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Computer evaluations of inverse factor analysis, Lorr's non-hierarchical clustering 
technique, and centroid clustering were completed on 20 multivariate normal mixtures­
generated by 61ashfield ' s 1976. Details regarding both within- and between-method 
compared comparisons are provided in the following final report. Overall, our research 
has documented a strong relationship between level of coverage and both accuracy of 
clustering solutions and the statistical power of cluster based classifications. For 
each of the three clustering procedures, 100% coverage resulted in less than optimal 
accuracy in recovering underlying populations from the computer generated mixtures. 
For all three methods, the accuracy of clustering solu\}fons was substantially increased 
by leaving 15-25 percent of the subjects unclassified.U Our results suggest that 
accuracy of clustering solutions can be maximized in the range of 55-85% coverage. 
For all methods we tested, increaSing coverage above 85% had deleterious effects on 
clustering accuracy. 

,ti~ll power analyses further ind'/cate that the level of coverage of 
~ons is strongly related to the probability of detecting significant correlates 
membership. For the three methods we tested, 100% coverage produced less 
1 probabilities of detecting significa\~.t differences among clusters. Instead, 

powet- was maximized in the range of 55-85% coverage. Stati s:ti cal pqwer 
d at levels above 85% coverage and levels below 55% coveraae. These results 
typologies ha.ving levels of coverage in the medium range will 'be optimally 

~)f external criteria. 

i,sons among the three methods i ndi cate that cl ustet'i ng procedures are not 
In terms of their accuracy in grouping objects from the computer generated 
.or in teT'mS of predictive power. Lorr's non-hierarchical clustering 
it-formed exceptionally well in both respects and should be given serious 
in in future clustering efforts. Results on the inverse factoring procedures 
Icouraging. considering that this method has been widely criticized as a 
fcedure. The centroid clustet'ing procedure performed exceptionally well in 
luracy and statistical power. Overall, this method produced the highest levels 
. d statistical power for the computer generated data sets we tested. 
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Efforts to apply these clustering methods to real data regarding juvenile 
delinquency were not successful. Several clustering methods were applied to this data 
set, but we were unable to identify homogeneous subgroups of delinquent youth. This is 
not so m~ch ·a failure of the clustering methods as an indication that this data set does 
not warrant cluster analyses. We are currently seeking alternative data sets upon which 
to further test these clustering methods. 
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INCREASING THE STATISTICAL POWER OF 

EMPIRICALLY DERIVED TAXONOMIES IN CR~MINAL JUSTICE RESEARCH 

I. Classification in Criminal Justice ' 

A. Importance of Classification 

Classification is of central importance in criminal justice, so much so 

that the evoiution of the field has paralleled the development of more diver­

sified and refin~d taxonomies of criminal offenses and offenders (Clinard and 

Quinney, 1967; Ferdinand, 1966; Gibbons, 1975; Warren, 1970). Classifications 

serve many purposes in criminological research, theory, and practice including 

the reduction and ordering of the complex phenomena of deviance and the 

provision of conceptual frameworks for decision making. The role of classifi-
~ 

cation in summarizing complex data is particularly relevant to criminological 

research and theory construction. Glaser (1974), for example, has argued that 

the development of ieliable and valid classifications is essential to improve 

the epidemiologic~l mapping of crime, the evaluation of tre~tment programs, 

and the explanatory value of theories of criminal behavior. The importance of 

classffications is further underscored by their use in decision making in all 

phases of the criminal justice process. 

B. Inadequacy of Current Classifications 

Despite the importance of classification in criminal justice, there is 

consensus regarding the inadequacy of current taxonomies. The entire classifi­

cation enterprise has been assailed for its lack of cumulative and convergent 

findings and failure to produce taxonomies having practical or theoretical 

utility (Ferdinand, 1966; Gibbons, 1975; Hood and Sparks, 1970; Opp, 1973). 

Criminological taxonomies have been critcized for their subjectivity, inad­

equate reliability. illogical structure, ambiguous nomenclature, impracticality, 

and lack of predictive validity. The lack of predictive power is perhaps the 

most debilitating criticism of criminological taxonomies because of the 
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implications this carries regarding decision making. If classifications are 

not predictive of the etiology of criminal acts, offender personality, behav­

ior, risk, recidivism or treatment response, their value in decision making 

regarding the ajudication, sentencing, management, parole, and release of 

offenders is severely limited. 
• 

This presents a disparaging view of the current state of criminological 

classification, but the situation is not necessarily any better in the other 

areas of the behavioral and social sciences. The most widely used taxonomy of 

psychiatric d,sord~rs, for example"is that embodied in the Diagnostic and 

Statistical Manu~l of the American Psychiatric Association (APA, 1968, 1980). 

Although this is taken to represent the state-of-the-art taxonomy in psychiatry, 

it h~s been widely criticized by psychiatrists, and other mental health 

professionals on the same grounds as criminological taxonomies (cf. Achenbach 

and Edelbrock, 1978; Phillips and Draguns, 1971; Zigler and Phillips, 1961). 

Numerous additional examples of the inadequacies of current classifications 

can be drawn from the literature of psychology. education, psychiatry, and 

soci 01 ogy. 

c. Promise of Taxometric Methods 

As much as social and behavioral scientists agree regarding the short­

comings of current claSSifications, there is also agreement among professionals 

in all fialds regarding the potential of numerical taxometric met'hods to 

overcome these inadequacies. These methods, variously known as numeric~l 
taxonomy, cluster analysis, association analysis, and pattern rec~gniti~n, 
have been used in the biological sciences for many years (i.e., Sneath, 

1957) but only recently have been added to the methodological armamentarium of 

social and behavioral scientists. Blashfield (1977), for example, in a 

comprehensive review of the use of taxometric methods, cited a veritable 
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"explosion" in the use of numerical clustering and classification methods in 

the social and behavioral sciences since 1970. 

The ability of these methods to summarize and order complex multivariate 

data has made them a valuable tool for the construction of taxonomies. (For 

reviews of the myriad applications of taxometric methods in various disciplines 

see Anderberg, 1975; Bailey, 1974; Blashfield, 1976; Sneath and Sokal, 1973). 

Numerous researchers in criminal justice have recognized the value of taxo­

metric methods for data description, reduction, and management; and experi­

mental design and evaluation research. Brennan (1979) has compiled a biblio­

graphy of criminological studies employing multivariate taxometric methods. A 

wide variety of methods have been used in these studies including hierarchical 

cluster analysis (Megargee, 1977). Lorr's non-hierarchical clustering technique 

(Blackburn, 1971), inverse factor analysis (Butler and Adams, 1966; Collins, 

Burger, and Taylor, 1976) and iterative K-means analysis (Brennan, Huizinga 

and Elliot, 1978). 

Taxometric methods show great promise for the construction of valid and 

reliable taxonomies of criminal offenses and offenders. However, the use of 

these methods in criminal justice research has just begun an many difficulties 

have yet to be ironed out. Several problems stem from the fact. that many of 

these methods have been adopted from the biological sciences. This has far 

reaching implications, not the least of which is that some ~axometric methods 

are conceptually and methodologically inappropriate for criminal jus~ice 

applications. Thus, in order to derive more useful and predictive t~xonomies 

in criminology and criminal justice;l it may be necessary to develop innovative 

methods tailored to applications in the social and behavioral sciences. 
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II. The Issue of Coverage 

A. Role of Behavioral Taxonomies 

The value of any taxonomy is related to its coverage, which is the 

proportion of subjects it can classify. 

many taxometric methods were developed . ' 

In the biological SCiences, where 

100% coverage is an im~ortant goal 

because taxonomies are intended to correspond to definitive classifications of 

biological'species r Such taxonomies represent "real" groupings which have 

been val idated against definitive criteria, such as morp'hol ogical, physio­

logical, and genetic characteristics, that are reliably assessed and have 

unquestioned validity as taxonomic criteria. In criminal justice, and other 

sciences in an earlier "natural history" stage of development, there is a lack 

of definitive criteria against which to validate empirically derived taxono­

mies. Thus, rather than constructing definitive taxonomies, taxometric 

methods are used as a heuristic device for summarizing complex relationships. 

In mast applications, classifying everybody is not necessary, possible, or 

even desirable. It;s recognized, for example, that there is a diversity of 

causes and modes of expression of criminal behavior, and that the personality 

and behavioral measures available for deriving taxonomies are not perfectly 

reliable or valid. Thus, it is not always possible to reliably classify all 

offenders into categories. The issue of coverage, however, extends beyond 

the simple fact that some subjects cannot be classified. 

B. Bootstrapping - An Example 

Owing to the lack of definitive criteria, most attempts to validate 

taxonomies in the behavioral and social sciences involve "bootstrapping __ 

whereby investigators attempt to "lift themselves by their own bootstraps" by 

relating taxonomies to other measures known to be imperfect. Megargee, for 

example, has identified ten types of criminal offenders based on their Minne-

________ ..L~& _____ -"-----__ __ ~ ~ ___ -"'_..a.....-____ ~ __ _ 
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sota Multiphasic Personality Inventory (MMPI) Profiles (Megargee, 1977). The 

identification of profile types is not an end product in itself. 

As Megargee stated: 

liThe MMPI-based taxonomy is worthless unless it can be established that 

the ten MMPI-defined groups differ significantly in other respects". (Megargee 

and Bohn 1977: p. 150). 

Thus, in an exemplary fashion Megargee and his coworkers have proceeded 

to determine how their types differ in demographic characteristics, academic 
. 

performance, intellectual ability, and social, developmental, and personality 

characteristics (Megargee and Bohn, 1977). ~breover, they have extended their 

research to determine how the types differ in long-term prognosis, recidivism, 

and differential response to treatment. 

The value of the Megargee typology, therefore, does not lie in the ident­

ification of types but rather in the degree to which the typology relates to 

other criteria--particularly criteria that are informative regarding possible 

predisposing causes of criminal acts, management and treatment of offenders, 

and treatment outcomes. It is at this step of relating typologies to such 

criteria that the issue of coverage becomes important because of its effect on 

statistical power. 

C. Coverage and Statistical Power. 

The ability to detect significant differences among empirically derived 

groups is a complex function of the number of groups, sample size, separation 

and homogeneity of groups, and the size of effects under study. In the 

behavioral and social sciences, some assumptions can be made which simplify 

this complex set of interrelations. Most empirically derived taxonomies deal 

with relatively few types (i.e., ten for the Megargee taxonomy) and researchers 

can gener~lly obtain samples large enough to permit rigorous statistical 
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analyses within each group. Furthermore, many of the effects examined in the 

behavioral and social sciences are small. .-
Whereas there is no absolute rule for defining IIsmall", "medium", or 

"large", effect sizes, Cohen (1977) has suggested that a small effect size 

refer to a difference accounting for less than 10% of the variance in a 

variable; a medium effect si,e accounts for 20-25% of the variance; and a 

large effect size accounts for 40-50% of the variance. In criminal justice 

research, and other areas of the behavioral and social sciences, most effects 

are small due to less than perfect reliability and validity of the measures, 

multiple causation, and the lack of experimental control of many impinging 

sources of variation. This is not to say that small effects are trivial--quite 

the opposite. Some of the "small" effects in criminal justice research, such 

as differences in long-term recidivism rates among groups, are of the utmost 

importance in decision making. 

If we assume that samples are sufficiently large relative to the number 

of groups and that the effects under study are relatively small, statistical 

power when validating taxonomies is largely a function of the degree to which 

the groups are distinct from each other, yet homogenous. As a statistician 

might phrase it, statistical power is optimized when the within-group vari­

ance on the taxonomic criteria is small and the between group variance is 

large. It is important to emphasize that statistical power in this context 

refers to the ability to detect differences in external criteria, that is, 

c ri terta not included in the const ruct i on of the. taxonomy. 

In a taxonomy. small within group variance implies that groups are similar 

to one another. Large between group variance implies that the types, and hence 

the groups represent; ng the types, are di sti net from one another' on tlie 

taxonomic criteria. The ideal taxonomy would, therefore, group subjects into 

( ) '~--~---,---------------___ -.... __ -=--..1~ ______ ....... __ ",-.. 4 , 
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homogeneous, yet distinct groups. Such grou~s would be llkely to differ in 

external criteria. 

Unfortunately, subjects do not align themselves into stereotypical "pure 

types". In the Megargee taxonomy, for example, only 63% of the MMPI Profiles 

could be classified using computerized classification rules (Megargee and 

Oorhout, 1977). The remaining 37% were more difficult to classify because 

they had invalid scores, did not resemble any types, or met inclusion criteria 

for more than one type. Eventually, however, a total of 96% of the profiles 

were classified on the basis of clinical inspection and judgement. 

O. The Continuum of Classifiabilitl • 

A high degree of coverage is an important taxonomic goal, but classifying 

everybody is not always necessary. Moreover, for those sciences in a "boot­

strapping ll stage of development, attempting to classify everybody may have 

deleterious effects on the statistical power and reliability of the taxonomy. 

That is, in most classification efforts in the behavioral and social sCiences, 

there is a "continuum of classifiability." ~ one end of this continuum are 

subjects who are easy to classify because they bear close resembl,ance to 

empirically derived types. In the Megargee taxonomy, for example, 63% of the 

sample could be classified on the basis of operationalized classification 

rules. Moving towards the middle of the continuum, subjects become more 

difficult to classify because they do not resemble pure types or resemble more 

than one type. Thus, in the Megargee taxonomy, 33% could not be classified by 

operationalized classification rules but required clinical inspection and 

judgment. ~ the opposite end of this continuum are those who canno~ be 

classified because of invalid scores or lack of resemblances to!nl of the 

types (i.e., the 4% unclassified in the Megargee taxonomy). . 
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Thus attempting to classify everybody requires the classification of . 
subjects who are difficult or impossible to assign to groups. As one moves 

down the continuum classifying subjects who are less and less similar to the 

"types ll the within group variance increases while the between group variance . 
decreases. In other words, the groups become more heterogeneous and begin to 

overlap. This, of course, dilutes the statistical power of comparisons 

among groups. Moreover, the continuum of classifiability parallels a IIcontin­

uum of reliabilityll. Thus, moving down the continuum from pure types to 

unclassifiable subjects, the reliability of assignment decreases. Subjects 

resembling pure types can be reliably classified because slight changes on 

their classification criteria (i.e., behavioral or personality scores) do not 

substantially alter their similarity to the types. On the other hand, among 

subjects who are less similar to types, or resemble more than one type, a 

slight change in scores may result in a different group assignment. 

The Thesis of This Research 

The thesis of this research was that in criminal justice and other 

behavioral and social sciences, classification should be viewed as a continuum 

rather than as a purely discrete phenomenon (as in the biological sciences). 

Thus, based on the continuum of classifiability, the coverage of classifica­

tions can be varied to fit the purposes of the research. In an epidemological 

study, for example, the goal may be to classify as many subjects as possible, 

including subjects who are difficult to assign to groups. This procedure 

results in more heterogeneous groups and decreased reliability of classifica­

tion but serves a major purpose of eptdemolog1cal surveys--namely, accounting 
. 

for the generality of a phenomena. Alternatively, evaluations of a focused 

treatment may require small homogeneous groups for study. In this sjtuation, 

perhaps only 10% of the subjects can be classified according to rigorous 
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criteria, but the reliability of assignment to groups is high and the subjects 

represent relatively "pure types". This low level of coverage has the advantage 

of increased statistical power for c'omparisons among groups but carries with 

it the disadvantage of decreased generalizability of findings. Thus, findings 

cannot be extrapolated to the population as a whole but only that portion who 

~esemble pure types. 

In simple terms, therefore, the issue is whether it is better to "classify 

some of the peopl e some of the time, II or attempt to cl assi fy everybody. In 

order to resolve this issue, it is necessary to determine if the benefits of 

reduced coverage outweigh the costs. In this "bootstrapping" stage of criminal 

justice research, however, it may be more valuable to construct taxonomies 

which classify fewer individuals, if the benefit is increased statistical 

power and reliability. Unfortunately, conventional taxometric methods avail­

able to researchers in criminal justice do not permit the manipulation of the 

coverage of the resulting taxonomy. Most methods are aimed at simply p~rti­

tioning (or amalgamating) subjects into a discrete set of groups--despite the 

fact that the group members differ widely in the degree to Which they represerlt 

IItypes". Thus, in order to resolve the issue of coverage, it is necessary to 

develop, evaluate, and apply new taxometric methods. 

In the following section, some innovative methods for manipulating the 

coverage of. empirically derived taxonomies are proposed. These methods 

represent modifications and extensions of conventional taxometric procedures 

which have been used by researchers in criminal justice and other areas of the 
--. 

behavioral and social sciences. 

ItI. Methods of Varying Coverage 

A. Introduction 

Most taxometri c methods ar'e not desi gned to mani pul ate the coverage of a 

classification, but rather to identify groupings of individuals based on some 
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statistical criteria. This is not to say that these methods produce taxonomies 

having 100% coverage. Many empirically derived taxonomies include a subset of 

subjects who are "unclassified" (i.e., Carlson, 1977; Megargee, 1977). 

These unclassified groups represent only a tiny proportion of multivariate 

outliers and do not result from manipulating coverage along a continuum of • 
classifiability. Many taxometric methods, however, are amenable methocological 

changes that would permit manipulating coverage along this continuum. 

In this program of research, innovations arp. proposed for three methods 

which have been used successfully to create empirical taxonomies in the social 

and behavioral sciences. The three methods include (a) a method called 

centroid analysis (Edelbrock and Achenbach, 1980). (b) Lorr's nonhierarchical 

clustering technique (Lorr, Bishop,. and McNair, 1965; Lorr and Radhakrishnan, 

1967), and (c) inverse factor analysis (Monro, 1955; Ryder, 1964: Stephenson, 

1936). These methods are not the only candidates for such innovations, but 

they cover a range of taxometric approaches used in the social and behaVioral 

sciences, have produced useful taxonomies, and have direct applications in 

criminal justice research. The goal of comparing a range of methods is to 

determine the degree to which the principle underlY1ng the manipulation 

of coverage is v~lid, apart from the idiosyncrasies of one particular method. 

In the following section, each method is outlined and the innovations proposed 

to manipulate coverage are described 1n detail. 

B. Centroid Analysis 
i 

Centroid analysis is a new taxometric procedure and has several advantages 

over previous methods, 1ncl~ding the abt11tie~ to (a) construct hierarchical 

taxonomies, (b) determine the reliability of profile types, and (c) classify 

new subjects who were not in the original analysis. Moreover, centroid 
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analysis embodies a mechanism for manipulating the coverage of the classifi­

cation - although this feature has not yet been fully explored. 

Centroid analysis involves three steps: 

Step 1 Identification of profile types. 

Step 2 Determining the reliability of profile types. 

1. 

Step 3 Classifi~ation of subjects according to the profile types. 

Identification of profile types. In centroid analysis a conventional 

hierarchical clustering algorithm is used to identify subgroups of individuals 
. 

having similar characteristics or patterns of scores. The patterns charact-

erizing such subgroups are termed "profile types". Specifically, the centroid 

clustering method, also known as the weighted pair group method (Sokal and 
• 

Michener, 1958), is used. Several issues are involved in the identification 

of profile types. For one, clustering algorithms will identify homogeneous 

subgroups of individuals even when applied to random data. That is, to some 

degree clustering algorithms impose structure on data as well a~ reveal 

inherent structure. Thus, some profile types are likely to be methodological 

artifacts rather than representing reliable profiie patterns that characterize 

subgroups of individuals. One way to deal with this problem is replicate 

profile types across samples, retaining only those profile types identified in 

two or more analyses l , In almost all applications where this is done, some 

profile types are identified in one sample that do not replicate in subsequent 

sampl es. 

