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Abstract

A new multivariate statistical ‘model of repeated events, the Dirichlet-

gamma-Poisson model, is shown to accurately account for the multivariate

/
/f

distribution of four types of victimizations reported in city sampies of

the National Crime Survey. The life-style theory of victimization is used

to interpret the compounding that defines the model. Parameter estimation,

interpretation, and the predictiqn of future events based on past events

are discussed. The model appears tg be applicable to a variety of

repeated events data.
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THE DIRICHLET-GAMMA~POISSON MODEL OF REPEATED EVENTS:

A MULTIVARIATE DESCRIPTION OF CRIMINAL, VICTIMIZATION IN AMERICAN CITIES

This paper develops a new model of repeated events, the Dirichlet—ggmma—
Poisson model, as a means of understanding how the multivariate distribuéion
of crimes reported in city samples of the National Crime Survey (NCS) can
be used to make inferences about éxposure to high crime situations. The
model is based upon the assumption that persons have a constant chance of
being victimized over time, but that not all perxrsons ﬁave the same chance.

Differences in the chances of being victimized are hypothesized by a
number of researchers (Cohen and Felson, 1979; Hindelang, Gottfredson and
Garofalo, 1978; the Natiomal Research Council, 1976; Skogan, 1980; Sparks,
Genn and Dodd, 1977; aﬁd Sparks, 1980), to be largely due to diﬁferences
in ‘exposure to high(crime situations, which in turn, are hypotheéized to
be largely dué to differences in life-styles. For example, males are
thought to be more exposed to crime than females because they spend more
time away from hpmé and are more likely to be in the company of potential
offenders. Unfortunately, this theory‘is difficult to evaluate because
exposure is hard to measure. 3Other than needing to know how often persons

are in the presence of potential offenders, most researchers agree fhat

one must also know how often potential victims represent vincible and

desirable targets to pPotential offenders. The present research shifts the

emphasis from asking what constitutes exposure, to asking how the multi-
variate distribution of various types of crimes reported in one time

period can be used to make inferences about victim liability, which

presumably, corresponds closely to victim exposure.
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The discussionrwill begin by reviewing the simple Poisson model and
showing how it can be genéralized into the univgriate gamma—Poisson'model.
This model has been shown by Nelson (1980a) to be compatible with the
life-style/exposure theory of victimization and to be capable of genmerating
the univariate distribution of many different types of victimizationms.
Three multivariate gamma—Poisson models will then be developed and fitted
to distributions of four specific types of victimizations reported in the
NCS city samples. The Dirichlet-gamma—~Poisson model is the most general
of these models. The discussion will show how the model can be used to
estimate individual liability rates of specific types of crimes and to
predict chances that specific types of crimes will occur in‘the future.

The model is expected to be useful in describing many different kinds of

social phenomena.
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UNIVARTATE MODELS

The Poisson Model

The Poisson model is based upon the assumptions that (1) the probability
of being victimized is the same for all persomns, and (2) that it does not
vary over time. This model has frequently been used to evaluate whether
there are more persons reporting two or more victimizations than would be
expected if all persons had the same chance of being victimized. Some
persons are expected to be multiply victimized under Poissén models and
such misfortune is assumed to represent bad luck rather than victim

liability. To the extent that the data show more multiple victims than

"expected, one tends to reject the hypothesis of equal victim liability

in favor of stating that some persons are more liable of béing victimized
than others. Research (Hindelang, et al., 1978; Nelson, 1980a; Sparks, et al.,
1977) has shown that there are more persons reporting multiple victimizatioas
than are expectéd under Poisson modeis.

Under the Poisson model, the probability of experiencing x victimiza-

tions during some period of time may be expressed as:

P(x) =e _AAX/ x!, (1)

where A is the Poisson parameter for this time period. The maximum likeli-

hood estimate of A is the mean or average rate.l

lIn general, the parameter can be expressed as At, where t measures
the number of time units that A is based upon. Here, t equals- one:to:simplify
various equations.
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The inability of the Poisson model to account for multiple victimizations

*wﬂgwa‘wgv..ﬁb"?"‘:‘?‘jﬁi
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is illustrated in Table 1, which displays the observed and the expected

number of personal contact victimizations (excluding rape) recorded in

Table 1: Observed and E ictimi i
the National Crime Survey (NCS) made in Baltimore, 1975. The NCS city Poisson and a zz;gzegoggzzing§E§eisogait?ontaCt Tietintuarione Duder 4
- n Baltimore.

data are based upon interviews of all persons living in approximately { (National Crime Survey Data, 1274-1975)
10,000 randomly selected households in each city. Persons aged 12 and over :

were asked to report their victim experiences for the year preceding the

Number of Expected Frequency Under Two Models:

Observed

s e s . Poisson Ga: —Poi
interview regardless of whether they reporfed the crimes to the police. E Victimizations Frequency Model mﬁidiilssOH
Table 1 shows that the Poisson model predicted far fewer multiple g g 21:2;2 2%:;;2-3 2},2%3.3
victimizations than were reported in the survey. This suggests that s § 22% . 93.8 ’233:2
either or both assumptions, of the Poisson model are inconsistent with the g g 'lé -é l;:;
data. In sharpAcontrast, the table shows that the gamma-Poisson model was % 6 1 -0 :6

very consistent with the observed data.

The unweighted number of personal vicfimizations reported in city
samples of the NCS will be used to develop models in this paper. The data-
analysis will be limited to interviews made in the five largest cities of
the United States and in the eight cities that participated in the Law
Enforcement Assistance Administration's High Impact Crime Reduction
Program. These interviews occurred during the first quarter of 1975 so
that the victimizations correspond to crimes that occurred during most of
1574 and part of 1975. The NCS program is described by Garofalo and
Hindelang (1978). <Comparisons of NCS and Uniform Crime Report data can

be found in Nelson (1980b)..
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The Gamma-Poisson Model

