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I. Introduction

In AVM systems such as FLAIR, an important characteristic
of operational performance is some measure of the system error.
Until recently this has usually been measured in feet or meters
and stated in such forms as the "mean error is 100 feet," or "at
least 95 percent of all position estimations are within 50 meters
of the true position."

Computer-tracked vehicle location systems such as FLAIR pose
new problems, however, in analyzing, modelling, and interpreting
system errors. These systems use an in-car odometer and compass
to provide a crude form of inertial guidance; the somewhat noisy
information from the odometer and compass are transmitted periodically
(every second in FLAIR) to a central receiver wheredit is processed.
by a computer algorithm whose purpose is to update the estimated
position of the vehicle. The update is performed with the aid of
a detailed street map which is a collection of connected straight-
Tine segments (representing street center lines) and "available" to
the algorithm. In regular tracking, whenever the estimated
position is infeasible, say off the street (perhaps in the center
of an apartment complex), the computer "corrects" the estimated

location back to the most Tikely center-line street position.

This correction feature is depicted in Figure 1,
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II. Odometer Error: A One-Dimensional Error

To examine the error characteristics of this system, suppose for
a moment that the vehicle always travels on a single road, never turning
at intersections. Then position estimation error accumulates only in
one dimension, that is along the direction of travel on the roadway.
The accumulated error would be due to a collection of random phenomena
that cause the odometer to yield jnaccurate readings--bumps in the road;
deviations from strict straight-line travel (e.g., lane switching);
pebbles, rocks, sand and other conditions that cause the tires to skip,
and--if viewed as uncorrectable--travel speed (which alters tire circum-
ference). As argued in Chapter 5, random error can also arise along
curved roads due to inaccuracies in the straijght-line segment street
map. In addition, there may be other phenomena that result in inaccurate
odometer readings--but these may be systematic in some sense and, if
detectable, correctable to some degree; examples include outside tempera-
ture {which alters in a predictable way the tire circumference), tire
pressure, tire wear, and--if viewed as correctable--travel speed.

To summarize, the one-dimensional cdometer error may be broken
down into a strictly random component and a "systematic" (but perhaps

stil1l unknown) component.

I1.1 Modelling the Random Error

In physical situations not unlike the current one researchers have

found the Weiner process* to be an excellent model for the random compo-

nent of the error. Historically, this stochastic process was first used

to model the motion of a particle immersed in a liquid or gas, exhibiting

*See, for example, Emmanuel Parzen, Stochastic Processes, Holden-day,
San Francisco, 1962, pp. 8, 26-29, 40, 67-68.
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countless irregular motions. The central idea is that the particie

is immersed in a field that offers continual bombardments of infinitesimal
magnitude that cause the particle to become displaced from center. These
bombardments show no preference for any particular direction (forwa;ds

or backwards in the case of one-dimensional displacement), so the net
effect of the bombardments may be to move the particle in any of the
possible directions (forwards or backwards in a two-dimensional case).
This idea still applies in situations in which the particle is persis-
tently moving in one direction, say due to wjnd currents or electrical
currents (in the case of electrons in semic&nductors). Then the

random error is measured as random deviation from that position which
would be obtained if the particle were governed only by the persistent
movement.

In the vehicle Tocation setting we must establish a frame of
reference for the persistent movement and a measure of error from the
anticipated position. We will measure the persistent movement by the
true mileage d that the vehicle itself has measured since the last zero
check -(i.e., the last time the estimated and true position were known
to coincide.) This measured mileage is accumulated over straight and
winding roads, with and without Tane switching, with and without
slippage, etc. Associated with the traversed path of the vehicle
is a sequence of connected straight-line segments representing street
centerlines in the computer map. Suppose we measure a distance d along
these connected segments, starting with the position of the last zero
check. That process will yield a point on one of the segments repre-

senting the estimated position of the vehicle. The true position of




the vehicle is presumably at some other (not-too-distant) point, most

probably on the same segment. The location estimation error is the

‘(center-1ine) distance between these two points. This method for‘

determining location estimation error naturally incorporates errors

due to both driving behavior and mapping procedures.

Invoking the Central Limit Theorem from probability theory, one
assumes that the position of the particle (vehicle) about its antici-

pated position has a Gaussian or Normal distribution. This distribution

is found in many applications of probability where the nét effect of
some piocess or activity is the sum of many small processes or activi-
ties. Moreover, we assume with the Weiner'process model that the
random perturbations in vehicle positioning occurring during"oné

time interval or distance interval are independent of the perturbations
occurring during another non-overlapping time or distance interval.

For instance, we assume that the random error incurred while tra-
versing one block is independent of the random error incurred while
traversing the previous, the next, or any other block(s).

Finally, we would expect that as a vehicle (particle) travels
further (i.e., exposed to more random perturbations), the accuracy of
the position estimate deterjorates. This is exactly what happens with
the Weiner process model--the variance of the distribution about the

mean grows linearly in time (or distance).
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To formalize our discussion to this point, we model the random
component of the odometer error as follows:

Let X(d) = the random displacement of the estimated vehicle
position, as computed on center-line maps, after
the vehicle has measured d miles of travel from
the starting position (or last update)

D(d) = estimated position of vehicle on center-line maps,
given the vehicle has measured d miles of travel]
from its starting position

= d = X(d).
By definition X(0) = 0. Now the Weiner process model requires that
X(d) have a Gaussian distribution with zero mean and variance that

grows linearly with d. If

fx(x’d) = probability density function of X(d),

then

ylx]d) = —L_ ¢x F20%d

o < < 4o
veno<d X (1)

where
o? = a parameter indicating the intensitx‘of the
| infinitesimal perturbations.
Here o2 can be considered to be the variance of the random displace-
ment per unit of distance travelled. As one verifies froa Eq. (1),
the mean or expected value of the random displacemeﬁt is zero, i.e.
E(X(d)] =0 , s (2)

and the variance (sz(d}) grows linearly with distaﬁée, i.e.,

© O%(a) TEDX() - EDX(€D)?] = ofa. (3)

* Ignoring truncation errors, for the moment. (Sée Séction 1v.)
. 6 .
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Thus the probability law of the Weiner proca)s is spPé:f1ed by Eq. (1),
which reveals the importance of the paraneter o?. This parameter-must
be empirically measured in most appTications, a]though occasionally a
tneony”can be constructedvthat predicts o2 in terms of more fundamental
quantities. For instance, in the case'of the Weiner process model for
Brownian motion, where o? is the mean squared displacement of the

particle per unit time, Einstein in 1905 showed that
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where R is ‘the universal gas constant N the ‘Avogadro number,~« the
abso]ute temperature, and f the friction coefficient of the surrounding
medium. Unfortunately, we know of no.similar relationship-

for odometer'displacements, thereby revea]iné the need for empirical

measurement.

NumericaT’Examp1e

&

To illustrate an example of the use of the Weiner process model,
suppose that we repeatedly drive a vehicle ovet a 10,000-foot test
course andfmeasnre~the'map disglacement error at the end of each 10§690-
foot test drive. The Weiner process modeT'predictﬁ that the histbgram
of such errors would resemb]e a be]]—shaped (norma] or Gauss1an) curve,
symmetr1ca11y poswt1oned about its mean of zero. ,Suppose as a result
of the test runs we calculate the standard deviation of the error to
Then, the htstogram wou1d resemble the Gaﬁssian éurve :

depicted in F1gure 2. _ From these data we can obtain an estimate

o

of o2, which is the mean square error displacement per unit distance
(foot). w@;set the standard deviation of the Weiner process model

equal to tpe measurad value, thereby obtaining

70

vo?d = 50 B
0%(10,000) = 2,500

@ = 0.25 )

, ¢ =

§.50.

Table 1 presents'a summary of the probabilities computedttrom the

Gaussian probabi]ity law. Each entry in Table 1 gives a probability

that a Gaussian random var1ab1e is W1th1n vy standard dev1at1ons of its

mean. . For instance, us1ng our example, the probab111ty that the

estimated p051t1on is correct to within +25 feet (correspond1ng to
one ha]f of a standard deviation on either side of the mean) 1s 0.383,
assumwng 0? = 0.25. The probab1l1ty that the estimated position is

within +50 fent (correspond1ng to one standard dev1at1on on either

side of the mean) is 0.6826. Note from Table 1 that it is quite Tikely

(probability = 0. 9974) that the estimated p051t1on is correct to w1th1n

+150 feet (three standard dev1at1ons)

If the vehicle travels 100 000 féet (about 19 m11es) the standard
dev1at1on now becomes Y. 25(]00 000) = 158.1 feet

. Then, for instance,
the 11ke]7hood that the estimated pos1t1on 1s(pprrect to +158.1 feet

: . SNy T g
(one standard deviation) is 0.6826. g ﬁy , ;

)

/.

