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CORRECTING SAMPLE SELECTION BIAS 

FOR BIVARIATE LOGISTIC DISTRIBUTION OF DISTURBANCES 

Subhash C. Ray, Richard A. Berk and William T. Bielby 

ABSTRACT 

Notwithstandll:g Tobin's famous paper in 1958, the problem of censorp.d 

or truncated samples was 1argeiy ignored in standard econometric research 

during the 1960 ' s. In the past decade, however, Amemiya, Heckman and others 

have studied in detail the properti~s of OLS estimators obtained from the 

non-randomly selected subsample. This paper extends their analyses to the 

case where the random disturbances have a bivariate logistic distribution 

instead of bivariate norma~. 
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. CORRECTING SAMPLE SELECTION BIAS 

FOR BIVARIATE LOGISTIC DISTRIBUTION OF DISTURBANCES 

Despite Tobin's famous paper on limited dependent variables written in 

1958, the 1960's found very few attempts in standard econometric literature 

to addre~s the methodological questions associated with censoring or trunca

tion. In the past decade, however, Amemiya (1973), Heckman (1976, 1979), 

Olsen (1980) and others have considered in depth the inconsistency associated 

with OLS estimators obtained' from a selective sample and have suggested alter

native, consistent estimation procedures. This paper is an extension of 

Heckman's perspective to the case in which the joint distribution between 

random disturbances in the specified (substantive) equation and random dis

turbances in the sample selection equation is bivariate logistic (rather than 

bivariate normal). Indeed Heckman (1978) briefly considered the possibility 

of using a multivariate logistic distribution in place of the usual multi

variate normal (1978, p. 953), but recognized that a full development of the 

logistic approach would require additional work. 

Recall that sample selection bias problem begins with the following sub

stantively derived equation: 

(1) 

where Y1i is the observation on the dependent variable for individual i, 

Xli is the vector of observations on the explanatory variables for the indi

vidual and u1i is a random disturbance. A typical and perhaps the most 

frequently cited example is one' in which Yl is the observed market wage for 

an individual and Xl is the vector of relevant characteristics like education, 

experience, and the like. 
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Consider now a second sample-selection equation 

(2 ) 

where Y2j is the dependent variable observed for individual j, x2j is 

the vector of explanatory variables, and u2j is a random disturbance. 

The critical point is that for some individual s we shall have observations 

Y x only if y > 0 or otherwise exceeds some arbitrary ,threshold. ls' ls 2s 
An individual's market wage, for instance, is observable only when that 

indi vi dual obtai ns employment. For persons whose reservati on wage e.xceeds 

the market wage, no wage data are available. Similarly in Tobin's framework~ 

an individual would be recorded as expressing positive demand for a consumer 

durable (say, an automobile) only when his/her utility maximization results 

in a solution that assigns a value in excess of zero to the consumption level 

of that good. 

Given a sample of N individuals initially, it may be necessary to ex

clude all but Nl cases for whom one has observations on Yli and xli. 

These are the instances of which x2iS2 + u2i > o. Consequently, Equation (2) 

in our model represents a sampl e sel ecti on "rul e. " Wi th respect to OLS esti

mators for parameters of Equation (1) for the subsample of Nl individuals, 

Heckman points out: liThe bias that arises from using least squares to fit 

models for limited dependent variables or models with censoring or truncation 

arises Golely because the conditional mean of uli is not included as a re

gressor" (1979:478). The bias thus results from the omitted variable type of 

specification error. 

In this paper we will apply the basic Heckman correction procedure 

assuming that the random disturbances have bivariate logistic distributions. 
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Specifica11y, we consider two alternative formulations suggested by Gumbel 

(1961). Each of these two distribution functions yields logistic marginals. 

However, the impl ied estimation procedures are qui te different. In one in

stance, the corrected model yields homoscedastic errors.' In the other, al

though heteroscedasticity surfaces, the variance function is parametrically 

known and it is possible to search for the optimal value (in terms of lowest 

SSE) within the admissible range of the parameter. 

In ~iection I, the two different bivariate distribution functions are 

briefly outl ined. Sections 'II and III present consistent estimators of the 

parameters of Equation (1) using each of the distribution function's. At 

this stage we make a choice and ort for the estimator that 'is implied by the 

Gumbel type II distribution. Section IV shows that the estimator derived is 

consistent and that the distribution of the estimates is asymptotically normal 

so that despite non-normal ity of equation d;stuy'bances, the standard statisti

cal tests apply in large samples. Finally in Section V, simulation results 

are reported comparing the instrument used by Heckman in his prob'lt model and 

the one implied by our logistic model. Also, we provide in this section an 

application drawn from a study of the employment experiences of ex-offenders 

after 'their release from prison (Rossi, Berk and Lenihan, 1980). 

r. ~l..;...v a;;.;r~i-=a-=.te=--=D;..:.i.::.s.=.t r:...:i~b:..=u.::.t 1..:..;' o::.:..n:......:....F=..:un..:.;:c:..:t:..:...i:::.,:o n:.:.=,.s 

To begin, consider the distribution function for two random variables 

(w"w2) of the form: 

1 
F (wl ' w2) = --.-:'t-, --.-:'t-

l+e +e 2 
(3) 
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The random variables wl and w2 are continuou~ and can assume any value 

on the real line. The marginal distribution functions are 

(4) 

and 

(5) 

which are themselves logistic. 

