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I. Introduction 

In AVM systems such as FLAIR, an important characteristic 

of ope}'ational performance is some measure of the system error. 

Until recently this has usually been measured in feet or meters 

and stated in such forms as the "mean error is 100 feet," or lIat 

least 95 percent of all position estimations are within SO meters 

of the true position." 

Computer-tracked vehicle location systems such as FLAIR pose 

new problems, however, in analyzing, modelling, and interpreting 

system errors. These systems use an in-car odometer and compass 

to provide a crude form of inertial guidance; the somewhat noisy 

information from the odometer and compass are transmitted periodically 

(every second in FLAIR) to a central receiver where it is processed. 

by a computer algorithm whose purpose is to update the estimated 

position of the vehicle. The update is performed with the aid of 

a detailed street map which is a collection of connected straight-

1 i ne segments (repl"esenti ng street center 1 i nes) and II ava 11 ab 1 e" to 

the algorithm. In regular tracking, whenever the estimated 

position is infeasible, say off the street (perhaps in the center 

of an apartment complex), the computer "corrects" the estimated 

location back to the most likely center-line street position. 

This correction feature is depicted in Figure 1. 
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II. Odometer Error: A One-Dimensional Error 

To examine the error characteristics of this system, suppose for 

a moment that the vehicle always travels on a single road, never tutning 

at intersections. Then position estimation error accumulates only in 

one dimension, that is along the direction of travel on the roadway. 

The accumulated error would be due to a collection of random phenomena 

that cause the odometer to yield inaccurate readings--bumps in the road; 

deviations from strict st~aight-line travel (e.g., lane switching); 

pebbles, rocks, sand and other conditions that cause the tires to skip, 

and--if viewed as uncorrectable--travel speed (which alters tire circum­

ference). As argued in Chapter 5, random error can also arise along 

curved roads due to inaccuracies in the straight-line segment street 

map. In addition, there may be other phenomena that result in inaccurate 

odometer readings--but these may be systematic in some sense and, if 

detectable, correctable to some degree; examples include outside tempera­

ture (which alters in a predictable way the tire circumference), tire 

pressure, tire wear, and--if viewed as correctable--travel speed. 

To summarize, the one-dimensional odometer error may be broken 

down into a strict1y random component and a "systematic" (but perhaps 

still unknown) component. 

11.1 Modelling the Random Error 

In physical situations not unlike the current one researchers' have 

found the Weiner process* to be an excellent model for the random compo­

nent of the error. Historically, this stochastic process was first used 

to model the motion of a particle immersed in a liquid or gas, exhibiting 

*See, for example, Emmanuel Parzen, Stochasti~ Proces~, Holden-~ay, 
San Francisco, 1962, pp. 8, 26-29, 40, 67-68. 
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countless irregular motions. The central idea is that the particle 

is immersed in a field that offers continual bombardments of infinitesimal 

magnitude that cause the particle to become displaced from center. These 

bombardments show no preference for any particular direction (forwards 

or backwards in the case of one-dimensional displacement), so the net 

effect of the bombardments may be to move the particle in any of the 

possible directions (forwards or backwards in a two-dimensional case). 

This idea still applies in situations in which the particle is persis­

tently moving in one direction, say due to wind currents or electrical 

currents (in the case of electrons in semiconductors). Then the 

random error is measured as random deviation from that position which 

would be obtained if the particle were governed only by the persistent 

movement. 

In the vehicle location setting we must establish a frame of 

reference for the persistent movement and a measure of error from the 

anticipated position. We will measure the persistent movement by the 

true mileage d that the vehicle itself has measured since the last zero 

check.(i.e., the last time the estimated and true position were known 

to coincide.) This measured mileage is accumulated over straight and 

winding roads, with and without lane switching, with and without 

slippage, etc. Associated with the traversed path of the vehicle 

is a sequence of connected straight-line segments representing street 

centerlines in the computer map. Suppose we measure a distance d along 

these connected segments, starting with the position of the last zero 

check. That process will yield a point on one of the segments repre­

senting the estimated position of the vehicle. The true position of 
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the vehicle is presumably at some other (not-tao-distant) paint, most 

probably on the same segment. The location estimation error is the 

(center-line) distance between these two points. This method for' 

determini'ng location estimation error haturally incorporates errors 

due to both driving behavior and mapping procedures. 

Invoking the Central Limit Theorem from probability theory, one 

assumes that the position of the particle (vehicle) about its antici­

pated position has a Gaussian or Norm~ distribution. This distribution 

is found in many applications of probabi'/ity where the net effect of 

s.ome p;'ocess or activity is the sum of many small processes or activi­

ties. Moreover, we assume with the Weiner process model that the 

random pert,urbations in vehicle positioning occurring during 'one 

time interval or distance interval are independent of the perturbations 

occurring during another non-overlapping time or distance interval. 

For instance, we assUme that the random error incurred while tra­

versing one block is independent of the random error incurred while 
f 

traversing the previous, the next, or any other block(s). 

Finally, we would expect that as a vehicle (particle) travels 

further (i.e., exposed to more random perturbations), the accuracy of 

the position estimate deteriorates~ This is exactly what happens with 

the Weiner process model~-the variance of th~ distribution about the 

mean grows linearly in time (or distance)~ 

5 
, 
f , 
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To formalize our discussion to this point, we model the random 

component of the odometer error as follows: 

LetX(d) = the random displacement of the estimated vehicle 

D(d) 

position, as computed on center-line maps, 

the vehicle has measured d miles of travel 

the starting position (or last update) 

a,fter 

from 

= estimated position of vehicle on center-line maps, 

given the vehicle has measured d miles of travel 

from its starting position 

:; d = X(d). 

By definition X(O) =., o. Now the W " , elner process model requires that 
X(d) have a Gaussian distribution wl"th zero mean and variance that 
grows linearly with d. If 

fx(xld) = prpbability density function of X(d), 

then 

-0) < X < +00 

where 

0'2 = a parameter indicating the intensity of the 

infinitesimal perturbations. 

Here 0'2 can be considered to be the variance of the random displace­

ment per unit of distance travelled. As one verifies from Eq. (1), 

the mean or expected value of the random displacement is zero, i.e. 

E [X(dU = 0 

and the variance (a\(d» grows linearly with distan~e, i.e., 

O'X(d) :: E[X(d)- E[X{d)2] = 0'2d. 

* Ignori.ng truncation errors, for the moment. 
~ l~ "', 
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C' Thus the probability law of the \'!eine~ prq~~s is spe~fied by Eq. (1), 
,j:/ 

which reveals the importance of the param~ter (12. This parameteromust 
, 

be empirically measured in most applications, although occasionally a 

tLeory can be constrtJIctedthat predicts d 2 in terms of more fundamental 

quantities. For instance, in the case"of the WE:dner process model for 

Brownian motion, wherea2 is the mea~ squared displacement of the 

particle per unit time, Einstein in 1905 showed that 

--" .... ' \oJhere R is the universal gas constant, N the 'Avogadro number, J the 

absolute ·temperature, a~d f the friction co~fficient of the surrounding 

medium. Unfo'rtunately, we know of nO,similar relationship-

for odometer displacements, there@y revealing the need for empirical 

measurement .. 

Numerical ~xample 

To illustrate an example of the use of the Weiner process model, 
Ii , 

suppose that ~e repeated'ly drive a vehicle over a .10,OOO-foot test 

course and measure the "map disRlacement error at the end of each lG~bOO-.. . 

foot test drive. The Weiner process model' predict~ that the histogrqm 

of such errors would r~semble a bell-shaped (normal or Gaussian) curve, 

symmetrically positioned about its mean of zero. Suppose as a result 

of the test runs we calculate the standard deViation of the error to 

be 50 feet. Then, the histogram would resemble the GaTJss'i'an curve 

gepicted in Figure ,2. a From 'these' data we can obtain an estimate 
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of (12, whith is the mean square ~rror displacement per unit distanc~ 

(foot). W(~et the standard deviation of the Weiner process model 

equal to ~pe measured value, thereby obtaining 
\0 " 

,i'a2 d = 50 

a2(10,000) = 2,500 

(1 = 
0.25 

(L50. 

Table 1 presents a summary of the probabil ities computed from the 

Gaussian probability law. Each entry in Table 1 gives a probability 

that a Gaussian ran~?m variable is within y standard deviati~ns of its 
- . . 

mean." For instance, using our e?<ample, the pr~bability t~hat the 

estimated p~siti~n is correct to within +25 feet (correspond;ng to 

one half of a stan~rd deViation on either side of the mean) 1~ 0.383, 
" 

assyming (12 = O~25:~ The probab~lity that the estimated position is 

within +50 feet (co~}esponding to one standard deViation on either 
(I . , . 

~ide of the.meanj. is 0.6826. ,Note from Table 1 that it is quite likely 

(probability = 0.9974) that the estimateCJ Po~'ition is correct to within 

+150 feet (three standard deviations) •.. 

If th~ vehjcle travels )00,000 feet (about lQc miles) the standard 

deViation now be~omes I. 25( 100,000) = 158. 1 feet. ,Then, for instance . 
o !)" L' , , 

the likeJihood th?~ the estimated position is ~Rrrect to +158.1 feet 
"''\ W· ,0 -

',~~» (o~e standard deviation) is 0.6~26. 
D ,. " 0 

At the other extreme,' if the 1/ehicle travels 100 feet;;, the 
o . ', 

standard dey,jationisO I. 25(1 OOf"'=;·5 feet. It wi 11 be for 1 bnger.a; stances (on 0 

/J 

() " c> 8 " 



t, • 

I 

( . 

:) 

,: t 

t 

J' 

-::>:.;,.:....;;;."j:l..: 
~----'~ 

Figure A-2 

Distribution of Odometer Error, 
Given the Vehicle Has Travelled 10,000 Feet 

(without Systematic Error) 

\ fX (x/10 ,000) 

one standard 
deviation = 50 feet 

-------------~---~--------------~>x 

one standard deviation = 50 feet = Icr2d 

0 2 (10,000) = 2500 " 

0 2 = ,.0.25 
I~j 

o ~ 0.50 

/), 9 
j( 
>/ 

r 

.,,,,·="n.·"'''''~>V!"l ~.-:"" "'""'--:;:ttr,~.>,titr1"~~':;~~:::/;t"~~~,:,~~~~ • ..,_._~ .••. ,.,,,,-,;,,!""",,,, ~ __ ,' }. .... ".,_.,_._~ __ ~_ ~ 
~ ,. I 

~~h" .~.,# • .;>l;......;..,~~. __ ~\Jt'''l,.~~'.'''''' , 
I .. 

1 

I) 

Y.. 

