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Abstract

Available methods for grouping together variables into more
or less homogeneous sets have some shortcomings when applied to
binary data such as test i£ems. This paper describes a form of
cluster analysis designed to maximize within-set homogeneity which
can be used as an alternative. The procedure is agglomerative and
non-hierarchical, based on a particular form of average-link
methods. The distance measure used is any one of, several forms of
association index that are felt to be appropriate for binary data.
The procedure includes a type of "second-order" clustering
designed to identify the most consistently forming clusters.

The procedure was extremely successful in identifying the
clusters in artificial data and seemed very satisfactory in
identifying an appropriate cluster solution in several sets of

empirical data.
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BINCLUS: NON-HIERARCHICAL CLUSTERING OF BINARY DATA

Introduction

Frequently, the motive of an exploratory factor analysis
is the hope that it will be possible to group variables into
approximately unidimensional subscales. Unfortunately those
methods which serve well when applied to multivalued
variables are of questionable utility when the

variables are dichotomous.

The basic problem is that the linear factor model cannot
be expected to hold very well when the observed scores are
binary. This lack of fit of the model is reflected in the
indices measuring association among the variables.
Correlations, covariances and cross-products may allow
sensible analysis of continuous me&asures for a variety of
purposes, but their possible application to binary measures
is uncertain because they are affected not only by agreement
in the basic measurement of twc variables but also the
similarity in the frequency of endorsements. For example,
suppose one has two identical continuous number series which
are dichotomized differently for each series. One may
obtain correlations which range from unity almost to zero
simply by changing the value for each series below which all
numbers become zeros and above which they become ones.

Fairly modest differences in the two frequencies of 1's in
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the two measures are known to result in substantial The second difficulty, if one intends to factor analyze

decreases in their correlation. (See, e.g., Carroll, 1961) binary data, is that if one abandons the questionable

product moment indices, less conventional indices c
. . .. an no
Consider the small correlation matrix in Table 1 and

. . _ h ¢ longer be interpreted as representing scalar products of
associated list of frequencies. | 8

i ; vectors, and familiar concepts like variance-accounted-for

no longer apply. Since the rationale for factor analysis is

e g (e

to account for the correlations or covariances, interpreted

as scalar products, using a reduced number of underlying

variables, the entire process becomes problematic. This can

(Insert Table 1 Here)

B L v —

. be especially true if tiie results are presented to an

audience which attributes to them a conventional factor

analytic interpretation.

e ——

: Stated more mathematically, the factor model is
The nature of the correlation coefficient obscures the fact |
that in actuality items a and b form a perfect scale, and so r
do ¢ and d. That is, everyone who passes b also passes a, ; : ‘ *ij = mﬁl Yim¥mj ¥ i3 (1)
and everyone who passes d passes c. The correlations make :
it look as if a is related to c and b is related to d, but §;~
this is an artifact of their similarity in difficulty and E where:

2y
B

the correlation between the two scales, Correspondingly, a

Xjj= the value of the ith observation on the jth variable
factor analysis of these data will yield two factors, one

s bt 43 gt

Yim = the value of the ith observation on the mth common factor
. for a and c, the easy items, and one for b and d, the hard | ; . 4nj = the regression coefficient of the mth common factor for predicting
items. The factor's exact nature will depend on the ~ ; the jth variable

' specific extraction and rotation option, but the factors - ®jj = the value of the ith observation on the jth unique factor.

above would be a typical solution using standard common

factor analysis.

o
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This leads, under the usual assumptions of uncorrelated

unique factors, to

R=AaA¢A' + y? (2)

where R is the observed correlation matrix, A is a matrix of
coefficients from (1) and U? is the diagonal matrix

containing the uniquenesses. If R is not a scalar product

matrix derived from X, i.e., if it is simply a matrix of
"measures of association', then (2) does not follow from
(1), and R may be non-grammian. Thus the results of

applying factor analytic methods may be misleading or

difficult to interpret.

In short, factor analysis has severe shortcomings when
applied to binary data. An alternative to factor analysis
is needed for the purpose of grouping together binary
measures into homogeneous subsets. While cluster analysis
presents an alternative method of finding homogeneous
subsets, the goals of available clustering methods seem not

well suited to clustering the binary data of primary

interest here. These data consist of an entities (persons)

by variables matrix, where the scores are binary
(dichotomous) and the object is to group together variahles
into homogeneous subsets. Thus, the overall goal we have in

mind for the cluster analysis is more like that of factor

analysis than like taxonomy.

et
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The present paper describes an approach to cluster
analysis developed for this sort of binary data. The
clustering procedure maximizes the homogeneity of subsets
through an agglomerative process that clusters variahles
measuring similar properties. The resulting subsets of
variables need not be disjoint, and there is no attempt to
make them hierarchical. The clustering is based upon
matrices of association indices between pairs of variables,
so the choice of a measure of association suitahle for

binary measures is crucial.

Association Indices for Binary Variables

Problems with Traditional Indices

A presumably general principle of clustering is that
things that are 'close'" belong in the same cluster whereas
things that are '"distant'" helong in separate clusters. The
definitions and measures of '"close'" and "distant" vary,
depending on the type of problem and the nature of the data.
Our goal here is to put together variables that measure more
or less the same thing, hased on dichotomous responses.
These ground rules mean that several common measures of
distance may bhe unsuitable to varying degrees for this
purpose. Euclidean distance is the most obvious. In the
case of a persons-by-variables binary data matrix where the

objective is to cluster variables, Euclidean distance, djk




PAGE 6
is simply the number of persons who have different values on

the two variables. As such, it is heavily influenced by the

difficulty or popularity (p-value) of the two variables: djkz_lpj-pkl

where pj and py are the proportions of persons having a
value of one on variables j and k. The Pearson correlation
(phi) is affected similarly, albeit less stringently, as is
well known, and the same is true of the inter-variable
covariance. Thus, clustering procedures based on these
indices may tend to group apart those variables that differ
in p-value. Also, grouping variables so as to maximize
Kuder-Richardson 20 reliability will show the same effect,
because KR,o is a function of the average covariance.

