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Abstract 

This paper introduces a simple "contingent experimental 

design" and outlines how the contingent design would operate 

and how it would be evaluated. The familiar "before-and-after" 

type of experiment is modified so that the duration of the 

"baseline" period, rather than being fixed before the experi-

ment, is made contingent on the experimenter's prior estimate 

of the experimental impact and on the baseline data as they 

appear. At the conciusion of each day of the baseline period, 

a decis~on is made as to whether to terminate the baseline at 

that t.ime, weighing the costs of extending the baseline by one 

day againat the benefits of better estimating the experimental 

impact. An analytic framework is proposed for making this dec i-

sion and for comparing the contingent design against an alter-

native having a baseline period of fixed duration. 
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1. INTRODUCTION 

This paper addresses the following question: given that 

one is planning a prospective experiment of the "before-and­

after" type, how long should one extend the "baseline" period? 

One simple answer is to make the baseline as long as the anti­

cipated trial period. A more intriguing answer, which this 

paper explores, is to make the 6uration of the baseline period 

contingent on the baseline data as they unfold. Thus we imagine 

that at the conclusion of every day of the bas,eline period, the 

managers of the experiment have the option of either beginning 

the trial period on the next day or extending the baseline 

period one more day and then reconsidering the question. We 

develop below an algorithm for making that decision. 

There are many possible contexts in which this problem 

of contingent exper~mental design might be analyzed. For con­

creteness we pick one which seems both tractable and realistic, 

making the fo11(W'1g five assumptions. First, we assume that 

the data are counwJ of events generated by homogeneous ~oisson 

processes with rates Ab counts/day during the baseline period 

and RAb during the trial period. For instance, the events 

may be serious crimes, the experimental treatment an incre~se 

in police patrol presence, and the goul of the experiment an 

estimate of the parameter R [l] • Second, we assume 

that the potential duration of the baseline ~b is unlimited 

but the anticipated duration of the trial period is fixed at It. 

). 

? 
I 

.• 2 -

Third, we assume that the cost of any day of baseline data 

collection is C
b 

and that of any day of trial operation is 

C
t 

> C
b

• This creates a pressure.to minimize the duration 6f 

the baseline which trades-off against the need to extend the 

baseline period to smooth out sampling fluctuations and better 

estimate the true experimental impact. Fourth, we assume that 

the managers of the experiment have a prior sense of the 

possible values of R and their re~ative credibilities. This 

prior distribution fo~ the experimental impact is essential 

for the real-time reaction to baseline data. Fifth, we assume 

that the only other costs of note are the costs of errors in 

the estim~tion of R, the experimental impact. In general, 

these costs will be a function both of the actual value of R 

and of its estimate R. The decision itself is treated as 

costless, or as part of the fixed costs of data analysis. 

2. DECISION RULE FOR 'TERMINATING' 'BASELINE PERIOD 

After any day during the baseline period, the decision 

to be made is to stop the baseline then or to add one more day. 

If the baseline period is s~opped after Ib days, the total 

cost of the experiment is the cost i~ errors of estimation plus 

the implementation costs CbIb + CtI t • If the baseline period 

is stopped after Ib + 1 days, the total cost is the cost in 

errors of estimation plus Cb(Ib+l) + CtI t • Let the cost or 
,1\ 

disutility of estimating impact R conditional on the true 
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impact R 
o 

be 

after Ib days ("now") is 

,.. 

- 3 ,-

Then the total cost of stopping 

Cnow = U(RhowIRO)+ CbIb+ CtI t (I) 

and the total COBt of stopping after Ib + I days ("next") is 

,.. 

Cnext = U(RnextIRo) + Cb(Ib+l) + CtI t (2) 

In general one should conclude the baseline period whenever 

C < C now next ( 3) 

which condition corresponds to 

,.. ,.. 
U(RnowIRo) - U(RnextIRo) < Cb • (4) 

,.. ,.. 
Of course, the estimates R and R now next will be random 

variables whose values will be unknown at the time of the 

decision. Suppose that during the first Ib days of the base­

line period there have been Nb random events, that during 

the next baseline day (if it is decided to extend the baseline 

period) there will be m additional events, and that during the 

It days of the tt"ial period there ,~ill be n ra.ndom events. 

In that case the estimates of experimental impact would be 

,.. , n/.I t (I) ( ) 
Rnow = nb/1b = 'r; ~ (5) 

\ 

I 

i 
I 
i
" 
I 
1 

t 
). 

t 

and 
,.. 
R next 
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(6) 

At the time of the decision both m and n will be unknown, 

but both will presumably be generated by Poisson processes with 

parameters Ab and AtI t respectively. The parameter Ab can 

be estimated by Bayesian updating [2] from the accumulated ba~e-

line data (I
b 

and Nb). The parameter At would then be 

estimated as RoAb 

As shown below, this line of analysis produces the probabi­

lity distributions of m and n, which via (5) and (6) provide 
,.. 

the d~stributions of U(R IR) ... now 0 

,.. 
and U(R tlR) nex 0 

in (4). 