2. Measure of similarity. A second issue involves the choice of the 

measure of similarity among individuals. A variety of similarity measures are 

available for use in cluster analysis (of Cattell, 1949; Cronbach and Gleser, 

" 1953; Gregson, 1975; Tatsuoka, 1974) and they determine, to a large exteh~, 
" '\ the natur~ of the profile types that are identified (i .e., whether the profi1~ . \~ 
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types differ predominantly in elevation, shape, etc.) Some parametric compar­

isons of clustering methods using different measures of similarity have been 

performed on computer generated data sets. The results indicate that certain 

similarity measures (i.e., correlation, intraclass correlations) result in 

more accurate clustering solations than other measures (Edelbrock, 1979; 

Edelbrock and McLaughlin, 1980j Mezzich, 1978). Two measures of similarity 

will be systematically explored when using centroid analysis, including 

correlation, and the one-way intraclass correlation (cf. Edelbrock, 1979; 

Edelbrock and McLaughlin, 1980). These measures cover a broad range of 

approaches to quantifying profile similarity and are sensitive to various 

aspects of profile elevati~, shape, and scatter • 

3. Clustering Algorithm. Assuming that the sample size is large enough 

to permit replication of profile types and that an appropriate measure of 

similarity has been chosen, Step 1 of centroid analysis involves separate hier­

archical cluster analyses of the data using the centroid method. The centroid 

algorithm proceeds by first calculating the similarity between each possible 

pair of profiles in the sample. Next, the two profiles which are most similar 
. 

to each other are located and combined into a cluster. These tw~ profiles are 

then replaced by their centroid which is the profile created by averaging the 

two subject's scores on each scale. On the next step, this centroid is 

treated just like the profile of a single subject and the similarities between 

all possible pairs of profiles are recomputed. In each cycle, the two profiles 

which are most similar to each other are located, combined into a cluster, and 

replaced by their centroid. Whenever an individual profile or cluster is 

combined with another clustei", the centroid is computed using a "weighted" 

procedure. That is, the centroid is obtained by calculating the average 
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As cycles proceed, larger and larger clusters are formed and combined in a 

hierarchical manner. The result is a hierarchical r,lustering of all profiles, 

in which groups of subjects having similar profile patterns, and the hierarch­

ical relations among these groups, can be identified. At low levels in the 

~ierarchY, profile types are identified which have very specific patterns 
. 

characterizing small subgroups of subjects. At higher levels, these groups 

are combined into larger groups of subjects representing more global patterns. 

Thus, hierarchical taxonomies permit· comparisons among groups of various 

levels of generality. Many small groups having very distinct profile patterns 

may be compared or a few larger groups representating more global patterns may 

be analyzed. These multiple levels of analysis are extremely valuable in 

research. For example, it is difficult, time consuming, and expensive to 

obtain long-term recidivism data ~n offenders receiving different treatments. 

It is possible that significant differences among groups may be detected at 

one 1 evel of the taxonomy but not at other 1 evel s. It is a mi stake, there .. 

fore, to invest research resources in a study wherein the taxonomy permits 

only one level of analysis. 

4. Classification of new subjects. Most taxometric methods classify' 

only those subjects included in the original analysis and do not embody 

procedures for aSSigning new cases to groups. This is unfortunate because if 

empirically derived taxonomies are to have any applications f~~decision making 
,,' 

it will be necessary to classify new subjects. Step 3 of centroid analysis, 

therefore, involves procedures for classifying new subjects. In order to 

classify an individual, the similarities between the subject's pr:'of1le and the 

reliable centroids identified in the previous two steps are ~alculated. The 

subject is then classified according to the profile type with which his/her 

profile is most similar. Thus, if correlation is the similarity measure, the 

ti , 
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subject's profjle is correlated with each profile type and is classified 

according to the type having the highest correlation. 

5. Manipulating coverage. The procedure of aSSigning subjects to groups 

permits direct manipulation of the coverage of the classification. A minimum 

~imilarity required for classification can be specified, such that profiles 

whose similarities to any of the profile types are less than the minimum 

cutoff point are not classified. By changing this minimum cutoff point, the 

coverage of the classification can be varied. That is, the use of the high 

cutoff pOint will result in a small proportion of subjects being classified 

into relatively homogene~us, non-overlapping groups that represent "pure 

types". Conversely, the use of a low cutoff point results in the classifica­

tion of a higher proportion of subjects into larger and more heterogeneous 

groups which have a higher degree of overlap. 

C. Lorr's Technique 

1. Introduction. Lorr has developed a non-hierarchical taxometric 

method that has been used to construct a variety of taxonomies (Berzins, Ross, 

Engiish, and Haley, 1974; Goidstein and Linden, 1969; Lorr, Bishop, and 

McNair, 1965; Lorr, Pokorny, and Klett, 1973; Lorr and Radhakrishnan, 1967). 

In most applications of Lorr's technique, Q-correlations were used to measure 

Similarity among profiles, although a variety of similarity metrics could be 

used. In this research, two measures of similarity (correlation, and the 

one-way intraclass correlations) will be systematically compared using Lorr's 

technique. 

2. Clustering Algorithm. To illustrate this method, assume correlation 

is used as the Similarity measure. The first step in identifying clusters ;s 

to calculate the Q-correlations between all possible pairs of profiles. 

Considering only those correlations above a certain cutoff point, the profile 

__ ~ _____ ~~ _______ -----Io.----.....-_~...!t-_____ ----- ~ - --.--.--~ 
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having the highest average correlation with other profiles becomes a IIpivotll 

profile. A pivot profile is essentially the II seed II or foundation for building 

a cluster. To build the first cluster, all profiles with correlations' greater 

than a cutoff point (Cin) with the pivot profile are combined into one 

cluster. JImong the remaining profiles, those with average correlations with 
• 
cluster members that are greater than a lower cutoff point (Cex ) are removed 

from the sample and are not classified. Those with average correlations 

of < Cex are candidates for other clusters. 

In each cycle, all profiles having correla.tions with the pivot profile 

Cin are combined into a cluster. Profiles with correlations Cin but 

> Cex are removed from the sample and are not classified. This is because 

even though they may qualify for membership in another cluster, such profiles 

would still be relatively similar to the first cluster --which would result in 

overlapping groups. Profiles with correlations < Cex are considered for 

other clusters. In each cycle, a pivot profile is identified and cluster 

membership is determined by Cin. Those profiles with correlations between 

Cin and Cex are removed and those with correlations < Cex remain for 

another cycl~. Cycles proceed until all profiles are either classified or 

deemed inappropriate for classification. 

3. Manipulat~ng Coverage. Due to the use of the dual cutoff criteria, 

this method does not result in taxonomies having 100% coverage. Moreover, the 
I 

cutoff criteria are a convenient mechanism for manipulating the coverage of 
" 

the classification'~ By v'arying Cin and Cex the coverage (as well as the 

homogeneity and degree of overlap) of the groups can be directly manipulated. 

SpecificallYg coverage is decreased by setting a high Cin value (implying 

that cluster members are highly similar to th~ pivot profile) and a low Cex 

(implying that cluster members are not very similar to other clusters). To 
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increase coverage, Cin is decreased and Cex is increased. Coverage of 100% 

can be achieved when Cin is low and Cin = Cex • This would, of course, 

produce relatively heterogeneous, overlapping groups. 

Although this mechanism for manipulating coverage is built into Lorr's 

tecimi que, most rese~rchers empl oyi ng thi s method have chosen a si ngl e set of 
• 
Cin and Cex values to construct taxonomies and have not systematically 

explored the effects of varying Cin and Cex on the statistical power of 

their taxonomies. In most applications, Cin has been chosen according to 

some significance criterion (i.e., p .05 at the degrees of freedom determined 

by the number of variables), and Cex has been chosen to represent a lower 

significance criterion (i.e., p .10 or .20). This is a rational approach 

that produces useful taxonomies, but does not take advantage of the built-in 

mecnanisms for manipulating coverage. 

D. Inverse Factor Analysis 

A. Introduction. Inverse, or Q-type, factor analysis is one of the 

oldest taxometric methods and has been widely used to construct taxonomies in 

psychology (Monro, 1955; Overall and Klett. 1972; Stephenson, 1936) and 

criminal justice (i.e., Butler and Adams, 1966; Collins, Burger, and Taylor, 

1976). Although the inverse factor analysis has been criticized dS a taxonomic 

too 1 (i.e., 8aggal ey, 1964; Fl ei ss, Lawlor, Pl atman, and Fi ede, 1971; Fl ei S5 

and Zubin, 1969; Jones, 1968; Lorr, 1966), it remains a popular method for 

taxometric problems and has produced useful taxonomies. Since factor analysis 

methods have become somewhat standardized and have been discussed' in detail 

elsewhere (Harman, 1976; Fruchter, 1954~ Mulaik, 1972) they will not be 

described in detail here. Instead, the focus of the following section will be 

on methods for manipulating the coverage of taxonomies constructed using 

inverse factor analytic methods. 
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B. Grouping Procedure. Factor analysis is typically/used to summarize 

the matrix of correlations among variables in terms of the limited number of 

IIfactors ll
• Each factor is a vector of weights or factor loadings which 

indicate the degree to which each item is associated with that factor. Since 
-one factor only accounts for a proportion of the variance in a correlation 

matrix, most applications of factor analysis yield many factors which account 

for more and more of 'the remaining variance. Each' factor is determined by a 

group of items which are highly intercorrelated and thus have high-loadings on 

that factor. 

As typically applied, factor analysis identifies. grouping of items. 

Simple modifications of the factoring procedure result in the identification 

of groupings of individuals. In Q-type factor analysis, profile data describ­

ing individuals is inverted and intercorre1ated producing a correlation matrix 

representing similarities among individuals, rather than similarities among 

items. Thus, the factor analysis identifies groups of individuals having 

similar patterns of scores, rather than identifying groups of intercorrelatea 

items. The factor loadings indicate the degree to wnich the subjects are 

simi 1 ar to the IItype II represented by the factor. 

c. Manipulating Coverage. In Q-type factor analysis, the factor loadings 

serve as a way to manipulate the coverage of classification. That is, the 

loadings represent the continuum of classifiability whereby subjects with high 

loadings are very similar to the "type ll represented by the factor. As loadings 

decrease, subjects become less similar to the IItype li
• Thus, coverage of the 

classification C3n be manipulated by varying the minimum loading required to 

be classified. A high cut~ff point classifies relatively few subjects into 

homogeneous groups, whereas a low cutoff point classifies more subjects into 

more heterogeneous groups. Although this is an obvious way to vary coverage, 
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previous researchers employing factor analys,"s as t a axometric method have 

simply chosen a single cutoff point (i.e., 2 .30) for determining groups. 

One problem with using minimum loadings to vary coverage is that subjects 

may have relatively high loadings on more than one factor. This is because a 

:ingle factor does not account for all of the variance in a subject's pattern 

of scores. One solution to this problem is to adnpt dual cutoff criteria in a 

manner similar to Lorr's techn,"que. S II "f" 11 " p~c, ,ca y"n order to be classified a 

subject must have a loading greater than a cutoff point on one factor and the 

loadings on all other factors must be below a second cutoff point. By varying 

the magnitude and relative difference between the cutoff points, the coverage 

of the classification can be effectively varied. 

IV. Evalua!jLon and Comparison of Methods 

A. Goal of this Research. Th 1 f -h' e goa 0 ~'s research involved the evaluation 

and comparison of these previ~usly described tax~metric methods. Computer 

generated data sets were used because they have the advantages of having 

predetermined groups with known correlates. This makes it possible to compare 
:a"~ "".., ... 1 .. .." ... 0. +ho ... '!IIV'"' ____ -=.. ~. I •• 

",II'A t:.,QIU ....... ""'" .... "ulllt:~I·IC metnoas on 'tne,"r ab,'-l,"ty to h recover t e groups or 

IItypes" built" t th d ,n 0 e ata and determine if the resulting taxonomies are 

predictive of predetermined differences among the groups. One goal of these 

analyses is to determine, for each method, if systematically reducing coverage 

improves the statistical power of the taxonomy. That is, we seek to establish 

the general relations betwaen coverage and statistical power. However, 

between-method compari sons are al so impo,rtant. Thus, we seek to identi fy 

which methods produce the most accurate and predictive taxonomies having the 

highest coverage. 

In the following section the statistical model, data sets, evaluative 

criteria, and strategy for this phase of the research will be outlined. 

I 
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B. The mixture model. The mixture model has been proposed as a statis­

tical model for evaluating taxometric methods (Blashfield, 1976; Sclove, 1977; 

Wolfe, 1970). According to this model., the task of taxometric analysis is to 

resolve a mixture of populations into its components when the underlying 

populations and their parameters are unknown. In statistical terms, suppose X 
• 
is a mixture of k populations; such that 

X = (Xl, x2, X3, ••• XK), 

where xi denotes an ~i x~ matrix based on ni entities samples from the 

ith population measured on ~ variates. Each population has an associated 

probability distribution, f(Xi), and is defined by parameters ~ and 

where u is a p-length vector of population means, and is a ~ X ~ population 

covariance matrix. The probability distribution for the mixture X is 

K 
f(K) = (NIl) f (Xi), 

i=l 

K 
f(X) = (n1/n) f (Xi), 

i=l 

where 
K 

n = ni. 
i=l 

The taxonomic problem is to resolve the mixture X into its component popula­

tions (x ) such that the parameters (ni'~' and ) and memb~rs of each 
,I , 

population can be specified. 

Drawing an example from research, suppose a sample of' criminal offenders 

is described in terms of their scores or. a personality inventory (e.g., 

Megargee, 1977). The total sampl e( X) is assumed to be composed of several 

underlying populations or "types" of individuals (Xl. x2, X3 ••• Xk). 

Each type is defined by a particular personality pattern, which can be 
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described in terms of an average pattern of scores (~) and a covariance 

structure ( ). Unfortunately, the underlying populations and their para­

meters are unknown. ThU5, a taxometric method, such as hierarchical cluster 

analysis, would be used to identify the underlying types in the sample. 

The mixture model provides a basis for evaluating and comparing taxomet-

ric methods. Using IlMonte Carlo" procedures» computer generated data sets can 

be constructed which simulate a mixtu"e of populations. Unlike real data, the 

parameters of the underlyi ng popul ati.'Jns are predetermined and known. Thus, 

taxometric methods can be evaluated and compared on their ability to resolve 

mixtures into their component populations (Blashfield, 1976; Edelbrock, 1979; 

Edelbrock and McLaughlin, 1980; Gross, 1972; Kuiper and Fisher, 1975; Mezzich, 

1978; Mojena, 1977; Rand, 1971). Mixtura model comparisons are extremely 

valuable because a wide variety of taxometric methods are available for 

use and different methods are likely to produce different results when applied 

to the sme data. Such comparisons help identify those taxometric methods 

which are most likely to produce fruitful' research results when applied to 

real data. 

C. "Benchmark ll data sets. 

Comparisons are planned for comput~r generated data, including 

20 multivariate normal mixtures generated by Blashfield (197). Each mixture 

conSists of two or more multivariate populations representing underlying 

gr~ups or Ittypes" which differ in their profile characteristics and external 

correlates. These mixtures simUlate the type of taxonomic problem encountered 

in the behavioral and social sciences. The profile data consists of scores on 

continuous, quasi-normal distributions which correspond to the type of data 

provided by many behavioral and personality measures. The scores on each 

profile dimension also embody a certain degree of error, which simulates the 

~..:.---------...... -- - ------~--~ 
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less than perfect reliabiljty of real data. This error variance implies that 

the underlying populations overlap to some extent and that population members 

represent a range in similarity to the population "type". This corresponds to 

the continuum of classifiability encountered in research applications. 

• Finally, the populations are constructed to differ in external criteria 

and these differences represent small to medium effect~. This is analogous to 

a researcher validating a taxonomy of criminal offenders against external 

criteria such as background variables, recidivism, etc. 

These data sets represent a range of parameters describing mixtures and 

their underlying populations, as well as a range in difficulty of solution. 

They were selected in preference to generating new mixtures because they have 

been well characterized, extensively studied, and are available to other 

researchers (cf. Blashfield, 1976; Edelbrock, 1979; Edelbrock and McLaughlin, 

1980; Mojena, 1977). The advantage of using these previously analyzed "bench­

mark" data sets is that the results of this study can be directly compared to 

previ ous studi es of d~fferent taxometri c methods. The generati on of new 

mixtures would preclude direct comparisons to previous work. That is, differ­

ences due to methodological innovations would be confounded with differences 

among the data sets analyzed. 

D. Evaluative criteria. The taxometric methods will be evaluated and 

compared in terms of their accuracy and statistical POW!!. 

Accuracy refers to the degree to which a taxonomy recovers the underlying 

groups in the mixtures. Thus, an accurate taxometr1c solution is one that 

groups together members of the same underlying populations fn the mixture • . 
whereas an inaccurate solution would group together members of different 

populations. A variety of measures of accuracy have been used, most of which 

are based on quantifying the degree of agreement between the empirically 

~ II 
II 

I 

22 

derived groups and the underlying populations. In this research. the statistic 

lambda was used to calculate accuracy. 

The statistical power of taxonomies refers to the degree to which differ­

ences among taxonomic groups can be detected. This involves detecting differ­

ences in external criteria, that is criteria not involved in the construction 

of the taxonomy. lhis would correspond to a researcher validating a taxonomy 

based on behavioral or personality measures against external correlates 

such as background variables. recidivism, etc. In this research, statistical 

power is estimated by testing differences among the empirically derived groups 

on artifically generated data. These differences will be tested using one-way 

analyses of variance (ANOVAs) with group membership serving as the classifica­

tion variable. These ANOVAs will reveal the degree to which the groups 

differ on the external criteria. These differences will be quantified in 

terms of "effect size". Based on the effect size and sample size, statistical 

power can be derived using tables provided by Cohen (1975). Statistical power 

is measured on a scale from zero to 1.00, which represents the probability 

that the null hypothesis will be rejected if it is in fact false. In other 

words, statistical power is the ability to ~1 a significa,nt differenc,e if 

the difference is real. 

E. Evaluation strategy. The strategy of this research was to determine the 

effect of manipulating coverage on the a~curacy and statistical power of the 

taxonomi es produced by each method. For each method, mean accuracy and . 
statisti cal power val ues cal culated separat~ly for the mul ti variate normal 

mixtures at various levels of coverage. Since coverage can be directly 

man; pul ated. the 1 evel s of coverage to be ana,l yzed can be determi ned in 

advance. Analyses were made at levels between 100 and 0% coverage at various 

intervals. These levels thus cOVer the broadest possible range of cover-
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-age. For the multivariate data sets, mean accuracy and statistical ~ower 

values were based on 20 mixtures. 

V. Application of Methods 

The mixture model comparisons described above will contribute to a more 

comprehensive theory and statistical model of taxometric analysis. Moreover, 
• 
they will identify those methods that are most likely to produce fruitful 

research results when applied to real data. However, even if the advantages 

of these innovative methods can be demonstrated on computer generated data 

sets, these methods will not automatically be used by researchers in criminal 

justice. In order to be used, the advantages of these methods must be demon­

strated on real data relevant to criminal justice. Thus, the third phase of 

this research involves the application of the~e new methods to criminal 

j usti ce data. 

Delinquency data. Data c01lected in a longitudinal study of delinquency 

and dropping out of school will be analyzed. Data on 2,617 junior and seniDr 

high school students were collected using teacher reports, parent interviews, 

student questionnaires, and school records. The dependent variables were 

dropping out, self-reported delinquency, juvenile offense record, and adjud­

ication as delinque~t. These data and the 'design of study are described in 

detail in Elliot and Voss (1974). The taxonomic problem is to determine if 

subgroups of youth, differing in patterns of scores on such variables as 

success at home, success at school, normlessness, punitiveness, commitment~ 
~ 

peers, and'commitment to ,parents, differ in subsequent school failure, delin-

quent behavior, criminal offenses, and' adjudicatio". Th~ strategy will be to 

systematically evaluate the effect of manipulating the cov~rage of such 

taxonomies on the ability to detect significant differences in self~reported 

delinquency. 
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RESULTS 

VI. Within Method Comparisons 

A. Inverted Factor Analysis 

1. Procedure. Data were double-centered according to the rationale and 

procedure given by Overall and Klett (1972; pp. 203-204). Variables were 
• 
standardized (mean a 0, sd a 1) and scpres were then standarized equivalently 

across objects. Each of the 20 (object X variable data sets was then inverted 

(i .e., to represent a variable X object matrix) and subjected to principal­

components factor analysis using the BMDP4M - program. It is important to 

note that double-centering the data results in bipolarity of the unrotated 

factors. However, it does not necessarily result in bipolarity in the rotated 
• 

factors, which were used here. 

