
i 

I 
l 

----- ------"~~---

National Criminal Justice Reference Service 
------~~--------------------------------------------------nCJrs 

This microfiche was produced from documents received for 
inclusion in the NCJRS data base. Since NCJRS cannot exercise 
control over the physical condition of the documents submitted, 
the individual frame quality will vary. The resolution chart on 
this frame may be used to evaluate the document quality. 

I 0 ~: III"~ 111IJ:2.5 

II~~'~ W I!~~ 2.2 II: w 
l:.: D~ 
J:;: 

I I I :;t M:& 2.0 I' t;,,~ 

111111.25 111111.4 111111.6 

MICROCOPY RESOLUTION TEST CHART 
NATIONAL BUREAU Of STANDARDS.J96H 

Microfilming procedures used to create this fiche comply with 
the standards set forth in 41CFR 101-11.504. 

Points of view or opinions stated in this document are 
those of the author(s) and do not represent the official 
position or policies of the U. S. Department of Justice. 

National Institute of Justice 
United States Department of Justice 
Washington, D. C, 20531 

5/7/84 

o 

\ q 

BINCLUS: 

--

NON-HIERARCHICAL CLUSTERING OF ~~INARY DATA 

Norman Cliff 

University of Southern California 

Douglas J. McCormick 

American Telephone and Telegraph 

Judith Zatkin 

University of Southern California 

Robert Cudeck 

University of Minnesota 

Linda M. Collins 
J ~: • 

University of Southern Califor,nia 

sep 6 19R,-;;; 

ACQUISITIONS 

.is paper iS,the result of longterm collaboration among the 
authors on th~s research, and the order of authorship is to 
some extent arbitrary, not necessarily representing relative 
degrees of contribution to the work. The research was supported 
in part by the National Institute of Justice, Grant 
#79-NI-AX-0065. 

If you have issues viewing or accessing this file contact us at NCJRS.gov.



.. 

Abstract 

Available methods for grouping together variables into more 

or less homogeneous sets have some shortcomings when applied to 

binary data such as test items. This paper describes a form of 

cluster analysis designed to maximize within-set homoge~eity which 

can be used as an alternative. The procedure is agglomerative and 

non-hierarchical, based on a particular form of average-link 

methods. The distance measure used is anyone of. several forms of 

association index that are felt to be appropriate for binary data. 

The procedure includes a type of "second-order" clustering 

designed to identify the most consistently forming clusters. 

The procedure was extremely successful in identifying the 

clusters in artificial data and seemed very satisfactory in 

identifying an appropriate cluster solution in several sets of 

empirical data. 
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BINCLUS: NON-HIERARCHICAL CLUSTERING OF BINARY DATA 

Introduction 

Frequently, the motiv~ of an exploratory factor analysis 

is the hope that it will be possible to group variables into 

approximately unidimensional subscales. Unfortunately those 

methods which serve well when applied to multivalued 

variables are of questionable utility 

variables are dichotomous. 

when the 

The basic problem is that the linear factor model cannot 

be expected to hold very well when the observed scores are 

binary. This lack of fit of the model is reflected in the 

indices measuring association among the variables. 

Correlations, covariances and cross-products may allow 

sensible analysis of continuous measures for a variety of 

purposes, but their possible application to binary measures 

is uncertain because they are affected not only by agreement 

in the basic measurement of two variables but also the 

similarity in the frequency of endorsements. For example, 

suppose one has two identical continuous number series which 

are dichotomized differently for each series. One may 

obtain correlations which range frOlIl unity almost to zero 

simply by changing the value for each series below which all 

numbers become zeros and above which they become ones. 

Fairly modest differences in the two frequencies of l's in 
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the two measures are known to result in substantial 

decreases in their correlation. (See, e.g., Carroll, 1961) 

Consider the small correlation matrix in Table 1 and 

associated list of frequencies. 

(Insert Table 1 Here) 

The nature of the correlation coefficient obscures the fact 

that in actuality items a and b form a perfect scale, and so 

do c and d. That is, everyone who passes b also passes a, 

and everyone l~ho passes d passes c. The correlations make 

it look as if a is related to c and b is related to d, but 

this is an artifact of their similarity in difficulty and 

the correlation between the two scales. Correspondingly, a 

factor analysis of these data will yield two factors, one 

for a and c, the easy items, and one for band d, the hard 

items. The factor's exact nature will depend on the 

specific extraction and rotation option, but the factors 

above would be a typical solution using standard common 

factor analysis. 
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The second difficulty, if one intends to factor analyze 

binary data, is that if one abandons the questionable 

product moment indices, less conventional indices can no 

longer be interpreted as representing scalar products of 

vectors, and familiar concepts like variance-accounted-for 

no longer apply. Since the rationale for factor analysis is 

to account for the correlations or covariances, interpreted 

as scalar products, using a reduced number of underlying 

variables, the entire process becomes problematic. This can 

be especially true if the results are presented to an 

audience which attributes to them a conventional factor 

analytic interpretation. 

Stated more mathematically, the factor model is 

r 
XiJ' = E YimamJ' + e" m=l ~J 

(1) 

where: 

Xij= the value of the ith observation on the jth variable 

Yim = the value of the ith observation on the mth common factor 

amj = the regression coefficient of the mth common factor for predicting 

the jth variable 

eij = the value of the ith observation on the jth unique factor. 
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This leads, under the usual assumptions of uncorrelated 

unique factors, to 

R = A <P A' + U2 (2 ) 

where R is the observed correlation matrix, A is a matrix of 

coefficients from (1) and U2 is the diagonal matrix 

containing the uniquenesses. If R is not a scalar product 

matrix derived from X, i.e., if it is simply a matrix of 

"measures of association", then (2) does not follow from 

(1), and R may be non-grammian. Thus the results of 

applying factor analytic methods may be misleading or 

difficult to interpret. 

In short, factor analysis has severe shortcomings when 

applied to binary data. An alternative to factor anaJysis 

is needed for the purpose of g . t th b' rouplng age er Inary 

measures into homogeneous subsets. While cluster analysis 

presents an alternative method of finding homogeneous 

subsets, the goals of available clustering methods seem not 

well suited to clustering the binary data of primary 

interest here. These data consist of an entities (persons) 

by variables matrix, where the scores are binary 

(dichotomous) and the object is to group together variahles 

into homogeneous subsets. Thus, the overall gonl we have in 

mind for the cluster analysis is more like that of factor 

anaJysis than like taxonomy. 
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The present paper describes an approach to cluster 

analysis developed for this sort of binary data. The 

clustering procedure maximizes the homogeneity of suhsets 

through an agglomerative process that clusters variables 

measuring similar properties. The resulting suhsets of 

variables need not be disjoint, and there is no attempt to 

make them hierarchical. The clustering is based lipan 

matrices of association indices between pairs of variables, 

so the choice of a measure of association suitahle for 

binary measures is crucial. 

Association Indices for Binary Variables 

Problems with Traditional Indices 

A presumably general principle of clustering is that 

things that are "close" belong in the same cluster whereas 

things that are "distant" belong in separate cll1sters. The 

definitions and measures of "close" and "distant" vary , , 
depending on the type of problem and the nature of the data. 

Our goal here is to put together variables that measure more 

or less the same thjng, based on dichotomous responses. 

These ground rules mean that several common measures of 

distance may he unsuitable to varying degrees for t}lis 

purpose. Euclidean distance is the most ohvious. In the 

case of a pcrsons-by-variables binary data matrix Nhere the 

object'ive is to cluster variables, Euclidean distance, d jk 
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is simply the number of persons who have different values an 

the two variables. As such, it is heavily influenced by the 

difficulty or popularity (p-value) of the two variables: d jk ~ IPj - Pkl 

where Pj and Pk are the proportions of persons having n 

value of one on variables j and k. The Pearson correlation 

(phi) is affected similarly, alheit less stringently, as is 

well known, and the same is true of the inter-variable 

covariance. Thus, clustering procedures based on these 

indices may tend to group apart those variables that differ 

in p-value. Also, grouping variables so as to maximize 

Kuder-Richardson 20 reliability will show the same effect, 

because KR ZO is a function of the average covariance. 

Alternative measures of association 

Cliff (1979, Cliff & Reynolds) Note 1) has provided a 

conceptual framework Ivhich may be used to describe any inrlex 

applied to binary measures. This approach, an outgrowth of 

test theory, emphasizes the order relations created hy 

variables among the people measured. If a variable orders 

two people, for example if one person misses a test item and 

the other answers it correctly, the order created hy a 

second item can have three possible outcomes. First, the 

order provided by the second item can correspond to the 

order provided by the first item, thus providing redundant 

information concerning the person order. Second, it can 

contradict the first order hy placing the persons in reverse 

order. Finally, the second item may provide no ordering 
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information at all if both persons miss or both persons 

answer it correctly. In this last instance the first item 

provides an ordering where the second item does not. This 

is called a unique relation. Unique re'lations iJlay be unique 

to the first item but not present in the second (u jk ), as 

explained above. If the first item did not provide ordering 

information hut the second does, then the other form of 

unique relationship (u
jcJ

.) exists. If more th . f , . an one paIr o. 

people are given the items, the relationship hetween the two 

items j and k can be expressed as so many redundant pairs, 

(r jk ), so many contradictions (Cjk) and so many uniqlle 

relations (ujk and Ukj)' 

The rjk' c jk ' and Ujk are readily ohtainable from the 

usual 2 x 2 contingency tahle for two items shown in Table 

2 . 

(Insert Table 2 Here) 

Here, rjk = wz, Cjk = xy, and Ujk 

the three types of relations is n·Cn 
J 

= wy + xz. The sum of 

nj)' where nj is the 

ntlmher of lis on variable j. (Le., the total is 

proportional to the item variance.) We let the symbols, 

r .. , c .. , and u .. stand for the total number of redundant, 
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~ontradictory and unique relations, summed across pairs of 

items. 

