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PROLOGUE

When most consumers of seasonally adjusted series --
and that includes nearly every economically literate
berson -- are confronted by the question of why they
prefer such a series to the original, the most common
and natural reaction is that the answer is obvious. Yet
on further reflection the basis for such a preference
becomes less clear, and those who give the matter
extensive thought often finish by becoming hopelessly
confused.

-~ Grether and Nerlove (1970:685)
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EXECUTIVE SUMMARY

This report 1s an introduction to the fundamentals of
seasonal analysis, with an emphasis on practical applications to
criminal justice. Administrators, policy makers, researchers,
and others who make decisions based on crime data now have time
series data available that allow them to answer questions that
could not be answered only a few years ago. But to answer these
questions, it 1is necessary to use methods appropriate to the
analysis of time series, 1including methods of detecting and
analyzing seasonality. Many fields outside of criminology have
long had a wealth of time series data available to them, and have
developed methods to analyze seasonality in those data. This
report guides the reader to the use of the most common of these
methods.

In the analysis of time series data, as in the analysis of
cross-sectional data, description must precede explanation, We

must describe the past before we can forecast the future, We
must become familiar with patterns of change over time in the
original data before we can develop complex causal models. If we

do not, we risk misspecifying the model, and forecasts and policy
decisions based on that model may be erroneous.

An elementary part of the description of patterns over time
in monthly or quarterly data is the description of seasonal fluc-
tuation. Some monthly and quarterly series fluctuate with the
seasons of the year; others do not. If we assume that a series
is seasonal, when it is not, or that a series is not seasonal,
when it is, we risk erroneous forecasts and explanatory models.

This report discusses the two major approaches to defining
and detecting seasonality -- the component approach and the
stochastic approach. Although the two approaches are
mathematically similar, there are practical differences in
emphasis. The component approach emphasizes a separate
description of seasonal fluctuation, while the stochastic
approach emphasizes forecasting the future with a model that
incorporates seasonality. The component approach focuses on
seasonality itself, while the stochastic approach focuses on
- 8easonality as it affects the accuracy of a forecast.

No single method of analysis 1is appropriate in every
situation. The method of choice depends upon the objectives of
the analysis. For example, a decision to build a new prison will
depend upon a forecast of the total number of inmates, with
seasonal fluctuation included in the total. On the other hand,
if there are wide seasonal fluctuations in the number of inmates,
it might be necessary to open an additional wing during some
months of the year. The decision to do this would depend on an
analysis of the seasonal component.

it




Neither the component approach nor the stochastic approach
offers a simple, objective, yes-or-no criterion for detecting the
presence of seasonality in a time series. Both approaches depend
heavily on the Jjudgment of the analyst, although each approach
gives the analyst a number of statistical tools upon which to
base that judgment. This report discusses and compares these
tools, and gives the analyst some basic rules of thumb for using
them in various practical situations.

In addition, for those who need more detail than this report
provides, it includes an annotated bibliography of 110 references
to literature about seasonal analysis and to reports analyzing
the seasonality of crime. :
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INTRODUCTION

Administrators, policy makers and researchers now have time
series data available that allow them to answer questdons that
could not be answered only a few years ago. But to answer these
questions, it 1s necessary to use methods appropriate to the
analysis of time series, including methods of detecting and
analyzing seasonality. Many fields outside of criminology have
long had a wealth of time series data available to them, and have
developed methods to analyze seasonality in those data. This
report 1is an dintroduction to the most commonly used of these
methods, with practical crime data examples.]

The question of seasonality is a paradox. On one hand, the
concept seems simple. Criminologists have traditionally believed
(see Wolfgang,1966:96-106 for a review) that more crimes occur
during some months of the year than others. On the other hand,
this simplicity is deceptive: a precise definition of seasonality
is elusive, and the detection and measurement of seasonality are
subjective.

The quote by Grether and Nerlove 1in the prologue exactly
describes the Statistical Analysis Center staff's experience when
we first confronted the question of seasonality. We naively
thought that it would be a simple problem, that all we had to do
would be to discover the standard "cookbook" seasonal adjustment
method and apply it. However, we soon found that there 1is no
standard cookbook approach to seasonality. Qur routine search
for a standard program soon became a lengthy investigation of the
philosophical approaches and related mathematical methods for the
detection, measurement and adjustment of seasonal fluctuatilon.

This report is a summary of the results of that investiga-
tion. It reviews the two most common approaches to detecting and
measuring seasonality. It also discusses the qualitative and

TA complete review of all seasonal analysis methods would
fill at least one book. This report is limited to the two most
commonly used methods, the seasonal component method and the sto-
chastic modelling method. Readers who want to investigate alter-
native methods should see Kendall (1976), Zellner (1978), or
Pierce (1980) for an overview; Lovell (1963) or Dutta (1975) for
dummy regression; Shiskin (1957) for same-month-last-year; Land
(1978,1980) and Land and Felson (1976) for econometric and time-
inhomogenous methods; Bliss (1958) or Warren, et al. (1981) for
periodic regression analysis (PRA); Cleveland, et al. (1979) or
Velleman and Hoaglin (1981) for resistant methods, and Rosenblatt
(1965) for spectral analysis. For a technical guide to using the
seasonality and other time series computer programs that are
available at SAC, see the SAC report, "Technical Manual for Time
Series Pattern Description," by Louise S. Miller.
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quantitative choices that a user of any seasonal analysi§ method
must make. As a simple introduction to seasonality, it includes
statistics only when necessary, but it also includes a long,
annotated bibliography of technical reports, for those who.need
more detail. In short, it is the report that I wish had existed
when I first began to analyze the seasonality of time series.

T e 2

WHY DOES SEASONALITY MATTER?