Two procedures were used to determi ne the number of factors. Fi rst, for 

each mixture, the number of factors was set to equal the number of underlying 

population~. Since the rotated factors were not bipolar, each factor comprised 

only one group of objects having high loadings in the same direction. Thus, 

determining the number of factors in this way is tantamount to setting the 

number of groups (j) equal to the number of underlying populations (k). These 

20 analyses are subsequently designated by the notation j a k. 

Second, the number of factors was determined by examining eigen values. 

For these data sets, the comnonly used eigen value greater than I" rule 

resulted in conSiderable over"factoring. A few factors having large eigen 

values were obtained followed by several having eigen values slightly greater 

than 1.00. This probl~n was also encountered by Blashfield and Morey (1980). 

Following their procedure, Catt~ll's (1966) scree test was used to determine 

number of factors. In this study, two investigators examined the eigen value 

plot for each mixture and independently selected the number of factors. 
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Although we agreed for all 20 mixtures, the number of far.torsindicated by the 

scree test did not always equal the number of underlying populations. For 

eight mixtures, the number of factors equalled one more than the number 

of underlying populations (i.e., k + 1). These 20 analyses are subsequently 

Qesignated by the notation j 1 k (i.e., the number of groups did not neces­

sarilyequal the number of populations). 

One issue in factor analysis is whether to construct orthogonal (u~cor­

related) or oblique (correlated) factors. This is an important consideration 

when deriving typologies because rotational procedures substantially affect 

final factor loadings, which are the basis for constructing groups. Most 

previous applications of inverted factor analysis (e.g., Blashfield & Morey, 

1980; Collins et al, 1976; Fl~iss et al, 1971; Katz & Cole, 1965) involved the 

varimax rotation--an orthogonal procedure. In this study, both varimax 

(orthogonal) and direct quartimin (oblique) rotations were compared. This 

yields four analyses of 20 mixtures each: j ~ k and j 1 k with either 

varimax or direct quartimin rotation. 

A crucial issue that arises in inverted factor analysis involves trans­

-lating factor loadings into discrete groups of objects or individuals. A 

common procedure has been to assign individuals to groups on the basis of 

highest factor loadings (in terms of absolute value). Some investigators have 

specified a minimum loading required for classification. Fleiss et al 

(1971), for example, selected a minimum loading of .40. Individuals whose 

hi ghest 1 oadi ngs were 1 ess than .40 were 1 eft uncl assi fi ed. In thei r Monte 

Carlo study, Blashfiel~ and Morey (1980) selected a minimum loading of .60, 

with the additional criterion that an object could not have a loading of .60 

or higher on any other factor. These rather stringent criteria reduce cover­

age substantially, but result in more distinct and homogeneous groups. 
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In this study, objects were assigned to groups on the basis of their 

highest loadings. This is a simple procedure for constructing groups, but the 

coverage of the resulting classification can be manipulated by simply changing 

the minimum loading required for assignment. A low cutoff pOint results in 

the classification of a high proportion of objects into relatively heterogenous 

groups, whereas a high cutoff point 'results in the classification of a 10w 

proportio~ of objects into more distinct, non-overlapping groups. This 

assignment procedure therefore makes it possible to evaluate classifications 

at several levels of coverage. 

2. Calculating Accuracy. The ~ccuracy of the inverted factor solutions 

was defined as the agreement between the obtained groups and the underlying 

populations in the mixtures. A wide variety of statistics have been used to 

measure accuracy in mixture model studies, an~ there is little regarding the 

"best" accuracy meaeure. Kappa (Cohen, 1960) and Rand's statistic (Rand, 

1971) have been used in many studies (e.g., Blashfield, 1976; Edelbrock, 1979; 

Edelbrock ~ McLaughlin, 1980; KUiper & F~sher, 1975; Milligan & Isaac, 1980; 

Mojana, 1977; Rand, 1971). Bath of these meaSuF~s have drawbaCKS. Kappa has 

the advantage of correcting for chance level of agreement in a cross-classif­

ication, but it fs appropriate only for square matrices (i.e., j ~ k). 

Rand's statistic does not require that j ~ k, but the scale is not uniform 

from matrix to matrix. That is, the lower bound of Rand's statistic is not 

zero but is determined by the marginal distributions of the cross-classifica­

tion. 

One way to overcome the idiosyncracies inherent in individual measures is 

to use multiple criteria for evaluating accuracy. Six measures, including 

kappa, Rand's statistic, asymmetric lambda, tau, Kramer's v, and the contin­

gency coeff1cient were used in this study. We chose to report our main 



( 
~ 

{ 

( 

(' 

( 

c 

t. 

J: 

", 

27 

findings in terms of asymmetric lambda for several reasons. This statistic is . 

appropriate for nominal level cross-classifications, has a range of zero to 

1.00, and can be used with either square (j = k) or rectangular (j ; k) 

matrices. The "asYlTlTletrical ll aspect of this statistic also seems \~ell suited 

to the task of measuring accuracy. The term lasYl1111etrical" refers to the fact 
• 
that lambda indexes the degree to which one classification predicts another, 

and not vice versa. In mixture model studies, the underlying populations 

comprise a fixed or dependent classification, predicted by empirically derived 

groups that are free to vary. 

Finally, it is worth noting that our conclusions regarding the relative 

accuracy of various methods were identical for all six measures we explored. 

This is not surprising, since such measures are all fuunded on the same 

information extracted from the cross-classification matrix (cf. Hubert & 

Levin, 1976). Furthermore, in these analysiS, the six measures of accuracy 

correlated> .95 with one another. 

3. Statistical Analyses - Accurac~. For each of the 80 inverted factor· 

solutions, objects were classified according to levels of coverage dictated by 

the following minimum loadings: .0, .4, .5, .6, .7, .8, and .9. These minimum 

loadings between were selected because: (a) all objects had highest loadings 

(b) very few objects had highest loadings between .0, and .4 so accuracy and 

coverage varied little in this interval, and (c) there were too few loadings 

above .9 to calculate accuracy. 

Accuracy and coverage values were analyzed in separate 2 x 2 x 7 analyses 

of variance representing: number of factors (j = k VS. j ~ k) rotational 

methods (varimax vs. direct quartimin), and minimum loading (.0 to .9), 

I'espectively. 
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Main results are portrayed graphically in Figures 1 and 2. These figures 

show the relations between the minimum loading rever age (right axis). Figure 

1 depicts accuracy ~nd coverage results for the j ; k solutions. Overall, 

accuracy and coverage were significantly related to the minimum loading 

(p. < 001), but in opposite ways. Raising the minimum loading uniformly 
• 
increased accuracy, but decreased coverage to a greater and greater extent. 

No significant differences (F < 1.00) were detected between varimax and direct 

quartimin rotations for either j = k or j ~ k solutions. Varimax solutions 

resulted in consistently higher accuracy and coverage, however. 

Paradoxically, j ; k solutions resulted in significantly higher 

accuracy and coverage than j = k solutions (po < 01). This was the case for 

both rotational methods. Figure 3 portrays accuracy differences between j = k 

and j ;. k solutions in a manner that equates them for verage. Accuracy is 

shown as a function of coverage, rather than as a function of the minimum 

loadings as in Figures 1 and 2. At all levels of coverage, j ; k solutions 

resulted in significantly higher accuracy and j = k solutions. Examination of 

the sight mixtuiES where j f k cunfinned that constraining the number of 

factors to equal the number of underlying groups substantially reduced accuracy. 

For these mixtures, higher accuracy was achieved when the number of groups was 

determined empirically by Cattell IS scree test. 

4. Effect Size and Statistical Power. To evaluate statistical power of 

the inverted factor analYses, we analyzed one of the computer generated data sets 

(Slashfield1s Data set #17, See Appendix A) in depth. This data set includes 

seven external criteria. That is, seven variables which were not included in 

the cluster analyses, but are statistically related to the clustering variables. 

These external variables thus serve as "validity" criteria against which to 

evaluate the empirically derived classifications. This would be analagous to 
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• Table 1 - Mean Accuracy and Coverage Values for Inverse Factoring Procedures 

• • J=k ~#c1usters=#~oeu1ationsl 

Cutoff point (loading) 

.0 .4 .5 .6 .7 .8 .9 

\ . Varimax 
I ~ -~-----::::::-, 
i Accuracy .66 .68 .71 .74 .80 .83 .88 

Coverage (%) 100 90 83 71 52 30 9 
~ 

Direct Quartimin 

Accuracy .61 .66 .69 .73 .78 .82 .83 

J \. Coverage (%) 100 88 81 70 54 33 13 

jrk (#clusters determined via Cattell's scree test) 

• ,_-i --

Varimax 

Accuracy .73 .76 .78 .81 .85 .90 .95 

• Coverage (%) 100 93 87 76 58 34 11 . 
I I 

I I 

I Direct qLartimin I . 
! Accuracy .71 .74 .77 .80 .84 .88 .90 I 
, . 
I , Coverage (%) 100 92 86 75 59 37 15 , 

1 

I 
,! 

'. 1 

1 
I 

I 
) 
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Table 2 

to a researcher evaluating an empirically derived taxonomy based on MMPI data 

against external criterias such as recidivism, subsequent violent behavior, etc. 

In other words, statistical power is the degree to which the empirically derived Effect Sizes for Ipverse Factor Analysis (Varimax rotation) 

t. 

clusters differentiate among subjects in terms of external criteria. Statistical 

power is thus an index of the "predictive power" or "predictive validity" of a 

c.l assi fi cati on. 

One-way analysis of variance procedures were used to evaluate effect size and 

statistical power for the clustering solutions obtained via the inverted factor 

procedure. Since results were almost identical for the varimax and direct 

quartimin procedures, findings based on only the varimax procedure are reported 

here. This seemed warranted because the varimax procedure produced slightly higher 

( accuracy values than the direct quartimin procedure in the previous comparisons. 

Thus, we sought to obtain an es'timate of the optimal statistical power of the 

inverted factoring procedure. 

In each of the seven one-way analyses of variance, the empirically derived 

clusters served as the independent variable and the seven external criteria . 
served as dependent variables. One question we sought to answer was the degree of 

separation between clusters on the external criteria at various levels of coverage. 

The statistic 1 (Cohen, 1977) was used as an index of effect size. The statistic i 

serves as an index of the degree to which the clusters explained or accounted for 

t variance in the external criteria. As a rule of thumb, f=.10 is considered a small 

effect size; f=.25 is considered a medium effect size; and 1=.40 is considered a 

large effect size. Thus, effect size is greater than .40 reflect large differences 

between clusters on the dependent variables. 

Table 2 ,"eports effect sizes for each of the seven~xternal criteria for the 

varimax grouping procedure. Effect sizes are given at each cutoff point ranging 

from 0 to .9. This encompasses a r~nge of coverage from 1QO to 22%. As shown in 

Table 2, most effect sizes were in the moderate range. Moreover, there were 
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External criteria 

1 .12 

2 .22 

3 .32 

4 .41 

5 .34 
,.I 

6 .44 

7 .19 

Mean ES .29 

Coverage (%) 100 

1_' ____ ~ ______________ ~ ________________________ ~~ ____ ~~ __ • ______________ __ 

Cutoff point (loading) 

.09 .07 .08 .14 .35 

.29 .42 .46 .46 .60 

.30 .31 .27 .46 .48 

.47 .48 .52 .54 .64 

.35 .38 .40 .48 .53 

.50 .57 .61 .71 .76 

.27 .28 .29 .44 .48 

.33 .36 .38 .46 .55 

92 87 83 70 50 

~-------
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.9 

.70 

.68 

.35 

.92 

.57 

.75 

.35 

.62 

22 
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differences between the dependent variables. External criterion #1, for example, 

demonstrated low effect size at all levels of coverage and particular.ly for 

high levels of coverage. The most important finding, however, is the relationship 

between effect size and coverage. Averaging across all seven dependent variables, 

there is a linear and inverse relationship between coverage and effect size. As 

coverage decreased, effect sizes increased. In other words, as one classifies 

fewer and fewer subjects into groups, differences in the external ~riter;a became 

more pronounced. This can be interpreted in terms of the "continuum of classifi­

ability.1I At 100% coverage many subjects were grouped into clusters even though 

they bear little resemblance to other cluster members and do not differ in the same 

manner on the external criteria. Thus, effect sizes are diluted. At lower levels 

of coverage, cluster members resemble each other to a greater extent and the 

clusters themselves are more representative of "pure types. 1I Thus, differences 
, . 

in external criteria become more pronoun~ed. 

Considering the linear relationship between coverage and statistical ~ower, 

one may conclude that the lowest levels of coverage offer the best chance of 

detecting significant differences in external criteria. This is clearly faulty 

reasoning. Statistical power, which is the ability to detect significant differ­

ences among groups, is a function not only of effect size, but also sample size. 

As sample size decreases below a certain threshold statistical power also 

decreases. Given a cutoff point of .9, for example, one would 9btain a large 

effect size (.62) but only 22% of the subjec~s would be classified. With such. 
.... 

a small sample size the probability of detecting significant differences in the 

external criteria ;s low, despite the fact that the differences among clusters 

are relatively "large." Thus, it is important to distinguish betweenfithe size 
, -

of di fferences between cl usters and the si'gnifi cance. of these differences. 

To evaluate the effects of coverage on statistical power, the probability of 
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detecting significant differences among groups was calculated according to the 

procedures provided by Cohen (1977). The p > .01 level of significance was 

used in these statistical power calculations. ReSUlts for the inverse factor 

analysis procedure (varimax rotation) are reported in Table 3. As shown in 
• 
this table, there was a curvilinear relationship between statistical power and 

coverage. For these analyses, 100% coverage yielded a .52 probability of 

detecting a significant difference in external criteria. In other words, one 

had about a 50/50 chance of finding a significant difference among clusters. 

However, statistical power increased substantially as coverage decreased. Leaving 

only 8% of the subject unclassified, for example, boosted statistical power to .60. 

Laaving 30% of the subjects unclassified boosted statistical power to .78. At 

lower levels of coverage (e.g., 22%), statistical power again declined to only .51. 

These results suggest that classifying all subjects will not result in optimal 

statistical power. They further suggest that the optimal level of statistical 

power may be obtained in the range from 70-83% coverage. Reducing coverage from 

70 to 50% resulted in negligible gains in statistical power. Moreover, classifying 

too few subjects had a deleterious effect on statistical power, even though this 

results in larger effect sizes (See Table 2). . 
B. Lorr's Technique 

1. Procedure. Lorr's non-hierarchical clustertng procedure, called 
I 

"Build-Up," was also evaluated on Blashfield's 20 'mu:~tivariate nonnal mixtures. 
,I 

Special computer software was written to perfo~ the~e cluster analyses and pennit 

us to manipulate the inc1usion and exclusion cutoff points a$ described ~rev;ou~ly. 

Lorr's clustering technique was evaluated using 11 ~ombinations of inclusion and 

exclusion cutoff points, ranging in significance levels from .10 to .001. We 

expected the lowest levels of coverage to arise from high inclusion cutoff points 

(.001) and low eXclusion cutoff points (.10), as explained previously, The 

" 



Table 3 

Statistical Power for inverse factor analysis (VARlMAX) 

Cutoff point (loading) 

.& .6 - .7 .8 -
External criteria 

1 .05 .03 .03 .03 .05 .36 
2 .21 .54 .90 .94 .84 .95 
3 .65 .54 .52 .40 .85 .73 
4 .91 .95 .94 .99 .97 .97 
5 .70 .74 .80 .84 .90 .82 
6 .95 .99 .99 .99 .99 .99 
7 .19 .40 .42 .47 .84 .73 ., 

Mean SP .52 .60 .66 .67 .78 .79 
Coverage (%) 100 92 87 83 70 50 
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highest levels of coverage would arise from inclusions/exclusion cutoff points 

that were low and close together (.10/.10). 

2. Calculating Accuracy. The accuracy of Lorr's clustering solutions were 

evaluated using asymmetric lambda as described previously for inverse factor 

analysis. Additional accuracy measures were also employed, but they yielded 

the same conclusions. Accuracy results were reported in terms of asymmetric 

lambda because this statistic has conceptual advantages and this would permit 

direct comparisons with the results obtained for the inverse factoring solutions. 

,3. Accuracy Results. Mean accuracy results for the 20 multivariate normal 

mixtures are reported in Table 4. This table reports mean levels of coverage and 

accuracy for each of the 11 combinations of inclusion/exclusion cutoff points, for 

both the product-mement correlation and the intraclass ccrrelation. Unexpectedly, 

there was a curvilinear relationship between accuracy and coverage. In general, 

accuracy was relatively low at both high and low levels of coverage. For analyses 

employing the product-moment co~re1ation, accuracy was maximized in the range from 

49-72% coverags. For analyses a~ploying the intraclass correlation, the highest 

accuraci es were obtai ned in the rllnge from 48-68% coverage. The two measures of 

profile similarity (product-moment correlation and intraclass correlation) did 

not differ Significantly in either accuracy or coverage. These results are 

similar to those previously reported for inverse factor analysis in that high 

levels of 'coverage produced low accuracy. 
, 

These accuracy results differ from thos obtained for inverse factor analysis 

in that low levels of coverage did not produce increasingly higher accuracy values. 

This can be attributed to the idiosyncratic way in which Lorr's c1ustering 
~ 

procedure Duilds clusters. In order to achieve low levels of coverage the inclusion/ 

exclusion cutoff points must be extended beyond reasonable and recommended range. 

,f 

J~ __________________ ~ ____________ ~ ___ ~ __ ~ ________ ~ ________ d 
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Table 4 

Mean Accurac and Covera e Values for Lorr1s Non-hierarchical C1us'terin 

Cin .001 .01 .025 ~ 

Cex .01 .025 .05 .10 .025 .05 .10 .05 .10 .10 

Intrac1ass correlation 

Accuracy .74 .74 .74 .71 .96 .95 .96 .94 .93 .88 

Coverage (%) 31 29 27 25 59 53 48 68 61 75 

,. 
Product-moment 

Accuracy .73 .73 P .69 .95 .95 .94 .92 .91 .87 
. '" ~ t 

.l) 
Coverage (%) 34 31 26 62 55 49 72 62 71 \ 

t'f 
L 

~\ 

; \ , , 

Note: Table entries are mean values based on the ana1ysi's of 20 mixtures. 
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That is, the inclusion value must be set exceedingly high while the exclusion 

t value is set exceedingly low. This results in the construction of very 

peculiar clusters which are not representative of the "pure types ll that 

would be expected at low levels of coverage. 

Another unexpected finding was that not combination of inc1usion/exclusion 

criteria resulted in 100% coverage. Even the lowest combination of inclusion/ 

exclusion criteria (.10/.10) failed to classify all subjects. It is possible 

€ that 100% coverage could be achieved with even lower inclusion/exclusion 

criteria, but such cutoff points are not recommended, given the rationale of the 

grouping procedure. .. 

4. Effect Size and Statistical Power. Effect size and statistical power 

for Lorr1s technique were evaluated on the same multivariate data set used with 

the inverse factor analysis described previously. Again, clusters defined on the 

basis of Lorr1s grouping procedure served as the independent variable and each 9f 

the seven, external variables served as the external criteria or dependent variables::". f 
One-way analyses of variance were used to evaluate effect size and statistical IL 
power according to procedures described previously. Since results for the product­

moment correlation and one-way intrac1ass correlation were almost identical, only 

results for the product-moment correlation (the measure originally recommended by 

e Lorr) are reported here. 