This model will be called the univariate gamma-Poisson model to

Greenwood and Woods (1919) and G ‘enwood and Yule (1920) expanded the . ci s .
P . y emphasize that it is a Poisson model compounded with a gamma distribution
: i
Poisson model by compounding it with a’ 'gamma distribution. Applied to i . oy . .
y p g 8 PP ‘ of victim liability. It is identical in form to a mnegative binomial distri-
victimization studies, the model suggests that persons have a constant . . ‘
! bution and can be generated in a number of other ways. A maximum likelihood
chance of being victimized over time, but that not all persons have the ! . . .
procedure is presented in Appendix A to estimate the parameters.
same chance. Tndividual victimization rates are treated as random variables L, . ]
‘ A summary of the fitting of univariate gamma-Poisson models to the
from a gamma distribution. The probability density function for a gamma . . :
number of persons reporting robberies, aggravated assaults, simple assaults,
distribution may be expressed as: L. .
| and larcenies with contact (purse snatching and pocket picking) and to the
k k-1 —-(k/m)x , : .
£ = G/mE A MY g 2) ; . o .
) g total of these four crimes for 13 cities in the NCS is presented in Table 2.
where m is the mean victimization for the population, k is the L
The p values are large suggesting close correspondence between the model and
exponent and in conjunction with m defines the shape of the gamma distri-
P J P g the observed.data. Half of the samples that were testable had p values in
bution, A (which is not directly represented in this equation) is the .
3 ( y rep q ) excess of .47. Not one city had a p value below .01.
random variable representing individual victimization rates with density

function £(A), and T'(k) is the gamma function of k. Graphs of various _ |
gamma density functioﬁs are presented in Nelson (1980a).

Under the gamma-Poisson model, the probability of experiencing x
victimizations is a Poisson random variable conditional upon the value of 2.
If everyone in the population had exactly the same rate, then the model

would be the Poisson model. The unconditional probability of reporting

x victimizations is found by multiplying equation (l) by the probability i

density function for A, equation (2), and then integrating A from zero to

infinity. This results in a compound Poisson model which may be expressed 3 » . ‘ -
as: i
s \ é
P(x) = _J P(x|2) £(A) dx, y 1 -
_ Lk }k rGetk) " | : (3) o
ktm® T (k)x! ‘ktm® C 3 :
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Table 2: Parameter Escimates a
' Various Types ©

nd P Values for Univariate Gamn,
f Personal Crime in 13
(Narional Crime Surveys,

Citiles
1974-75)

a-Poisson Models Fitted to

Parameter Type of personal crime - =
arce
es;igate N Aggravated Simple with Allbioug
Citya P value Robbery assauvlt assault _contact combine
105 L0467
.022 .0076 .0057 .0
Newark z giﬁz .1323 L5124 1.3580 .3206
p value .91 N.T. N.T. N.T. .
A
.0124 L0114 .0093 .050
Aftanca : ‘2222 .0664 .0965 .2435 L2249
p value  .64% L4s* N.T. N.T. 47
0531
: .0175 0169  .0063 .
pallns i '2322 .1093 .0800 .0897 .1708
p value .89 .72% .88 N.T. .08
1 0562
.0143 .0139 .0091 .
s¢. Touts X R .0886 L0689 .1917 2247
p value N.T. .26% 40 N.T. .
0148 .0565
.0236 .0085 .0096 . :
New York t 3400 .0597 L2294 .1801 .27%7
p value .94 N.T. N.T. N.T. .30
0124 .0595
.02 .0133 .0133 .
Philadelphis t 0733 L0791 .0729 .1188 .2223
p value .65 .85% .74 N.T. .
79 .0643
* . 7 L0165 .0222 .00
Los Angeles 2 2223 .1032 .0925 .1200 .§§36
p value. .60% .05+ .62 N.T. .
0725
.0217 .0296 .0052 .
Fpesiant K 0539 .1395 1271 .1784 1858
p vaize .01 .20 .05 N.T. -8
058 L0741
.0188 .0224 L0271 .0
penver i 3%15 .0975 L1425 .2001 .3237
p value .89 .56 .64 N.T. .
095 L0742
3 .0270 .0202 .0175 .0
Cleveiand X 12 0993 174 .1098 .2376
k o L1219 . ! wr -
p value .23 .33 .76 .T. .
/ ) 0167 .0748
.0286 L0156 .0138 .
Chicage X 1614 .0904 .0713 L4095 L2573
; : * 20 N.T. L4k
p value .88 .58 .
.0082 ,0835
.0368 .0210 L0176 .
petrolt 2 ' 2252 .0931 .0763 L2871 .3189
p value .39 .15 .82 N.T. .
' a1
] .0205 .0205 .01835 .09
Pateinore X fise -0925 l7sa s 2551
p value .49 .23 .51 .65 13

*These p values were calculated allowing
. hi-

each expected value in the ¢
for theie models if the expected value in eac

. aC:Lties a

bThe p values were based upon compar
Pearson chi-square test.

€N.T. signifies the mod

used to estimate the paramerers.

square test.

a minimum o
A chi-square test could n
t cell had to equal three or more.

re listed in ascending order by. their overall v

el was not testable because all the degrees of £

ictrimization rate.

f at least one observarion for
ot have been made

ing observed and expected frequencies with the

reedom were

-~

i
H
i
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P values could not be estimated in 18 samples because there were not
enough multiple victimizations to both estimate the parameters and to test

them on the same data. This situation occurred in 12 out of the 13 analyses

of larceny with contact. Only five persons in all 13 cities reported more

than two larcenies with contact. This means that almost every city analysis

was made on the frequency of persons reporting zero, one and two larcenies

with contact. While it was possible to estimate the two parameters of the ,

gamma-Poisson model, it was not possible to test the fit because there were

no degrees of freedom left after the parameters were estimated.2

Table 2 demonstrates that the gamma-Poisson model is capable of
generating the univariate distribution of specific as well as aggregated

types of personal victimizations reported in the NCS data. Under the

model, each person can be thought of as having an unique liability rate

for each specific type of crime that is stable over time. This liability

rate is hypothesized to be largely a function of exposure to high crime
situations, wherein exposure refers to the frequency that offenders come
into contact with victims who are judged to be desirable and vincible
targets of their actiomns. '

The question raised is: Can the same liability rate account for the
distribution of all four types of crime analyzed thus far, or is a

multivariate conceptualization needed to study victim liability? If a

multivariate model were needed, would the dimensicns be related to

or independent of each other? These questions can be answered by comparing

various multivariate models based upon different assumptions about how
liability is related to reported victimizations. The Dirichlet—gamma-

Poisson was developed by comparing various multivariate models.

