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1. Introduction

PRIORS is an interactive PL/I program written under National Institute
of Justice Grant Number 80-IJ-~CX-0048. The program is designed to assist
evaluators in formulating, modifying and updating prior distributions.

OPT2 is likewise an interactive PL/l program written under this grant.
The products of PRIORS may be useful in formulating Bayesian decision rules

with OPT2.

(2)

1.1 Why Prior Distributions?

One of the main concerns of evaluations is to collect information. Both
the qualitative information of "process evaluators'" and the quantitative
information of "outcome evaluators" are relevant tc evaluations. However, as
in many fields, merging these distinct types of information often leads to
conflict. We feel that the apparent conflict between "process evaluators"
and "outcome evaluators'" can in some cases be resolved through Bayesian
analysis. The idea is to use the qualitative information of the process
evaluator to form a "prior distribution” and the statistical information of
the outcome evaluator to update the prior and obtain a "posterior distribu-
tion".

More than just a resolution to the conflict between process and outcome
evaluators, Bayesian analysis offers the adaptability necessary in the face
of such multifaceted and changing problems as crime, drug and alcohol abuse,
family counseling, etc. In simple hypothesis tests for example, classical
statistics formulates decision rules strongly biased in favor of the null
hypothesis.,

Bayesian analysis and more specifically conjugate prior distributions
offers a tractable, appealing method for overcoming the deficiencies of
classical statistics thereby affording a vehlcle for resolving the conflict

between process and outcome evaluators.

L]

1.2 What is a Prior Distribution?

A prior distribution is as its name suggests, simply a probability dis-
tribution for the outcome of some experiment or trial based on information
avallable before the event. Most people for example would set their chances

of getting Heads upon tossing a coin at fifty-~fifty -- before ever seeing

the coin, This simple example captures the essence of prior distributions =--
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namely prior distributions translate previous and often qualitative knowledge

into quantitative information.

Continuing with our coin-tossing example, suppose we wanted to determine
whether or not a coin was "fair". TFirst we take the coin and turn it over
in our hand, feel its weight and check that one side is Heads and the other
Tails. Imagine our chagrin if we had simply begun by tossing the coin a
number of times before detecting that both sides were Heads! Then, based
on these observations we formulate a prior distribution for the probability
that the coin, when tossed, will land Heads. Tossing the coin.a number of
times we obtain the sequence of observations (Oi) with say 0l Heads, 02 Tails,
etc. With this quantitative information we 'update our prior to obtain the
posterior distribution. The posterior distribution is simply the conditional

distribution of p given the sequence of observations (Oi)'

One special class of prior distributions, conjugate priors, is math-

ematically and intuitively appealing in that the prior and posterior distribu-

tions come from the same mathematical family. The program PRIORS deals ex-

clusively with these conjugate prior distributions.

2. Hypothesis Testing

Hypothesis testing 1s no longer simply a laboratory tool. Today it
affects the courses of thousands of lives and millions of dollars. FDA
regulations are an especially tangible examplé of éhé present power of
hypothesis testing. Admissiotis polidies to public assistance progréms,
special education programs, limited medical facilities and psychiatric-
institutions are, intentionally or not, decision rules for hypothesis tests.

The problems involved in formulating such decision rules, not to mention
thelr consequences, set hypothesis testiﬁg in social institutions apart from

testing in laboratories. It is neither politically acceptahle nor economi-
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cally feasible to determine which citizens will receive public assistance

-according to the same formulas used to determine the effectiveness of

malathion against Drosophila.

Consider the problem of formulating requirements for admissicn to the
following public assistance program. The law requires that people be admitted
solely on the basis of a single summary measure: their present assets.
Since a family's economic situation is complex and multifaceted, it is not
likely that any single measure will correctly detect all "truly needy"

families or all families who are '"nmot truly needy." Yet, we must construct
a reasonable decision framework within the structure of the law.

Our problem then is to determine a decision threshold having the property
that applicants whose assets exceed the threshold value will not be admitted.
We realize that any given threshold value will have dramatic effects on the
lives of thousands of people. If for example we set our decision threshold
too high, many deserving applicants will be unjustly turned away. On the
other hand if we set out decision threshold too low, undeserving applicants
may receive money earmarked for the needier. In order to determine the
bgst decision threshold we undertook an extensive retrospective study to
determine how the assets of past applicants aligned themselves. Highly
trained case workers reviewed the case of each previous applicant. Based
on the case history, they decided whether or not the applicant was "truly
needy." We then studied the'level of assets at the time of application
within each group -- "truly needy" and "not truly needy.'" We found that half
of all aﬁplicants were, on the basis of this study, considered "truly needy."

Unfortunately, however, there was no level of assets which could unambiguously
distinguish between the two groups. In fact the study found the asset

distribution shown in Figure 1,
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Freque Truly need b .05 Alpha Level Decision Rule:
requency uly needy Not truly Needy N A Frequency Truly Needy accept applicants with assets
Mean = 800 Mean = 850 ’ ‘ not exceeding $840

Not \Truly Needy

Figure 1 / f Figure 2

Asset Distributions of "Truly Needy" .
a The .05 beta-level (Figure 3) rule will on the other hand prevent this
and "Not Truly Needy" P

gsituation. However the consequence of being so parsimonious is that nearly

It is clear from Figure 1 that regardless of what threshold value we choose eighty truly needy applicants will be turned out in the cold for every one

P

we will reject truly needy applicants, accept not truly needy applicants or hundred applying. The costs of this policy when defined broadly, would no

both. 1In this situation Classical Statistics would ordinarily prescribe : ' doubt be no less than those of the overly generous .05 alpha-level rule.

either the .05 alpha-level decision rule or the .05 beta-~level decision rule.

i« .05 Beta-level Decision Rule:
. The .05 alpha-level decision rule is, roughly speaking, designed to ensure that ?f accept applicants with assets
X Frequency not exceeding $781.
the chances of turning away a truly needy applicant remain below one in twenty.
The .05 beta-level decision rule on the other hand ensures that the chances of -
accepting a not truly needy applicant remain below the same figure. < ‘f {
Straightforward as these rules may seem their consequences may be intolerable
to many planners and decision makers. In our case the .05 alpha-=level decision ;?”
rule would admit people with.assets not exceeding $840. Anyone else would i
—
be rejected., It is clear from Figure 2 that some applicants who are not
truly needy would be accepted into our program. In fact 75% of this group i? : Figure 3

would be accepted. If each client in the program costs $1,200.00 then these An obvious difficulty with classical statistical decision rules is that

people alone will cost our program over four million dollars for every ten they ignore the cost consequences of the various possible outcomes.