Many commonly us~d indices of association can be 

expressed in terms of redundant, contradictory, and unique 

relations. When commori indices are expressed in this way, 

it becomes clear how they all increase as the numher of 

redundant relations increases and decrease with the numher 

of contradictions. The differences between the indices Jie 

mainly in their treatment of unique relations. For example, 

Equation (3) shows Pearson's r expressed as a function of 

r .. , c .. , and 11 ••• 

Pearson r = 

Where: Ujk = relations unique to item j 
(3 ) 

and not found in k 

Ukj = relations unique to item k 

and not found in j 

The Pearson r extracts a mild penalty for unique relations 

by putting them in the denominator, that is, uni(ll.le 

relations shrink Pearson r's. Equation 4 shows the formllln 

for KR 20 . 
I 
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x(R - c 

xR - (s - 2)C + U .. 

Where: x = the number of items 

KR 20 is derived from Pearson's r and incorporates unique 

relations in a similar way. The fact that KR
ZO 

and rare 

both diminished by unique relatio~s is another way of 

looking at their well known tendency to'be reduced by 

differences in marginal distributions. 

(4 ) 

The Goodman-Kruskal gamma is' expres~ed in Equation (5). 

R 
Goomnan-Kruskal Gamma = 

R 

- C 

+ C 

By ignoring unique relations, Gamma avoids the problem of 

limiting scaJes to variables having similar frequencies. 

( 5 ) 

A different approach is to assign a positive weight to 

unique relations. One such possihle index is q (Cliff, 

1979), shown in Equation 6, where t in the equation is a 

combination of redundant, contradictory and unique relations 

weighted 1, -1 and .25. 
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q = 

Where: T = R - C + .25 U . 

T = the value of T given 1.::.11": observed c 
(6) 

marginals and random responses 
Tb= the value of T given th.e observed 

marginals and a perfect Guttman 
scale 

tc is the value of t which would be expected with the 

observed marginals if the data were merely random. tb is 

the value of t which'would occur given the observed 

marginals and a perfect Guttman scale. Because it gives 

uniqueness a positive weight, q tends to favor sets of items 

which have different difficulty levels. Within-cluster 

homogeneity can be characterized in terms of the average 

value of any of these indices, to say nothing of many 

alternatives. Their main differences are seen here to he in 

the way "unique" ordinal relations are treated, and the bias 

of the more familiar correlation and KR
ZO 

measures is 

toward penalizing unique relations, whereas gamma treats 

them neutrally, and q rewards them. 

The clustering procedure described here forms clusters of 

items so as to maximize within-cluster homogeneity in any of 

these forms, or in terms of any other simple function of 

r .. , tI •• , and c ... At this time, analyses have been 

performed using these fOllr particular forms, Pearson r, 

g~mma, KR ZO , and q. 
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BINCLUS 

BIKCLUS is a computer program that was written to cluster 

binary variables. The program uses the average linkage 

concept as the basis for constructing clusters, but with 

some variations that are felt to make it more effective. 

The measure of association can be phi, gamma, KR 
"'zo, or q as 

described above, or various other functions of r .. , 
u .. , ann 

c ... 

Algorithm 

In BINCLUS, each variable begins a cluster. (At the 

user's option, a subset can be designated as starting 

variables.) Then, to each cluster is added the variable 

that has the highest value of the pr6ximity index with the 

variable that started the cluster. The process continues, 

each time adding to the cluster the variable with the 

highest proximity to the variables already in the cluster. 

That is, if cluster c has v members then the v + 1st member 

will be that one which has the highest average index of 

association with current members. Assignment of a new item 

to cluster c does not depend on whether or not that item 

already belongs to some other cluster. It is possible for 

an item to be placed in any number of clusters providing 

that item has a strong enough association with each of the 
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clusters. A part of the output is the cluster-membership 

matrix ~, where mvc is the index of the vth member added to 

cluster c. 

The procedure takes place exactly in this fashjon in the 

case of correlations, but in the case of gamma and q a 

modification is introduced to make the process more robust 

for these indices. The approach that is taken is not to 

averaae the values of the indices directly, but to average o 

the numerator and denominators separately. Let n jk and d jk 
be the numerator and denominator, respectively, of the 

inter-variable proximity between variables j and k. Then, 

the actual form of hkc , the average proximity of variable k 

to cluster c, that is used in the case of gamma and q is 

v 
l: n' k j=l J 

h = kc n 
l: d'k 

j=l J 

(7 ) 

where j refers to variables already in the cluster. The 

reason is thnt, due to the variations in the amount of 

information shared hy a pair of binary variables, the index 

can be substantially affected by a few observations if the 

two variables differ in frequency. For example, in relating 
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a variable with 90% endorsement to a variable having only 

10 % end 0 r s erne n t ~ the per c e n tag e 0 fin d i v i d u a 1 s \oJ h 0 h a v e 

value 1 on both variables can vary only from 0.00 to .10, 

and is expected to be .09 even if the variables are 

independent. Thus some values of gamma or q are based on 

less information than others. The procedure of averaging numera­
tors and denominators separately gives lower weight to indices 
based on less information. 

Illustration of the Procedure 

An example will be described in order to clarify this 

procedure. It uses q as the proximity measure. Table 3 

contains n 'k d 'k and q " from an 8-variable set. J, J' JK 

(Insert Table 3 Here) 

In Table 4 the membership matrix ~'f is shown for the clusters 

based upon the q-matrix jn Table 3. 
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(Insert Table 4 Here) 

Also shown is the H matrix which records the values of the 

item-cluster index as each variable is added. Consider 

cluster 1. As can be seen in Table 3, the variable that 

produces the largest q when added to variable 1 is number 4, 

where q41 = .68. Thus mZl = 4 and hZ1 = .68. 

To find the third variable for this cluster, we search 

all items for the highest hkc (the highest "average" item­

cluster q). This is given by variable 7: 

(R) 164.3 + 203.6 == 
445.7 + 398.0 

.436 

m
3l 

= 7, h31 = .44 are recorded in matrices M and H. 

The fourth variable was found to be number 3, because 

-38.4 + 113.0 + (-46.8) 
= 296.0 + 426.2 + 237~9 

== .029 (9) 

. ' 
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is the largest third-level hkc for the first cluster. These 

data are recorded as m41 = 3 and h4l = .03. Additional 

variables are added to each cluster by continuing the 

sequence for all available objects, or until some 

sufficiently small value for hkc has been recorded. 

Deciding on cluster boundaries 

A necessary feature of such a system is a way of deciding 

on the boundary of a cluster. One such rule is to look for 

a sudden drop in hkc as some new item is chosen. As can be 

seen in the first cluster, adding a fourth member produces a 

large drop in the homogeneity index. This drop signifies 

that the objects that are most closely related in the 

cluster have already been added, and that only those which 

are located farther away, presumably non-members, are left. 

When such a drop in index values occurs, it marks a natural 

cluster boundary. However, it frequently happens in 

empirical data that no large gap between adjacent values 

will occur. In these cases, it is still possible to define 

the cluster members by using a cutoff value, which can be 

used to define the cluster boundaries. In the present 

artificial example p a value around .44 would serve. This 

gives the same three members to clusters 1, 4, and 7 and the 

same fOllr to 2,3,6, and 8. Cluster 5wollld be a 
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singleton. These results are summarized in the third output 

matrix, the reordered binary membership mAtrix. In this p x 

p matrix V, v. = I means that item j is a member of cluster JC 

c, and v. = 0 means that it is not. The rows and columns JC 

are reordered so as to make clusters adjacent that have 

similar membership and make variables adjacent that helong 

to the same clusters. (An algorithm for doing this 

rearrangement is described in a later section.) The V 

matrix for these data is shown in Table 5. 

(Insert Table 5 Here) 

Simulation Studies 

Data generation 

Binclus has been evaluated using both simulated and 

empirical data. Data for the simulation studies were 

generated using the Birnbaum two parameter logistic item 

response model. The Birnbaum model describes item and 

person characteristics in reference to fl single IInderlying 

trait or dimension. To create a multiple trait or 

multidimensionAl set of responses, the model Was used 

repeatedly to generate subsets of the 24 items. A fiveMhyM 

three cleslgnMMfive types of subject abjlity/item difficll1ty 
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distribution combinations hy three levels of item 

discrimination-Mwas used. Table 6 details the parameters 

used in each experimental condition. 

(Insert Table 6 Here) 

The three levels of item discrimination used were low 

(a=.5) , mode'Late (a=1.0) and high (a=3.0). The five 

subject ability/item difficulty combinations were produced 

by varying the distributional shape, mean, and standard 

deviation of the theta (ability) and b (difficulty) 

parameters. The normal data sets represented what most 

researchers would consider the least challenging case for a 

conventional analysis, that is, persons sampled from a 

normal distribution of ability taking items sampled from a 

normal distribution of difficulty. The low frequency 

condition was intended to simlliate situations where marginal 

frequency in the item set is relatively homogeneous but 

extreme. The rectangular and mixed data sets simlllatcci 

situations of highly variable marginal frequency. Both 

these conditions used rectangular distributions of item 

difficulty, but the rectangular condition used a rectangulAr 
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distribution of subject ability as well, while the mixed 

condition used a normal distribution of subject ahility. 

The bimodal data sets included items of both very low or 

very high marginal frequency, with few items between. This 

was includerl as the classic example of a situation where 

product-moment indices should suffer from extreme 

differences in item distributions. 

Each of the 15 conditions was replicated five times, 

resulting in 75 binary matrices. Each matrix contained one 

eight-item cluster, one six-item cluster, one four-item 

cluster, and six singleton items. Within each cluster, the 

person-items were sampled from one of the joint 

distributions described above. Each of the 500 simulated 

subjects had a true score for the ability underlying each 

cluster or singleton, and these abilities were uncorrelated 

across clusters. 

Deciding on CJuster Boundaries in Artificial Data 

Cluster boundaries in the BINCLUS analysis were decided 

upon in the following way. Each of the 18 items belonging 

in one of the three subsets started a Cluster, as described 

above. Items were added to each cluster until the cluster 

contained the same nllmber of items as the subset to which 

the starting item belonged. For example, if an item 

belonged to the eight-item subset, it was allowed to add 

seven items to the cluster it began. The result was eight 
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eight-item clusters, six six-item clusters, and four four­

item clusters. 