·0 .• 00 

o. 10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 

1.10 

1. 20 

1.30 

1.40 

1. 50 

4 • 

Table 1 

P:obabi1ity that a Gaussian Random Variable 
Is within (+)y Standard Deviations of Its Mean* 

Probability Y.. 
0.00 1.60 

0.0796 1.70 

0.1586 1.80 

0.2358 1.90 

0.3108 2.00 

0.383 2. 10 

0.4514 2.20 

0.516 2.30 

0.5762 2.40 

0.63H~ 2.50 

0.6826 2.60 

0.7286 2.70 

0.7698 2.80 

0.8064 2.90 

0.8384 3.00 

0.8664 

Probabi1itl 

0.8904 

0.9108 

0.9282 

0.9426 

0.9544 

0.9642 

0.9722 

0.9786 

0.9836 

0.9876' 

0.9906 

0.9930 

0.9948 

0.9962 

0.9974 

*",Within y standard deviations" means + y standard deviations, as 
shown in this figure: -
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i~- one standard deviation = one S.D. 
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the order of one block length or more) that we will find most use 

for the Weiner process model. 

2. Modelling the Systematic Error 
The l~einer process model accounts for the zero-mean truly random 

error in the odometer. However, in applications one is likely to find 

large systematic errors that, if undetected and uncorrected, could 

dominate the random errors. The systematic errors 'could be due to out­

side temperature, tire pressure and wear, travel speed, etc. 

l~e can model the systematic error of a vehicle operating under 

fixed conditions (i.e., constant temperature, speeds tire wear and 

pressure, etc.) by adding a bias term to the Weiner process probability 

law. With the bias, the expected value of the odometer_displacement is 

no longer zero, but is given by 

E[X(d)] = yd, (4) 

where y is the mean systematic dispiacehment per unit of distance 

travelled. Allowing for the bias, we still assume the same vafiance, 

i . e., 

(5) 

so that the probability law of the odometer displacement b~comes 

fx(xld) = 1 e -(x-yd) /,20 2d 2 
t'2n02 d 

(6) 

The important point with this realistic modification to the mod~l 

is th~t y is usually a random variable, that is, its value is unknown 

11 
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prior to testing and monitoring the odometer performance of each 

vehicle. Determining the value of y for a particular vehicle corres­

ponds to IIcalibrating" the odometer.* If a numerically large value of 

y is left undetected and uncorrected (at least within the vehic1e­

tracRing computer software), then the systematic error' could "s\oJampll 

the random errors. 

Numerical Example 

Continuing with the numbers of our first example, suppose again 

that we repeatedly drive a vehicle over a 10,000-foot test course and 

measure the odometer error (displacement) at the end of each 10,000-foot 

test drive. Again, we assume that 02 = 0.25. But now we also assume a 

systematic error corresponding to y = 0.004. Thus 

E[X(d)] = 0.004d. 

This means, for instance, that if the vehicle is driven 10,000 feet, -

the expected value (average value) of the odometer displacement is 

E[X(10,000)] = 0.004(10,000) = 40 feet. The Gaussian curve now 

indicating the distribution of odometer displacement is shifted to the 

right of zero by 40 feet, as indicated in Figure 3. Now the probability 

that the odometer reading is cotrect to ±50 feet is considerably reduced 

over that found earl ier. The "±50 feet" converts to the regi on extending 

from 90 feet to the 1 eft of the mean to 10 feet to the ri ght of the 

mean. This corresponds to 1.8 standard deviations to the left and 0.2 

standard deviations to the right. We can obtain the appropriate 

probability estimate from Table 1. 

*If thibiasing effects of vehicular speed are viewed as correctable, 
then it may also be a function of time, varying in a systematic way with 
the speed of the monitored vehicle. ' 
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Figure A-3 

Distribution of Position Estimation Error, 
Given the Vehicle Has Travelled 10,000 Feet 

(with Systematic Error) 
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which indicates that the probability of being within (2:.) 1.8 standard 

deviation is 0.9282, and dividing by 2 (yielding 0.4641) since we are only 

concerned with the side of the distribution to the left of the mean. A 

similar computation for the area to the right of the mean yields a 

probability equal to 0.1586/2 = .0793. Adding the two probabilities 

we discover that the probability that the odometer reading is correct 

to ±50 feet ,is 0.4641 + 0.0793 = 0.5434 reduced from 0.6826 in the 

case of no systematic error (a reduction of 20.8 percent in this me,asuY'e 

of accuracy). 

Now consider the case in which the vehicle travels 100,000 feet. 

Here again the standard deviation is 1.25(100,000) = 158.1 feet. Howsver, 

the bias in E[X(lOO,OOO)J = 100,000(0.004) = 400 feet. In this case, 

the likelihood that the odometer reading is correct to ±158.l feet (+ one 

standard deviation)" is approximately equal to the probability that the 

dis placement fa 11 s i nan i nterva 1 to the 1 eft of the mean, s ta rti ng at 

3.5 standard deviations from ~he mean and ending at 1.5 standard devi­

ationsfrom the mean. This probability is approximately 0.5 _ 0.8~64 ~ 

0.0668, a reduction from 0.6826 in the case of no systematic errol" (a 

90 percent reduction in this measure of accuracy). 

Thus We see the importance of the systematic error term., A 

vehicle with even a small amount of sys1;F!matic error can incur large 

posit~on e~timation errors as the driving distance from the last zero­

check increases. 

" 
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III. TIME BETWEEN LOSSES OF A VEHICLE 

The Weiner process model applied to odometer readings in a 

computer-tracked vehicle monitoring system is a one-dimensional model; 

that is, it does not incorporate vehicles turning at intersections. 
. 

However, it is this vehicular action which on the one hand allows very 

accurate position estimates to be sustained over long periods of time 

(even with 0
2 moderately large) and on the other hana gives rise to 

a unique type of position estimation error--the vehicle being "lost." 

We are now ready to model the more realistic situation in which 

the vehicle occasionally makes turns at intersections. The situation 

of a turn is illustrated in Figure 4. Here the vehicle approaches the 

intersection from the south. The heading sensor (from the in-car 

compass) correctly gives a reading of "north." However, the estimated 

position of the vehicle on the street is blo or three car-lengths north 

of the actual vehicle location. A time tQ later (corresponding to the 

sampling interval) a new odometer reading is received and the direction 

of travel is now east. If the compass direction had not changed from 

north to east, the computer tracking algorithm wouldhave~placed the 

vehicle back on the north-south street center-line at a latitude projected 

from the new odometer reading. Howev~r, since the compass direction has 

cha.nged, the algorithm "assumes" that the.Nehicle has turned at the nearest 

possible intersection and correctly places the vehicle 6n the a~propriate 

east-west street (headed east) at a point Very close toi'ts actual 

' . . 

o. 

, . 

Figure A-4 

Self-Correction Feature of FLAIR Vehicle Turning 
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position.~ The important point to notice here is that virtually all** of 

the accumulated odometer error since the last zero-check is eliminated 

if the tracking algorithm correctly detects and interprets the 

vehicle's turn. Thus, each successfully monitored turn corresponds 

to an odometer zero-check. If all 'turns are monitored correctly, the 

system distance error' does not build up indefinitely, but rather 

reaches some sman average value as suggested by the \~einer process 

model (with or without systematic errors). 

The major system accuracy probl ems occurs, however, \'/hen a turn is 

not detected or, if detected, not interpreted properly. This can occur 

in several ways, one of which is depicted in Figure 5. Here, the 

vehicle is headed north on a north-south street, but the esttnated 

vehicle posltion is about two-thirds of a block length ahead (north) of 

the vehicle. When the vehicle turns east on street 2, the estimated 

position is now closer to the street immediately north of the vehicle, 

approximately only one-third of a block length from street 3, but two­

thirds of a block length from street 2. Since thicompass direction 

has suddenly changed from north to east, the tracking algorithm 
, , 

correctly detects that a turn has occurred. However, the estimated 

position of the unit is "corrected" to street 3, 'rather than street 2, 

resulting in the vehicle being "lost." This is the key error event in 
---!,:,~!'­

\: 

the system- and one which we will ~t;':;~'mpt to model. 

* See detailed discussion in Section IV.3. 

** Again, see Sectioh IV.3 which discusses a (usually) small 
amount of error that remains after the turn. 

t . 

• 
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Figure A-5 

Loss of Vehicle: A Vehicle Turn Incorrectly Interpreted 
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While the event causing loss of the vehicle is shown in Figure A~5, 

the computer tracking algorithm may not detect the loss until sometime 

later (due to apparently infeasible turns executed by the vehicle). 

Assuming that the time from incorrectly interpreting a turn until detection 

of loss is very small (say, minutes) compared to the mean time between 

incorrectly interpreted turns (say, hours), we ignore the small intervening 

time span in the model; thus we say that a vehicle is lost as soon as the 

in~orrectly interpreted turn occurs. 

It is worth noting that sophisticated tracking algorithms can 

sometimes correct for a vehicle that is determined to be lost, th&t. is, 

they can "find" a lost vehicle. ~le will not be concerned with the details 

of such finding procedures, but we will characterize the success of such 

an algorithm by a probability 

Pf = probability that a lost vehicle can be successfully 
found. 

Current computer software can usually find about 50 percent of lost 

vehicles, resulting in Pf ~ 0.50. 

We now procede to the model formulation. We want to predict the 

mean and the variance (or more generally the probability law) of the 

time or distance between losses (for simplicity we will initially use 

distance rather than time)., For· the moment we will assume Pf = 0, 

thereby ignoring corrections after losses (\'Ie can easily incorporate 

a nonzero Pf after we have developed the model). We assume that each 

time a vehicle makes a turn and is correctly tracked, the acc~mulated. 

odometer error goes to zero and this ,event is a renewal event. If the 

vehicle turns and .,is not tr~cked correctly~ then the vehicle is lost; 

this is the event of interest. 
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We wish to incorporate in the model the following features: 

1. Both systematic and random errors as aiscussed above. 

2. The spacings between streets. 

3. Some measure of the regularity or irregularity of 
. the street pattern. 

4. The frequency with which the tracked car makes turns 
at intersections. 

To model both features 2 and 3, we assume that adjacent intersections are 

located kb units apart where 

b = length of the shortest possible city block, 

k = an integer random variable whose probability mass 
function is geom~tric. 

Thus the probability law for k can be written 

v-l p{k = v} ~ (1 - q) q v = 1, 2, 3, .... 

There are several ways of interpreting this obviously simplified model 

of street positionings. In one interpretation, each time the tracked 

vehicle travels a distance b from the last intersection there is a 

probability q that it will incur another intersection; regardless of 

"success" or "failure" at finding an intersection at that point, the 

probabili~y of incurring an intersection at a distance 2b from the 

original intersection is also q. In general, each ~ime the vehicle 

travels b units of distance there is a probability q that an 'intersection 

will exist there . 