: At the other extreme, if the vehicle travels 100 feet; the-% _
standard devnation is ¢r§3(7_57'~ 5 feet,

*

Tt will be for 1bngeraﬁistances (on *©

=y

Lot oo

SO NHD

NP

R e S

e




*3 S R e ‘
& Table 1
B Probability that a Gaussian Random Variable
§ Is within (+)y Standard Deviations of Its Mean*
. Figure A-2 2 . o ‘
¥ Probabi1ity Probability
L Distribution of Odometer Error, ) . 2 ]%50 |
Given the Vehicle Has Travelled 10,000 Feet 0‘-90 - 0.00 ’ 0.8904
(without Systematic Error) i 0.10 0.0796 1.70 0.9108
. L2 0.20 0.1586 1.80 0.9282
¥ 0.30 0.2358 1.90 0.9426
' | 0.492 0.3108 2.00 0.9544
. 3 0.50 0.383 2.10 0.9642
T (%/10,000) I 0. 60 0.4514 - 2.20 0.9722
| 3 0.70 0.516 2.30 0.9786
R & 0.80 0.5762 2.40 0.9836
3 one standard .
ggv?ati’on = 50 feet 0.90 0.6318 2.50 0.9876
¥ 1.00 0.6826 2.60 0.9906
¢ 0 1.10 0.7286 2.70 0.9930
| ] 1.20 0.7698 2.80 ©0.9948
L 1.30 0.8064 2.90 0.9962 ;
¢ ::’ X ) 1,40 0.8384 3.00 0.9974 ‘
! 1.50 0.8664 %
4 |
€ » ¥ ) *"Within y standard deviations" means + y standard deviations, as
. shown in this figure:
one standard deviation = 50 feet = {c‘ d , o |
) ‘ ’ one standard deviation = one S.D.
K 02(10,000) = 2500 (symmetrically positioned around the
8 ’ ) \ : mean) !
o? = 0.25 » : | | %
o= 0.50 b | i
) : / T : MepN : 1 |
o % g pleoney o
5 , 1 sy 1 |
3 ’ ‘ tWO § L
v S.D. s“-%] 5 l,
N . ? I)SODHS o y=2 ?.
N i i
G B 9 ’ ’
¥ p &
J 10
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the order of one block length or more) tﬁat we will find most use

for the Weiner process model.

2. Modelling the Systematic Error
The Weiner process model accounts for the zero-mean truly random

error in the odometer. However, in applications one is Tikely to find
large systematic errors that, if undetected and uncorrected, could
dominate the random errors. The systeﬁatic errors could be due to out-
side temperature, tire pressure and wear, travel speed, etc.

We can model the éystematic error of a vehicle operating under
fixed conditions (i.e., constant temperature, speed, tire wear and
pressure, etc.) by adding a bias term to the Weiner process probability

law. MWith the bias, the expected value of the odometer_displacement is

no longer zero, but is given by
E[X(d)] = vd, _ (4)

where y is the mean systematic displacement per unit of distance
travelled. Allowing for the bias, we still assume the same variance,

i.e.,

Fx@) * o , )

so that the probability law of the odometer displacement becomes

1r e -(x-yd) /20%d 2 o< X < 4o, (6)
V2no?d L “ y
The important point with this realistic modification to the mode1

f (x|d) =

is that y is usually a random variable, that is, its value is unknown

11

T

e,

prior to testing and monitoring the odometer performance of each
vehicle. Determining the value of y for a particu]af vehicle corres-
ponds to "calibrating" the odometer.* If a numerically large value of
y is left undetected and uncorrected (at least within the vehicle-
tracking computer software), then the systematic error could "swamp"

the random errors.

Numerical Example

Continuing with the numbers of our first example, suppose again
that we repeatedly drive a vehicle over a 10,000-foot test course and
measure the odometer error (dispTacement) at the end of each 10,000-foot
test drive. Again, we assume that o2 = 0.25. But now we also assume a

systematic error corresponding to vy = 0,004, Thus
E[X(d)] = 0.004d.

This means, for instance, that if the vehicle is driven 10,000 feet, ~
the expected value (average value) of the odometer displacement is
E[%(10,000)] = 0.004(10,000) = 40 feet. The Gau;sian curve now
indicating the distribution of odometer displacement is shifted to the
right of zero by 40 feet, as indicated in Figure 3. Now the probability
that the odometer reading is correct to +50 feet is considerably reduced
over that found earlier. The "+50 feetﬂ converts to the region extending

from 90 feet to the left of the mean to 10 feet to the right of the

‘ﬁean. This corresponds to 1.8 standard deviations to the left and 0.2

standard deviations to the right. Me can obtain the appropriate

probability estimate from Table 1,

*If the biasing effects of vehicular speed are viewed as correctable,
then it may also be a function of time, varying in a systematic way with
the speed of the monitored vehicle,

12
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- Figure A-3

Distribution of Position Estimation Error,
Given the Vehicle Has Travelled 10,000 Feet

(with Systematic Error)

fx(x/10,000)

N

50 feet

12—

one standard deviation

one standard deviation

bk injems @ s @ anp oA M S B o) o W e an

0
<0 Fer g
= 50 feet = vo?d
o2 = 0.25
Y = 0.004
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whjch indicates that the probability of being within (+) 1.8 standard
deviation is 0.9282, and dividing by 2 (yielding 0.4641) since we are only
concerned with the side of the distribution to the left of the mean. A
similar computation for the area to the right of the mean yields a
probability equal to 0.1586/2 = .0793. Adding the two probabilities

we discover that the probability that the odometer reading is correct

to #50 feet.is 0.4641 + 0.0793 = 0.5434 reduced from 0.6826 in the

case of N0 systematic error (a reduction of 20.8 percent in this measure

of accuracy).

Now consider the case in which the vehicle travels 100,000 feet.

Here again the standard deviation is v¥.25(100,000) = 158.1 feet. However,
the bias in E[X(700,000)] = 100,000(0.004) = 400 feet. In this case,
the likelihood that the odometer reading is correct to +158.1 feet (+ one
standard deviation)’is approximately equal to the probability that the
displaceent falls in an interval to the left of the mean, starting at
3.5 standard deviations from the mean and ending at 1.5 standard devi-
ations from fhe mean. This probability is approximately 0.5 - g;§g§1 ® |
0.0668; a reduction from 0.6826 in the case of no systematic error (a

90 percent reduction in this measure of accuracy).

sracng s

Thus we see the importance of the systematic error term.. A

vehicle with even a small amount of systematic error can incur large

ERRTEEE RSN

position estimation errors as the driving distance from the last zero-

check increases.
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., Figure A-4
‘ ) Self-Correction Feature of FLAIR Vehicle Turning
€
. IIT. TIME BETWEEN LOSSES OF A VEHICLE !
e ’ The Weiner process model applied to odometer readings in a
. P PP g 2 B est1mated(veh1c1e
computer-tracked vehicle monitoring system is a one-dimensional model; i - position (if
€ ) e é l *—1}/9 projected straight
that is, it does not incorporate vehicles turning at intersections. ; | I ahead) l
However, it is this vehicular action which on the one hand allows very I , ———-—-I{——-—-—- ———u—-—]-€555*5> ---—~|—-EEE§—§
'3 accurate position estimates to be sustained over long periods of time 7% > .
i 3 estimated : : .
(even with o® moderately large) and on the other hana gives rise to vehicle position exact vehicle I | "corrected"
. ‘g s ; s R " 1 position estimated
a unique type of position estimation error--the vehicle being "lost. L : { "vehicle
‘ i —— . osition
Y We are now ready to model the more realistic situation in which K} exagz.veh1c1e ' 1P
) IS i position
Va the vehicle occasionally makes turns at intersections. The situation :?
= of a turn is illustrated in Figure 4. Here the vehicle approaches the %{1 ! '
[ intersection from the south. The heading sensor (from the in-car 1 - ! 'v.
- | |
compass) correctly gives a reading of "north." However, the estimated treet
. street
position of the vehicle on the street is two or three car-lengths north 1 | centerline H
g of the actual vehicle location. A time tQ later (corresponding to the b ‘ I
sampling interval) a new odometer reading is received and the direction a. estimated b. estimated c. estimated
‘ : ' : i ition vehicle position . vehicle position
of travel is now east. If the compass direction had not changed from vehicle pos . P . ) P
. . : ‘ . , at time t = t, at time t ='t; + tQ, at time t = t, + tq,
& north to east, the computer tracking algorithm would have:placed the uncorrected (t. = corrected
vehicle back on the north-south street center-line at a latitude prOJected time between updates)
from the new odometer reading. However, since the compass direction has
S : changed, the a]gorithm"assumes" that the.wvehicle has turned at the nearest ‘
possible intersection and correct]y p1aces the vehicle on the approprlate ' ;
east-west street (headed east) at a po1nt very close to ‘its actual
" ,
| 15 . 16
3 . .
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Figure A-5
L& . . Loss of Vehicle: A Vehicle Turn Incorrectly Interpreted
) pos1t10n.f The important point to notice here is that virtually all** of
the accumulated odometer error since the last zero-check is eliminated
. if the tracking algorithm correctly detects and interprets the )

&
vehicle's turn. Thus, each successfully monitored turn corresponds i
to an odometer zero-check. If all turns are monitored correctly, the I l I

. .. ; | |
system distance error does not build up indefinitely, but rather ; o
e | ’ 3 (3)=—|-—- (3)=—-|—-— (3)-—-| ==
reaches some small average value as suggested by the Weiner process i | I | '\\\
~ . . . ' ; 1. "corrected”
model (with or without systematic errors). L | R 1o estimated
: i . 5 | N vehicle
5 The major system accuracy problems occurs, however, when a turn is é " l estimated l \\\\\esﬁimated | position
i ¥ vehicle vehicle
not detected or, if detected, not interpreted properly. This can occur s ' //,position position
in several ways, one of which is depicted in Figure 5. Here, the fﬂ £Eq- ' . l
. 47 ] H
, $ — ]

. vehicle is headed north on a north-south street, but the estimated . - (2)=— T (2)—-—|--&F (2) _ —=-
vehicle position is about two-thirds of a block length ahead (north) of 55 )\ - l iexact l iexact
the vehicle. When the vehicle turns east on street 2, the estimated i X vehicle vehicle