The marginal densities are 

(6 ) 

and joint density is 

_ o2F 2e-(t1+t2) 
h(t1, t 2) - ot

1
ot

2 
= ( -t -t ~3 

l+e l+e 2) 

(7) 

4 

We call this distribution Gumbel's type 1. It may be noted in passing that Nerlove and 

Press (1973) used this form of the multivariate logistic distribution. 

Gumbel has derived the conditional mean and variance from the conditional 

moment generating function Gw (tl /w2). 
1 

From the conditional density function 

-W ( -W)2 
2e 1 1 + e 2 

= ( -w -w ~\3 ' 
1 + e . 1 + e 2) 

(8) 
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the conditional moment generating function is derived as 

t 
= F 2 (w2) , r (2' + t,) r ( 1 - t l ). (9) 

Using this conditional generating function Gumbel further derives the conditional 

lIE an 
(10) 

and the conditional variance 

(11) 

The distribution function considered above is one amongst several that yield 

logistic marginals. We now consider Gumbel's type II which can be written as 

Note that as before 

F(wl , 00) = F(wl ) = -w 
1 + e 1 

and 

F(oo, w2) = F(w2) = -w 
1 + e 2 

which are by assumption logistic marginals. This distribution function is 

more flexible than the type I. In the particular case where a = 0, 

F(wl , w2) = F(wl )F(w2) which indicates independence. 
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The joint density function for Gumbel's type II is 

Ord (1972) reports that the conditional moment generating function is 

where S = 2aF2(w2) - a. The conditional mean 

(15 ) 

and the conditional variance 

2 ( I ) 7T
2 

[( 2 F ( ) _ 1)] 2 . a wl w2 ="3 - a 2 w2 (16 ) 

It should be remembered that for Gumbel type II distribution functions 

the coefficient of correlation between wl and w2 is P = 3a/7T2. Since 

1 ~ a ~ 1, Ipi ~ .30396. For the Nerlove-Press or Gumbel type I bi-

variate distribution, p = 1/2. We shall consider the implications of such 

restrictions in the context of our estimation procedures. 

II. Consistent Estimators for Gumbel Type I 

Bivariate Error Distributions 

Arguing exactly as Heckman does, we can write 

E(Yl Ixl ; sample selection rule) = E(Yl Ixl ; Y2 > 0) 

= E(Yl Ixl ; u2 > -x2S2) 

----~~~~ ~---~--- ~ 

7 

= xl S1 + E(ul IU 2 > -x2S2)· (17) 

Except in the case where ul and u2 are independen~ the conditional expec

tation E(ullu2 > -x2S2) will not be zero. 

Assume at this stage that ul = klwl and u2 = k2w2 where wl and w2 
have a Gumbel type I bivariate distribution function. In the special case, 

any ui = wi' ki = 1. The reason why we introduce the scale factors kl 

and k2 would become apparent below. For convenience assume k2 = 1 in 

thi:s case so that u2 = w
2

• 

Since the conditional mean of wl given w2 is E(wl !w2
) = 1 + ~n F2(w2) 

we can WY'i te 

(18 ) 

where € has a univariate logistic distribution with mean 0 and variance 

(~: - 1)-
Now 

E(Ul IU2 > -x2S2) = E(klwl IW2 > - x2S2) 

= k1E(w1 IW2 > -x2S2)· 



Define -x2S2 = z. Then 

Now 

E(u1 IU2 > -x2S2) = k1[E(w1 IW2 > z)J. 

E("'1 1"'2 > zl = E ( + ~" 1 + ~ -"'2 + E "'2 > j 
= 1 + E 0" 1 + ~ -"'2 "'2 > z) . 

Consider in particular 

Define 

1 = Y -w2 1 + e 

8 

(20) 

(21 ) 

then as w2 varies from z to 00, Y varies from 1 to 1. Also 
1 + e- z 

-w 
e 2 

-W)2 dw2· 
+ e 2 

Therefore (21) above can be written as 

[j R.n y dyl 
J 

[1 ~ 2 ( z d · [Y ~" Y 1 1 
')+e-z = 

1 - F2(z) 

l+e-z 

= -1 - ~Z R.n 1 
e 1 + e-z 

We can therefore write 

E(U, /u2 > z) = k[E(w, /w2 > z)] 

= k1 [1 + E (~" -1-+-'-e --w-
2 

= kl [1 -, --L R.n ' ] 
e-2: 1 + e-z 

= -k .-L R.n ' 
1 e -z , + e -z • 

Thus 

. f1 Y d(~" Yll 
, J 

'+e-z 

E(y, Ix,; SSR) = X1S1 - k, (eZ R.n ' ). 
1 + e- z 

9 

(22 ) 

(23 ) 

(24) 

(25 ) 
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If we define as the threshold 1 P which is the probability that an Z = 
1 + e- z 

individual is censored 

1 + e- z = 1 or -z 1 - P and eZ = P 
P e = P 1 - P 

which is the odds ratio. 

We can therefore write 

P E{yllxl , SSR) = xlSl - 1 _ P in{P)okl · (26 ) 

Consequently: one shoul din practi ce estimate a 1 ogi sti c regressi on for 

Equation (2) to find the value of P for each individual (case). Then for 

the subsample of Nl individuals, one should construct the variable 

( 
P. ) A _.:....1 _ in{P.) 