Time series containing time periods shorter than a year,
such as monthly or quarterly series, may vary according to the
season of the year. That is, a phenomenon may occur more fre-
quently at certain times of the year, and less frequently at
other times. On the other hand, not every monthly or quarterly
time series is seasonal. For example, the number of aggravated
assault offenses known to the police in Illinois (figure 1) is
seasonal, but the number of homicide offenses known to the police
in Illinois (figure 2) is not seasonal.2

If we ignore the question of seasonality, we may make the
error of assuming that a series 1s not seasonal, when in fact it
is. On the other hand, if we automatically adjust for seasonal-
ity without first analyzing the series to see if it 1is seasonal
or not, we may make the error of adjusting for nonexistant sea-
sonality. What difference would either sort of error make to
common administrative or policy decisions?

If we make the first error, ignore the question of seasonal-
ity in a series that is seasonal, we ignore two kinds of informa-
tion that may be useful in making decisions: a description of
seasonal fluctuation, and a description of the variation in the
series with the seasonal fluctuation removed. Such descriptions
provide a necessary foundation for explanatrory models, fore-
casts, and tests of intervention hypotheses,. Without a prior
description, models may be misspecified, forecasts inaccurate,
and hypothesis tests erroneous.

Policy makers and administrators often need to know the
amount of seasonal fluctuation in order to allocate resources.
For example, if more rapes occur in the summer, a police chief
may want to allocate more resources to a rape crisis center or to
a rape investigation unit in the summer months. If more people
are sentenced to prison in the fall, a prison administrator may
want to arrange for more beds in the fall months. Knowledge of
the pattern of seasonal fluctuation around the overall trend
helps the administrator estimate the resources needed from month
to month. :

Ignoring seasonality may also lead to erroneous conclusions
in comparing one month and another. Suppose that a crime preven-
tion program were instituted in May, and that one of the goals of
this program was to reduce larceny. If more 1larceny incidents

2The lines superimposed on the raw data in figures 1 and 2,
and other figures in this report, are "line segment fits," which
use linear spline regression to describe the general pattern of
change over time in a variable. For more information, see the
Statistical Analysis Center report, "Manual for the Pattern
Description of Time Series."
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ordinarily occur in the summer than in the spring, the effect of
the program might be obscured by seasonal variation. The number
of larcenies occurring in June might be as high or even nigher
than the number of larcenies occurring in April, even if the pro-
gram actually decreased larceny. In such a situation, the policy
maker or administrator is not primarily interested in seasonal
fluctuation, but is interested in the overall trend, with sea-
sonal fluctuation removed. Once seasonality has been taken into
account, were there fewer larcenies after the crime prevention
program?
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These two kinds of descriptions -- description c¢f the pat-
tern of seasonal fluctuation, and description of the pattern of
the variable with the seasonal fluctuation removed -- can help in
communication to policy makers, and other users of crime data
(see Granger 1978:38-39). Seasonal fluctuation may be so great
that 1t obscures any other pattern over time. Suppose that a
reporter or a member of the City Council asks the Police Depart-
ment's crime analysis unit whether larceny offenses are
increasing or decreasing. The unit's answer will be more easily
understood if it 1is accompanied by a graph of the seasonally
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s oo - o S T T ad justed data (figure 4), than if it is accompanied by a graph of
Jd T the original data (figure 3). There is much less variation in
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[ general pattern of larcenies over time appears much more

Figure 2 | . clearly.3
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The second kind of error, to assume that a series is seasonal
when, in fact, it is not, may also lead to an inaccurate descrip-
tion of the pattern of the series. Failure to recognize a lack
of seasonality may lead to model misspecification and inaccurate
forecasts in the same way as failure to recognize the presence of
seasonality (see Fromm,1978:26). We will make the same descrip-
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WHAT IS SEASONALITY?

To answer the question, "Is this series seasonal?" we must
first define seasonality. As Granger (1978:35) notes, "It is re-
markable how many papers discuss [seasonality] without consider-
ation of definition."™ It is not suprising that two investigators
would come to conflicting conclusions about the presence of sea-
sonal fluctuation in a series, if neither began the analysis with
a definition of seasonality.

Such a definition needs to be more than a mathematical for-
mula. The method used to calculate the presence of seasonality
should have some basis in the analyst's concept of what season-
ality is. For example, if we conceive of seasonal fluctuation as
being relatively constant from year to year, consistency should
be included in the measure of seasonality. By not explicitly
stating our definition of seasonality, we risk using a measure
that conflicts with that definition, and the analysis will yield
confusing if not erroneous conclusions.

To avoid this, we need a clear conceptual definition of sea-
sonality. There are two major empirical approaches to defining
and detecting the presence of seasonality, the component approach
and the stochastic approach. Although these two traditions are
historically distinct, with adherents, literature and jargon that
seldom overlap, there is a close mathematical similarity. Each
approach can be expressed in terms of the other, and it 1is
possible to combine the two to reap the benefits of both.6
However, because they are generally seen as separate approaches
to seasonality, the following discussion treats them separately.

] L} 1 L 4 "y q )
! 3 . 4
Ak W S

The Component Definition of Seasonality

}
—

Perhaps the most common conceptual approach to seasonality
is the component approach, expressed by Kallek's (1978:15) simple
and straightforward definition:

T

Seasonality refers to regular periodic fluctuations which
recur every year with about the same timing and with the
same intensity and which, most importantly, can be meas-
ured and removed from the time series under review.

— 7
A A -
‘——W‘N‘ ﬁ ST

A series with strong seasonal fluctuation, such as long gun
registrations, (figure 5) easily qualifies as seasonal under
Kallek's definition. However, the seasonality present in many

r. .