, i, §~\‘exagt I position position
1 3 position is now closer to the street immediately north of the vehicle, ;§ " ) veh1€]e l
; position street
approximately only one-third of a block length from street 3, but two- it ‘j"”'centerline
£ |
thirds of a block length from street 2. Since the compass direction 14 (1)—. (1 ' (1) : _
| R N R L
b has suddenly changed from north to east, the tracking algorithm ,%,@ i
. ¥ f
correctly detects that a turn has pccurred. However, the estimated ¥ s | l
position of the unit is "corrected" to street 3, rather than street 2, ;
I . i b. timated c. estimated
B resulting in the vehicle being "10@@ " This is the key error event in adh.e:t1mat?:. h‘e: b hicle ;osition
' , vehicle position vehicle position ve
the system and one which we will gﬁgﬁmpt to model. at time t = tj . at time at time t = t] + tQ’
' | | ’ ; t =11+ ty, "corrected;" vehicle
g . e . . | uncorrected (t_ = now "lost."
'Y * See detailed discussion in Section IV.3, ;;;;‘g;;;;;ﬁ updates)
**  Again, see Section IV.3 which discusses a (usually) small |
amount of error that remains after the turn.. "
X H
5 .17 18
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While the event causing loss of the vehicle is shown in Figure A-5,
the computer tracking algorithm may not detect the loss until sometime
later (due to apparently infeasible turns executed by the vehicle).
Assuming that the time from incorrectly interpreting a turn until detection
of loss is very small (say, minutes) compared to the mean time between
incorrectly interpreted turns (say, hours), we ignore the small intervening
time span in the model; thus we say that a vehicle is lost as soon as tﬁe
incorrectly interpreted turn occurs.

It is worth noting that sophisticated tracking algorithms can
sometimes correct for a vehicle that i$ determined to be lost, that. is,
they can "find" a lost vehicle. We will not be concerned with the details
of such finding procedures, but we will characterize the success of such

an algorithm by a probability

Pr = grobgbi]ity that a lost vehicle can be successfully
ound. -

Current computer software can usually find about 50 percent of lost
vehicles, resulting in Pe ® 0.50. | |

We now procede to the model formulation. We want to predict the
mean and the variance (or more generally the probability Taw) of the
time or distance between losses (for simplicity we will initially use
distance rather than time), For the moment we will assume Pg = 0,
thgreby ignoring corrections after losses (we can easily incorporate
a nonzero p. after Qe have developed the model). We assume that each

time a vehicle makes a turn and is correctly tracked, the accumulated.

odometer error goes to zero and this event is a renewal event. If the °
vehicle turns and .is not tracked correctly, then the vehicle is lost;

this is the event of interest.

19

We wish to incorporate in the model the following features:

1. Both systematic and random errors as discussed above.
2. The spacings between streets.

3. Some measure of the regularity or irregularity of
< the street pattern.

4. The frequency with which the tracked car makes turns
at intersections.

To model both features 2 and 3, we assume that adjacent intersections are

located kb units apaft'where

o
i

length of the shortest possible city block,

an integer random variable whose probability mass
function is geometric.

-~
1}

Thus the probability law for k can be written

plk = vk =(1-9" g v=1,2,3,... . (1)

There are several ways of interpreting this obviously simplified model
of street positionings. In one interpretation, each time the traéked
vehicle travels a distance b from the last intersection there is a
probability q that it will incur another intersection; regardless of
“success" or "failure" at finding an intersection at that point, the
probability of incurring an intersection at a distance 2b from the
original intersection.is also q. In general, each .time the vehicle
travels b units 6f distance there is a probability q that an ﬁnterseqtion_
wi11 gxist fheré. | ‘

’ Examining some Timiting cases of the model, suppose q = 1. This
corresponds to a situatioﬁ‘jn which theﬁstreets are designed in a
regular square grid paftern, each (actual) block being exéqtly b units

in Tength. This might be an accurate depiction of the streets in

L R L it :
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Wichita, Phoenix, Tuscon and several other midwestern and far-western

cities; where b typically is about 500 feet. At the other:extreme, -

suppose q = €, where € is very small but posftive. This 'would correspond
to an almost totally random pos{tioning of streets, with adjacent
intersections positioned as in a Poisson process with mean "inter-
arrival time" (méan distance between intersections) equal to b/e. Here
the parameter b (by itself) has little meaning, since in applications we
would probably specify the ratio b/e (which would correspond to the
empirically measured mean distance between fntersections), we would note
the Poisson process nature of the street spacings, and we would set b
and € (keeping b/e constgnt) sufficiently small so as to achieve the
‘required accuracy in the model.

Having examined extreme values of g, we see that intermediate values
correspond to intermediate degrees of régularity or irregularity in the
street pattern, with higher values indicating greater regu]ari&&i

In actual applications, how do we determine numerical values for
b and q? From the model we can compute that the mean distance between
adjacent intersections is b/q and the variance is b2(17§r99. We can
also compute empirical values for these quéntitieS‘from a map of the city
being modeled. Suppose the empirica]]y‘calcu1ated'mean distance betweenn,

intersections is % and the variance is of. Then set.

£ = b/q . : (a)
and
o2 = bz(l_%rﬂ)_” (b) (8) .
2‘ “ q !
Manipulating these equatiens, we get g : o
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b = 2(1 - %. (b) (9)

Note that in order for q to remain ronnegative, we must have gy < L.

This is just as .we expect since the most ro...om distribution of

streeté that we can maﬂel is the Poisson process distribution, and this

.FOTFESpénds‘to o, = %. ;f is important to note that the parameter b now

becomes the unit of distéhce in our model.
Feature 4 of the model, the frequency with which the vehicle makes

turns, can be modelled simply by defining

r = probability that the vehicle turns at any given
intersection.

We assume that the turning decision is made independent]y at each

intersection and thus that turns occur as a Bernoulli process with

parameter r.

We are now ready to compute the unconditional probability of

~ "loss" of a vehic]e,on‘abrandomly selected turn. Call this quantity

p. C1ear1y;

Prob{vehicle makes next turn i units of - -
1 distance from last turn}Prob{loss|i}. ,

=
I
] 8

1

J

ﬁ”If a yehiéﬁeis almost at a distance d = i “from the last turn, the

probability of turning at j is simply equai‘gg qr, the probability

" that a street intersection exié;s at d = i multiplied by the probability .

Vof turning, givén that an intersection exists. Thus the probability ﬁhat

£
‘ 0
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the vehicle makes its next turn exactly i units of distance from the
last turn is a geometrically distributed random variable with parameter
qr, and we can write

p = ﬁ gr(1 - qr)i']Prob{lossli}.
i= :

Our next task is to express Prob{loss|i} in terms of previously
defined parameters. We assume that a vehicle is lost if it is
estimated to be closer to an intersection other than the one at which
it is actually turning. Figure 6 depicts "for@ard loss" of a vehicle,
that is a situation in which the vehicle is estimated to be closer to
an intersection "in front of the vehicle" than the one at which it is
turning. In Figure 6 the vehicle turns at d =1i-, the next intersection
ahead of the vehicle is located at d = i + j. If the estimated
position of the vehicle is to the right.of the halfway point between
the two intersections (gij;—i), then the vehicle has incurred forward

loss. Backward loss occurs in a directly analogous fashion with the

nearest intersection "behind" the vehicle at d = i. Utilizing the

Weiner process model, the probabiiity of incurring forward loss in this

case 1is

5oL o ly-vi)Eaeti g
i/2 Vemeri ’

The analogous probability of backward loss is

-1

a
;o o~ (y-vi)?/20%i
V21521 é V-

23"
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Figure A-6

Forward Loss of a Vehicle

position of
current turn

distance to next

N

V intersection

< =

] 1 ]

| [ ¥

1 i+
position of T
last turn

2i +j
2
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to be to the right of
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In most cases of practical interest, in which o? and vy are sufficiently
small to yield a small p, we can approximate p by changing -i (the Tower

1imit on the last integral) to -». Thus we approximate

Prob{loss x = i and next intersection j units in distance} ®

ire”

s SOSSREE S RE S RIET

;o1 -lyy)aetiog, Y i vzes -
572 Voo © WS e TR gy
j/2
= 1-7 1. (y-vi)?/20%i 4
-j/2 vZmo2i Y-

Now, the probability that the next intersection is j units in distance

isq( -1, 5=1,2,.... Thus
© . j/2 yoni )2 24
Prob{loss|x =1} £ q(1 - q)? ‘n-s 1 e ly-vi)*/20% dy].
j=1 -j/2 Vemo#i

Finally, the quantity of interést, p (the unconditional probabi]ity of

Joss on a randomly selected turn of the vehicle) is given by

o L e . i/2 PRy
p = = qr(l-an) 3 q-gT - 1 e (y=vi)*/205% 4y3 (10
i=1 J=1 -j/2 YZwoZi :

I1lustrative values of this probability have been tabulated with the
assistance of a computer. (See Table 1.) |

Since losses occuras in a Bernoulli process, the mean number of

turns executed‘béfween losses is 1/p. The mean numbér of intersections

o
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Table 2

I11ustrative Values of Vehicle Loss Probability (p)