1 - ~. 1 
1 

= cpo 
1 

(say) and include it as an additional explanatory variable. The regression 

coefficient of CPi is our estimate of kl . As we have already seen, the 
2 

conditional variance of wllw2 is ki{IT3 - 1) so that one has homoscedastic 

errors. Note however that we have more than one estimate of k
l

, and the uniqut::!1ess 

0'( the estimated value,; may be regarded as test of the validity of the model. 

Strictly speaking, since the substantive equatiop's error (e) has ~ 

logistic distribution, one should not apply t or F tests. However, since 

the logistic (univariate) and normal distributions are very close to one 

another, the usual tests can be applied without serious inaccuracy. 

I 
I 
j 

~ 

I 
II 
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It is useful to recall here that in the absence of a scale factor kl , 
2 

the variance of e has a specific value equal to IT3 - 1. However, intro-

ducing the scale factor kl permits any value of error variance and in this 

sense destandardizes the distribution. Note also that since kl serves only 

to change the value of O'~, homoscedasticity is strictly maintained. 

Unfortunately, the Gumbel type I bivariate distribution presupposes a 

correlation between ul and u2 equal to 1/2, clearly a limitation of 

thi s approach. 1 

III. Consistent Estimators for Gumbel Type II 

Bivariate Error Distributions 

As in the earlier section we assumed uli = klwli and u2i = w2i 
and that marginal distribution functions for wl and w2 were logistic. 

Now however, the bivariate distribution function is represented by (12). 

As before 

1 It may be instructive . . . 
tote that Heckman computes his additional regressors Ai (wh1ch 1S 
tRe ~azard rate) from his Probit equation. He states, "In samples in which 
selectivity problem is uni~!ortant (i.e., sample selection rule ensur~s.that 
all potential population observations are samples), Ai becomes neg11g1bly 
small so that least squares estimates of the coefficients of l(a) have optimal 
properties ll (p. 479). Yet his corrected Equation (13a) is 

0'12 

Clearly sample selectivity cannot be tested within this model. When Ai 
goes to zero the model is not of full rank and is no lonoer estimable. 
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Now however 

E(Yl Ixl ; SSR) = X1Sl + E(Ul IU2 > -X2S2) 

= X1Sl + klE(Wl IW2 > Z). 

by vi rtue of (15) and E6.d = 0 by assumption. 

We can write 

In particular 

E(w1 IW2 > z) =~ a(2F2(w2) - 1)f(w2) dwz] 
[1 - F2(Z)] 

00 

12 

(27 ) 

(28 ) 

-W -w 
Define e = 1 + e 2 so that d8 = -e 2 dw2• (29) can then be expressed as 

13 

1 r 

f ( 1) [ 1 ]1 - 3" de = =z 
-z e 28 l+e-z 

l+e 

_ 1 [ 1] - I 1 - (1 + e-z)2 . 

1 If we replace by P we can express (30) as 
1 + e-z 

(31 ) 

Going back to (28) and replacing F2(z) in the denominator by P we obtain 

I - 1 (1 - p2) E(w, w2 > z) - 2aoI (l _ P) - a 

(ruling aside the case P = 1 

We therefore can express 

= a(l + P} - a 

= aP 

where there is complete censoring). 

and the underlying stochastic formulation should be Yl = xlSl + klaP + n 

where n is kl times ~. 

What we require then is an estimate of ~ from a logistic regression 

model for the fun sample to insert as an additional. regressor in 

(32 ) 

Equation (1). The linear probability model will typically be a good approx-

imation for the logistic regt·ession. In this context, the coefficient of ~ in the 

reformulated model (32) has a simple interpretation. It is the rate at which Yli 
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increases as the probability that an individual i would not cr.oss the thresh

old increases. 2 

For Gumbe 1 type II di stri buti ons, the coeffi ci ent of corre 1 a ti on between 

u1 and u2 is within ~.304. Yet, this restriction may not be very serious 

in practice. Indeed, as reported in the next section, simulation experiments 

indicate that the variables cJ>i (for Gumbel type I), ~i (for type II) and 

Heckman's A; are highly correlated (r > .9). It does not therefot·'e appear 

to make·much difference whichever instrument one uses. 

A far more serious problem for Gumbel type II error distribution is 

that unlike in type I case, we have heteroscedasticity. However the var

iance of ni is known from (16) and 

2The "hazard rate" which enters Heckman's model as an additional regressor 
is 1~~1~) where $ is the density and 1-~ is the complement of the cumu
lative probability for a normal distribution. It is interesting to compute this 
"hazard l~ate" using a univariate logistic 
d~nsity and cumulative are denoted by f 

instead of the normal. If logistic 
and F, the "misconstrued" hazard rate 

. ~ h 1S l=FTlT were 

Therefore 

• 
F(i) = _....:....1_ -x. 

+ e '1 

and 

- F(i) = 

-x . 
e 1 

f (i) = -=---.."... -x. 2 
(1 + e 1) 

-x. 
e 1 

-x. 
+ e 1 

f(i) _ 
1 - F(i) - _....:...-_·x. 

1 + e 1 

Note that the hazard rate coincides with F(i) in the case of the logistic 
distribution. Also in this formulation F(i) is estimated by Pi in our 
model and is used as a regressor. Essentially, we are using the Heckman cor
rection for a logistic distribution by inserting our instrument. 