This set of clusters was finally reduced to one eight­

item cluster, one six-item cluster, and one four-item 

cluster. This was done by comparing the cluster soluti.ons 

obtained by the various starting items within a suhset. If 

an item appeared in at least half of the cluster solutions, 

it was considered a part of the final cluster. For example, 

to determine the final membership of the eight-item cluster, 

any item appearing in four or more of these solutions was 

considered a part of the final eight-item cluster. 

Judging Cluster Recov~: The Rand Statistic 

The Rand statistic (1971) was computed to compare the 

known subset structure in each data set with the BINCLUS 

cluster solution. If one records for each pair of items in 

a data set whether they are placed together or apart by a 

clustering solution, the Rand statistic is merely the number 

of correct placements, that is, plac.ements agreeing with the 

known subset structure, divided by the total numher of item 

pairs. In most cases the number of item pairs belonging 

apart is high, ann thus the Rand statistic often tends to be 

large. In fact, a Rand statistic of .82 in this case c.an he 

obtained by arbitrarily p1acing each item in a clllster by 

i tsel f. 
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Results 

A previous Monte Carlo study (McCormick, Cliff, Cudeck, & 
Reynolds, Note 2) had shown BINCLUS to be quite'robust 

across association indices. Gamma was chosen for use in the 

simulations because it is relatively insensitive to 

differences in item response frequencies. 

The resulting Rand statistics, averaged over 

replications, are shown in Table 7. 

(Insert Table 7 Here) 

The most striking finding is the excellent overall 

performance of BINCLtJS, as evidenced by an average Rand 

statistic of .99. This is similar to the finrlings of 

McCormick et al. (Note 2) who obtained an overall average 

Rand statistic of .969 using much smaller sample sizes. 

BINCLUS recovered the subscale structure perfectly in all 

the Jata sets of moderate (a = 1.0) item discrimination. 

When item discrimination was high (a = 3.0), recovery wns 

perfect in the Bimodal, Mixed, and Rectangular conditions, 

above .99 in the Normal conrlition, and .98 in the Low 

Frequency condition. BINCLUS performs slightly Jess well 
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when items are of low discrimination (a = .5). While 

recove'ry is perfect in the Normal condi t ion and virtlluJ ly 

perfect in the Mixed condition, BINCLTJS fares somel\rhat less 

well in the Low frequency, Bimodal, and Rectangular 

conditions. 

For purposes of comparison, common factors analysis was 

performed on each of the 75 data sets in each analysis, 

three factors were rotated to a Varimux solution. An item 

was considered part of a factor if it had its highest 

loading on that factor, provided that the Joading was 

greater in absolute value than .2. The Rand statistics from 

this analysis also appear in Table 7. Clearly BINCLUS was 

much more successful at recovering the underlying suhscale 

structure than factor analysis. This was particularly tr1le 

in the Bimodal condition irrespective of item 

discrimination, and in the low discrimination condition 

overall. 

An unknown degree of artificiality is introduced into the 

criterion by specifying in advance the cutpoints for the 

clusters as well as the number of factors to be rotated. 

This device is an attempt to circumvent the introduction of 

subjective methods which might bias the results ann is not 

unique to this investigation (Milligan, 1980). This 

shortcoming might be overcome if data could be sent hlinrl to 

factor analysts and tlsers of BTNr:LUS who cOl.1ld then make 
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independent judgments to determine the number of factors nne1 

the items belonging to each. The experience of the 811thors 

is that not knowing the true cluster structure is less of a 

problem for BINCLUS than factor analysis. 

Modifications 

These analyses of artificial data shm,rec:1 that in its 

initial form BINCLrJS was quite successful when applieci to 

clusters that were generated according to the Birnbaum 

model, this heing true even when the cons~stency was not 

high. Application to several sets of empirical riato, 

however, showed that some refinement was desirable. 

With empirical data, the clusters of " variables tend to be 

much less clearly defined. Rather than being isolaterl 

clusters of points, each surrounded by a "moat" of empty 

space, there is more often a shading off from one location 

to the next. Thus the need was for some additions to the 

clustering procedure that would identify more clearly the 

central members of more diffuse clusters. 

BINCLUS has two features that are designed to have this 

effect; one has been touched on earlier. This is tMe matrix 

rearrangement process that reorders the rows anrl columns of 

the binary membership matrix. It will be described in more 

detail here. The other is a kind of second order clustering 

that will also be described here. 

I 
I 
I 
I 
I 

} , 
~ 
f{, 
; 
!, , ~ 

If { 

~ " 
" I ,j\' 

I 
i 

I r' i 
j 

j t, 
i ! , 
I r I 
" 

lC 
I L , 

I 
I 

" 

PAGE 23 
Rearranging Output Matrix 

In the artificial data, true cluster members hnd 

conseclltive identification numbers, and therefor.e the final 

membership matrix, if correct, listed cluster-members next 

to each other. In real data, clusters were not 

likely to be as visually apparent as the matrix stili 

appeared jumbled. 

To present a more visually useful form of the 

relationship among the clusters, the rows and columns of a 

cluster membership matrix are permuted so as to make similar 

clusters adjacent. A variety of approaches to this problem 

are possible. The present approach is a form of nearest 

neighbor ordering based on gammas. It is similar in concept 

to the seriation procedure of Gelfand (19il). 

The same procedure is applied independently to rows 

(variables) and columns (clusters). Gammas are computed 

among all pairs of variables or clusters; the two having the 

largest value are placed next to each other. Call one the 

left member (L) and the other right (R) member. This is a 

two-member cha.in. Then, the one element of the remaining p 

- 2 rows or columns that is closest (highest gamma) to R is 

found, and similarly the one closest to L. Call these R' 

and L', respectively. Th~n their gammas are compared, and 

R' is placed to the right of R, or L' is placerl to the left 

of L, depending on which gamma is higher. In either case, 
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this new member becomes one of the ends of the chain of 

three elements. Then, one of the p - 3 remaining memhers is 

added to one end or the other of the chain in the same way. 

The process continues, adding members to the ends of the 

chain until all the members have been ordered. Then the 

variables by clusters matrix is transposed and the process 

is repeated. The process has been quite effective in 

arranging the data into a visually compelling form, as was 

seen in Table 5 where this procedure placed together the 

clusters with identical members (coll1mnwise) and the items 

with identical cluster memberships (rows). Table 8 shows 

the process applied to a membership matrix whose variables 

were in random order. 

(Insert Table 8 Here) 

Here the nature of the two cluster solution is clearly 

visible, and it is also apparent that variable 5 is a 

maverick. When the clusters are disjoint or nearly so, as 

they are j n Table 3, the permuted pattern will assume a 

block diagonal appearance. It will have sections down the 
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diagonal with l's and sections in the off-diagonal with 0'5. 

The blocks of l's represent subsets of the objects that 

jointly select each other. 

Second-order Solutions 

Even with permutations designed to enhance the appearance 

of the clusters, some solutions proved difficult to 

interpret. Sometime~ the results display a rough block­

diagonal pattern, but in many instances even these clusters 

can have "ragged" edges; i. e., there are many clusters whose 

memberships differ slightly, depending on which variable was 

the starter. These solutions can be difficult to 

understand. The permuted patterns can be vague enough to 

make final conclusions very tentative, particularly when it 

is difficult to decide on a cutoff value for a cluster. 

For this reason, we d'eveloped a "second order" analysi s. 

In a second-order analysis, the c11lster membership matrix 

resulting from the initial clustering is treated as a data 

matrix and itself clustered. EssentiaJly, clusters whose 

membership differ only slightly are put together. The first 

order cluster analysis usually will reveal thnt some 

variables are not clustered with any others in the data set. 

Item 5 in the example is of this kind. Before a second­

order analysis is carried out, such variables can be deleted 

since it is known that they are unrelated to the rest of the 

set. The second-order analysis then proceeds with the 
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number of elements reduced by the numher of singletons in 

the first analysis. 

The columns in the data-matrix for a second-order 

analysis are no longer the original variahles, hut rather 

are the clusters obtained from the first analysis, anel the 

rows are variables. Often, the second-orrier analysis very 

clearly reveals which clusters are similar. Its mode of 

operation is largely to "trim the edges" of clusters ann 

also to delete clusters that do not form consistently from 

several starting members. 

In the first-order analysis, the binary membership matrix 

V is variables-by-clusters, and a 1 denotes a variable that 

was a member of the cluster started by the column variahle. 

In a second-order analysis, the corresponding membership 

matrix of binary relations is clu3ter-hy-"superclusters". 

* That is, v cc*= 1 implies that cluster c is a member of the 

superc1uster started by cluster * c . The tinal step in 
. * superclustering is the deletion of columns of V that 

duplicate other columns. 

* The complete V matrix for the Table 8 solution, shown 

in Table 9(a), is the same as the permuted membership 

matrix, but with the singleton deleted. The reduced 

supercluster membership matrix corresponding to the second 

order analysis of the data shown in Table 3 is presented in 

Table 9(b). 
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(Insert Table 9 Here) 

The reduced V* matrix is shown in section b of Table 9. 

These results are interpreted as meaning that clusters 2, 3, 

6, and 8 are all in t.he fl'rst StIpe 1 t ) , r-c. us er, wllie clusters 
1, 4 and 7 are in the second. 

The final step is to relate the original variahles to the 

superclusters. One appro h t th' . . ae 0 IS IS to construct a 

matrix P, with Pjc* equal to the proportion of clusters in 

super-cluster c* of which variable j was a memher. This 

matrix is displayed in section c of Table 9. 

Applications 

Social Deviance Data -
One example of the utility of BINCLUS as a data reduction 

tool is the foll?wing analysis of binary indicators of 

social deviance. The items are primarily factual questions 

concerning the family background of the individllal or 
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descriptive items concerning the relationships among memhers 

of the family. The subjects were 265 of the in(!ividllilis 

from the cohort of 9125 consecutive persons horn at the 

Rigshospitalet, Copenhagen, 1959-61.* The items are based on 

interviews of the individual and their parents in 1972 (For 

a fuller description see Gabrielli and Mednick (1980)). 