6This combination, an "X-11 ARIMA"™ method (Dagum,1978,
1980), uses a stochastic time series model to improve the quality
of X-11 forecasts. For definitions of these terms, see "The
Stochastic Definition of Seasonality," below.
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Figure 6
CHICAGO HANDGUN REGISTRATIONS, JANUARY 186S-JULY 1980

SOURCE: GUN REGISTRATION SECTION OF THE
CHICAGE COMPTROLLER'S OFFICE
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crime series, such as handgun registrations (figure 6) is less
obvious, and categorizing the serles as "seasonal™ or "not sea-
sonal" becomes a subjective question. To reduce the subjectiv-
ity, or at least make it explicit, we need measures for aspects
of the conceptual definition, such as "regular periodic fluctua-
tions," "same timing," and "same intensity."™ For example, what
if all summers were high except one, and that summer were abnor-
mally low? What if the degree to which the summer months were
high were less than the degree to which the summer months varied
among themselves? In such cases, which in crime series are very
common, we need objective criteria to measure, or "operational-
ize" Kallek's definition. The component approach operationalizes
seasonality by separating seasonal fluctuation from the rest of
the series.

The final clause of Kallek's definition, that seasonal fluc-
tuation "can be measured and removed from the time series under
review," is the foundation of the component approach. The ana-
lyst imagines that each seasonal series has three components.
The trend/cycle component consists of long-term trend and any
nonseasonal but regular fluctuations. The seasonal component is,
"the intrayear pattern of variation which is repeated constantly
or in an evolving fashion from year to year," (Shiskin et al.
1967:1). The irregular component consists of everything else,
the "residual variation." Thus, the total number of occurrences
in a given month equals the number due to the trend/cycle, the
number due to seasonality, and the number due to irregular
fluctuation.7 A "seasonally adjusted" series 1is a series from
which the seasonal component has been removed. It has all the
characteristics of the original, except seasonal fluctuation.

The component approach is commonly referred to as "seasonal
ad justment,” or as "Census X-11 adjustment.” Since 1954, when
the U.S. Bureau of the Census introduced an early version of the
X-11 seasonal adjustment program, it has become one of the stand-
ards against which seasonal adjustment methods are measured.8 It
is widely used by both governmental agencies and academic
scholars in the United States and elsewhere. When you see econo-
mic data labeled "seasonally adjusted," with no other qualifying
statement, you can usually assume that the data were seasonally
adjusted by the X-11 program, or some version of it.9

TThe relation between components may be additive or multi-
plicagive. See "Component Methods," below.

For more information on the Census X-11 and other seasonal
component methods, see Shiskin (1967), Plewes (1977), Grether and
Nerlove (1970), Hannon (1960,1963), Lovell (1963), Willson(1973),
Nettheim (1965) and Rosenblatt (1965). 1In addition, more than
twenty papers on aspects of seasonal adjustment and analysis are
contained in the Census Bureau publication, Seasonal Analysis of
Economic Time Series (Zellner, 1978).

JBell Laboratories has recently developed a program, called
SABL, that is similar in concept to the X-11, but contains sev-
eral improvements. See Cleveland et al.(1978).
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Lﬂ' ”I Figure 8
. . i ILLINAIS INDEX LARCENY-THEFT, FINAL IRREGULAR SERIES
Thus, the problem of detecting seasonality becomes a problem -
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sonal fluctuation has been separated from the rest of the series, . 8
the component method uses a variety of statistical tests, which { ] B
compare the removed seasonal component to the trend/cycle and ir- U g
regular components, as criteria for the presence of seasonality. s
If the seasonal component is large enough relative to the irregu- - ] g
lar component, then the component approach decides the series is L ol
seasonal. For example, the three components of the seasonal ol
larceny/theft series are graphed in figures 7, 8, and 9. Figure 7 - z
shows the seasonal fluctuation, figure 8 shows the irregular, and 4] re
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The Stochastic Definition of Seasonality

The foundation of the component approach to seasonality 1is
its conception of seasonal fluctuation as separa@e from.the rest
of the series. In contrast, the "stochastic time series anal-
ysis" or "autoprojection" method incorporates seasonal flgctga-
tion into a single descriptive model of the series, a description
of the stochastic process.1l! 1In a stochastic process, one obsgr—
vation follows the next with a certain probability. In a seriles
with seasonal fluctuation, observations twelve months apagt are
correlated, which means that they follow each other with a
certain probability.12 Thus, seasonality may be part of a
stochastic process.

In the stochastic literature, as in the componeqt.l;tera-
ture, it is unusual to find an explicit conceppugl.def}nltlon of
seasonality. The closest thing to such a definition in Box and
Jenkins (1976:301) is the following:

In general, we say that a series exhibits periodic
behavior with period s, when similcorities in the
series occur after s basic time intervals.

Nelson {1973:168) paraphrases this in less mathematical language:

Seasonality means a tendency to repeat a pattern of
behavior over a seasonal period, generally one year.

Therefore, like the component definition, the stochastic defin%-
tion of seasonality emphasizes the existence of regular periodic
fluctuation. However, unlike the component definition, the s?o-
chastic definition does not emphasize separating this fluctuation
from the rest of the series.

An additional difference between the two approaches is that
the stochastic approach is not so much concerned about describ@ng
the past as it is about forecasting the future. Box and Jenkins
(1976:301) emphasize that a reasonable description of each of the
three components of a series may not produce a good forecast. Of
course, description of the past must precede a forecast of the

11Stochastic time series analysis is also called Box-
Jenkins or ARIMA, in reference to the authors and to their mne-
monic for the method. There are many approaches to the problem
of stochastic time series modeling, and an extensive literature
on the subject, some of which requires a knowledge of advanced
statistics. This report is only a brief guide to these methods,
especially as they pertain to seasonal analysis. For a more
complete, but still elementary introduction, see Nelson (1973) or
McCleary and Hay (1981). '

2However, the opposite is not always true. If observations
twelve months apart are correlated, the series is not necessarily
seasonal. See "Stochastic Methods," below.
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future. However, the stochastic approach does not describe the
series with a regression or harmonic function, or describe the
separate components. Instead, it describes the stochastic pro-
cess of the series. If we can describe the probability, or set
of probabilities, under which observations followed one another
in the past (the stochastic process), and if the same process
continues unchanged, then we can accurately forecast the future.