15 

Once a is fixed at aO the coefficient of Pi in (32) gives k1. One 

can therefore use this k1 and aO to find relevant transformations for GLS. 

It is also pos~ib1e to search for the best a within (~1.0) in terms 

of the mininun SSE. Again, uniqueness of estimated k1 at the final itera

tion could be a test of the validity of Bivariat~ Log1stic specification. 

IV. Consistency and Asymptotic Norma1i~ 

of the Estimators 

The final version of the model implied by correction based on Gumbel's 

type II distribution of the random disturbances was reported as Equation (32) 

above. It should be noted that for any individual i, the probability Pi 

that the individual is selected is unknown. What we have to use instead is 
"-the estimate Pi computed from the logistic regression of the selection 

equation. 

Recall that Equation (2) was estimated to yield 

Cl eal~ly, "-Pj obtained as 

1 .. 



is stochastic. Use of P. as an explanatory variable in (32) therefore 
J 

creates a problem. We can demonstrate, however, that least-squares esti

mators of the parameters of (32) are consistent. 

16 

1'\ 

We know from standard results that S2 as a maximum-likelihood 'estimator 

of S2 is consistent. This in turn implies that 

tn [ P j ] 
1 - P j 

P. 
is a consistent estimator of tn(~). Therefore, by Slutsky's theorem, 
1'\ J 
Pj is a consistent estimation of Pj . In other words, if we express 
1'\ 

p. = P. +~. where ~. is a random component, as we increase the sample 
J J J J 

size ~j goes to 0 for all j. It should be remembered that since both 

Pj and Pj lie between (0,1) ~j will lie between (+.1) even in small 

samples. 

Let us define z = (xl P) and 0 = (S~). We can write our model as 

Yl = zo + 1', where l' = k~ + n. 
(k above is kla.) 
The OLS estimator 8 = 0 + (z/z)-lz'T.. We now show that ptim ~ = 0, 

T-t<» 
where T is the sample size. 

The argument for consistency of the OLS estimator in this equation 

can first be stated intuitively. We noted at the beginning of the paper 

that the sample selection bias arises because the disturbance terms in the 

l· 
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two equations 'of our model are interdependent. However, as we have demon

strated in detail in earlier sections, the residual error term n in 

Equation (32) js obtained after the conditional mean of ul is explicitly taken 

into account. It can be argued, therefore, that this random term n 

should be statistically independent of u2 or any of its components. 
1'\ 

Let us now take a closer look at the random error ~. = p. - P, .. , , 
We can write the logistic regression of the selection equation as 

= tn ( P ) 
1 - P 

where 8 2 is the random disturbance of that model. Now define 

x (x'x )-lx' = W' which is an N x N matrix of non-stochastic elements 222 2 
(N is the number of observations in the full sample). More explicitly, 

for any i 

tn [ ~ i 1'\ 1 = tn [ 1 
1 - p. , 

where wi is the ith row of W'. 

We can write 

Pi 1 - p. , 

1'\ 

-1 _:.;...i 1'-1 • [1 : \-] 
• w . e:2 

e ' 

or 

Therefore 

_._ ..to 



and 
w!g 

P.(l - P.}{e ,2 - 1) , , 

As we argued before, ni and ~i 

Now we specificaily consider 

are statistically independent. 

(z I z) -1 
p.tim I 

T-+<xl (ZT'T) and p.tim 
T-+<xl 

Z'Z = X'p + x'l/l 1 1 1 

pip + 2PI~ + ~'~ 

therefore 

Xl Xl x'P X'~ _1_+ _1_ -T- T T 
p.tim (z~ z) = p.tim 

T-+<xl T-+<xl piX ~'x pip ~ fi __ 1 + __ 1 
I+ T + T T T 

This converges to finite moment matrix 

In other words, 

M = p.tim 
T-+<xl piX 

T 

x'P 1 
I 

pip + ~'I/J 
T 

and is finite. Now consider that 

= pJl,im 
T -+<xl . ( P+~ J' (n + kI/J) 

T 

18 

(33) 

11 

I 
I 

I 
.1 

= pJl.im 

, I 

~ln + x .P 
T T 

kP'\jJ + k\jJ'\jJ + pin + \jJ'n 
T 

. Since xl and P are non-random and ~ can be regarded as satisti

cally independent of n, the probability limit above is zero. 

In other words, 

pJl.im fz ' zJ -1 pJl.im fZ'TJ = o. 
T -+<xl . T T -+<xl T 

19 

That means p.tim 5 = 0 + pJl.im(z'z)-lz'T = 0 and consistency of least-squares T..,.oo T~ 

estimators of coefficients in Equation (32) is established. 

Next we demonstrate that estimated parameters from the augmented model 

represented by Equation (32) above have asymptotically normal distributions. 

We noted in the earlier section that correction for selection bias based on 

Gumbel II distribution results in heteroscedasticity of the error term. If 

" we consider the asymptotic version, P can be replaced by P and (32) can 

be written as Yl = x,~Sl + kPl + n. However, E(nn') = E is a diagonal 

matrix. A typical diagonal element of E is 

which is strictly greater than zero, but is finite because k and a are 

both finite. Now consider the transformation 0 such that DO' = E- l . 