Effect size, as measured by Cohen1s f statistic, are reported in Table 5. The 

effect size, coverage, and number of clusters obtained for each of the 11 combin­

* ations of inclusion/exclusion criteria are given. Overall, the effect sizes were 

high, mostly in the medium to large range and showed a linear/inverse relationship 

to co~erage. That is, high levels of coverage resulted in lower effect sizes. As 

I , 
I ' 

cover,age decrei!sed there was a general increase in effect size. These results are 

similar to those previously reported for inverse factor analysis. 
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Effect Size for lorr's Non-hierarchical Procedure (correlation) 

Cin .001 .01 .025 .05 .10 

Cex . 01 .025 . .05 .10 .025 .05 .10 .05 .J.Q .10 .10 

External criteria 

1 .74 .71 .74 .72 .40 .39 .40 .34 .38 .35 .30 

2 .88 .88 .89 .90 .64 .62 .63 .56 .59 .60 .40 

3 .56 .58 .51 .53 .57 .58 .50 .51 .50 .54 .39 

4 .86 .85 .86 .88 .66 .67 .63 .61 .62 .54 .39 

5 .57 .49 .32 .22 .54 .51 .29 .43 .39 .41 .39 

6 .58 .67 .69~ .44 .. 65 .65 .66 .51 .54 .50 .41 

ttl 7 045 \40 .38 .44 .42 .36 .42 .41 .46 .30 
'1 

-. 
.65\ 

4 

I Mean ES .66 .62 .58 .56 .55 .49 .4t3 .49 .49 .37 

Coverage (%) 32 30 \\ 26 22 64 56 52 78 71 84 95 
i 

HClusters 6 6 \\ 5 4 8 7 6 8 7 7 7 
. ~ ~ 
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Table 5 also shows an unexpected relationship between the inclusion/exclusion 

£ criteria and the number of clusters obtained. With lorr's technique, the number of 

clusters is not determined ~ priori, but is free to vary and is determined by the 

inclusion/exclusion criteria. Overall, the number of clusters ranged from 4 to 8 

and was clearly dependent upon the relative values for inclusion and exclusion. 

Specifically, combinations of inclusion and exclusion criteria which were close 

together resulted in more clusters than combinations that were far apart. This 

( can be explained easily, in that the closer the cutoff points, the fewer the 

subjects excluded from the clustering in each clustering cycle. This leaves 

more subjects available in subsequent cycles for constructing more clusters. In 

( 

addition, the number of clusters appear to be related to the absolute value of the 

inclusion criterion. In general, the lower the level of the inclusi.on cutoff 

point the greater the number of clusters. 

Statisti~~l power for each of the seven external criteria were also calculated 

for the 11 runs ~f Lorr's technique. Statistical power results are reported in 

Table 6. Overall!; statistical power values were high, ref1ecting il high probabil1ty 

of detecting a significant difference among clusters. Statistical power was also 

related to coverage. Statistical power was relatively low at extremely high « 85%) 

and low (> 55%) coverage. For these data, statistical power was maximized in the 

( range of 64-84% coverage. There were clear disadvantages to reducing coverage 

below 50%. Classifying only 22% of the sample, for example, resulted in only a .49 

prob~bi'ity of detecting a significant difference in external criteria. This can 

( be compared to the .82 probability of detecting a significant difference at 84% 

coverage. 

C. Centroid tlustering . 
. 

{, 1. Procedure. The 20 benchmark mixtures were also arialyzed using the centroid 

clustering/nearest centroid assignment procedure previous1y described by Edelbrock 

-1 
" 
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" 



---------------.............. -----------~~-~-~-

r 

• • ~\ • • • 

Table 6 

• 

Statistical Power for Lorr's Non-hierarchical Procedure (correlation) 

" 

Cin .001 .01 .025 .05 .10 

Cex .01 .025 - .o.§. .10 .J!g§. .05 .10 .05 .10 .10 .10 

External Criteria 

1 .90 .73 .86 .74 .49 .39 .46 .44 .55 .50 .41 

:! 2 .99 .95 .95 .95 .95 .90 .94 .93 .95 .99 .76 

3 .52 .48 .38 .40 .90 .86 .74 .90 .85 .95 .74 .: 

4 .99 .93 .94 .93 .97 .94 .94 .98 .98 .95 .74 

5 .60 .31 .10 103 .86 .70 .20 .69 .57 .68 .74 

t f 
6 .61 .62 .76 .25 .97 .92 .95 .90 .90 .92 .77 

" -?;;~C:-::::c. ,J' 

7 .32 .16 .12 .14 .60 .40 .32 .69 .62 .79 .41 

1-
Mean SP .70 .60 .59 .49 .82 .74 .65 .79 .77 .82 .65 

Coverage (X) 32 30 26 22 64 55 52 . 78 71 84 95 

HClusters 6 6 5 4 8 7 6 8 7 7 7 

\ 
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and Achenbach (1980). The strategy by which this method constructs clusters was 

described previously. One practical problem with this method is that it does not 

yield a discrete number of clusters, but rather a hierarchical arrangement of 

objects and groups. Determining the appropriate number of clusters in a hierarch'ical 

901ution is a difficult and thorny problem (cf. Mojena, 1977). In this research, 

the number of clusters was set to equal the number of underlying populations in the 

mixture. Outliers were excluded from determining the number of clusters to avoid 

the problem of a single outlier being consider.ed a IIcluster" (See Edelbrock, '1979 

for a discussion of this methodological problem). 

Two measures of profile similarity were tested using the centroid clustering 

procedure: the product-moment cor~elation and the one-way intraclass correlation. 

Previous resear~h or. the centroid clustering procedure (Edelbrock and McLaughlin, 

1980) had suggested that the intraclass.correlation would result in higher accuracy, 

but it was necessary to explore this question further here. Running analyses on 

both of these measures would also maximize comparability with Lorr's technique as 

reported in previous section. 

Each of th~ 20 multivariate normal mixtures was analyzed separately using the 

ccnt ... oid clustering technique employing either. the product-moment correlation or 

the one-way intraclass correlation as the measure of profile similarity. For each 

clustering solution, the appropriate number of clusters was determined (excluding 

outliers) and the cluster centroids were calculated. Each object was then classified 

according to the cluster centroids, using the nearest centroid assignment pf'ocedure 

described previously. The minimum value required for classification could be 

varied to manipulate coverage. Six minimum cutoff points were used, ranging from 

. a to .9, 

2. £!lculating accuracy. After objects were assigned to clusters using the 

nearest centroid procedure, asymmetric lambda was calculated as an index of the 

L 

/' 
~ , 

e' {' 1 
•• 

{ , 
t 

' , t 

• 

)' 

) 

1 
,t 
\ 

I . 
I 
'. 

.' 

45 

accuracy of the clustering solution. Again, cluster membership served as the 

"independent variable" in the cross-classifications, while true population 

membership served as the "dependent variable." The accuracy values thus reflect 

the degree to which the true population membership could be predicted by the 

d1ustering solution. 

3. Accuracy Results. Mean accuracy results for the 20 multivariate nonnal 

mixtures are reported in Table 7. This table shows mean accuracy (lambda) for 

.the centroid method using either the product-moment correlation or the intrac1ass 

correlation. Mean accuracy and coverage values are given for cutoff points of .0, 

.1, .3, .5, .7, and .9--corresponding to coverage levels ranging from 100 down to 

9.4% As shown in Table 7, accuracy values were moderately high and were related 

to coverage in the expected way. That is, accuracy increased relative to declines 

in coverage in a quasi-linear way. Thus, accuracy was lowest at 100% coverage and 

increased monotonically as coverage decreased. Unlike Lorr's technique, accuracy 

did not deteriorate at the lowest levels of coverage. For the centroid clustering 

procedure, accuracy continued to increase even below 15% coverage. 

Table 7 also indicates that the intraclass correlation yielded higher accuracy 

values than the product-moment correlation. For example, at 100% coverage, the 

intraclass correlation resulted in an accuracy value of .73, whereas the product­

moment correlation resulted in an accuracy value of .68. This difference is 

significant (p > .05) by the paired t-test. ,Although the cutoff points did not 

yield perfectly comparable levels of coverage for the product-moment correlation 

and the intrac1ass correlation, the results in Table 7 indicate that the intraclass 

correlation resuited in consistently higher accura~y values at lower levels of 

coverage. This is. consistent with previously reported comparisons between these 

two similarity measures (Ede1brock and McLau,ghlin, 1980). 



46 

Table 7 

t' 

Mean Accuracy and Coverage Values for the Centroid Clustering Procedure. 

Cutoff Point 

..& • 1 ..d .& .:L .!l -
Intrac1ass correlation 

Accuracy .725 .733 .762 .807 .905 1.00 

(%) 100 96.1 84.9 56.3 26.6 1.3 
Coverage 

Product moment correlation 

.688 .690 .715 .778 .853 • 968 
Accuracy 

(%) 100 97.9 92.7 73.0 38.8 14.9 
Coverage 

• 
NOTE: Table entries are mean values based on 20 mixtures. 
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. 
4. Effect Size and Statistical Power. The effect size and statistical power 

I 

of the centroid clustering procedure was evaluated on B1ashfie1d's data set #17, 

in a manner described previously for inverse factor analysis and Lorr's non­

hierarchical clustering technique. The results for the product-moment correlation 

and the intraclass correlation were similar. We chose to report the results for 

the intraclass correlation since this measure produced significantly higher levels 

of accuracy and appeared to be the similarity measure of choice for this clustering 

method. 

Mean effect sizes for the clustering procedure are reported in Table 8. This 
• table summarizes effect size as measured by Cohen's 1 statistic, for each of the 

seven external criteria at six levels of coverage dictated by the cutoff pOints . 

As shown in Table 8, effect sizes were predominantly in the high range. As 

expected, effect size had a curvilinear relationship to coverage: effect size 

was lowest at 100% coverage and increased as coverage declined to about 30% • 

Below 30% coverage, effect size dropped slightly. 

Statistical power rosults are reported in Table 9. As shOwn, statistical 

power was very high for all cutoff points and showed a moderate relationship 

to coverage. A pronounced curvilinear relationship is also evident. Statistical 

power was relatively high at 100% coverage, increased'moderate1y as coverage 

decreased to 60%. Below 50%, statistical power deteriorated rapidly. At 
:, 

extremely low levels of coverage (6%) statistical pow~r was extremely low (e.g., . 
t' 

i ndi cat; ng orl1y a .02 probabil ity of detect; ng a si gnffi cant di fference) . Overa 11 , 

statistical power was maximized at 60% coverage ~lthough it was high even at 100% 

coverage. 

D. ~etween Method Comparisons 

A major goal of this research was to document relations between coverage and 

both accuracy and statistical power for a variety of clustering procedures. An 
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Table 9 

Table 8 
( I 

'Statistical Power for Centroid Analysis (intraclass correlation) 
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equally important goal~ however, was to compare clustering methods against each 

other on the same data sets. Thus, three clustering methods--inverse factor 

analysis, Lorr's non-hierarchical clustering technique, and centroid clustering-­

were compared in terms of (a) accuracy in solving 20 multivariate normal mixtures 
• 

and (b) effect size and statistical power these methods afford on external . 
criteria on the test data set; Our goal was to be able to judge the relative 

merits of different clustering procedures on t~e same criteria, even though they 

construc~ clusters in vastly different ways. These comparisons provide a basis 

for selecting the best clustering procedures in future research using real data. 

1. Accuracy comparisons. Direct comparisons among the three best clustering' 

procedures (inverse factor ana1ysis-varimax, Lorr's technique-product-moment 

correlation, and centroid clustering-intraclass correlation) is complicated by 

the fact that these procedures do not necessarily produce the same number of 

clusters or identical levels of coverage: Nevertheless, some comparisons between 

methods are possible, despite the fact that they construct clusters in different 
!.', I 

ways and employ different mechanisms for manipulating the coverage of the resulting ~ 

classifications. These comparisons were possible here because the three grouping 

procedures were evaluated on the same 20 data sets and identical measures of 

accuracy and statistical power were employed. 

Accuracy results for the three grouping procedures are reported in Table 10. 

This table reports mean accuracy values (lambda) and levels of coverage based on 

the analysis of the 20 mUltivariate normal mixtures. Table values reflect some 

minor interpolation between raw data points to permit comparisons across methods 

(i.e., coverage values were grouped according to 5% levels). Among the four 

inverse factoring procedures j f k solutions were consistently more accurate than 

j = k solutions for both the variman and direct quartimin rotations. In addition( 

varimax solutions were consistently more accorate than the direct quartimin solutions 
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Table 10 

Accuracy Results for Inverse Factor Analysis, Lorr's Technique and Centroid Clustering. 

COVERAGE (%) 

Method 100 90 80 70 60 50 40 30 20 10 

Inverse Factor Analysis 

Varimax (j=k) .66 .68 .71 .74 .80 .83 .88 

O-Quart (j=k) .61 .66 .69 .73 .78 .82 .83 

Varimax (jrk) .73 .76 .78 .81 .85 .90 .95 
O-Quart (jrk) .71 .74 .76 .80 .84 .88 .90 

Lorr's Technique 

Correlation .75 ,87 .92 .92 .94 .73 .73 .69 

Intraclass r .77 --~¥. !BB .94 .95 .95 .96 -- . ;'4 .71 

• Centroid Clustering 9 
Correlation .69 .69 .7-2 .78 .85 .97 

Intraclass .73 .73 .76 .81 .91 1.00 1 , 
! 

<l 

NOTE: Table entries represent mean accuracy results (lambda) for 20 multivariate normal mixtures. 
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at all levels of coverage. Thus, the most accurate inverse factoring procedure 

was the varimax rotation with the number of clusters determined empirically 

via Cattell's scree test. For both Lorr's technique and centroid clustering, 

the one-way intraclass correlation yielded slightly higher accuracy than the 
. 

product-moment correlation. This is presumably because the intraclass correlation 

utilizes information based on elevation and scatter of profile scores in addition 

to shape (cf. Ede1brock and McLaughlin, 1980). 

.. 

Considering the most accurate of each of the three grouping procedures (inverse 

factor analysis-varimax, Lorr's technique-intraclass correlation, and centroid 

clustering-intraclass correlation), differences in accuracy are negligible in the 

range from 90-100% coverage. For example, the varimax procedure yielded clustering 

solutions with a mean accuracy of .76 for approximately 95% coverage, whereas lorr's 

technique resulted in a mean accuracy of .77 and centroid clustering produced a 

me~n accuracy of .73. These differences are not statistically reliable. At 

medium levels of coverage (50-85%) there was significant differences among the 3 

procedures. Larr1s technique proved to be the most accurate method at medium 

levels of coverage, with accuracy values ranging from .88-.95. Inverse factor 

analysis was the next most accurate, with mean accuracy values ranging from .81-.85. 

Centroid clustering proved to be the lease accurate of the 3 procedures, with mean 

accuracy values rangi"g from .76-.81 at medium levels of coverage. At lower levels 

cf coverage (10-45%) the situation was reversed, with inverse factor analysis and 

centroid clustering (.90-.95 and .91-1.00, respectively) performing better than 

Lorr's technique (.71-.74). 

This finding indicates that comparative evaluation cf clustering procedures 

depends upon level of coverage at which comparisons are made. At high levels of 

coverage, the three best clustering procedures were comparable in terms of 

accuracy. However, at medium levels of c'overage, Lor\"s method proved to be the 
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most accurate method, followed by inverse factor analysis, and finally the centroid 

clustering procedure. 

2. Statistical Power Comparisons. Mean values for statistical power, 

averaged across the seven external criteria on Blashfie~d's data set #17 are 

reported in Table 11. These mean accuracy values are reported for the most 

accurate of each of the three grouping methods: (a) inverse factor analysis-varimax, 

(b) Lorr's technique-intraclass correlation, and (c) centroid clustering-intrac1ass 

correlation. As shown in Table 11, centroid clustering produced the highest levels 

of statistical power, whereas inverse factor analysis produced the l~west. The 

inverse factoring procedure produced lower levels of statistical power with one 

exception: at 50% coverage inverse f~ctor analysis produced a higher level of 

statistical power than Lorr's technique (.79 vs .. 65, respectively). However, 

in the range of coverage in which accuracy is maximized (55-85%), the centroid 

technique was clearly superior to the other two procedures in terms of statJstica1 

power. This suggests that the centroid technique is more likely than other methods 

tol'\ "'on- 4 '-II"'" 1 . yU .... :;I./'_I..r; C Usters that will differentiate among subjects in terms of external 

criteria. This is particularly true if the procedure is used to construc class­

ifications having coverage in the range of 55-85% coverage. If classifications 

having high coverage "are to be constructed « 95% coverage), inverse factor analysis 

and Lorr's technique would appear~to be promising methods. 

E. Summary and Conclusions 

Our research results have documented a strong relationshp between level of 

coverage and both accuracy of clustering solutions and the statistical power of 

cluster based classifications. For each of the three clustering procedures 

tested here., 1 O~% coverage resulted ; n 1 ess than optimal accuracy in recoveri ng 

bredetermi ned popul ati ons from computer gener~ted mi xtures. For a 11 three methods, 

the accuracy of cl!Jstering solutions was substantially boosted by leaving a portion 

I 
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Table 11 

Statistical Power Comparison for Three Grouping Methods 

COVERAGE 

100 90 80 70 60 50 40 

Method 

A .52 .60 .66 .67 .78 -- -- .79 

B .57 .82 .79 .77 .82 -- .72 .65 

C .82 .88 -- -- -- .97 

NOTE: Method A: Inverse Factor Analysis - Varimax rotation. j;k. 

Method 8: Lorr's non-hierarchical clustering technique - intrac1ass correlation. 

Method C: Centroid clustering - intraclass correlation. 

'. 

• • • 
.. 

• 

30 20 10 

.51 

.70 .60 .59 .49 

.72 .02 
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of subjects unclassified. In fact, leaving only 15-25% of the subjects unclass­

ified resulted in a substantial increase in clustering accuracy for all methods. 

These results further suggest that the accuracy of clustering solutions can be 

maximized in the range of 55-85% coverage. For all of the methods we tested, 
• increasing coverage above 85% had deleterious effects on clustering accuracy. In 

other words, pushing the level of coverage above 85% is likely to result in an 

increasing probability of misc1assification. 

Taken together, these results support the concept of a "continuum of c1assifi­

abi1ityll in the behavioral and social sciences. Based on these findings, we would 

not recommend that behavioral and social scientists attempt to classify 100% of 

their subjects into mutually exclusive groups. Alternatively, taxonomists should 

experiment with the heuristic and predictive value of classifications having less 

thar. 100% coverage. Our results further suggest that predictive power of empirically 

derived taxonomies can be maximized by constructing classifications having coverages 

of approximately 55-85%. 

The statistical power results further indicate that the level of coverage of 

classifications is strongly related to the probability of detecting significant 

correlates of cluster membership. For all of the methods we tested, 100% coverage 

produced less than optimal probabilities of detecting significant differences 

among clusters. Instead, statistical power was maximized in the range of 55-85% 

coverage. At the other extreme, statistical power also deteriorated at low levels 

of coverage (at least for sample sizes in the range of 100-150). These results 

. suggest that tyopologies or classifications having levels of coverage in the medium 

range will be optimally predictive of external criteria. Although a high level 

of coverage may be desirable when constructing classifications, it is clear that 

attempts to classify everybody will result in increasing misclassifications and 

reduced predictive power . 
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An additional point to be emphasized, however, is that with the development 

of methods for manipulating the coverage of empirically derived taxonomies, it is 

not necessary to derive a single classification of subjects with one level of 
-

coverage. Researchers should be encouraged to experiment with various levels of 
• 

coverage (using procedures such as thosedeve10ped and presented here). Researchers 

should also attempt to determine the optim~' level of coverage for the classifi­

cations they derive. Of course, the level of coverage one seeks is also related 

to the purpose of the classification, If the goal is to optimize statistical power 

of a typology, coverage in the medium range may be warranted. Alternatively, if the 

goal is to characterize "pure types", lower levels of coverage would be useful. 

In an epidemiological st~dy aimed at accounting for the generality of a phenomena 

in a population, very high levels of core coverage may be warranted. 

The between method comparisons reported here indicate that the clustering 

procedures we tested are not equivalent in te:ms of their accuracy in grouping 

objects drawn from computer generated populations or in terms of predictive 

power. Lorr's non-hierarchical clustering procedure performed exceptionally well 

in both respects and should be given serious consideration in future clustering 

, efforts. For Lorr's technique, both the product-moment correlation and the 

intraclass correlation resulted in high accuracy and high predictive power. 