Stochastic time series analysis assumes that a times series
has followed some unknown stochastic process in the past. The
problem is to identify or "model" that process.13 The stochastic
method uses trial and error, "iterative decisions,”" to arrive at
the best model. These iterative decisions begin with an initial
diagnosis of the series. With respect to seasonality, the ana-
lyst uses descriptions of the relationship between observations
at one time period and another to discover any systematic
seasonal movement. If this diagnosis suggests seasonality, the
analyst then considers a number of alternative seasonal processes
that may describe the pattern of the series. Each set of alter-
native processes becomes a tentative model, which the analyst
then evaluates. By fitting a tentative model to the series,
calculating the difference between the model and the actual data,

and analyzing these '"residuals," the analyst determines whether
or not the chosen seasonal process successfully describes the
series. Eventually, the analyst reaches a stochastic model that

appears to describe the series better than alternative models.
If this final model includes a seasonal term, the stochastic
approach decides that the series is seasonal.

For example, stochastic diagnosis, estimation and evaluation
of the Illinois larceny/theft series suggests that the series
follows a seasonal process.1“ The current observation is related
to the error of the observation twelve months ago. 1In addition,
the current observation is related to the error of the preceding
observation. (For details, see "Stochastic Methods," below.)
Figure 10 shows the original larceny/theft series (dark line) and
the modelled series (light line). Each of the modelled values
was calculated from the immediately preceding observation and the

observation one year ago. For the years 1972 through 1981, we
used the actual numbers of larceny/theft to calculate thé
modelled -value. The January, 1982 modelled value was calculated_

from the actual December, 1982 and January, 1981 values. To fore-
cast for February, 1982, we used the actual February, 1981 obser- ,
vation and the modelled value for January, 1982. By continuing
this process, we calculated the 1982 forecasted values in figure
10.

134 model is "a set of assumptions concerning the origin or
generating mechanism of a series," (Pierce,1980:125).

The model realized in figure 10 is a (0,1,1)(0,1,1) ARIMA
process, or a first-order seasonal and serial moving average pro-
cess with seasonal and serial differencing. For definitions and
details, see "Stochastic Methods," below.
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Summary: Two Definitional Approaches

This section discussed two major approaches to defining and
detecting seasonality, the component approach and the stochastic
approach. Although the two approaches are mathematically simi-
lar, there are practical differences in emphasis. The component
approach emphasizes a separate description of seasonal fluctua-
tion, while the stochastic approach emphasizes forecasting the
future with a model that incorporates seasonality. The component
approach is more interested in Seasonality itself, while the sto-
chastic approach is more interested in seasonality as it affects
the accuracy of a forecast.

Both approaches model seasonal fluctuation. However, in the
component model, seasonality is separated from the rest of the
series, while in the stochastic model, it is not. There are two
schools of thought concerning the separation of seasonal fluctua-
tion from the rest of the series. One school (see Kendall,1976:
66) argues that, since seasonality 1is variation due to a known
cause, it should be removed prior to building an explanatory
model, forecasting, or any other complex analysis. The other
school (see Plosser,1978) holds that it is more logical to
include seasonal fluctuation as an integral part of the final
analysis. The first school of thought would use the component
method, but the second would not. '
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In reality, models of separate components are necessary to
answer some questions, and one model incorporating seasonality is
necessary to answer other questions. For example, a decision to
build a new prison will depend upon a forecast of the total num-
ber of inmates, with seasonal fluctuation included in the total.
On the other hand, if there are wide seasonal fluctuations in the
number of inmates, it might be necessary to open an additional
wing during some months of the vyear. The decision to do this
would depend upon an analysis of the seasonal component.

There have been several experimental comparisons of various
approaches to detecting the presence of seasonality (Kuiper,
1978; Granger,1978; Grether and Nerlove,1970; Buchin,1982). How-
ever, Kendall and Stuart (1966) probably give the best advice:
"Try several methods and choose the one which appears to give the
best results." No single method of analysis is appropriate in
every situation. The method of choice depends upon the objec-
tives of the analysis. In the following sections of this report,
we discuss and compare the tools for detecting and analyzing
seasonality that are offered by the two approaches, and give the
analyst some basic rules of thumb for using these tools in
various practical situations.
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TOOLS FOR DETECTING AND ANALYZING SEASONALITY

Neither the component nor the stochastic approach to season-
ality offers a simple, objective, yes-or-no criterion for detec-
ting the presence of seasonality in a time series. Both
approaches depend heavily on the Jjudgment of the analyst,
although each approach gives the analyst a number of statistical
tools upon which to base that judgment. In the following
sections, we introduce the reader to some of these tools for
detecting, measuring and adjusting for seasonality.

Component Methods

The X-11 program, developed by the U.S. Bureau of the Cen-
sus, glves the user a vast amount of information that can be used
to answer the question, "Is this series seasonal?"15 If the an-
swer 1s "yes," the X-11 program allows the user to describe both
the seasonal fluctuation and the pattern of the series with the
seasonal fluctuation removed.

The X-11 program partitions a series into three components
(seasonal, trend-cycle, and irregular) by fitting a moving aver-
age to it (for details, see below). This smooths the series, and
allows seasonal fluctuation, if present, to be 1isolated and
described.

The standard output of the X-11 program is voluminous, and
its interpretation is an art as much as it is a science. The user
must weigh the results of various diagnostic tests against each
other, and make a number of subjective judgments. The final
decision as to whether or not a given series fluctuates with the
seasons 1s a function of the analyst's interpretation of these
diagnostics. Two analysts may disagree. Thus, published results
should mention the diagnostic tests the analyst used to arrive at
the decision, and the results of those tests.