Results 

The results of a first-order BINCLTJS analysis are given 

in Table 10, along with brief phrases identifying the items. 

(Insert Table 10 Here) 

The clustering, done on the basis of Goo(!man-Kruskal gammas 

between the items, results in a quite clear and striking 

cluster structure. In the upper left is a large cluster of 

items that might be called "broken-home" items, variolls 

types of departure from a stable two-parent family, along 

with various circumstances likely to be correlated with 

this. There is a second fair-sized cluster in the lower 

right; this consists entirely of items related to cases 

where the father does not have a normRI, healthy role in the 

*The authors are indebted to Sarnoff A. ~erlnick and W. F. 
Gabrielli, Jr. for making these data availAble. 
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family. There are also several small clusters thRt involve 

pairs and triplets of items that seem logically relate~. 

The structure of the results seems quite clear, htlt the 

permuted cluster membership matrix in Table 10 is typical of 

other results in that there is a certain amount of fuzziness 

in the clusters, a core of items that are consistently 

members of all the clusters along with some less consistent 

items. Sometimes the clusters overlap, and often there is a 

blurring of the distinction between cluster members and 

singletons. 

Under these circumstances a second-order anaJysis may 

clarify the solution. Table 11 contains the second-order 

cluster membership matrix and the P matrix for these data. 

(Insert Table 11 Here) 

As a result of the second-order analysis it becomes milch 

easier to see the contribution of various items to the 

clusters. Super"cluster 1 receives strong contriblltions 

from "family constellation" items; Superclusters 2 and 3, 

almost identical, seem to reflect home atmosphere and 

parental attitudes; Supercluster 4 is the "father's 

problems" items; and the small Supercluster 5 is the "mother 

employed fl.llitime" cluster. There is almost no overlap 

between the sllpercillsters except for the two that are nearly 

" . 
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In the second order analysis, shown in Tahle 14, the 

pattern is even clearer. 

(Insert Table 14 Here) 

The items most important in the larger cluster, those which 

were circled, include burglary, forgery, fraud, rohbery and 

receiving stolen goods, which are apparently core crimes in 

a sc~le or factor of general criminality. The small cluster 

in the corner consists of traffic offenses: speeding, 

illegally overtaking, failure to yield and negligent 

homicide. 

DiscussioI'!. 

To a certain extent, the utility of a method can be 

measured by the variety of applications for which i.t is 

appropriate, and there seems to be a variety of problems 

with which this scheme for nonhierarchical cluster analysis 

might be used. The first is one which is frequently found 

in psychology, namely constructing homogeneous sets of items 

from a heterogeneous pool, a problem that Napior (1973) 

. ' 
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terms multidimensional item analysis. The machinery of 

factor analysis s generally appropriate for this kinrl of 

problem when the data consist of continuolls variab~es, is 

unsatisfactory with dichotomous items (Carroll, 1945; 

Gourlay, 1951; Guilford~ 1941; Lorn & Novick, 1968, p. 349; 

Wherry & Gaylord, 1944). Other recently developed methoris 

\\'hich have an explicit model for dichotomous responses 

(Christoffersson, 1975; Muthen, 1978; Muthen & 
Christoffersson, 1982) are limited practically in the numher 

of variahles they can treat, or require very large nllmhers 

of subjects for statistical estimation, and are based on 

normality assumptions that are highly questionable. 

Traditional approaches for item analysis can be applierl 

once fairly homogeneous subsets have heen defined, and 

factor analysis can be used to examine further the strllctllre 

of the composite variables. But most of the popular methods 

for extracting subsets of items (Burisch, 1978; Hase & 
Goldberg, 1967) are not convincing with realistic data sets. 

This is all the more true when little previo1ls work is 

available to guide the analysis. The present version of 

nonhierarchical clustering seems promising in this context, 

as witness the successful applications descrihed above. 

A related problem to which this method may be applied 

concerns the issue of data reduction. Many prospective 

studies or other large-scale investigations collect massive 
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amounts of information which is frequently qualitative or 

binary. Before a standard multivariate technique can lJe 

used to study relationships in the data, some method for 

reducing the information to a more manageable form must he 

undertaken. Often this is d0ne on an a priori hasis which 

can be arbitrary, unrealistic, or prone to bias. Lorr 

(1976), among others, has suggested cluster analysis for 

this purpose. The most frequent kind of cluster analysis 

used is a hierarchical method, but in this context 

hierarchies are not generally expected, at least in the 

sense that hierarchy is meant in the cluster literature. On 

the other hand, tasks or items that arrange themselves in 

hierarchies--as this term is used in the Guttman-scale sense 

in the educational literature e.g. Bart (Note 3)--are 

eminen~ly suited for analysis by Binclus, and inrleed it was 

they that we have had in mind from the beginning of this 

development. A nonhierarchical method with a provision for 

treating binary data seems well-suited for this prohlem. No 

prior information about the data is required, and so it is 

attractive in exploratory studies. Furthermore, it is 

efficient for a first pass through the data when information 

about the existence of possible subsets is desired. 

Another source of potential applications are exploratory 

investigations which study structural aspects among 

variables without the benefit of a guiding hypothesis. rt 

seems ill-advised to use a hierarchical clustering method if 
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the structure itself is at issue since these methods always 

find a hierarchy. Similarly, it seems inappropriate to use 

a method which produces disjoint clusters if it is not 

hypothesized that such a structure is optimal for the data. 

Since a large percentage of investigations of this kind are 

exploratory in nature, it is important that a clnstering 

method be selected that dnes not force a structure on the 

data before it is reasonable to do so. 

In each of these kinds of applications, the idea of 

second-order solutions can be useful. Certainly in the case 

of data reduction, a higher-order analysis would be valuahle 

as a means of synthesizing findings from a complex analysis. 

Likewise in problems of multidimensional item analysis a 

second-order solution would reveal the extent to which the 

clusters overlap. This information wOllld be useful in 

judging convergent or divergent asso~iation among scales 

defined by the clusters. Normally one assesses convergence 

or divergence at the level of aggregated quantitative 

variables. But a second-order clustering solution would 

provide this kind of information at the item level. 

The method described here runs counter to cnrrent trends 

in psychometrics in that it is a collection of heuristics 

rather than a monolithic algorithm guaranteed to optimize 

some objective function such as maximum likelihood or some 

form of least squares. Two lines of defense are offered, 
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one pragmatic and one philosophical. The pragmatjc one is 

that the procedure has worked. The artificial data 

experiments found that even without the addition of the 

permutational and second-order features, it worked very well 

identifying clusters and separating them from singletons 

unless the data were very noisy. The permutation and 

second-order analyses were added when the method was applied 

to real data. It was found that the outlines of empirical 

clusters tended to be fuzzy, and these procedures sharpened 

the definition of them. On the basis of the study by 

Milligan (1981), and the comparisons in Zatkin, et al. (Note 

4), it appears unlikely that any other clustering procedure 

would work as well. 

The philosophical defense has to do with the place of the 

objective function in data-fitting. As has heen stated for 

many years (Guttman, 1971; Cliff, 1982), the solution one 

finds is influenced to a greater or lesser degree by the 

objective function that is tailored to the type of data 

analyzed. The clustering procedure is of the stepwise 

variety, adding the "currently best" item to the cluster. 

Although there is no guarantee that this will result in 

clusters which have the greatest possihle homogeneity, it 

seems likely that such a g11arantee is hardly possible short 

of trying all possible combinations of items of each cluster 

60 8 h' size, i.e., Zp clusters. Since, e.g., 2 = 1.lSEl , t .1S 

is impractical for any moderately large set of data. Thus 
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we use a heuristic method here for reasons of economy. 

However, we attempt to make the process robust hy lIsing all 

possible starting places. 

Operating in conjunction \vith the provision, based on 

experience and beliefs concerning Ollr sorts of data, that 

the clusters are not disjoint, the multiple starting 

positions tend to lead to numerous similar but non-identical 

clusters. Two heuristic methods of "purifying" the clusters 

are then added that attempt to cluster the clusters. The 

p u rp 0 s e 0 f the fir s ton e ism a in 1 y g rap hi cal. It use san 

ordering function to group the clusters into block-diagonal 

form, insofar as this is possible. Again, the hasis of the 

procedure is heuristic. It is primarily an ordering 

procedure, and there is no guarantee that it finds the best 

possible order, but it should be effective unless the data 

are highly noisy or somehow perverse. The second-order 

analysis has also a heuristic basis in the belief that the 

binary cluster-membership matrix can be meaningfully 

simplified by the application of the clustering procedure to 

it, using gammas as the index of association again. In 

their defense, it is asserted that the heuristics forming 

the basis for these procedures are intuitively sound and 

therefore preferable to more elegant methods that are rooted 

in more arbitrary objective functions. 
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The method runs counter to cllrrent trends in another way 

also. It assumes the intervention of the intelligent, 

substantively knowledgeable investigator at severa] points. 

First the investigator must choose an index, hased on 

experlence and beliefs concerning the nature of the data. 

Then there is the necessity of choosing cutoff values for 

the index in order to define the membership matrix. This 

can be expected to take place on partly substantive grotlnrls, 

and we believe, justifiably so. Thus, the method is not 

expected to give good results unless the Ilser is 

sophisticated, except that data with a strong cluster 

structure will impose itself quite strongly, regardless of 

the options chosen by the user. 

. ' 

.1. 

2. 

3. 

4. 

PAGE 39 

REFERENCE NOTES 

Cliff, N. & Reynolds, T. J. Dominance relations as a 
basis for nonparametric test theory. Unpublished 
manuscript. 

McCormick, D. J., Cliff, N., Cudeck, R. A., & Reynolds, 
T. J. Clustering binary items. Technical report 81-1, 
Department of Psychology, University of Southern 
California. 

Bart, W. The ordering analytic approach to 
hierarchical analysis. Paper presented at the AERA 
conference, 1981, L.A. 

Zatkin, J. T., Cudeck, R. A., McCormick, D. J., & 
Cliff, N. A method for non-hierarchical cluster 
analysis based on binary relations and a comparison 
with other clustering programs. Technical Report 81-2, 
Department of Psychology, University of Southern 
California. . 