Nevertheless, the intraclass correlation performed slightly better. In evaluating 

inclusion and exclusion criteria for Lorr's technique, inclusion criteria no . 
higher than .01 and exclusion criteria no lower than .05 were optimal. The 

inclusion/exclusi'on combinati.on of ,.01/.025 is recommended as the best compromise 

in terms of accuracy, coverage, and stat;'stical power. This is, of course, only 

a general guideline, and the optimal inclusion/exclusion combination w;l~ depend 

upon many factors, including the number of clusters one seeks to derive, the 

samp1e size, etc. 
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Results on the inverse factoring procedures are also encouraging, considering 

that this method has been widely criticized as a grouping procedure. In our 

comparisons, varimax procedures performed quite well, both in terms of accuracy 

and statistical power. This was particularly the case when the number of clusters 

was determined empirically via Cattell's method. In fact, at high levels of 

coverage, the varimax procedure produced clustering solutions that were as accurate 

as those produced by Lorr's technique and the centroid clustering procedure. 

The centroid clustering-neura centroid assignment procedure performed 

exceptionally well in terms of both accuracy and statistical power. Overa1l, this 

method produced very high levels of accuracy and statistical power. A major obstacle 
• 

to this method, however, is the difficulty in determining the appropriate number of 

clusters. The other two procedures (inverse factor analysis and Lorr's technique) 

determine the number of clusters empirically. The centroid method, which is a 

hierarchical clustering procedure does not. Future research is clearly needed to 

aperationalize reliable and objective rules for determining number of clusters.in 

a hierarchical clustering solution (e.g., Mojena, 1977). Unfortunately, 

comprehensive research on various stopping rules for hierarchical clustering 

algorithms was beyond the scope of this research. It is possible that the 

development of objective stopping rules for the centroid clustering procedure 

would result in even greater accuracy and statistical power. Thus, we would 

recommend that the centroid clustering procedure be seriously considered, by 

cluster analysts doing methodological investigations as well as by appli~d 

researchers. 
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Appendix A 

Blashfield's multivariate normal mixture #17 
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9,126 
4 
36,30,35,25 
<I3,6X,9F7.31> 
BL~SHFIELD DATA SET 17 HIX17.DAT 

17 1 1 60.340 54.450 31.090 47.366 49.555 44.217 39.482 42.662 S1.960 50.455 
17 55.120 57.820 37.394 48.418 48.461 50.768 
17 1 2 56.373 57.155 35.772 43.578 48.686 47.238 43.038 45.584 581043 57.893 
17 51.767 45.981 40.274 47.552 53.348 51.641 
17 1 3 55.455 55.470 28.816 45.621 48.560 44.981 41.964 44.257 52.645 58.357 
17 54.317 56.540 38.657 44.471 50.696 44.147 
17 1 4 60.415 47.471 49.670 49.143 50.913 38.488 34.377 40.749 51.78B &4.180 
17 56.369 53.610 39.2~2 60.264 44.935 39.473 
17 1 5 65.395 35.209 41.207 60.807 61.632 29.217 26.566 34.332 43.169 75.071 
17 65.618 47.140 34.406 64.050 31.020 41.049 

'17 1 6 56.095 49.052 44.774 50.476 50.150 38.715 36.174 41.146 49.489 6'3.726 
17 55.318 32.522 39.390 68.558 45.223 36.211 
17 1 7 60.959 47.676 46.361 49.870 52.961 40.620 36.887 41.086 53.969 64.137 
17 57.846 37.908 36.058 58.874 44.856 40.174 
17 1 8 54.993 52.030 50.393 45.497 50.460 42.614 38.003 42.913 53.445 61.026 
17 52.559 52.286 42.096 55.463 50.257 39.781 
17 1 9 66.157 42.624 46.468 55.119 55.031 35.852 32.701 37.049 48.876 69.845 
17 62.748 52.650 33.340 54.180 37.921 57.798 
17 1 10 56.389 61.726 5~.736 38.379 40.561 49.924 45.362 49.726 59.047 50.209 
17 45.965 36.669 47,061 59.982 60.907 35.612 
17 1 11 51.443 63.232 43.909 37.780 41.761 50.580 45.748 49.055 61.071 49.360 
17 45.479 48.753 46.494 41.587 62.204 34.611 
17 1 12 53. 7 33 57.640 46.000 44.861 46.674 46.529 45.953 45.611 59.629 57.096 
17 51.895 64.556 42.548 62.166 53.961 52.225 
17 1 13 62.886 44.259 47.239 54.497 52.805 37.110 32.680 39.098 48.279 65.607 
17 59.257 48.002 38.638 52.719 40.587 35.715 
17 1 14 58.238 52.835 40.809 47.733 52.661 42.907 40.7'4 43.073 5~.804 63.184 
17 53.898 53.148 3a.~15 48.852 48.177 56.839 
17 1 15 63.588 41.242 31.807 58.857 55.055 33.482 29.596 35.497 48.322 71.186 
17 65.772 46.430 33.833 57.856 35.426 51.705 
17 1 16 55.389 56.356 40.940 45.411 51.227 46.094 42.959 44.171 56.706 60.268 
17 53.759 55.205 38.286 45.958 50.589 53.0~0 
17 1 17 65.315 38.869 54.569 58.382 57.301 32.476 28.326 35.220 45.791 71.261 
17 61.368 35.846 35.849 67.855 33.498 35.068 
17 1 18 55.522 63.107 36.876 39.378 43.565 51.766 ~7.560 48.638 65.053 52.246 
17 47.157 56.945 44.193 46.530 60.249 51.098 
17 1 19 52.835 59.042 ~6.231 39.410 47.388 49.281 46.6~5 48.789 62.672 53.23~ 
17 46.100 50~483 43.941 42.249 58.510 4~.140 
17 1 20 64.778 42.455 57.233 55.993 57.232 33.95~ 30.742 37.772 49.502 70.192 
17 61.155 53.146 36.312 50.530 36.993 41.823 ~ ~ ~ . 
17 1 21 47.896 66.109 23.971 36.489 40.819 53.771 47,~6f ~a.660 63.619 50,313 
17 45.911 ~J.876 40.568 40.745 61.896 33.714 
17 1 22 60.022 45.981 35.398 53.291 50.755 Z7.021 33.093 37.365 48.668 67.475 
17 61.689 42.926 37.286 68.498 40.770 38.429 
17 1 23 61.228 48.509 43.38~ 52.499 52.914 39.473 37.043 40.791 51.708 65.010 
17 57.759 51.681 39.062 6J.345 43.530 52.841 
17 1 24 57.932 56.722 43.519 44.339 48.461 46.295 40.378 45.517 54.612 57.462 
17 50.721 48.882 43.102 46.548 55.179 46.674 
17 1 25 59.811 49.425 38.744 52.344 51.757 38.598 36.089 40.571 50.308 6~1696 
17 57.845 35.437 38.887 63.755 43.491 40.770 
17 ~ 26 5~.909 54.275 48.988 43.994 47.016 44.901 42.576 44.872 55.545 58.833 
17 53.687 53.730 42.309 52.124 52.526 39.154 
17 1 27 60.452 57.249 46.197 44,527 46.991 46.110 42.233 45.762 57.363 57.033 
17 53.125 52.975 43.204 54.150 54.482 47.752 
17 i 28 55.737 46.479 26.344 5~1598 54.539 37.267 37.930 38.632 49.121 68.406 

1 
I 

J 

• 

17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 

60.685 49.959 34.544 59.349 39.429 49.891 
! 29 56.006 57.319 46.721 46.840 49.319 44.844 39.582 43.868 56.776 60.329 

53.858 51.825 42.365 59.754 51.826 40.961 
1 30 55.672 56.029 31.731 44.323 47.131 46.566 40.428 44.599 58.021 58.077 

50.854 40.532 41.206 51.547 52.779 46.399 
1 31 58.591 52.894 42.813 47.823 49.699 41.965 36.791 42.950 54.602 62.240 

54.304 47.928 37.557 43.480 47.994 44.019 
1 32 62.484 48.064 40.055 50.873 52.699 38.689 34.580 39.283 51.529 66.062 

59.526 46.153 35.102 63.316 41.941 38.589 
1 33 54.642 56.225 36.983 46.136 48.838 44.644 38.754 43.632 57.464 59.775 

51.120 45.159 40.357 50.601 51.467 46.675 
1 34 59.509 57.395 48.814 42.269 47.325 46.859 41.440 46.130 57.235 56.333 

. 50.924 39.148 43.291 44.941 54.895 31.475 

.17 
1 35 59.617 48.600 50.167 49.993 51.324 40.538 36.245 41.566 50.421 65.136 

57.047 41.633 39.023 67.513 44.317 39.475 
17 1 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2 
17 
17 2, 
17 
17 2 

36 58.415 53.490 37.069 47.961 50.868 42.103 38.427 42.402 51.440 60.876 
53.583 36.587 39.738 56.223 46.788 39.941 

1 54.969 04.507 51.570 62.837 52.125 39.081 56.376 49.371 56.170 60.463 
49.035 S3.889 59.164 64.093 34.858 58.753 

2 45.968 44,437 55.979 55.625 65.251 41.908 591047 60.509 43.153 48.733 
651496 60.608 54.297 54.038 46.771 44.710 

3 47.084 32.349 58.300 57.226 49.472 44.011 61.009 61.393 49.953 47.499 
6~.545 64.141 65.133 58.021 49.584 41.485 

4 ~4.918 63.431 50.987 60.817 43.655 38.781 59.517 50.003 48.753 60.593 
51.088 56.161 53.754 61.704 35.738 53.188 

5 54.167 68.979 48.851 65.440 49.572 35.227 53.226 46.732 51.659 67.959 
40.272 52.323 83.527 66.221 30.027 62.330 

6 48.782 55.679 49.228 59.846 52.91l 37.463 56.940 54.497 49.346 58.499 
59.088 60.596 64.899 58.142 38.295 49.417 

7 47.213 54.131 57.880 54.864 53.610 47.554 62.152 60.643 45.421 53.325 
64.466 58.232 47.981 55.126 44.720 40.776 

8 45.a83 51.981 51.451 54.999 40.622 52.200 66.569 63.162 44.191 48.691 
70.564 64.071 51.127 56.561 48.770 41.315 

9 40.889 35.430 61.124 48.408 481583 53.471 65.551 50.428 39.219 43.880 
77.053 66.885 42.281 46.999 50.256 30.344 

10 51.943 58.597 48.556 57.780 52.393 47.780 63.595 58.178 50.518 57.744 
56.009 53.562 49.284 57.120 40.586 49.511 

11 48.822 57.465 47.734 56.725 53.396 42.025 60.437 53.085 47.705 61.320 
62.119 57.716 58.998 58.198 34.321 47.230 

12 47.362 51.070 51.228 54.434 48.389 51.774 66.493 41.083 44.579 48.983 
59.913 61.545 57.300 54.090 44.098 40.741 

13 39.580 45.185 64.596 54.590 62.299 46.918 60.561 55.370 41.916 47.179 
75.742 62.272 52.984 54.243 40.438 39.983 

14 55.811 51.853 53.194 58.684 57.663 40.419 53.909 50.280 50.194 S6.53~ 
54.789 59.636 64.183 60.871 37.923 52.603 

15 52.490 54.891 57.4~8 58.475 50.312 41.299 58.635 52.348 5~t619 59.i12 
501557 56.996 49.731 58.145 34.270 49.588 

16 44.499 58.754 47.J4~ 58.777 60.798 37.598 58,140 67,639 46.059 55.090 
52.001 59.606 46.270 60.202 36.691 57.347 

17 51.500 60,541 54.197 60.359 50.814 36.268 57.216 45.895 54.757 64.194 
53.467 54.200 67.913 60.473 40.486 47,772 

18 52.941 67.245 52.011 63.349 61.179 38.427 57.539 53.708 54.329 61.082 
43.533 58.730 62.687 65.540 34.713 63.076 

19 55.383 62.152 59.649 62,695 49.856 38.854 56.608 55.382 51.804 66.923 
53.t66 54.759 70.050 65.186 35.639 6p.442 

20 47.069 67.347 53.464 60.592'62.843 40.847 58.636 50.727 44.512 56.51~ 
52.461 61.170 70.546 60.356 35.038 51.017 

21 41.399 46.268 53.104 52.440 52.970 49.507 63.429 57.415 36.809 501~90 
70.106 65.226 44.380 52.711 42.254 34,775 

22 58.603 57.963 44.374 58.871 47.453 42.695 63.783 64.990 52.165 65.965 

-----------------------------------------------------~------~-----'-----~--
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17 61.533 54.009 53.552 59.156 40.176 53.322 
17 2 23 60.217 60.661 52.660 61.305 52.321 44.042 59.390 52.419 46.759 58.380 
17 59.913 60.189 74.962 60.745 39.122 54.227 
17 2 24 44.500 52.354 52.841 54.090 52.534 46.588 54.915 57.294 40.398 52.359 
17 66.004 63.511 43.910 58.461 37.079 37.519 
17 2 25 44.158 62.558 48.837 60.047 47.3S2 39.926 58.029 60.951 54.926 62.081 
L7 58.607 55.076 58.601 6~I007 37.98: 51.287 
17 2 26 53.218 40.766 68.677 52.672 58.732 55.!25 59.828 58.939 35.312 43.519 
17 72.640 69.023 46.992 50.893 50.027 40.831 
17 2 27 48.571 69.507 58.102 59.150 47.696 43.611 57.611 57.647 51,26~ 61.25G 
17 54.748 59.530 47.685 5B.~54 36.561 51.331 
17 2 28 45.116 46.593 61.646 54.852 55.919 48.975 59.921 63.114 36.331 42.322 
17 72.762 66t620 54.547 54.565 52.676 46.024 
17 2 29 49.651 51.253 56.189 56.700 66.456 46.900 58.081 69.181 42.962 52.039 

,17 67.537 57.749 63.772 60.631 44.863 39.646 
t7 2 30 45.468 58.011 43.187 61.121 53.647 37.246 56.041 58.656 52.327 60.795 
17 46.741 58.514 63.428 62.220 28.464 54.716 
17 3 1 62.959 38.709 63.823 33.704 58,699 45.254 46.974 61.617 51.906 55.601 
17 47f817 56.835 61.404 47.215 57,626 44.937 
17 3 2 60.600 40.077 60.200 35.600 49.600 34.0~3 34 .. 089 60.966 37.055 46.658 
17 17.761 41.754 69.413 44.056 49.076 43.922 
17 3 3 60.537 38.360 60.074 49.164 56.532 45.603 54.137 S7.855 50.011 58.143 
17 33.243 61.486 60.527 46.720 47.190 50.679 
17 3 4 55.453 53.3S6 36.107 47.983 60.030 59.19J 54.207 56.863 50.162 56.171 
17 46.430 56.481 39.071 33.729 33.863 54.129 
17 3 5 54.336 47.142 50.831 42.;'30 5#..163 51.115 49.242 54.764 49.690 59.!Sl 
17 41.054 59.429 51.955 41.987 4~.361 51.631 
17 3 6 56.930 54.868 41.078 46.338 61.926 57.458 55.170 58.712 57.358 58.929 
17 53.096 74.418 43.823 31.335 37.668 56.839 
17 3 7 56.648 56.427 41.532 49.080 60.502 53.442 53.657 48.203 60.184 59.437 
17 51.246 64.782 32.630 34.863 32.711 56.755 
17 3 a 63.254 63.502 54.952 47.370 57.382 48.907 41.451 58.297 36.975 68.247 
17 43.912 52.349 50.015 57.084 4;.862 50.779 
17 3 9 59.542 57.434 45.446 40.811 52.882 43.899 42.060 55.306 37.810 67.362 
17 44.216 48.297 45.766 47.702 52.067 51.197 
17 3 10 55.490 44.631 49.482 47.638 58.034 44.135 38.797 53.724 25.405 57.4~3 
17 31.072 51.412 48.983 35.459 35.604 47.993 
17 3 11 57.171 47.784 55.075 35.556 56.468 53.606 46.464 54.341 50.351 59.580 
17 38.856 42.350 49.311 53.521 51.613 49.798 
17 3 12 57.886 59!o03 50.886 49.980 62.872 60.857 52.658 58.253 48.287 62.359 
17 48.537 61.640 44.093 36.384 45.455 55.013 
17 3 13 59.4ge 63.319 52.645 43.711 56.476 48.267 45.42~ 58.358 39.166 63.394 
17 42.668 59.943 55.357 50.733 44.796 48.272 . 
17 3 14 67.107 52.592 50.901 43.180 57.606 ~0.991 50.488 57.441 46.114 63.994 
17 46.255 52.560 44,458 41.958 48!473 49.880 
17 3 15 53.464 46.713 62.079 35.953 55~959 48.27~ 52.482 ~1,321 48.781 66.081 
17 42.825 60.058 56.840 58.876 56.865 49.882 
17 3 16 55.126 57.118 47.454 46.988 62.072 56.285 61.125 58.641 54.749 71.342 
17 50.934 58.039 45.142 38.818 39.323 57.162 . 
17 3 17 54.450 50.553 50.211 42.044 61.671 52.757 50.082 53.843 59.564 64.315 
17 48.905 62.903 43.267 30.360 36.263 52.348 
17 3 18 60.559 54.033 51~763 47.275 56.518 50.456 49.581 61.753 45.672 54.602 
17 38.650 65.426 56.546 58.869 56.198 50.449 
17 3 19 56.94e 49.552 41.370 49.185 61.233 SO.64J 50.638 56.298 51.7~4 62,416 
17 55.486 63.391 38.245 38.871 28.186 50.327 
17 3 20 59.639 45.628 61.241 44.093 57.168 46.190 45,703 59.224 46.519 56.838 
17 36.287 54.128 58.322 5t~281 44.625 50.965 • 
1177 3 21 68.~6S 28.94~ 60.047 ~Z'.992 47.964 ~Z.758 21.102 65.110 35,325 49.713 

2S.~80 43.990 66.621 ~a.261 48.212 ~~.~OO 
17 3 22 71.458 46.964 59.49. 41.164 54.889 38,'~4 35.690 61.332 43.662 51.949 
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17 35.385 46.734 55.464 47.285 45.678 42.652 
17 3 23 60.549 45.826 54.820 33.443 5~.835 52.563 51.814 54.486 41.731 66.009 
17 44.068 48.839 43.723 46.652 47.487 49.992 
17 3 24 68.498 41.441 50.001 37.359 50.934 44.243 38.156 57.033 44.452 58.141 
17 46.281 60.804 48.611 48.469 43.780 45.330 . 
17 3 25 60.506 56.148 50.447 49.597 60.461 58.123 56.462 57.347 37.697 60.192 
17 49.400 60.396 46.571 ~S.030 44.130 53.573 ~ __ 
17 3 26 55.380 44.908 60.450 41.727 55.313 47.7~4 45.496 61.592 ~9.69? j'.479 
17 31.011 57.381 63.909 55.735 50.7S0 45.839 
17 3 27 64.493 35.912 68.216 34.482 52.891 4B.015 45.577 65.273 38.562 5°.9v5 
17 29.161 50.043 74.241 50.053 51.285 45.846 
17 3 28 58.842 56.015 51.522 47.306 59.102 56.235 66.079 58.388 52.972 73.952 
17 64.433 62.335 49.896 44.720 53.867 59.988 
17 3 29 51.779 ~7.203 44.366 34.275 55.002 55.342 48.442 49.850 58.610 53.581 
17 50.992 52.288 40.923 40.462 37.864 50.655 