Pierce (1980:130) argues that, "seasonal adjustment models
are never more than approximations." However, the objectivity of

15The Bureau of Labor Statisties (BLS) of the U. S. Depart-
ment of Labor provided the X-11 program we use at SAC. BLS staff
also provided documentation, and were very helpful in answering
questions about interpretation. The X-11 1s available in the
SAS/ETS (Econometric and Time Series) package. In addition, an
alternative component program, SABL, is available from Bell Labs
(Cleveland et al.,1978). We use an abbreviated component program
as a screener, This "Bell-Canada" package was developed by John
Higginson of Statistics Canada. For instructions on using both
of these programs on the SAC system, see Miller (1982).
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se approximations can be improved if analysts use phe same
g?:gnost%% tests, interpret these tests using geqergl guidelines
or "rules of thumb," and explicitly stgte'any dev1at}ons from the
use of these guidelines. At the Statistical Analysis Center, we
have found the following guidelines to be helpful.

Moving Average

A moving average calculation takes successive averages from
the beginning to the end of the series.16 For example, it might
calculate the average of observations 1 through 5, then observa-
tions 2 through 6, observations 3 through 7, and so on to the end

of the series. These means are,.then, a trgnsformed_serleg in
which random variation and periodic fluctuation (w1tp1n a five-
month span) are "averaged out." A moving average 1s smoother

than the original series, and, depending on thg numbgr Qf
observations within each average, does not con@a}n perlqdlc
fluctuation. 17 It is also shorter than the original series.
This "end effect" is often important, because we may be most
interested in the most recent past of the series.18

The goal of a moving average is to producg a.smoothed ser;es
that does not contain random variation or periodicity, but still
contains the other patterns in the series. However, there are
many kinds of moving average, and not every kind will meet this
goal for every series.19 According to Kendall (1976:53),

Trend-fitting and trend-estimation are very far from
being a purely mechanical process which can be handed
over regardless to an electronic computer. In the
choice of the extent of the average, the nature.of
the weights, and the order of the polynomial on which
these weights are based, there is great scope -- even
a necessity -- for personal judgment. To a scientist

16The concept and calculation of moving average, in th@s
context, is very different from the moving average process in
stochastic time series analysis. The moving average (MA) process
received its name because it is similar to a conventignal moving
average in one way: it assumes that each observation is affected
by a finite number of other observations. For more detail, see
Nelson_(1973:33). . X .

17TIn the context of spectral analysis, a moving average is
called a "filter." For example, a "low-pass filter" removes bigh
frequency periodicity. See Kendall (1976:44) and the section,
"Cumulative Periodogram of Residuals," above.

There are various statistical techniques to handle the_end
effect in a moving average. See Kendall (1976) for a review.
The X-11 ARIMA method uses stochastic time series analysis to
estimate end values. See Dagum (1978,1980). '

9For a clear discussion of the effects that various moving
averages have on a series, see Kendall (1976:29-54). For ratio-
to-moving average, see Hickman and Hilton (1971).
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it is always felt as a departure from correctness to

incorporate subjective elements into his work. The
student of time-series cannot be a purist in that
sense.

Therefore, the X-11 program utilizes iterative approximations of
the best moving average, and offers the user a choice of moving
average options (see Shiskin et al.,1967 for details).

Additive/Multiplicative Assumption

The seasonal, trend/cycle, and irregular components have two
possible relationships to each other, dependent or independent .20
If we consider them to be independent of each other, then we add

them together to equal the total number of occurrences. If we
consider them to be dependent on each other, then we multiply
them together to equal the total number of nccurrences. For ex-

ample, if the relationship for larceny were additive, then the
number of larcenies due to seasonal fluctuation would remain the
same no matter if the total number of larcenies were 50 or 500.
If the relationship were multiplicative, the number of larcenies
due to seasonal fluctuation would be greater if the total number
of larcenies were higher. The additive/multiplicative assumption
is the analyst's choice. Most economic series are assumed to be
multiplicative. However, we know of no theoretical argument for
assuming the components of a crime series to be either dependent
or independent. In our experience, the additive assumption has
produced the better adjustment in the majority of crime series
analyzed.

Our general procedure at SAC is to make no prior judgment
about whether seasonal fluctuation is additive or multiplicative,
but to adjust the series under both assumptions, and choose the
best adjustment of the two according to the diagnostic tests dis-
cussed below.21 The two assumptions usually produce very similar
results, but, when they do not, we assume that the better adjust-
ment, additive or multiplicative, reflects the true relationship
among the components.22

20For a discussion of additive versus multiplicative rela-
tionships in stochastic process models, see' Box and Jenkins
(1976:322-324). The relationship in stochastic models, as in com-
ponent models, is usually assumed to be multiplicative.

Of course, it is not possible to adjust under a multipli-
cative assumption if the series contains an observation that is
Zero.

2For an important series in which the multiplicative or
additive relationship is not clear, it may be necessary to use
more complex analytical methods than this report can cover. The
literature on seasonal adjustment contains may discussions of the
problem. For an introduction, see several of the papers in
Zellner (1978). For some practical hints, see Plewes (1977).
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F of Stable Seasonality, and
Relative Contribution of the Irregular

The F of stable seasonality is a ratio between the seasonal
component and the irregular component.23 The F value's signifi-
cance is based on the assumption that the irregular is normally
distributed, homoscedastic, and varies randomly over time
(Shiskin et al.,1967:59). With time series data, the assumption
of independence of successive observations may be violated
(Anderson, 1950). Therefore, there is some question as to the
proper interpretation of this F value.24

Seasonal series typically have very high F values. The sta-
ble seasonality F is 96, for example, for the Illinois larceny/
theft series, and it is not unusual to find an F value of 100 or
more. In light of this, how should we interpret an F that is
much smaller, but not small enough to be statistically insignifi-
cant, providing we could assume independence? If we cannot apply
the usual significance tables, what does an F value of 5 or 10
indicate about the presence of seasonality?