Again 0 is a diagonal matrix where 

which is finite. 
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Consider the transformed system DYl = DZo + Dn which can be re

defined as Yf = z*o + n*. Note that E{n*n*') = I and our GLS estimator 

8 = {z*'z*)-lz*'Yi = 0 + {z*'z*)-lz*'n* = 0 + B'n*, where 

B' = (z*'z*)-l z*'. 

. -
If we consider any typical estimator Os we obtain 

_ Nl 

Os = ° + r b ·n~ 
S j=l SJ J 

-where b . are elements of B. We can prove that Os 
SJ 

normal distribution by proving that 

has an asymptotic normal distribution. 

has an asymptotic 

First we state the classical limit theorem and Lindeberg condition, 

which is sufficient for the theorem to be valid. 

The Classical Limit Theorem 

(34) 

Let hl , h2' ... , hr' ... be a sequence of mutually independent random 

variables each having finite expectation E{Rj ) = aj and variance 
2 _ 2 E{h j - E{hj )) - dj • Define 

Then the sum 

n 
V

2 = r d~ 
n j=l J 

I 
i 

n 
S = __ 1 r (h. - a.) 
n Vn j=l J J 

21 

has a distribution which converges to the normal distribution if the Lindberg 

condition is satisfied. 

Gnedenko (1967:365) has shown that the Lindeberg condition essentially 
h. - a. 

t · 1 t th t f . (' - 1 2 ) J J h 1 d b 11 s lPU a es a or any J J - , , •.• , n, V s ou e sma . 
n 

. We now prove a lemma which will be used to establish asymptotic normality 

of the GLS estimators of the parameters in (32). 

Lemma. The sum 

where 

n 
Sn = r 

j=l 
e . , 
J 

C.n~ e. = _----:J~J __ 

J [n 2]1/2 r C. 
j=l J 

has an asymptotically normal distribution provided that Cj (j = 1,2, ... , n) 

is uniformly bounded. 

Proof. The proof of the lemma is in two stages. 

(i) First we prove that the lemma is a particular case of the classical 

1 imi t theorem. 

(ii) Second, we show that the Lindeberg condition is almost surely 

satisfied. 

(i) Considering the fact that the Cj are non-stochastic 



and 

Therefore 

n 
There.fore, Sn = L e. 

j=l J 
where On = 1. 

var[ E e.] 
j=l J 

n 
I c~ 
1 J 

= -- = 1. 

I c~ 
1 J 

is a special case of the classical limit theorem 

(ii) The Lindeberg condition in this situation requires that e
j 

be 

small for j = 1, 2, ... , n. This requirement may be seen as e
j 

< y, 

where y is an arbitrarily small number. Therefore the probability that 

the Lindeberg condition holds is equivalent to the probability that 

[ej < y] for all j. That is, 

- y [n 2]1/2l 
prob _nj < Cj j~l Cj J' 
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Now since Cj are uniformly bounded, the right-hand expression inside the 

brackets can be made arbitrarily large by increasing n. Consequently,this 

probability can be made as close to 1 as desired. We can therefore state 

that the Lindeberg condition is almost surely satisfied. This completes the 

proof of the lemma. 

We have seen that 

S = n 

n 
I C·n~ 

'=1 J J 
n 2 1/2 
L Ct t=l 

has an asymptotic normal distribution. Therefore 

where 

n 
LS = I C·n~, 

n j=l J J 

[ 
n 2) 1/2 

L = I ctJ ' 
t=l 

------~-~- -
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also has an asymptotic normal distribution. Now redefine Cj = bsj ' Note 

'that bsj is an element of the matrix B = (z*'z*)-lz*' and is bounded 

therefore by virtue of the lemma above. 
_ n 
<5 = I b ·n~ 
s j=l SJ J 

has an asymptotically normal distribution. 

V. Some Simulation Results 

for Different Censoring Adjustments 

While the formal properties of our two logit-based estimators differ 

from one another and from Heckman's estimator, one might nevertheless wonder 

if in practice a choice among these three is likely to affect one's r'esults. 

~n order to explore this question we undertook the following simulation. 
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One thousand observations were drawn at random from a normal distri-

bution with a mean of zero and a variance of one. (The sample was checked 

to confirm that chance factors had not produced an anomalous realization.) 

The data were then used to construct for each observation the probability 

value, our adjusted log odds and Heckman's hazard rate. With these in hand 

we calculated the linear correlation among the three adjustment variables. 

The probability value correlated .959 with the hazard rate and -.978 

with the adjusted log odds. The hazard rate and the adjusted log odds 

correlated .906. Clearly, these correlations suggest that the three ad

justment variables will likely yield very similar results when the under

lying distribution of the errors is normal. Note also that the linear 

correlations are high despite the fact thnt th'ejustifications for the use 

of the probability value and the adjusted log odds rest on the logistic and 

not the normal form. Put in stronger terms, even if one mistakenly applies 

one of our logistic adjustments in situations where the underlying error 

distribution is bivariate normal ~ one should not be seriously misled. r~oreover, 

this implies that should software not be readily available to apply Heckman's 

adjustment, one may rely on logistic estimation procedures that are found in 

such common statistical packages as SASe 

VI. An Illustration 

It is widely recognized that individuals released from American prisons 

face a host of obstacles in their efforts to rejoin society. While these 

obstacles can take a number of forms, financial hardship is among the most 

important. 