STREET PATTERN IRREGULARITY F1XED AT G= 0.2

GAMMA = SYSTEMATIC BIAS PER UMIT DISTANCE
SIGMA = STANDARD DEVIATIGSN OF RANDGM BIAS PER UNIT DISTANCE

r = PRGBABILITY THAT VEHICLE TURNS AT RANDOM INTERSECTION

tomms - e m——— fommm——— e ——— t I Pm—m - e m=—— fomm s~
t "GAMMA 't SIGMA't 7T r 't p t 1t 'GAMMA "t "SIGMA' "t r Tt p
o= e mm———— o ——— fommmmm——— t P - —— P R et R Rt
t "'0.00°t 0,01 t 0.500 't 0,00000 1t t " 0,02t 0,01 "t '0.,500 t7G 00000
+ 0.00 ¢t O0.01 t 0.250 t 0.00000 ¢t t 0.02 t 0.01 t 0.250 t 0.00000
t+ 0.00t 0.01 t 0.125 t 0.00000 * + 0.02 t 0.01 * 0.125 t 0700000
t+ 0,00t 0.02t 0,500 t 0.00000 t t 0.02 ¢+ 0.02 t 0.500 * 0.00000
t+ 0.00 t 0.02 t 0.250 * 0.00000 ¢ t 0 02 ¢t 0.02 t 0.250 t+ 0.00000
t 0.00t 0.02 t 0.125 t* 0.00000 ¢ t 0.02 t 0.02 t 0.125 t 0.00000
+ 0,00t -0.03 t 0,500 t+ 0.00000 1 t 0.02 t 0.03 ¢t 0.500 t 0.01924
t+ 0.00 # 0.03 t 0.250 t 0.00000 ¢ + 0-02 t 0.03 t 0.250 t 0.07582
t 0.00 t 0.03 ¢t 0125 ¢ 0.00000 1 t 0,02 t+ 0+.03 t 0.125 t 0.18761¢
t 0,00t 0.05t 0.500 * 0.00216 1t 1 0.02 t 0.05 t 0.500 t 0.02402
t 0.00 t 0.05 ¢t 0.250 t 0.00862 1t t+ 0.02t 0.05 t 0.250 t 0.08020
t  0.00t 0.05t 0.125 t 0.02331 ¢ t 0.02 t 0,05t 0.125 t 0.18896
t 0.00 t 0.07 t 0.500 t 0.00819 ¢ t 0.02 ¢t 0,07 * 0.500 * 0.03010
t 0.00 * 0.07 t 0.250 t 0.02267 ¢ t 0.02 t 0.07 t 0.250 t 0.08623
t+ 0.00 t 0.07 t 0.125 t 0.04835 ¢ t 0.02 t 0.07 t 0.125 t 0.19151
t 0.00 t 0.10 ¢t 0.500 1t 0.02311 ¢ t 0.02 t 0.10 t 0.500 t 0.04184
t 0.00 1t 0.10 %t 0.250 t 0.04933 t 1 0.02 t 0.10 t+ 0.250 t 0.09908
t 0.00t 0.10 t 0.125 t 0.08882 1 t 0.02 t 0.10 t 0.125 1t 0.19955
t 0,001 0.20 t 0500 t 0.08973 t 1 0.02 t. 0.20 * 0.500 ¢t 0.09907
t 0. 00t 0.20 ¢t 0250 t 0414379 1 t 0.02 t 0.20 * 0.250 t 0.16612
t 0.00 t 0.20t 0,125 1t 0.,21206 * t+ 0.02 t 0.20 t 0.125 t 0.26018
t+ 0.01 t 0.01 t 0.500 t*+ 0.00000 ¢ t 0.03.t 0.01 t 0.500 ¢t 0.00000
t+ 0.01 t 0.01 ¢+ 0.250 % 0.00000 ¢ t 0.03 * G.01 * 0.250 t 0.00000
+ 0,01 t 0.01 t 0125 t 0.00000 ¢ t 0.03 t 0.0! t 0.125 t 0.00000
t 0,01 * 0.02 t 0,500 * 0.0Q0000 1t t 0,03t 0.02 t 0.500 t 0.04328
t+ 0.01 t 0.02 t 0.250 t ©.0H0000 < 14 0.03 ¢+ 0.02 t 0.250 t 0.13275
+ 0.01 ¢t 0.02 t 0.125 t 0.00000 1 t 0. 03t 0.02 t 0.125 t 0.27923
t 0.01 t+ 0.03 t 0.500 t 0.00)345 1t t 0,03t 0.03 t 0.500 t 0.04450
t 0.01 t 0.03 t 0.250 ¢ 0-0227} T t 0.03 t+ 0.03 t* 0.250 t 0.13332
+ 0.01 t 0.03 t 0.125 t 0.07882 1 t 0.03 %t 0,03 t 0,125t 0.27904
t 0.01 t 0.05 1t 0G.500 t 0.00765 1t 1 0.03 *+ 0.05 1t 0,500 t 0.04811
t 0.01 t 0.05 ¢t 0.250 t* 0.03089 1t t 0.03 1 0.05 1t 0.250 t 013519
t 0.01 t/ 0.05.¢ 0.125 t 0.08679 ¢ t 0.03t 0.05 1t 0.125 t 0.27858
+ 0701 t .0.07 ¢ 09500 t 0.01406 t t 0.03 t 0.07 *t 0.500 t 0.05289
t 0.01 t 0.07 t 0.250 t 0.04180 1 t 0,03t 0,07 t 0.250 t 0.13801
t+ 0.01 t 0407t 0.125 t 0.09871 * + 0.03 t 0.07 t 0.125 t 0.27823
t+ 0.01 t 0.10 * 0.500 t 0.02807 1 t 0.03 t 0.10 t 0.500 % 0.06198
t 001 t O0.10 t 0.250 ¢ 0.0634) 1 t 003 t 0.10 t 0.250 t 014452
t 0.01 t 0,10 * 0.125 ¢ 0.12387 ¢ t 003t 0.10 t 0.125 t 0.27899
t+ 0,01 t 0.20 t 0.500 ¢ 0.09211 ¢ t 0,03t 0.20 t 0.500't 0.11011
t 0,01 t 0.20 t 0.250 t 0.,14962 1t t 0.03 t 0,20 t 0.250 ¢t 0.19084
t 0.01 t 0.20 t 0.125 t 0.22519 ¢ t 0.03 ¢t 0.20 t 0.125 t 0.30747
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Table 2

(page 2 of 5)

GAMMA =

F.=

-

- - -

0.02
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STREET PATTERN IRREGULARITY FIXED AT 8= 0.4

SYSTEMATIC BIAS PER UNIT DISTANCE
SIGMA = STANDARD DEVIATIOGN OF RANDOM BIAS PER INIT DISTANCE
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'3.,00000°

0. 00000
0.00000
0.00000
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0.00000
0.00379
0.03772
0.14071
0.00780
0.04676
0.14746
0.01384
0.05804
0.15672
0.02706
0.07961
0.17707
0.10122
0.17988
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0.00000
0.00000
0.00000
0.01252
0.08308
0.23479
0.01431
0.08523
0.23533
0.01960
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. Table 2 :
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I1lustrative Values of Vehicle Loss Probability (p)

L]