~ Examining some limiting cases of the model, suppose q = 1. This 

cotresponds to a situation' in which the streets ate designed in a 

regula~ square grid pattern, each (actual) block being exa~tly ~ uniti 

in length. This might be an accurate depiction of the streets in 

,20 
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Wichita, Phoenix, Tuscon and several other midwestern and far-western 

cities; where b typically is about 500 feet. At the other' extreme, 

suppose q = E, where Eo: is very small but positive. This'would c;:orrespond 

to an almost totally random Positioning of streets, with adjacent 

intersections positioned as in a Poisson process with mean "inter­

arrival time" (mean distance between intersections) equal to b/E. Here 

the parameter b (by itself) has little meaning, since in applications we 

\'10 uhf probably specify the ratio b/E (\."hich would correspond to the 

empirically measured mean distance between intersections), we would note 

the Poisson process nature of the street spacings, and we would set b 

and E (keeping b/E constant) sufficiently small so as fo achieve the 

required accuracy in the model. 

Hav';ng examined extreme values of q, we see that intermediate val!les 

correspond to intermediate degrees of regularity or irregularity in the 

street pattern, with higher values indicating greater regularH~;{. 

In actual applications, how do we determine numerical values for 

band q? From the model we can compute that the mean distance between 

adjacent intersections isblq and the, variance is b2 {1 q-Z 9). We can 

also compute empirical values for these quantities from a map of the city 

being modeled. Suppose the empirically calculated mean distance between 

intersections is ~ and the variance is ai. Then set· 

I = blq (a) 

and 

(b) (8) 

Manipulating these equations, we get 
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Note that in order for q to remaln r.~nnegative, \."e must have aR. ..$. R.. 

This is just as we expect since the most r~.,.j~m distribution of 
" , 

street~ that ,."e can mo'del is the Poisson process distribution, and this 

.~orresp~nds. to at = t. It is important to note that the parameter b now 
/ 

becomes the unit of distance in our model. 

Feature 4 of the model, the frequency \."ith which the vehicle makes 

turns~ can be modelled simply by defining 

\" == probabil ity that the vehicle turns at any given 
intersection. 

We assume that the turn'ing decision is made independently at each 

intersection and thus that turns occur as a Bernoulli process with 

parameter r. 

We are now ready to compute the unconditional probability of 

"10ss" of ~ vehicle on a; randomly selected turn. Call this quantity 

p. Clearly, 

00 

P = E Prob{vehicle makes next'turn i units of 
i=l di stance from 1 ast turn}Prob{l oss I i h 

',' r " 
, If a vehi ~I e 1's almost at a di stance d = i'from "the ;ast turn, the 

p~pbability of turning at i is simply equal t.? q r, the probabil ity 

that a street ,intetsection exiSts at d =:: i multiplied by the probability 
J) 

of turning, given ~hat an intersection exists. Thus the probability that 
Ii o 

" " 
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the vehicle makes its next turn exactly i units of distance from the 

last turn is a geometrically distributed random variable with parameter 

q r , and \oJe can wri te 

co 

qr)i-1prob{10ssli}. p = E qr(l 
i=l 

Our next task is to express Prob{lo~sii} in terms of previously 

defined parameters. We assume that a veh~c1e is lost ~f it is 

estimated to be G10ser to an intersection other than the one at which 

it is actually turning .. Figure 6 depicts "forward loss" of a vehicle, 

that is a situation in which the vehicle is estimated to be closer to 

an intersection "in front of the vehic1e" than the one at which it is 

turning. In Figure 6 the vehicle turns at d = i·, the next int~rsection 

ahead of the vehicle is located at d = i + j. If the estimated 

position of the vehicle is to the right.of the halfway point between 

the two ihtersections (2i 2+ j), then the vehicle has incurrect forward 

loss. Back\'/ard loss occurs in a directly analogous fashion with the 

nearest intersection "behind" the vehicle at d = i. Utilizing the 
. 

~Jeiner process model, the probability of incurring forward loss in this 

case is 

co 

f 1. e- (y-yiF/2o:li dy 
j/2 121To2 i . 

The analogous probability of backward loss is 

23' 
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Figure A-6 

Forward Loss of a Vehicle 
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In most cases of practical interest, in which a2 and yare sufficiently , 

small to yield a small p, we can approximate p by changing -i (the lower 

limit on'the last integral) to -00. Thus we approximate 

Prob{1oss x' = i and n~xt intersection j units in distance} ::: 

= 

Now, the probability that the next intersection is j units in distance 

is q(f - q)j-1, j = 1,2, .... Thus 

Prob{1oss Ix = i } 

Finally, the quantity of interest" p (the unconditional probability of 

loss on a randomiy selected turn of the vehicle) is given by 

p = 

Illustrative values of this probability have been tabulated \vith the 

assistance of a computer. (See Table 1.) 

Since losses occur as in a Bernoulli process, the mean number of 

turns executed between losses is IIp. The mean number of intersections 
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Table 2 

Illustrative Values of Vehicle Loss Probability (p) 

STREET PATTERN IRREGULARITY FIXED At Q= 0.2 

GAMMA = SYSTEMATIC BIAS PER UNIT DISTANCE 
SIGMA = STANDARD DEVIATI0N 0F RAND0M BIAS PER UNIT DISTANCE 
r = PROBABILITY THAT VEHICLE TURNS AT RAND0M INTERSECTI0N 

t_-_~_-_t-------t __ -- __ -t-_--_----t 
t 'GAMMA"t SIGMA't'" r ", p t 
t-------t-------t-------t---------t 
t ' '0:00", ' 'b:tH 't '(t.sOO 't 
t 0.00 t 0.01' 0.250 t 
t 0.00 t 0.01' 0.125 t 
t 0~00 t 0.02' 0:500 , 
, 0.00 t 0.02' 0:250 , 
, 0.00 t 0.02 t 0.125 t 
t 0'.00 t '0:03 t 0.500 t 
t 0:00 '1 0.03 t 0.250 t 

, 0: 00' 0.03 tOe 125 t 
t 0~00 t 0:05 t 0.500 t 

t 0.00 t 0:05 t 0.250 t 
, 0 '; 00 to. OS to. 1 25 t 
t 0.00 t. 0.07 , 0.500 t 

t 0:00 t 0.01' 0.250 t 
t 0'.'00' 0.07 f 0.125 t 
t 0.00 t O.~O t 0.500 t 
t 0.00 t 0.10 t 0.250 t 
t 0.00 r 0.10 t 0.125 t 

t O~OO t 0.20' 0.500 t 
t 0:00 t 0.20 t 0:250 t 
t 0:00 t 0.20' 0.125 t 
t 0:01 t., 0.01 t 0'.'500 t 
to.' 01 to. 0'1 to'. 250 tt 
t 0';01 t 0.01 t 0"'125 t 
t o;ot, 0.02 t 0.500 t 
t, 0.01 to. 02 to. 250 t 

t 0.01 t 0.02 t 0.125 t 

t 0.01 t 0.03 t 0.500 t 

t 0'.01 t 0':03 t 0.250 t 

t-------t-------t------- r ---------, 
'''GAt~t1/f't '51 GM~"t'" r ., ':' p t , _______ t _______ , _______ t _________ t 

) J t 0.01
1 

t 00~0035 t 0°.510205 t 
to.O t • '0. t 

0:00000 , 
0.00-000 t 
0.00000 t 
0.00000 t 
0.00000 t 

0.00000 t 

0:00000 t 

0.00000 t 

0.00000 t 

0.00216 t 

0.00862 t 
0.02331 t 

0.00819 t 

0.02267 t 
0.04835 t 

0.02311 t 
0.04933 t 

0.08882 t 

0.0~973 t 
0.14379 f 

0:21206 t 
0.00000 t 
0.00000 t 

0.00000 t 

0.00000 t 

0.00000 '1 

0.00000 t 

0.00345 , 
0.0'2271 t 

0.07882 t 

0.00765 , 
0.03089 , 
0.08679 t 

0.01406 t 
0.04180 , 
0.09871 , 
0.02807 , 
0.06341, t 
0.12387 'I 

o it 09211 t 

0.14962 t 

0.22519 t 

t • '0;02',' '0:01' 't 't):SOO ',"tr:dooOO"t 
t 0.02 t 0.01 t 0:250 t 0:00000 , 
, 0':02 t 0.01 t 0.125 , 0':00000 , 
t 0.02 t 0.02 t 0.500 t 0.00000 t 
t 0';02 to'. 02 .t 0.250 , 0'.00000 t 
t 0.02 t 0~02 t 0.125 t 0.00000 , 
t 0;02, 0.03' 0.500 t 0.01924 , 
t 0~02 t 0.03 t 0.250 , 0.07582 , 
t 0;02 t 0:03 t 0.125 t 0:18761 t 
t 0~02 t O~Os t 0.500 t 0.02402 t 
t 0'.02 t 0'.05 t 0.250 t 0.08020 t 
t 0.02' 0:05' 0.125 t 0:18896 t 

t 0:02 t 0~07 t 0.500 t 0.03010 t 
t 0~02 t 0.07 t 0.250 t 0.08623 t 
, 0 :02, 0'.07 t 0.1 25 , O. 19151 f 

t 0.02 t 0~10 t 0:500 t 0.04186 t 
t 0':02 t 0'.10 t 0:250 t 0.09908 , 
t 0.02 t 0.10 t 0.125·t 0.19955 t 
t 0.02 t. 0.20 t 0.500 t 0.09907 t 
t 0 -: 02 to. 20 to. 2 SOt O. 1 6 6 12 , 
t 0~02 t 0.20 t 0.125 t 0:26018 f 

t 0:03,t 0.01 t 0.500 t 0.00000 t 
to. 03 TO. 0 1 to. 250 to. 00000 , 
t 0.03 t 0.01 , 0.125 t 0.00000 t 

t 0~03 t 0.02 t 0.500 t 0.04328 t 
t 0.03 t 0.02 t 0.250 t 0.13275 t 
t 0':03 t 0.02 t 0.125 t 0.27923 f 

t 0:03 t 0~03 t 0.500 t 0.04450 t 
t 0.03 t 0.03 T 0.250 t 0.13332 t 
t 0':03' 0,,'03 t 0.125, 0.27904 t 
to. 03' 0 • 0 5 to: 500 f 0 • 048 1 1 , 
t 0~03 t 0.05 '1 0.250 t 0.13519 t 

t 0.03 t 0.05 t 0.125 t 0.27858 t 
t 0.03 t 0.07 t 0.500 t 0.05289 , 
t 0'.03 t 0.'07 t 0.250 t 0.13801 , 
t 0.03' 0.'07 t 0.125 , 0.27823 t 
, 0:03 t 0.10 t 0.500 , 0.06198 t 
t 0.03' 0.10 t 0.250 t 0.14452 t 

t O':Q,3' 0.10 t 0.125 , 0.27899 t 
to" 0 3 to. 20 to. 500" to. 1 1 0 1 1 '2 

to.03' 0.'20.t 0.2 SO to. 19084 t 
t 0;03 t 0.20 t 0.125 t 0.30747 t 

q 

1 

; , \) 

t 0.01 t 0.05 t 0.250 t 

t 0.01,110.05 t 0.125 t 

t 0':01 t ,,0.07 t O!SOO t 

t 0:01 t 0;07 t 0.250 t 
t 0':01 t 0.07, t 0.125 t 
t 0.01 t 0.10 t 0.500 t 
to': 0 1 to. lOt 0 '; 250 'I 

t 0:01 t 0~10 t 0.125 t 
to" 0 1 to'. 20 to':.' 500 t 

t 0'.01 t 0.20 t 0.250 t 
t 0.01 t 0.20 t 0.125 t t _______ , _______ L _______ t ___ M _____ t 
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Table 2 
(page 2 of 5) 

Illustrative Values of Vehicle Loss Probability (p) 

STREET PATTERN I RREGULARI T'f FIXED AT Q= 0.4 

GAMMA = SYSTEMATIC BIAS PER UNIT DISTANCE 
SIG~1A = STANDARD DEVIAT10N OF RAND0M B'lAS PER LNI T Dl STANCE 
r. = PROBABILITY THAT VEHICL.E TURI'JS AT RAND0M INTERSE0TI0N 

t-------t-------t-------t---------t 
. 

