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ABSTRACT

Notwithstandii:g Tobin's famous paper in 1958, the problem of censored
or truncated samples was largeiy ignored in standard econometric research
during the 1960's. In the past decade, however, Amemiya, Heckman and others
have studied in detail the properties of OLS estimators obtained from the
non-randomly selected subsample. This paper extends their analyses to the
case where the random disturbances have a bijvariate logistic distribution

instead of bivariate normal..
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CORRECTING SAMPLE SELECTION BIAS
FOR BIVARIATE LOGISTIC DISTRIBUTION OF DISTURBANCES

Despite Tobin's famous paper on limited dependent variables written in
1958, the 1960's found very few attempts in standard econometric literature
to address the methodological questions associated with censoring or trunca-
tion. In the past decade, however, Amemiya (1973), Heckman (1976, 1979),
Olsen (1980) and others have considered in depth the inconsistency associated
with OLS estimators obtained from a selective sampie and have suggested alter-
native, consistent estimation procedures. This paper is an extension of
Heckman's perspective to the case in which the joint distribution between
random disturbances in the specified (substantive) equation and random dis-
turbances in the sample selection equation is bivariate logistic (rather than
bivariate normal). Indeed Heckman (1978) briefly considered the possibility
of using a multivariate logistic distribution in place of the usual multi-
variate normal (1978, p. 953), but recognized that a full development of the
logistic approach would require additional work.

Recall that sample selection bias problem begins with the following sub-

stantively derived equation:
Y1 = Xqibp F Uy . (1)

where Y1i is the observation on the dependent variable for individual 1.
X14 is the vector of observations on the explanatory variables for the indi-
vidual and Uy 4 is a random disturbance. A typical and perhaps the most
frequently cited example is one’ in which Y1 is the observed market wage far
an individual and x; 1s the vector of relevant characteristics like education,

experience, and the like,
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Consider now a second sample-selection equation

where ij is the dependent variable observed for individual j, x2j is
the vector of explanatory variables, and u2j is a random disturbance.

The critical point is that for some individual s we shall have observations
Y1s° ¥s only if Yog > 0 or otherwise exceeds some arbitrary -threshold.

An individual's market wage, for instance, is observable only when that
individual obtains employment. For persons whose reseryation wage exceeds
the market wage, no wage data are available. Similarly in Tobin's framework,
an individual would be recorded as expressing positive demand for a consumer
durable (say, an automobile) only when his/her utility maximization results
in a solution that assigns a value in excess of zero to the consumption level
of that good.

Given a sample of N individuals initially, it may be necessary to ex-
clude all but N1 cases for whom one has observations on Y14 and X1
These are the instances of which x21.B2 + Upy > 0. Consequently, Equation (2)
in our model represents a sample selection "rule." With respect to OLS esti-
mators for parameters of Equation (1) for the subsample of Ny individuals,
Heckman points out: "The bjas that arises from using least squares to fit
models for limited dependent variables or models with censoring or truncation
arises solely because the conditional mean of Uy 4 is not included as a re-
gressor" (1979:478). The bias thus results from the omitted variable type of
specification error.

In this paper we will apply the basic Heckman correction procedure

assuming that the random disturbances have bivariate logistic distributions,
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Specifically, we consider th alternative formulations suggested by Gumbel
(1961). Each of these two distribution functions yields logistic marginals.
However, the implied estimation procedures are quite different. In one in-
stance, the corrected model yields homoscedastic errors« In the other, al-
though heteroscedasticity surfaces, the variance function is parametrically
known and it is possible to search for the optimal value (in terms of lowest
SSE) within the admissible range of the parameter.

In Section I, the two different {vivariate distribution functions are
briefly outlined. Sections II and III present consistent estimators of the
parameters of Equation (1) using each of the distribution functions. At
this stage we make a choice and opt for the estimator that is implied by the
Gumbel type II distribution. Section IV shows that the estimator derived is
consistent and that the distribution of the estimates is asymptotically normal
so that despite non-normality of equation disturbances, the standard statisti-
cal tests apply in large samples. Finally in Section V, simulation results
are reported comparing the instrument used by Heckman in his probit model and
the one ‘implied by our Togistic model. Also, we provide in this section an
application drawn from a study of the employment experiences of ex-offenders

after their release from prison (Rossi, Berk and Lenihan, 1980).