.. 

--- ----

REFERENCES 

Burisch, M. Construction strategies for multiscale 
personality inventories. Applied Psychological 
Measurement, 1978, 2, 97-111. 

PAGE 40 

Carroll, J. B. The effect of difficulty and chance success 
on correlations between items or between tests. 
psychometrika, 1945, 10, 1-19. 

Carroll, J. B. The nature of data, or how to choose a 
correlation coefficient. psychometrika, 1961, ~, 
347-372. 

Christoffersson, A. Factor analysis of dichotomized 
variables. psychometrika, 1975, 40, 5-32. 

Cliff, N. Test theory without true scores? psychometrika, 
1979, 44, 373-393. 

Cliff, N. What is and isn't measurement. In G. Keren, Ed., 
Statistical and methodological issues in psychology and 
social sciences research. Hillsdale, New Jersey: 
Erlbaum, 1982. 

Collins, L., Cliff, N., Cudeck, R., McCormick, D., Zatkin, 
J. Patterns of crime in a birth cohort, Multivariate 
Behavioral Research, in press. 

Gabrielli, W. F., and Mednick, S. A. Sinistrality and 
delinquency. Journal of Abnormal Psychology, 1980, ~, 
654-661. 

Gelfand, A. E. Rapid seriation methods with archeological 
applications. In F. R. Dods?n, D. G. Kendal~, and P. 
Tautu Mathematical methods In the archeo1og1cal and 
sociai sciences. Edinburgfi:-UnTVersity of Edinburgn 
Press, 1971. 

Gourlay, N. Difficulty factors arlslng from,the us~ ?f 
tetrachoric correlations in factor analysls. BrItlsh 
Journal of Psychology, Statistical Section, 19~1J i, 
05-70. -

Guilford, J. P. 
composition. 

The difficulty of a test and its factor 
psychometrika, 1941, ~, 67-77. 

~' t 

I 

\ 
1 
1 , 

I 
\ 

" 

PAGE 41 

Guttman, L. Measurement as structural theory. 
Psychometrika, 1971, ~, 329-347. 

Hase, H. D. & Goldberg, L. R. Comparative validity of 
~iffetent strategies of constructing personality 
lnventory scales. Psychological Bulletin 1967 
231-248. - " 

Lord, F. & Novick, M. Statistical theories of mental test 
scores. Reading, Massachusetts: Addison-Wesley, 1968. 

Lorr, M. Cluster and typological analysis. In P. M. 
Bentler~ D. J. Let~ieri, & Austin, G. A. Data analysis 
stra~egles and desl~ns for substance abuse research. 
Washlngton,-U:C.: IDA:-I976. 

Milligan, G. W. An e~aminati?n of the effect of six types 
of error p~rturbatlon on flfteen clustering algorithms. 
Psychometrlka, 1980, 45, 325-342. . -

Muthen~ B. Contributions to factor analysis of dichotomous 
varlables. Psychometrika, 1978, 43, 551-560. 

Muthen, B. & Christoffersson, A. Simultaneous factor 
analysis of dichotomous variables in several groups 
Psychometrika, 1981, 46, 407-419. . 

Napior, D. Nonmetric multidimensional techniques for 
summatedcrating . In R. N. Shepard, A. K. Romney, & S. B. 
Nerlo~e ?ds.)~ Multidimensional scaling: Theory and 
apPEllcatIons In the behavioral sciences. Volume 1. New 
YOT: Seminar-,-· 1972. 

Nunnally, J. Psychometric theory. New York: McGraw-Hill, 
Inc., 1967. 

Rand, W. M: Objective criteria for the evaluation of 
clusterIng methods. Journal of the American Statistical 
Association, 1971, (33), 846-nO-.-

Wherry, g. ! Gaylord, T. Factor pattern of test items and 
tests ~ a function of the correlation-CoertIcient· 
Content, ait1:iculty and-COnstant error factors. . 
Psychometrika, 1944, g, 237-244. 

Witkin, H. A., Mednick, S. A., Schulsinger, F., 
Chr~stiansen, K. O.~ Goodenough, D. R., Philip J., 
~ubln, ,D., & Stocking, M. Criminality, aggres~ion, and 
lnteillgence among XYY and XXY men. Science, 1976, 193 
547-555. -' 



.' 

Table 1 

An Example of Item Difficulty Affecting 

a b c d Proportion Passing 

a 1. 00 .25 .38 .19 .80 

b 1. 00 .19 .38 .20 

c 1. 00 .25 .80 

d 1. 00 .20 

~--------~- ---

. ' 

Correlations 

Factors 

I II 

a .63 .15 

b .15 .63 

c .63 .15 

d .15 .63 

Table 2 

Contingency Table for Two Items 

Item j 

Positive 

Negative 

Item k 

Positive Negative 

+---------+-----~---+ 

w x 

+---------+---------+ 

y z 

+---------+---------+ 
n-n 

k 

n. 
J 

n-n. 
J 

n 

, 
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Table 3 

Quality Index q for Fictitious Data with Eight Variables 

Objects 

1 2 3 4 5 6 7 

Nwnerators and Denominators 

n jk 

1 0 43.0 -38.4 337.4 -40.4 -8.1 164.3 
2 473.0 0 211. 0 -18.0 10.0 358.5 -23.2 
3 296.0 452.5 0 113.0 10.0 335.7 -46.8 
4 500.2 699.6 426.2 0 -92.0 -57.4 203.6 
5 481. 6 734.8 445.0 713.8 0 107.0 -10.0 
6 467.1 738.4 457.3 689.9 724.4 0 28.7 
7 445.7 377.2 237.9 398.0 383.8 372.6 0 
8 175.5 264.5 300.1 250.0 260.4 267.1 141. 5 

S Values 

1 1. 00 
2 .09 1. 00 
3 -.13 .47 1. 00 
4 .68 -.03 .27 1. 00 
5 -.08 .01 .02 -.13 1. 00 
6 -.02 .49 .73 -.08 .15 1. 00 
7 .37 .06 -.20 .51 -.03 .08 1. 00 
8 -.15 .60 .31 -.16 .30 .61 .51 

8 

-27.0 
159.5 

v 

93.1 1 
-41. 0 ! 

78.4 l' 
163.3 .' 71. 9 1 

I 
0 1 

I' 
I, 

i' 
p 

I 
1 
• 
t 
I 
I 
! 
Ii 
): 
I 

1. 00 \ 

t~ 
1 
r 
! j, 
I 

1 

M Hatrix 

1 
4 
7 
3 
6 
8 
2 
5 

H Matrix 

Table 4 

Membership Matrix and History Matrix 

for Fictitious Data with Eight Variables 

Variables 

2 3 4 5 6 

2 3 4 5 6 
8 6 1 8 3 
6 2 7 6 2 
3 8 3 3 8 
5 5 6 2 5 
7 7 8 7 7 
1 1 2 1 1 
4 4 5 4 4 

7 

7 
4 
1 
3 
6 
8 
2 
5 

1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 
.68 .60 .73 .68 .30 .73 .51 
.44 .52 .48 .44 .27 .48 .53 
.03 .53 .50 .03 .37 .50 .03 
.15 .ro .10 .15 .34 .TO .15 
.23 .01 .01 .23 .01 .01 .23 
.24 .04 .04 .24 .04 .04 .24 
.02 .12 .12 .02 .12 .12 .02 

8 

8 
6 
3 
2 
5 
7 
1 
4 

1. 00 
.61 
.57 
.50 
.10 
.01 
.04 
.12 



'I 

I 
I 

.... ' .. ......,~-

Item 

1 

4 

7 

2 

3 

6 

8 
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1 

1 

1 

1 

0 

0 

0 

0 

0 

Table 5 

Binary Cluster Membership 11atrix 

Cluster 

4 7 2 3 6 8 

1 1 0 0 0 0 

1 1 0 0 0 0 

1 1 0 0 0 0 

0 0 1 1 1 1 

0 0 1 1 1 1 

0 0 1 1 1 1 

0 0 1 1 1 1 

0 0 0 0 0 0 

5 

0 

0 

0 

0 

0 

0 

0 

1 

r 
r 

f 

.. 
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Table 6 

Description of Latent Trait Mode] Parameters Manipulated in Monte Carlo Study 

Condition Subject Ability Item Difficulty Item Discrimination 

Shape Sha~e a = .5 a = 1 1 = 3 
Normal Normal l-l = 0 Normal l-l 0 0 0 

e = 1 e 1 1 1 

Low Frequency Normal l-l = 0 Normal l-l 2 2 1.5 
e = 1 e 1 1 1 

Rectangular Rectangular l-l = 0 Rectangular p 0 0 0 
0 = 1 e 2 1.3 1 

Bimodal Normal l-l = 0 Bimodal l-l +2* +2* +1. 5* - - -
e = 1 e .25 .25 .25 

Mixed Normal l-l = 0 Rectangular l-l 0 0 0 
e = 1 e 2.0 1.3 1 

*The means of the two modes were at these two points; the standard deviations are the within­
mode valus. 
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Normal 

Low Frequency 

Rectangular 

Bimodal 

Mixed 

Table 7 

Rand Statistics for Simulation Study 

(including factor analysis) 

BINCLUS Factor Analysis 

a = .5 a = 1 1 = 3 a = .5 a'= 1 a = 3 

1. 000 1.000 .997 .996 1. 000 1. 000 

.952 1. 000 .978 .931 .991 .967 

.965 1. 000 1.000 .929 .996 1.000 

.964 1. 000 1. 000 .932 .939 .911 

.978 1. 000 1. 000 .957 .997 .968 
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Table 8 

Membership Matrix and Permuted Membership Matrix 

Membership Matrix in Random Order 

Cluster 

1 2 3 4 5 6 7 8 

1 0 0 1 0 0 1 0 

0 1 1 0 0 1 0 1 

0 1 1 0 0 1 0 1 

1 0 0 1 0 0 1 0 

0 0 0 0 1 0 0 0 

0 1 1 0 0 1 0 1 

1 0 0 '1 0 0 1 0 

0 1 1 0 0 1 0 1 

Permuted MembershiE Matrix 

2 3 6 8 1 4 7 5 

1 1 1 1 0 0 0 0 

1 1 1 1 0 0 0 0 

1 1 1 1 0 0 0 0 

1 1 1 1 0 0 0 0 

0 0 0 0 1 1 1 0 

0 0 0 0 1 1 1 0 

0 0 0 0 1 1 1 0 

0 0 0 0 0 0 0 1 



Complete V* matrix b. 