Alternative measures of association

Cliff (1979, Cliff § Reynolds, Note 1) has provided a
conceptual framework which may be used to describe anv index
applied to binary measures. This apﬁroach, an outgrowth of
test theory, emphasizes the order relations created hy
variables among the people measured. If a variable orders
two people, for example if one person misses a test item and
the other answers it correctly, the order created by a
second item can have three possible outcomes. First, the
order provided by the second item can correspond to the
order provided by the first item, thus providing redundant
information concerning the person order. Second, it can

contradict the first order by placing the persons in reverse

order. Finally, the second item may provide no ordering

i i
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information at all if both persons miss or both persons
answer it correctly. In this last instance the first item
provides an ordering where the second item does not. This
is called a unique relation. Unique relations way be unique
to the first item but not present in the second (”jk)’ as
explained above. If the first item did not provide ordering
information but the second does, then the other form of
unique relationship (Ukj) exists. If more than one pair of
people are given the items, the relationship hetween the two
items j and k can be expressed as so many redundant pairs,
(rjk)’ so many contradictions (cjk) and so manvy unique

relations (Ujk and ukj)'

The sk Sjko and usy are readily ohtainable from the

usual 2 x 2 contingency table for two items shown in Table

2.

(Insert Table 2 Here)
Here, Tjx = Wz, Cji = XY, and s = WY o+ Xz, The sum of
the three types of relations is nj(n - nj), where n; is the

numher of 1's on variable j. (i.e., the total is
proportional to the item variance.) We let the symbols,

r.., c.., and u.. stand for the total numher of redundant,
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contradictory and unique relations, summed across pairs of

items.

Many commonly used indices of association can bhe

expressed in terms of rcdundant, contradictory, and unique

relations. Ihen common indices are expressed in this way,

it becomes clear how they all increase as the number of

redundant relations increases and decrease with the numher

of contradictions. The differences between the indices lie

mainly in their treatment of unique relations. For example,

Equation (3) shows Pearson's r expressed as a function of

r.., ¢.., and u...

Pearson r =

ViR,

cjk + Ujk)(Rjk + cjk

* -~ ‘
Ujk = relations unique to item j (33

and not found in k

Ukj = relations unique to item k
and not found in j

The Pearson r extracts a mild penalty for unique relations
by putting them in the denominator, that is, unique
rclations shrink Pearson r's. Equation 4 shows the formula

for KRZO .
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KR _ ..
20
xR.. - (s - 2)C + U ) (43

Where: X = the number of items

KRyg is derived from Pearson's r and incorporates unique

relations in a similar way. The fact that KR,O and r are
&

~both diminished by unique relations is another way of
looking at their well known tendency to be reduced by

differences in marginal distributions.

A

The Goodman-Kruskal gamma is- expressed in Equation (5).

Goodman-Kruskal Gamma = —-* -

(5)

By ignoring unique relations, Gamma avoids the problem of

limiting scales to variables having similar frequencies.

A different approach is to assign a positive weight to

unique relations. One such possible index is q (Cliff,

1979), shown in Equation 6, where t in the equation is a

combination of redundant, contradictory and unique relations

weighted 1, -1 and .25.
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T - Tc
q = ——
Ty - To
Where: T

= R - C + .25Q0.

(6)

T = the value of T given “ha Observed

marginals and random responses

Tb= the value of 7 given the Observed

marginals and a perfect Guttman
scale

t. is the value of t which would be expected with the
observed marginals if the data were merely random. ty is
the value of t which would occur given the observed
marginals and a perfect Guttman scale. Because it gives
uniqueness a positive weight, q tends to favor sets of items
which have different difficulty levels. Within-cluster
homogeneity can be characterized in terms of the average
value of any of these indices, to say nothing of many
alternatives. Their main differences are seen here to hbe in
the way "unique" ordinal relations are treated, and the bias
of the more familiar cerrelation and KRZO measures is
toward penalizing unique relations, whereas gamma treats

them neutrally, and q rewards them,

The clustering procedure described here forms clusters of
items so as to maximize within-cluster homogeneity in any of
these forms, or in terms of any other simple function of
re., U.., and c... At this time, analyses have been
performed using these four particular forms, Pearson T,

gamma, KRZO, and q.
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BINCLUS

BINCLUS is a computer program that was wWritten to cluster
binary variables. The program uses the average linkage
concept as the basis for constructing clusters, but with
Some variations that are felt to make it more effective.

The measure of association can he phi, gamma, KRZO, or q as

described above, or various other functions of r.., u..

c.

Algorithm

In BINCLUS, each variable begins a Cluster. (At the
user's option, a subset can be designated as starting
variables. ) Then, to each Cluster is added the variable
that has the highest value of the proximity index with the
variable that started the cluster. The process continues,
each time adding to the Cluster the variable with the
highest proximity to the variables already in the cluster,
That is, if cluster ¢ has v members then the v + 1st member
will be that one which has the highest average index of
association with current members. Assignment of a new item
to cluster c does not depend on whether Or not that item

already belongs to some other cluster. It is possibhle for

that item has a strong enough association with each of the
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clusters. A part of the output is the cluster-membership

matrix M, where m,. is the index of the vth member addeu to

Ccluster c.