'17 3 30 62.686 55.632 59.192 45.506 60.743 48.696 56.136 60.946 43.54~ 59.055 
17 44.680 53.997 58.561 50.782 59.367 49.637 
17 3 31 60.408 46.721 52.468 40.571 53.276 49.298 38.500 63.312 39.680 55.390 
17 29.987 51.958 56.152 63.784 47.609 49.809 
17 3 32 57.534 58.872 49.916 48.774 59.024 50.252 45.318 56.040 41.389 53.647 
17 37.800 52.337 53.780 43.562 44.260 45.633 
17 3 33 61.086 37.793 54.256 37.022 49.206 42.2~5 41.671 57.218 31.431 56.965 
17 24.325 41.844 66.490 61.473 41.995 48.015 
17 3 34 53.021 61.130 44.010 54.615 63.309 52.967 51,933 56.672 48.311 63.328 
17 49.483 69.846 42.205 25.232 41.475 56.044 
17 3 35 54.669 58.374 38.372 46.333 66.18S 59,974 59.417 57.217 59.205 70.220 
17 67.336 70.814 31.417 30.828 38.541 62.604 
17 4 1 51.065 50.278 32.098 47.463 50.901 53.466 32.197 39.567 49.960 59.056 
17 41.105 37.404 45.429 43.139 37.801 31.193 ~ 
17 4 2 58~153 46.997 50.291 55.443 62.701 57.410 49.993 51.075 52.251 6y.6vl 
17 52.502 55.176 56.063 36.225 47.838 48.403 
17 4 3 64.854 52.500 43.308 51.862 55.941 57.583 42.433 41.424 52.909 63.477 
17 55.043 46.384 ~5.623 47.320 38.455 52.883 
17 4 4 52.613 44.114 48.034 58.505 60.649 59.432 52.760 49.375 53.629 61.530 
17 55.849 50.339 52.077 44.742 53.956 50.793 
17 4 5 61.919 47.660 24.426 43.172 53.981 49.754 35.550 37.366 53.676 54.614 
17 38.887 35.998 35.963 43~692 27.705 34.465 
17 4 6 44.779 46.908 49.167 52.552 55.686 55.109 44.152 45.467 57.333 60.837 
17 50.515 50.943 53.050 47.533 53.913 47.274 
17 4 7 721~24 46.801 51.993 54.845 60.445 55.279 45.266 39.727 54.401 45.420 
17 48.853 45.449 63.110 35.552 44.614 44.531 
17 4 8 34.313 51.800 31.514 50.759 59.161 60.407 51.075 42.702 56.326 6~.052 
17 49.652 37.117 39.266 43.987 32.712 51.816 
17 4 9 56.946 48.120 35.926 52.469 53.345 53.024 41.147 44.100 49.970 58.499 
17 50.BA~ A~*5e~ 46.973 36~36! 38.634 42.601 
17 4 10 49.599 43.538 33.638 46.975 47.350 48.J96 32.745 40.479 43.856 40,227 
17 38.768 40.127 48.185 46.831 33.166 30.255 
17 4 11 61.375 53.429 39.842 46.587 48.096 49.293 21.734 37.845 49.297 47.900 
17 33.481 30.253 52.081 47,702 40.924 21.649 
17 4 12 63.641 46.872 42.362 50.535 57.294 53.015 35.863 40.975 50.518 52.600 
17 44.242 41.658 50.685 34.122 41.932 41,002 
17 4 13 59.491 46.919 53.394 53.723 50.113 55.111 33.691 43.836 49.217 53.445 
17 45.287 35.328 54.971 49.812 49.529 36.071 
17 4 14 35.745 46.300 59.033 55.106 55.852 56.390 43.751 49.635 54.504 68.273 
17 47.388 49.366 64;462 42.792 36.292 54.417 
17 4 15 42.2~e 49.296 41.741 55.130 57.635 56.967 41·664 41.917 52.130 72.119 
17 53.969 47.082 45.884 61.~a3 46.656 51.648 
17 4 16 44.690 47,475 26.732 53.0~8 54.439 55.414 42.990 37.488 55.870 60.723 
17 48.342 39.386 38.652 48.276 39.091 39.005 
17 4 17 57.091 44.899 54.716 57.609 59.086 55.9 79 49.026 51.057 50.710 69.548 
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54.263 47.402 61.640 36.653 51.684 50.124 
18 52.927 47.029 37.810 52.708 59.450 58.306 

45.745 38.215 51.823 47.075 48.309 40.838 
19 53.724 44.959 30.034 45,786 50.870 51.213 

43.373 34.452 37.974 42.303 33,667 37.308 
20 63.756 49,125 32,137 47.349 48.139 49.791 

38.310 28.540 51.818 52.581 43.411 35.678 
21 48.772 48.986 36.671 50.266 52.812 53.954 

41.957 30.154 49.218 40.171 38.282 38.467 
22 41.931 49.557 55.240 55.995 59.043 60,352 

52.956 51.143 58.549 44.135 51.711 49.832 
23 55.600 50.612 39.839 49.979 55.359 52.588 

40.442 31.432 51.961 41,151 38.224 31.740 
24 48.330 45.269 33.043 50.604 56.157 58.910 

51.948 46.752 40.632 39,429 36.446 54.477 
25 57.751 44.168 44.825 51.126 56.008 54.574 

43.497 41.273 52.064 37.331 40.895 38.333 

• 

39.703 48.486 52.188 
~61866 35.245 59.035 

29.100 40,552 51.878 

40.557 43.397 53.470 

44.010 48.175 56.25~ 
36.545 44.839 48.054 

46.062 45.432 55.758 

45.696 43.206 52.200 

51.982 

48.936 

42,508 
t i 

48.418 !, 
77.219 I 

Appendix B fl 
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FORTRAN Listing for Lorr's non-hierarchical clustering technique !. I; 
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****************************************************** * * * BRIEF DOCUMENTATION FOR LORR'S NON- * * HIERARCHICAL CLUSTERING TECH~H QUE :~ 

* * ****************************************************** 

PROGRAM CORR. FOR V 

THIS PROGRAM COMPUTES THE PEARSON CORRELATION COEEFICIENT BETWEEN I 

SUBJECTS. IT GENERATES AN OUTPUT DATA VILE OF CORRELATION COEEfICIENTS. 
PROGRAM INTRA.FOR 

THIS PROGRAM IS SIMILAR TO CORR.FOR EXCEPT THAT THE ONE-WAY INTRA 
CORRELATION COEFFICIENT IS USED. CLASS 

PROGRAM LORR.FOR ~ 

THIS PROGRAM USES LORR'S TECHNIQUE TO FIND A CLUSTERING SOLUTION. 
THESE PROGRAMS ALL REQUIRE SUBROUTINES FROM THE IBM PACKAGE 
INTERNATIONAL AND MATHEMATICAL STATISTICAL LIBRARY. 
PROGRAM USAGE 

(\ 

FIRST RUN EITHER CORR.FOR OR INTRA.FOR TO GENERATE A RELATIONSHIP MATRIX 
TO BE PLACED ON DISK. EACH PROGRAM WILL PROMPT FOR THE RA~ DATA SET TO 
BE CLUSTERED. NEXT RUN LORR. FOR TO GENERATE THE CLUSTERI NG SOLUT I ON.. t 

l .. DATA PREPARATION 

THE DATA SET TO BE CLUSTERED MUST HAVE SOME INFORMATION AT THE START THE FILE. 

FOR EXAMPLE: 
N,M 
NCUT 
(CUT(I),I=l,NCUT) 
FORMAT 
TITLE 
RAW DATA 

OF 

WHERE N IS THE NUMBER OF FACTORS, M IS THE NUMBER OF CASES, NCUT IS THE 
NUMBER OF CUT POINTS IF GROUPS ARE KNOWN IN ADVANCE, CUTCI) "ARE rHE CUT 
VALUES WHEN THE GROUPS ARE KNOWN IN ADVANCEC THESE MUST ADD UP TO M), 
FORMAT IS THE FORMAT STATEMENT TO USE WHEN READING THE RAW DATA, AND 
TITLE IS ANY TITLE UP TO 80 CHARACTERS. WHEN THE GROUPS ARE NOT KNOWN 

IN ADVANCE NCUT AND CUTCI) CAN BE SET TO ARBITRARY VALUES WHI~H THE RESTRICTIONS. SATISFY 

IJ! 

D 
0126 

105 

D 
D12S 

D 
122 

106 
12 

****************************************************** * * * LORR.FOR * * THIS PROGRAM USES LORR'S NON- * * HIERARCHICAL CLUSTERiNG PROCEDURE TO * * IDENTIFY HOMOGENEOUS SUBGROUPS OF * * SUBJECTS. EITHER THE PRODUCT-MOMENT * * CORREL~TION OR THE INTRACLASS CORRELATION ~ * MAY BE USED THE MEASURE OF PROFILE SIMILARITY * *. * ****************************************************1* 
COMMON IDEL(149),PROF(149),R(149,149),ICLUS(149), 

1 NR,NCrCL,CU,NDEL,NPROF 
DIMENSION ICTOT(30),ICMAX(30),IVMAX(30) 

1 ,IRMAX(30),IRTOT(30),IWMAX(30) 
1 DI~~J~!8~)ICROS(20'O/20) 

INTEGER PROF 
DIMENSION TITLE(20),NCS(6) 
~~~fI~f~~~~fhE 
WRITE(6,126)TITLE 
FORMAT(' TITLE ',20AS) 
FORMAT(20A5) 
READ(12)N,M,IDNUM 
NR=f1 
NC=H 
IaJRITE(6,125)M 
FORMAT(' NO. ROWS ',110) 
READ(12)NCUT 
READ(12)(NCSCI1),It=1,NCUT) 
IT=O 
1<1=1 
Hl=1 
WRIrE(e;.l~::)NCUTdjl.~S 
FORMAT(} NCUT ',110,' tUTS ',615) 
DO 106 J=1J M 
READC12}(R(J,I),I=1,Kl) 
K1=Kl+1 
88~t!~H~ 

CDO 11 I::o:2,NC 
CWRITE(ut13)«RCI,J),J=1,I-1» 
C13 FORMAT(8fl0.~) 
Cll CONTINUE 

611 
C 
C 

)) 
,/ 

READ(1,502)CL 
READ(1,S02)CU 
READ(1,502)IWRIT 
IFCCL.GT.CU)WRITEC6,611) 
FORHAT(' WARNING FIRST PROB MUBTBE LOWER THAN SECOND ON INPUT ') 
COMPUTE T VALUE FOR SPECFIED PROBABILITY LEVEL 
USE R**2=T**2/(T**2+(N-2») TO COMPUTE CL AND CU IF(CL.GT.CU)STOP 
SCL=CL 
SCU=CU 

t, 



) 

r 

I ( 

.. 

502 
131 

132 

11 
o 
D303 

5 

10 
C 

20 

IFCHETH.EQ.2)GO TO 131 
Ql=2.*CL 
G2=2.*CU 
F=N-2 
CALL HDSTICQ1,F,X,IER) 
CL=X 
CALL HDSTI(Q2,F,X,IER) 
CU=X 
CL=(CL**2)/(CL**2+F) 
CU=(CU**2)/(CU**2+F) 
CU=CU**.S 
CL=CL**.5 
FORMAT(lG) 
IFCMETH .EQ.l)GO TO 132 
CONTINUE 
SNU1=N-1 
SNU2=N 
X=l-CL 
CALL MDFIeX,SNU1,SNU2,CL,IER) 
CL=r.CL-1.)/(CL+1) 
X=l-CU 
CALL MDFI(X,SNU1,SNU2,CU,IER) 
CU=(CU-l.)/CCU+l.) 
CONTINUE 
DO 11 I=l,NR 
DO 11 J=l,NC 
IF(R(I,J).NE.O.O)RCJ,I)=RCI,J) 
W R I T E ( 9 ~·3 0 3) ( ( R ( I , J) , I = 1 , N C) , J = 1 , N R ) 
FORMAT(22F6.2) 
CONTINUE 
CALL BUIL!!,( STPE) 
IF(STPE.EG.l.0)GO TO 100 
K=K+1 
NCLUS=K 
DO 10 I=l,NF'ROF 
ICLuSePROF(I»=K 
MARK COORELATION MATRIX FOR PROFILES USED 
DO 20 I=l,NDEL 
DO 20 J=l,NR 
IF(IDEL(I).EQ.O)GO TO 20 
R(IDEL(I),J)=~1.0E+30 
ReJ,IDEL(I»=-1.0E+30 
CONTINUE 
DO 30 I=l,NPROF 
DO 30 J=l,NR 

CWRITE(6,77)NPROF,PROFCI) 
77 FORMAT(' NPROF ',110,2X,' PROF ',110) 

30 
It 

99 

100 

500 

R(PROF(I),J)=-1.0E+30 
RCJ,PROFCI»=-1.0E+30 
WRITE(6,99)ICLUS 
FORMAT(' SOLUTION ',1115) 
IF(STPE.~G.1.0)GO TO 100 
IF!NPROF.GE.4)GO TO 5 
COrHINUE 
NTOT=O 
IS=O 
IIO SOO 1=1, NCUT 
NTOT=tHOT+NCS (I) 
NCS'. I) =NCS (! ) + I S 
IS=NCSCI) 

"­
" 'Ii 

o 

, 
" 

i 
1 

I~ 
I 

, 

510 

613 
614 
610 

620 
621 

630 
1 

640 
6S0 

1 

660 
1 

515 
520 
528 

529 

53:1. 

530 

541 

546 

550 

551 

K=l 
DO 510 I=l,NTOT 
M=ICLUS(I) 
IF(I.GT.NCS(K»K=K+l 
ICROS(~,M)=!CROS(K,M)+l 
WRITE(6,610)TITLE 
IFeMETH ~EG. 1)WRITE(6,613) 
FORMAT(/' PEARSON CORRELATION'/) 
IF(METH.EG. 2)WRITE(6,614) 
FORMAT(/' INTRACLASS CORRELATION'/) 
FORMAT(SX,20AS/) 
WRITE(6,620)eNCS(I),I=1,NCUT) 
FORMATC6X,' CUTPOINTS ',516) 
WRITEC6,621) 
FORHAT(/I) 
WRITE(6,630) 
FORHAT(6X~' CROSS CLASSIFICATION MATRIX' 

/6X, ---------------------------') WRITE(6,640) 
FORHA~(24X,' CLUSTERS') 
WRITEC6,650) 
FORHAT(15X,'U/,4X,'l'~4X,'2',4X,'3',4X,'4/,4X ,~, 
,4X, '6' ,4X, '7' ,4X, '8' ,4X, '9') • ' ~ 
WRITE(6,660) . . 
FORHAT(lSX,'-',4X,'-',4X,'-',4X,'-',4 v ,'-',4X,'-' 

,4X, ,-, ,4X, '-' ,4X, '-' ,4X, '-') " 
DO 515 I=l,NCUT 
WRITE(6,520)I,eICROSCI,J),J=0,NCLUS) 
FORHAT(3X,I3,':',4X,20IS) 
DO 528 I=l,NCUT 
IRHAXCI)=-1000 
DO 529 I=l,NCLUS 
ICHAX(I):-1000 
DO 530 I=l,NCUT 
DO 530 J.:l,NCLUS 
ICTOT (I) = I (;:,"',1 T (I) +ICROS (I, J) 
IRTOT(J)=IRTOT(J)+ICROS(I,J) 
IFCICROSCI,J).LT.ICHAXCJ»GO YO 531 
ICMAX(J)=ICROS(I,J) 
IVHAXeJ)=I 
!F(!CROS(!~J)tLT.IRMAX(T')r.n TO 530 IRHAX<I)=ICROS<I,J) ._._'OJ 
IWMAX(I)=-J 
CONTINUE 
N=O 
I1AXRJlII-l000 
DO 541 I~l,NCLUS 

~~~~~~~tob~T. IRTOT(I»MAXRJ=IRTOT(I) 
DO 540 I=l,NCUT 
N=N+ICTOT(I) 
IF(HAXCJ .LT. ICTOTCI»HAXCJ=ICTOT(I) 
S1=0 /.0 
DO 550 J=l,NCLUS 
I::a:IVHAXCJ) 
S1=Sl+ICROSCI,J) 
92=0.0 
[10 55t I=1,NCUT 
J=IWHAX(I) 
S2=S2+ICROSeI,J) 
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( 

( 

( 

( 

~ 

C 

760 

761 

• 762 

!I 

561 
562 

560 
544 

570 
580 

590 

714 

7"C: _ ... 
728 
729 
727 
724 

1 

1 

WRITE(6,*)Sl,MAXCJ~N 
IFCN.EO.MAXCJ)GO TO 760 
SLAM=CS1~FLOAT(MAXCJ»/(FLOAT(N}-FLOAT(MAXCJ» 
CONTINUE 
IF(N.EO.MAXRJ)GO TO 761 
SLM2=(S2-FLOATCMAXRJ»/<FLOAT(N)-FLOAT~MAXRJ» 
CONTINUE 
IFC2*N .EG. MAXCJ+MAXRJ)GO TO 762 
SYMM=(Sl+S2-MAXCJ-MAXRJ)/C2*N-MAXCJ-MAXRJ) 
CONTINUE 
WRITE(6,560)SLAK 
WRITE(6,561)SLM2 
WRITE(6,562)SYHM 
FORMAT(/' LAMBDA (PREDICT CLUSTERS ) ',Fl0.3) 
FORMAT(/' LAMBDA CSYMMETRIC ) ',Fl0.3) 
SPCT=FLOAT(N)/FLOATCNR) 
WRITE(6,S44)SPCT FORMAT(/' LAMBDA (PREDICT POPULATION) ',Fl0.3) 
FORMATC/' PERCENT COVERED ',Fl0.3/) 
IF(METH.EG.l)M=F+2.1 
IFCMETH.EG.2)M=SNU2+.1 
WRITEC6,570)M 
FORMAT(' NUMBER OF VARIABLES PER CASE ',15/) 
WRITE(6,S80)CL,CU 
FORMAT(' INCLUSION VALUE CIN ',Fl0.31 

, EXCLUSION VALUE CEX ',Fl0.3) 
WRITE(6,S90)SCL,SCU 
FORMATC' PROB VALUE CIN ',4X,F10.3/ 

, PROS VALUE CEX ',4X,Fl0.3) 
SPCT=FLOAT(N)/FLOAT(NR) 
OPENCUNIT=2,FILE='CLUST.RES',ACCESS='APPEND') 
WRITE(2,714)TITLE(S),CL,CU,SCL,SCU,M,NCLUS,NCUT,SLAM,SLM2,SYMM 

1 ,SPCT 
FORMAT(lX,A2,4F6.3,313,4F6.3) 

1 

DO 724 J=O,NCLUS 
M=O 
DO 725 I=l,NTOT 
IF(ICLUSCI).EG.J)M=M+l 
IFCICLUS(I).EG.J)IOUT(M)=I 
CONTINUe: 
IF(J.EG.O)WRITEC6,728) 
FORMAT(/' UNCLASSIFIED ENTITIES 'I) 
IFCJ .GT. 0)WRITE(6,729)J 
FORMAT(/' MEMBERSHIP IN CLUSTER ',13/) 
WRITE(6,727)(IOUT(K),K=1,M) 
FORMAT(10X,25I4) 
CONTINUE 
T='*****' WRITE(6,S98)T,T,T,T,T,T,T,T,T,T,T,T,T,T,T,T 
FORMAT (/ / I 16A5) 
IF(IWRIT.EG.l)CALL WRITE(IDNUM,ICLUS) 
END 
SUBROUTINE WRITECIDNUM,ICLUS) 
DIMENSION FORM(16' 

,X(10),ICLUS(1),NC(S) 

• 

t ,.. ... 

DOUBLE P,RECIS10N [IATAl (20), 15ET 
1SET=DATA1(1DNUM) DATA DATA!j'MIX1.DAT','MIX2.DAT','MIX3.DAT','MIX4.DAT','MIXS.DAT' 

1 ,'MIX6.DAT','MIX7.DAT','MIX8.0AT','M1X9.DAT','MIX10.DAT', 
1'MIX11.DAT','MIX12.DAT','MIX13.DAT','HIX14.DAT' ,'MIX15.DAT', 

j. 

i 

I I 

! 

I ij 
I· 

~ 
b 
~ 
I·~ 
~ 

t 

r ' " 

I \ 
I 

l 
11. 

~ 
t 
t t , 
t 
~ , 

t I: 

t 

t 
I 

3: 

I 

1 
.; 
~ ~ 

I t 1 

r~ 
r 
, , 
I 
I 

I 
; 
~ 

,. 