Fhmgens app%icants. Bayesian analysis allows the formulation of decision rules which incorp-
orate the probabilities and costs of the various outcomes of a decision. The

- . interactive program OPT2 assists evaluators in formulating decision rules for

hy othesis tests involvin Gaussian normal) distributions. In order to apply
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OPT2 it i
it is necessary to have formulated an a priori probability for the 11
ap nu
hypothesi i i ’
P is or in this case, the hypothesis that an applicant is truly needy

S' . i
ince we determlned‘ that half of the applicants are truly HEEdy the a
> =

riori e . .
o ri probability in this case is 0.5. This probability need however t
, NO

always be so i i i
y objective, It is often neceéssary and prudent to incorporate

more subjective i i
3 information such as the opinions of experts or previous

y

PRIORS will assist a decision maker in this estimation

In using P i i
g PRIORS to estimate an a priori probability, simply indicate as

in Exhibi i
it I, that you are testing an hypothesis. PRIORS will ask you for

your best esti pri
stimate of the a priori probability and then inform you about

some of the cons i
equences of your estimate. If these consequences seem
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"ARE YOU?

1., TESTING AN HYFOTHESIS?

2, ESTIMATING A FARAMETER?

3, UPDATING A FRIOR DISTRIBUTION?
4, NONE OF THE AROVE .
_PLEASE TYFE THE NUMBER (1 — 4) OF THE APPROPRIATE OPTION.
H

. -

EXHILIT I

PLEASE FILL IN THE ELANK. .
THE NULL OR NO-EFFECT HYPOTHESIS IS THAT ¢ e o ,an arplicant is deserving

WHAT IS YOUR REST ESTIMATE OF THE ?RDBQBILITY THAT ¢
JAN APPLICANT IS DESERVING . ‘
R

;oq4

'

.

THIS ESTIMATE INDICATES THAT YOU FEEL THE PROBABRILITY OF NOT OESERVING
_THAT: AN AFPLICANT 1S5 LESERVING

EVEN ONCE IN FIVE TRIALS I8:0.07776

WHEREAS THE PROBARILITY OF ORSERVING THAT:

AN APFLICANT IS HESERVING

_FIVE CONSECUTIVE TIMES 1S5:0.01024

“WouLd YOU LIKE TO CHANGE YOUR ESTIMATE OF THE PROEARILITY THAT?
AN APPLICANT IS DESERVINGT.yes

P

WHAT IS YOUR REST ESTIMATE OF THE PROBARILITY THAT?
AN APPLICANT 1S DESERVING
]

H L.
w!!sA

[y

2

. YHIS ESTIMATE INDICATES THAT yOU FEEL THE PROBABILITY OF NOT OBSERVING
THAT: AN AFPLICANT 1S DESERVING ,

_EVEN ONCE IN FIVE TRIALS 15310,03125 .
UHEREAS THE FROBARILITY OF OBSERVING THATS

AN APFLICANT IS NESERVING

' FIVE CONSECUTIVE TIMES 16:0,03125

“WOULD YOU LIKE TO CHANGE YOUR ESTIMATE OF THE PROBABILITY THATS
LAN_APFLICANT IS DESERVING?:no . o

Jas

THIS INDICATES THAT THE PRICR PROBARILITY THAT!

_AN APPLICANT IS DESERVING
“15$0.50000

" §OULD YOU LIKE TO CONTINUE (YES OR NO)? .ues

pru— [REEEDEY - .o o N
> o - B . v
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3. Parameter Estimation

Many of the processes studied by evaluators can be accurately repre-
sented by underlying probability distributions and described by the para-
meters characterizing these distributions. Recall for instance the problem
of determining the chances of getting Heads upon tossing a cértain coin.

The outcomes of the tosses can be viewed a3 a Bernoulli process wiFh p the
probability of getting Heads on any toss. ' Just as the problem of determining
the probability of getting Heads on any toss can be reduced to.finding the
value of p in a Bernoulli process, the problem of describing many processes
reduces to determining values for the paramgters that describe them. In the
following sections (4.la - 4.le) we discuss the common distributions
addressed by PRIORS, when they arise, their conjugate prior distributions and

how to usé PRIORS to assess them.

3.1 The Bernoulli Process

A Bernoulli process is one in which there are two possible outcomes
for any trial: event #1 and event #2. Event #1 occurs on any trial with
fixed probability p (generally the quantity of interest), otherwise event

_#2 occurs. 1In addition, the outcome of any trial is unaffected by previous
trials.

Toésing a coin is for example a Bernoﬁlli process. If the coin is
fair, p = 0.5 and Heads or Tails is equally likely to 6ccur on any toss.

Bernoullil processes are common in evaluation settings. Opinion polls
for example can often be viewed as Bernoulli processes where p is the .
fraction of people who would respond favorably. Generally, whenever an
independently repeated experimeﬁt results in a dichotomy the outcomes can
be viewed as a Bernoulli process. .

As in Exhibit 2, PRIORS helps you assess your prior diétribution to

a Bernoullil process by first asking for your best estimate of p, Your

response should be some number between zero and one, reflecting your estimate

ey

S

s

T —— A o e

e A w

ARE YOU:
1., TESTING AN HYFOTHESIS?

2. ESTIMATING A FARAMETER? EXHIBIT 2

3. UPDATING A PRIOR DISTRIEUTION?
4. NONE OF THE AEROVE
PLEASE TYFE THE NUMEER (1 -~ 4) OF THE APFROPRIATE OFTION.

292

CLASSICAL STATISTICS VIEWS FARAMETERS AS CONSTANTS W
ITH FIXED YET UN-
.KNOWN VALUES., WE INTEND TO VIEW THEM AS RANDOM VARIABLES WITH FROBARIL-

.ITY DISTRIBUTIONS. THE FRIOR DISTRIEUTION FOR THE PaR
,DEPEND ON THE DISTRIBQTION IT CHARACTERIZES, ARANETER SHOULD

.
THE PARAMETER YOU ARE TRYI :
JHE [PARAMETER YOU ARE_ NG TO ESTIMATE IS FROM:
2. A POISSON FROCESS

»3¢ A UNIFORM FROCESS
4. AN INDEPENDENT NORMAL FROCESS
S. A NORMAL REGRESSION FROCESS
6+ HELP
7. QUIT ,

PLEASE TYFE THE NUMBER (1 - 7) OF YOUR CHOICE.

'91.

.