STREET PATTERN IRREGULARITY FIXED AT Q= 0ﬁ6

GAMMA = SYSTEMATIC BIAS PER UNIT DISTANCE
. SIGMA = STANDARD DEVIATION OF RANDOBM BIAS PER UNIT DISTANCE
r =

PROBABILITY THAT VEHICLE TURNS AT RAND®M INTERSECTIOGN

LT L tommmm - teme e t o ——— T R it L it
t ‘GAMMA 't 'SIGMA """ r Tt p .7t t GAMMA "t "SIGMA "t 7P Tt p
Pomwm——— tomem——— femmes—— tmmemm e t P tom e —— T mm—— I el
170,00t 0.01°t "0.500"t+""0. 00000 't t 0,027t 0W0T "t 0,500t "0.00000°
t+ 0.00t 0.0l t+ 0.250 t 0.00000 t t 0. 02 t 001 t 0.250 t 0.00000
+ 0.00 t 0.0! t 0O.125 t 0.0000C0 1 t 0.02 t O0+01 ® 0.125 t 0.00000
t+ 0,00t 002 t 0.500 * 0.00000 1 t+ 0.02 t 0.02 t 0.500 t 0.00000
+ 0.00t 0.02 t 0.250 t 0.00000 1t + 0.02 t 0,02 t 0.250 t 0.00000
t 0,00t 0.02 t 0.125 t 0. 00000 ¢t t 0702 t 0.02 t 0.125 t 0,00000
t 0,00t 0703 t 0. S00 t* 0.00000 t t 0.02t 0.03 t 0 500 t 0.00064
+ 0,00t 0.03 t 0.250 t 0.00000 t t 0.02t 0.03 t 0.250 t 0.01737
+ 0,00t 0J/03t 0.125 t 0.00000 1t t 0.02 t 0.03 1t 0.125 t 0.10244
+ 0 00t 0.05 % 0.500 t 0.00015 1t t 0.02 t* 0.05 t 0.500 t 0.00246
t 0.00*t 0,05t 0.250 t 0.00218 1t t 0.02 t O0.V05 t 0.250 t 0.02702
t 0.00t 0.05t 0 i§25 ¢t 0.01212 1t t 0702 t 0. 05 t 0.125 t 0.11469
t+ 0.00t 0.07 t+ 0-500 t 0.00173 1t t 0 02t O0O.07 t 0.500 t 0.00637
t 0.00t 0.07 * 0.250 t 0.01118 1 t 0.02 t 0707 ¢t 0.250 t 0.03970
+ 0.00t 0.07 t 0.125 t 0.03808 t t 0.02 t 0.07 t 0.125 t 0.12996
t 0.00t 0.10 t 0.500 t 0.01063 * t 002 t 0«10 t 0.500 t N.01728
t 0+ 00t 0.10 t 0.250 * 0.03855 ¢ t 0+02 t 0.10 t 0.250 t 0. 06462
t 0,00t 0.10 t 0.125 t 0.09174 ¢ t 0.02 t 0.10 t 0.125 t 0.15982
t 0.00t 0.20 t* 0.500 t 0.09174 1t t 0,02 ¢t 0720 t 0.500 t 0.09645
t 0.00t 0.20 t 0.250 t 0.17332 1t t 0.02 t 0.20 t 0.250 * 0.18455
t 0.00t 0.20 t 0.125 t 0. 27325 t t 0.02 t 0.20 t 0.125 t 0.29589
+ 0+01 t 0.01 t 0 500 t+ 0.00000 t t 0+03 ¢t O0.01 t 0.500 t 0.00000
+ 0v01 *+ 0.01 ¢t 0.250 t 0.00000 * t 0,03t 0.01 t 0.250 t 0.00000
t 0.01 t 0.01 t 0.125 t 0.00000 1t t+ 003 t 0.01 t 0.125 ¢t 0.00000
T 0.01 1t 0.02 * 0.500 t 0.00000 ¢ 0+03 1t 0.02 1t 0VS500 t 0.00266
t 0v01 t 0.02 1t 0.250 t 0.00000 1t t 0.03 %t 0.02 t 0.250 t 0.04739
t+ 0.01 t 0.02 1t 0.125 t 0.00000 t t 0.03t 0.02 t 0.125 t 0.1925} -
+ 0. 01t 0.03 t 0.500 t 3.41E~-0S5t t 003 t 0v03 t 0500 t 0.00370
+ 0.0l t 0.03* 0.250 t 0.00211 1t t 0<03 t 0+.03 t 0.250 t 0.05069
t 0.01 t 0.03 * 0.125 t 0.02460 ¢ t 0.03 t 0.03 t 0,125 t 0.19436
t 0,01 t 0705 %t 0.500 t 0.00056 1 t 003 t 0.05 1t 0.500 t 0.00731
t 0.01 t 0.05 t 0.250 t 0.00774 t t 0,03t 0+05 t 0.250 ¢t 0.06013

* ¢+ 0.01 t 0.05 1 04125 t 0.04177 1t t 0.03 t 0.05 t 05125 t 0.19998
t 0.01 ¢ 0.07 t 0.500 t 0.00281 ¢ t 0.03 t 0.07 * 0.500 * 0.01303
t 0.01 t 0.07 t 0.250 t 0.01850 1 t 0.03 % 0.07 t 0.250 t 0.07207

"+ 0.01 t 0.07 t 0.125 t 0.06490 ¢ t 0.03 t 0.07 t 0.125 t 0.20768
t 0.01 t 0-10 t 0.500 * 0.01229 1 t 0,03t O0.10 t 0.500 *t 0.02551
t 0.01 t 0.10 t 0.250 t 0.04535 1t 1 .0.03 t 0+10 t 0.250 * 0.09353
t 0,01 1t 0+10 f 0.125 ¢t 0.11069 ¢ t 0703 t+ 0W10 t 0.125 t 0.22358
t 0.01 t 0.20 t 0+500 t .0.09293 t t 0.03 1t 0.20 t 0.500't O.10222
t 0s01 t 0.20 t 0+250 t 017617 1 f 0,03 1t 0.20 t 0250 t 0.19794
t 0,01 ¢+ 0+20 t 0.125 ¢t 0.27911 1 t 0403t 0.20 t 0,125 t 0.32149
fumm———— e e R e t T LR R T - -
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Table 2

(page 4 of 5)

Illustrative Values of Vehicle Loss Probability (p)

STREET PATTERN IRREGULARITY FIXED AT 0=

GAMMA =

' =
L TR, ? R
t 'GAMMA "t "SIGMA
frm—m——— e e
T OI00 OO
t 0.00 t 0.01
k4 0.00 1t 0.01
t+ 0700 t 0.02
t 0700 *+ 0.02
t 0. 00 t 0.02
* N 00 1 0.03
t 0.00 *+ 0.03
t 0.00 t 0.03
t 0700t 0.05
* 0.00 t 0.05
t 0,00t 0.05
t 0.00 t 0.07
t 0,001 0.07
t+ 0.00 t 0.07
T 0.00 1t 0.10
t 0.00 ¢t 0v10
t 0,700t 0710
t 0700t 0.20
T 0.00 * 0.20
t 0.00 * 0.20
t 0701 t 0,01
T 0 01 1 0.01
t 0.01 t 0.0%
t 0.01 t 0,02
t 0701 * 0,02
Tt 0701 t (.02
t 0,01 t 0.03
t 0701 t 0.03
T 0“'01 t 0.03
t 0.01 t 0,05
t 0. 01 t 0.05
t 0.01 t 0.05
1 0,01 t 0707
t 0.01 * 0.07
4 00'01 t 0.07
t 0.01 t 0.10
t 0701t 0.10
t 0.01 t 0.10
t 0.01 t 0.20
t 0.01 * 0.20
t 0701 ¢ 0720

0.8

SYSTEMATIC BIAS PER UNIT DISTANCE
SIGMA = STANDARD DEVIATI@N OF RANDOM BIAS PER UNIT DISTANCE

------- Tommmm—
R p ‘e
------- fomm et
0.500 "+ "0, 00000 1*
0.250 * 0.00000 1t
0.125 *+ 0.00000 t*
0.500 * 0.00000 t
0.250 *+ 0.00000 *
0v125 t+ 0.00000 *
0.500 *+ 0.00000 ¢
0.250 t* 0.00000 +t
0.125 t+ 0.00000 *
0.500 t 4.26E-05¢%
0.250 t* 0.00113 1t
0.125 t 0.00858 1
07500 *+ 0.00076 t
0.250 t 0.00760 1
0.125 * 0.03202 *
0.500 * 0.00667 *
0.250 ¥+ 0.03198 1t
0-125 t+ 0.08674 ¢
0.500 * 0.08486 *
0.250 * 0.17532 ¢
0.125 * 0.28593 1*
0.500 * 0.00000
07250 *+ 0.00000 t
0.125 t 0. 00000 1t
0:500 t 0.00000 1
0.250 % 0.00000 1=
0.125 * 0.00000 1
0500 t 3.S1E~-061
0.250 t 0.00066 *
0125 1 0.01362 ¢
0.500 * 0. 00016 ¢
0.250 t 0.00404 1t
0.125 t 0.02970 1
0.500 * 0.00124 1*
0.250 t 0v01244 1
0.125 t 0.05332 1
0.500 * 0.00768 1t
0.250 * D.03722 1
0+125 ¢+ 0.10259 1
0.500 * 0.08582 ¢
0.250 .1 017769 1*
0.125 t 0.29067 1t
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77700027 U001 04500t C0.00000 't
t 0.02 t 0.01 * 0.250 ¢+ 0.00000 1t
t 0.02 t 0.01 *t 0. 125 1 0.00000 1t
t 002 + 0.02 * 0.500 1t 0.00000 1
T 0.02 1t 0.02 1t 0.250 ¢t 0.00000 *
Tt 0.02 t 0.02 t 0.125 ¢ 0.00000 ¢t
t 0102 t 0.03 *t 0.500 t 9.32E~051t
t 0,02 t 0.03 t 0.250 t 0.00756 ¢
t 0.02 t 0.03 * 0.125 t 0.07259 ¢
t 6.02 ¢+ 0705 t 0.500 t 0.00074 1
t 0.02 *+ O0.05 t 0.250 t 0.01545 *
t 0.02 t 0.05 % 0.125 t 0.08877 ¢
t 0.02 t+ 0. 07 * 0.500 t 0.00285 1
T 0702 ¢t 0.07 t 0.250 1 0.02721 ¢
T 0702t 0.07 1t 0.125 t 0.10836 1t
t 0{02 * 0.10 * 0500 t 0.01074 ¢
$ 0.02 t 0.i0 t 0.250 0.05239 1
T 0.02 * 0.10 t 0.125 t 0.14502 1t
T 0.02 t*+ 0.20 * 0.500 t 0.08868 1
t 0.02 t 0.20 t 0.250 t 0.18471 1t
t 0.02 * 0.20 t 0.125 1t 0.30440 1
t 0.03 t Q.01 * 0.500 t* 0.00000 ¢t
t 0103 t 0.01 * 0.250 * 0.00000 1
t 0}03 t 0.01 t 0.125 t 0.00000 ¢
t 0.03 * 0.02 *t 0.500 1t 0.00042 1
1 0.03 t 0.02 ¢ 0.250 1 0.02475 1
t 0.03 t+ 0.02 t 0.125 t 0.15378 t
T 0.03 t* 0.03 * 0.500 ¢ 0.00079
t 0{03 t 0,03 t 0.250 t 0.02822 1t
t 0.03 t 0.03 * 0.125 t 0.15716 1
"t 0 03 t 0.05 t 0.500 1 0.00250 1*
t 0.03 * 0.05 1t 0.250 t+ 0.03839 1
Tt 0403 t 00705 t 0125 t 0.16696 1t
t 0V03 * 0.07 t 0+ 500 t+ 0.00611 t
t 0703 t 0.07 * 0.250 t 0.05164 1t
t 0.03 t 0.07 * 0.125 t 0.17947 ¢
t 0703t 0.10 * 0.500 * 0.01593 1
t 0?03 t 0.10 t 0.250 * 0.07597 ¢
t 0{03 t 0410 t 0,125 t 0.20281 1t
1 0-03ﬂt 0-?0 Tt 0500 ¢t 009340 1
t 0703t 0.20 t 0.250 1t 04156031
t OfOS t 0.20 t 0.125 t 0432576 1
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Illustrative Values of Vehicle Loss Probability (p)