,-------1-------,-------t---------t 
1 "(;At~Mtr-1 ·Sl'Gt-f1Ct .. ·· . r .... ·t.. p 1 t 'GAMMA", 'sl'GfliA , .... r.· ..... , .. , p '~.:', 

" 

I; 

• 

1-------1-------1-------1---------t 
1 .. ·O."OO .. ,· .... 0~:(H··t .. O:S(j(j " '0':00000 " 
1 

t ., 
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1 

1 

t 

1 , 
t 

1 

t , 
t 

t , 
, 
t , 
t , , , 
t 

t 

t 

t , , 
t , , 
1 

t 

t , 
t , 
t 

f 

0.00 T 
0:00 t 

0:00 t 

0'.00 t 

0'.00 t 
0'$'00 t 

0'.00 t 

0.00 t 

0.00 t 

0:00 1 

0.00 t 

0'.00 t 

0.00 , 
0:00 1 

0:00 , 
0:00 t 

0:00 1 

0':00 , 
0'.00 1 
0:00 t 

0:01 t 

0:01 1 

o.oi 1 

0.01 , 
0:01 t 

0.01 1 
0.01 t 

0.01 t 

0':01 t 

0':01 f 

0.01 f 

0'.01 1 

o.oi f 

0.01 t 

0.01 , 
0.01 , 
0.01 t 

0':01 t 

0.01 t 
0.01 , 
0.01 , 

0:01 t 0.250 t 0;00000 1 
0.01 1 0.125 , 0.00000 t' 

0:02 1 0~500 t 0.00000 t 

0~02 t 0:250 t 0:00000 t 

0':02 to'. 125 t 0.00000 t 

0~03 t 0.500 t 0.00000 , 
0.03 t 0~250 , 0.00000 , 
0.03 , 0:125 t 0:00000 t 

0.05 t 0.500 t 0.00056 t 

0.05 t 0.250 1 0.00431 , 
0.'05 10.125 10.01710 1 
0.07 , 0.500 t 0.00381 1 
0.07 1 0.250 1 0.01626 t 

0.07 , 0.125 t 0.04436 t 

0".] 0 to. 500 .1 0'. 01922 t 

0.10 t 0.250 1 0.04523 1 
0.10 1 0.125 1 0:09413 1 
0:20 1 0.500 1 0.09510 1 
0.20 1 0.250 , 0.16538 , 
0;20 1 0:125 , 0~25224 t 

0.01 1 O.SOO , 0.00000 , 
0:01 t 0.250 t 0.00000 t 
0.01 t 0.125 , 0:00000 , 
0:02 t 0:500 t 0.00000 t 

0~02 t 0.250 , 0.00000 t 

0.02 , 0~125 , 0.00000 , 
0.03 t 0.500 t 9.00033 t 
0.03 , 0.250 f .0.00686 1 
0:03 t 0.125 1 0.04428 t 

0.05 t 0.500 t 0.00202 1 
0~05 1 0~250 1 0.01515 1 
0~05 1 0.125 1 0.05946 t 

0.07 T 0:500 t 0:00627 t 
0.07 t 0.250 1 0:02761 t 

0.07 , 0.125 , 0~07938 , 
0.10 , 0.500 , 0.01899 , 
0.10 , 0.250 1 0.05442 , 
0:10 1 0.125 t Od 1815' 
0~20 t 0.500 , 0.09665 , 
0.20 t 0~250 , 0.16909 , 
0.20 10:125' 0.26016 1 

t-------t-------,-------I---------t 
.. • ." ~ • ",f "., o.. . . . . . " .- .. 

1-------1-------1-------t---------t 
, . "O:'O~ " '''O:(jf't ·(f.:SOO , '0:00000" , , 
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t 
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t , 
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t , 
t , 
t 
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t 
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t 

1 

1 

t· 
1 

t 

t 

t 

t 

t 

1 

t , 
t , 
t 
t 

t 

t 

0" 02 t 

0':02 t 

0.02 , 
0:02 t 
0',,'02 t 

0':02 t 

0':02 , 
0':02 t 

0':02 t 

0'.'02 1 
0':02 1 
0':02 1 
0';02 , 
0:02 t 

0.02 1 
0.02 t 

0.02 t 

0'.02 1 
0.02 t 

0.02 1 

0':03 , 
0'.03 t 

0.03 , 
0:03 t 
0':03 t 

0":03 t 

0';03 , 
0~'03 't 
0:03, 
0:03 , 
0':03 , 
0':03 t 

0.03 t 

0.03 t 

0:03 t 

0;03 t 

0.03 t 

0.'03 t 

0.03 ',I 

O. 03 ~/ 
0.03 , 

0;01 , 0.250 , 0.00000 t 

0.01 , 0:125 , 0.00000 , 
0~02 t 0.500 , 0.00000 , 
0.02 , 0.250 t 0.00000 , 
0:02 1 0:125 , 0.00000 t 

0.03 , 0.500 t 0.00379 , 
0~03 , 0~250 t 0;03772 t 
0~03 1 0~125 t 0~14071 , 
0~05 , 0.500 , 0.00780 t 

0.05 , 0:250 1 0.04676 1 

0.05 1 0.125 1 0.14746 , 
0.07 t 0.500 , 0.01384 , 
0:07 , 0.250 , 0~05804 , 
0~07 1 0~125 , 0.15672 t 

0~10 , 0.500 1 0.02706 , 
0.10 , 0'.250 1 0'.07961 t 

0.10 t 0.125 , 0.17707 , 
0.20 t 0.500 t 0.101~2 , 
0~20 , 0.250 t 0.17988 t 

0:20 t 0.125 t 0.28239 1 

0.01 , 0.500 , O~OOOOO 1 

0:01 1 0.250 t 0.00000 t 

0:01 t 0.125 1 0.00000 , 
0.02 , 0~500 t 0~01252 t 

0~02 t 0:250 , 0.08308 t 
0~02 1 0:125 t 0.2$479 , 
0.03 t 0.500 t 0.01431 t 

0:03 t 0:250 , 0.08523 f 

0:03 , 0.125 t 0.2353~ 1 

0~05 t 0:500 t 0.01960 f 

0~05 t 0.250 1 0;09156 t 

0~05 1 0.125 t 0;23717 t 

0.07 , 0.500 t 0.02662 ~ 

0.07 1 0.250 1 0.09983 , 
0.07 t 0:125 , 0.24017 1 

0:10 , O.SOO 1 0.03983 t 
0:10 , 0.250 t 0-11539 , 
o. 1 0 , O. 1 25 to. 248 05 t 

0.20 1 0.500 t 0.10866 t 

0~20 t 0.250 1 0.19682 1 

0.20 ,0.125 t 0.31513 t 

"" l' - .... - - - - - f - - - - - .. - t - - - - - - - t - - - ,- - - - - - t 
'~ • /I /I IV. , 
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Table 2 
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lJlustrative Values of Vehicle Loss Probability (p) 
.... /I .. 

STREET PATTERN IRREGULARITY FIXED AT Q= 0.6 

GAMMA = SYSTEMATIC BIAS PER UNIT DISTANCE 
SIGMA:: STANDARD DEVIATl0N 0F RAND011 BIAS PER UNI T 01 STANCE 
r = PR0BABILITY THAT VEHICLE TURNS AT RANDI?JM lNTERSECT10N 

1-------,-------t-------,---------, 
t "GAMt·1A" t 'S}'(;I>11\"'· .. , r ..... ,.... p _: "', 
1-------1-------1------- 1---------t 
'· .. ·0:00 .. '· 
, 0.'00, 
, 0.00 t 

, 0':00' 
to'.OO f 

t 0:00 1 
, 0':00' 
, 0':00 t 

t 0':00 t 

1 0':00 1 

to.OO t 
, 0 :00 t 

t 0:00, 
t O~'OO, 

, 0.00 t 

, 0.00' 
t 0':00 t 
t 0':00 t 

1 0.00 t 

t 0.00' 
, 0:00 1 

, 0':01 1 

1 0'.' 01 t 

t 0:01 1 

1 0:01 1 

t 0':01 1 

t 0.01 1 

f 0':01 t 
, 0:01 t 

t 0:01 t 

t 0;01 t 

, 0.01' 
t 0.01 t 

t 0:01 f 

t 0':01 1 

t 0.01 1 

t 0.01 t 

f 0.01 t 

f 0:01 t 

, 0'.01 f 

t, 0.01' 
t 0:01 t 

0.0'1''', 
0':01 , 
0.01 , 
0':02 t 

0'.02 , 
0.02 t 
0':03 , 
0'.03 , 
0:03 , 
0.05 t 
0:05 , 
0.05 , 
0:07 , 
0'.07 1 

0.07 , 
0.10 t 

0.10 t 
0.10 t 

0.20 1 
0.20 t 

0.20 t 

0.'01 t 

0'.' 01 l' 

0.01 , 
0.02 1 
0.02 t 

0':02 1 

0.03 1 

0.03 " 
0:03 ,t 

0':05 1 

0:05 1 
0.:05 T 

0.07 t 

0.07 , 
0.07 t 

0':10 1 

0.10 t 

0.10 t 

0.20 t 

0.20 f 

0.20 t 

'0.500","0:00000 '1 

0:250 , 0.00000 t 

0:125 1 0:00000 1 
0.500 1 0.00000 1 

0.250 , 0.00000 , 
0.125 t O~OOOOO , 
0~500 f 0:00000 , 
0.250 , 0.00000 , 
0.125 1 O.OopOO , 
0~500 , 0.00015 1 