As a guide to interpreting such X-137 results, Plewes (1977)
prepared a set of "rules of thumb" for the staff of the Bureau of
Labor Statistics. We have found these guidelines to be very
helpful, and describe some of them here. Plewes suggests that
1nterpretation of the stable seasonality F value should be guided
by 1pformation about the irregular. This makes sense, when we
realize that the assumptions upon which the F is based have to do
with the behavior of the irregular.

. Another diagnostic computed by the X-11 program, the "rela-
§1ve contribution of the irregular" varies from 0% to 100%, and
indicates the contribution of the irregular component to total
month-to-month variation, relative to the contributions of the
seasonal and the trend/cycle components. It indicates the abso-
lutg importance of each component to the variation in the total
§er1es.25 Plewes (1977:4) suggests that the F value should be
interpreted in light of the relative contribution of the irregu-
lar, according to the following rule of thumb:

23stable seasonality assumes that seasonal fluctuation is
constant from year to year. For "moving seasonality," which does
not assume consistancy, See the "Appropriate Applications"
section, below.
If we could assume 1independence of observations and use
the F table, a value of 2.41 would be significant. This is the 1%
level for a 10-year series. Differences in significance levels
ggg7ifrfes of other lengths are negligible (Shiskin et al.,
. 25In X-11 printed results, we also find the relative contri-
butions of each of the three components over a two-month span
three-month span, and so on, up to a twelve month span. ’
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F Value ¢ Cont. of I Decision

0.00-2.40 > 0% no stable seasonality
2.41-15.00 > 14% no stable seasonality
15.01-50.00 > 25% no stable seasonality
50.01 and up > 30% no stable seasonality

To this rule of thumb, we would add a qualification.26 The
percent contribution of the irregular reflects the relative con-
tributions of both the seasonal and the trend/cycle. In crime
series, in contrast to many economic series, the contribution of
the trend/cycle may be very low. As a result, both the irregular
and the seasonal relative contributions may be high. Therefore,
with a stable seasonality F value over 15 and a percent contribu-
tion of the irregular about 30, before rejecting the stable sea-
sonality hypothesis, check the percent contribution of the sea-

sonal. According to Plewes (1977:7) "a seasonal component with a
[relative contribution] value of less than 50.0 percent in a
one-month span signals a weak seasonal." If the seasonal contri-

bution is 50 percent or more, use additional diagnostics (see
below) to make the final decision.

Therefore, even if it cannot be interpreted as an exact sta-
tistic, the F of stable seasonality can be used in an exploratory
way as one indicator of the amount of seasonality in a series.
For example, as we mentioned above, the stable seasonality F
value for Illinois larceny/theft is 95.82. The contribution of
the irregular over a one-month span 1is 18 percent. According to
Plewes's rule of thumb, we should not reject the hypothesis of
stable seasonality. In contrast, for Illinois Index homicide
(figure 2) the stable seasonality F value is 2.78 and the contri-
bution of the irregular is 70 percent. This indicates that the
series does not contain stable seasonality. On the other hand,
for Index aggravated assault (figure 1) the stable seasonality F
value is 45.70, and the contribution of the irregular is 38 per-
cent. According to Plewes's rule of thumb, we should reject the
hypothesis of stable seasonality. However, the contribution of
the seasonal component over a one-month span is 60 percent,
Therefore, other diagnostics should be consulted before making
the final decision.27

26Kathryn Beale of the Bureau of Labor Statistics, who was
very helpful in explaining X-11 interpretation, pointed this out

to us,.

2T7The statistics given here are for the additive or multi-
plicative adjustment, whichever has the highest stable seasonal-
ity F. Statistics for the alternative adjustment for these
series are very similar.
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Average Duration of Run

The average duration of run (ADR) is a simple test of the
smoothness of variation over time. By definition, the irregular
component varies randomly over time. If it does not, then the
calculation of the seasonal adjustment should be suspect.

The ADR is the mean length of runs of values consecutively
higher (or lower) than the preceding value. The higher the ADR,
the fewer the total number of runs in the series. If the irregu-
lar ADR is lower than would be expected in a random series, the
adjustment may have assigned some seasonal or trend/cycle varia-
tion to the irregular component. If the irregular ADR is higher
than would be expected in a random series, the adjustment may
have assigned variation that should be considered irregular to
the seasonal or trend/cycle component. An ADR from 1.36 to 1.75
is considered random.

“Again, Plewes (1977:8) provides a rule of thumb to interpret
the irregular ADR. It is the following:

The ADK of the irregular (I) should fall between 1.36
and 1.75. When values fall outside of this range, the
F-statistic and relative contribution of the irregular
should be consulted. If both meet their tests, the
series may still be accepted.

For example, for Illinois Index larceny/theft, the ADR of
the irregular is 1.59. For Index homicide, it is 1.45, and for
Index aggravated assault it is 1.51. These ADRs are all within
the "random" range, which indicates that the adjustments can be
trusted. The irregular components seem to vary randomly over
time, as they should. The ADRs indicate that the irregular com-
ponents do not contain seasonal fluctuation, nor do the other
components contain irregular fluctuation.

~ In our experience, using the X-11 with hundreds of crime and
crime-related series, we have found only four series in which the
ADR indicated a non-random irregular. Three series with an ADR
belgw the random range are very short (four to six years). One
series with a high ADR, Chicago Index assault 1967-1978, is a
moving-average transformation of an original series that was
collected in units of thirteen police periods per year. This
moving average probably has less irregular variation than the
original series, resulting in an overly smooth irregular.

Thus, in practice, you may find very few series with an ir-
regular ADR outside the random limits. If you do find one
consider it as a warning that something may be amiss. Loo&
carefully at the series itself for an explanation. In the above
examples, the low and high ADRs were apparently related to short
series or to unusually smooth series. In any case, do not accept
the adjustment unless other indicators, especially the F of
stable seasonality and the percent contribution of the irregular
are unequivocal. ’
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Months for Cyclical Dominance

Months for cyclical dominance (MCD) compares the relative
contribution of the trend/cycle to the relative contribution of
the 1irregular. As discussed above (see note 25), the standard
output of the X-11 program includes a table giving the relative
contributions of each of the three components over a one-month
span, a two-month span, and so on.