STREET PATTERN I1RREGULARITY FIXED AT @= 1

GAMMA
SiGMA
r =

R ek P mmmic el m—————-— o — .- t
T GAMMATtTSIGMA T+ r Y p t
------- L et Rttt TR P
0,00 "¢ 0701 'y '0.500 't'0.00000 "'
0.00 t 0.01 * 0,250 * 0.00000 1t
0.00 *+ 0.01 t 0.125 * 0.00000 *
0.00 ¢+ 0.02 t 0.500 t* 0.00000 1
0.00 *+ 0.02 t 0.250 t 0.00000 1
000 t+ 0.02 t 0+125 ¢t 000000 ¢
000 t 0.03 t 0.500 * 0.00000 ¢
000 ¢t 0.03 t 0.250 t 0.00000 ¢
0.00 ¢t 0.03 t 0.125 t 0.00000 ¢t
000 ¢t 0.05 t 0.500 ¢+ 1 11E-0S*
0,00 * 0.05 t 0.250 t* 0.00059 t
000 t 0,05t 0.125 t 0.00609 ¢
0.00 * 0,07 *t 0.500 t 0.00032 1t
000 t 0.07 t 0.250 * 0.00514 1t
000 ¢t 0407 t 0,125 t 0.02668 1
0 00 * 0.10 t 0.500 t 0.00400 1t
0.00 t O0.10 t 0V250 t D.02611 1t
0.00 ¢t O0V10 * 0.125 t 0.08075 ¢
0.00 *+ 0. 20 ¢t 0.500 * 0.07618 1t
000 ¢+ 0720 t 0.250 t 0+17397 1t
0.00 t 0.20 * 0.125 t 0.29393 1t
0.01 t 0.01 * 0.500 t 0.00000 t
0,01 * 0.01 t 0250 t 0.00000 1t
0,01 *+ 0.01 t 0.125 t 0.00000 1t
0v01 * 002 t 0.500 t* 0.00000 1t
001 t* 0.02 t 0.250 t* 0.00000 t
0.01 ¢+ 0.02 t 0.125 ®* 0.00000 1t
0.01 t 0 03 t 0.500 t 3.30E-071
.01 * 0.03 t 0.250 t 0.00021 1t
0+01 t 0203 *t 0.125 * 0.00755 1t
0.01 * 0405 t 0.500 t 4.10E-05¢
0’01 * 0.05 t 0.250 t 0.002713 ¢
0.01 1 0'-05 t 0.125 1t 05.02127 1
o’0f + 0707 t 0.500 t 0.00052 ¢
0.01 ¢t 0.07 t* 0.250 t 0.00837 1
0.01 * 0.07 t 0.125 t 0.04388 1
0.01 * 0,10 t* 0.500 t 0.00459 1t
0,01 * O0.10 t 0. 250 * 0.03022 1t
0.0 ¢t 0610 t 0.125 t 009441 1t
0,01 t 0+20 t 0+.500 t 0. 07697 1t
001 ¢+ 0.20 t 0.250 ¢t 0+.17604 ¢
0.01 * 0.20 t 0+125 ¢ 0.29797 1t
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traversed between turns is 1/r. Reinserting b as the minimal spacing
between intersections, the mean distance between adjacent intersections

is Qu Combining these results, the mean distance travelled between

losses is

(11)

'_t:
u
oo
-S|
o f—

If the vehicle travels at an average speed of s mph (accounting for
stops at calls for service, meal breaks, intersections, etc.), then

the mean time between losses is

= _ b »

o

Let us now apply this equation to some hypothetical data to test
its implications. Suppose our problem can be modelled with the

following parameter values:

dy = 528 feet = 0.1 mile

g

L= (y2)d
s = (16 mph
ro= (1/3) (probability of a turn at a random

intersection)

That is, the mean spacing between adjacent intersections is 528 feet,

o

or one-tenth of a mile. The standard deviation of this spacing is

31.

P
-

e S
b d

e

one-half of the mean. These two facts imply, using Equations 9 (a)

and 9 (b), that

q = 3/4

o
1}

396 feet = 0.075 mi.

Substituting into Equation (12) for TL, we have

= . __0.075mi. - _ 0.03

= et

L : 31 p
(IO'm1/hr) T3P

i
I

A popular system design objective calls for a mean time between losses

not to be less than 12 hours. Thus,
TL > 12 hours,

This implies a rather stringent requirement for the loss probability per

turn, p, in the sense that

0.0

w

po 2 12
or
0.03 _

To'put this in stronger terms, this means that the computer tracking .

software must correctly detect and interpret 99.75 percent of all turns

‘3 made by the vehicle. This requirement would become even more stringent

if we (1) increased the average travel speed above 10 mph; (2) decreased the




£

&

mean spacings between intersections; (3) increased the probability of
turning* above 1/3; (4) increased the variability (standard deviation)

of the spacing between intersections above one-half of the mean.

IV. QUANTIZATION ERROR

The discussion to this point has assumed continuous tracking of the

vehicle in time and space. In practice the time and space tracking are

" quantized, where the time quantization interval corresponds to the

inverse of the polling rate per vehicle and the spatial quantization
occurs both in the odometer (distance) and the heading sensor (angle).
This section will discuss the ways in which these three types of

quantizations increase the error probability predicted in Equation (10).

1. Angular Quantization

The heading sensor information is transmitted to the tracking
computer as an N-digit binary number. This allows only 2N different
angular readiqgs to be transmitted. It is customary to position
uniformly the different quantized readings between 0 and 2r (radians),
starting at 0. If we call % the quantized angle, then o can take on
the values 0, 2n/2", 2-2nr/2%,..., (2" - 1)-21/2". Then, if the actua]
reading of the heading sensor is o, the value aQ is transmitted, where

&Q is the quantized angle nearest a. In this way the set of possible

* Increasing the probability of turning naturaf]y decreases Ps
since Tess distance is traversed between zero checks. ’

33

ey
-«

-

P T
-

heading angles ranging from 0 to 2w is partitioned into quantization

intervals (-n/2", w/2%), (w2, 3u/2%), (3n/2M, sws2My, ...
(V7 - 3y, (@M g2y,

As an example, if N = 3, (bits), the angular information might be

arranged as follows:

EQ Quantization Interval Possible Binary Code
0 (-n/8, w/8) 000
“/4. (n/8, 3n/8) 001
/2 (31/8, 5m/8) 016G
3n/4 (57/8, 7m/8) 011
w (7n/8, 91/8) , 100
5u/4 (9n/8, 11m/8) 101
3n/2 (117/8, 13n/8) 110
7m/4 (131/8, 151/8) M1

This situation is depicted in Figure 7. Naturally, the greater the
number of bits N, the Qréateﬁ is the accuracy of the transmitted

information.

There appear to be two types of‘key‘errors that can occur due to
angular quantization. The first is a consistent error that occurs
while tracking a vehicle a]dng,a street whose actual angle isabut
which is quantizedDaSth, This is iilustrated in Figure 8(a), where
a VEhiéie is travelling in a straight line at angle o (say o= 7n/16)w

= | , \\ f
| i 34
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Figure A-7

An Example of Angular Quantization, N=3 bits

g = quantized angle

the first
quantization
interval

(RS

" o
S e

Niseis.

B

o s o

A

A
e Tk IS

ot il T
SN “ 1,
PRI NI e e

)

N

b
Wit al

.
L d

-

.

-

-

-

w

R PR

Figure A-8

Example of Consistent Tracking Error Due to Angular Quantization
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but the quantized angle is aQ(= m/2), yielding an angular érror due to
quantization of |a - aql.

Developing this example, suppose the vehicle travels a distance Ds
then a "naive" tracking algorithm which did not take account of
angular quantization might "correct" the position of the tracked vehicle
back on the street at the point on the street closest to the current
estimated (uncorrected) Tocation of the vehicle. But this would yield
a travelled distance on the actual street of only x = D cos |oo - aql < D.
(See Figure 8(b).) A distance estimation error would then be caused by the
angular quantization; iﬁs magnitude would be D - Dcosju - aQI =
D(1 - cos|a - an). Obviously, the tracking algorithm need not be
naive; since the true angle of the street o is known and is maintained
in the computer map. Thus, the correct procedure here is for the
tracking algorithm to move the vehicle forward of jits position as
determined by a perpendicular to the street by an amount D(1-—cos|a4-aQ|);
or, more simply, to move the vehicle along the streetl by a total amount
D, not D cosfa - aQI.

Since this type of consistent error can be easily corrected, we
shall no longer concern ourselves with it. However, séeing the 1imited
usefulness of the quantized angular information in tracking a vehicle
along straight Tines, it becomes apparent that the major purpose of
angular information is to detect vehicular turns, when the vehicle
changes streets on which it is travelling. So a question of concern is
"How does angular quantization affect the ability of the tracking

algorithm to detect vehicular turns?"

