures on the accuracy of estimates ob-

tained is presented in [16]. 

The diagnostic checking st~lge examines the residuals from the 

fitted model. If the fitted modal adequately represents the data, 

these residuals should be white noise, i.e., should be distributed 

normally with mean zero and variance-covariance matrix equal to 

0 21 with all autocovariances at non-zero lags equal to O. 
N 

.. 
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c 

Various tests are available for testing the residuals for 

white noise. Probably the most useful test (especially in the 

context of the three-stage modeling procedure for space-time 

models) is that of calculating the sample space-time autocorre-

7 

lations of the residuals and checking for additional significance 

structure. In [20,23] the standardization for the residual 

space-time autocorrelation to allow hypothesis tests for signif-

icance was developed. If the residuals are not random the pattern 

is identified and the tentative model updated. 

III. PROCESS CO~TROL 

As with the univariate time series models the STARlMA models 

can be used to project past observed occurrences in developing 

future forecasts. The forecasts from these IIiode1nare best in a 

statistical sense because they possess the property of minimum 

mean square error. A complete description of the forecasting of 

these models and the properties of the forecasts are conta,ined in 

[24 J • It sho,u1d be emphasized that the forecasts produced from the - 1\ 

models will be accurate representations of future events if in fact 

the system continues to operate in the future as it has in the past. 

An implicit assessment of the process state from historical 

tendencies can be made by comparing futut'e foreca:sts made at time T 

',' to the corresponding observed process states monitored at T+k, 

k=),2, •••• '\Thus, probability estimates can be made of the 1ike1i-

hood of the current observation deviating from the forecast given 

.; 
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the underlying process, as manifest by the historical data, is 

unchanged [5]. 

Explicit measurement of change in the historical process is 

, [7 9 10] To test whether a process has shifted or also possibJ)e " . 

changed in the mean level a'fter time T and to estimate the magni-
', . ..,;. 

tude of this shift the form of the historical model prior to T can 

be augmented to allow for a shift parameter. Statistical estima-

can then be directly applied in evaluating tion and hypothesis tests 

whether a real shift or change has been observed. The coupling of 

this type analysis with new activities in the system and their time 

I 11 in-frame of implementation is what ~e shall refer to genera y as 

tervention analysis. The procedures for selected univariate ARIMA 

models were presented originally by Box a~d Tiao [7]. 

Parallel considerations for the STARI~ models have recently 

been developed [27]. In this case, we have N time series data at 

N locations;; and sorli~0z~vent which oc.curs afterl1the t=n observation 
-...:~. 

b b f +1 observation,s potentially causes the process to go ut e ore nl 

1 to out of control, a shift in operating level. The from in,;-ontro 

model for monitoring this process is, 

for the pre-intervention data component (t .::.nl ) : 

P Ak Gt wij(t) ("j (t-k) - "j~, zi(t) - lJ i = I I 4lk.t 
k=l .t=0 

q ~ hI w.<!) E, (t-k~ 
I( 

;/ 
// ,/ 

I L 9kt + £i (t) 
k=l t=O . =1 l.J J ' 

(/ 

t = 1,2, ••• n; i=1,2, ... N" 

1 
I 

\'i 
I'i 
Ii 

~ I I 
~ 
'I 

I
I 
f 

f 

I 
~ 

),I' .1 

Ii 
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, 
fQ-"J::' the post-intervention data component (t > n

l
): 

I wi' (z. (t-k) - (lJ . + 0 .» ~N (t) J 
=1 J J J J 

~N (t) J I w .. (z.(t-k) -~,',') 
'=1 1-] J .J 

i= l,2, ••• N. 

This model is referred to as the Intervention STARIMA and is denoted 

Al,···A ~l,···m 
by STARn-fA (p, ,; q ) I .... 

- p q 
The intervention analysis models described are similar in func-

u 
/1 

tion to quality cpntrol charts such as the Shewart X chart [28] in 
ii' 

that effectively a;~Rrocess model is developed for an attribute and 

'" future realizations of~'the process are looked at with regard to 

-whether they fall within the control limits that are derived from 
\' \\ 

the form of the process model. For,:ctl~::t?ariate serie~ the"t:ypes of 

changes that have occurred in the process level, can be modeled by 
I' 

the dynamic ,;into -vention models [8]. Here a dummy variable (0,1) 

denoting absence or presence of a potential intervention is used 
" 

to develop a transfer function-./ In this form, the outPllt Z(t) 
" " '" 

related to the absence or presence of a planned intervention by a 

dynamic model J2(t) descr",ibing the observed impulse respbnse function 

:,'i 

plus an additive noise component at the output, ~(t):~ Thu8' ~(t)=J2(t}+~(t) 

1.-'/ 

'~At 

.. 