It is reasonable and customary when faced with a stochastic 

criterion like (4) to base decisions on the expected values of 

the stochastic terms [3]. Thus the criterion for stopping the 

baseline after Ib days becomes 

(7) 

Finally, we note that the true experimental impact Ro 

cannot be known at the time of the decision, but a prior dis­

tribution is presumably available. Taking this prior into 

account leads to the unconditional expected cost decision rule: 

stop the baseline period after Ib days whenever 
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~ (R I R )J - E r, (" I~} L now 0 ~ Rnext Ro~ feR ) dR < Cb o 0 

" " 

(8 ) 

Note that since both R and R are funutions of now next 
the number of events in the baseline period, Nb , the use of 

(8) may produce differen~ decisions depending on the p&rticular 

history of events over the baseline period. Whether a particular 

history calls for t!erminating the baseline will depend on the 

actual current count Nb , on the form of the disutility function 

for errors in estimation (e.g., are over-estimates more serious 

than under-estimates?) and on the prior estimate of experimental 

impact. This general format can accomodate two very different 

types of evaluator. One, whom we might call t~e "scientis~", 

would seek to establish "objective" evidence of experimental 

impact by using a diffuse prior and by reacting equally to over­

estimates and under-estimates. The other, whom we might:, call 

the "advocate", would seek to "confirm" a rather strong prior 

and would have different sensitivities to false-negative and 

false-positive conclusions. Without here arguing the merits of 

these philosophical approaches to evaluation, we note that 

either perspective can be embodied in the decision rule (8). 

3. PROBABILITY DIS,TRI'BUTIONS OF'l'HE ESTIMATES' 'OF EXPERIMENTAL 
IMPACT 

We noted above that the estimation errors conditional on a 
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R 
o have distributions prior estimate of experimental impact 

which depend (through (5) and (6»on m , the number of events 

in the next baseline day if the baseline is extended, and on 

n , the number of events in the trial period. This section 

derives the probability distributions of the random variables 

and n and their joint distribution. 

The number of events m in any baseline day has, by 

&ssumption, a Poisson distribution \~ith parameter Ab • Thus 

m 

Now the exact value Ab cannot be known, but a Bayesian estimate 

can be made from the baseline data. Assume that before the base­

line data collection begins we have a di~fuse prior distribution 

for Ab (one could instead chose a logarithyrnically flat prior 

or a gamma prior with no essential change in the form of the 

results to be derived). It is well known [2] that updating this 

prior with the baseline data of Nb Poisson events in Ib days 

leads to a gamma posterior distribution for Ab 

N 'I bO 
> 

,Ab 0 (10) 

Combining (9) and (10) we get the unconditional distribution of m , 

the count in the next baseline day 
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A similar analysis holds for n, the number of events in , 

the trial period~ conditional on the estimates R of experi­
o 

mental impact and Ab of baseline rate. During a trial period 

of duration It the conditional count will be Poisson 

, n > 0 • (15) 

We can next use (10) to obtain 

-- ----~ --~~-- --- --

P 
i 

- 8 -

Prob en I RoJ = fOO fexp [-RoAbItJ (R' I ) n/n'] x l oll.b t . 

Ab':::O 

= 

(16) 

(17) 

(18) 

, n > 0 • (19) 

We note that since the counts m and n both appear in 

expression (6) for Rnext, we require their joint distribu­

tion. Conditional on Ro and Ab , the counts m and n 

are independent Poisson variates with parameters Ab and 

RoAbIt ,respectively (since they arise in non-overlapping 

time periods). 
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(20) 

( 21) 

Again using (10) to uncondition with respect to Ab 

Prob [m,n/R ] o = Im 

[exp (-AblAb mimI] x [exp (-RoAbIt ) (RoAbIt)n/nl] 

Ab =0 

dA 
b 

(m+.n+Nb ) I 

• 

(22) 

(24) 

(25) 

"I 
f 

I } 

J 
L, 
" 

~ " 
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~ , 
1\1" 

} 
l' 
j; 
1 , 
f 
" • .. 
I 
1> 
) 
) 
1 
! 
¥ , 
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Note that the counts m and n are not independent, since . 
(25) is not (14) times (19). Expressions (19) and (25), 

together with (5) and (Ii), would be used in the decision rule 

(8) tc decide, after observing Nb events in Ib days, whether 

or not to terminate the baseline period. Unfortunately, even 

for a simple disutility function such as (R - Ro) 2 , it does 

not appear to be possible to obtain an analytical expression 

for the decision rule (8) or even for the conditional decision 

rule (7). It should be quite easy to obtain numerical results 

on a digital computer, however. 