Superclusters 

Items 1 2 

2 1.0 0 

3 1.0 0 

6 1.0 0 

8 1.0 0 

1 0 1.0 

4 0 1.0 

7 0 1.0 

c. P matrix, 

Reduced V* matrix 
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ITEM 

Table 10 

Cluster Membership Matrix for Binclus Analysis of Deviance Data 

111111111122222222223333333333444 
123456789012345678901234567890123456789012 

20 000000000000000000000000100000000000000000 F ALCOHOLIC* 
4 000000000111111111111111110000000000000000 F DEAD 

31 111100000111111111111111111000000000000000 M CHAR DISORDER 
5 111111111111111111111111110000000000000000 BIOL PARENTS NOT MARRIED 
6 IlllllllllllllllllllJ.IIIII0000000000000000 BIOL PARENTS NOT TOGETHER 
7 111111111111111111111111110000000000000000 C HAS HAD >1 FAM CONSTELLATIO~ 
8 111111111111111111111111110000000000000000 C NOT LIVING WITH PARENTS 
9 111111111111111111111111110000000000000000 F FIGURE NOT CHILD'S F 

10 111111111111111111111111110000000000000000 C <7 YEARS WITH PRESENT FAM 
11 111111111111111111111111110000000000000000 C <7 YEARS WITH 1 FAM 
14 111111111111111111111111110000000000000000 C HAS LIVED IN ORPHANAGE 
15 111111111111111111111111110000000000000000 C <7 YEARS WITH M 
16 111111111111111111111111110000000000000000 C <7 YEARS WITH F 
19 111111111111111111111111110000000000000000 M ALCOHOLIC 
21 111111111111111111111111110000000000000000 <2 ADULTS IN HOME 
36 111111111111111111111111110000000000000000 C NOT WITH OWN FAM 
37 111111111111111111111111110000000000000000 C NOT WITH BOTH PARENTS 

2 000011111111111111111111000000000000000000 C HAS M SUBSTITUTE 
3 110000001111000000000000000000000000000000 M DEAD 

27 111100000000000000000000000000000000000000 M PSYCHOTIC 
43 111100000000000000000000000000000000000000 M HOSPITALIZED FOR PSYCH PROB 
44 111100000000000000000000000000000000000000 M SERIOUS PHYSICAL ILLNESS 
17 11111111000000000000000000000000000000000'0 C NOT ALWAYS WITH M FIRST YE,AF 
18 111111110000000000000000000000000000000000 C NOT ALWAYS WITH M SECOND YEA 

1 000000000000000000000000000000100000000000 M WORKS 
30 000000000000000000000000000000111111111100 F NEUROTIC 
28 000000001000000000000000000000111111111100 F PSYCHOTIC 
24 000000000000000000000000000000011111111100 F DOES NOT LIKE C 
26 000000000000000000000000000000011111111100 F IMMATURE 
32 000000000000000000000000000000011111111100 F CHAR DISORDER 
34 000000000000000000000000000000011111111100 F ANXIOUS 
45 000000000000000000000000000000011111111100 F HOSPITALIZED FOR PSYCH PROB 
46 000000000000000000000000000000011111111100 F SERIOUS PHYSICAL ILLNESS 
40 000000001000000000000000000000000000000100 PARENTS QUARREL 
39 000000001000000000000000000000000000000000 PARENTS PHYSICALLY FIGHT 
12 000000000000000000000000000000000000000011 C SPENT TIME IN WHOLE DAY CARE 
41 000000000000000000000000000000000000000011 M FULLTIME WORK WHILE C <5 
22 000000000000000000000000000111000000000000 INADEQUATE HOME ATMOSPHERE 
23 000000000000000000000000000111000000000000 M DOES NOT LIKE C 
25 000000000000000000000000001111000000000000 M I~mATURE 
33 0000000000000000JOOOOOOOOOI000000000000000 M ANXIOUS 
29 000000000000000000000000011000000000000000 M NEUROTIC 
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Table 10 

(cont. ) 

UNUSED ITEMS (N = 4) --------------------
LABEL -----

SPENT TIME IN HALF-DAY CARE 
MOTHER HAS MISCELLANEOUS MENTAL PROBLEMS 
FAMILY IS NOT TOGETHER REGULARLY ONCE A DAY 
MOTHER HAS CHANGED EMPLOYMENT FREQUENTLY 

*F = FATHER 
1-1 = MOTHER 
C = CHILD 

FAM = FAMILY 
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Table 11 

Super-Cluster Membership Matrix and P Matrix for Deviance Data 

SUPERCLUSTER 
MEMBERSHIP MATRIX P MATRIX 

CLUSTER SUPERCLUSTER ITEM SUPERCLUSTERS ------- ------------ 1 2 ------3------ 4 5 
1 10000 20 0.038 0.0 0.0 0.0 0.0 
2 10000 4 0.654 0.0 0.0 0.0 0.0 
3 10000 31 0.808 0.250 0.0 0.0 0.0 
4 10000 5 1. 000 0.0 0.0 0.0 0.0 
5 10000 6 1. 000 0.0 0.0 0.0 0.0 
6 10000 7 1. 000 0.0 0.0 0.0 0.0 
7 10000 8 1. 000 0.0 0.0 0.0 0.0 
8 10000 9 1. 000 0.0 0.0 0.0 0.0 
9 10000 10 1. 000 0.0 0.0 0.0 0.0 

10 10000 11 1. 000 0.0 0.0 0.0 0.0 
11 10000 14 1.000 0.0 0.0 0.0 0.0 
12 10000 15 1. 000 0.0 0.0 0.0 0.0 
13 10000 16 1. 000 0.0 0.0 0.0 0.0 
14 10000 19 1. 000 0.0 0.0 0.0 0.0 
15 10000 21 1. 000 0.0 0.0 0.0 0.0 
16 10000 36 1. 000 0.0 0.0 0.0 0.0 
17 10000 37 1. 000 0.0 0.0 0.0 0.0 
18 10000 2 0.769 0.0 0.0 0.0 0.0 
19 10000 3 0.231 0.0 0.0 0.0 0.0 
20 10000 27 0.154 0.0 0.0 0.0 0.0 
21 10000 43 0.154 0.0 0.0 0.0 0.0 
22 10000 44 0.154 0.0 0.0 0.0 0.0 
23 10000 17 0.308 0.0 0.0 0.0 0.0 
24 10000 18 0.308 0.0 0.0 0.0 0.0 
25 10000 1 0.0 0.0 0.0 0.100 0.0 
26 10000 30 0.0 0.0 0.0 1. 000 0.0 
27 01000 28 0.038 0.0 0.0 :c.OOO 0.0 
28 01100 24 0.0 0.0 0.0 0.900 0.0 
29 01100 26 0.0 0.0 0.0 0.900 0.0 
30 01100 32 0.0 0.0 0.0 0.900 0.0 
31 00010 34 0.0 0.0 0.0 0.900 0.0 
32 00010 45 0.0 0.0 0.0 0.900 0.0 
33 00010 46 0.0 0.0 0.0 0.900 0.0 
34 00010 40 0.038 0.0 0.0 0.100 0.0 
35 00010 39 0.038 0.0 0.0 0.0 0.0 
36 00010 12 0.0 0.0 0.0 0.0 1. 000 
37 00010 41 0.0 0.0 0.0 0.0 1. 000 
38 00010 22 0.0 0.750 1. 000 0.0 0.0 
39 00010 23 0.0 0.750 1. 000 0.0 0.0 
40 00010 25 0.0 1. 000 1. 000 0.0 0.0 
41 00001 33 0.0 0.250 0.0 0.0 0.0 
42 00001 29 0.038 0.250 0.0 0.0 0.0 
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21 
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29 
26 
-8 
48 
3' 
23 
6" 
27 
IS 
20 
47 
45 
28 
7 
30 
40 
33 
22 
14 
49 
19 
32 

9 
24 
35 
16 
42 
15 
11 
50 . 
44 
38 
53 
56 
36 
31 
52 
43 
51 
12 
41 

5 
46 
55 

2 
4 

54 
37 
13 
39 
17 
3.1 
10 

2 3 
3 21 

2I" Ii 
If 29 
29 25 
25 26 
41i 41i 
26 6" 
27 27 
TI TI 
6" 7' 

7 18 
18 20 
47 47 
20 24 
45 45 

1 1 
28 28 
30 30 
33 33 
40 40 
22 22 
14 14 
49 49 
19 19 
32 32 

9 9 
24 35 
35 16 
16 42 
15 15 
42 11 
44 50 
50 44 
38 38 
11 53 
53 56 
56 36 
36 31 
31 52 
52 43 
43 51 
51 12 
12 41 
41 5 

5 46 
46 55 
55 2 ., 4 
54 54 
37 37 
13 13 
39 39 
17 17 
34 34 
10 10 

4 5 6 
21 8 48 
"8 2r 29 
29 29 TI 
25 3' 26 
26 25 Ii 
41i 41i 3 
3' 26 25 
27 'IT 27 
TI TI TI 
6 6" 7" 

7 7 18 
18 18 20 
47 47 47 
20 20 24 
45 45 45 

1 1 1 
28 28 28 
30 30 30 
33 33 33 
40 40 40 
22 ,'22 22 
14 14 14 
49 49 49 
19 19 19 
32 32 32 

9 9 9 
24 24 35 
35 35 16 
16 16 42 
15 15 15 
42 42 11 
44 44 50 
50 50 44 
38 38 38 
11 11 53 
53 53 56 
56 56 36 
36 36 31 
52 52 52 
31 43 43 
51 31 51 
43 51 12 
12 12 41 
41 41 5 