From one month to the next, the irregular usually provides
the most visible movement in a series. Thus, the relative con-
tribution of the irregular over a one-month span is usually high.
In contrast, the contribution of the trend/cycle to month-to-
month variation is usually low. However, the trend/cycle contri-
bution usually builds over time; its contribution over a two-
month span is greater than over a one-month span, its contribu-
tion over a three-month span is still greater, and so on. Thus,
in most series, the relative effect of the trend/cycle gradually
increases, until it exceeds the contribution of the irregular.
The span at which this occurs is the MCD.

An MCI of 1 means that the percent contribution of the
trend/cycle over a one-month span exceeds the irregular contribu-
tion. An MCD of 2 means that the trend/cycle exceeds the irregu-
lar over a two-month span. In many economic series, the MCD is
low. The relative contribution of the trend/cycle is substantial
over a one-month span, and increases rapidly, until it exceeds
the irregular contribution at the three- or four-month span.
However, the contribution of the trend/cycle in many crime series
is less than this. Consequently, we have found few crime series
that meet Plewes's following rule of thumb:

Series with MCD values of 1, 2, or 3 wusually exhibit
sufficient smoothness to be acceptable; series with
MCD's of 4 or 5 are borderline, and the impact of the
irregular should be carefully analyzed; when an MCD of
6 appears, the particular month 1in which the I/C ratio
becomes less than one should be identified (the X-11
program prints no value larger than 6). The decision to
publish the series should be made on other grounds, since
a long MCD is usually reflective of other problems in the
series.

For example, table 1 shows the relative contributions of
each component to the total variation in the larceny/theft ser-
ies (additive adjustment) from a one-month to a twelve-month
span. Because the trend/cycle contribution exceeds the irregular
contribution for the first time at a five-month span, the MCD for
larceny/theft is 5. For comparison, the MCD of the Index homi-
cide series is over twelve months (the trend/cycle contribution
never exceeds the irregular contribution). The MCD of the Index
aggravated assault series is 6. Notice that the contribution of
the seasonal component drops close to zero over a twelve-month
span. This makes sense, because, by definition, seasonal values




Table 1

Relative Contributions of Components to Variance
Illinols Larceny/Theft, Additive Adjustment

Span in Trend/

Months Irregular Cycle Seasonal
1 18.16% 1.16% 80.69%
2 7.29 1.49 91.22
3 3.95 1.97 9u4.07
y 2.65 2.53 94 .82
5 2.40 2.97 94 .63
6 2.11 3.60 oy .29
7 2.15 y. 82 93.02
9 3.67 9.70 86.64
11 10.83 39.28 49.89
12 21.01 78.75 0.24

Table 2

Relative Contributions of Components to Variance
Illinois Aggravated Assault, Additive Adjustment

Span in Trend/

Months Irregular Cycle Seasonal
1 38.46% 1.92% 59.62%
2 16.40 2.94 80.66
3 10.50 3.53 85.97
Y 8.07 4.07 87.86
5 6.30 y.ony 89.26
6 4.79 .84 90.36
7 5.15 6.36 88.49
9 8.41 12.59 79.00
11 23.55 43,26 33.19
12 36.53 63.20 0.27

twelve months apart are similar to each other. The seasonal dif-
ferencing technique (see "Stationarity," below) takes advantage
of this fact.

A high MCD is a warning that the series may contain so much
irregular variation that the presence and degree of seasonal
fluctuation cannot be reliably determined. 1In practice, we have
found only a few crime series with an MCD of 3 or Y4, and none
with an MCD of 1 or 2 (although we commonly find a low MCD in
non-crime series). Because the contributions of the irregular,
the trend/cycle, and the seasonal add to 100%, a high MCD does
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not always indicate that the adjustment should be rejected. If
the MCD is high, look at the percent contribution of the seasonal
over a one or two-month period. 1In a series containing little or
no overall trend, both the irregular and the seasonal components
may contribute more than the trend/cycle component. For example,
in the Illinois aggravated assault series,; the contribution of
the trend/cycle does not exceed the contribution of the irregular
until a six-month span (table 2). However, the contribution of

the seasonal is 60% over a one-month span. In such a case, con-
sider the possibility that the series may contain relatively
weak, but consistent, seasonal fluctuation. Look at other diag-

nostics, in particular the final seasonal factors (see below).

Pattern Consistency
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Consistency 1in the seasonal pattern is another important
consideration in determining whether or not a series is sea-
sonal. Both the component and the stochastic approaches include
consistency, or regularly evolving fluctuation, in their concep-

tual definition of seasonality.Z2 While a gradual change from
year to year may indicate moving seasonality (see "Appropriate
Applications," below), abrupt change and change in sign from one

year to the next argue against the hypothesis that the series is
seasonal, by this definition.

There are two kinds of seasonal consistency: year-to-year,
and within-season. For example, if April observations are very
high in four scattered years of a ten-year series, and very low
in the other years, then April is not consistently high; the
series does not have a consistent pattern of seasonal fluctuation
from year to year. Similarly, we should conclude that a certain
season tends to be high only if each month of that season tends
to be high. For example, if June is always slightly high over a
ten-year period, and July and August are very high, then we might
say that summers are generally high. On the other hand, if June
is always high, July is low, and August is high, then all we can
say is that the patterns of the summer months vary.