THE RERNOULLI PROCESS IS ONE IN WHICH THERE ARE TWO POSSI 3 :
~EVENT#1 AND EVENT#2, EVENT#1 OCCURS ON ANY TRIAL WITH FIXEEEFEgEQE?LITY
P (THE FARAMETER WE ARE AFTER) AND EVENT#2 OCCURS WITH FROBARILITY 1~-PF
TRIALS OCCUR INDEPENDENTLY. THAT IS THE OUTCOME OF ONE TRIAL DOES NOT .
.EFFECT THE OUTCOME OF OTHER TRIALS.

" DOES THIS DESCRIRE YOUR PROCESS (YES OR NO)? .ves

LLR

PLEASE FILL IN THE BLANK.,
.EVENT#1 IS THE EVENT THAT... +5n.3pplicant is deserving

EVENT#1 IS THE EVENT THAT AN AFPLICANT IS DESERVING

..
WHAT IS YOUR BEST ESTIMATE OF THE FRACTION OF A
;18 FOUND THAT AN AFFLICANT IS DESERVING LL TRIALS FOR WHICH IT

"f
oS
-

IN GENERAL THE MORE TRIALS OF A BERNOULLI FROCESS WE '
OBSERVEs THE MO
,EgN;é?ggg?N?SGCQNFg?gS g¥S$UR ESTIMATE OF THE PARAMETER F, wé MUST” RE
] : U RIBUTION FOR Fy DECID
4YOU HAVE IN YOUR EXFERIENCE., ' - HOU MUCH CONFIDENCE

+
SUPPOSE THAT NONE OF THE NEXT OBSERVATIONS IS THAT!
AN AFPLICANT IS DESERVING ’

HOW MANY SUCH OBSERVATIONS WOULD IT TAK
ESTINATE BY HORE Than 55 AKE TO CONVINCE YOU TO CHANGE YOUR

-1

~HHIS—INDICATES THAT YOUR PRIOR DRISTRIRUTION FOR P IS!

A BETA DISTRIBUTION WITH FARAMETERS 100,000
. 0 AND
THE MEAN OF THIS RISTRIRUTION IS:.S500 Np 1600000
THE VARIANCE OF THIS DISTRIBUTION IS! -0.,0012
200

YOUR EQUIVALENT SAMPLE SIZE IS

t e g w g .
-

, A\l * | I “ on
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of the fraction of all trials resulting in Event #1. If your estimate is

greater (less) than .5, PRIORS will next ask:

SUPPOSE THAT NONE (ALL) OF THE NEXT TRIALS IS (ARE) THAT:
event #1

HOW MANY SUCH OBSERVATIONS WOULD IT TAKE TO CONVINCE YOU TO CHANGE

YOUR ESTIMATE BY MORE THAN .17

Supposing your estimate is greater than .5.. we hope that with each
successive occurrence of event #2 you would reduce your estimate of p. PRIORS
is asking you to determine how many successive of occurrences of event {#2
it would require to convince you to reduce your estimate of p by .1.

PRIORS will then present the prior distribution:

THIS INDICATES THAT YOUR PRIOR DISTRIBUTION FOR P IS:

A iTA DISTRIBUTION WITH PARAMETERS A AND B

THE MEAN OF THIS DISTRIBUTION IS: Mean

THE VARIANCE OF THIS DISTRIBUTION IS: Variance

YOUR EQUIVALENT SAMPLE SIZE IS: Equivalent sample size

The mean of the distribution represents your best estimate of p, the
variance reflects your confidence in that estimate. Your equivalent sample
size 1s a measure of the number of observations you feel your experience is

equivalent to. Naturally, the more you know about the process, the larger

your equivalent sample size should be.

3.2 The Poisson Process

A Polsson process is an arrival process in which the arrangement

and number of arrivals in one time interval do not effect any non~overlapping

time interval. Moreover, in a Poisson process arrivals come one at a time

and the ﬁrobability of an arrival in any short interval is proportional to

the length of the interval.

Poisson processes arise often in evaluation settings. Crimes, disasters,

customer requests, etc. can all be modeled as Poisson processes with the

=

(12)

parameter representing the average rate of "arrivals'. Consider for instance
the problem of estimating the number of husband-wife disputes in a city each
year. Since police records do not generally categorize incidents this way,
a process evaluator might first ride with pélice officers, interview those
who have previously called the police because of domestic eruptions and undertake
other process-related activities. Then, that evaluator would be interviewed
carefully to obtain a (personally derived) distribution for the annual rate
of husband-wife disputes that require police intervention.

‘As in Exhibit 3 PRIORS in formulating a prior distribution to this
Poisson process will first ask the evaluator to estimate the scope of his/her
experience:

YOU JUDGE YOUR EXPERIENCE WITH THIS PROCESS TO LE EQUIVALENT
TO OBSERVING HOW MANY EVENTS OR APRIVALS?

Obviously the longer and more detailed the process evaluation, the greater the
number of observaéions the evaluators experience will be equivalent to. PRIORS
next asks the evaluator for substantive information about the disputes:

WHAT IS YOUR BEST ESTIMATE OF THE AVERAGE TIME BETWEEN ARRIVALS?
;t is hoped that during the process evaluation the evaluator developed some
insight into the rate at which domestic disputes arise in the city. In answering

this question the evaluator should use appropriate units be they minutes, days

" or years.

After the evaluator has answered all of the appropriate questions
PRIORS will present his/her prior distribution as:

YOUR PRIOR DISTRIBUTION FOR THE ARRIVAL RATE IS A GAMMA
DISTRIBUTION WITH PARAMETER r '

THIS DISTRIBUTION HAS BEEN MODIFIED BY THE AMOUNT OF
TIME YOU HAVE OBSERVED THIS PROCESS t

THE MEAN OF THE DISTRIBUTION IS: mean

THE VARIANCE IS: wvariance

YOUR EQUIVALENT SAMPLE SIZE IS: equivalent sample size

The mean represents the evaluators estimate of the arrival rate A of domestic

disputes in the city and the variance reflects his confidence in this estimate,
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ARE YOU?

1. TESTING AN HYFOTHESIS?

2., ESTIMATING A FARAMETER?

3. UPDATING A FRIOR DISTRIBUTION?

4, NONE OF THE AROVE

"PLEASE TYPE THE NUMBER (1 - 4) OF THE APFROPRIATE OFTION.

EXHianr >

Y]

CLASSICAL STATISTICS VIEWS PARAMETERS AS CONSTANTS WITH FIXED YET UN-
KNOWN VALUES. WE INTEND TO VIEW THEM AS RANLOM VARIARLES WITH PROBARIL-
ITY DISTRIBUTIONS. THE FRIOR OISTRIRUTION FOR THE FARAMETER SHOULD
'DEPENDI ON THE DISTRIERUTION IT CHARACTERIZES.