5 46 46 
46 55 55 
55 2 2 

2 4 4 
54 54 54 
37 37 37 
13 13 13 
39 39 39 
17 17 17 
34 34 34 
10 10 10 

-------~--

Table 12 

First Order History for Crimes 

7 8 9 10 11 12 13 14 15 16 17 18 
21 21 2l 30 21 21 23 21 21 29 50 3 
Ii 3' a" 21 Ii Ii 'IT 8" 25 'IT 51 21 
29 29 29 3' 29 29 26 29 29 Ii 2 29 
3' 25 25 29 25 25 8 25 2b 25" 52 'IT 
25 26 26 Ii 26 26 29 16 41i 26 56 25 
48 4if 4if 48 4if 48 41i 41i If 41i 49 48 
16 6" 6" 26 j 3' "3 j 3 "3 21 26 
6" 27 3 "25 27 21 25" 27 b 2; 29 8" 
23 TI 27 6" 'IT TI 6" 'IT 23 TI il1f 6" 
27 7" TI 20' 6 6" 27 6" IT b Ii 20' 
IS 18 7" 23 i 7 , 7 20 7 j 23 
20 20 18 27 18 18 18 18 18 18 25 f 
47 47 47 7" 47 47 47 47 47 47 16 47 
24 24 20 47 20 24 20 45 45 20 6" 24 
45 45 45 18 45 45 45 20 1 45 47 45 

1 1 28 45 1 20 1 1 28 1 27 1 
28 28 1 1 28 28 28 28 7 28 20 28 
30 30 30 28 30 1 30 30 30 30 23 30 
33 33 33 33 33 30 33 40 33 33 7' 33 
40 40 40 40 40 33 40 33 40 40 III 40 
22 22 22 14 22 40 14 22 14 22 45 22 
14 14 14 22 14 22 22 49 22 14 28 14 
49 49 49 49 49 49 49 19 49 49 40 49 
19 19 19 19 19 14 19 32 19 19 1 1.9 
32 32 32 32 32 19 32 9 32 32 30 32 

9 9 24 9 9 32 9 24 9 9 33 9 
35 35 35 24 24 9 24 35 24 24 9 35 
16 16 16 35 35 35 35 16 35 35 22 16 
42 42 42 16 15 16 16 42 42 42 19 42 
15 15 15 42 42 15 15 15 16 15 14 15 
11 11 11 15 16 42 42 11 11 11 32 11 
50 50 50 11 50 11 44 50 50 50 24 50 
44 44 44 50 44 50 50 44 44 44 35 44 
38 38 38 44 38 44 38 38 38 38 53 38 
53 53 53 38 53 38 11 53 53 53 15 53 
56 56 56 53 56 53 53 56 56 56 16 56 
36 36 36 56 36 56 56 36 36 36 42 36 
31 31 31 36 31 36 36 31 31 31 38 31 
52 52 52 31 52 31 31 52 52 52 44 52 
43 43 43 52 43 52 52 43 43 43 11 43 
51 51 51 43 51 51 43 51 51 51 43 51 
12 12 12 51 12 43 51 12 12 12 31 12 
41 41 41 12 41 41 12 41 41 41 12 41 

5 5 5 41 5 5 41 5 5 5 41 5 
46 46 46 5 46 46 5 46 46 46 36 46 
55 55 55 46 55 55 46 55 55 55 5 55 

2 2 2 55 2 2 55 2 2 2 55 2 
4 4 4 2 4 4 2 4 4 4 46 ., 

54 54 54 4 54 54 4 54 54 54 4 54 
37 37 37 54 37 37 54 37 37 37 54 37 
13 13 13 37 13 13 37 13 13 13 37 13 
39 39 39 13 39 39 39 39 39 39 13 39 
17 17 17 39 17 17 17 17 17 17 39 17 
34 34 34 17 34 34 34 34 34 3'1 34 34 
10 10 10 34 10 10 10 10 10 10 10 10 

-~- ~--~~~ - - . -

19 20 21 22 23 24 25 26 27 28 
29 21 J 21 "2b 23 TI ira TI iT 
IT Ii Ii 8" 21 'IT 26 6 26 29 
Ii 29 29 29 f 26 29 29- 25 ifO 
25" j 25 j 8 7' ifO 21 29 48 
26 25 !6 25 29 29 27 Ii 8 26 
4a 41i 41i 41i 41i Ii 41i 3 48 '!O 
"3 26 6 16 "3 48 If 25 "3 25 
27 IT 21 TI 25 "3 3 27 23 27 
TI TI 'IT 6" 6" 25 23 TI 6" Ii 
6' 6" 7' 7 27 6 6 7" 7 b 

7 7 18 27 IS 27 7 18 18 23 
18 18 20 Iii 20 Iii 18 20 20 3' 
47 47 47 47 47 47 47 47 47 47 
20 24 24 20 24 20 20 24 24 18 
45 45 45 45 45 45 45 45 45 45 

1 1 1 28 1 1 1 1 1 1 
28 28 28 1 28 28 28 28 28 7 
30 30 ~o 30 30 30 30 30 30 30 
33 33 33 33 33 33 33 33 33 33 
40 40 40 40 40 40 22 40 40 22 
22 22 22 1.4 22 22 14 22 22 14 
14 14 14 49 14 14 49 14 14 49 
49 49 49 1.9 49 49 19 49 49 19 
32 19 19 32 1.9 19 32 19 19 32 

9 32 32 9 32 32 9 32 32 !) 
24 9 9 24 9 9 24 9 9 24 
35 35 35 35 35 35 35 35 35 35 
16 16 16 16 16 16 16 16 16 1.6 
42 42 42 42 42 42 42 42 42 42 
15 15 15 15 15 15 15 15 15 15 
11 11 11 11 11 11 11 11 11 11 
50 50 50 50 50 50 50 50 50 50 
44 44 4,1 44 44 44 44 44 44 44 
38 38 38 38 38 38 38 38 38 38 
5:J 53 53 53 53 53 53 53 53 53 
56 56 56 56 56 56 56 56 56 56 
36 36 36 36 36 36 36 36 36 36 
31 31 31 31 31 31 31 31 31 31 
52 52 52 52 52 52 52 52 52 52 
43 43 43 43 43 43 43 43 43 43 
51 51 51 51 51 51 51 51 51 51 
12 12 12 12 12 12 12 12 12 12 
41 41 41 41 41 41 41 41 41 41 

5 5 5 5 5 5 5 5 5 5 
46 46 46 46 46 46 46 46 46 46 
55 55 55 55 55 55 55 55 55 55 

2 2 2 2 2 2 2 2 2 2 
4 4 4 4 4 ., 4 4 4 4 

54 5,1 54 54 54 54 54 54 5·\ 54 
37 37 37 37 37 37 37 37 37 37 
13 13 13 13 13 13 J.3 13 13 13 
39 39 39 39 39 39 39 39 39 39 
17 17 17 17 17 17 17 1.7 17 17 
3·1 34 3'1 34 3'1 34 34 34 3·1 3.\ 
10 10 10 10 10 10 10 10 10 )0 
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~ 
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29 30 31 32 
ifO 10 3 26 
21 21 2 2I 
8" "3 21 '29 
is 29 29 25 
26 8" 25 iI8 
IT 48 IT 6" 
"3 26 8 If 
27 25 2'6 '3 
TI 6" 23 27 
6" 20' 6" IT 

7 23 "7 7' 
18 IT 27 47 
47 ," 47 18 
20 47 18 20 
45 18 45 45 

1 45 20 1 
28 1 28 28 
30 28 1 30 
33 33 30 40 
22 40 40 33 
14 14 33 14 
49 22 14 22 
19 49 22 49 
32 19 49 19 

9 32 19 9 
24 9 32 24 
35 24 9 35 
16 35 24 16 
42 16 35 42 
15 42 16 15 
11 15 15 11 
50 11 42 50 
44 50 50 44 
38 44 44 38 
53 38 38 53 
56 53 11 56 
36 56 53 36 
31 36 56 31 
52 31 36 52 
43 52 52 43 
51 43 43 51 
12 51 51 12 
41 12 12 41 

5 41 41 5 
46 5 5 46 
55 46 46 55 

2 55 55 2 
<I 2 4 4 

5'1 4 5·\ 54 
37 54 37 37 
13 37 13 13 
39 1.3 39 39 
17 39 17 17 
34 1.7 34 34 
10 34 1.0 1.0 

33 
21 
26 
29' 
25 
il1i 
6" 

8 
'3 

23 
27 ,. 
47 
18 
20 
45 

1 
28 
30 
40 
22 
14 
49 
19 
32 

9 
24 
35 
16 
42 
15 
11 
50 
44 
38 
53 
56 
36 
31 
52 
43 
51 
12 
41 

5 
46 
55 

2 
4 

54 
37 
13 
39 
17 
34 
10 

34 35 36 37 38 3'9 40 
21 21 21 40 21 21 21 
If 29 8" 21 25 If 8" 
29 TIi 29 3 29 '3 29 
"3 25 E 29 40 29 25 
25 48 26 il1i 8 E 26 
48 26 48 26 48 IT 48 
26 If 3" B '26 2b j 
27 '3 27 '3 3' 27 27 
TI 23 23 23 23 23 23 
6' 6" 6' '6 6' 6' 6' 

"7 27 1 21 21 7 7 
18 IT 18 IT 18 18 18 
47 7 47 18 47 47 47 
20 18 24 20 20 20 20 
45 45 45 45 45 45 45 

1 20 20 1 1 1 1 
28 1 28 28 28 28 28 
30 28 1 7 30 30 30 
33 30 30 30 7 33 33 
40 33 33 33 33 40 22 
22 22 40 14 22 22 14 
14 14 22 22 14 14 49 
49 32 14 49 49 49 19 
19 9 49 19 19 19 32 
32 49 19 32 32 32 9 