Some of the p values listed in Table 2 would be reclassified as not
testable if different criteria for aggregating expected values were used.
If the nine starred p values were based on chi-square tests wherein expected
values were aggragated-to produce an expected value of at least three, then
these nine tests would be classified as not testable. All chi-square tests
are based upon aggregating expected counts to at least three in other tables.

&
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MULTIVARIATE MODELS

The Independence Gamma-Poisson Model

One of the first models to be tested in almost any multivariate analysis
is the independence model. Under this model, crime rates are represented by
four dimensions, each of which provides no information about the other. The
model can be efficiently estimated by first fitting univariate gamma-Poisson
model to each of the four types of crimes, and then by multiplying the
probability of each separate crime to get the joint probability of all four
types. Table 2 shows that univariate gamma-Poisson models are consistent
with the univariate distribution of all four crimes across all 13 cities.

The m and k parameter estimates for each crime and city are also listed

in this table.

The Fixed Gamma-Poisson Model

The independence model is not expected. to accurately describe the
data because the specific types of crime are usually though£ to be
related to each other. A simple multivariate generalization of the
gamma-Poisson model that allows the crime types to be related to each
other can be developed by assuming that the joint probability of all
four crimes is a product of independent Poisson probabilities conditional
upon A, that each type of crime has a mean equal to pik, and that A is a
random variable from a gamma distribution. In this model, A represents
each persén's 1iability of reporting’a victimization, and 12 represents
the probability that a victimization is of type i. Ncte that ?i
represents the conditional probability that a victimization is of type

i given that a victimization has occurred. The model is called fixed

B L PR T S A T T N Ty B
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because all persons are hypothesized to have exactly the same set of
conditional probabilities. For example, if 40 percent of all victimizations

were robberies, than 1 would equal .40 for robbery for all victims. The

model may be written as:

4
P(xpx)5xg5x,) = [T (P(x,[2) £Q0) da,
i=1
kT +k
= {[ k ] (XT ) [ m ]XT}
k+m P(k)xT! k-+m
4 x;
x,! I »p. /[x. b,
T i=1 i i 4)
where XT =% + X, + Xy + X, . The integration in equation (4) shows

that crime types abpear to-be related to each other because they are
related to one liability dimension. For ekample, reporting a robbery would
be associated with reporting an assault if both events were indicators of
high exposure to crime. This model is analogous to a one dimensional
factor analysis model;

The fixed gamma-Poisson model is simple to estimate because it can
be broken down into a univariate gamma-Poisson model for the total
number of reported victimizations (the part within braces in equation 4)
multiplied by an inaependent multinomial model that distributes the total
num?er of victimizations into combinations of crime types. This form of
the model was introduced by Patil (1964). Maximum likelihood estim;tes
can be found by estimating m and k in an univariate gamma-Poisson model
fitted to the total nuﬁbér of victimizations, and by estimating P, from
the observed proportion of victimization of each type. The model has
been developed in some detail by Bates and Neyman (1952) and by Arbous and

Kerrich (1951).
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The Dirichlet-Gamma-Poisson Model - Lo ) i

The assumption that all victims have the same conditionél probability
of each type of victimization in the fixed gamma-Poisson éodel appears
restrictive. From a life-style/exposure perspective, it seems more likely
that certain life-styles will be associated with certain types of crime.
For example, the NCS data show that younger males have a greater tendency
to be assauited than to have their wallets picked, whereas older males have
a greater tendency to have their wallets picked than to be assaulted.

One way to introduce victim "specialization" is to treat the
conditional probability of each type of érime as a random variahle.

If the conditional probability 'that a crime was >f a particulargt;'e were

a random variable from a Dirichlet distribution, then some persons would

be more likely to experience varinus types of victimizations than othérs,
presumably due to differences in exposumé to each type of crime.

Let Pi reﬁfesent the random variabie measuring the conditiomal
probability thaé a2 crime is of type i, and let P; represent its Rarticular
value for some person. The Dirichlet distribution for“four types of crime
may be writtem as:

4 0.-1 ,

OV M
P(PysP,sPo-7,) = le > ©(5).
I T(e.)
{=1 i

where 6T==61 +-62“+ 63 + 9

to be estimated are 6

4 QT >0, and‘pl +%p2 + Py +-p4 = 1. The parameters

, to 64, one for each crime. The Dirichlet distribution . , TN

is discussed by Johnson and Kotz (1972).

I~

B s e e e e O v P .

T ITTIT

13-

The ei's are related to the pi's in the following manner:

E(p.) = 0./ |
(Pl) i/ > (6)

and

— 2 ‘ ' l
V(py) =8 (6, - 8.0/T6," (8, + 1)]. (7
The Dirichlet-gamma-Poisson model is formed by assuming that the
fixed gamma-Poisson model is defined conditionally for a set of”p. values,
by multiplying it by-the probability density function of the Dirichlet
distribution, and then by integrating the product over ali possible p,
_ : i

values. For four types of crimes, the model may be written as:

k T (x, +k) X
T m

k
T(k)XT! [m+k]

k+m

]

CROragEgE) = (]

4

. 1 I
X! P(GT) 421 P(xi+Bi)

" (8)
: I
P(QT + xT) igl P(qi)xi.
This equation shows that the model can be thought of as a ﬁnivariate
gamma-Poisson model (the part in braces) that gepérateé*the;distribution

of the tota;‘number of v%ctimizations (xT), times a Dirichlet part that’

~allocates the total to the multivariate distribution of the various

combinations corresponding to this total.

R FR
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Although the Dirichlet part of equation (8) may look formidable,
differences between it and the propability density function for the fixed
gamma—Poieson model presented in equation (4) can be readily understood
bv noting that both models can be divided into 1) a part that generates
the probability of observing the total number of victimizations under
consideration, 2) a part that counts the number of ways or permutations
in which the particular outcome could have occuried, and 3) the
conditional probability of one of those ways given that the total number
of victimizations corresponding to th;s event cccurred. The first patt
is generated by the same univariate gamma-Poisson model under both models.
Therefore, both models predict the same number of persons to not be
victimized, as well as the same numbexr of persons to experience a total
of one, two, three, etc. victimizations.