0~250 , 0.00218 1 

0': 1 25 , 0 • 0 1 2 1 2 1 

0-500 1 0.00173 1 

0.250 1 0.01118 1 

0.125 t 0.03808 t 
0.500 1 0.01 063 ,~ 

0.250 t 0.03855 t 

00125 t 0.09174 t 

0.500 1 0.09174 t 

0.250 t 0.17332 , 
0.125 t 0~27325 t 

0:500 t 0.00000 t 

0:250 , 0.00000 t 

0.125 t 0:00000 , 
0.500 t 0.00000 t 

0.250 t 0.00000 , 
0;125 , 0.00000 t 

0.500 I 3.41E-05' 
0.250 t 0.0021'1 t 

0.125 t 0.02460 t 

0.500 t 0.00056 t 
0.250 , 0.00774 t 

0:125 t 0.04177 , 
0.500 t 0.06281 , 
0.250 , 0.01S50 t 

0.125 t 0.06490 , 
0.500 t 0.01229 , 
0.250 t 0.04535 t 

0.125 , 0011069 t 

0.500 t .0.09293 t 

0.250 t 0.17617 f 

0.325 t 0.27911 , 
t-------t-------,----~--t---------, 

t .. • ... f' it. • .. /I... . . ~ 
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,-------1-------,-------t---------, 
,"GAt·H1A"1 "SI'GMA··' .. · .. r ..... , .... p , 

1-------1-------1-------,---------1 
, .. ·0:02 .. '· .. ·(j';cH·' 0;5do"l 'O':(jOddO " 
, 0~02 t 0:01 1 0.250 , 0.00000 , 
, 0:02 t 0':01 t 0'.125 , 0;00000 , 
, 0':02 t 0.02' 0.500 , 0:00000 1 

, 0~02' 0~02' 0;250 1 0.00000 1 

t 0~02 1 0~02 1 0~125 , O~OOOOO t 

t 0:02 1 0:03 ~ 0~500 1 0~00064 , 
, 0:02' 0:03 1 0:250 t 0.01737 t 
, 0.02' 0':03 1 0'.125 1 0.10244 1 

, 0.02, 0.05' 0'.500 1 0.00246 1 

t 0:02 t 0~05 t 0.250 , 0.02702 1 

1 0'; 02 to': 0 5 1 o. 1 2 5 to. 1 1 469 1 

, 0':02 t 0':01' 0.500 1 0.00637 't 

t 0~02' 0~07' 0;250 t 0:03970 1 

, 0.02 t 0':07 1 0.125 t 0."12996 , 
, 0.02 t 0.10 t 0~500 1 0.01726 1 

1 0.02 t 0.10 t 0.250 t O~06462 , 
, 0:02 1 0'010 1 00125 1 0015982 1 
, 0:02 1 0':20 t 0.500 t 0.09645 t 

, 0.02' 0:20' 0.250 1 0.18455 , 
, 0.02 1 0:20 1 0.125 t 0.29589 t 

1 0 • 03 to': 0 1 1 0: 500 to. 00000 1 
1 0':03 t 0'.01 t 0'.250 10.00000' 
, 0:03 t 0:01 t 0':125 t 0'.00000 , 
t 0~03' 0~02 1 0~500 1 0~00266 t 
, 0:03 1 0':02 t 0.250 t 0.04739 , 
t 0.03 t 0.02 t 0.125 t 0 .• 19251 'I 

, 0':03 t 0':03' 0:500 1 0.00370 t 

t O'c03 1 0:03' 0.250 t 0.05069 t 

t 0.03 t 0'.03 t 0:125 1 0.19436 t 

, 0': 0 3 to. 05 1 0 • 500 to. 0073 1 t 

, 0803 t 0:05 t 0:250 , 0.06013 t 

t 0.03' 0.05 t 0~125 t 0.19998 , 
to': 03 to. 07 1 0.500 1 0.0130.3 1 

t 0~03 1 0~07 1 0~250 t 0.07207 , 
, 0.03' 0.07 1 0.125 t 0.20768 t 
t 0:03 t 0:10, 0.500 t 0.02551 , 
t ,0:03 1 0;10 1 0~250 t 0.09353 , 
t 0~03 t 0~10' 0:125 1 0.22358 t 

, 0.' 03' 0.20 to. 500' 1 O. 10222 t 

l' O~· 03' 0 • 20 to,,' 250 to. 1 979 4 , 
to': 03 to. 20 , O. 1 25 1 0 • 32 1 49 t 
t-------t---~---~--~----t---------f ..... _. ,.. . ........ -. . , ... " . ' .. ,; .... , , . 
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Illustrative Values of Vehicle Loss Probability (p) 

STREET PATTERN IRREGULARITY FIXED AT Q= 0.8 

GAMMA = SYSTEMATlC BIAS PER UNIT DISTANCE 
SIGMA = STANDARD DEVIATI0N 0F RAND0M BIAS PER UNIT DISTANCE 
r = PR0BABILITY THAT VEHICLE TURNS AT RAND0M INTERSECTI0N 

t-------t-------f-------1---------t 
1 'GAMI~A ·t"'SfGMJ.f·t .. ·r· .. ····t···· p f 
f-------f--~----1-------t---------t 
t .. , '(j':'OO" t'" '(f;OJ" 1" 0':500" t" o':(jOOclQ t 

t 0~00 1 0~01 1 0:250 t O~OOOOO t 
t 0:00 1 0'.01 t 0:125 t 0.00000 t 
t 0':00 t 0':02 t 0.500 to'. 00000 t 
t O~OO 1 0~02 1 0.250 t 0;00000 t 
t O~OO 1 0~02 1 0~125 t 0:00000 t 
t o~OO 1 0~03 t 0.500 t 0.00000 t 
t O~OO 1 0~03 1 0:250 t 0.00000 1 
t 0.00 1 0.03 f 0.125 10.00000 1 
1 O~OO 1 0.05 1 0~500 t 4.26E-05~ 
t 0.00 1 0.05 f 0.250 1 0:00113 t 
1 0:00 t 0.05 1 0.125 1 0:00858 1 
t 0.00 1 0~07 1 O~500 1 Ow00076 1 
1 0':00 f 0.07 f 0.250 1 0.00760 t 
t 0.00 t 0.07 f 0~125 t 0:03202 t 

t 0'.00 1 0.10 f 0.500 1 0.00667 t 
t 0'.00 1 0':10 f 0.250 t 0'.03198 t 
1 0':00 1 0':10 f 0~'125 t 0'.08674 t 
t O~OO t 0~20 t 0.500 t 0.08486 t 
t 0':00 t 0.20 t 0:250 t 0: 17532 t 
t 0':00' 0 .. 20 f 0.125 t 0.28593 , 
, 0~01 1 0~01 f 0.500 f 0:00000 t 
, 0':01 1 0':01 f 0':250 t 0';00000 t 
t o. 0 1 to. 0 1 f O. 1 25 f 0:; 00000 t 
t 0~01 1 O~02 f 0.500 t 0.00000 t 
t 0~01 t 0.02 f 0.250 w 0.00000 t 
1 0~01 t a~02 f 0.125 f 0:00000 1 
t 0~01 1 0~03 1 0:500 1 3.51E-061 
t 0~01 1 0:03 t 0.250 1 0.00066 1 
t 0':01 t 0.03 1 0:125 1 0:01362 t 
1 0 • 0 1 1 0': 05 1 0 : 5 0 0 to'; 000 1 6 t 
t O~Ol 1 0~05 f 0:250 1 0.00404 t 
to. 01 1 0.05 to. 1 25 1 0': 02970 t 
1 0.01 t 0':07 t 0.500 1 0'.00124 t 
t 0.01 1 0.07 t 0.250 t 0';0,1214 t 
1 0:01 1 0.07 1 0.125 t 0.05332 t 
1 O. 01 to. lOt O. 500 to. 00768 1 
1 0 ': 0 1 to. lOt 0 • 250 to. 037 22 1 
t 0:01 t 0.10 t Od25 t 0.10259 t 
t 0:01 t 0.20 t 0.500 1 0.08582 t 
t 0~01 1 0~20 10.250 1 0.17769 1 
1 0':01 1 0'0'20 1 O~ 125 t 0.29067 t 
1---~-~-t---~---,--~----t---------, . . .. . .~... . . ... . . . .,....,..." ... 
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1-------t-------t-------1---------1 
1 ·GP;t1t1:tr·t .. STGMtr't······r .... , ... p ' ..... , 
1-------t--~----1-------t--- ______ 1 
, .... 0· .. 02 .. t "'O:01'''t''(j;500 " '0:00000 " 
t , 
1 

t 

1 

t 

1 

t 

1 

t 

1 

1 

1 

t 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

t 

t 

1 

1 

'1 

• t 

t 

t 

1 

t 

t 

t 

t 

1 , 
t 

t 

0':02 t 
0'.'02 1 
0':02 1 

0':02 1 
0':02 t 
0.02 t 
0':02 1 

0.02 1 

0'.02 t 
0:02 t 
0':02 1 
0':02 t 
0':02 , 
0':02. t 

0':02 t 
0:02 1 
0':02 t 

0:02 t 
0:02 1 
0:02 , 
0':03 , 
0.03 1 

0':03 1 
0':03 t 
0'.03 1 

0'.03 1 
0'.03 t 
0':03 t 
0:03 1 

0':03 1 
0:03 1 
0:03 1 
0':03 t 

0'0'03 , 
0:03 t 
0':03 1 

0'';'03 t 
0':03 t 

0:03 t 
O':03'\'t 
0:03 t 

0:01 1 0:250 1 O~OOOOO t 
0:01 t 0~125 , O~OOOOO , 
0~02 t 0~500 t 0.00000 1 
0~02 t 0.250 , 0.00000 t 

0.02 t 0:125 t 0.00000 1 
0.03 , 0;500 t 9.32E-05' 
0:03 , 0:250 t 0.00756 , 
0~03 t 0.125 1 0~072S9 t 
0~05 1 0~500 1 0:00074 1 
0:05 1 0:250 t 0~01545 1 
0;05 1 0.125 t 0.08877 t 
0:07 ~ 0:500 i 0~00285 , 
0:07 , 0;250 1 0.02721 1 
0.07 1 0'.125 t 0:10836 t 
o. lOT 0: 500 to. 0 1 074 t 

o:io 1 0~250 1 0:05239 t 
0.10 T 0:125 1 0014502 1 
0.20 t 0.500 t 0:08868 1 
0.20 T 0.250 t 0.t8471 1 
0:20 1 0~125 t 0~30440 t 
Q.Ol t 0.500 t 0.00000 t 
0.01 t 0.250 t 0.00000 1 
0:01 1 0:125 1 0.00000 t 
0.02 t 0.500 t 0.00042 1 
0:02 t 0:250 t 0.02475 1 
0.02 t 0:125 1 0.15378 1 
0.03 1 0~500 t 0.00079 1 
0:03 1 0:250 1 0~02822 t 

0.03 , 0~125 1 0.15716 t 

0.05 1 0:500 1 0.00250 1 
0.05 1 0.250 f 0:03839 1 
0~05 t 0~125 1 0.16696 1 
o .07 f 0 !I: 500 t o. 006 lIt 
0~07 1 0.250 t 0~05164 1 
0~07 , 0~125 f 0:17947 1 
0.10 1, 0.500 1 0 .. 01593 1 
0.10 , 0~250 , 0.07597 t 
0:10 10;12510'.20281 .t 
0.20 t 0~500 t 0~09340 t 
O:~O 1 0:250 t 0:196031 
0.20 t 0~125 1 0.32576 t 