I. Two Bivariate Distribution Functions

To begin, consider the distribution function for two random variables

(w],wz) of the form:

Prioy <t wp < t,] = Floy, u,) = 1 (3)
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The randem variables Wy and w, are continuous. and can assume any value .
on the real Tline. The marginal distribution functions are
e 'm = -———-———-‘l
F](t]) = PY‘[U)-I < t]s wz < 1= _t_l (4)
1 +e
and
1
Fz(tz) = Pr‘[w" e wz hd tz] = _tz (5)
1 +e
which are themselves logistic.
The marginal densities are
-t -t
1 2
= e =&
filty) = TR falty) TN (6)
<§ + e .> 1 +e )
\
and joint density is
-(t,+t,)
32F - 2e 172 (7)

h(t,t): =
10 %) T Ftat A
1°%2 <1+e1+e2>

We call this distribution Gumbel's type I. It may be noted in passing that Nerlove and

Press (1973) used this form of the multivariate logistic distribution.
Gumbel has derived the conditional mean and variance from the conditional

moment generating function G (tllwz).
1

From the conditional density function

-1 -Wa\2 '
1(1+e"2)
. 2e 1+e
Flay ) = Aty ®
<} + e + e )

3
4
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the conditional moment generating function is derived as

£
= Fylu,) Trz+ t) T - t)). (9)

Using this conditional generating function Gumbel further derives the conditional

mean
E(w]lwz) =1+ 2n Fz(wz) (10)

and the conditional variance

e

oz(w][wz) =3 - 1. (11)

The distribution function considered above is one amongst several that yield

Togistic marginals. We now consider Gumbel's type II which can be written as

F(w], wz) = F(w1)F(w2)[1 + a(l - F(w1))(1 - F(wz))] where -1 <a < 1.( )
12

Note that as before

-0
1 +e 1

and
1

2) W,
1 +e

1}
-
E

which are by assumption logistic marginals. This distribution function is
more flexible than the type I. In the particular case where o = 0,

F(w1, wz) = F(w1)F(w2) which indicates independence.
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The joint density function for Gumbel's type II is

-(w]+w ) -0 ~w
2 1 2
- e 1 -¢e 1-¢e
flugs wz) = =T Y 1+ a< —m]>< -w2> . (13)
<ﬁ + e ) <} +e ) 1 +e 1 +e

Ord (1972) reports that the conditional moment generating function is

nt1(1 + Bt])

Gm](tﬂ‘”z) T s (14)
where B = 2aF2(w2) - a: The conditional mean
E(w”wz) =B = 2aF2(w2) -a (15)
and the conditional variance
2 'rrz 2
oAy fu,) = T - [a(2F,(uy) - 1] (16)

It should be remembered that for Gumbel type II distribution functions
the coefficient of correlation between Wy and w, is p= 3a/w2. Since
T<a<1, |p| <.30396.  For the Nerlove-Press or Gumbel type I bi-
variate distribution, p = 1/2. We shall consider the implications of such

restrictions in the context of our estimation procedures.

7
IT. Consistent Estimators for Gumbel Type I
Bivariate Error Distributions
Arguing exactly as Heckman does, we can write
E(y1|x]; sample selection rule) = E(y]lx]; Y, > 0)
= E(y1|x]; dy > -x282)
= x1By + E(u]|u2 > -x282). (17)

Except in the case where Uy and u, are independent, the conditional expec-
tation E(uyfu, > -x,8,) will not be zero.

Assume at this stage that up = k]w] and U, = kzw2 where wy and w,

have a Gumbel type I bivariate distribution function. In the special case,

any ui =w.is k.i =‘1.

and k2 would become apparent below.

The reasor: why we introduce the scale factors k1

For convenience assume k2 =1 1in

this case so that Uy = wy.

Since the conditional mean of w, given oy is E(wliwz) =1+ 2&n Fz(wz)

we can write

wy = 1+ &n Fz(wz) + e (18)

where € has a univariate logistic distribution with mean 0 and variance

11'2 ;
(5 - 1)
Now

E(uy[uy > -x585) = E(kyuy Jug > -x,8,)

= kpE(wy uy > -x58,). (19)



Define -x262 = z. Then

E(u1|u2 > 'XZBZ) = k][E(w]|w2 > z)].

]
E(:] +. 4n —————f;;; + € w2 > %)
1 + e
1 + ﬁ n ————l———-w >z,
-, 2
1 +e

Now

E(cu]Iw2 > z)

Consider in particular

Define

Also

dy = (G’\_Nf dw, -

1+e 2

Therefore (21) above can be written as

1

n y dy-,
| ]

1

= - 1 1 !
] el ] e
T~ F,(2) 2 | ! ] ]
T+e™ % T+e-Z
e
1 i
= -1 - n (23)
g™ % 1+e?
We can therefore write
E(u]|u2 >2z) = k[E(w]lw2 > z)]
- N
= Kk, 1T +E <£n a w, > %)J
L, 1 +e
] ]
= k 1 - 1 - in — ]
1 L e 1+e?
1 1
= —k * 'Q'n 0 24
Te™2 1472 (24)
Thus
. - b4
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If we define 2z as the threshold — = P which is the probability that an

1 +e
individual 1is censored
-z _ 1 -z_1-2P z__ P
l+e" =5 or e” = P and e” = -7
which is the odds ratio.
We can therefore write
E(y; [%)s SSR) = x,8; = 7 &n(P)+k;. (26)

Consequently. one should in practice estimate a logistic regression for
Equation (2) to find the value of P for each individual (case). Then for

the subsample of N1 individuals, one should construct the variable

b, ,
1- 8, tn(Py) = ¢,
;

(say) and include it as an additional explanatory variable. The regression

coefficient of $; is our estimate of k1. As we have already seen, the
2
conditional variance of w][wz is k?(ﬂé-- 1) so that one has homoscedastic
errors. Note however that we have more than one estimate of k1; and the uniqueness

of the estimated values may be regarded as test of the validity of the model.