The count of the number of permutations in which an event can occur
is also identical in each mode. It is represented by the XT!/(X1!x2 3‘x4')
term. Thus, differences between the models lie»only in the estimation
of the conditional probability of the permutations making up the event
under consideration. These differences can best be understsod by
considering a permutation as if the order of the victimizations were known.
Of course, all permutations have the same conditional probability so that
it is pot necessary to consider all of them.

;b i1i i one
First, consider the conditional probability of reporting exactly
, s ‘

i d the Dirichlet model.
It equals P under the flxed model and ei/eT under ”

The expression for the Dirichlet model was derived from equation (8) by

. ’ 3 3 L3 » S t d
ting that I'(x+l) = xT'(x). These conditional probabilitieés are expecte
notin Thes
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Sse Pt et N S A SR L a0 S R S v L B S et KT AL o
N ATTPmE TR N 2 Wyt L < <vmes op speiew e IR e o

Tk TR
D AR AT

|

-15~

to be very close to each other in most data analysei. Under the fixed

model, P; is estimated by the proportion of victimizations of type i.

Under the Dirichlet model, ei/eT is equal to the expected value of the

random variable Pi,:which measures each person's cooditional probability
of a type i crime given that he or she was victimized.

! Second, consider the conditional probability of reporting two crimes
of type i for persons who experienced at least two crimes. This can be
celculated by multiplying the conditional pProbability that the crime

was of type 1 for persons who reported at least two crimes, times the
condltlonal pProbability ihat the second crime was of type i for persons
who reported at least two crimes and who reported a type i first crime.
This can be expressed as p2 under the fixed model and as (9, /6 ) tlmes

[ (B, +1)/(e +l)] under the Dirichlet model. Note that the condltional
probability that the second crime is of type i (listed within brackets

for the Dirichlet model) is larger than the conditional probability that

the first crime is of type i for the Dirichlet but not for the fixed model.

Likewise, the conditional probability of reporting three type ircrimes
equals p3 under the fixed model and (8, /6 ) [6. +1)/(e +l)] [6. +2)/(6 +2)]
under the Dlrlchlet model. 1In general, the conditional probability that

the next crime is the samé as the last crime increases under the Dirichlet

model but not under the fixed model.

Sty e,

Conversely, the conditional probability of reporting different
types.of crime decreases in the Dirichlet but not in the fixed model.

¥ “ For examnle, the conditional probability of reporting a type i

2

followed by a type j crime equals pipj in the fixed model and
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and (ei/eT) [Bj/(6T+1)] in the Dirichlet model. This ability to modify
the conditional probability of the next crime type is what allows Qictim
specialization to be incorporated into the Dirichlet model. It does not
suggest that a victim's chances of experiencing a particular type of crime
change, though. Rather, it shows how the model's estimation of a pgrson's
chances of reporting a particular type of crime can change depgnding upon
the person's victimization history. This will be illustrated again in a
later section.

The extent of the differences between the fixed and the Dirichlet

models depends upon the size of the ei parameters. If 8, were to approach

T

infinity such that the expected value of the random variable Py equalled
6./6T for ail i, then the conditional probability of crime i would remain

i . :
constant over repeated victimizations. In, other words, the Dirichlet model

would degeneraté into the fixed model. 1If §,, were to approach zero, then

T

the conditional probability that the second crime were the same as the

first would approach one. Here the Dirichlet model would represent a model

of mutually exclusive types of victimizations in which a victim could

experience at most one type of crime.

A number of models are'special cases of the;Dirichlet—gamma—?oiséon
model. If eT beéomes very large, then the mOQel dégeneratesvinto the
fixed gamma-Poisson model. If. GT becomes very small, then the model
becomes a mutually exclusive gaﬁma—Poissoﬁ model. If the paraﬁeter k
becomes very 'large, then the model:degeﬁérates into'a’Dirichléf—Pbiéébn
model. In this model, all persons.héve the‘saﬁé cﬁaﬁéé of;béiﬁg
victimized, ‘but the conditional pfobability of any specific type of
victimization given that a victimization occured differs by‘persén.

I1f GT as well as k become very large, then the model

BT L i+ ot e e e

coLe
£t

obtained by fitting a univariate gamma

of victimizations.

Dirichlet parameters.
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degenerates into a multivariate independence Poisson model.

parameters are presented in Appendix B.

i i KO S SO, Lt e o e iy B e e Nt T s e e

Also not

when k or when the ratio of k to m becomes very large.

These estimates of m and k are independent of the

Maximum likelihood estimates of the Dirichlet

e

that the univariate gamma-Poisson model degenerates into a Poisson model

Maximum likelihood estimates of the m and k parameters can be easily

—-Poisson model to the total number
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Models

Pearson chi-square goodness—of-fit test statistics‘for the independence,
the fixed, and the Dirichlet-gamma-Poisson models are presented in Table 3
for the 13 NCS cities. The procedures used to estimate the chi-square
values are discussed in the next paragraph. The iarge chi-square values
for the iﬁdependence model suggest that it is unreasonable to assume that
the four types of crime are unrelated to each other. The fixed model fit
the data better than did the independence model, but not as well as the
Dirichlet quel. The fixed model accurately described the multi&ariaté
distribution of crime in only one city, Newark. The Difichlgtfgamma—Poisgon model
accurately reproduced the multivariate distribution of the crime types in
at least nine of the other twelve cities.