The procedure takes place exactly in this fashion in the
case of correlations, but in the case of gamma and q a
modification is introduced to make the process more robust
for these indices. The approach that is taken is not to
average the values of the indices directly, but to average
the numerator and denominators separately. Let njk and djk
be the numerator and denominator, respectively, of the
inter-variable proximity between variables j and k. Then,

the actual form of hy . the average proximity of variable k
’

to cluster c, that is used in the case of gamma and q is

1 Mk (7)

where j refers to variables already in the cluster. The
reason is that, due to the variations in the amount of
information shared by a pair‘of hinary variables, the index
can be substantially affected by a few observations if the

two variables differ in frequency. For example, in relating

i
g, e '
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a variable with 90% endorsement to a variable having only
10% endorsement, the percentage of individuals who have
value 1 on both variables can vary only from 0.00 to .10,

and is expected to be .09 even if the variables are

independent. Thus some values of gamma or q are hased on

less information than others.

tors and denominators separately gives lower weight te¢ indices
based on less information.

Illustration of the Procedure

An example will be described in order to clarify this

procedure. It uses q as the proximity measure. Table 3

contains n, d'k and q

ik, 43 ik from an 8-variable set.

(Insert Table 3 Here)

In Table 4 the membership matrix M is shown for the clusters

based upon the q-matrix jin Tahle 3.

The procedure of averaging numera-



Also shown is the H matri

jtem-cluster index as each variable is added.

cluster 1.

produces the largest

where g, =

(Insert Tahle 4 Here)

PAGE 14

x which records the values of the

Consider

As can be seen in Table 3, the variable that

.68. Thus Myp = 4 and h21 = .68.

q when added to variable 1 is number 4,

To find the third variable for this cluster, we search

all items for the highest hy . (the highest "average' item-

cluster qJ.

Mzy ©

hay

This is given by variable 7:

Doy * D94 164.3 + 203.6 _ 436 (8)
hyo = T4 = §45.7 ¥ 398.0
ke dgp *dgy
= 7, h-.1 = .44 are recorded in matrices M and H.
3
The fourth variable was found to be number 3, because
nyp *t Mgy T O _3g.4 + 113.0 + (=46.8) _ 929 (9)
31 34 37 _
= 0+ 426.2 + 237.9
331 + d34 + d37 296

P
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is the largest third-level hkC for the first cluster. These
data are recorded as My = 3 and h41 = ,03. Additional
variables are added to each cluster by continuing the
sequence for all available objects, or until some

sufficiently small value for hkc has bheen recorded.

Deciding on cluster boundaries

A necessary feature of such a system is a way of deciding
on the boundary of a cluster. One such rule is to look for
a sudden drop in hkc as some new item is chosen. As can be
seen in the first cluster, adding a fourth member produces a
large drop in the homogeneity index. This drop signifies
that the objects that are most closely related in the
cluster have already been added, and that only those which
are located farther away, presumably non-members, are left.
When such a drop in index values occurs, it marks a natural
cluster boundary. However, it frequently happens in
empirical data that no large gap between adjacent values
will occur. In these cases, it is still possible to define
the cluster members by using a cutoff value, which can be
used to define the cluster boundaries. In the present
artificial example, a value around .44 would serve. This
gives the same three members to clusters 1, 4, and 7 and the

same four to 2, 3, 6, and 8. Cluster 5 would he a
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singleton. These results are summarized in the third output

matrix, the reordered binary membership matrix. In this p x

p matrix V, Vjc = 1 means that item j is a member of cluster

c, and Vjc = 0 means that it is not. The rows and columns

are reordered so as to make clusters adjacent that have

similar membership and make variables adjacent that belong

to the same clusters. (An algorithm for doing this

rearrangement is described in a later section.) The V

matrix fov these data is shown in Table §.

(Insert Table 5 Here)

Simulation Studies

Data generation

Binclus has been evaluated using both simulated and

empirical data. Data for the simulation studies were

generated using the Birnbaum two parameter logistic item

response model. The Birnbaum model describes item and

person characteristics in reference to a single underlying

trait or dimension. To create a multiple trait or

multidimensional set of responses, the model was used
repeatedly to generate subsets of the 24 items. A five-hy-
three design--five types of subject ability/item difficulty

R M S 15
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distribution combinations by three levels of item

discrimination--was used. Table 6 details the parameters

used in each experimental condition.

(Insert Table 6 Here)

The three levels of item discrimination used were low
(a=.5) , modevate (a=1.0) and high (a=3.0). The five
subject ability/item difficulty combinations were produced
by varying the distributional shape, mean, and standard
deviation of the theta (ability) and b (difficulty)

parameters. The normal data sets represented what most

researchers would consider the least challenging case for a
conventional analysis, that is, persons sampled from a

normal distribution of ability taking items sampled from a

normal distribution of difficulty. The low frequency

condition was intended to simulate situations where marginal
frequency in the item set is relatively homogeneous but

extreme. The rectangular and mixed data sets simulated

situations of highly variable marginal frequency. Both
these conditions used rectangular distributions of item

difficulty, but the rectangular condition used a rectangular
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distribution of subject ability as well, while the mixed
condition used a normal distribution of subject ahility.
The bimodal data sets included items of both very low or
very high marginal frequency, with few items between. This
was included as the classic example of a situation where
product-moment indices should suffer from extreme

differences in item distributions.

Each of the 15 conditions was replicated five times,
resulting in 75 binary matrices. Each matrix contained one
eight-item cluster, one six-item cluster, one four-item
cluster, and six singleton items. Within each cluster, the
person-items were sampled from one of the joint
distributions described above. Each of the 500 simulated
subjects had a true score for the ability underlying each

cluster or singleton, and these abilities were uncorrelated

across clusters.

Deciding on Cluster Boundaries in Artificial Data

Cluster houndaries in the BINCLUS analysis were decided
upon in the following way. Each of the 18 items belonging
in one of the three subsets started a cluster, as descrihed
above. Items were added to each cluster until the cluster
contained the same number of items as the subset to which
the starting item belonged. For example, if an item
belonged to the eight-item subset, it was allowed to add

seven items to the cluster it began. The result was eight
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eight-item clusters, six six-item clusters, and four four-

item clusters.