In this context, the Manpower Development and Training Act of 1962 

(and subsequent amendments) gave to the Department of Labor a mandate to 

~--~--~ 
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programs responding tc the economic needs of ex-prisoners. The Department 

of Labor initially launched projects to provide manpower training within 

prisons and after release. Unfortunately, evaluation studies of these ef

forts found little eviden~e of success. The Department of Labor then turned 

to short-term income-support strategiE'ls for the period immediately after re

lease from prison. These exper;mentai efforts rested broadly on two kinds 

of interventions: special job placement and counselling for ex-prisoners, 

and the provision of unemplo~ment insurance eligibility immediately upon 
. 3 

release (Lenihan, 1975; Mallar and :horntoh, 1978; Rossi, Berk and Lenihan, 

1980). In the first instance, special palcement and counseling services 

were thought to speed an ex-offender's re-entry into the labor force and 

through the income derived and the reduction in leisure time, decrease par

ticipation in criminal activities. In the second instance, modest transfer 

payments of about $65 a week for periods of up to 26 weeks (for those who 

could not find jobs) were thought to reduce the need to resort to crime as 

an Illternati ve source of income and increase the opportunity cos ts of inca r

ceration for any new crimes. Hence, recidivism would decline. 4 

After some initial pilot testing, the two interventions were field 

tested through a randomized experiment conducted in Baltimore. Approximately 

400 men about to be released from state prisons were randomly assigned to 

f" 3Given thee usual eligibility.rule~ based on employment for the preceding 
1 ve quarte~s "or so), most ex-prl soners were automatica lly excl uded' from un

employ~en~ 1ns1ranc~ payments even if they had been working immediatelv prior 
to the1r 1ncarceratlon. ' . oj, ' 

. 4ActuallY, the theore~ical mechanisms beneath the interventions (Which 
lnc:~de more than those br1efly described in the text) were not fully 'clear 
a; ihrs~ and hav~ onl~ been recently explicitly articulated. Also, the nature 
oCR ~ 1Bntervent10ns.ls somewhat more complicated than we have indicated here 

OSSl, erk and Lenlhan, 1980). 
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either treatment, ?oth treatments, or neither treatment (thus, three experi

mental groups and one control group in a fully crossed design). Ex-prisoners 

were then followed for up to two years in order to guage immediate and longer

term effects. The placement and counselling intervention apparently had no 

impact on re-arrests, but the benefits-eligibility intervention reduced re

arrests for property crimes about 8% (the difference between the two groups 

eligible fot' payments and the two groups that were not eligible). While 

these findings were statistically signifi:cant and encouraging, they '.',ere 

hardly definitive (Lenihan, ~975; Mallar and Thornton, 1978). 

In order to better document the apparent success of the LI~E experiment 

and explore the mechanisms by which the reduction in re-arl"ests occurred, a 

second experiment was launched. Known as the TARP experiment (Transitional 

Aid Research Project), approximately 1000 men and women in each of the states 

of Texas and Geogria who were about to be released from state prisons were 

randomly assigned to treatment and control groups much like those used in 

the LIFE experiment. After a 12-month fo'Jlowup, there was no evidence that 

membership in any of the treatment groups by itself reduced the re-arrest 

rate. However, when the financial treatments were embedded in a set of 

structural equations depicting a range of related factors in the re-arrest 

process, substantial effects were found. In brief, unemployment benefits 

provided a work disincentive that markedly reduced labor force participa

tion. Unemployment, in turn, increased the re-arrest rate for both prop~rty 

and non-property crimes. However, holding the impact of unemployment con

stant, every $100 of TARP payments reduced the number of re-arrests for 

property and non-property crimes about .02. Since payments to ex-prisoners 
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often exceeded $1500, reductions of .30 arrests were common5 (see Rossi, Berk 

and Lenihan, 1980, for a full discussion of the findings). In short, the 

npparent null findings within an analysis of variance framework occurred 

because the indirect, "detrimental" effect of payments (through unemployment) 

obscured the direct IIbeneficial ll effect of payments.6 

In addition to the concern with re-arrests and employment, there was 

substantial interest in the impact of the TARP payments on "qual.ityll of jobs 

eventually obtained by ex-prisoners., Presumably, TARP payments would subsi

dize a more thorough job search, perhaps leading to jobs with higher. wages 

(among other things). However, in order to estimate equations for the wages 

of TARP participants (experimentals and controls), the possible effects of 

sample selection bias had to be addressed. We will use one of the analyses 

undertaken for Texas ex-prisoners to illustrate the use of our logit-based 

adjustment for sample selection bias. 

In Table 1 we show the sample selection equation and results of logit 

estimation procedures in which the endogenous variable represents (in dummy 

form) whether any wages were "observed" during the first 12 months after 

release from prison. Evidence of wages came from Social Security files and 

from interviews with the ex-prisoners themselves 3 months, 6 months and 12 

months after release. However, here we will rely on the former since, for 

a variety of reasons, the Social Security earnings were more accurate. The 

exogenous variables in the table are pretty much self~explanatory. The 

5Since the mean number of arrests was well under 1, the reduction was 
clearly nontrivial. 