THE PARAMETER YOU ARE TRYING TO ESTIMATE IS FROM!
1. A BERNDULLI PROCESS

.2, A PDISSON FROCESS

‘3. A UNIFORM PROCESS

"4, AN INDEPENDENT NORMAL FROCESS

'S, A NORMAL REGRESSION FROCESS .
6. HELP

7. QUIT

PLEASE TYPE THE NUMBER (1 - 7) OF YOUR CHOICE.

3

-

THE POISSON PROCESS CAN RE VIEWED AS AN ARRIVAL FROCESS IN WHICHS

1+ THE ARRIVALS IN ONE FERIOD OF TIME DO NOT EFFECT THE ARRIVALS IN ANY

.«  NON-OVERLAFPING FERIOD OF TIHE,

.2,  ARRIVALS COME ONE AT A TIME. '

.3+ THE PROBARILITY OF AN ARRIVAL IN A SHORT INTERVAL IS PROPORTIONAL TO
THE LENGTH OF THE INTERVAL.

- -
I

DOES THIS DESCRIBE YOUR PROCESS (YES OR NO)? wyes

LY

'YOU JUDGE YDUR EXPERIENCE WITH THIS PROCESS TO BE EQUIVALENT TO
,OBSERVING HOW MANY EVENTS OR ARRIVALS?

“;250 ) ' '

4

WHAT IS YOUR BEST ESTIMATE OF THE AVERAGE TIME BETWEEN ARRIVALS?
S . _ ,
15,0,

by

* YOUR PRIOR DISTRIEBUTION FOR THE ARRIVAL RATE IS A GAMMA
DISTRIBUTION

_WITH PARAMETER? 74.000

«THIS DISTRIBUTION IS MODIFIEDR BY THE AMOUNT OF TIME YOU HAVE
OBSERVED THIS FROCESS: 375,000

?THE HEAN OF THE DISTRIERUTION IS: 0,200000
THE VARIANCE IS¢ 0,000533
YOUR EQUIVALENT SAMFLE SIZE 1S3 754,000

! '

i

!
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3.3. The Uniform Distribution

A Uniform or Rectangular process is one in which the value obtained on
any trial is evenly distributed between a lower limit and an upper limit.
We assume that the value of the lower limit is known and that we are trying
tc determine the value of the upper limit.

Suppose it was suspected that the time among parolees in a special
parole program until recidivism is uniformly distributed between say one
day after release and some unknown upper limit. Némely, if someone were
released today on this parole program it is believed equally likely that
he/she will be arrested tomorrow or any other day before the upper limit
ie., given the value of the upper limit is U, the conditional probability that
a parolee will recidivate at time t after release is uniformly distributed
between L and U where L is known to be the earliest any parolee will recidivate.

In formulating a prior distribution to this uniform process PRIORS will
(as in Exhibit 4) ask the evaluator to assess the extent of his/her knowledge:

YOU JUDGE YOUR EXPERIENCE WITH THIS PROCESS TO BE EQUIVALENT
TO OBSERVING HOW MANY EVENTS?

In this case it is clear that an event is a recidivation and the more the
evaluator knows about the program and parolees in general, the larger his/her
answer should be. PRIORS will then ask the evaluator to provide a best lower
bound to the upper limit of the uniform process:

TO YOUR KNOWLEDGE THE LARGEST POSSIBLE VALUE OF ANY TRIAL
FROM THIS PROCESS IS CERTAINLY NO SMALLER THAN WHAT NUMBER?

After supplying PRIORS with an upper and lower bound to the possible values of
trials from the process his/her prior distribution will appear as:
YOUR PRIOR DISTRIBUTION FOR THE UPPER LIMIT OF THIS RECTANGULAR
PROCESS IS A HYPERBOLIC DISTRIBUTION WITH PARAMETER n : '
THIS DISTRIBUTION IS DEFINED FOR VALUES GREATER THAN = u

THE MEAN OF THIS DISTRIBUTION IS: mean
THE VARIANCE IS: varilance

Here n represents the number of outcomes observed and u the largest among
these. The mean reflects the expected value of the upper limit and the

variance indica --
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.JHIS DISTRIKUTION IS DEFINED FOR VALUES GREATER THAN! 10,0000

Mrmaroe nvray 1 .y

THE UNIFORM OR RECTANGULAR FROCESS IS ONE IN WHICH THE VALUE ORTAINED

ON ANY TRIAL IS EVENLY DISTRIBUTED EETWEEN A LOWER ANIt AN UFFER LIMIT. EXHB I Lf

WE ASSUME THAT THE VALUE OF THE LOWER LIMIT IS KNOWN AND THAT W y
TRYING TO DETERMINE THE VALUE OF THE UFPER LIMIT. IF YOUR CASE ?SAGEST
,ggisgigggITE THEN SIMFLY REVERSE THE AXIS AGAINST WHICH YOU ARE

. .

DOES THIS DESCRIEE YOUR PROCESS (YES OR NO)7? syes

YOU JUDGE YOUR EXFERIENCE WITH THIS PROCESS TO EE EQ
OBSERVING HOW MANY EVENTS? UIVALENT TO

o

264

Ry

TO YOUR KNOWLERGE THE LARGEST POSSIELE VALUE OF ANY TRIAL F
ROM THIS
?RDCESS IS CERTAINLY NO SMALLER THAN WHAT NUMEER?

. | , .
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?HAT IS THE SMALLEST VALUE OESERVATIONS FROM THIS PROCESS CAN EXHIBIT?

00,0

.

YOUR PRIOR DISTRIEUTION FOR THE UPPER LIMIT OF THI -
S RECTANG
.PROCESS IS A HYFEREOLIC DISTRIRUTION WITH FARAMETER? o g:AR

THE MEAN OF THIS DISTRIBUTION IS: 10,
THE VARIANCE 15 0.1887 A167
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other prior distributions the mean is not the evaluators estimate of the
upper limit. This is due to the fact that we do not want to over-estimate
the upper limit. If our initial estimate is too large, no amount of
additional information will correct this. ¥For this reason the evaluator
is asked to give a lower bound to the upper limit and not to give an

estimate' thereof.

3.4 The Normal Process With Independent Samples

An independent normal process is one in which the valué of each outcome
is selected from a normal or Gaussian distribution. We say the process is
indepéndent if the value of each outcome has no effect on any other outcome.
PRIORS assumes that the evaluator is trying to formulate prior distributions
fof the mean and the variance of the underlying normal distribution.

The independent normal is in many areas of evaluation the most common
process. Many traits are distributed approximately normally in populations.
Height, reading abillity and foot-size are for example often approximately
normally distributed in human populations. The size of errors in many
measurements 1s also often normally distributed. Moreover, it is often found
that 1f a trait is not normally distributed in a population, stratifying
the population leads to normal distributions within each stratum. However
iﬁ is unfortunately tempting to classify prbcesses rashly as normal.
Generally for example such traits as age, incoﬁe, etc., are not normally
distributed within heterogeneous populations.