Strictly speaking, since the substantive equation's error (e) has s
Togistic distribution, one should not apply t or F tests. However, since
the logistic (univariate) and normal distributions are very close to one

another, the usual tests can be applied without serious inaccuracy.

o S M

11

to recall here that in the absence of a scale factor k],
2

the variance of & has a specific value equal to 25-— 1. However, intro- ,

It is useful

ducing the scale factor k] permits any value of error variance and in this
sense destandardizes the distribution. MNote also that since k1 serves only

to change the value of cg, homoscedasticity is strictly maintained.

Unfortunately, the Gumbel type I bivariate distribution presupposes a

correlation between Uy and Uy equal to 1/2, clearly a limitation of

this approach.]

ITI. Consistent Estimators for Gumbel Type II

Bivariate Error Distributions

As in the earlier section we assumed Uy = k]w1i and Ups = Wos
and that marginal distribution functions for W, and w, were logistic.
Now however, the bivariate distribution function is represented by (12).

As before

1 . :
It may be instructive . L.
to ROte t%at Heckman computes his additional regressors A (which is
the

azard rate) from his Probit equation. He states, "In samples in which
selectivity problem is unimwrtant (i.e., sample selection rule ensures that
all potential population observations are samples), A; becomes negligibly
small so that least squares estimates of the coefficients of 1(a) have optimal
properties" (p. 479). Yet his corrected Equation (13a) is

o
) 12
Y1i = %148 +m>‘i * Ve
22

Clearly sample selectivity cannot be tested within this model. ‘When Ag
goes to zero the model is not of full rank and is no longer estimable.
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E(yq1%p3 SSR) = x;8y *+ E(uy[u, > =x,8,) ( J§> do = [_lz]
8 26 -2
- +
= X8; * kiElwy lwy > 2). A 1+e
1 1
=5 |1 -—=7]- (30)
Now however e [ (1+e7% j]
E(m][w2 >2) = E(2aF2(w2) -a+y | w, > z) (27) - If we replace = by P  we can express (30) as
1+e
by virtue of (15) and E{u) = 0 by assumption. %—(1 - P2)- (31)
We can write | '
Going back to (28) and replacing F2(z) in the denominator by P we obtain
E(wq o >z)=[f a(2F (w)-])f(w)de ' 2
11%2 22 2/ "2 oy (1 -P
z E(wyluy > 2) = 205 75y~ - ©
LT - FZ(Z)] '
=a(l +P) -«
ot = oP
20L[ Fz(wz)f(wz) dw2 «v
s —E () - (28) : (ruling aside the case P =1 where there is complete censoring).
i; We therefore can express
In particular E(y1[x1; SSR) = X18y * k]ocP (32)
|
) =] -wz ﬂ“ f
/ Fz(“’z)f(‘”z) dw2 =f< ]-w2> e = ; dw2 and the underlying stochastic formulation should be Y ® x]B1 + k1aP +n
Z z \l +e 1 +e ) j where n s k1 times yu.
f =W, What we require then is an estimate of P from a logistic regression
e
= . 29 .
(1 . -, d‘*’z (29) model for the full sample to insert as an additional regressor in
2 e
Equation (1). The Tinear probability model will typically be a good approx-
Define 6 = 1 + e"“’z . o = - i’ " 29 be expressed as imation for the logistic regression. In this context, the coefficient of P in the
in 1 o that dé = -e ° duw,. (29) can then xpressed a
reformulated model (32) has a simple interpretation. It is the rate at which Y1
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increases as the probability that an individual i would not cross the thresh-
old increases.2

For Gumbel type II distributions, the coefficient of correlation between
Uy and  u, is within +.304. VYet, this restriction may not be very serious
in practice. Indeed, as reported in the next section; simulation experiments
indicate that the variables L2 (for Gumbel type I), ﬁi (for type II) and

Heckman's A; are highly correlated (r > .9). It does not therefore appear

to make-much difference whichever instrument one uses.

A far more serious problem for Gumbel type IT error distribution is

that unlike in type I case, we have heteroscedasticity. However the var-

jance of n; is known from (16) and

2Ti_\e "hazard rate" which enters Heckman's model as an additional regressor

is ]_£13 where ¢ is the density and 1-¢ 1is the complement of the cumu-
lative probability for a normal distribution. It is interésting to compute this
"hazard rate" using a univariate logistic instead of the normal. If Togistic

density_and cumulative are denoted by f and F, the "misconstrued" hazard rate

is T;%%%T where

. =X
. 1 Ly L e
F('I) ——-—_—5("- and f('l)——'—"—'_—x—-z-
3 i
1+e (1+e )
-X.
i
1 - F(i) = =0
1+e |
Therefore
fi) . ]
1 - F(1) =X;
T + e

Note that the hazard rate coincides with F{i) in the case of the logistic
distribution. Also in this formulation F(i) is estimated by P; in our
model and is used as a regressor. Essentially, we are using the Heckman cor-
rection for a logistic distribution by inserting our instrument.