%,

o)

S

To answer this question, we need to introduce the notion of the

divergence angle of street intersections. In Figure 9, we show two
examples, a simple four-way perpendicular intersection and a

complicated five-way intersection. Consider the simple example first.
Imagine a vehicle entering the intersection from any one of the possible
four directions i ~-Upon exiting from’the intersection, the tracking

algorithm must determine if the vehicle has turned, that is if its

angular direction has changed by m/2 or -n/2 radians (or by w, if

U-turns are permitted). This it can readily do as long as there are at ,

least four quantization intervals, corresponding to at least N = 2 bits.
Naw assume that the vehicle is entering the five-way intersection

from any one of the incoming streets. Allowing u-turns, the computer
tracking algorithm must determine whica of the possible angles (o,

dz, 03, Oy, Or Os) describes the motion of the exiting vehicle. Clearly
if.each of the actual angles o falls in a different quantization
interval, then the direction of travel can be determined without error.

This will be guaranteed to occur if the angles between all adjacent

exiting streets, called divergencé angles, are greater than the size
of the quantization interval 2n/2N. Mathematically, the divergence

angles in the example of Figure 9(b) are:

laz - ay] = a,
laa - Otzl = az
oy =as] = a;
loos - oau| = ay
[®y + 27m - as| = as

38
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Sfreet Angles at Intersections

b Street B: North-South

S

(=T

b : k Street A: West-East
3 | \ts\ a, = 31/2

(a) Simple Four-Way Perpendicular Intersection

¥ Street B -
L2 Street A
(at angle oy )
s
Street C
|
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3 &5~\‘Street E
Street D !

Thus, if MIN{ai} > Zw/ZN, then the tracking algorithm can determine the
street of exit from the intersection without error,
If, on the other hand, there are two adjacent streets whose

divergence angle is less than Zn/ZN, then they may or may not be

in the same quantization interval. For the N = 3 example, where the

~quantization interval has size m/j radians, consider two adjacent

streets with angles 3w/16 and Sn/iﬁ. Here the divergence angle

a =5n/16 -~ 3n/16 = n/8 < n/4. Yet, the first street falls in the
quantization interval with g = 0 and the second falls in the one with
aQ = n/4. So, in this case, no error will occur when distinguishing
between the first and second streets as exiting streets. However,
suppose two other adjacent streets were directed at angles 7 - /16 and
m + 7/16; then we still have a divergence angle a = 1/8 < 1/4, but the
two streets both fall in the same quantiéation interval with angle

dQ ;'n. In such a case in which two streets are contained within the
same quantization interval, then the tracking algorithm must "guess"
the correct street, and it would be reasonable to assume that the )
conditionql,probability of error would be 1/2.* (We will ignore the
unlikely cases in which three or more streets are in the same quantization

interval.)

To complete our discussion of angular quantization, we seek to find

©a way to compute

* By uti?izfng statistics on turning probabilities and frequency
of street usage, this conditional erroyr probability presumably could
be reduced below 1/2. However, we will ignore such sophistication.
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probability of loss of a vehicle at an

P - -
QA intersection due to angular quantization.

1t

One way to compute PQA would be to examine each intersection in thé
city and determine by inspection which intersections have diverging‘
streets falling within the same quantization interval. If there éré
found to be 10,000 pairs of diverging streets in the city and 13 of

them had angles falling within the same quantization interval, then we

would estimate

~ %- 13~ 0.00065.

Pqp 10,000

Of course this estimation procedure could be refined by incorporating
data on street usage and (if available) turning probabilities. However,
in the absence of such information, this simple calculation is not an
unreasonable way to proceed.

A second method, particularly appropriate for very large cities,

would be to estimate the probability distribution of the divergence

angles by sampling a représentative subset of them. Suppose

F.(x) = Fraction of divergence angles less than
a or equal to X.

Then, for a randomly selected divergence angle,
Fa(x) = Prob{a < x}.
In this context it is natural to call

fa(x) = ;ﬁ; Fa(x)

41

‘the probability density function of divergence angles. The final
concept we need hefe is that of the probability of loss of the vehicle
due to angular qdantization, given the value of a,

PQA(x) £ Prob{vehicular loss due to angular

quantization|a = x}.

In the earlier exhaustive way of computing PQA, this probability was
always either 0 or 1/2. Now, given that we are only sampling the
divergence angles, we will assume that the absolute angle of rotation
of the streets at a random intersection is uniformly distributed
between 0 and 2w, That is, at inte}section Js the ith street Teaving
the intersection is situated at an angle L + ej for all 1, and ej is
uniformly distributed between 0 and 27. (Note that such a random rota-
tion leaves unchanged the d%vergence angles such as a]j = ]azj +
ej - (a]j + 3j)l = 'a25 - aZj") In such a case, PQA can take on

values between 0 and 1/2. 1In fact, it is easy to see that

1 1/2 N
“ X 0<x<2n/2
z (21r/2N) -
Pa, () = (13)
A
G otherwise.

That is, the conditional probability of error drops linearly from 1/2
to 0 as the divergence ang]é»inCreases to the length of the quantiza-

tion interval Zw/ZN; once above that value, the conditional error

,‘brobabi]?ty remains at zero. For the N = 3 case, we gave two examples

in which the divergence angle was a = /8, one yielding an error

G R
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probability of 0 and the other 1/2. In this new setting in which the

absolute street rotations are considered random, we would have

1 1/2 47
2° [2n/23] 8

n

PQA(N/B)

1.1 .1
2% T 7

Thus, streets whose divergence angles are one-half of the length of the
quantizationlinterva1 have a 50-50 chance of fa]]ing‘within‘the same
quantization interval; given that they do, the conditional error
probability is 1/2. The uncond%tiona1 error probability is therefore
%~1-= %3 so our result checks with intuition.

Finally, utilizing each of the above concepts, the unconditional
probability of vehicular loss at an intersection due to angular
quantization is
an/2\ | :

Pn = [ [
0 X=0 (2n/2")

N

This formula provides a relatively easy way for a city whose angular

characteristics are summarized in fa(x) to compute vehicular loss

probability (due to angular quantization) as a function of the number of

bits given for angular information N.

2. Distance Quantization

In a manner paralleling angular information, distance information

is also transmitted digitally, therefore necessitating a distance

quantization interval dq. Thus, in a moving vebic1e, if .the odometer

43

1 - —L X1 f,(x)dx (14).

reading has just changed (by adding 1 bit to the previous reading)
then the next odometer change will occur after the vehicle has
travelled a distance equal to dQ. Clearly if dQ is of the same order
of magnitude as block lengths then this type of quantization could
gevere]y increase the loss probability. However, typically dQ is

25 feet or less (at least one order of magnitude Tess than a typical
block length).

The overall effect of diéfance quantization can be understood by
examining Figure 10. We focus on the current and an earlijer polling
of the vehicle. At the earlier é?l1ing the odometer reading is
some (arbitrary) integer k. But:ét the actual point of polling the
vehicle had travelled 6 units (where distance is measured in units of
quantization distance dQ) since thé odometer reading changed to k.
(Obviously, 0 < 8 < 1.) The uncertainty in the value of 6 increases our
uncertainty regarding the position of the vehicle. The vehicle then
travels an exact odometer distancg equal to d, at which point the
current polling takes place. The odometer reading must be an integer,
SO we‘round down to the integer which represents the current odometer
reading. The amount by which we round down isv%-—J¢, where
-%- < ¢ < %u As we will see, this rounding off procedure also causes
uncertainty in our estimate of the vehicle's location. Summarizing,
the odometervreading,of the vehicle between any two arbitrary* pollings ?

4/;: e
-~

d = d+o+¢ -1

%

*Assuming that the vehicle is moving, to avoid degenerate cases. i
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Figure A-10

Key Variables in Distance Quantization

i
accumulated distance true distance travelled
travelled since most since earlier polling
_recent odometer change ' ;
actual point é
actual point of of current ' ;
earlier polling polling |
: N : g‘
| |
; 1
; k? i §
I i
' §
| |
] | i | vy | > |
k k +1 k + 2 k+3 k+4 k+5 k+6 ... travelled ]
A , A odometer |
. ' distance ﬁ
odometer odometer (measured in g
reading , reading units of §
at earlier at current quantization i
polling polling distance dQ) ;
|
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The following assumptions, regarding the two random variables 6 and

¢ and the variable d seem reasonable:
1. © is uniformly distributed between 0 and 1.

2. ¢ is uniformly distributed between - %-and + %-.

3. 0 is independent of the subsequent value of d.
Clearly, ¢ is dependent on d + 6 - %-since ¢ is determined by the non-

integer part of the 1atter quantity.

The polling procedures are obviously unb1ased since

E[d] = d + E[6] + E[¢] - 1/2

d+1/2+0-1/2 =

Thus d is &an unbiased est%mator of the measured odometer distance D.

Following the argument of Section II.1, the updated map center-
line distance between any two po]]inge, given that the odometer has
measured d units of travel, is

d + X(d)
d+6+¢-1/2+ X(d),

D(d)

where X(d) is the Gaussian error term of Section I1.1.
Assuming 0= 0 (for convenience of presentation),
E[D(d)] = d,
as expected. However, ‘Wwe wish to compute the variance of D(d) to deter-
mine the manner in which the polling procedure adds to position estima-

tion uncerta1nty at intersections at wh1ch the Veh1P1e may turn. This

var1ance is:
o%(q) = EL(d + 0+ ¢ - 1/2 + X(d) - E[D(d)])®

% )

and that D(d) is the sum of random variables. Since usually °§(d) > da/s,'

After some straightforward manipulation we obtain
9D(d) = OK(d) + T6 + Og + 2E[41X(d) + 6 - 1/2)].