Suppose that an evaluator is studying a reading program and knows that
the reading ability among enrolled students is approximately normally distri-
buted. This knowledge alone clearly reflects relevant prior information.
Moreover, the evaluator has some knowledge about the enrolled students' backgrounds
.a8 weil 4s knowing how similar programs have performed in the paét. This

fundamental expertise combined with such process-related activities as sitting
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in on classes, interviewing students, teachers and administrators, etc. should
provide the evaluator with valuable information about the reading ability of
students in the program. PRIORS will help assess this prior distribution by
first asking the evaluator to estimate the scope of his/her experience:

YOU JUDGE YOUR EXPERIENCE EQUIVALENT TO OBSERVING HOW MANY
OUTCOMES FROM THIS PROCESS?

In this case it is clear that the evaluator should equate his/her experience
with knowing the reading ability of some number of enrolled students. The
The more he/she knows about the program, the greater this numbér should be.
PRIORS will then ask the evaluator to simulate a normal sample:

PLEASE TYPE THE VALUES OF OUTCOMES YOU WOULD EXPECT TO OBSERVE

FROM THIS PROCESS ONE PER LINE. THERE SHOULD BE AS MANY VALUES

AS YOUR ANSWER TO THE LAST QUESTION. TYPE 'DONE' WHEN YOU ARE

THROUGH.
The evaluator's response should reflect not only his/her knowledge about
the average reading ability, but also about the variation among students.
Suppose for example the evaluator estimated his/her experience equivalent
to five observations. His/her response to the question about expected

observations should consist of five values reflecting both the average

reading ability and the degree of difference among students. An answer for

* example like:

.75

.75

75 .
.75 '
+75 .

'done'

is highly unlikely -- not everyone has the same reading ability.
Something like: '
.75

l60
<75

. +80

.85 : :
'done' ' .

is more likely. This sample suggests, as exhibit 5 shows, that the evaluator

believes the average reading level to be .75 and the variance to be small --

s
PO Bt

Loy

THE INDEPENDENT NORMAL FROCESS 1S ONE IN WHICH THE VALUE OF EACH
THE VALUE OF ONE

QUTCOME IS SELECTED FROM A NORMAL DISTRIBRUTION.
_OUTCOME HAS NO EFFECT ON THE VALUE OF ANY OTHER OUTCOME THE MEAN AND

VARIANCE ARE THE UNKNOWN FARAMETERS WE ARE TRYING TO ESTIMATE

"DOES THIS DESCRIBRE YOUR FROCESS (YES OR NO)? .ues

iy

-

FROM THIS FROCESS?

$

-
4: "»-».t - i

' PLEASE TYFE THE VALUES OF OUTCOHES YOU WOULD EXFECT TO OBSERVE FORM

THIS FROCESSy

ONE FER LINE.

“BE SURE TO USE DECIMALS!

YOU JUDGE YOUR EXPERIENCE EQUIVALENT TO OBSERVING HOW MANY OUTCOMES

pupwesy

YOUR MARGINAL PRIOR DISTRIBUTION FOR THE MEAN OF THIS INDEPENDENT

4,0000 DEGREES

0.7500

“YOUR MARGINAL FRIOR DISTRIBUTIOM FOR THE VARIANCE OF THIS
INDEFENDENT NORMAL FROCESS IS A GAMMA DISTRIEUTION WITH PARAMETER:

THIS DISTRIBUTION HAS BEEN MODIFIED TO HAVE MEAN! 114,2746

v

2 g — b TG

S TYPE ‘DONE‘ WHEN YOU ARE THROUGH.
.8
10,75
' t
) V0,60
. K
0) V0,75
. 3
O 4 +0480
1
C. - +0.85
:
C! «done
C .NORMAL PROCESS IS A STUDENT’S DISTRIBUTION WITH
'OF FREEDOM.
¢ ' THIS DISTRIEUTION HAS EEEN HODIFIED TO HAVE HEAN:
AND VARIANCE:  0,0035
¢
1,0000
¢ . THE VARIANCE I5:6529.3477

EXHIBIT &
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around -.01l. We can expect on the basis of this information that the
evaluator knows most of the students perform in the 0.45 to 1.0 range.
PRIORS will present prior distributions for the mean or average and
the variance as:
YOUR MARGINAL PRIOR DISTRIBUTION FOR THE MEAN OF THIS INDEPENDENT
NORMAI PRGCESS IS A STUDENT'S DISTRIBUTION WITH r DEGREES OF FREEDOM.
THIS DISTRIBUTION HAS BEEN MODIFIED TO HAVE MEAN: mean
AND VARTANCE: variance
YOUR MARGINAL PRIOR DISTRIBUTION FOR THE VARIANCE OF THIS INDEPENDENT
NORMAL PROCESS IS A GAMMA DISTRIBUTION WITH PARAMETER p
THIS DISTRIBUTION HAS BEEN MODIFIED TO HAVE MEAN: mean
THE VARIANCE IS: wvariance
Again the mean of the student's distribution reflects the evaluators estimate
of the average reading level and the variance, his confidence in that

estimate. The mear of the gamma distribution represents the inverse of the

evaluators estimate of the variance for the underlying normal distribution.

3.5 Normal Regression

In normal regression we are trying to predict or estimate the values
of some dependent random variable Y as a function of the variables X.
In this model we assume that the Y-values are normally distributed with
unknown variance and mean equal to some linear function of the X's. We
are trying to estimate the variance of Y and the function defining its mean.

Normal regression is common in evaluations since determining the value
of the mean of a parameter as a function of otﬁer parameters tells us how
they effect each other. The rate at which substances cause cancer can for
example be modeled as a regression problem. Suppose we are trying to deter-
mine the relationship between the heights of parents and that of their
children. We might suspect that thé height of children, Y, is a linear
function of the height of their fathers, X, and the height of their mothers,
Z, ie that:

Y=AX+BZ+C

We are assuming here that height is normally distributed. The problem now

reduces to estimating A,B,C and the variancé of Y,

gt g

T
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As usual we assume some prior knowledge about the relation among heights.
In formulating prior distributions for the vector (A,B,C) and the variance
of Y, PRIORS will, as in Exhibit 6, first ask how many components are in

the vector:

YOU ARE TRYING TO ESTIMATE THE MEAN OF Y AS A LINEAR FUNC
TION OF
HOW MANY INDEPENDENT VARIABLES?