15

2

2 _ 2{% 2 IREY-

o (nilwi) = k][?r -0 (ZPi 1)< .

Once o is fixed at o, the coefficient of ﬁi in (32) gives k,. One
can therefore use this E1 and ), to find relevant transformations for GLS.

It is also possible to search for the best o within (+ 1.0) in terms

of the minimum SSE. Again, uniqueness of estimated k] at the final itera-

tion could be a test of the validity of Bivariats Logistic specification.

IV. Consistency and Asymptotic Normality

of the Estimators

The final version of the model implied by correction based on Gumbel's
type II distribution of the random disturbances was reported as Equation (32)
above. It should be noted that for any individual i, the probability Pi
that the individual is selected is unknown. What we have to use instead is
the estimate ﬁi computed from the logistic regression of the selection
equation.

Recall that Equation (2) was estimated to yield

P.
&n _-_J—/.\—— =x2‘62
1 - P, J
J
Clearly, ﬁj obtained as

1
-X ,E—

1 +e 2%
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is stochastic. Use of ﬁj as an explanatory variable in (32) therefore
creates a problem. We can demonstrate, however, that least-squares esti-
mators of the parameters of (32) are consistent.

We know from standard results that §2 as a maximum-1ikelihood ‘estimator

of By is consistent. This in turn implies that

~

P.
Q,n .._...J_—

1"Pj

is a consistent estimator of zn(iqud. Therefore, by Slutsky's theorem,

ﬁj is a consistent estimation of Pj. In other words, if we express

ﬁj = Pj + wj where wj is a random component, as we increase the sample

size wj goes to 0 for all j. It should be remembered that since both

Pj and Pj 1ie between (0,7) wj

samples.

will 1ie between (+.1) even in small

A B
P) and ¢ = ( Q). We can write our model as

Let us define z = (x]

¥y = 26 + 71, where t = ky + n.
(k above is k1a.)
The OLS estimator & = & + (z/z)"'z'7. We now show that p%im § =6,
300
where T 1is the sample size.
The argument for consistency of the OLS estimator in this equation
can first be stated intuitively. We noted at the beginning of the paper

that the sample selection bias arises because the disturbance terms in the

st :
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two equations :of our model are interdepnendent. However, as we have demon-

strated in detail in earlier sections, the residual error term 1 in

Equation (32) is obtained after the conditional mean of Uy is explicitly taken

into account. It can be argued, therefore, that this random term n
should be statistically independent of u, or any of its components.

Let us now take a cleser look at the random error wi = Pi - ﬁi‘
We can write the logistic regression of the selection equation as

P ; P -1
n [] ~ p] = 2n [] ~ p] + Xo(X5%5) " 'X5€,

where €y is the random disturbance of that model. Now define

)-1

xz(xéx2 xé = W' which is an N x N matrix of non-stochastic elements

(N is the number of observations in the full sample). More explicitly,

ﬁi P
n — = &n +wie
'l - P- ] - P.i 1 2

where w% is the 1ith row of W',

for any i

We can write

1"'P.i
or
Wle
i~2
1 - P;e + (1 - Pi)
.- P 1= F
Therefore
]
Pewie2
61'- wai
Pie12+(1-Pi)
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and

w!E
i72

; i W.e

i Pie i2 . (1 - Pi)

<
-l
]
>
!
5
]

(33)

As we argued before, n; and wi are statistically independent.

Now we specificaily consider

T

=1 '
pLim {i%% and  pRim Fil%

1 I‘
11 % X% XjP * xq¥ J
Plx; P'P P'xy + ¥x, P'P + 2P'y + ¢'y
therefore
H ]
| T T T
. 2 Z .
2im f——J = pLim
T T Do PX ¥X e 2ety, p'y
T T T T T
This converges to finite moment matrix
T T
M= pim .
pT—*oo P'x P'P + o'y
T T
In other words pzim(ZLEJ'] = M1 and is finite. Now consider that
§ 7 s .
[}
fiﬂ. + kxq¥
[ZIT] pLim !
Lim | == =
pT"‘” T T+ | (P+Y)' (n + ky)
T

3

iy g g
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Xn + x'y
= peim T T
KP'y + kip'y + P'n + y'p
~ T
- R
. Since Xy and P are non-random and ¢ can be regarded as satisti-
cally independent of n, the probability Timit above is zero.
In other words,
pLim {ELEJ B pLim [ELIJ =0
T .T oo LT
That means pim § = § + pzim(z'z)"]z'r = 6 and consistency of least-squares
,T"°° T
estimators of coefficients in Equation (32) is established.