This set of clusters was finally reduced to one eight-

item cluster, one six-item cluster, and one four-item

cluster. This was done by comparing the cluster solutions

obtained by the various starting items within a suhset. If
an item appeared in at least half of the cluster solutions,
it was considered a part of the final cluster. For example,
to determine the final membership of the eight-item cluster,

any item appearing in four or more of these solutions was

considered a part of the final eight-item cluster.

Judging Cluster Recovery: The Rand Statistic

The Rand statistic (1971) was computed to compare the

known subset structure in each data set with the BINCLUS

cluster solution. If one records for each pair of items in

a data set whether they are placed together or apart by a
clustering solution, the Rand statistic is merely the number
of correct placements, that is, placements agreeing with the
known subset structure, divided by the total numbher of item
pairs. In most cases the number of item pairs belonging
apart is high, and thus the Rand statistic often tends to he
large. In fact, a Rand statistic of .82 in this case can he

obtained by arbitrarily placing each item in a cluster hy
itself,



e ——— v Ty T

e —p—— — T T

PAGE 20
Results

A previous Monte Carlo study (McCormick, Cliff, Cudeck, §
Reynolds, Note 2) had shown BINCLUS to be quite 'robust

across association indices. Gamma was chosen for use in the

simulations because it is relatively insensitive to

differences in item response frequencies.

The resulting Rand statistics, averaged over

replications, are shown in Table 7.

(Insert Table 7 Here)

The most striking finding is the excellent overall
performance of BINCLUS, as evidenced hy an average Rand
statistic of .99. This is similar to the findings of
McCormick et al. (Note 2) who obtained an overall average
Rand statistic of .969 using much smaller sample sizes.
BINCLUS recovered the subscale structure perfectly in all
the data sets of moderate (a = 1.0) item discrimination.
When item discrimination was high (a = 3.0), recovery was
perfect in the Bimodal, Mixed, and Rectangular conditions,
above .99 in the Normal condition, and .98 in the Low

Frequency condition. BINCLUS performs slightly Jess well
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when items are of low discrimination (a = .5). While
recovery is perfect in the Normal condition and virtually
perfect in the Mixed condition, BINCLUS fares somewhat less

well in the Low frequency, Bimodal, and Recfangular

conditions.

For purposes of comparison, common factors analysis was
performed on each of the 75 data sets in each analysis,
three factors were rotated to a Varimax solution. An item
was considered part of a factor if it had its highest
loading on that factor, provided that the Jloading was
greater in absolute value than .2. The Rand statistics from
this analysis also apﬁear in Table 7. Clearly BINCLUS was
much more successful at recovering the underlying subscale
structure than factor analysis., This was particularly true

in the Bimodal condition irrespective of item

discrimination, and in the low discrimination condition

overall.

An unknown degree of artificiality is introduced into the
criterion by specifying in advance the cutpoints for the
clusters as well as the number of factors to be rotated.
This device is an attempt to circumvent the introduction of
subjective methods which might bias the results and is not
unique to this investigation (Milligan, 1980). This
shortcoming might be overcome if data could be sent blind to

factor analysts and users of RINCLUS who could then make
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independent judgments to determine the number of factors and
the items belonging to each. The experience of the authors
is that not knowing the true cluster structure is less of a

problem for BINCLUS than factor analysis.

Modifications

These analyses of artificial data showed that in its
initial form BINCLUS was quite successful when applied to
clusters that were generated according to the Birnbaum
model, this being true even when the consistency was not
high. Application to several sets of empirical data,

however, showed that some refinement was desirable.

With’empirical data, the clusters of variables tend to be
much less clearly defined. Rather than being isolated
clusters of points, each surrounded by a '"moat'" of empty
space, there is more often a shading off from one location
to the next. Thus the need was for some additions to the
clustering procedure that would identify more clearly the

central members of more diffuse clusters.

BINCLUS has two features that are designed to have this
effect; one has been touched on earlier. This is the matrix
rearrangement process that reorders the rows and columns of
the binary membership matrix. It will bhe described in more
detail here. The other is a kind of second order clustering

that will also be descrihed here.
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Rearranging Output Matrix

In the artificiaj data, true cluster members had
consecutive identification numbers, and therefore the final
membership matrix, if correct, listed Cluster-members next
to each other. 1In real data, clusters were not

likely to be as visually apparent as the matrix stils

appeared jumbled.

To present a more visually useful form of the
relationship among the clusters, the rows and columns of a
Cluster membership matrix are permuted so as to make similar
Clusters adjacent. A variety of approaches to this problen
dre possible. The present approach is a form of nearest

neighbor ordering based on gammas. It is similar in concept

to the seriation procedure of Gelfand (1971).

The same procedure is applied independently to rows
(variables) and columns (clusters). Gammas are computed
among all pairs of variables or Clusters; the two having the
largest value are Placed next to each other. Call one the
left member (L) and the other right (R) member. This is a
two-member chain, Then, the one element of the remaining p
- 2 rows or columns that is Closest (highest gamma) to R is
found, and similarly the one Closest to L. Call these R'
and L', respectively. Then their gammas are compared, and

R'" is placed to the right of R, or L' js placed to the left

of L, depending on which gamma is higher. 1In either case,
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this new member becomes one of the ends of the chain of

threc elements. Then, one of the p - 3 remaining members is

added to one end or the other of the chain in the same way.
The process continues, adding members to the eunds of the
chain until all the members have been ordered. Then the
variables by clusters matrix is transposed and the process
is repeated. The process has been quite effective in
arranging the data into a visually compelling form, as was
seen in Tahle 5 where this procedure placed together the
clusters with identical members (columnwise) and the items

with identical cluster memberships (rows). Table 8 shows

the process applied to a membership matrix whose variables

were in random order.