To summarize, terminating the baseline period at Ib I 

having observed a total of Nb events and believing the true 

experimental impact to be Ro' on~ would expect estimates of 

impact of the form 

> n - 0 

where 

R I )n 
(R:I~ +Ib 

If one were to extend the baseline by one day, the possible 

estimates would be of the form 

Rnext = eC) (~:t~) 

(5) 

(19 

(6) 
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where 

( 
Rol t . )n( .. '1' )m 

l+R I +I l+RI +I .(25) 
o t bot b 

If, instead of the diffuse prior, one were to choose a gamma 

prior for the baseline rate 

f O\b) 
Tk+l k 

(-TAb) = k""! Ab exp (26) 

then one merely replaces Ib with Ib +T and Nb with Nb+k 

in the probability expressions, i.e., 

Prob en] (27) 

and 

Prob[n,m] 

(28) 

11 

,',',:, r' 
I 

~ 

I~ r , 

-----, -~.~--

- 12 -

4. COMPARISON OF CONTINGENT AND' F'IXED'-LENGTH BASEL'INESBY MONTI1~ 
CARLO SIMULATION 

We have developed above an algorithm for contingent term­

ination of the baseline period in a before-and-after type experi-

menta Given a prior guess about the experimental impact Ro' 

a prior for the baseline rate Ab , a set of disuti1ities expressed 

" by U(RIRo) and Cb , and the current baseline duration Ib and 

count of events Nb , one can numerically p.va1uate the decision 

rule (7) and decide whether or not to stop the baseline. 

In this section we address the issue of comparing this 

contingent approach with fixed-length baselines. Several fixed­

length alternatives come to mind: (1) equal baseline and trial 

periods; (2) longer baseline, so that equal c,osts are devoted to 

baseline and trial periods; (3) 10nger tri~l period, so that the 

(presumably) smaller rate of events during the trial period can be 

estimated with equal precision. Whatever the choice ot tixed­

length alternative, we require both a measure of comparative 

performance and a mechanism f.or estimating the measure. The 

measure to be used is bc\sed on that used in the decision rule; the 

mechanism is Monte Carlo simulation. 

Earlier we based the decision to terminate or extend the 

b~seline on a measure which combined the cost of error. in estima-

tion of the experimental impact with the cost of the baseline 

data collection. To be consistent, we must use this same measure, 

only nO~7 we compare the contingent base1inp. against a tixed~length 

a1tt~.rnative. 'Let c index the contingent case and' f the fixed­

length case, and let the true measure of experimental impact be R* 
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Then the performance measure 

A = [Uf(R')+CbIbf+CtIt] - [UC(R*)+CbIbC+CtIt] 

= [Uf (R*) -Uc (R*)] + [Cb (Ibf-IbC )] 

(29) 

(30) 

Thus the relative advaotage A depends on the difference in 

estimation errors and the difference in baseline durations (and 

therefore costs). Any value of A> 0 indicates that the contin-

gent approach out-performed the fixed lenqth alternative. 

One would expect that the relative RAv~ntage of the con­

tingent approach would depend on five factors: the prior dis­

tribution of experimental impact, the prior distribution of the 

baseline rate, the length of the trial period, the form of the 

disutility function for estimation errors, and the cost of base­

line data collection. All five of these factors represent para­

meters in a Monte Carlo simulation, so a full investigation of 

the relative merits of the contingent approach promises to be a 

rather large undertaking. For any given settings of the last 

three factors, we could systematically explore the dependence.of 

A on the first two factors. A useful format for reporting the 

simulation results would be as shown in Figure 1. Any prior dis­

tribution for Ab could be summarized by its mean squared error 

("M.S.E.") around the true val:ue. For a given M.S.E one would 

choose a prior estimate of impact Ro and. run several simulations 

14 
,1 
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FIGURE 1: FORMAT FOR DISPLAY OF MONTE CARLO COM;l?ARISON 
OF CONTINGENT VB. FIXED-LENGTH BASELINES 
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to form an estimate of the relative advantage of the contingent 

approach. 
\~) 

The simulations themselves would be executed in accor-

dance with the flowchart shown in Figure 2. Initialization 

involves selection of those parameters which will not be varied 

during the course of one simulated experiment, such as the 

prior distributions for baseline rate Ab and the hypothesized 

experimental impact R , their actual 
0 

values A* b and R* , 

the duration of the fixed-length alternative Ibf , the duration 

'" of the trial period It , and the disutilities u (R I Ro) and Cb 
Simulation of a day of baseline or trial requires the generation 

of Poisson counts at a given rate for a given period of time. 

Numerical solution of (7) constitutes evaluation of the decision 

rule. The output of any given simulation would be a value of 

A, the relative advantage of the contingent approach. 
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FIGURE 2: FLOWCHART OF SIMULATION COMPAHING CONTINGENT 
wITH FIXED-LENGTH BASELIrlE 
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