I '. 
I 
\ 
1 , l r 

100 
110 

120 
130 

1.50 

160 
170 
10 
200 

c 

S 

10 
C 
D 

248 

20 
C 

"" 30 
o 
T.l78 

1 
1 

1 

'MIX16.DAT','MIX17.DAT','MIX13.DAT','MIX19.DAT' . 
'MIX20.[IAT'1 
OPEN(UNIT=2,FILE=ISET) 
OPEN(UNIT=3,FILE='BLASH.DAT') 
REA[I(2,100)N,M 
FORMAT(2G) 
READC~,110)NCUT 
FORMATC1G) 
READ(2,120)(NCCll),Il=1,NCUT) 
READ(2,130)FORM 
FORMATC5G) 
FORMATC16AS) 
READC2,130)TITLE 
DO 10 1=1,6000 
READC2,lS0rEND=200)Il,I2,I3,X 
FORHATC3I3,10F7.3) 
IFCI3.EG.0)GO TO 160 
ICNT=ICNT+l 
WRITE(3,170)ICLUSCICNT),I1,I2,I3,X 
FORMATC413,10F7.3) 
CONTINUE 
REiURN 
END 
SUBROUTINE BUILDCSTPE) 
DIMENSION NPR(149),SUMC149),PROF1(149),N(149) 
COMMON IDEL(149),PROF(149),RC149,149),ICLU5(149), 
NR,NC,CL,CU,NDEL,NPROF 
INTEGER PROF,PROF1 
HOUSEKEEPING 
DO S I=l,NR 
NPRCI)=O 
PROFCI)=O 
PROF1< I) =0 
DO 10 J=l,NC 
DQ 10 I=l,NR 
IF(RCI,J).GE.CL)NPR(J)=NPR(J)+1 
FIND MAX OF NPR TO DETERMINE PIVOT 
WRITEC6,24B)NPR 
FORMATe' NPR ',1113) 
MAX1=-1000 
IMAX=O 
SMAX=-1.0E+30 
DO 20 J:::1,NR 
IF(NPRCJ).NE.O)IMAX=l 
IFCNPReJ).LT.MAX1)GO TO 20 
MAX1=NPR(J) 
MAX:::J 
CONTINUE 
FIND t DF ELEMENTS IN F'IVOT 
IFCIMAX.EG.0)STPE=1.0 
IF(STPE.EQ.l.0)RETURN 
J=O 
DO 30 I=l,NR 
IF(RCI,MAX).LT.CL)GO TO 30 
J=J+l 
NPROF=J 
PROFCJ)=I 
CONTINUE 
WRITEC6,78)MAX 
FORMAT( , MAX ',IS) 
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• 

t. 

~ 

, 

It 
[179 
C 

35 

40 
C 

50 
C 
C 
D 
D 93 

60 
C 

70 
C 

BO 
D 
091 

BS 
C 

90 
C 

WRITE(6,79)(PROF(I),I=1~NPROF) 
FORMAT(~ FIRST LIST ',1115) 
FIND SECOND MEMBER OF NUCLEUS 
DO 35 I=l,NI\ 
SUM(I)=O.O 
N(I)=O.O 
Tn 40 I=1,NR 
1.1' 40 J=l,NPROF 
IF(R(I,PROF(J».LT.-2.0)GO TO 40 
N ( !) =N ( I) + 1 
SUMCI)=SUM(I)+R(I,PROF(J» 
CONTINUE 
SUM(MAX)=-1.0E+30 
FIND MAX 
SMAX1=-1.0E+30 
DO 50 J=l,NR 
IF(N(J).EG.O)GO TO 50 
SUM(J)=SUM(J)/N(J) 
IF(SUM(J).GE.SMAX1)MAX1=J 
IF(SUM(J).GE.SHAX1)SMAX1=SUM(J) 
CONTINUE 
FIRST TWO PROFILES IN PIVOT LIST ARE MAX AND MAXi 
FIND THIRD MEMBER 
WRITE(6,93)(SUM(J),J=1,NR) 
FORMAT<~ AVE CORR ',11F7.2) 
J=O 
DO 60 I=l,NC 
IF(R(I,MAX1).LT.CL)GO TO 60 
J=J+l 
NPROF1=J 
PRfJF1(J)=I 
C .... IT. ~L-
C~ '.'~' OlJ'T PROFILES IN F'ROF1 ALREADY IN F'ROF 
D'· 1= • ,NPROF 
$.' 10 J:J., NPROFl 

\PROF(~'.EQ.PROF1(J»PROF1(J)=0 
~ONSOLIDATC PROFILES 
.J=O 
DO 80 I=1,NPROF1 
IF(PRQF1(I).EG.0)GO TO BO 
J=J+l 
PROF(HPROF+J)=PROF1(I) 
CONTINUE 
NPROF=NPROF+J ' 
WRITE(6,91)(PROF(I),I=1,NPROF) 
FORMAT(' NEXT LIST ',1115) 
DO 85 I=1,NR 
N(I)=O 
SUM(I)=O.O 
FIND THIRD MEMBER OF NUCLEUS 
DO ~O 1=1,NR .' 
DO 90 J=l,NPROF I 
IFCRCI,PROF(J».Lt.-2.0)GO TO 90 
N(I)=N(1)+1 
SUM(I)=SUMCI)fRCI,PROFeJ» 
CONTINUE 
FIND MAX VALUE OF SUMCI) 
SUM(MAX)=-1.0E+30 
SUM(MAX1)=-1.0E+30 
SMAX2=-1.0+E30 

t 

p 

'1 , 

,:t 
. I 

» 

J 

) 
1 

I 
I 
I 
.) 

i 

I 
I 

J , 

:1 
if 

100 
D 
C 

D 
[192 

C 

D 

105 
lOB 

110 
115 

120 
D94 
C 

130 

D 
D 

140 

200 

n 205 

D96 

[10 100 J= 1, NR 
IF(N(J).EO.O)GO TO 100 
SUMeJ)=SUMeJ)/N(J) 
IF(SUM(J).GE.SMAX2)MAX2=J 
IFCSUMeJ).GE.SMAX2)SMAX2=SUMeJ) 
CONTINUE 
WRITE(6,93)(SUM(J),J=1,NR) 
FIRST CLUSTER CONSISTS OF PROFLES HAX,MAX1,HAX2 
PR!)F(l)=MAX 
PROF(2):zMAX1 
PROF(3)=HAX2 
WR1TE(6,92)PROFC1),PROF(2),PROF(3) 
FORMAT(' NUCLEUS ',315) 
NPROF=3 
DO 105 I=l,NR 
N(I)=O 
SUHCI)=O.O 
DO 110 I=l,NR 
DO 110 J=l,HPROF . 
IFCRCI,PROFCJ».LT.-2.0)GO TO 110 
rF(I.~G.PROFeJ»GO TO 110 
SUHCI)=SUH(I)fRCI,PROF(J» 
N ( I ) =N ( I) + 1 
CONTINUE 
DO 115 I=l,NPROF 
SUHCPROF(I~)=-1.OE+30 
FIND AVE AND MAX 
DO 120 I=l,NR 
IF(NCI).EG.O)GO TO 120 
SUH(1)=SUH(I)/N(1) 
CONTINUE 
WRITE(6,94)(SUH(I),I=1,NR) 
FF10NRDMAMT(X' AVVERAGE CORR ',11F7.2) 
SHAX 

A A ERAGE CORRELATION 
=-1.0E+30 

DO 130 I=1,NR 
IF(SUM(I).GE.SMAX)MAX=1 
IF(SUM(I).GE.SMAX)SMAX=SUMCI) 
IF(SUH(MAX).LT.CL)GO TO 200 
NPROF=NPROFf1 
PROFCNPROF)::HAX 
WRITE(6,*)CPROF(INN),1NN=1,NPROF) 
WRITE(6,*)SUH(MAX),HAX 
DO 140 1=r:l,NR 
SUMCI)=O.O 
N(I)=O 
GO TO,\108 
CONTII'tUE 
NDEL=O 
DO 205 I=1,NR 
N(1)=O 
SUM(I);:zO.O 
1DELCI)·O 
WRITEC6~96) 
FORMATe' DELETE CASES BELOW CU ') 
DO 210 I~l,NR 
DO 210 J=l.NPROF 
IFCR(1,PROFeJ».LT.-2.0)GO TO 210 
IF(I.EG.F'ROFeJ»GO TO 210 
SUMCI)=SUHCI)+R(I,PROFeJ» 



t 

f 

( 

(; 

c 

c 

• 

, 

210 

• 220 
D 
D 
77 

N(I)=N(I)+l 
CONTINUE 
DO 220 I=l,NR 
IF(N(I).EO.O)GO TO 220 
SUHCI)=SUH(I)/NCI) 
IF(SUH(I).LE.CU)GO TO 220 
IF(SUH(I).GE.CL)GO TO 220 
NDEL=NDEL+l 
IDEL(NDEL)=1 
CONTINUE 
WRITE(6,94)(SUHCI),I=1,NR) 
WRITE(6,77)(IDELCI),I=1,NDEL) 
FORHAT(' DELETE ',1115) 
IF(NPROF.LE.3)STPE=1.0 
RETURN 
END 

(I 

i' (, 

~ 

I' 

t 

• 

• 

D 

D 
D 
D 

999 

457 
460 

111 

78 
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****************************************************** * * * caRR~FOR * 
* * * CORR.FOR IS A SUBROUTINE FOR LORR.FOR. IT * * PRODUCES A CORRELATION HATRIX (PRODUCT-HOHENT * * CORRELATIONS) FOR USE IN LORR'S NON- * * HIERARCHICAL CLUSTERING TECHNIQUE. * 
* * *****************************************************~~ 

DIMENSION XC23,149),R(112S0),S(149),XMC149) 
DIHENSION hC(5),FORH(20) 
DIHENSION TITLE(20) 
DOUBLE ,PRECISION DATAS 
READ (5 #999) Di,~TAS 
FORHAT(Al0) , 
OPEN(UNIT=11jFILE=DATAS) 
READ (11, *) N ,oH 
1X=23 
READ(11,457)NCUT 
READ(11,460)(NC(Il),Il=1,NCUT) 
FORHAT(lG) 
FORHAT(SG) 
READ(11,463)FORH 
READ(11,463)TITLE 
DO 111 J-1,l1 
READ(11,iORM)IDNUH,(X(I,J),I=1,N) 
CALL BECORI(X,N,H,IX,XH,S,R,IER) 
WRITE(6,78)IER 
FORHAT(' IERR ',110) 
ITOT-H*CM+l)/2 1(1:11 
1T=O 
Hl=l 
WRliE(6,*)N,H,NCUT,NC 
WRITE(6,463)TITLE 
WRITE(6,463)FORH 
FORHAT(20AS) 
WRITE(12)TITLE 
HETH-1 
WRITE(12)HETH 
WR1TE(12)N,H,IDNUM 
WRITE(12)NCUT 
WRITE(12)(NC(IO),IO=1,NCUT) 
FORHAT(20AS) 
DO 200 J-l,H 
WRITE(i2)(R(I),I=Hl,1(1) 
WRITE(14,1111)(R(I),I=Hl,Kl) 
FORHAT(FS.2) 
WRITE(6,467)(RCI),I=Hl,Kl) 
FORHAT(16FS.2) 
IT:lIT+l 
Hl-111+1T 
1(1-H1+1T 

" 
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200 CONTINUE 
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****************************************************** * * * INTRA.FOR * * * * SUBROUTINE FOR LORR.FOR. COMPUTES INTRACLASS * 
* CORRELATION MATRIX FOR USE IN L~RR'S NON- * * HIERARCHICAL CLUSTERING TECHNIGUE. :$( 

* :tc 

* * ****************************************************** 

DIMENSION X(23,149),R(11250) 
DIMENSION Y(60),NTR(30),TM(30),WTV(30),S(3),NDFC3) 
DIMENSION NC(S),FORM(20) 
DIMENSION TITLE(20) 
DOUBLE PRECISION DATAS 
READ(5,999)DATAS 
FORMAT(Al0) 
OPEN(UNITsl1,FILE=DATAS) 
READ(11,*)N,M 
IX=23 
READ(11,457)NCUT 
READ(11,460)(NC(Il),Il=1,NCUT) 
FORMAT(lG) 
FORMAT(5G) 
READ(11,463)FORM 
READ(11,463)TITLE 
DO 111 J-1,M 
READ(11,FORM)IDNUM,(X(I,J),I=1,N) 
DO 5 Isl,NCUT 
ITOT-ITOT+NC(I) 
DO 6 1-1,60 
NTR<I)s2 
DO 10 1-1,lTOT 
DO 10 J-'l,I 
1111:110 
DO 15 K=l,N 
1111-1111+1 
Y(Il11)=X(K,J) 
1111=1111+1 
YCll11)=X(K,I) 
CONTINUE 
CALL ACRDAN(Y,N,NTR,TM,WTV,S,GH,NDF,lER) 
ICNT=ICNT+l 
TREAT SSG 
S(l)-S(l)/NDF(l) 
BETWEEN ssa 
S(2)-S(2)/NDF(2) 
R(ICNT)=(S(1)-S(2»/(S(1)+S(2» 
WRITE(6,78>IER 
FORMAT(' IERR ',rl0) ". ITOT:IIH*(H+1)/2 
Kl:111 
IT-O 
Hl-1 

C·I 

... 
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200 

WRITE(6,*)N,M,NCUT,NC 
WRITE(6,463)TITLE 
WRITE(6,463)FORM 
FORMAT(20AS) 
WRITE(12)TITLE 
METH=2 
WRITE(12)METH 
WRITE(12)N,M,1DNUH 
WRITE(12)NCUT 
WRITE(12)CNC(IO),IO=1,NCUT) 
FORHAT(20A5) 
DO 200 J=l,M 
WRITE(12)(R(I),I=l1i,Kl) 
WR!TE(15,1111)(R(I),I~Ml,Kl) 
FORMATCF5.2) 
WRITE(6,467)CRCI),I=M1,Kl) 
FORMAT(16F5.2) 
IT=1T+1 
Mi=Hl+IT 
K1=111+1T 
CONTINUE 
END 
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Abstract 

Inverted factor analysi s was eval uated on 20 previously studied mul ti _ . 

variate mixtures. Two methods of determining number of factors and two 

rotational methods--orthogonal varimax and oblique direct quartimin--were 

compared. Objects were assigned to groups on the basis of highest absolute • 
factor loadings, with the mimimum loading required for assignment systematically 

varied. Rotational methods did not differ significantly in either accuracy or 

coverage of the resulting classifications. Paradoxically, setting the number 

of factors equal to the number of underlying populations resulted in less 

accurate solutions than determining the number of factors empirically by 

Cattell's scree test. More importantly, the inverted factoring technique was 

found to be as accurate as the best hierarchial clustering algorithms previ­

ously tested on these mixtures. Thus J despite the implausibil ity of the 

factor analytic model for generating typologies--and numerous other problems 

and criticisms--inverted factor analysis appears to be a useful taxonomic 

tool. 

( . 
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Inverted Factor Analysis: An Evaluation using Benchmark Data Sets 

Inverted factor analysi s, al so known as Q-factor analysi s, inverse factor 

analysis, and profile factor analysis, is onE~ of the oldest and most widely 

used procedures for constructing typologies 1ln the behavioral sciences. The 

.basic rationale of this procedure has not changed since Stephenson introduced 

the "inverted factor technique" in 1936. In fact, Stephenson's original 

articles (1936a,b) still provide a lucid intrclduction to the method. In the 

past 30 years, inverted factor analysi s has bfaen used in numerous studies to 

identify subtypes of individuals, particularly in the areas of psychiatry and 

deviant behavior (Butler & Adams, 1966; Collins, Burger & Taylor, 1976; 

Fleis~, Lawlor, Platman & Fieve, 1971; Guertin, 1952, Katz & Cole, 1963; 

Monro, 1955; Overall, Holl i ster, Johnson & Pennington, 1966; Raski n & Crook, 

1963). The inverted factor technique has also been discussed in several 

methodological treati ses (Baggal ey, 1964; Broverman, 1961; Cattell, 1952; 

Morf, Miller and Syrotuik, 1976; Overall and Klett, 1972; Ross, 1963; Ryder, 

1966; Stephenson, 1953). 

Despite its historical precedence and diverse applications, inverted factor 

analysis has been strongly criticized as a method of generating typologies 

(Baggaley, 1964; Fleiss et al, 1971; Fleiss, 1972; Fleiss & Zubin, 1969; 

Jones, 1968; Lorr, 1966).' A standar\~ criticism has involved the use of the 

product-manent corr'el ation index simi'l arity between individual s. The cOI~rel a­

tion coefficient indexes similarity only in profile shape, not elevation or 

scatter. Moreover, a correlation of 1.00 does not ~ecessarill indicate that 

two profil es have identical shape, but only that they are 1 inear functions 

of one another (see Edelbrock & McLaughlin, 1980; and Fleiss & Zubin, 1969 for . 
more detailed discussions). This criticism is not unique to inverted factor 

analysiS, however, in that a variety of clustering methods can employ the 
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correlation coefficient as the measure of profile similarity (e.g., Carlson, 

1972; Edelbrock, 1979; Lorr, Bishop & McNair, 1965; Lorr & Radhakrishnan, 

1967) • 

Several other criticisms have been raised that are more pertinent 

to the inverted factoring techniqueo Fleiss and Zubin (1969), for example, 

have questioned the appropriateness of the linear model underlying factor 

analysi s to the task of generating typologies of i nd ividual s. In pal·ticul ar, 

they have asked whether it makes any sense to say that an individual represents 

"X II amount of one type pl us "V" amount of another type, and so on. Lorr 

(1966) has further questioned the rationale of rotating Q-factors. Even if 

un rotated factor loadings represent similarity to underlying IItypes", what is , 

the meaning of transforming such loadings so as to better approximate simple 

structure? 

Fleiss and Zubin have also objected that the number of types one may 

identify is limited by\\thejlnumber of variables in the analysis. The maximum 
~ , 1,/ 

number of factors that can be extracted from a correlation matrix is equal to 

the rank of the matrix. For a matrix of Q-correlations, rank is at most l -

1, where l equals the number of variables. Fleiss and Zubin therefore reasoned 

that the maximum number of types one can identify is equal to the number of 

variables minus 1. This is obviously a problem when one has few variables 

with which to work, but seeks to identify several types of individuals. 

Achenbach and Edelbrock (1981) have noted an additional problem involving 

procedures ·of factor extraction. Since the fi rst factor typi cally extracts 

the most variance t'rom the correlation matrix, it will encompass more indiyi­

dual s having hi gh loadings than subsequent factors. Thi s bi as towards (:on­

structing one 1 arge group followed by successi vely small er and smaller groups 

is rarely justjfied in taxonomiG research. Clearly, the relative size of the 

r~~ 
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groups should be determined by the data, not the taxometric procedure. Other 

methodological problems and issues include: (a) translating factor scores 

into discrete groups of individuals, {b) determining the appropriate number of 

factors, and (c) selecting a rotational procedure. The latter two problems 

also arise in regular R-factor analysis and have been discussed in detail 

elsewhere (cf. Mulaik, 1972; Harman, 1976). 

Given these problems and criticisms, one would expect inverted factor 

analysts to have been laid to rest long ago--but this is not the case. More 

than 40 years after its inception, the technique is still in use. Furthermore, 

it has generated heuristically valuable and predictive typologies. A parti­

cularly good example is the nosology of depression constructed by Overall et 

a1 (1966). Using an inverted factoring procedure (Overall & Porterfield, 

1963), three subtypes of depressed patients were identified, based on scores 

on the Brief Psychiatric Rating Scale. In a subsequent double-blind comparison, 

the three subtypes (labelled Anxious, Hostile, and Retarded) were found to 

differ markedly in terms of response to anti-depressant drugs. The value of 

inverted factor analysis in taxonomic research has been corroborated by 

several other recent studies (Collins et al, 1976; Evenson, Altman, Sletten & 

Knowl es, 197:i; Kunce, Ryan & Eckelman, 1976; Meyer & Kl ine, 1977; Raskin & 
l'; 

Crook, 1976). 