Next we demonstrate that estimated parameters from tne augmented mode]
represented by Equation (32)

above have asymptotically normal distributions
We noted in the earlier section that correction for selection bias based on
Gumbel II distribution results in heteroscedasticity of the error term.
we consider the asymptotic version,

be written as Yp =

If
P can be replaced by P and (32) can
x181 + kP] * n. However, E(nn')

matrix. A typical diagonal element of & is

=L 1is a diagonal

s

%%j =3 -0

2(291. - 1)‘2k]2

which is strictly greater than zero, but is finite because k and o are
both finite,

Now consider the transformation D such that DD’

=57,
Again D is a diagonal matrix where
“ kil - -1/2
d,i,i = ‘-"‘"'-"3 “kTCL (Zp.i ~- ])

which is finite.
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Consider the transformed system Dy1 = DZ§ + Dn which can be re-
defined as y? = z*6 + n*. Note that E(n*n*') = I and our GLS estimator

8 = (z*'z*)']z*'y? =§ + (z*'z*)']z*'n* = § + B'n*, where

B' = (z*'z*)']z*'. (34)
If we consider any typical estimator Es we obtain

N

1
} b_.n*

§.=6_+
s s g2 sdd

where bsj are elements of B. We can prove that ES has an asymptotic

normal distribution by proving that

N,
} b..n?*
jop sd
has an asymptotic normal distribution.
First we state the classical 1imit theorem and Lindeberg condition,

which is sufficient for the theorem to be valid.

The Classical Limit Theorem

Let h1, h2’ «ees h s ... be a sequence of mutually independent random

r
variables each having finite expectation E(R,) = a, and variance

J J
; 2 _ 2 ,
E(hj E(hj)) dj. Define

Then the sum

21

L] )
S = = h, - a,
n an='| J J

has a distribution which converges to the normal distribution if the Lindberg

condition is satisfied.

Gnedenko (1967:365) has shown that the Lindeberg condition essentially

h. - a.
stipulates that forany j (j =1, 2, ..., n), -—lv———l should be small. -
n

We now prove a Temma which will be used to establish asymptotic normality

of the GLS estimators of the parameters in (32).

Lemma. The sum

where

J n 1/2
2
C-
[le J]

has an asymptotically normal distribution provided that Cj (3=1,2, ..., n)

is uniformly bounded.

Proof. The proof of the lemma is in two stages.

(i) First we prove that the Temma is a particular case of the classical

1imit theorem.

(ii) Second, we show that the Lindeberg condition is almost surely

satisfied.

(i) Considering the fact that the Cj are non-stochastic
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and

Therefore

Therefore, Sn =

where Dn = 1.

(ii) The Lindeberg'condition in this situation requires that ej be
small for j =1, 2, ..., n. This requirement may be seen as ej <v,
where y s an arbitrarily small number. Therefore the probability that
the Lindeberg condition holds is equivalent to the probability that

That is,

* < Y L CZ]/Z
nj < T, ) j y
- J J=1

Now since Cj are uniformly bounded, the right-hand expression inside the

[ej <vy] for all j.

prob

brackets can be made arbitrarily large by increasing n. Consequently,this
probability can be made as close to 1 as desired. We can therefore state
that the Lindeberg cendition is almost surely satisfied. This completes the

proof of the lemma.

et e e e
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We have seen that

has an asymptotic normal distribution. Therefore

n
LS = ¥ C.n¥%,
N2y 3

where ]
n 1/2
L= |1 &,
t=1

also has an asymptotic normal distribution. Now redefine Cj = bsj' Note

that bsj is an element of the matrix B = (z*'z*)']z*' and is bounded

therefore by virtue of the lemma above.

has an asymptotically normal distribution.

V. Some Simulation Results

for Different Censoring Adjustments

While the formal properties of our two logit-based estimators differ
from one another and from Heckman's estimator, one might nevertheless wonder
if in practice a choice among these three is likely to affect one's results.

In order to explore this question we undertook the following simulation.
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One thousand observations were drawn at random from a normal distri-
bution with a mean of zero and a variance of one. (The sample was checked
to confirm that chance factors had not produced an anomalous realization.)
The data were then used to construct for each observation the probability
value, our adjusted log odds and Heckman's hazard rate. With these in hgnd
we calculated the linear correlation among the three adjustment variables.

The probability value correlated .959 with the hazard rate and -.978
with the adjusted log odds. The hazard rate and the adjusted log odds
corre]éted .906. Clearly, these correlations suggest that the three ad-
justment variables will Tikely yield very similar results when the under-
lying distribution of the errors is normal. Note also that the linear
correlations are high despite the fact that the justifications for the use
of the probability value and the adjusted log odds rest on the logistic and
not the normal form. Put in stronger terms, even if one mistakenly applies
one of our logistic adjustments in situations where the underlying error
distribution 1is bivariate normal, one should not be seriously misled. Moreover,
this implies that should software not be readily available to apply Heckman's
adjustment, one may rely on logistic estimation procedures that are found in

such common statistical packages as SAS.

VI.. An ITlustration

It is widely recognized that individuals released from American prisons
face a host of obstacles in their efforts to rejoin society. While these
obstacles can take a number of forms, financial hardship is among the most
important.