(Insert Tahle 8 Here)

Here the nature of the two cluster solution is clearly

visible, and it is also apparent that variable 5 is a

maverick. When the clusters are disjoint or nearly so, as

they are in Table 3, the permuted pattern will assume a

block diagonal appearance. It will have sections down the

e A

it o b
e

AR

e AP
- /,w‘..,ﬁ.‘.vm*wuag,;wl;w“rﬂw““ TR "%

PAGE 25
diagonal with 1's and sections in the off-diagonal with 0's.

The blocks of 1's represent subsets of the ohjects that

jointly select each other.

Second-order Solutions

Even with permutations designed to enhance the appearance

of the clusters, some solutions proved difficult to

interpret. Sometimes the results display a rough block-

diagonal pattern, but in many instances even these clusters
can have "ragged'" edges, i.e., there are many clusters whose

memberships differ slightly, depending on which variable was

the starter. These solutions can be difficult to

understand. The permuted patterns can be vague enough to

make final conclusions very tentative, particularly when it

is difficult to decide on a cutoff value for a cluster.

For this reason, we developed a 'second order'" analysis.

In a second-order analysis, the cluster membership matrix

resulting from the initial clustering is treated as a data

matrix and itself clustered. Essentially, clusters whose

membership differ only slightly are put together. The first

order cluster analysis usually will reveal that some
variables are not clustered with any others in the data set.

Item 5 in the example is of this kind. Before a second-

order analysis is carried out, such variables can he deleted

since it is known that they are unrelated to the rest of the

set. The second-order analysis then proceeds with the
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number of elements reduced by the number of singletons in

the first analysis.

The columns in the data-matrix for a second-order
analysis are no longer the original variahles, but rather
are the clusters obtained from the first analysis, and the
rows are variables. Often, the second-order analysis very
clearly reveals which clusters are similar. 1Its mode of
operation is largely to "trim the edges" of clusters and
also to delete clusters that do not form consistently from

several starting members.

In the first-order analysis, the hinary membership matrix
V is variables-by-clusters, and a 1 denotes a variable that
was a member of the cluster started by the column variable.
In a second-order analysis, the corresponding membership
matrix of binary relations is cluster-hy-"superclusters',
That is, v = 1 implies that cluster c is a member of the

cc*
. * .. .
supercluster started by cluster ¢ . The final step in

+

*
superclustering is the deletion of columns of V that

duplicate other columns.

The complete V* matrix for the Tahle 8 solution, shown
in Table 9(a), is the same as the permuted membership
matrix, but with the singleton deleted. The reduced
supercluster membership matrix corresponding to the second
order analysis of the data shown in Table 3 is presented in

Table 9(b).
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(Insert Tahle 9 Here)

), * . .
The reduced Vv matrix is shown in section b of Tabhle 9.
These results are interpreted as meaning that clusters 2, 3,

6, and 8 are all in the first super-cluster, while clusters

1, 4 and 7 are in the second.

The final step is to relate the original variahles to the

superclusters. One approach to this is tg construct a

matrix P, with pjc* equal to the proportion of clusters in
super-cluster c* of which variable j was a memher. This
matrix is displayed in section c of Table 9.

Applications

Social Deviance Data

One example of the utility of BINCLUS as a data reduction
tool is the following analysis of binary indicators of
social deviance. The items are primarily factual questions

concerning the family background of the individnal or
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descriptive items concerning the relationships amone members
of the family. The subjects were 265 of the individnals
from the cohort of 9125 consecutive persons horn at the
Rigshospitalet, Copenhagen, 1959-61.% The items are based on
interviews of the individual and their parents in 1972 (For
a fuller description see Gabrielli and Mednick (1980)).

Results

The results of a first-order BINCLUS analysis are given

in Table 10, along with brief phrases identifying the items.

(Insert Tahle 10 Here)

The clustering, done on the basis of Goodman-Kruskal gammas
between the items, results in a quite clear and striking
cluster structure. In the upper left is a large cluster of
items that might be called '"broken-home" items, various
types of departure from a stable two-parent family, along
with various circumstances likely to be correlated with
this, There is a second fair-sized cluster in the lower
right; this consists entirely of items related to cases

where the father does not have a normal, healthy role in the

--------------------

#The authors are indebted to Sarnoff A. Mednick and W. F.
Gabrielli, Jr, for making these data available.
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family. There are also several small clusters that involve

pairs and triplets of items that seem logically related,

The structure of the results seems quite clear, but the
permuted cluster membership matrix in Table 10 is typical of
other results in that there is a certain amount of fuzziness
in the clusters, a core of items that are consistently
members of all the clusters along with some less consistent
items. Sometimes the clusters overlap, and often there is a

blurring of the distinction between cluster members and

singletons.

Under these circumstances a second-order analysis may
clarify the solution. Table 11 contains the second-order
cluster membership matrix and the P matrix for these data.

(Insert Table 11 Here)

As a result of the second-order analysis it becomes much
easier to see the contribution of various items to the
clusters. Super-cluster 1 receives strong contributions
from "family constellation" items; Superclusters 2 and 3,
almost identical, seem to reflect home atmosphere and
parental attitudes; Supercluster 4 is the "father's
problems'" items; and the small Supercluster 5 is the "mother

employed fulltime" cluster. There is almost no overlap

between the superclusters except for the two that are nearly
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identical. These results are typical of data where there

seems to be a reasonable structure.

Factor analysis of these data resulted in a much 1less
substantively compelling solution. Although the first
factor contained many of the same items as the "family
constellation" cluster, only the items of moderate frequency
of endorsement, i.e. between .4 and .6, had substantia]
loadings. In fact, loadings on the first rotated factor
correlate .77 with frequency of endorsement, and the
remaining factors are very small ones.