Degrees of freedom were derived by subtracting the number of independent

parametéré estimated in each model from the number of cells used in the
chi-square calculation minus one. One degree of freedom was lost because
the models were conditioned upon the total number-of persons inter%iewed.
Note that two models could differ by one parameter but their chi-square
tests would not necessarily differ by one degree of freedom because the
expected values determined the number of cells to be used in the chi-square
test. For example, a cell could have an expected ﬁalue greater than three
under one model and therefore be counted in the total number of cells

for the test, but it could have an expected value less than three under

another model and therefore not be counted as a separate cell.
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Table 3 Chi-Square Goodness of Fit Statis;‘ti'.s of Y
q the Multivariate Distribution of Four T pes of Crimes Under

(National Crime Surveys, 1974-75)

M

ODEL

Independence
Gamma-Poisson

Fixed

Gamma-Poisson

Dirichlet-
Gamma-Poisson

c1ey® Chionare  riicemn  chibeemre  rerctea  chesmare | poaeee ot
Newark 83.6 2 9.7"* 7 9.7 7
Atlanta 119.6 3 36.4 10 23.2" 10
Dallas 199.7 5 50.2 10 16.2" 16
St. Louis 161.3 4 55.4 10 39.5 10
New York 77.4 4 36.0 8 171" 10
Philadelphia 153.4 6 110.7 10 23.5" 1
Los Angeles 155.1 5 83.6 11 22.5* 10
Portland 268.2 5 76.4 1% 19.0" 12
Denver 314.0 6 46.0 14 22.1* 13
Cleveland 137.9 8 77.0 12 1.9™" 11
Chicago 323.0 9 105.2 12 47.8* 11
Detroit 159.7 ' 7 98.8 14 16.9** 14
Baltimoxe 332.4 11 181-9' 17 63.5 16

8Cities are listed in

*

1 G o) ]

*%

p > .10

ascending order by their overall victimization rate.
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The techniques used to calculate the thi-square test statistics as
Number and Type

well as differences between the three models are illustrated in Table 4 5 X
. . i of Victimization#* Observed
for Baltimore, the city with the worst fit of all Dirichlet models. Table ‘ RASL Freqézgi Expected
| Y - Frequenc
y
4 displays combinations of zero, one, two and three victimizations wherein : 0000 21.511
? -+ 21,512.8
the expected value for each combination under the Dirichlet model exceeded ; One Victimization:
' - 1000
three, and two aggregated cells containing combinations whose expected 0100 551 542.8
0010 299 :
values before aggregation were less than three. One aggregated cell 0001 295 gig.;
‘ 349 '
contains combinations of multiple victimizations of only one type, such as 300.2
Two Victimi i .
four robberies, and the other contains combinations of multiple victimizations 2 0 Hmizations:
' 00
of more than one type, such as four robberies and one aggravated assault. 8 200 ;g 53.3
020 26.0
Table 4 shows that the Dirichlet—gamma-Poisson model did a good job 0002 ig 25.6
24,0
of fitting the observed frequencies for nearly all combinations of crimes i 100 27
, 010 26.3
not involving larceny with contact. It underestimated the number of é 001 i% 25.9
tio | 24.7
persons reporting exactly one larceny, but it overestimated the number 8 101 32 15.3 -
011 14.5
reporting exactly two larcenies as well as the number of persons reporting _ 6 14.4
. . : Three Victimi i .
one larceny and one other crime. ictimizations:
. 3000
: : : 0300 4 7.4
0030 4 3.2
' The number of persoms reporting O robberies, 1 aggravated assault, 6 3.2
1 simple assault, and O larcenies with contact were underestimated by the 2100
model. This occurred in several of the cities. 2010 4 3.5
: 0ol ) 3.4
This pattern suggests that the data for Baltimore might be better ; 3.3
modeled by fitting a Dirichlet-gamma-Poisson model to the trivariate \ - _ Victimizations of One Type Collapsed
distribution of robbery, aggravated assault and simple assault, by into a Single Cell pse ;
fitting a gamma-Poisson model to larceny, and then by fitting all four ’ ' : 2 5.6
crimes by assuming independence between these two models. .‘This model -reduced Victimizations of More than One T |
the chi-square to 43.4 on 16 degrees of freedom. This independence model ! Collapsed into a Single Cell ype :
was also fitted to the other 12 cities. It improved the fit to the St. £ . 46 34.7
Louis data, but failed to improve the fit or made it considerably worse in _ : *
the other cities. B § ~ The abbreviations are: R Robbery
- : . : A Aggravated Assault
. S Simple Assault
L Larceny with Contact
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Because the Dirichlet compounding was motivated by noting that the fable 5 The observed and expected number of major d mi d
! : : i and minor disciplinar
infractions for prisoners under a Dirichlet—gamma~Poissonpmodelz

conditional probability of specific types of crime differ by sex and age

categories, one might ask if the Dirichlet distribution would be needed if Minor Mad Tof -
Infractions 0 1 2 19T =8 r§CtlonS A
age and sex were held constant. A comparison of the fixed versus the S 6 or more
: 0 723 107
Dirichlet model across eight combinations of age and sex for the 13 NCS N » 724.8 128.3 3384 1%22 él7 4 3
: , . : . & . . 3.2 3.8
cities combined into one data set showed that the Dirichlet model provides : 1 248 72 32 18 8
, 3 3
229.6 81.9
a far better description of the data than does the fixed model. The chi- 33.5 15'? 7.5 3.9 5.1
o | 2 114 49 32 18 7 4
square test statisticswere reduced by from 50 to 80 percent under the 102.8 48.9 23.5 11.9 6 a 6
: . . . 3.5 4.9
Dirichlet compared to the fixed gamma-Poisson model. In other words, 3 66 ' 23 18 9 4
. s 5
o s cee . i s 52.6 29.4 15.8 8.6 4.8 2.8 ’
the conditional probability of each specific type of crime varies within . . 4.2
' 4 31 11 o
as well as across age and sex categories. ‘ . ) 29.1 - 18.1 1324 ’ 670 355 2 4 ’;)5'
v : ° . . 2.1 3.4 N
Thus, the Dirichlet-gamma-Poisson model provides an excellent ‘ 5 10 12 6 , s » -
- . , 1 1 R
. N e s A . , : 16.9 11.3 6.9 4.2 - 2.5. 1.6 .
description of the multivariate distribution of crimes reported in the / . . 2.6
v ! a . 6 or more 19 20 \ 10 3 .
NCS. The underlying assumptions, mamely that liability differs by person : 28.2 21.3 14.3 9.4 6.1 5 9
i . . . . 4.0 6.7
and that not all persons have the same conditional probability of each type %
, |
of event, seem to describe a number of situations. Partially as a test of i
) i R k% -
this hypothesis, the model was fitted to the bivariate distribution of major ; Statistics: Pearson chi-square = 534
Degree ‘edom = AN .
and minor disciplinary infractions reported in a year for 1,825 inmates in : grees of freedom 45»‘ . .
A Gamma-Poisson Parameter Estimates: =~ B
, a Northeastern prison, as well as to the bivariate distribution of the : ?‘ 2.05. -, "
. k = .65
number of episodes of respiratory and digestive illnesses of a group of Dirichlet Parameter Estimates: Major Violations. = 1.39
Minor Violations. = 2:48