9 19 32 9 9 9 24 
24 24 9 24 24 24 35 
35 16 35 35 35 35 16 
16 42 16 16 16 16 42 
15 15 15 42 15 15 15 
42 11 42 15 42 42 11 
44 50 50 50 11 44 50 
50 44 44 44 50 50 44 
38 38 38 38 44 38 38 
11 53 11 11 53 11 53 
53 56 53 53 56 53 56 
56 36 56 56 36 56 36 
36 31 31 36 31 36 31 
31 52 52 52 52 31 52 
52 43 43 43 43 52 43 
51 51 51 51 51 43 51 
43 12 12 31 12 51 12 
12 41 41 12 til 12 41 
41 5 5 41 5 41 5 

5 46 46 5 46 5 46 
46 55 55 46 55 46 55 
55 2 2 55 2 55 2 

2 <I 4 2 4 2 4 
4 54 54 4 54 4 54 

54 37 37 54 37 54 37 
37 13 13 13 13 37 13 
13 39 39 39 39 13 39 
39 17 17 17 17 17 17 
17 3,\ 34 34 34 3·\ 34 
10 10 10 10 10 1.0 10 

"'1 

. . 
Table 1.2 (cant. ) 

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 
21 21 8 45 19 47 56 g 47 17 39 56 21 50 2 52 
If If 2r 21 21 56 46 6" 6 51 50 17 29 17 3 17 
29 29 29 j j 49 49 29 46 2 17 51 40 51 2r 51 
25 25 E is is 21 21 IT 21 52 52 50 25 52 25 50 
26 26 '26 29 29 29 29 8" 29 56 56 49 48 56 29 49 
48 48 IT 27 27 48 4B '3 IT 49 49 21 26 49 IT 21 
"3 "3 "3 48 4lf b b 25 8" 21 21 '29 8" 21 8 29 
27 27 27 26 26" B 8 27 26 29 29 IT '3 29 26 48 
23 23 23 8' If 25 25 23 B 4lf iIB 8' 23 4B TI 8 
6' 6' 6' 18 18 26 26 7' ""3 If If 26 6' 8" 6' 26 

"7 1 7 20 20 IT IT 18 27 3 6 6" 27 26 7 6" 
18 18 18 23 23 TI n 20 TI 25 25 25 47 25 27 25 
47 47 47 6" 6" 40 40 47 40 rr IT j 18 6" nr "3 
20 20 20 47 r 7 7 24 7 "6 3' 47 20 47 47 47 
45 45 45 1 47 18 18 45 18 41 41 20 45 27 20 20 

1 1 1 28 28 3 3 1 45 27 27 27 1 20 45 27 
28 28 28 7 7 45 45 28 20 "20 20 23 28 23 28 TI 
30 30 30 30 30 20 20 30 28 23 23 7" 7 "3 1 7' 
33 33 33 33 33 28 28 33 1 7" 7" III 30 .,. 30 18 
40 40 40 40 40 1 1 40 30 18 18 45 33 18 33 45 
22 22 22 22 22 30 30 22 33 45 45 40 14 45 40 40 
14 14 14 14 1.4 33 33 14 22 28 28 28 22 28 14 28 
49 49 49 49 49 22 22 49 14 40 40 1 49 1 22 1 
19 19 19 19 32 14 14 19 19 1 1 30 19 30 49 30 
32 32 32 32 9 19 19 32 32 30 30 33 32 40 19 33 

9 9 9 9 24 32 32 9 9 33 33 9 9 33 32 9 
24 24 24 24 35 9 9 35 24 9 9 22 24 9 9 22 
35 35 35 35 16 24 24 16 35 22 22 19 35 22 24 ,19 
16 16 16 42 42 35 35 42 16 19 19 14 16 19 35 14 
15 15 15 15 15 15 15 15 15 14 14 32 42 14 16 32 
42 11 42 16 11 42 42 11 42 32 32 24 15 32 15 2·1 
44 50 44 50 50 16 16 50 50 24 24 35 50 24 42 35 
50 44 50 38 44 50 50 44 44 35 35 53 56 35 50 53 
38 38 38 11 38 44 44 38 38 53 53 16 44 53 44 16 
11 53 1.1 53 53 38 38 53 56 15 15 15 38 15 38 15 
53 56 53 56 56 53 53 56 53 16 16 42 11 16 56 42 
56 36 56 36 36 11 11 36 11 42 42 38 36 42 11 38 
36 31 36 31 31 36 36 31 36 38 38 11 31 38 53 11 
31 52 52 52 52 52 52 52 52 44 44 44 52 44 36 44 
52 43 31 43 43 43 43 43 43 11 11 43 43 11 52 43 
51 51 51 51 51 31 31 51 31 43 43 31 51 43 31 31 
43 12 12 12 12 51 51 12 51 31 31 12 12 31 51 12 
12 41 41 41 41 12 12 41 12 12 12 41 41 12 43 41 

5 5 5 5 5 41 41 5 41 41 41 36 5 36 12 36 
46 46 46 46 46 5 5 46 5 36 36 5 46 41 41 5 
55 55 55 55 55 55 55 55 55 5 5 55 55 5 5 55 

2 2 2 2 2 2 2 2 2 55 55 2 2 55 46 2 
4 4 4 4 4 <I 4 4 4 46 46 46 4 46 ·1 46 

54 54 54 54 54 54 54 54 54 4 2 4 54 2 54 4 
37 37 37 37 37 37 37 37 37 54 4 54 37 ·1 37 54 
13 13 13 13 13 13 13 13 13 37 54 37 13 37 13 37 
39 39 39 39 39 39 39 39 39 13 37 13 39 13 39 13 
17 17 17 17 17 17 17 17 1.7 39 13 39 17 39 17 39 
34 34 3·1 3'1 34 34 34 34 34 3·\ 34 34 3·1 34 34 34 
10 10 10 10 10 10 10 10 10 10 10 10 1.0 10 10 10 
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First Order !>\ombership 

0 0 0 0 1 1 1 1 0 0 0 0 II 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 () 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ::l 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 (j 1 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 (} 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 o 0 0 0 0 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 O' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 1 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 1 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 1 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 1 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 1 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 1 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 O~ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 G 0 0 

0 0 0 0 0 0 0 0 0 0 0 o 1 1 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 1 0 0 o 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 .1 1 1 1 1 1 1 1. 1 1 1 1 1 1. 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1. 1 1 1 1 1 1 1 1 1. 1 
0 0 0 0 0 0 1 1. 1 1 1 1 1 1 1 ]. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1. 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1. 1 1 1 1 1 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 I 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1 1 1 I 1. 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1. 1. 1. 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1. 1 1 1 1 1 1 1 1 1 1 1. 1 1 1. 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1. 1. 1 1. 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1. 1 I 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 1. 1 1 1 1 1 1. 1 1 1 1 1 I 1 1 1 1 1. 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1. 1 ], 1 1 1 1 1 1 1 1 1. 1 1. 1 1 1 1. 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1. I 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 III 1 

\ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1. I 1 1 1 1 :1- I 1 1 1 1 1. 1 III 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1. 1 1. 111. 1 
0 0 0 0 0 0 1. 1. 1. 1 1 1. 1. 1 1. 1 1 1 1. 1 1 1 1 1. 1 1 1. 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 3. 1 1. 1. 11.1 1 

0 0 0 0 0 0 1 1 1 1 1. 1 111 1 1 1 1 I 1. 1 3. 3. 1 1 1 1 1 111 1. 1 1. 1 1 I 1 1 1. 1. 1. 1. 1. 1 1. 1 1 1 1 1. 1. 1 1 1. 
0 0 0 0 0 0 1 1 1. 1 1 1 1. 1 1. 1 1. 1. 1 1. 1 111 1 1 1. 1 1 1 I 1 ]. 1 1 1 1 1 1 1 1 1 1. 1 1 1 1. 1. I 1 1 1 ]. 1. 1 1 
0 0 0 0 0 0 1 1 1 1 1 1. 1 1 ]. 1 1. 1 1 1 1 1 1 3. 1 I l. 1 11], 1. 1 1 1. 1 1 1 1. .1 1 1 1. 1 1 1 1 1. 1 1. 1 1 1 1 1. l. 
0 0 0 0 0 0 1 J. 1. 1 1 1 1 1, 1 1 1 1 1. III 1. 1 1 1 1 1 III ). 1 III 1. 1 1 I 1 1 1 1 J. 1 1. 1 1 .1 1. 1 1 1 ] 1 



------------~---------- ~ --~----~-----~---

\~ .. 

I 

" ¥-
, . 

Table 14 
" 

Second Order Membership 

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IJ 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 III 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 III 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1'1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 111 1 1 1 1 1 1 1 1 1 1 1 1 111 111 1 1 1 1 1 1 1 1 1 1 '1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 111 1 1 1 1 1 1 1 1 1 1 1 1 111 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 111 1 1 1 1 1 1 1 1 1 1 1 1 III 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 111 1 1 1 1 1 1 1 1 1 1 1 1 111 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 111 1 1 1 1 1 1 1 1 1 1 1 1 III 1 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 111 1 t 1 1 1 1 1 1 1 1 1 1 III 11.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 111 1 1 1 1 1 1 1 1 1 1 1. 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 
0 0 0 0 0 0 1 1 1 1 1 1. 1 1 1 1 1 1 1 1 1 1 1 1 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1 1. 1. 1 1 1 1 1. 1 
0 0 0 0 0 0 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 1 1 .1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 111 1 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] 1 1. 1 1 
0 0 0 0 0 0 1 1 1. 1. 1. 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 
0 0 0 0 0 0 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1 1 1 1 .1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

\ 0 0 0 0 0 0 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 
0 0 0 0 0 0 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 1. 1. 1 1 1 1. 1 1 1 1 1 1 1 1 1 1 1. 1. 1 1. 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1. 1. 1 1 1 1 1 1 1 1- 1 1 1 1 1 1 1 1 1 1. 1 1 1 111 1 1 1 1 1 1 1. 1 1. 1 1. 1 1. 1. l. 
0 0 0 0 0 0 1. 1 1. 1 1. 1 1 1 1 1 1. 1 1 1 1. 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1 1 1 1 1 1 1 1 1 1 1 1. 1 1. 1. 1 1. 
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