6The job-counseling treatment had no effects either in the analysis of 
variance or structural-equation framework. 
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TABLE 1 

Sample Selection Equation Using Logit Fonnu1ation 

Variable 

Constant 
Age 21-40 (dummy) -- xl 
Handicapped (dummy) -- x2 
Employed at time of arrest (dummy)a 

-- x3 
Number of previous arrests 

(i ntegers) -- x4 
Released on parole (dummy) x5 
Job arranged before release 

(4-point scale) -- x6 
Male (dummy) -- x7 
Bexar County (dummy)b x8 
Dallas County (dummy) -- x9 
Harris County (dummy) -- x10 
Tarrant County (dummy) -- x1l 
Black (dummy) -- x12 
Chicano (dummy) -- x13 
Vocational training in prison 

(dummy) -- x14 
Education (years) -- x15 
Driver's license (dummy) -- x16 
26 weeks/100% tax (dummy)c -- x17 
13 weeks/100% tax (dummy) -- x18 
i3 weeks/25% tax (dummy) -- x19 

F = 5.22 N = 975 

Coefficient t-Va1ue 

-1.68 
0.30 

-0.19 

0.17 

-0.02 
0.42 

0.21 
1.41 

-0.33 
0.19 
0.44 
0.44 

-0.59 
-0.44 

0.15 
0.05 
0.06 

-0.57 
-0.11 
-0.49 

-2.78 
1.58 

-1. 14 

1. 18 

-3.81 
2.75 

2.54 
4.19 

-1.08 
0.89 
2.21 
1.53 

-3.66 
-1.89 

0.87 
1.47 
0.43 

-2.78 
-0.58 
-2.52 

p < .0001 

aBefore the incarceration preceding the TARP study. 

bcounty to whi ch the i ndi vi dua 1 was \"e 1 eased. Rura 1 counti es 
are the residual category. 

cThe tax refers to the t"ate by which each dollar of payments 
was reduced for each dollar earned. 

" 
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biographical variables reflect human capital attributes (e.g., being of prime 

working-force age, having physical handicaps, years of education), and attri

butes on which employers might "discriminate" (e.g., sex, race, criminal 

record). In addition, we included a dummy variable indicating whether an 

individual was released on parole (seeking work is often a parole condition), 

a scale indicating how likely prior to release a genuine job placement had 

been arranged, four dummY variables reflecting major urban counties in Texas 

(to capture part of the demand side), and three dummy variables for the three 

treatment groups.7 

From Table 1, one can see that a number of exogenous variables predict 

the observation of wages at better than conventional chance levels. For one

tail tests (at the .05 level) we find that blacks, Chicanos, and individuals 

with a larger number of previous arrests were less likely to find employment. 

Male ex-prisoners, individuals on parole, individuals who are more likely to 

have a job arranged, residents in Harris County (i.e., Houston) were more 

likely to find employment. Finally, members of two of the three treatment 

groups (compared to th~ control groups not eligible for benefits) were less 

likely to find emp10yment.8 In short, there are no particular anomalies with 

perhaps the exception of null findings for the 13 week/100% tax treatment 

group (see Rossi, Berk and Lenihan, 1980, for a further discussion). 

7The three groups varied in the maximum number of weeks of possible 
support and the rate at which earned dollars were "taxed," Thus, the third 
treatment group, for example, was eligible for 13 weeks of support with 
each earned dollar reducing each benefits dollar 25%. 

8It was clear from the interviews that few individuals understood the 
implications of the tax rate. Thus, there may have been few perceived dif
ferences between the income treatments. In this context the t-value for the 
pooled treatmt~nt effect is well over 1.64. Finally, the job-counselling 
treatment had no impact and is therefore inc1 uded among' the control groups. 
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Table 2 shows the wage equation and the results from efforts to estimate 

wages for TARP ex-prisoners. These equations rest on 372 of the original 975 

cases so that the potential for substantial selection bias exists. The spe

cification for the wage equations are almost identical to the specification 

for the selection equation. Sex was dropped since only about 10% of the cases 

were female to begin with, and after the selection process, even less variance 

remained. Parole status was dropped because there was little reason to be

lieve that being on parole had much impact on wages per set Finally, the 

variable measuring whether an individual had a job arranged prior to release 

was deleted since that too seemed causally irrelevant to wages. 

The first two columns of coefficients show the metric regression coef

ficients and t-values for the unadjusted equation. Using one-tail tests and 

the .05 level for the directional hypotheses, individuals of prime working age 

and with job experience prior to their recent incarceration earned higher 

wages: about $24 more per week and $16 more per week respectively. Ex-prisoners 

who returned to Harris County earned about $35 more a week. FinaliY, members 

in the first and third treatment groups earned approximately $27 more per week 

and $37 more per week respectively. 

From the selection equation we estimated the predicted probability of 

"observing" wages and constructed both of our adjustment variables: the pre

dicted probability and the adjusted log odds. They correlated .99 so that for 

all practical purposes either could be used. In the second two columns of 

Table 2 we show the results for the probability adjustment. To begin, the 

adjustment variable is statistically significant and clearly has a nontrivial 

impact. Every change of .10 in the probability of observing wages increases 

wages by over $8.00. Thus, selection processes that affect whether a job is 

obtained also affect weekly wages. 
, 

r:. 