As one can see, the uncertainty of vehicular position is increased
over that due solely to random odometer error (G%((d)) by (1) the
unknown cdometer distance travelled since the most recent odometer
change at the Tast polling (026), (2) the integer round-off procedure
(02¢);and (3) the dependence of ¢ on the 6tﬁer variables.

Here, assuming‘d is at least a block length {(which should be
several units of distance--measured in terms of dQ), we can assume
that (approximately) ¢ is independent of X(d) + 6 - 1/2, thus reducing

the above equation to

2 . 02, + g2 2
‘ *o(d) ¥ %x(d) * %% * 9%,

. 2 a2 =
Since 0% = © b 1/12,

o*p(d) = %*x(a) * 16

-—

Since this derivation has been carried out in units of dq, if we switch

back to feet (or some other absolute standard of distance) we obtain
2 = <2 2 :
o D(d) g x(d) + dQ /6 (]6)

In practice we can use this result in a very simple and straight-

forward way. We invoke the facts that X{d) is a Gaussian random variable

the Central-Limit Theorem should apply quick]y‘here; indicating that D(d) E
can be treated as a Gaussian random variable, haV1ng mean 0 and variance |

X(d) + d dU + d6/6




Thus, applying this result to the two pollings associated with two

. successive turns, the increase in the vehicle loss probability at a

random turn due to distance quantization could be estimated by adding

.d2/6 to the Weiner process variance (o?*i) in Equation (10).

To obtain an intuition for the numbers involved, suppose a turn
occurs after 10,000;feet and suppose the Weiner process variance is -
¢2(10,000) = 2,500 (as in the example in Section II.1.). Suppose
further that the quantization interval is dQ = 25 feet. Then dé/G =
625/6 *104. Thus the total variance of the estimated distance

travelled is

0.2

D (1,000) = 2,500 + 104.
As can be seen even with this simple example, reasonably small values
for the distance quantization interval dQ should- result in little
degradation in system performance (as measured by vehicle loss proba-
bility). Note, however, that a larger quantization’interval of

dQ = 100 feet would result in a significant increase of the total
variance (from 2500 to 4166).

3. Time Quantization

Like angular and distance quantization, time quantization too
causes additional uncertainty in the estimate of a vehicle's location
and thus increases the Tloss probabi]fty p. The unit of time quantiza-
tion is tq, which means the vehicfe i; polled every tQ seconds to obtéin
new distance and heading readings. Typically tQ is one or two seconds.

Time quantization's effect on positional uncertainty at a turn can
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Figure A-T1
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be seen in Figure 11, at the last polling the vehicle was estimated to
be south of the intersection, headed north. At the current polling,
the unit has travelled a distance W, which’is equal to the speed of the
vehicle times tq, and its heading has changed from north to east. If
the computer tracking alcorithm simply projected the vehicle north a
distance W, the vehicle would be on a north-south street headed east,
an obvious inconsistency. Thus, the algorithm assumes that a turn has
occurred and positions the vehicle a travel distance W from the last
estimated position* but on the east-west street headed east away from
the intersection. Assuming that this particular street is the correct
street on which the vehicle turned, the fact that the heading sensor
changed between pollings means that the turn could have occurred at any
time during the time interval tq. Thus, since the vehicle travelled a
distance W during tq, the actual position of the vehicle at the last -
polling could have been anywhere south of the intersection up to a
distance W away. Thus, the new (current) position of the vehicle
could be anywhere east of the intersection up to a distance W away.
As a numerical example, if tQ = 2 seconds and the vehicular speed = °
30 mph = 44 feet/second, then W = 2:44 = 88 feet.

If we imagine the vehicle entering the region of the intersection
with estimated location described by a Gaussian random variable with
variance o§.+ da/s, then part of this uncertainty persists after leaving

the intersection. In the worst imaginable case, yet assuming a correctly

*This is one reasonable procedure for positioning the vehic1e‘on
the east-west street. Another, which has been utilized in FLAIR, is
to position the vehicle exactly at the exit point of the 1ntersectjon,
heading east. . )
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interpreted turn, the persisting positional uncertainty could be
described as-a uniformly distributed random variable over the west-
east interval W (extending from the intersection). This gives the
vehicle an initial variance in estimated position of W2/12, rather
than 0 as is assumed in the renewal theory model of Seétion III.

Upon entering the next intersection where a turn is to take place,
after travelling a distance d*, the variance in the position estimate
will be W2/12 + ofr + d%/6. For reasonably small values of tq, the
addition to the variance due to W (which is proportional to tQ) should
not be very large.

Additional insight on the effect of time quantization on loss
probabilities can be gained by examining Figure 12, Here at the last
polling the vehicle was just about to enter the intersection and execute
a right turn. However, the estimatod position of the vehicle was some-

what north of the intersection (heading sensor still reading north),

perhaps one or two standard deviations from the mean (or perhaps nearer

the mean in a system with systematic error). At the current polling
the'vehicle has travelled a distance W, and the heading has changed from
north to east. Given that the vehicle has turned right, the computer
tracking algorithm is confronted with a decision: Did the vehicle turn
on street 1 (the first east-west street) or street 2? There are two
alternative hypotheses: at the time of the last polling the

vehicle was in the window of length W just south of either intersection 1
or intéfsection 2. For a vehicle such as this one which is estimated
ahead of its actual position, the greater the value of W, the more

Tikely it is that the computer tracking algorithm will choose (incorrectly)

o,

)

51

N . ok

Yy




intersection 2 (and thus street 2). This is due to the fact that as W
increases the southern tip of the window of length W from intersection 2
gets closer to the last estimated position of the vehicle, while the
window from intersection 1 (while getting larger) remains at a constant
distance from this last estimated position. Thus, as W increases, it
becomes more and more plausible that the vehicle was actually at the
southern tip of the intersection 2 window rather than at the northern tip
of intersection 1's.

Obviously, for fast moving vehicles moving on streets with
relatively short block lengths (perhaps engaged in a criminal pursuit),
these effects of ‘time quantization could cause a measurable increase in

vehicular loss probability.
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Figure A-12

Possible Loss of Vehicle Due Directly to Time Quantization
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V. Discuss

ion

In this appendix we have developed several highly simplified

models in order to analyze the factors. that contribute to vehicle

Toss probability. Briefly summarizing, we have found the following:

'(

(

{

1) One component of vehicle drift from its
true location js due to random error. This
is due to many factors including tire
slippage on streets,:irregular (non-straight
Tine) driving patterns, map errors, and, if
uncorrected in the tracking algorithm, speed
variations which change the tire circumference.
This net effect of such random error is
summarized in the parameter o? which is the
mean squared random displacement per unit of
distance travelled.

2) A second, often dominating component of
vehicle drift is due to systematic error,
This type of error creates a bias in the
odometer readings and its magnitude is
determined by temperature, tire wear and
pressure, and speed (when the effect of
speed on drift is viewed as correctable).
The bias term is vy, which is the mean
systematic displacement per unit of.
distance travelled.

3) The vehicle loss probability will depend
strongly on the particular street patterns
of the city in question. In general the
loss probability increases as the mean
spacings between streets decreases, as
the street pattern becomes more irregular
(implying more very short blocks), and
as the diverging angles at intersections
become small (the definition of small
depending on the number of bits used to
transmit angular information).

4) The number of binary digits (bits) used to
transmit information on vehicular heading
and distance can markedly affect vehicular
loss probability. One can virtually
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guarantee no increase in loss probability

due to angular quantization if the corresponding
number of bits N is sufficiently large so that
2n/2N is smaller than the smallest diverging
street angle in the city. The effect of distance
quantization is to add to the variance of the
random error a term proportional to the.square
of the distance quantization interval.

(5) The magnitude of the sampling interval (in time)
can also affect the loss probabiilty. For those
turns which are tracked correctly, the magnitude
of the sampling interval determines the size of
a window of positional uncertainty which
characterizes the vehicle's estimated position
until it next turns; this can often be crudely
characterized as an increase in the variance of
the estimate of pesition. However, the window
of positional uncertainty can also have a direct
effect on contributing to an incorrect inter-
pretation of a turn; the larger the window
[which means the larger the sampling interval],
the larger is the probability of incorrect
-decision.

(6) In most cases we have developed simple equations
to estimate at least the first order effects on
vehicle loss probability of each of the key
factors.
There are at least two important topics that also bear on system
performance that have not been discussed in this appendix. The first is

open loop tracking which occurs whenever the tracked vehicle leaves a

mapped street or alleyway and enters a parking lot, an industrial
propertye etc. With open loop tracking, the tracking algorithm cannot
use well-mapped street patterns to correct certain drifts in the
vehicle's location. Thus, the estimation error becomes a two-dimensional
error rather than a one-dimensional one. Moreover, angular, spatial, and
temporal quantization can markedly increase the chance of Tosing a

vehicle that is being tracked in the open loop mode. Recognizing the
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extent of imperfect information received in the open loop mode,

the tracking software in our currently implemented system automati-
cally signals "Lost vehicle" as soon as the measured odometer distance
in an open-loop situation exceeds some prespecified threshold value.

The second topic is system subvertability, which is defined as

the susceptability of the system to deliberate acts aimed at increasing
loss probability. These include reporting an incorrect address at

time of "loss correction" (or "reinitialization"), momenturily
switching off the power of the unit located in the vehicle. The

system subvertability is increased by the presence of magnetic
anomolies that create faulty (uncorrectable) heading sensor readings
and the presence of intersections whose diverging street angles are
sufficiently small so as to create a high chance of vehicular loss.
This topic is discussed at greater length in Chapters V, XII of the

main report,
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