In this context, the Manpower Development and Training Act of 1962

(and subsequent amendments) gave to the Department of Labor a mandate to

T e
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programs responding tc the economic needs of ex-prisoners. The Department
of Labor initially Taunched projects to provide manpower training within
prisons and after release. Unfortunately, evaluation studies of these ef-
forts found little evidenée of success. The Department of Labor then turned
to short-term income-support strategies for the period immediately after re-
Tease from prison. These experimental efforts rested broadly on two kinds
of interventions: special job placement and counselling for ex-prisoners,
and the provision of unemp]oyment insurance eligibility immediately upon
refease3 (Lenihan, 1975; Mallar and Thornton, 1978; Rossi, Berk and Lenihan,

1980). In the first instance, special palcement and counseling services

were thought to speed an ex-offender's re-entry into the labor force and
through the income derived and the reduction in Teisure time, decrease par-
ticipation in criminal activities. In the second instance, modest transfer
payments of about $65 a week for periods of up to 26 weeks (for those who
could not find jobs) were thought to reduce the need to resort to crime as
an alternative source of income and increase the opportunity costs of incar-

ceration for any new crimes. Hence, recidivism would dech‘ne.4

After some initial pilot testing, the two interventions were field
tested through a randomized experiment conducted in Baltimore. Approximately

400 men about to be released from state prisons were randomly assigned to

3..
Given the usual eligibility rules based on emplo i
. 1 A _ ‘ yment for the precedin
five quarters (or so), most ex-prisoners were automgtica11y exc]udedpfrom un?

employment insirance payments even if they had bee ing 1 : ;
to their incarceration. 4 n working immediately prior

4
Actually, the theoretical mechanisms beneath the inter i i

. 1Y t 2 ventions (which

12c1yde more than those briefly described in the text) were not fu]]y(clégr

at first and have only been recently explicitly articulated. Also, the nature

of the interventions is somewhat more complicated indi
(Rossi, Berk and Lenihan, 1980). P than we have indicated here
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either treatment, both treatments, or neither treatment (thus, three experi-

mental groups and one control group in a fully crossed design). Ex-prisoners

were then followed for up to two years in order to guage immediate and Tonger-

term effects. The placement and counselling intervention apparently had no
impact on re-arrests, but the benefits-eligibility intervention reduced re-
arrests for property crimes about 8% (the difference between the two groups
eligible for payments and the two groups that were not eligible). While
these findings were statistically significant and encouraging, they vere
hardly definitive (Lenihan, 1975; Mallar and Thornton, 1978).
In order to better document the apparent success of the LIFE experiment

and explore the mechanisms by which the reduction in re-arrests occurred, a
second experiment was Taunched. Known as the TARP experiment (Transitional

Aid Research Project), approximately 1000 men and women in each of the states

of Texas and Geogria who were about to be released from state prisons were
randomly assigned to treatment and control groups much 1ike those used in
the LIFE experiment. After a 12-month followup, there was no evidence that
membership in any of the treatment groups by itself reduced the re-arrest
rate. However, when the financial treatments were embedded in a set of
structural equations depicting a range of related factors in the ye-arrest
process, substantial effects were found. In brief, unemployment benefits
provided a work disincentive that markedly reduced labor force participa-
tion. Unemployment, in turn, increased the re-arrest rate for both property
and non-property crimes. However, holding the impact of unemployment con-
stant, every $100 of TARP payments reduced the number of re-arrests for

property and non-property crimes about .02. Since payments to ex-prisoners
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often exceeded $1500, reductions of .30 arrests were common5 (see Rossi, Berk
and Lenihan, 1980, for a full discussion of the findings). In short, the
apparent null findings within an analysis of variance framework occurred
because the indirect, "detrimental" effect of payments (through unemployment)
obscured the direct "beneficial" effect of payments.6

In addition to the concern with re-arrests and employment, there was
substantial interest in the impact of the TARP payments on "quality" of jobs
eventually obtained by ex-prisoners. Presumably, TARP payments would subsi-
dize a more thorough job se&rch, perhaps leading to jobs with higher wages
(among other things). However, in order to estimate equations for the wages

of TARP participants (experimentals and controls), the possible effects of

sample selection bias had to be addressed. We will use one of the analyses
undertaken for Texas ex-prisoners to illustrate the use of our logit-based
adjustment for sample selection bias.

In Table 1 we show the sample selection equation and results of logit
estimation procedures in which the endogenous variable represents (in dummy
form) whether any wages were "observed" during the first 12 months after
release from prison. Evidence of wages came from Social Security files and
from interviews with the ex-prisoners themselves 3 months, 6 months and 12
months after release. However, here we will rely on the former since, for
a variety of reasons, the Social Security earnings were more accurate. The

exogenous variables in the table are pretty much self-explanatory. The

Since the mean number of arrests was well under 1, the i
clearly nontrivial. ’ reduction was

6 .
The job-counseling treatment had no effects either in the analysi
variance or structural-equation framework. nalysis of
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TABLE 1 28
Sample Selection Equation Using Logit Formulation

Variable Coefficient t-Value biographical variables reflect human capital attributes (e.g., being of prime
working-force age, having physical handicaps, years of education), and attri-