·---~---1----~--t-------1---------t 
t • 4 _ ~. • • 
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Table 2 
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Illustrative Values of Vehicle Loss Probability (p) 

STREET PATTERN 1 RREGULARI TY FIXED AT Q= 1 

GAMMA = SYSTEMATIC BIAS PER UNIT DISTANCE 
SIGMA::: STANDARD DEVIATI0N 0F RAND0;1 BIAS PER UNI T DI STANCE 
r = PR0BABILITY THAT VEHICLE TURNS AT RAND0M INTERSECTI0N 

t-------t-------1-------1---------t 1-------t-------1-------1---------1 
1 ··GAI~Mi'f·t .. ·SI'GMA ·t···· r ··· .. t·:· p . t 
f-------1----~--t-------1---------1 

1 .... O:'(ro .. t .. "0':01' '~ 'O:501l '1"0:OOOOn"1 
1 

1 

1 

1 

1 

t 

1 

1 

1 

1 

1 

1 

1 

1 , 
1 

1 

t 

1 
1 

1 
,t 

1 

1 

t 

1 

t 

t 
1 

1 

t 

t 

1 , 
1 

t 

1 

t , , 
t 

0':00 1 
0':00 1 
0:00 1 
0':00 t 
0':00 t 
0':00 t 
0':00 t 

0':00 1 
0:00 t 
0'.00 1 
0':00 t 
0:00 1 
0':00 , 
0':00 1 
0':00 1 
0'.00 , 
0'.00 , 
0':00 1 
0';00 1 
0:00 t 
0':01 t 

0:01 1 
0':01 1 
0';01 , 
0:01 t 

0.01 1 
0.01 t 
0.01 t 

0:01 t 

0:01 t 

0':01 1 
0.01 t 

0':0 i 1 

0'.01 t 

0':01 t 

0.01 f 

0':01 1 

O.O! 1 

0;01 t 
0':01 , 
0':01 t 

0'.01 t 0:250 t 0'.00000 1 
0:01 1 0.125 1 O~OOOOO 1 
0~02 1 0~500 1 0;00000 t 
0:02 1 0~250 t 0:00000 t 
0.02 t 0:125 t 0:00000 t 
0~03 t 0.500 t O~OOOOO t 
0.03 t 0.250 t 0:00000 t 
0~03 1 0.125 1 0:00000 1 
0.05 1 0.500 1 1';11E-05' 
0~05 t 0:250 1 0~00059 t 
0~05 , 0.125 t 0.00609 1 
0:07 , 0.500 , 0.00032 1 
0.07 1 0.250 1 0.00514 , 
0:07 t 0.125 1 0.02668 , 
0:10 , 0:500 1 0:00400 1 
0:10 t 0~250 1 0.02611 t 
0':10 , 00125 , 0'.08075 1 
0~20 t 0~500 1 0:07618 1 
0~20 1 0.250 t 0.17391 1 
0~20 f 0:125 1 0~29393 , 
0:01 f 0.500 , 0:00000 , 
0.01 , 0.250 1 0.00000 1 
0.01 t 00125 1 0.00000 t 
0:02 t 0.500 1 0.00000 1 
0.02 1 0.250 , 0.00000 t 

0.0210.125, 0.00000' 
0:03 t 0.500 1 3.30E-07t 
o .. 03 to. 250 to'; 00021 , 
0':03 1 00125 1 0.00755 t 
0:05 1 0.500 , 4.10E-05t 
0.05 1 0.250 t 0:00213 t 
0~05 1 0.125 t 0:02127 t 
6~07 , O~500 1 0.00052 1 
0.07 t 0.250 t 0:00837 t 

0.07 t 0.125 t 0'.04388 t 

0~10 t 0.500 t 0:00459 , 
0.10 1 0~250 1 0.03022 t 
0.' 1 0 1 0 .. 125 1 0.091141 t 
o • 20 1 0 • 500 to': 0 7 69 7 1 
0:20 t 0.250 t 0.17604 f 

0.20 t 0.125 t 0.29797 t 

1-------1-------1-------,---------,,,f'" ••• ,-, oil .... /I ••• t .. t _II' J .,. 
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1 ·GP;M .. 1A'1 SI'Gt4A"1' '''r'''' '''1'' . P , 
1-------I-------t-------1---------t 
1 .... 0 :02" t '''cr:or', "'0 :500",' '0:00000 .! 

1 

1 , 
1 

t 

t 

1 

1 

t , 
1 

1 

1 

1 , 
1 

t , 
1 

t 

1 

t 

1 , 
t , 
1 

" 

t 

t 

t 
t , , 
t 

t 

t 

t 

t 

1 

1 

0':02 1 
0'.02 t 
0':02 1 
0':02 t 

0':02 1 
0':02 t 

0':02 t 

0':02 , 
0';02 1 
0:02 , 
0':02 1 
0:02 1 
0':02 t 

0':02 t 

0:02 1 
0':02 t 
0':02 1 

0':02 t 

0':02 t 

0:02 , 
0':03 t 
0':03 t 
0.03 t 
0'.03 t 
0:03 1 
0:03 , 
0':03 , 
0':03 t 
0':03 1 
0'e'03 t 
0':03 t 
0:03 1 
0:03 1 
0':03 t 
0.03 1 
0;03 t 

0':03 1 
0':03 1 
0:03 t 
0':03 , 
0':03 , 

0:01 1 0.250 1 O~OOOOO f 

0:01 1 0~125 t 0.00000 1 
0.02 f 0.500 1 O~OOOOO 1 
O~02 t 0.250 1 0.00000 1 
0~02 1 0:125 t O~OOOOO 1 
o • 03 to': 500 t 1 ': 1 6 E - 05 f 
0~03 t 0~250 1 0~003J6 1 
O~03 f 0~125 1 0~05026 1 
0~05 1 0:500 1 0:00021 t 
0':05 t 0';250 t 0.00875 1 
0.05 t 0~125 1 0:06836 1 
0'.07 1 0.500 t 0.00121 1 
0~07 , 0:250 t 0.01860 1 
0~07 f ~.125 t 0~09052 1 
0~10 f 0.500 , 0~00640 t 
0~10 t 0~250 1 0~04227 1 
o : lOt O. 1 25 to. 1 3 1 79 t 
0:20 1 0:500 t 0:07935 f 

0.20 t 0':250 1 0018217 t 

0~20 t 0.125 1 0.30975 , 
0.01 1 0:500 1 0.00000 t 

0~01 t 0.250 1 0.00000 ~ 
0:01 t 0:125 1 0:00000 t 
0~02 f 0~500 , 4~92E-05f 
0.02 t O'.2S() t 0:01191 1 
0.02 1 0:125 1 0:11964 1 
0:03 t 0~500 t 0.00014 t 
0:03 1 0~250 t 0~01481 f 

0': 0 3 f 0 '. 1 25 to. 1 2444 f 

0005 1 0.500 , 0.00077 f 

0.05 t 0:250 1 0.02388 1 
0:05 1 0'0125 t 0;13802 f 

0'"Q7 t 0.500 t 0.00269 f 

O~07 _, 0:250 1 0.0~663 1 
0.07 10 .. 125 t 0.15476 f 

0.10 t 0:500 1 0.00955 t --
0:10 t 0.250 1 0.06152 1 
o .. 1 0 f O. 1 25 1 O. 1 8 449 t 

0:20 , 0:500 1 0.08328 t 

0.20 t 0:250 t 0;19212 t 

0.20 1 0.125 t 0.32831 t 

·---~---t~-~----t--~----t---------1 

l. 

( 

" 
I 

\ 

... L 



• 

t • 

traversed between turns is l/r. Reinserting b as the minimal ~pacing 

between intersections, the mean distance between adjacent intersections 

is~. Combining these results, the mean distance travelled between q 

losses is 

(11 ) 

If the vehicle travels at an average speed of s mph (accounting for 

stops at calls for service, meal breaks, intersections, etc.), then 

the mean time between losses is 

_b_ 
sqrp (12) 

let us now apply this equation to some hypothetical data to test 

its implications. Suppose our problem can be modelled with the 

following parameter values: 

(f~ = 528 feet = 0.1 mile 

s = 10 mph 

r = (l/3) (probability of a turn at a random 
i ntersecti on) " 

That is, the mean spacing between adjacent intersections is 528 feet, 

or one-tenth of a mile. The standard deviation of this spacing is 

J 

one-half of the mean. These two facts imply, using Equations 9 (a) 

and 9 (b), that 

q = 3/4 

b = 396 feet = 0.075 mi. 

Substituting into Equation (12) for T
L

, we have 

TL = 0.075 mi. = 0.03 
p • 

A popular system design objective,calls for a mean time between losses 

not to be less than 12 hours. Thus, 

TL ~ 12 hours. 

This implies a rather stringent requirement for the loss probability per 

turn, p, in the sense that 

or 

0.03 > 12 
p 

p < °i~3 = 0.0025. 

To put this in stronger terms, this means that the computer tracking, 

software must correctly detect and interpret 99.75 percent of all turns 

made by the vehlel e. This requi rement woul d become even more. stringent 

if we (1) increased the ~verage travel speed above 10 mph; (2) decreased the 

32 ) 
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mean spacings between intersections; (3) increased the probability of 

turning* above 1/3; (4) increased the variability (standard deviation) 

of the spacing between intersections above one-half of the mean. 

IV. QUANTIZATION ERROR 

The discussion to this point has assumed continuous tracking of the 

vehicle in time and space. In practice the time and space tracking are 

quantized, where the time quantization interval corresponds to the 

inverse of the polling rate per vehicle and the spatial quantization 

occurs both in the odometer (distance) and the heading sensor (angle). 

This section will discuss the ways in which these three types of 

quantizations increase the error probability predicted in Equation (10). 

1. Angular Quantization 

The heading sensor information is transmitted to the tracking 

computer -as an N-digit binary number. This allows only 2N different 

angul ar readi ngs to be transmitted. It is customary to posi tion 

uniformly the different quantized readings between 0 and 27f (radians), 

starting at O. If we call aQ the quantized angle, then aQ can take on 
N N N N the values 0, 27f/2 , 2-27f/2 , .•. ,{2 - 1)-27f/2. Then, if the actual 

~eading of the heading sensor is a, the value aQ is transmitted, where 

cxQ is the quantized angle nearest a. In this way the set of possible 

(': 

* Increasing the probability of turning naturally decreases p, 
since less distance is traversed between zero checks • 

;, 
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heading angles ranging from 0 to 2n is partitioned into quantization 

intervals (-n/2N, n/2N), (n/2N, 3n/2N), (3n/2N, 5n/2N), ... , 

{(2N+1 _ 3)n/2N, (2N+l _ 1)n/2N). 