office workers reported by Bates and Neyman (1952). The observed and expected ‘ _ .
' - . *Dat , . 3 s
a are based upon‘follPW1ng prisoners for one year in a NOrtheastérn

number of disciplinary infractions are presented in Table 5, and the observed i L Prison.
and expected number of illnesses are presented in Table 6. The mean number ' i : **The Pearson chi-square for the f£i S o . -
i ) e n . . A -
N 46 degrees of freedom txed gamma~Poisson model is 328.7 on

of infractions was about 2 per year, and the mean number of illnesses was
about 6. The fit to both data sets is remarkable. . Obviously, the Dirichlet- ’ .
gamma—-Poisson model shows potential for understanding far more than just

criminal victimization.
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iable 6 The observed and expected number of office workers reporting digestive ' i ' 1 T » o5
and respiratory illness under a Dirichlet-gamma-Poisson model* . é
|
Respiratory 5 Digestive llllness ’ 7 or mOTé SOME USES OF THE DIRICHLET-GAMMA-POISSON MODEL
Illness .
. 0 . .
0 3218’ 755 2.5 The number of victimizations observed during one period can be
36 8 5 used to estimate individual victimization rates (the A parameter in
1. v , ; ) )
37.4 11.1 - 5.2 s . . s TP
the gamma distribution), to estimate conditional probabilities of each
8 ) ~ ’ .
2 3351 l%BO 7.2 type of victimization, and to estimate the multivariate distribution
: 94 8 6 of victimizations' expected in future periods. THese eétimates are
3
24.7 : 11.4 8.3 e s 1 A . . .
based upon definitions of conditional probability using the equations
8
4 1342 léol 8.7 ‘ already introduce?s,
20 7 13 ) The liability rat;E?bIhpprsons who experienced Xy victimizations
: 14.8 8.6 8.5 .
| of type 1, X, of type 2, etc. may be expressed as:
6 11 | 6 - 1o |
.2 8.0 ; o
11.4 7 ) % k+xT ¥ k=1 -A(k+m)/m. ... -
i = [ ] e T (k) (o
, . o 8 o PO %y ,%,,%5,%,) = ((k + m)/m) A e o [TCk) o (9)
8.7 5.9 7.2 7 ‘:. | K,/ L N
, 0 i which is itself'a gamma distribution with mean‘h(k+XT)/(k+m) and
1 . : \
8 | 7 3 | -
6.7 4.8 6.4 exponent k+xT. In other words, the expected liability rate for
9 5 3 A 6 persons reporting a total of Xp victimizations is the mean of this
5.1 3.8 ' 5.6 . v
. , conditional distribution. Confidence intervals for each person's A
) 2 8 . "
10 . &
3.9 3.1 4.8 parameter can be easily constructed (see Arbous and Kereich, 1951).
11 : 3 , . l4 460 The conditional probability of each type of crime for a person
3.0 2. - Vo : ' : ’ ‘ ’
, 15 L with % victimizations of type 1, x, of type 2, etc. may be written as:
8 . 7 .y . e
12 or more 9.8 | | 8.8 17.4 R | » ‘ . - e L
Statisfiés:** ‘Pearson chi-square = 22.1 ‘ - i ! ’ P(Pl’pZ’PB’p4lxl’XZ’XB’X4> S .o .
' Degrees of freedom = 35 i , '
. - ‘ 4. ‘ | 4 ‘\e +x, -1
Gamma-Poisson Parameter Estimates: m= 5.99 é ) r(eT+XT)i£1 0t X, - |
k = 1.43 4 : A , . (10)
- _ ~ . |- . o T +x))
'Dirichlef Parameter Estimates: Respiratory Illness = 8.58 : i=1
Digestive Illness = .38 \ -
) e N ‘ ; N ‘)A‘ ) \ \?\ P ol -
#Data are from Bates and Neyman(1952), Table 2, pp 230-231. - ) ) » N s . .
**The.Pearson chi-square for the fixed. gamma-Poisson model is 44.0 on <
36 degrees of freedom. )
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This probability density function is a Dirichlet distribution with
parameters ei + X, . Thus, the conditional probability that the next
repo;ted crime is type k can be estimated as (ek + xk)/(eT + XT)‘ This
estimation only depends on the number and the type of crimes that have
begn reported in the past. It was used earlier to show how the model's
estimate of a person's conditional probabilities can be interpreted as
changingveach time a new crime is reported.

The birichlet—gamma~Poisson model can be used to predict the
multivariate distribution of victimizations in the future conditional
on the number reported in the past by assuming that each person's rate
A as well as their conditional probability of each type of crime remain
constant over time. . Let the length of the oﬁserved time period edual one
unit, and let fhe length of the future time period equal t units.  Further-

more, let %53 represent the number of victimizations of type j in period

i, and let x,

AT represent the total number of victimizations of all types

observed in time period i. The bivariate probability of reporting

21° *22° %230 *24

X190 Xqp0 Xy 3> xl4 victimizations in the first period and x

in the second period, conditional upor Py» Pys Pg and P,> may be expressed

as.
B R P E R PAL TR VI U YA | p1>p50P552)
W b : L
= J T P(x,.|Ap. . [Atp.) £(A)dA, (11)
SR ACTILI ?(XZJl' py) £C ?. . ‘

where P(xlj|lp.) and’P(xszAtpj) are Poisson random variables with means
: 3 ) 3
Apﬁ and tij* respectively; and where f£(A) is the gamma density function.