A Reconsideration 

There are several compeiling reasons for reconsidering inverted factor 

analysis as a taxonomic tool. For one, fruitful applications of the technique 

would appear to mitigate any methodological criticisms. Second, some points 

of criticism are patently wrong. For example, although the number of factors 

may be limited to R - 1, the number of types is not limited to the number of 

factors. In practice, inverted factor ana1ysi s may yield bipolar factors 
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comprised of both positive and negative loadings. Such bipolar factors have 

been taken to represent two underlying types manifesting opposite patterns of 

scores. Carl son et al (1976), for instance, obtained only four fCictors, but 

because each was bipolar, eight subtypes I'lere identified. Third, some 

• criticisms are based on dogma, not empirical facts. Some recent studies 

suggest that long-established psychometric dogma is in desperate need of 

revisi on. For ex amp 1 e, despite the so-call ed "superiority" of distance 

measures for indexing profile similarity (e.g., Eades, 1965; Fleiss & Zubin, 

1969: p. 239), recent Monte Carl a studies of hierarchical cl ustering methods 

have shown that correlation yields substantially better recovery of underlying 

mixture populations than Euclidean distance (Edelbrock, 1979; Edelbrock & 

McLaughl in, 1980). Fi nally, there have been very few attempts to test. the 

inverted factoring technique empil-ically against other methods. One exception 

is the recent study by Blashfie1d and Morey (1980). USing Monte Carlo proce­

dures, data sets designed to mimic MMPI psychotic, neurotic, and personality 

di sorder patterns were generated then analyzed by ,in~eJ·ted factor analysi s, 

Lorr's non-hierarchical clumping procedure (Lorr et al, 1965), a hierarchical 

clustering algorithm called average linkage, and Ward's (1963) minimum variance 

technique. B1ashfield and Morey concluded that the average linkage method 

yielded the best clustering solutions. For some data sets, however, the 

inverted factoring techn ique resul ted in substanti ally fewer mi scl~assi fi cations 

than the other three methods. 

Purpose of this Stud~ 

The purpose of thi s study was to eval uate inverted factor analysi s on a 

~~andard set of multivariate mixtures. This research builds on Blashfield and 

Morey's recent study in tHe following ways: (a). a broad range of lJ1ultivariate 

mixtures differing in number of variables, number of underlying populations, 

, fJ 
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difficulty of 'Solution, etc., were an-aly~ed, (b) two methods of determining 

number of factors' were tested, (c) two rota.tional procedure~~-one orthogonal 

the other oblique--were compared, and (d) the effects of varying the minimum 

loading required for classification were systematically evaluated. In addition, 

comparisons between the inverted factoring technique and several.hierarchical 

clustering algorithms were made. 

Methods 

Data Sets 

It has been argued previous ly (Edel brock, 1979; Edel brock & McLaLighl in, 

1980) that eval uations of taxanetric methods shoul d incl ude test on. "benchmark ll 

data sets--that is, data sets have been well-characterized, are available to 

other investigators, and have been used in previous mixture model stuclies. 

Such benchmark data sets provide a common standard against which to compare 

clustering and' classification methods and thus increase the generalizability 

of mixture model tests. With this in mind, 20 multivariate normal mix-

tures generated by Blashfield (1976) were selected for this study. These 

mixtures mimic real da.~a in many ways, incl uding (a) reptesentative range of 
\\/ 

number of variables and'Populations, (b) quasi-normal distribution parameters, 

(c) addition of I'measurement ll error to scores, and (d) varying strength and 

compl exity of the covaviance structure of he underlyi ng popul ations. These 

data sets have also been used in previous tests of hierarchical clustering 

algorithms (Blashfield, 1976; Edelbrock, 1979; Edelbrock & McLaughlin, 1980), 

so direct comparisons across studies are possible. 

Procedures 

Data were double-centered accordJng to the rationale and procedure 

given by Overall and Klett (1972; pp. 203-204). Variables were standardized 

(mean = 0, sd = 1) and scores were then standardized equi'!calently across objects. 
,~:// 
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Each of the 20 (object X variable) data sets was then inverted (i.e~, to 

represent a variable X object matrix) and subjected to principal-components 

factor analysis using the BMDP4M - program. It is important to note that 

double-centering the data results in bipolarity of the un rotated factors. 

• However, it does not necessarily f'esult in bipolarity in the rotated factors, 

which were used here. 

Two procedures were used to determine the number of factors. First, for 

each mixture, the number of factors was set to equal the number of underlyi ng 

populations. Since the rotated factors were not bipolar, each factor'comprised 

only one group of objects having high loadings in the same direction. Thus, 

determ1ng the number of factors in this way is tantamount to settin~ the 

number of groups (j) equal to the number of underlying populations (k). These 

20 analyses are subsequently designated by the notation j • k. 

Second, the number of factors was determined by examining eigen values. 

For tnese data sets, the commonly used "eigen value greater than 1" rule 

resulted in considerable over-factoring. A few factors having large eigen 

values were obta1ned followed by several having eigen values slightly greater 

than 1.00. This problem was al so encountered by Blashf1eld and Morey (1.980). 

Following their procedure, Cattell·s (1966) scree test was used to determine 

number of factors. In this study, both investigators examined the eigen value . 
plot for each mixture and independently selected th~ number of factors. 

Although we agreed for all 20 mix,tures, the number of factors indicated by 

the scree test did not always equal the number of unde;'ying populations. For 

eight mixtures, the number of factors equalled one more than the number of 

underlying populations (i.e., k + 1). These 20 analyses, are subsequently 

designated by the notation j ; k (i.e., the number of groups did not neces-

, sarily equal the number of populations). 
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One issue in factor analysis is whether to construct orthogonal (uncor­

related) or oblique (correlat~d) factors. This is an important consideration 

when deriving typolog'ies because rotational procedures substantially affect 

final factor loadings, which are the basis for constructing groups. Most 

previous applications of inverted factor analysis (e.g., Blashfield & Morey, 

• 1980; Coll ins et a1, 1976; F1 ei ss et a1, 1971; Katz & Col e, 1965) invol ved the 

varimax rotation-"an orthogonal procedure. In this study, both varimax 

(orthogonal) ind direct quartimin (oblique) rotations were compared. This 

yields four analyses of 20 mixtures each: j = k and j ; k with either 

varimax or direct quartimin rotation. 

A crucial issue that arises in inverted factor analysis involves translat­

ing factor loadings into discrete groups of obj ects or- individual s. A common, 

procedure has been to assign individuals to groups on the basis of highest 

factor loadings (in terms of absolute value). Some investigators have speci­

fied a minimum loading required for classification. Fleiss et al (1971), for 

example, selected a minmum loading of .40. Individuals whose highest loadings 

were less than .40 were left unclassified. "In their Monte Carlo study, \ 

81ashfield and Morey (1980) selected a minimum loading of .60, with the 

additional criterion that an object could not have a loading of .60 or higher 

on any other factor. These r~ther stringent criteria reduce coverage substan­

tially, but result in more dis~inct and homogeneous groups. 

In this study, objects were assigped to groups on the basis of their 

highest loadings. This is a simple .procedure for constructing groups, but the 
• 

coverage of the resulting classification can be manipulated by simply changing . 
the minimum foading required for assignment. A low cutoff point results in 

• 
the classifieation of a high proportion of objects into relatively heterogenous 

groups, whereas a high cutoff point results i'n the classification of a low 

proportion of objects into more distinct, non-overlapping groups. This 
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assignment procedure therefore makes it possible to evaluate classifications 

at several levels of coverage. 

Calculating Accuracy 

The aC(~!!'acy of the inverted factor solutions was defined as the agreement 

between the obtained groups and the underlying populations in the mixtures. A 

wide variety of statistics have been used to meas~re accuracy in mixture model 

studies; and there is littl e consensus regarding the Ubest II accuracy measure. 

Kappa (Cohen, 1960) and Rand's statistic (Rand, 1971) have been used in muny 

studies (e.g., Blashfield, 1976; Edelbrock, 1979; Edelbrock & McLaughlin, 

1980; Kuiper & Fisher, 1975; Milligan & Isaac, 1980; Mojena, 1977; Rand, 

1971). Both of these measures have drawbacks. Kappa has the advantage of 

correcting for chance level of agreement in a cross-classification, but it is 

appropriate only for square matrices (i.e., j = k). Rand's statistic does not 

require that j = k, but the scale is not unifonn from matrix to matrix. That 

is, the lower bound of Rand's statistic is not zero but is determined by the 

marginal distributions of the cross-classification. 

One way to overcome the idiosyncracies inherent in individual measures is 

to use multiple criteri.1 fQr evaluating accuracy. Six measures, including 

kappa, Rand I s stati sti c, asym:netri c 1 ambda, l!!!, Kramer's v. and the conti ng,ency 

coefficient were used itt this study. We chose to report our main findings ~iI 
~::: 

terms of asymmetric lambda for several reasons. This statistic is appropriate 

for nominal level ex'oss-classifications, has a range of zero to 1.00, and can 

be used with either square (j = k) or rectangular (j ; k) matrices. The 

Uasymmetrical" aspect of this statistic al so seems well suited to the task of 

measuring accuracy. The term "asymmetrical" refers to the factCthat 1 ambda 

indexes the degree to which one classification predicts another, and not vice 

versa. In mixture model studies. the underlyi ng populations comprise a fixed 

______ --"'--- _ _~~~ ___ ~ __ ------" --"-__________ ~ _____ __''--__ ---..I;Uh __ _ 
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or dependent classification, predicted ~y empirically derived groups that are 

free to vary. 

Although we report our main findings in terms of asymmetric lambda, we 

also report summary statistics in terms of kappa and Randls statistic. This 

permits direct comparisons with previous studies. Finally, it is worth noting 

that our conclusions regarding the relative accuracy of various methods were 

identical for all six measures we explored. This is not surprising, since 

such measures are all founded on the same information extracted from the . 
cross-classification matrix (cf. Hubert & Levin, 1976). Furthermore. in these 

analysis. the six measures of accuracy correlated >.95 with one another. 

Statistical Analyses 

For each of the 80 inverted factor solutions, objects were classi­

fied according to their highest loadings. Accuracy was then calculated 

at seven levels of coverage dictated by the following minimum loadings: 

.0, .4, .5, .6, .7, .8, and .9. These minimum loadings between were selected 

because: (a) all objects had h'fghest loadings greater than .0, thus a cutoff 

point of .0 yields 100~ coverage, (b) very few objects had highest loadings 

between .0, and .4 so accuracy and coverage varied little in this interval, 

and (c) there were too few loadings above .9 to calculate accuracy. 

Accuracy and \~~rverage val ues were analyzed in separate 2 x 2 x 7 analyses 
- - .. ,~ 

of variance represe'1t'ing: number of factors (j • k vs. j ;. k) rotational 

methods (varimax vs. direct quartim1n), and minimum loading (.0 to .9), 

respecti vely. 

. Resul ts 

Main results are portrayed graphically in Figures 1 and 2. These figures 

---. ------- --- - -- \) 

Insert Figures 1 and 2 here 

.. .. '" - --. -- - ~ . - --

" 

• 

•• 

Inverted Factor Analysis 
10 

show the relations between the minimum loading required for classifica­

tion and both accuracy (left axis) and coverage (right axis). Figure 1 

depicts accuracy and coverage functions for the j = k solutions, whereas 

Figure 2 despicts results for the j ;. k solutions. Overall, accuracy and 

" 

• coverage were significantly related to the mini,mum loading (p <.001), but in 

opposite ways. Raising the minimum loading uniformly increased accuracy, but 

decreased coverage to a greater and greater extent. No significant differences 

(F <1.00) were detected between varimax and direct quartimin rotations for 

either j • k or j ;. k solutions. Varimax solutions resulted in consistently 

higher accuracy and coverage, however. 

Paradoxically, j ; k solutions resulted in significantly higher 

accuracy and coverage than j • k solutions (p <.01). This was the case 

for both rotational methods. Figure 3 portrays accuracy 'differences between j 

'. k and j ;. k solutions in a manner that equates them for coverage. Accuracy 

is shown as a function of coverage, rather than as a function of th~ minimum 

loadings as in Figures 1 and 2. At all levels of coverage, j ~ k solutions 

resulted in significantly higher accuracy and j • k solutions. Examination 
_ _ _ _ _ _ _t _ _ _ _ 

Insert Figure 3 here 

--. ---- - ~ 

of the eight mixtures where j ;. k confi rmed that constrain.ing the number of 

factors to equal the number Qf underlying groups substantially reduced accuracy. 

For these mixtures, higher accuracy was achieved when the number of groups was 

determined empirically by Cattell IS scree test. 

Comparisons with Other Methods 

In a pr'evious study (Edel brock & McLaughlin, 1980), 18 hi erarchi cal 

clustering algorithms were tested on the 20 benchmark mixtures. The algorithms 

-'- ____ "- __ ~~ ___ ~~ .. _..a...._ ---"'--- __ _ Il. ____ ~ ____________ ........ ..:.._ _________________ """_ ______ ....... _______ .s_ ..... -~ ----~.~ 
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included single. complete. average. a'nd centroid linkage using either Euclidean' 

distance. correlation. or the one-way or two-way intraclass correlation as the 

similarity measure; Ward1s minimum variance technique; and a random algorithm 

used to establish a baseline control for evaluating methods. Two problems 

,arise when making comparisons between inverted factor analysis and these 

hierarchical methods. First. the accuracy of each hierarchical method was 

calculated for j s k. That is. the number of clusters alwiys equaled the 

number of underlying populations. To make direct comparisons. it is necessary 

to select inverse factor solutions were j = k. This is unfortunate because j 

= k solutions were significantly less accurate 'han j ; k sol~tions. 

Comparisons are therefore based on a conservative estimate of the accuracy of 

the inverted factoring technique. 

The second problem involves selecting the level of coverage at which to 

make comparisons. Whereas both inverted factor analysis and the hierarchical 

methods can yield classifications varying in coverage. this occurs in quite 

di fftl! ............. ,." .. 
_I .. II" nUJ". For inv~rt3d factor analysis, coverage depends upon the 

minimum loading required for assignment. For the hierarchical methods, 

coverage depends on the sel s:t:jon of .the best j cl usters at various 1 evel ~ in 

the hierarchical tree. This differ~nce appears to represent a bias in favor 

of the hierarchical methods. For each mixture. the accuracy of the inverted 

factor soluilon is based on the ~ set of factors--only the minimum loading 
. " 

is varied. 'The accur.acy of each hierarchical solution. on the other hand, is 

based on di1ftfe~~nt sets of clusters, selected so as to maximize accuracy at 
If each level in the hierarchical tree. This bias is evidenced by the fact 

that the accuracy of even the random hi erarchi cal al gorithm increases 

coverage del cines (see Edelbrock & McLaughlin, 1980: p. 310). 
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To make comparisons between methods, accuracies of the j = k varimax 

solutions were calculated at 100% coverage. Focusing on 100% coverage 

eliminates the biases' that can arise at lower levels of coverage. Furthermore, 

inverted factor analysis and the best hierarchical methods show uniform 

• increases in accuracy as coverage decl ines. Thus, differences at 100% coverage 

are likely to be representative of differences at lower levels of coverage. 

The mea~ kappa value for the varimax solutions equaled .65. which 

compares quite favorably with accuracies previously reported by Edelbrock & 

McLaughl in (1980: p. 310). Specifically. the inverted factoring technique . 
was substantially more accurate than 10 of the 18 hierarchical algorithms: 

single and complete linkage using any of the four sim'llarity measures. average 

and centroid linkage using Euclidean distance, and the random algorithm. 

The j s k varimax solutions were also compared with the most accurate 

hierarchical algorithm--average linkage using the one-way intraclass correla­

tion. Mean values for kappa, Rand1s statistic. and asymmetric lambda, as well 

as paired l-test results, are shown in Table 1. According to all three 

measures, the average linkage algorithm was slightly more accurate than 

inverted factor analysis, but not s1 gnifi cantly so. 

- - -- .. .. .. .. 
Insert Table 1 here 

.. - .. - - .. .. - - -
As a final test, Rand's statistic was calculated for varimax j ~ k 

sol uti ons: wh'l ch represent the hi ghest accuracy attained by inverted factor 

analysis. Edelbrock and McLaughlin previously used Rand's statistic to 

evaluate the "best possible" clustering solutions attained by the 18 hier­

archical methods they examined. Direct comparisons between methods are 

, 
t ____ ~ __________________ ____. ____ .L--.I~----~!-.'-

~~---------~~--~-- --~ ... 
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therefore possiol e. The av?rage Rand val ue for the inverted factoring tech­

nique was .862. This is higher than 11 of the 18 hierarchical methods, and 

not significantly different than the most accurate hierarchical algorithm (see 

Edelbrock & McLaughlin, 1980: p. 311). 

• 
Discussion 

Inverted factor analysi sis one of the most widely used and widely 

criticized procedures for constructing typologies in the behavioral sciences. 

Unfortunately, some critics of the method have simply argued: "It shouldn't 

work, therefore it doesn't. II Few commentators have backed up their critici sms 

with empirical evidence. In this evaluation, the inverted factoring technique 

yielded more accurate recovery of underlying populations than many previously 

studied hi erarchi cal al gorithms. Moreo'/er, the inverted factor techni que was 

found to be among the most accurate methods yet tested on these benchmark 

mixtures. These results agree with the previous study by Morf, Miller and 

Syrotuik (1976) who, on the basis of an objective comparison, concluded that 

inverted factor analysis was superior to the complete linkage algorithm in 

id~ntifying subtypes of individuals. Thus, inverted factor analysis appears 

to be a useful taxonomic tool--despite the implausibility of the factor 

analytic model for generating typologies, the lIinferior'ity" of the correlation 

coefficient as a measure of profile similarity, and numerous other problems 

(e.g.~, determining number of factors, assi gning obj ects to groups, etc.). 
" 

-Yd.terms of retovering underlying mixture populations, differences . 
b~tween rotational methods were minimal. The more crucial methodological 

problem involved selecting the appropriate number of factors. Determining 

the ~umber of factors empirically via Cattell's scree test resulted in 

more accurate solutions than the alternative procedure of setting the 
• 

) 

II 

• 

J 

J 

__ ~_~~~~~_~~~L-._...........l:~ __ _ 
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number of factors equal to the'number of populations. Blashfield and Morey 

(1980) also reported that the scree test was quite accurate in determining 

the correct number of populations in their MMPI Monte Carlo data. This;s a 

potentially important finding because the scree ~est does not depend upon a 

• priori knowl edge regarding "true ll underlyi ng popul ations. Thus, thi s procedure 

may be useful in determining number of underlying groups in applications to . . 
real data. This is a major asset of the inverted factor technique. Hier­

archical clustering algorithms, by contrast, do not produce a discrete number 

of clusters, but rather a hierarchical arrangement of objects and groups. 

Determining the appropriate number of clusters is an unsolved problem, although 

some work has been done 6n d~'!eloping objective criteria for making this 

decision (e.g., Mojena, 1977). 

The inverted factor technique al so embodies a simpl e mechanism for 

manipulating the coverage of the resulting·classifications. In this study, 
~ 

for example, objects were assigned to groups~n the basis of their highest 

factor loadings. Raising the minimum loading required for assignment decreased 

coverage. but increased accuracy. The ability to vary coverage may be valuable 

in research applications. In an epidemiological study, for 1nstance.~high 

coverage may be desirable in order to account for the generality and distri­

bution of phenomena in a population. In other situations, it may be advantage­

ous to construct extremely homogeneous groups. This would dictate low coverage, 

but the resulting groups would encompass individuals representing relatively 

"pure types". Future research shoul d explore di fferent methods of translat-

ing factor loadings into groups. The dual cutoff criteria used by Blashfield 

and Morey (1980), for example, appear promising, Such stringent assignment . 
rules result in reduced coverage, but yield more homogeneous and distinct 

, ~ 
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groups. Moreover, such assignment rules may yield typologies that are more 

predictive of external criteria. 

Finally, additional comparisons among clustering and classification 

methods are needed. There are few standard procedures for constructing 

empi rically based taxonomies and 1 ittl e is known about the rel ative merits of 

different methods. Objective comparisons are necessary, not only to combat 

dogmatic arguments for or against specific approaches, but also to identify 

those procedures best suited to behavioral research. The results obtained 

here indicate that inverted factor "analysis yields accurate recovery of 

underlying populations from multivariate normal mixutres. Evaluations on 

other types of mixtures and evaluations involving other criteria (e.g. repli-
• cability, sensitivity to data perturbation, etc.) would be valuable. 
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Compari son between inverted factor analysi s (varimax rotation) 

and the average 1 irtkage al gorithm 

Method 

Accuracy Inverted Factor Average Paired 
t-valuea Measure _ AnalYSis Linkage 

Kappa .655 .793 1.49 

Rand .789 .864 1.44 

Lambda .656 .801 1.20 

Note: Table entries are mean values for 20 mixtures. adfz 19. None'of the 

paired t-tests were significant (p >.10). 
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