As an example, if N = 3, (bits), the angular information might 

arranged as foll ows: 

~ Quantization Interval Possible Binar~ Code 
, 

0 (--n/8, n/8) 000 

n/4 (n/8, 37f/8) 001 

7f/2 (3n/8, 5n/8) 010 

3n/4 (5n/8, 7n/8) 011 

n (7n/8, 91T/8) 100 

51T/4 ( 91T /8 , 11 n /8 ) 101 

37f/2 (lln/8, 137f/8) 110 

77f/4 (131T/8, 15n/8) 111 

This situation is depicted in Figure 7. Naturally, the greater the 

number of bits N, the greater is the accuracy of the transmitted 

information. 

There appear to be two types of key errors that can occur due to 

angular quantization. The first is a ~onsistent error that occurs 

while tracking a vehicle along a street whose actual angle is ~ but 

which i,s quantized"asa Q• This is illustrated in Figure 8(a), where 

a vehicle is travelling in a straight line at angle a {say a= 71T/16} 

\ 
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but the quantized angle is aQ(= n/2), yielding an angular error due to 

quantization of la - aQI. 

Developing this example, suppose the vehicle travels a distance ti, 

then a "naive" tracking algorithm which did not take account of 

angular quantization might "correct 'l the position of the tracked vehicle 

back on the street at the point on the street closest to the current 

estimated (uncorrected) location of the vehicle. But this would yield 

a travelled distance on the actual street of only x = D cos la - aQ/ ~ D. 

(See Figure 8(b).) A distance estimation error would then be caused by the 

angular quantization; its magnitude would be D - Dcosla - aQI = 
D(l - COSla - aQI). Obviously, the tracking algorithm need not be 

naive since the true angle of the street ~ is known and is maintained 

in the computer map. Thus~ the correct procedure here is for the 

tracking algorithm to move the vehicle forward of its position as 

determined by a perpendicular to the street by an amount D(l-cosla-aQI); 

or, more simply, to move the vehicle along the stree1t by a total amount 

D, not D cos la - aQ I. 

Since thi s type of consistent error can be easi 1y corrected, we 

shall no longer concern ourselves with it. However, seeing the limited 

usefulness of the quantized angular informat'jon in tracking a vehicle 

alohg straight lines, it becomes apparent that the major purpose of 

angular information is to detect vehicular turns, \'Ihen the vehicle 

changes streets on which it is travelling. So a question of c9ncern is 

"How does angular quantization affect the ability of the tracking 

alg6rithm to detect vehicular turns?" 
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To answer this question, we need to introduce the notion of the 

divergence angle of street intersections. In Figure 9, we show two 

examples, a simple four-\,/ay perpendicular intersection and a 

complicated five-way intersection. Consider the simple example first. 

Imagine a vehicle entering the intersection from anyone of the possible 

four directions~~~Upon exiting from the intersection,the tracking 

algorithm must determine if the vehicle has turned; that is if its 

angular direction has changed by n/2 or -n/2 radians (or by n, if 

u-turns are permitted). This it can readily do as long as there are at 

least four quantization' intervals, corresponding to at least N = 2 bits. 
• 

Now assume that the vehicle is entering the five-way intersection 

from anyone of the incoming streets. Allowing u-turns, the computer 
-

tracking algorithm must determine which of the possible angles (al, 

a2, a3, a4, or as) describes the motion of the exiting vehicle. Clearly 

if each of the actual angles ai falls in a different quantization 

interval, then the direction of travel can be determined without error. 

This will be guaranteed to occur if the angles between all adjacent 

exiting streets, called divergenc~ angles, are greater than the size 

of the quantization interval 2n/2N. Mathematically, the divergence 

angles in the example of Figure 9(b) are: 

/a2 - ad = al 

la 3 - a21 = a2 

la4 -a~d = a3 

las - a'41 = a4 

la l + 21T - a s I = as 
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Thus, if MIN{ai } > 21i/2N, then the tracking algorithm can determine the 

street of exit from the intersection without error. 

If, on the other hand, there are two adjacent streets whose 

divergence angle is less than 211/2N, then they mayor may not be 
• 

in the same .. quantization interval. For the N = 3 example, where the 

quantization interval has size 11/4 radians, consider two adjacent 

streets with angles 311/16 and 511/16. Here the divergence angle 

a = 511/16 - 311/16 = 11/8 < 11/4. Yet, the first street falls in the 

quantization interval with aQ = 0 and the second falls in the one with 

aQ = 11/4. So, in this case, no error will occur when distinguishing 

between the first and second streets as exiting streets. However, 

suppose two other adjacent streets \'Jere directed at angles 11 - 11/16 and 

11 + 11/16; then we still have a divergence angle a = 11/8 < 11/4, but the 
. 

two streets both fall in the same quantization interval with angle 

a Q = 11. In such a case in which two streets are contained within the 

same quantization interval, then the tracking algorithm must IIguess" 

the correct street, and it would be reasonable to assume that the 

conditiona,l probability of error would be 1/2.* (t4e \'1111 ignore the 

unlikely cases in which three or more streets are in the same quantization 

interval.) 

To complete our discussion of angular quantization, we seek to find 

a way to compute 

* By~ti1izing statistics on turning probabilities and frequency 
of street usage, this conditional erroY' probability presumably could 
be reduced below 1/2. However, we will ignore such sophistication. 
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P = probability of loss of a vehicle at an 
QA intersection due to angular quantization. 

One way to compute PQ would be to examine each intersection in the 
A . 

city and determine by inspection which intersections have diverging 

streets falling within the same quantization interval. If there are 

found to be 10,000 pairs of diverging streets in the city and 13 of 

them had angles falling within the same quantization interval, then we 

would estimate 

Of course this estimation procedure could be refined by incorporating 

data on street usage and (if available) turning probabilities. However t 

in the absence of such information, this simple calculation is not an 

unreasonable way to proceed. 

A second method, particularly appropriate for very large cities, 

would be to es~imate the probability distribution of the divergence 

angles by sampling a representative subset of them. Suppose 

Fa(x) = Fraction of divergence angles less than 
or equal to x. 

Then, for a randomly selected divergence angle, 

Fa(x) = Prob{ a ~ x}. 

In this context it is natural ,to call 
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the probability density function of divergence angles. The final 

concept we need here is that of the probability of loss of the vehicle 

due to angular quantization, given the value of a, 

PQ (x) = Prob{vehicu1ar loss due to angular 
A quantizationla = x}. 

In the earl ier exhaustive way of computing P
Q 

' this probabil ity was 

always either 0 or 1/2. Now, given that we a:e only sampling the 

divergence angles, we will assume that the absolute angle of rotation 

of the streets at a random intersection is uniformly distributed 

between 0 and 2~. That is, at inte~section j, the ith street leaving 

t.he intersection is situated at an angle cx • + 8 for all . iJ j 1, and 8j is 
uniformly distributed between 0 and 2~. (Note that such a random rota-

tion leaves unchanged the divergence angles such as a , = I 1J cx2j + 
8j - (a1j + .8j ) I = /cx2j - cx2j /.) In such a case, P

Q 
can take on 

val ues between 0 and 1/2 In fact, 't ' A • 1 1S easy to see that 

PQ (x) = 
A 

otherwise. 

(13) 

That is, the conditional proQ~bi1ity of error drops linearly from 1/2 

to 0 as the divergence angl~ increases to the length of the quantiza-
t' . t N ,10n 1n erval 2~/2 ; once above that value, the conditional error 

'probabil'lty remains at Zero. For the N = 3 case, we gave two examples 

in wh i ch the di vergence angl e I'las a = '"/8,' 
y "one yielding an error 
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probability of 0 and the other 1/2. In this new setting in which the 

absolute street rotations are considered random, we would have 

1 1 = 1 = 2 - 4 4· 

Thus, streets whose divergence angles are one-half of the length of the 

quantization interval have a 50-50 chance of falling within the same 

quantization interval; gJvep that they do, the conditional error 

probability is 1/2. The uncondi~ional error probability is therefore 

1.1 = 41 , so our result checks with intuition. 2 2 
Finally, utilizing each of the above concepts, the unconditional 

probability of vehicular loss ~t an intersection due to angular 

quantization is 

21T/2N 1 
P = I 2 [1 - 1 N x] fa(x)dx 
QA x=O (27T/2 ) 

(14) • 

This formula provides a relatively easy way for a city whose angular 

charactet'istics are summarized in fa(X) to compute vehicular loss 

probability (due to angular quantization) il!,a function of the number of 

bits given for angular information N. 

2. Distance Quantization 

In a manner paralleling angular information, distance information 

is also transmitted digitally, therefore necessitating a distance 

quantization interval dQ• Thus, in a moving vehicle, if the odometer 
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• reading has just changed (by adding 1 bit to the previous reading) 

then the next odometer change will occur after the vehicle has 

travelled a distance equal to dQ. Clearly if dQ is of the same order 

of magnitude as block lengths then this type of quantization could 

severely increase the loss probability. Ho\'Iever, typically d
Q 

is 

25 feet or less (at least one order of magnitude less than a typical 

block length). 

The overall effect of distance quantization can be understood by 

examining Figure 10. We focus on the cur.rent and an earlier polling 

of the vehicle. At the earlier polling the odometer reading is 

some (arbitrary) integer k. But'at the actual point of polling the 

vehicle had travelled e units (where distance is measured i~ units of 

quantization distance dQ) since the odometer reading changed to k. 

(Obviously, 0 ~ e < 1.) The uncertainty in the value of e increases our 

uncertainty regarding the position of the vehicle. The vehicle then 

travels an exact odometer distance equal to d, at which point the 

current polling takes place. The odometer reading must be an integer, 

so we round down to the integer which represents the current 'odometer . 
reading. The amount by which we round down is ~ -cp, where 

-~ ~ cp< ~. As we will see, this rounding off procedure also causes 

uncertainty in our estimate of the vehicle's location. Summarizing, 

the odometer reading of the vehicle between any twoarbitrary* pol lings 

is given by 

~ .. 1 
d =' d + e + cp -'2. 

*Assuming that the vehicle is moving, to avoid degenerate cases. 
, 
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Figure A-l0 

Key Variables in Distance Quantization 
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The following assumptions. regarding the two random variables e and 

~ and the variable d seem reasonable: 

1. a is uniformly distributed between 0 and 1. 
. 1 

2. ~ is uniformly distributed between - ~ and + 2 . 

3. e is independent of the subsequent value of d. 

Clearly, ~ is dependent on d + a - ~ since ~ is determined by the non­

integer part of the latter quantity. 

The polling procedures are obviously unbiased since 

'" E[d] = d +.E[e] + E[~] - 1/2 
= d + 1/2 + 0 - 1/2 = d. 

Thus d is an unbiased estimator of the measured odometer distance o. 
Following the argument of Section 11.1, the updated map center­

Hne distance between any two pollings, given that the odometer has 

measured d units of travel, is 

" O(d) = a + X(d) 

= d + e + ~ -. 1 /2 + X ( d) , 

where X{d) is the Gaussian error term of Section 11.1. 