The unconditional bivariate distribution for the two .periods is found by

[T
i

S
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multiplying this equation by the Dirichlet density function for pl’PZ’pB’p4

and then integrating over all pj values. The conditional probability of
experiencing x21,x22,x23,x24 victimizations in a future time period of
length t, conditional upon experiencing Xll’le?XlB’xl4 victimizations in
a time period of length 1, is found by dividing the bivariate probability
for two periods by the probability for the first period, as was given in

equation (8). This may be expressed as:

Py 5%pp0XygaXy, [2) 5% 0%y 0% ) =
k+x %
1T ) 2T
[k+m : P(k+xlT+x2T)[tm :
k+mtmt F(kﬁxlT) k+mdmt
4
it
1 T (0_+x St (e 4x. .
- P(eT 17’ : =1t Oty ytxy ) . (12)
+xi 4x 4
iy x2j! T 1T 2t il F(B.+xl.)
i=1 j=r 4

The probability of being victimized in the next periodAcan be easily
estimated by subtracting the probability of not being vicﬁimized from
one.

The use of ";hese equatioms for the 13 NCS city data set is illustrated
in Tablgs 7 and 8. Table 7 showg the praobability of reporting at least
one victimization in the next year fof éersons reporting zero, one and two
victimizations. Note that the péttern is Quitg similar across cities.
About 4 to 5 percen?ﬁof the persons who reported zero victimizations are
expected toﬂreport one or more next year, about 20 to 25 percent of
tho;e who reported one are expected to report at least one next year,
and abou%%30 to 40 percent of those persons reporting two victimizations
are expected to report'ong or more victimizations next yéar. Only Newark

differs considerably from this'pattern.
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Table 7 The Estimated Probability of Being Victimized at Least Once . . , . - -
in the Next Year for Persons Who Reported Zera, One and Two y Table 8 displays the conditiqnal probability that the next crime
Victimizations Under Dirichlet—-Gamma-Poisson Models in 13
Cities . is a robbery for persons with a variety of victim histories across the
(National Crime Surveys, 1974-75) ‘ ‘
13 cities. The first column in the table, which displays the conditional
Number of Victimizations Reported probability that the next crime is a rdbbery for persons who did not report
City# Zero One Two a victimization, is equivalent to the overall conditional probability of a
Dallas .036 .220 .370 robbery in each city under the Dirichlet model. Note that it ranges from
Atlanta .037 .186 .312 .21 to .49 showing considerable variation in crime type by city. Ignoring
Newark .038 .137 .226 Newark, Table 8 shows that this variability is reduced for persons reporting
St. Louis .040 .205 .341 any combination of victirizations.
Philadelphia .040 .223 .372 Thus, Tables 7 and 8 suggest that being a victim in a variety of ,
New York .042 .183 .303 } cities may represent a common experience in that the chances of being
Los Angeles .043 .223 .369 : victimized in the future as well as the-chadcés of specific types of
Portland .045 .254 .418 victimizations are far ':more variable for non-victims than for victims
Denver .045 .258 424 under the Dirichlet models. If NCS data were similar to UCR data, then
Cleveland .049 .232 .379 the estimates in Tables 7 and 8 might be applicable to interpreting victim
Chicago .051 .225 .368 patterns in police data across a variety of cities. Research into the
Detroit .054 .248 .403 role that the Dirichlet-gamma-Poisson model might play in analyzing.
Baltimere ,059 .259 C 416 upolice data a?ﬁegrswwarrahted. oo A»A e me
*
Cities are ordered by the probability of being victimized next
year for respondents who reported zero victimizations. .
/ f g
1
. kil';‘,‘
" ﬁ &
* J K z? z
. 7 f’ 1 ¢ ,'5/
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Table 8 The Estimated Conditional Probability that the Next Crime Reported is a Robbery
for Persons with a Variety of Victimization Histories under Dirichlet-Gamma-
Poisson Models in 13 Cities
.(National Crime Surveys, 1974-75)

Victimization History:
Number of Robberies Reported .
0 1 2 0 1 2 0 1 2

: -Number of Other Crimes Reported .

city" 0 o 0 1 1 1 2 2 2
Portland .21 47 sy .15 .33 .45 .12 .27 .38
Dallas .23 .Ag .54 .18 .34 45 14 .28 .38
Denver .25 42 .52 .19 .34 .44 .16 .29 .38
Los Angeles .28 .51 .61 .19 .39 .51 14 .31 42
St. Louis .34 .50 .59 .26 .40 .50 .21 .34 .43
Philadelphia .34 .60 .72 .20 .43 .56 .15 .34 .46
Atlanta .35 .53 .64 .25 41 .52 .19 34 .4h '
Cleveland .36 .57 .67 .35 .43 .54 .19 .34 .45
Baltimore .37 - .58 .69 .24 43 .55 .18 .35 .46
Chicago .38 .54 .63 .29 .43 .52 .23 .36 .45
New York 41 .58 .68 .29 45 .55 .23 .37 47
Detroit .;4 .63 .72 .29 47 .58 .22 .38 .48
Newark .49 .51 .53 AT .49 0 51 46 Ny .49

8cities are ordered by the condit%onal probability of a robbery for persons_who
reported zero victimizations. :

; AT TS
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SUMMARY

The Dir;chlet—gamma—Poisson mgdel did an excellént job of describing
the multivariate distribution of the number of personal victimizations
reported in city samples of the NCS. It is based upon assumptions Ehat
seem applicable to a variety of analyses, namely that persons have a
constant chance of experiencing events over time, but that not all persons
have the same chances. Applied to victimiza;ion surveyé, the model
suggests that exposure to high crime situations is multidimensional
beéause being highly exposed‘to one type of crime does not necessarily
imply higﬁ exposure to othér types of crime.

The analyses.of the NCS were interpreted as if liability remained

constant over time. This assumption is not needed to generate data with

a Dirichlet-gamma—-Poisson distribution. The distribution can also be

L3
.

generated by compounding a Dirichlet distribution with a negative binomial
model, and the negative binomial model can be generated in a variety of
ways (see Anscombe, 1959; Eaton and Fortin, 1978; and Feller, 1943).
Further rgéearch using longitudinal data is neéded‘fo verify the
interpretation of conétant\liability for crime data.

Even if liability were constaatxoniy for short periods——as for 6
or 12 months~-the model would be useful for simplifying the comparisons
of laige; mﬁltivariate data sets and for predicting what would happen if .
liabilities were to remain constant. The énalysis of the NCS showed that
fairly compiex differences between victimization patterns in 13 cities
éoqld be‘simplifie§ Py comparing the Dirichlet-gamma-Poisson parameters.