TABLE 2 

Wage Equation Comparing Adjusted and Unadjusted Results 

(Wages in Dollars per Week) 

Unadjusted Adjusted 

Variable Coefficient t-Value Coefficient t-Value 

Constant 41.77 1.96 17.61 0.75 
Probability adjustment--xl -- -- 83.83 2.49 
Age 21-40 (dummy)--x2 24.09 2.39 18.98 1.86 
Handicapped (dummY)--x3 15.20 1. 70 17.87 1.99 
Employed at time of arrest 

(dullll1y)--x4 15.58 1.95 10.50 1.38 
Bexar County (dummy)--x5 - 1.70 -0.09 5.70 0.31 
Dallas County (dummy)--x6 - 0.06 -0.01 0.01 0.00 
Harris County (dummY)--x7 35.12 3.39 27.34 2.55 
Tarrant County (dummy)--x8 - 4.85 -0.33 -15.17 -1 .01 
Black (dummy)--x9 -11. 44 -1.43 0.37 0.04 
Chicano (dummy)--xlO -14.99 -1 .21 - 5.90 -0.45 
Vocational training in prison 

(durrmy)--xll -16.33 -1.85 -21.04 -2.35 
Education (years)--x12 2.03 1.15 0.73 0.40 
Driver's licence· (dummy)--x13 2.53 0.32 0.96 0.12 
26 weeks/100% tax (dUllll1y)--x14 26.55 2.40 35.79 3.09 
13 weeks/100% tax (dummy)--X15 6.20 0.66 7.40 0.78 
13 weeks/25% tax (dummy)--x16 37.32 3.63 44.27 4.18 

R2 = • 16 F = 4.12 R2 = .17 F = 4.30 
N = 372 P < .001 N = 372 P < .0001 
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Again using one-tailed tests, it is apparent that in broad terms, the 

substantive story in the adjusted equation is much like the substantive story 

in the unadjusted equation. Yet, if for policy purposes one wanted to take 

the point estimates of the regression coefficients seriously, some nontrivial 

alterations sur-face. In particular, the impact of membership in the treatment 

groups has been enhanced. Members of the first treatment group are earning 

about $36.00 .per week more (compared to $27.00 per week more) and members of 

the third treatment group earn about $44.00 per week more (compared to $37.00 

per week more). In the first instance, the change represents a 33% increase, 

and in the second instance, the change represents a 19% increase. Moreover, 

if such differences were projected over the course of a year or more, sub

stantial sums are involved. 

Using two-tailed tests, it is also apparent that the adjustment equation 

yields two anomalous findings. Having a physical handicap increases earnings 

nearly $18.00 a week and vocational training in prison decreases earnings by 

about $21.00 a week. While one could certainly construct one or more post 

hoc explanations for these effects, the point here is that the sample selec

tion adjustment does make a difference. Perhaps most important, it suggests 

the kinds of vocational training available in prison has no impact on whether 

a job is obtained, but may prepare ex-prisoners for lower paying jobs. 

Finally, the sample selection adjustment definitively puts to rest the 

suggestion in the unadjusted equation that blacks and Chicanos receive lower 

wages. The point estimates from the unadjusted equation indicate that minor

ities receive about $15 a week less with t-value in excess of -1.20. Given 

strong priors one might be tempted to make something of such deficits. How

ever, once the rather strong negative selection affects of minority status on 

-------- ~-------~-----
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obtaining a job (see Table 1) are taken into account, the wage differences 

evaporate. That is, the wage disparities are really attributable to the ini

tial likelihood of obtaining employment. 

The results reported in Tables 1 and 2 represent but a sample of many 

analyses we have recently undertaken in which our logit-based sample-selection 

adjustments have been applied. From this experience, several broader points 

of possible importance to practitioners may be of interest. 

First, the sample selection adjustments have rarely made an important 

difference in any substantive conclusions. This is not to argue that adjust

ments should not be used, but to argue that perhaps previous work in which 

sample-selection biases have been ignored may not be terribly misleading. 

Second, the major computational costs for our estimators stem from the 

logit procedures employed in the selection equation. With this in mind, we 

have frequently reconstructed our adjustment variables from the results of 

linear probability models estimated with ordinary least squares. We have yet 

to find important disparities in the adjusted equations as a consequence. 

For the analysis reported here, regression coefficients rarely differed by 

more than one dollar from the adjusted results reported in Table 2 and the 

t-values typically varied in the first decimal place; clearly nothing of any 

importance changed. Thus, when one is working with large samples and situ

ations in which the split on the dummy selection variable is no worse than 

about 90% to 10%, the linear probability model will probably suffice. It 

is at least clear from other work (Goodman, 1975) that the results from the 

logit and linear probability approaches are virtually the same under these 

circumstances. 

Third, if a relatively large proportion of cases fail to exceed the 

selection boundary, it is critical to closely examine the qualities of the 

" 
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data that remain. One has in essence made the sample more homogeneous on a 

number of exogenous variables with the consequence that some exogenous vari

ables may contain little variance and some exogenous variables may be highly 

coll i near. 

Finally, one has to be alert to the possibility that the adjustment 

variable will produce near singularity in the variance-covariance data matrix 

of the selected subset. This can result when most cases exceed the boundary 

and when the selection equation and the substantive equations are similarly 

specified, and it can also occur when one or more especially dominant vari

ables in the selection equation also appear in the substantive equation. 
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