Assuming cr = 0 (for convenience of presentation), 

E[O(d)] = d, 

as expected. However, ~e wish to compute the variance ~f O(d) to deter­

mine the manner in which the polling procedure adds to position estima­

tion uncertainty at intersections at which the vehicle may turn. This 

variance is: 

cr 2
0(d) = E[(d + e + ~ - 1/2 ... X(d):" E[O(d)])2 

"""'""" 
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After some straightforward manipulation we obtain 
2 222 

.. cr O(d) = a X(d) + cr e + a ~ + 2E[~[X(d) + e _ 1/2 )]. 

As one can see, the uncertainty of vehicular position is increased 

over that Clue so 1 ely to random odometer error (aX (d) by (1) the 

unknown odometer distance travelled since the most recent odometer 

change at the last polling (a 2
e), (2) the integer round-off procedure 

(a2~) and (3) the dep~ndence of ~ on the other variables. 

Here, assuming d is at least a block length (which should be 

several units of distance--measured in terms of dQ), we can assume 

that (approximately) ~ is ,independent of X(d) + e - 1/2, thus reducing 

the above equation to 

a
2
0(d) ~ cr2

X(d) + a2
e + a2~. 

Since a2
e = a2~ = 1/12, 

a 2
0(d} = 62

X(d) + 1/6. 

Since this derivation has been carried out in units of dQ, if we switch 

back to feet (or some other absolute standard of distance) we obtain 

( 16) 

In practice we can use this result in a very simple and straight­

forward way. We invoke the facts that X(d) is a Gaussian random variable 

and that O(d) is the sum of random vari~bles. Since usually cr~(d) > da/6 ,' 

the Central, Limit Theorem should apply quickly 'here, indicating that O(d) 

can be treate~ as a Gaussian random variable, havin~ mean 0 and variance 

crX(d) + da/6 = d~2 +,dqI 6. 

' .... ,' 
"- '. 
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Thus, applying this result to the two pollings associated with two 

successive turns, the increase in the vehicle loss probability at a 

random turn due to distance quantization could be estimated by adding 

.dQ/6 to the Weiner process variance (er2 i) in Equation (lOh 

To obtain an intuition for the. numbers involved, suppose a turn 

occurs after 10,000 ,feet and suppose the Weiner process variance is . 

er2 (l0,600) = 2,500 (as in the example in Section II.1.). Suppose 

further that the quantization interval is dO = 25 feet. Then dQ/6 = 
625/6 ~104. Thus the total variance of the estimated distance 

travelled is 
2 

ern (1,000) = 2,500 + 104. 

As can be seen even with this simple example, reasonabOly small values 

for the distance quantization interval dO shou1d- result in little 

degradation in system performance (as measured by vehicle loss proba­

bility). Note, however, that a larger quantization interval of 

dO = 100 feet would result in a significant increase of the total 

variance (from 2500 to 4166). 

3. Time Quantization 

Like angular and distance qqantization, time quantization too 

causes additional uncertainty in the estimate of a vehicle's location 

and thus increases the loss probability p. The unit (;f time quantiza­

tion is t
Q

, which means the vehicl'e is polled every tQ seconds.to obtain 

new distance and heading readings. Typically to is one or two seconds. 

Time quantization's effect on positional uncertainty at a turn can 
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F-i gure A- 11 

Positional Uncertainty at a Turn 
Due to Time Quantilation 
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be seen in Figure 11, at the last polling the vehicle was estimated to 

be south of the intersection, headed north. At the current polling, 

the unit has travelled a distance W~ which is equal to the speed of the 

vehicle times tQ, ?nd its heading has changed from north to east. If 

the computer tracking al~orithm simply projected the vehicle north a 

distance W, the vehicle would be on a north-south street headed east, 

an obvious inconsistency. Thus, the algorithm assumes that a turn has 

occurred and positions the vehicle a travel distance W from the last 

estimated position* but on the east-west street headed east away from 

the intersection. Assuming that this particular street is the correct 

street on which the vehicle turned, the fact that the heading sensor 

changed bet\'1een poll ings means that the turn could have occurred at any 

time during the time interval tQ• Thus, since the vehicle travelled a 

distance W during tQ, the actual position of the vehicle at the last 

polling could have been any\'Jhere south of the intersection up to a 

distance W away. Thus, the new (current) position of the vehicle 

could be anywhere east of the intersection up to a distance W away. 

As a numerical example, if tQ = 2 seconds and the vehicular speed = . 

30 mph = 44 feet/second, then W = 2·44 = 88 feet. 

If we imagine the vehicle entering the region of the intersection 

with estimated location described by a Gaussian random variable with 

variance ad .+ dQ/S, then part of this uncertainty persists after leaving 

the intersection. In the worst imaginable case, yet assuming a correctly 

*This is one reasonable procedure for positioning the vehicle on 
the east-west street. Another, which has been utilized in FLAIR, is 
to position the vehicle exactly at the exit point of the intersection, 
heading east. ~ 
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interpreted turn, the persisting positional uncertainty could be 

described as a uniformly distributed random variable over the west­

east interval W (extending from the intersection). This gives the 

vehicle an initial variance in estimated position of W2/l2, rather 

than 0 as is assumed in the renewal theory model of Section III. 

Upon entering the next intersection where a turn is to take place, 

after travelling a distance d', the variance in the position estimate 

will be W2/12 + ad' +,dQ/S. For reasonably small values of t
Q

, the 

addition to the variance due to W (which is proportional to t ) should 
Q 

not be very large. 

Additional insight on the effect of time quantization on loss 

probabilities can be gained by examining Figure 12. Here at the last 

polling the vehicle was just about to enter the intersection and execute 

a right turn. However, the estimatod position of the vehicle was some­

what north of the intersection (heading sensor still reading north), 

perhaps one or two standard deViations from the mean (or perhaps nearer 

the mean in a system with systematic error). At the curr~nt polling 

the vehicle has travelled a distance W, and the heading has changed from 

north to east. Given that the vehicle has turned right, the computer 

tracking algoritpm is confronted with a decision: Did the vehicle turn 

on street 1 (the fir'st east-west street) or street 2? There are two 

alternative hypotheses: at the time of the last polling the 

vehicle was in the window of length W just south of either intersection 1 

or intersection 2. For a vehicle such as this one which is estimated 

ahead of its actual position, the greater the value of W~ the more 

likely it is that the computer tracking algorithm will choose (incorrectly) 

, 
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intersection 2 (and thus street 2). This is due to the fact that as W 

increases the southern tip of the window 'of length W from intersection 2 

gets closer to the last estimated position of the vehicle, while the 

window from intersection 1 (while getting larger) remains at a constant 

distance from this last estimated position. Thus, as W increases, it 

becomes more and more plausible that the vehicle was actually at the 

southern tip of the intersection 2 window rather than at the northern tip 

of intersection lIs. 

Obviously, for fast moving vehicles moving on streets with 

relatively short block lengths (perhaps engaged in a criminal pursuit), 

these effects of 'time quantization could cause a measurable increase in 

vehicular loss probability. 

; , 
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Figure A-12 

Possible Loss of Vehicle Due Directly to Time Quantization 
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V. Discussion 

In this appendix we have developed several highly simplified 

models in order to analyze the factors. that contribute to vehicle 

loss probability. Briefly summarizing, \'Ie have found the follo\'Jing: 

. (1) One component of vehicle drift from its 
true location is due to random error; This 
is due to many factors including tire 
slipP?ge on streets,: irregular (non-straight 
line) driving patterns, map errors, and, if 
uncorrected in the tracking algorithm, speed 
variations which change the tire circumference. 
This net effect of such random error is 
summarized in the parameter cr2 which is the 
mean squared random displacement per unit of 
distance travelled. 

(2) A second, often dominating component of 
vehicle drift is due to systematic error. 
Th'is type of error creates a bias in the 
odometer readings and its magnitude is 
determined by temper~ture, tire \'/ear and 
pressure, and speed (when the effect of 
speed on drift is viewed as correctable). 
The bias term is y, which is the mean 
systematic displacement per unit o~. 
distance travelled. 

(3) The vehicle loss probability will depend 
strongly on the particular street patterns 
of the city in question. In general the 
loss probability increases as the mean 
spacings between streets decreases, as 
the street pattern becomes more irregular 
(implying more very short blocks), and 
as the diverging angles at intersections 
become small (the definition of small 
depending on the number of bits used to 
transmit angular information). 

(4) The number of binary digits (bits) used to 
transmit information on vehicular heading 
and distance can markedly affect vehicular 
loss probability. One can vij'·tually 

54 

r ., 
'Ii~ 

~ 

1 
1 's 
l , 

t 

e 

; . 

guarantee no increase in loss probability 
due to angular quantization if the corresponding 
numb~r of bits N is sufficiently large so that 
2~/2 is smaller than the smallest diverging 
street angle in the city. The effect of distance 
quantization is to add to the variance of the 
random error a term proportional to the-square 
of the distance quantization interval • 

(5) The magnitude of the sampling interval (in time) 
can also affect the loss probabiilty. For those 
turns which are tracked correctly, the magnitude 
of the sampling interval determines the size of 
a window of positional uncertainty which 
characterizes the vehicle's estimated position 
until it next turns; this can often be crudely 
characterized as an increase in the variance of 
the estimate of position. However, the \'Iindow 
of positional uncertainty can also have a direct 
effect on contributing to nn incorrect inter­
pretation of a turn; the larger the \'Iindow 
[which means the larger the sampling interval], 
the larger is the probability of incorrect 
.decision. 

(6) In most cases we have developed simple equations 
to estimate at least the first order effects on 
vehicle loss probability of each of the key 
factors. 

There are at least two important topics that also bear on system 

performance that have ~t been discussed in this appendix. The first is 

open loop tracking which occurs whenever the tracked vehicle leaves a 

mapped street or alleyway and enters a parking lot, an industrial 

property~ etc. With openlot>p tracking, the tracking algorithm cannot 

use well-mapped street patterns to correct certain drifts in the 

vehicle's location. Thus, the estimation error becomes a two-dimensional 

error rather than a one-dimensional one. Moreover, angular, spatial, and 

temporal quantization can mar'ked1y increase the chance of losing a 

vehicle that is being tracke~ in the open loop mode. Recognizing the 
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extent of imperfect information received in the open loop mode, 

the tracking software in our currently implemented system automati­

cally signals IILost vehicle" as soon as the measured odometer distance 

in an open-loop situation exceeds some prespecified threshold value • 

The second topic is system subvertability, which is defined as 

the susceptabi1ity of the system to deliberate acts aimed at increasing 

loss probability. These include reporting an incorrect address at 

time of Jlloss correction" (or IJ reinitialization lJ
), momenturi1y 

switching off the power of the unit located in the vehicle. The 

system subvertabi1ity is increased by the presence of magnetic 

anomolies that create faulty (uncorrectab1e) heading sensor readings 

and the presence of intersections whose diverging street angles are 

sufficiently small so as to create a high chance of vehicular loss. 

Thjs topic is discussed at greater length in Chapters V, XII of the 

main report. 
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