\-, 
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!:,~~ere ~ (,) follows ~re appropriate model form from. the ARrHA model 

class. The dynamic intervention model is a special case of the 

empirical models of single stochastic input and output illustrated 

in a model building framework by Box and Jenkins [1). 

Whereas both approaches develop a transfer function model for 

the control of an unknown system, the latter is particularly 

germane to physical systems i(~l which the relationship between the 

input and output is unknown but the identity of the input variable 

is known and is controllable on-line. In dynamic intervention 

models the input-output relationship is unknown as is the specific 

named input variable which may be one of many variables associated 
\\ . 

with an "intervention" program and theil'efore collectively represented 

by a proxy variable denoted by its on or off state, 1 or 0 respec-

tively. 

j"';S;? ·!.r---
IV. BUILDING A SPACE-TUtE MODEL FOR GONTROL 

In this section, the extension of the univariate control models 

to accommodate space-time processes and the corresponding identifi-

cation and model building procedures for these unknown systems 

(both with regard to transfer functioi1imechanism and input valiable 

specification) are presented. 

The unknown transfer function system to be modeled is repre-

sen ted by paired realizations (zi(t),xi(t» of random variables 

(Zi(t),Xi(t» available at each of N fixed locations in space 

(i=1,2, •.. :N) over T time periods. The x(t) represent input streams 
'" 

n 
"1 

.. 

I 
I 
I 
I , , 
I 
I 

I 
I 
I 

i 

I 

I 
i 
I 
I 
I 

I 
I 
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and the ~(t) output streams. At the output of the black box with 

unknown transfer function is an additive noise component ~(t) whose 

underlying model form is also unkown. Figure. 2 illllstrates:::i:his 

ysten. For simplicity a' line. system of inputs and outputs is 

illustrated. In general the configuration of the inputs or outputs 

may take any form of spatial configuration or map. The model form 

to be developed from data for this system is, 

z(t) = Vx(t-b) + N(t) , 
'1.. '" '" 

where V is an NxN matrix of impluse response weights with the (i,k)th 

elements of the form ~ VS,1kBs, and b is the delay at the ith loca­

tion. 

The procedures for the determination of the space-time transfer 

function model are: 

1) Using the identification, estimation and diagnostic checking 

procedures (overviewed in section II), build the appropriate 

space-time model for the input streams, ?t(t). 

2) Prewhiten the: output streams k,(t) by the space-time structural 

model of the outputs to obtain the prewhitened outputs ~(t) where 

3) Compute the sample space-time cross-correlation function of 

the prewhitened outputs ~ (t) and the input residuals .t(t) , 

where, 

" 
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N T-s 
L L L(t)~i(t) L(k) €.(t+s) 

... i:;zl t=l l. 
P a ----~~~~~--------------------------------~ 

s,tk. ~N T (It) N T (k) ~ ~ "I L ( L ~ ~ (t» 2. L L (L . £ i (t) ) 2 
i=l t~l i i=l t=l 

to obtain estimates of the (t,k)th impulse response weiBhts 

Vs,R.k where, 

... 
v = s,tk 

s=0,":/1, +2, ..•• 

\\ 
)) 

4) 
... d' -

Compute an estimate of/the additive noise streams N(t) from 
'" 

,. 
~(t) = ~(t) - V~(t-b) • 

5) Build the,appropriate STARIMA model for the space-time 

noise process ~(t) to cbtain residuals i(t). 

6) Simultaneously refit the obtained combined model, 

~(t) = V~(t-b) + ~(t) , 

and diagnostically check the residuals ~(t) to be random 

normal errors with 

s=O 
( 

021 

= 0 notherwise 

and the input and residual streams to be uncorrelated, 

E(x(t) a(t+s)') = 0 • 
IV '" -

From the space-time transfer function model the desiBn of 

fee.dforward and/or feedback control schemes can proceed. Details 

13 

of the design of control equations from univariate models are con-

tained in [1]. These principles could also be adapted to the 

space-time model formulations. In the case t.-lhere the specific input 

streams are unknown by name and all "intervention" attributes are 

collectively designated by absence or presence (0,1) in the space-time 

transfer function model the feedback control scheme based upon de-

viation from desired target value of the outputs becomes a means of 

evaluating the collective intervention as to whether to continue 

the program. 

V. CONCLUSIONS 

An overview of model building procedures for space-time 

systems that use data structure to identify a statistically ap­

propriate form was presented. These STARIMA models were adapted 

to the control-related considerations of forecasting; intervention 

analysis, in which changes in a space-time process are monitored 

to determine whether the process is still "in control;" and 

space-time transfer function models for direct use in feedforward 

and/or feedback control. 
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