Criminal Records

Another set of data looked at is a very large file of
criminal offenses committed by a birth cohort of 28,000
young men born in Copenhagen. The data (Witkin, Mednick,
Schulsinger, Christiansen, Goodenough, Hirshhorn, Lundsteen,
Owen, Phillip, Rubin, § Steccking, 1976) are unique, both for
completeness and accuracy. They allowed us to test the
notion that criminality is a unitary phenomenon against the
competing hypothesis that criminality can be subdivided into
distinct criminal specialties (Collins, Cliff, Cudeck,
McCormick, § Zatkin, 1983). The initial data was a binary
citizens by offenses matrix, where 1 means that the citizen

had been arrested for the column offense.
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Results

S

Table 12 shows the first order Cluster histories for a
selected sample of the 56 most common or serious crimes.

(See Collins, et al. for identification of the offenses.)

(Insert Table 12 llere)

Ten of the more familiar crimes have been underlired, and

one can see they are near the top of most clusters.

If a rather low index cutoff point near .15 is chosen,
the binary membership matrix which results is that displayed

in Table 13.

(Insert Table 13 here)
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In the second order analysis, shown in Tabhle 14, the

pattern is even clearer.

(Insert Table 14 Here)

The items most important in the larger cluster, those which

were circled, include burglary, forgery, fraud, rohbery and

receiving stolen goods, which are apparently core crimes in

a sc.le or factor of general criminality. The small cluster

in the corner consists of traffic offenses: speeding,

illegally overtaking, failure to yield and negligent
homicide.

Discussion

To a certain extent, the utility of a method can be
measured by the variety of applications for which it is
appropriate, and there seems to be a variety of problems

with which this scheme for nonhierarchical cluster analysis

might be used. The first is one which is frequently found

in psychology, namely constructing homogeneous sets of items

from a heterogencous pool, a problem that Napior (1972)
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terms multidimensional item analysis. The machinery of

factor analysis, generally appropriate for this kind of
problem when the data consist of continuous variables, is

unsatisfactory with dichotomous items (Carroll, 1945;

Gourlay, 1951; Guilford, 1941; Lord & Novick, 1968, p. 349;

Wherry § Gaylord, 1944). Other recently developed methods

which have an explicit model for dichotomous responses

(Christoffersson, 1975; Muthen, 1978; Muthen §

Christoffersson, 1982) are limited practically in the number
of variahles they can treat, or require very large numbers
of suhjects for statistical estimation, and are based on

normality assumptions that are highly questionable.

Traditional approaches for item analysis can be applied

once fairly homogeneous subsets have heen defined, and

factor analysis can be used to examine further the structure

of the composite variables. But most of the popular methods

for extracting subsets of items (Burisch, 1978; Hase §
Goldberg, 1967) are not convincing with realistic data sets

This is all the more true when little pfevious work 1is

available to guide the analysis. The present version of

nonhierarchical clustering seems promising in this context,

as witness the successful applicétions descrihed above.

A related prolilem to which this method may be applied

concerns the issue of data reduction. Many prospective

studies or other large-scale investigations collect massive
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amounts of information which is frequentlv qualitative or
binary. Before a standard multivariate technique can he
used to study relationships in the data, some method for
reducing the information to a more manageable form must bhe
undertaken. Often this is done on an a priori basis which
can be arbitrary, unrealistic, or prone to bias. Lorr
(1976), among others, has suggested cluster analysis for
this purpose. The most frequent kind of cluster analysis
used is a hierarchical method, but in this context
hierarchies are not generally expected, at least in the
sense that hierarchy is meant in the cluster literature. On
the other hand, tasks or items that arrange themselves in
hierarchies--as this term is used in the Guttman-scale sense
in the educational literature e.g. Bart (Note 3)--are
eminently suited for analysis by Binclus, and indeed it was
they that we have had in mind from the beginning of this
development. A nonhierarchical method with a provision for
treating binary data seems well-suited for this prohlem. No
prior information about the data is required, and so it is
attractive in exploratory studies. Furthermore, it is
efficient for a first pass through the data when information

about the existence of possible subsets is desired.

Another source of potential applications are exploratory
investigations which study structural aspects among
variables without the benefit of a guiding hypothesis. It

seems ill-advised to use a hierarchical clustering method if

PR
U‘? -

. " e o b e
o iy RS

C

ey i

v

PAGE 35

the structure itself is at issue since these methods always
find a hierarchy. Similarly, it seems inappropriate to use
a method which produces disjoint clusters if it is not
hypothesized that such a structure is optimél for the data.
Since a large percentage of investigations of this kind are
éxploratory in nature, it is important that a clustering
method be selected that does not force a structure on the

data before it is reasonable to do so.

In each of these kinds of applications, the idea of
second-order solutions can be useful. Certainly in the case
of data reduction, a higher-order analysis would be valuabhle
as a means of synthesizing findings from a complex analysis.
Likewise in problems of multidimensional item analysis a
second-order solution would reveal the extent to which the
clusters overlap. This information would he useful in
judging convergent or divergent association among scales
defined by the clusters. Normally one assesses convergence
or divergence at the level of aggregated quantitative
variables. But a second-order clustering solution wonld

provide this kind of information at the item level.

The method described here runs counter to cnrrent trends
in psychometrics in that it is a collection of heuristics
rather than a monolithic algorithm guaranteed to optimize
some chjective function such as maximum likelihood or some

form of least squares. Two lines of defense are offered,
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one pragmatic and one philosophical. The pragmatic one is
that the procedure has worked. The artificial data
experiments found that even without the addition of the
permutational and sceccond-order features, it worked very well
identifying clusters and separating them from singletons
unless the data were very noisy. The permutation and
second-order analyses were added when the method was applied
to real data. It was found that the outlines of empirical
clusters tended to be fuzzy, and these procedures sharpened
the definition of them. On the basis of the study by
Milligan (1981), and the comparisons in Zatkin, et al. (Note
4), it appears unlikely that any other clustering procedure

would work as well.