Constant -1.68 -2.78 butes on which employers might "discriminate" (e.g., sex, race, criminal

Age 21-40 (dummy) -- X1 0.30 , 1.58

Handicapped (dummy) -- X -0.19 1.14 record). In addition, we included a dummy variable indicating whether an

2 . =1l |

Employed at time of arrest (dummy)a individual was released on parole (seeking work is often a parole condition),

- X 0.17 1.18
Number: of3previous arrests a scale indicating how 1ikely prior to release a genuine job placement had

(integers) -- Xa -0.02 -3.81 been arranged, four dummy variables reflecting major urban counties in Texas
Released on parole (dummy) -- Xg 0.42 2.75
Job arranged before release {to capture part of the demand side), and three dummy variables for the three

(4-point scale) -- Xg 0.21 2.54 treatment groups.7
Male (dummy) -- X< 1.41 4.19
Bexar County (dummy)b — X -0.33 -1.08 From Table 1, one can see that a number of exogenous variables predict

8 [ ] ]
Dallas County (dummy) ~- Xq 0.19 0.89 . the observation of wages at better than conventional chance levels. For one-
Harris County (dummy) -- x,, 0.44 2.21 tail tests (at the .05 level) we find that blacks, Chicanos, and individuals
Tarrant County (dummy) -- X11 0.44 1.53
Black (dummy) -- X12 -0.59 -3.66 _ with a larger number of previous arrests were less likely to find employment.
Chicano (dummy) -- X13 -0.44 -1.89 Male ex-prisoners, individuals on parole, individuals who are more likely to
Vocational training 1in prison :

(dummy) -- X14 0.15 0.87 have a job arranged, residents in Harris County (i.e., Houston) were more
Education (years) -- x;¢ 0.05 1.47 Tikely to find employment. Finally, members of two of the three treatment
Driver's license (dummy) -- X16 0.06 0.43 )

26 weeks/100% tax (dumy)C < 0.57 2.78 groups (compared to the control groups not eligible for benefits) were less
o - 17 -UV. =L
13 weeks/100% tax (dummy) -- X18 -0.1M -0.58 1ikely to find emp]oyment.8 In short, there are no particular anomalies with
13 weeks/25% tax (dummy) -- xqq -0.49 -2.52 perhaps the exception of null findings for the 13 week/100% tax treatment
F=5.22 N = 975 b < .0001 group (see Rossi, Berk and Lenihan, 1980, for a further discussion).
7 __ . X
. = Bt BaXns * BoXos F oaee F BaugXea s F Uss The three groups varied in the maximum number of weeks of possible
Yoj = Bo ¥ ByXqy T By 19719, © 23 support and the rate at which earned dollars were "taxed." Thus, the third
treatment group, for example, was eligible for 13 weeks of support with
3Before the incarceration preceding the TARP study. each earned dollar reducing each benefits dollar 25%.
bCounty to which the individual was released. Rural counties . .Blt was clear from the interviews that few individuals understood the
are the residual category. implications of the tax rate. Thus, there may have been few perceived dif-
ferences between the income treatments. In this context the t-value for the
“The tax refers to the rate by which each dollar of payments pooled treatment effect is well over 1.64. Finally, the job-counselling
was reduced for each dollar earned. treatment had no impact and is therefore included among the control groups.
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Table 2 shows the wage equation and the results from efforts to estimate
wages for TARP ex-prisoners. These equations rest on 372 of the original 975
cases so that the potential for substantial selection bias exists. The spe-
cification for the wage equations are almost identical to the specification
for the selection equation. Sex was dropped since only about 10% of the cases
were female to begin with, and after the selection process, even less variance
remained. Parole status was dropped because there was 1ittle reason to be-
1ieve that being on parole had much impact on wages per se. Finally, the
variable measuring whether aﬁ individual had a job arranged prior to release
was deleted since that too seemed causally irrelevant to wages.

The first two columns of coefficients show the metric regression coef-
ficients and t-values for the unadjusted equation. Using one-tail tests and
the .05 level for the directional hypotheses, individuals of prime working age
and with job experience prior to their recent incarceration earned higher

wages: about $24 more per week and $16 more per week respectively. Ex-prisoners

who returned to Harris County earned about $35 more a week. Finally, members
in the first and third treatment groups earned approximately $27 more per week
and $37 more per week respectively.