In our case this will be three; father's height, mother's height and other
factors or (A,B,C). If however we had included say grandparents height this
would be correspondingly larger. Next PRIORS asks us to assess the extent
of our experience with the relationship:

YOU JUDGE YOUR EXPERIENCE EQUIVALENT TO MAKING HOW MANY OBSERVATIONS?
Clearly the more closely we have studied it the larger our answer should be.

Finally, as in the normal process we must simulate observations:

PLEASE TYPE IN THE VALUES OF OBSERVATIONS YOU WOULD EXPECT FROM THIS

PROCESS. FOR THE ITH OBSERVATION THE VALUE OF Y(I) IS THE FIRST

ENTRY FOLLOWED BY THE X(I,J)-VALUES. LEAVE A SPACE BETWEEN EACH

ENTRY. EACH OBSERVATION SHOULD START A NEW LINE. THE
. RE SHOULD BE
AS MANY OBSERVATIONS AS YOUR ANSWER TO THE LAST QUESTION.

Here too a response like:

Y3 X(1,I)
5.7 6.0 5.5 1
5.7 6.0 5.5 1
5.7 6.0 5.5 1

~

for three observations is highly unlikely -- not everyone is the same height.

Supposed we assessed our experience equal to five observations and responded

with the observations: .

Y(I) X(1,J3)
5.7 6.0 5.5 1
6.0 6.1 5.2 1
5.2 6.1 5.51
5.9 5.8 5.4 1
5.05.25.51

This would reflect more accurately our experience in that for example a man
6.1 ft is likely to have a wife 5.2 ft and a son 6.0 ft or a wife 5.5 £t and
a son 5.2 ft. Your answer should reflect your knowledge of the variation

within the populations as well as the relations among them. Should you



THE NORMAL REGRESSION FROCESS ASSUMES WE ARE TRYING TO FREDICT OR

- ESTIMATE THE VALUES OF SOME DEFEMDENT RANDOM VARIAERLEs Ys AS A LINEAR
FUNCTION OF THE INDEFENDENT VARIABLES, X(.rJ). IN THIS MODEL WE
ASSUME THAT THE Y(J)-VALUES ARE NORMALLY DISTRIEKUTEL' WITH UNKNOWN

( VARIANCE AND MEAN EQUAL TO SOME LINEAR FUNCTION OF THE X(.rJd)-

VALUES. WE ARE TRYING TO ESTIMATE THE VARIANCE OF Y AND THE SLOFE

OF THE LINE.

DDES THIS DRESCRIBE YOUR PROCESS (YES OR NO)? .des
YOU ARE TRYING TO ESTIMATE THE MEAN OF Y AS A LINEAR FUNCTION OF HOW
MANY INDEFENDENT VARIABLES? .
.
L.
.30
YOU JUDGE YDUR EXPERIENCE EQUIVALENT TO MAKING HOW MANY OESERVATIONS?
*
...
{l :05'
- PLEASE TYPE IN THE VALUES OF OBSERVATIONS YOU WouLl EXPECT FROM THIS
.PROCESS.
Y(I) AS THE FIRST ENTRY IN ROW I FOLLOWED RY :THE X(IsJ)-VALUES.
LEAVE A SFACE BETWEEN EACH ENTRY. BE SURE TO USE DRECIMAL FOINTS.
LWAIT FOR THE ‘!’ PROMFT.
Y¢I) X{I»J)~VALUES

.
L ..
4547 6.0 5.5 1.0

—~
s

06.0 6.1 5.2 1,0

L

TS THIS CORRECT? .ues

v

0]
ot
O }.3502 641 5.5 1.0
K
e TS.Q_S.B 5.4 1,0 , .
:,
o 540 5.2 5.5 1.0
’THIS DATA HAS BEEN READ AS!
o . YD) X{I»J)-VALUES
5.7000 6.0000 5.5000 1,0000
o 4.,0000 6.1000 5.2000 1.,0000 '
5.,2000 6.10600 $5.5000 1.0000
. . 5.9000 5.8000 5.4000 1,0000
C 5.0000 52000 35,5000 ,1.0000
C

YOUR MARGINAL FRIOR DISTRIEBUTION FOR THE SLOPE OFTHE LINE
C -¥8 A 3 DIMENSIONAL STUDENT’S DISTRIBUTION WITH 2
_ DEGREES OF FREEDOM.
THE MEAN OF THIS DISTRIBUTION IS¢
C 0.,4224 -1,9804 13.8248
IT HAS NGO PROFER VARIANCE.,
THE CHARACTERISTIC MATRIX OF THIS PRIOR DISTRIERUTION IG¢

. 171,1000 = 158,1900 29,2000
( - 158,1900  144.9500 2741000
29,2000 27,1000 5.,0000 .
¢ “YOUR MARGINAL FRIOR DISTRIBUTION FOR THE VARIANCE OF THE Y'’S IS

A GAMMA DISTRIRUTION WITH FARAMETER: 0,0000
THE HEAN OF THIS DISTRIEUTION 1S3 7.1612
THE VARIANCE IS 51.2835
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make a mistake here, PRIORS will give you the chance to correct it when you

are through.

Given this information PRIORS will present your prior distributions for

the vector (A,B,C) and the variance of Y as:

YOUR MARGINAL PRIOR DISTRIBUTION FOR THE COEFFICIENTS OF THE

X(I,J)~VALUES IS A n DIMENSIONAL STUDENT'S DISTRIBUTION
WITH r DEGREES OF FREEDOM.

THE MEAN OF THIS DISTRIBUTION IS:

, mean vector

THE CSVARIANCE MATRIX IS:
covariajice matrix

THE CHARACTERISTIC MATRIX OF THIS PRIOR DISTRIBUTION IS:
characteristic matric

YOUR MARGINAL PRIOR DISTRIBUTION FOR THE VARIANCE OF THE Y's
IS GAMMA DISTRIBUTION WITH PARAMETER: p

THE MEAN: OF THIS DISTRIBUTION IS: mean
THE VARTANCE IS: wvariance

The mean vector of the Student's distribution represents the evaluators

estimate in this case of the values (A,B,C) and the variance reflects his/her

confidence in that estimate. The characteristic matrix is useful for updating

the distribution.

The mean of the gamma distribution is the inverse of the evaluator's

estimate of the variance of Y.
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5. Posterior Distributions and Updating

The beauty of the priér distributions we formulate with PRIORS is
that they readily allow the addition of improved information. We call
this pro

cess of adding information to a prior distribution "updating".

The resulting updated distribution is a "posterior distribution'". As

we mentioned before the prior distributions formulated with PRIORS are

conjugates — that is the posterior is from the same family as the prior.