The philosnphical defense has to do with the place of the
objective function in data-fitting. As has been stated for
many years (Guttman, 1971; Cliff, 1982), the solution one
finds is influenced to a greater or lesser degree by the
objective function that is tailored to the type of data
analyzed. The clustering procedure is of the stepwise
variety, adding the '"currently best'" item to the cluster.
Although there is no guarantee that this will result in
clusters which have the greatest possihle homogeneity, it
seems likely that such a guarantee is hardly possible short
of trying all possible combinations of items of each cluster

60

size, i.e., 2P clusters. Since, e.g., 2 1.15E18, this

is impractical for any moderately large set of data. Thus
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We use a heuristic method here for reasons of economy.

liowever, we attempt to make the process robust by using all

possible starting places.

Operating in conjunction with the provision, based on

experience and beliefs concerning our sorts of data, that

the clusters are not disjoint, the multiple starting

positions tend to lead to numerous similar but non-identical

Clusters. Two heuristic methods of "purifying'" the clusters

are then added that attempt to cluster the clusters. The

purpose of the first one is mainly graphical. It uses an

ordering function to group the clusters into block-diagonal

form, insofar as this is possible. Again, the basis of the

procedure is heuristic. It is primarily an ordering

procedure, and there is no guarantee that it finds the best
possible order, but it should be effective unless the data
are highly noisy or somehow perverse. The second-order
analysis has also a heuristic basis in the belief that the
binary cluster-membership matrix can be meaningfully
simplified by the application of the clustering procedure to
it, using gammas as the index of association again. 1In
their defense, it is asserted that the heuristics forming
the basis for these procedures are intuitively sound and
therefore preferable to more elegant methods that are rooted

in more arbitrary objective functions.
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The method runs counter to current trends in'another way
also. It assumes the intervention of the intelligent,
substantively knowledgeable investigator at several points.
First the investigator must choose an index, based on
experience and beliefs concerning the nature of the data.
Then there is the necessity of choosing cutoff values for
the index in order to define the membhbership matrix. This
can be expected to take place on partly substantive grounds,
and we believe, justifiably so. Thus, the method is not
expected to give good results unless the user is
sophisticated, except that data with a strong cluster
structure will impose itself quite strongly, regardless of

the options chosen by the user.
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! Table 2

Table 1
Contingency Table for Two Items

g tpn,

An Example of Item Difficulty Affecting Correlations

Factors N
i Item k
a b c d Proportion Passing I II ;
o Positive Negative
a 1.00 .25 .38 .19 .80 a .63 .15 o e N
b 1.00 .19 .38 .20 b .15 .63 . Item 3 : :
c 1.00 .25 . 80 c .63 .15 Positive : w : x P ong
a 1.00 .20 d .15 .63 o R R :
Negative v : z : n-n
tmm e . +
‘ n, n—nk n

g i i
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Table 3

Quality Index g for Fictitious Data with

Eight Variables

Objects
1 2 3 4 5 6 7 8
Numeratoré and Denominators
njk

1 0 43.0 -38.4 337.4 -40.4 -8.1 164.3 -27.0

2 473.0 0 211.0 -18.0 10.0 358.5 -23.2 159.5

3 296.0 452.5 0 113.0 10.0 335.7 -46.8 93.1
d.k 4 500.2 699.6 426.2 0 -92.0 -57.4 203.6 -41.0
4L 5 481.6 734.8 445.0 713.8 0 107.0 -10.0 78.4

6 467.1 738.4 457.3 689.9 724.4 0 28.7 163.3

7 445.,7 377.2 237.9 398.0 383.8 372.6 0 71.9

8 175.5 264.5 300.1 250.0 260.4 267.1 141.5 0

q Values

1 1.00

2 .09 1.00

3 -.13 .47 1.00

4 .68 ~.03 .27 1.00

5 -.08 .01 .02 -.13 1.00

6 -.02 .49 .73 -.08 .15 1.00

7 .37 .06 -.20 .51 -.03 .08 1.00

8 -.15 .60 .31 -.1l6 .30 .61 .51 1.00
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Membership Matrix and History Matrix

Table 4

for Fictitious Data with Eight Variables

Variables
1 2 3 4 5 6 7 8
M Matrix
1 2 3 4 5 6 7 8
4 8 6 1 8 3 4 6
7 6 2 7 6 2 1 3
3 3 8 3 3 8 K 2
6 5 5 6 2 5 6 5
8 7 7 8 7 7 8 7
2 1 1 2 1 1 2 1
5 4 4 5 4 4 5 4
H Matrix
1.00 1.00 .00 .00 .00 .00 .00 .00
.68 .60 .73 .68 .30 .73 .51 .61
.44 .52 .48 <44 27 .48 .53 .57
.03 .53 .50 .03 .37 .50 .03 .50
.15 .10 .10 .15 .34 .10 .15 .10
.23 .01 .01 .23 .0l .01 .23 .01
.24 .04 .04 .24 .04 . 04 .24 .04
.02 .12 .12 .02 .12 .12 .02 .12
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Table 5

Cluster
2 3
0 0
0 0
0 0
1 1
1 1
1 1
1 1
0 0

N




Table 6

Description of Latent Trait Model Parameters Manipulated in Monte Carlo Study

Condition Subject Ability Item Difficulty Item Discrimination
Shape Shape a= .5 a =1 1 =3
Normal Normal g =20 Normal 0 0 0
6 =1 0 1l 1 1
Low Frequency Normal g =0 Normal u 2 : 2 1.5
8 = 1
Rectangularx Rectangular U =20 Rectangular M 0 0 0
8 = 1 8 1.3
Bimodal Normal p =20 Bimodal U +2* +2% +1.5%
B = 8 25 25 25
Mixed Normal H =20 Rectangular ! 0 0 0
6 = 8 2.0 1.3