Somewhat;surprisingly the model suggests that being victimized may be a

anl

TR



~32—-
—33-

common experience in that the chances of victims being repeatedly wvictimized

] o Yet, rate differences do not necessarily imply that i i

were less variable across cities than were the cl.ances of non—victims : ? y imply all persons in the high
i ... ;“ ) group have a greater chance of experi ing the e i

being victimized. i g P encing e event than persons in the

g low group. In fact, two gro indivi
The model is expecteq to be useful for policy development and program & P ’ groups could have the same rate but the individual

level chances of experiencing the event could be i i
evaluation because it provides a means of estimating what would happen - - P 2 uld be very different in both

. . : ] . groups. The Dirichlet-gamma-Poisson model provide i
if conditions were to remain the same. TFor example, the relative impact P & provides a technique of

, ] comparing distributions of individual rates acr
of victim assistance programs designed to reduce the liability of persomns P & v § across groups based on repeated

events. The utility of maki. ti distributions of
who reported a relatively high number of crimes could be evaluated by Y making assumptions about the °

. . individual rates and then comparing distributions across groups of persons
estimating what would happen if no such program existed. The analysis of e e - > : g P P

| will be borme out by future research.
major and minor disciplinary infractions in a group of prisoners suggests o s e '
that the model could be used to identify persons most likely to commit
serious violations in the future based solely on their history of
disciplinary infractions.

Methodologically, the model is easy to interpre? because it is
hierarchical to a series of simpler models. By vaTying the size of the
sum of the Dirichlet parameters, the Dirichlet-gamma-Poisson model can

range from a fikéd gamma—Poisson model that allaws.for no event.. .-

specialization to a gamma—Poiséon<mo&el that;allowsvfor COmplete e i

P

event specialization in that different.:types of events are~mutually~;g}lw
exclusive of each other. Byvvarying;the size of the exponent parameter,
the"model~caﬁ be.simplified .to.a.Dirichlet-Poisson. model.. The model:is

also easy to estimate because the parametersin the Dirichlet part 'are-

independent of those in the gamma-Poisson part.

Lastly, the model represents a new perspective on relating individual

PR XL SN RPN SEEA

and group level data. TFor example, rates are frequently compared across 7 3
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. groups to show that the rate in ome group is higher than in another.
| ,///‘ : }/7
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Appendix A: Extimation of m and k in the Gamma-Poisson Model

Maximum likelihood procedures were used to estimate the parameters of

-37—~

Appendix B: Estimation of the Dirichlet Parameters

Maximum likelihood estimates of the m and k parameters can be easily

-

. . . . . : obtained b ittin ivariate gamma-Poisson d |
the gamma-Poisson model. The maximum likelihood estimate of m, denoted m, y fi g a univ g P on model to the total number

. e e . . . . . of victimizations. ese estimates of m and k are indepe
is the observed mean number of victimizations. The maximum likelihood Th r pendent of the

. iy . . . irichl e .
estimate of k, denoted k, was iteratively computed using Newton's method - D et parameters
y p g

(Silvey, 1970). The estimate of k computed at step j+l k equals: Maximum likelihood estimates of the Dirichlet parameters were
] . ] 0] . )
: J

+1°
‘ interatively computed from the following equation:

F £ [p(Etk,) - p(k,) + log(k, / (k, +m)] , =1 - ont
;=0 * 5 i J k| _ Dj+1 Dj (b2) " nl (15)
- ~ 13 ~ |
kj+1 = k.j - - ? (13) where Dj stands for the jth computed value of the vector of Dirichlet

B0 ) - 9T Ge) + m/ (e (kgtm)))

parameters, D2 stands for the second derivative of the natural logarithm
i=0

] . of the likelihood function of the Dirichlet—gamma—Poisson model, and D1
where fi is the observed frequency of persons reporting i victimizations,

: . stands for the first dekivative of the natural logarithm of likelihood
Y (x) is the derivative of the gamma functions of x with respect to x, and

’ ’ function.
Pp'(x) is the derivative of Y(x). The iterations were continued until the

difference between kj+ and kj'was less than .00005. This usually occurred

1

. - 5Although the values of D2 and D1 change at each iteration, subscripts
within three to five steps. The initial value of k, kl; was obtained by

indicating iteration cycle have been dropped to simplify notation.

. the method of moments (Anscombe, 1959) from: -

kl =m / (32 - m") . (14 :
2 ~ ' B
where s is the sample variance and m is the sample mean.

o
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The values for D1 and D2 used at calculation j+1 were estimated from
the parameters in D estimated at calculation j. The ith row of the vector

Dl was calculated from:

bt ' -
bl, = _ _ — —n £0xox,%x,,x,)g(0, ,x
i x 0 x2—0 X 0 X, 0 1°72°73°74 T°T

™8
™8
it 8

’ei’xi)’ (16)
where g(GT,xT,ei,xi) = ¢(eT) - “’(BT+XT) + \p(xi+ei) - w(ei),
- and where f(xl,xz,x3,x4) is the observed frequency of persons reporting Xy

victimizations of type 1, x, of type 2, etc. The summations range from

2
zero to the maximum number of each type of victimization reported in the
data set.

The ith row and jth column elements of the matrix D2 for i # j are

all the same and were calculated from:

D2, = _ L

i1 = x By £lrp%yxyx )97 (B = 9" Gl (1)

where ' (x) is the first derivative of Y¥(x). The elements on the main

diagonal of D2 were calculated from:

118

, -~ "~
0 f(xl,xz,x3,x4) g (QT’XT’ei’xi)’ (18)

"A - =|A __’IA 1 - __lA
where g (BT,XT,Gi,xi) V] (ST) ? (9T+XT)‘+q)(xi+ei) q;(ei).

Initial estimates‘of the Gi‘parameters were obtained by arbitrarily

setting 6., to 1, by estimating pl>to Py» and by using equation (8) to

1

~ ~

i nd 8. ing 6 ts that 8, = 1/p..
Aestlmate 62, 93, and,e4 Note that setting el to lvsugges s that BT /pl

TN TN e i g T S e RS T T A v P T T T T ST S T g R T I T

R

v
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SRR
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This procedure worked for most but wot for all cities. In one city, the
i ’

initial value of 6, had to be set to .5 for the iterative procedure to

converge.
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