In fact should the evaluator choose to add additional new information, he

should treat the posterior exactly as a prior.

To update a prior distribution with PRIORS you must have:

1. formulated a prior distribution with PRIORS and have the descyiption

of the distribution on hand.

2. obtained further statistical information about the process.

PRIORS will proceed by asking you about your present prior distribution,

then about the additional statistical information. Simply answer the ques-
tions and PRIORS will supply you with a description of your posterior
distribution. In Exhibit 7 our original prior distribution was:

a gamma distribution
with parameter: 74.000.

The distribution has been modified by the amount of time we had
observed the process: 375.000 .

The mean of the distribution was: 0.2000.

The varience was: 0.000533

Our equivalent sample size was: 75.000

Since formulating our prior distribution we observed 25 arrivals with

average interarrival time 4.1. Note that after updating a prior we obtain

a pcsterior distribution however should we wish to update again, this posterior

would become our present prior distribution.
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1. TESTING AN HYFOTHESIS?

2¢ ESTIHATING A FARANETER?

3+ UFDATING A PRIOR DISTRIBUTION?

4. NONE OF THE AROVE

PLEASE TYPE THE NUMEER (1 - 4) OF THE APPROFRIATE OPTION.
H
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EXHIB T

THE BEAUTY OF THE PRIOR DISTRIBUTIONS WE FORMULATE WITH THIS FROGRAM
IS THAT THEY READRILY ALLOW THE ADDITION OF IMFROVED INFORMATION. WE
CALL THIS PROCESS OF AINING INFORMATION TO AN ALREALNY FORMELD FRIOR
"UPDATING®, TO DO THIS WE ASSUME YOU HAVE ALREALY FORMULATED A FRIOR
DISTRIBUTION USING THIS PROGRAM AND THAT SINCE THAT TIME YOU HAVE HALE
ADDITIONAL ORSERVATIONS OF THE FROCESS. IS THIS THE CASE? .des

WE ASSUME FURTHER' THAT YOUR FRIOR DISTRIBUTION IS FOR THE PARAMETER(S)
OF ONE OF THE FOLLOWING PROCESSES?

1. A BERNOULLI FROCESS.

2., A POISSON FROCESS.,

3. A UNIFORM FROCESS.

4. AN INDEPENDENT NORMAL FROCESS.

Se A NORMAL REGRESSION FROCESS.

é. NONE OF THE AROVE

, PLEASE TYPE THE NUMBER (1 - &) OF YOUR PROCESS.

]

L2

WHAT IS THE EQUIVALENT SAMPLE SIZE OF PRESENT PRIORT

L'.
L0250

‘.

WHAT IS THE MEAN OF YOUR PRESENT PRIOR DISTRIRUTION?
:
16042

.

SINCE FORMULATING YOUR PRIOR DISTRIBUTION HOW MANY ARRIVALS HAUE You
ORSERVED?

H
025,

WHAT IS YOUR BEST ESTIMATE OF THE AVERAGE INTERARRIVAL TIME FOR THESE

-LAST OBSERVATIONS?T

R |
0401 . ! . .

L

YOUR POSTERIOR LISTRIEUTION FOR. THE ARRIVAL RATE IS A GAMMA .
DISTRIEBUTION

,NITH PARAMETER!? 9?.000

"THIS DISTRIBUTION IS MODIFIED BY THE AMOUNT OF TIHE You HﬁVE
,OBSERVED THIS FROCESS: 477.500

"THE MEAN OF THE DISTRIEUTION IS! 0,209424
THE VARIANCE IS: 0,000439
,YOUR EQUIVALENT SAMFLE SIZE IS! 100,000

NOULD YOU LIKE TO SEE A FLOT OF YOUR CUHULATIUE POSTERIOR
DISTRIBUTION? sno

WOULD YOU LIKE TO MODIFY THIS DISTRIBUTION (YES OR NO)? ;no

.

THE POSTERIOR DISTRIEUTIONS YOU HAVE FORMULATED ARE NOW YOUR PRESENT
PRIOR DISTRIEKUTIONS! TO UPDATE THESE DISTRIBUTIONS SIMFLY TREAT THEM
,AS PRIOR DXSTRIBUTIONSo
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5.1 Plots of Cumulative Distributions

After describing your prior distribution(s), PRIORS will ask if you

would like to see a plot of your cumulative prior distribution. Should

you respond "yes" (or "y'") to this question, PRIORS will produce a point

plot of the probability the parameter in question will be less than the

independent variable. If you do not wish to see this plot type "no" (or '"n'").

In Exhibit 8 the independent variable ranges from zero to XMAX = 1.0 and

each unit is scale unit = ,1 . Whereas the ordinate or y-axis-ranges from

zero to 1.1 and each unit is .0l.

The probability that the parameter

is less than 0.5 1s about .02 and the probability it i1s less than 0.9
is about 1.0. . ‘

Note plots will not be produced for multidimensional distributions.

5.2 Modifying A Distribution

After formulating a prior distribution you may feel it is not exactly

what you want. Should this be the case simply respond "yes'" (or "y") to

the question:
Would you like to modify this distribution (yes or no)?
As in Exhibit 9 PRIORS will ask you whether you would like to change

various parameters. Simply answer the questions appropriately and PRIORS

will produce a new prior., If you ask to modify a posferior distributdion,

i.e. if you modify a distribution immédiately after updating 1it, yod will
be modifying the entire distribution - i.e. not your previous prior nor

the additional information, but the updated distribution itself.
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. «+YES OR NO)? .yes

" THE POISSON PROCESS CAN RE VIEWED AS AN ARRIVAL. PROCESS IN WHICH! EXH‘&)T‘ Ci

1. THE ARRIVALS IN ONE FERIOD OF TIME DO NOT EFFECT THE ARRIVALS IN ANY

i NON-OVERLAFFPING FERIOD OF TIME.

2. ARRIVALS COHE ONE AT A TIME.,

"3, THE PROBARILITY OF AN ARRIVAL IN A SHORT INTERVAL IS FROFORTIONAL TO
THE LENGTH OF THE INTERVAL.

DOES THIS DESCRIRE YOUR PROCESS (YES OR NO)? .ves

YOU JUDGE YOUR EXFPERIENCE WITH THIS FROCESS TO ERE EQUIVALENT TO
.OBSERVING HOW MANY EVENTS OR ARRIVALS?