*The means of the two modes were at these two points; the standard deviations are the within-
mode valus.
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; Table 8
- ? Binary Membership Matrix and Permuted Membership Matrix
Table 7 : %k
Rand Statistics for Simulation Study % %f Membership Matrix in Random Order
(including factor analysis) : i
BINCLUS Factor Analysis Cluster
a=.5 a=1 1=3 =.5 a=1 a=3 ! Item 1 2 3 4 5 6 7
Normal 1.000 | 1.000 .997 .996 | 1.000 | 1.000 i 1 1 0 0 1 0 0 1
4 2 0 1 1 0 0 1 0
Low Frequency 952 1.000 .978 .931 .991 .967 % ; 5 . . L . ) . .
Rectangular .965 1.000 1.000 .929 | .996 1.000 ; ? 4 1 0 0 1 0 0 1
’ 5 0 0 0 0 1 0 0
Bimodal .964 1.000 1.000 .932 .939 .911 ? ¢ 0 1 1 0 0 1 0
!
Mixed .978 1.000 1.000 .957 .997 .968 ‘ 7 1 0 0 1 0 0 1
8 0 1 1 0 0 1 0
:
Permuted Membership Matrix
Item 2 3 6 8 1 4 7
2 1 1 1 1 0 0 0
3 1 1 1 1 0 0 0
6 1 1 1 1 0 0 0
i 8 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1
: 4 0 0 0 0 1 1 1
' o 7 0 0 0 0 1 1 1
5 0 0 0 0 0 0 0
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Super-Cluster Solution for Fictitious Data with Eigh

Clusters

[

Superclusters
2 3 6 8 1
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0

Complete V* matrix

P

Table 9

4 7
0 0
0 0
0 0
0 0 Clusters
1 1
1 1
1 1
Superclusters
1 2
1.0 0
1.0 0
1.0 0
1.0 0
0 1.0
0 1.0
0 1.0

Superclusters
1 2
1 0
1 0
1 0
1 0
0 1
c 1
0 1

Reduced V* matrix

+ Variables
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Table 10

Cluster Membership Matrix for Binclus Analysis of Deviance Data

111111111122222222223333333333444
123456789012345678901234567890123456789012
000000000000000000000000100000000000000000
000000000111111111111111110000000000000000
111100000111111111111111111000000000000000
111111111111111111111111110000000000000000
111111111111111111112111110000000000000000
111111111111111111111111110000000000000000
111111111111111111111111110000000000000000
111111111111111111111111110000000000000000
111111111111111111111111110000000000000000
111111111111111111111111110000000000000000
111111111111111111111111110000000000000000
1111113111111111111111111110000000000000000
1111111111113111111111111110000000000000000
111111111111111111111111110000000000000000
111111111111111111111111110000000000000000
111111111111111111111111110000000000000000
111111111111111111111111110000000000000000
000011111111111111111111000000000000000000
110000001111000000000000000000000000000000
111100000000000000000000000000000000000000
111100000000000000000000000000000000000000
111100000000000000000000000000000000000000
111111110000000000000000000000000000000000
111111110000000000000000000000000000000000
000000000000000000000000000000100000000000
000000000000000000000000000000111111111100
000000001000000000000000000000111111111100
000000000000000000000000000000011112111100
000000000000000QQC0O0O0O0O0OOOQ0O0O0O0O0O0O0O11111211100
000000000000000000000000060000011111111100
000000000000000C0000000O0O0O0CO0O0O0O0O0L2111111100
000000000000000000000000000000011121211100
0000000000000000000000000000C0O0O011111112100
000000001000000000000000000000000000000100
000000001000000000000000000000000000000000
0000000000000000000000000000000000000000112
000000000000000000000000000000000000000011
0000000000000000000000000001211000000000000
000000000000000000000000000111000000000000
000000000000000000000000001111000000000000
000000000000000G:30000000001000000000000000
000000000000000000000000011000000000000000

F ALCOHOLIC¥*
F DEAD
M CHAR DISORDER

B

IOL PARENTS NOT MARRIED

BIOL PARENTS NOT TOGETHER

HOggHEHEHEgIOOIIIE0N0O0AROOOO00HEON

HAS HAD >1 FAM CONSTELLATIO!
NOT LIVING WITH.PARENTS
FIGURE NOT CHILD'S F

<7 YEARS WITH PRESENT FAM
<7 YEARS WITH 1 FAM

HAS LIVED IN ORPHANAGE

<7 YEARS WITH M

<7 YEARS WITH F

ALCOHOLIC
2 ADULTS IN HOME

NOT WITH OWN FAM

NOT WITH BOTH PARENTS

HAS M SUBSTITUTE

DEAD

PSYCHOTIC

HOSPITALIZED FOR PSYCH PROB
SERIOUS PHYSICAL ILLNESS
NOT ALWAYS WITH M FIRST YEAF
NOT ALWAYS WITH M SECOND YE2
WORKS

NEUROTIC

PSYCHOTIC

DOES NOT LIKE C

IMMATURE

CHAR DISORDER

ANXIOUS

HOSPITALIZED FOR PSYCH PROB
SERIOUS PHYSICAL ILLNESS

PARENTS QUARREL
PARENTS PHYSICALLY FIGHT

C
M

SPENT TIME IN WHOLE DAY CARE
FULLTIME WORK WHILE C <5

INADEQUATE HOME ATMOSPHERE

M
M
M
M

DOES NOT LIKE C
IMMATURE
ANXIOUS
NEUROTIC
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ITEM
13
35
38
42

*F
M

FAM

[ O [ |

Table 10
(cont.)
UNUSED_ITEMS_(N_=_4)
LABEL

SPENT TIME IN HALF-DAY CARE

MOTHER HAS MISCELLANEOUS MENTAL PROBLEMS
FAMILY IS NOT TOGETHER REGULARLY ONCE A DAY
MOTHER HAS CHANGED EMPLOYMENT FREQUENTLY

FATHER
MOTHER
CHILD

FAMILY
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Table 13
First Order Membership
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Table 14

Second Order Membership
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