From the selection equation we estimated the predicted probability of
"observing" wages and constructed both of our adjustment variables: the pre-
dicted probability and the adjusted log odds. They correlated .99 so that for
all practical purposes either could be used. In the second two columns of
Table 2 we show the results for the probability adjustment. To begin, the
adjustment variable is sfatistical]y significant and clearly has a nontrivial
impact. Every change of .10 in the probability of observing wages increases
wages by over $8.00. Thus, selection processes that affect whether a job is

obtained also affect weekly wages.
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TABLE 2

Wage Equation Comparing Adjusted and Unadjusted Results

(Wages in Dollars per Week)

Unadjus ted Adjusted

Variable Coefficient t-Value |[Coefficient t-Value
Constant 41.77 1.96 17.61 0.75
Probability adjustment~—x] -- -- 83.83 2.49
Age 21-40 (dummy)--x, 24.09 2.39 18.98 1.86
Handicapped (dummy)--x3 15.20 1.70 17.87 1.99
Employed at time of arrest

(dummy)--x4 15.58 1.95 10.50 1.38
Bexar County (dummy)—-x5 - 1.70 -0.09 5.70 0.31
Dallas County (dummy)--x6 - 0.06 -0.01 0.01 0.00
Harris County (dummy)--x7 35.12 3.39 27.34 2.55
Tarrant County (dummy)--x8 - 4.85 -0.33 -15.17 ~1.01
Black (dummy)--xg -11.44 -1.43 0.37 0.04
Chicano (dummy)--x1o -14.99 -1.21 - 5.90 -0.45
Vocational training in prison

(dummy)—-x]1 -16.33 -1.85 -21.04 -2.35
Education (years)--x12 2.03 1.15 0.73 0.40
Driver's 117cr:\nce-(dummy)--x13 2.53 0.32 0.96 0.12
26 weeks/100% tax (dummy)—-x]4 26.55 2.40 35.79 3.09
13 weeks/100% tax (dummy)---x]5 6.20 0.66 7.40 0.78
13 weeks/25% tax (dummy)--x]6 37.32 3.63 44.27 4.18

R = .16 F =4.12 R = 17 F =4.30
N=372 p < .00] N =372 p < .0001

* Bre*1e,1 T Ui
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Again using one-tailed tests, it is apparent that in broad terms, the
substantive story in the adjusted equation is much 1ike the substantive story
in the unadjusted equation. Yet, if for policy purposes one wanted to take
the point estimates of the regression coefficients seriously, some nontrivial
alterations surface. In particular, the impact of membership in the treatment
groups has been enhanced. Members of the first treatment group are earning
about $36.00 per week more (compared to $27.00 per week more) and members of
the third treatment group earn about $44.00 per week more (compared to $37.00
per week more). In the firsf instance, the change represents a 33% increase,

and in the second instance, the change represents a 19% increase. Moreover,

 if such differences were projected over the course of a year or more, sub-

stantial sums are involved.
Using two-tailed tests, it is also apparent that the adjustment equation
yields two anomalous findings. Having a physical handicap increases earnings

nearly $18.00 a week and vocational training in prison decreases earnings by

about $21.00 a week. While one could certainly construct one or more post
hoc explanations for these effects, the point here is that the sample selec-
tion adjustment does make a difference. Perhaps most important, it suggests
the kinds of vocational training available in prison has no impact on whether
a job is obtained, but may prepare ex-prisoners for lower paying jobs.
Finally, the sample selection adjustment definitively puts to rest the
suggestion in the unadjusted equation that blacks and Chicanos receive lower
wages. The point estimates from the unadjusted equation indicate that minor-
ities receive about $15 a week less with t-value in excess of ~1.20. Given
strong priors one might be tempted to make something of such deficits. How-

ever, once the rather strong negative selection effects of minority status on
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obtaining a job (see Table 1) are taken into account, the wage differences
evaporate. That is, the wage disparities are really attributable to the ini-
tial likelihood of obtaining employment.

The results reported in Tables 1 and 2 represent but a sample of many
analyses we have recently undertaken in which our Tlogit-based sample-selection
adjustments have been applied. From this experience, several broader points
of possible importance to practitioners may be of interest.

First, the sample selection adjustments have rarely made an important
difference in any substantive conclusions. This is not to argue thét adjust-
ments should not be used, but to argue that perhaps previous work in which
sample-selection biases have been ignored may not be terribly misTeading.

Second, the major computational costs for our estimators stem from the
logit procedures employed in the selection equation. With this in mind, we
have frequently reconstructed our adjustment variables from the results of

Tinear probability models estimated with ordinary Teast squares. We have yet

to find important disparities in the adjusted equations as a consequence.

For the analysis reported here, regression coefficients rarely differed by
more than one dollar from the adjusted results reported in Table 2 and the
t-values typically varied in the first decimal place; clearly nothing of any
importance changed. Thus, when one is working with large samples and situ-
ations in which the split on the dummy selection variable is no worse than
about 90% to 10%, the linear probability model will probably suffice. It (
js at least clear from other work (Goodman, 1975) that the results from the
logit and linear probability approaches are virtually the same under these
circumstances.
Third, if a relatively large proportion of cases fail to exceed the

selection boundary, it is critical to closely examine the qualities of the
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data that remain.

One has in essence made the sample more homogeneous on a
number of exogenous variables with the consequence that some exogenous vari-

ables may contain little variance and some exogenous variables may be highly
collinear.

Finally, one has to be alert to the possibility that the adjustment
variable will produce near singularity in the variance-covariance data matrix
of the selected subset. This can result when most cases exceed the boundary

and when the selection equation and the substantive equations are similarly
specified, and it can also oﬁcur when one or more especially dominant vari-

ables in the selection equation also appear in the substantive equation.
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