R

§1°°o

WHAT IS YOUR BEST ESTIMATE OF THE AVERAGE TIME BETWEEN ARRIVALS?
.
4,775

. YOUR PRIOR DISTRIBRUTION FOR THE ARRIVAL RATE IS A GAMMA

DISTRIERUTION

WITH PARAMETER? 99.000

;THIS DISTRIBUTION IS MODIFIED RY THE AMOUNT OF TIME YOU HAVE
.OBSERVED THIS FROCESS: 477.500

‘THE MEAN OF THE DISTRIRUTION IS5: 0.209424
THE VARIANCE IS:! 0.,000439
.YOUR EQUIVALENT SAMPLE SIZE IS: 100,000

"WoULD YOU LIKE TO SEE A PLOT OF YOUR CUMULATIVE PRIOR
,DISTRIBUTION? rio

¥ ta

WOULD YOU LIKE TO MODIFY THIS DISTRIBUTION (YES OR NO)? .ues

WOULD YOU LIKE TO CHANGE THE NUMBER OF TRIALS YOU HAVE SEEN?

HOW MANY ARRIVALS HAVE YOU SEEN?
]
L4110,

WOULD YOU LIKE TO CHANGE THE AVERAGE TIME RETWEEN ARRIVALS (YES OR NO)? .wes

WHAT IS THE AVERAGE TIME BETWEEN ARRIVALS? ’
. B ’
.+4.8

YOUR PRIOR DISTRIEUTION FOR THE ARRIVAL RATE IS A GAMMA .
DISTRIRUTION

MNITH PARAMETER! . 109,000

JTHIS DISTRIBUTION IS MODIFIED RY THE AMOUNT OF TIME YOU HAVE
OBSERVED THIS PROCESS: 528,000

" THE MEAN OF THE DISTRIRUTION IS: 0,208333
THE VARIANCE IS! 0.000395
YOUR EQUIVALENT SAMPLE SIZE IS! 1104000 '

MOULD YOU LIKE TO SEE A PLOT OF YOUR CUMULATIVE PRIOR
,DISTRIBUTION?ri0
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APPENDIX I
The Distributions

- The Bernoulli Process

Has distribution: Probability of event #1 = p
Probability of event #2 = 1-p

Prior distribution: H Beta distribution with parameters a and b

b - 1)! - -
Ba,b (p) = E: E 1)}%b - 1) pa 1 1 - P)b 1 for 0 <p L1

a corresponds to the number of times event #1
was observed
b corresponds to the number of times event #2
was observed
. a8+ b 1s the equivalent sample size.

Posterior distribution

_ (at+a'+b+b' - 1)! ata' - 1

i bb! - 1
ata’;bib' P = Cavat - DT(orb = DT P -

B

for 0 <p <1

a' corresponds to the number of times event #1
was observed since formulating prior
b' corresponds to the number of times event #2
was observed since formulating prior
a' + b' is actual sample size since formulating prior
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g where L is lower limit and U is upper limit of process
The Poisson Process f
“ . 1bution: ,é Prior distribution: A Hyperbolic distribution with parameter-n defined
Has distribution: v for values greater than v
’ k -AT -
= "(‘a—'r)—‘e_— = 0 1 ¢ e a - n - l
Py, r® = ==5 for k = 0,1, By on(® = -1 o1 for t > v
n, Vv, (t - L)
é
where A is average arrival rate ;
and T is the elapsed time. i where n is the number of observations and v ig the largest value observed.
Prior distribution; A Gamma distribution with parameter r modified by t i Posterior distribution:
Aty x . ot - 1
_ e (At) . H (t) = (n+n' - 1) W' -1
S,e M ! i VL (& - 1y’
T
) where r is the number of events observed e where n' 1s the number of additional observations V' is the largest value
and t is the length of time observing the process. Lt observed in n+n' trials,
‘ i
Posterior distribution: . : § The Normal Process
- ! +p! ; Has distribution:
. O - & A(e+t') A (e+e')FHE §
r+r', t+t’ (r+r')! 3 .
o ; "'_1_... 2
’ - P d,_(t)=l e, ¢ (E-0)" for - o <t <w
. 3 .
! u
r' corresponds to the number of additional observations in t' additional l ’
time units. . | ‘/2ﬂ02 .
The Uniform Process v il where u is the mean and 0% is the variance
- |
. . z?g ’ '
Has distribution: ST Marginal Prior Distribution for the mean: A Student's distribution with
r degrees of freedom, .
P (t) = 1 for L <t <Uu

U,L U-L




(4)

n
n r n -
5_(t) = [P 2 @+s @-wd 2 Vo2
J T [ﬂ(r/2)

where n is the number of observations r+l u is their mean and s is their variance.

Posterior distribution:

' - nin'
rwn*n') S mn' (t - a2 o)
(t) = 2 (r+n') (r+n' + " 2
ST [ERS . :
where n' is the number of subsequent observations u" = (n'u'+nu) /ntn’

\ and s" = [(n' - 1)s' + n'u'2 T+ rs - nu2 - (n+n')u"2]/r+n' u' is the

mean of the subsequent observations and s' is their variance.

Marginal Prior Distribution for the variance:

A Gamma Distribution with
parameter p.

-

6, (6) = & (p+1) st ((P+l)st)p‘(2+_1;)_s
Ps

n-3
P is 35 and 8 is the sample variance

Posterior Distribution

n'

p+
¢ o0t . (o + aly 1)s"t (G + + 1)s"t) T(p + B + 1)s"
" p+__. = 2 ; —_——-‘-_—i—_' 2
2 . “(p + E—O!

S —
IRERE IR

ARSI A N

T 22 e e Bt e bk L

(5)

1 ~2

the mean of the distribution is 23 where 0 1is our estimate of the variance

of the normal process.

Normal regression

Has distribution:

2 2

Qs

27

where IB X, .
u ij

Prior distribution for B:
r degrees of freedom.

is the expected value of ti

An n dimensional Student's Distribution with

- rin _ -1 1/2
(t)—rr/z [ER - D e+ (£ - wEY T T7) 2
P&—n
where u is the mean and c¢ is the co-variance matrix.
Posterior distribution:
r+m'+n r+m'-2 - r+m'+n
g Gy - (m) r'( 2 D (et e-u) T D e H Tz

n,r+m' n/2 [rtm'
: U P(Z D

r'm -2 ""l | 1/2 T
™m'

where m' is the number of subsequent observations

c"“1 = [c'v+cv]"l/v"

)

X



(6)

Marginal Prior Distribution for

the variance:
parameter p.

A Gamma Distribition with

‘ E+DVE)P  (pr1)v
6 (1) = o~ (HDVE REVE

where p is 1/2 r -1

Posterior Distribution:

- EL A " ' . m' '
G . m' (t) =e PFHF+ vt ((p + B4 1y)yne)P + 5 (p+B 4 )y
p+~2 2 1 2
- (p+—;l)3

The mean of this distribution is the inverse of our estimate of the variance.
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