The "seasonal factor" table, produced by the X-11 program,
allows us to examine year-to-year and within-season consisten-
cy.29 The seasonal factors indicate, for each month of the ser-
ies, the amount by which it is high or low due to seasonal fluc-
tuation. There are 144 seasonal factors in the seasonal factor
table of a 12-year monthly series.
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283ee Warren et al. (1981) for an example of an analysis of
seasonality that does not include year-to-year consistency in the
definition.
9For a similar diagnostic check for consistency, but using
stochastic methods, see Thompson and Tiao (1971:540-541).
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In a multiplicative adjustment, the seasonal factors show
the relative seasonal weight of each month,. In an additive ad-
justment, the seasonal factors show the absolute amount by which
the month is high or low. Thus, in a multiplicative adjustment,
the seasonal factors range from .00 to 1.99, with 1.00 indicating
an average month with no seasonal fluctuation. In an additive
adjustment, the seasonal factors range above and below zero, and
the scale depends upon the particular data. For example, in a
homicide series, a seasonal factor of +20 for a certain month
indicates that that month was seasonally high by about 20 homi-
cides. With the standard deviation, which the table includes,
you can decide whether a month was high, low, or average.

The seasonal factors (multiplicative adjustment) of homi-
cides of male victims in Chicago from 1965 through 1978 (table 3)
show that, while some months may be decernably high and others
low in the number of male homicide victims, there is no consis-
tent pattern from year to year.30 January changes over time from

an average month to a low month. March begins as an average
month, but becomes high in later years, while April begins
average but becomes low. July, August, September, October, and

November, all change their seasonal factors over the time period.
Only one month, February, is consistently high or low, although
some argument could be made for July being high. If we consider
all the evidence, including the lack of seasonal consistency, the
low stable seasonality F (4.00), the high relative contribution
of the irregular (63%), an irregular ADR of 1.52 (indicating that
the irregular does not contain any seasonal fluctuation), and an

MDR higher than twelve months, it becomes difficult to argue that
murders of males occur seasonally.

Trading Day Option

The X-11 package provides a "trading-day adjustment" that
gives the user an idea of the importance of each day of the week.
The adjustment counts the number of Mondays, Tuesdays, and so on,
in each month of the series, and determines whether months with
three Mondays (for example) differ from months with five Mondays.
The program then calculates weights for each day of the week, and
computes standard tests of significance for each day. Thus, X-11
trading-day statistics are not a result of direct analysis of the

effect of each day of the week. Rather, they are estimated from
aggregate data.

30We chose this homicide series as an example because it
evidences the most seasonality of any homicide series we have
analyzed (Block and Block,1980; Block et al. 1982). However, it
is commonly assumed that homicide is seasonal (Wolfgang,1966;
President's Commission,1967; Warren et al. 1981). These dif-

fering conclusions are probably due to differing definitions and
m:asures of both homicide and seasonality.
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Table 3

Final Seasonal Factors, Multiplicative Adjustment
Male Homicide Victims, Chicago: 1965-1978

Year  Jan  Feb  Mar  Apr  May  Jun  Jul Aug  Sep  Oct  Nov.  Dec
1965 1.04 0.76 Q.98 1.06 0.95% 1.03 1.0 1.14 1.01 1.13 0.83 1.03
1966 1.01 0.77 Q.97 1.06 0.96 i.02 1.04 1.15 1.02 1.13 0.85 1.04
1967 0.98 0.79 0.94 1.05 0.99 1.01 1.04 1.15 1.04 1.13 0.89 1.03
1968 0.94 0.82 0.91 1.04 1.01 1.01 1.04 143 1.05 1.12 0.92 1.02
1969 0.9¢ 0.85 0.88 1.02 1.03% 1.00  1.07 1{.13 1.05 1.1 0.95 1.01
1970 0.87 0.88 0.867 1.01 1.03 1.01 1.1 112 1.02 1.09 0.95 1.01
1971 0.87 Nn.89 0.90 0.98 1.03 1.02 1.6 1.12 1.00 1.07 0.94 1.01
1972 0.87 0.89 0.95 0.94 1.03 1.0% 1.19 1.09 0.99 1.07 0.92 1.02
1973 0.88 0.87 1.07? 0.88 1.03 1.04 1.21 1.06 1.00 1.09 0.91 1.02
1974 0.87 0.8%5 1.08 .35 1.03 1.04 1.20 1.02 1.04 1.09 0.91 1.03
1975 0.86 0.82 1.14 0.8% 1.01 1.04 1.18  1.00 1.08 1.08 0.9? 1.05
1976 0.84 0.80 1.17 0.83 0.98 1.04 1.16 0.98 1.13 1.07 0.94 1.07
1977 0.8 0.79 1.20 0.8% 0.96 1.03 1.15 0.99 1.16 1.06 0.94 1.08
1978 0.82 0.78 1.21 0.83 0.94 1.03% 1.1%  0.99 1.17 1.05 0.94 1.08

Therefore, analysts who are primarily interested in diurnal
periodicity might want to analyze daily data, if available, in
preference to estimates from monthly data. On the other hand,
use of the trading-day adjustment is quicker and less expensive
than conducting an extensive analysis of dally data. It may
uncover effects that might be overlooked by other methods. To
utilize the advantages of both approaches, use them sequentially.
The X-11 program allows the user to set a priori weights for days
of the week. A direct analysis of dally data may provide the
information with which to set these daily weights.

However, there are limits to the use of the trading-day op~-
tion. It will not provide accurate estimates when the contribu-
tion of the irragular over a one-month span is eight percent or
more (Shiskin et al.,1967). Because most crime series are more
irregular than this, the trading-day option can seldom be used
with crime data.

Appropriate Applications

At the Statistical Analysis Center, we have found component
seasonality methods to be very useful in the initial description
of a series. Since the X~11 program is relatively simple to use,
it is especially appropriate when the patterns in a large number
of series, for example the 714 series of seven Index crimes in
Illinois' 102 counties, must be described and compared to each
other. It is also appropriate when the decision at hand requires
a separate description of the pattern of seasonal fluctuation, or
the pattern of the series adjusted for seasonality.




. The X-11 program is not appropriate for highly irregular
serles, short series (six or fewer years), or for series con-
taining an abrupt change or discontinuity (Plewes 1977:2; Shiskin
et al. 1965:5-6). For an overview of potential problems for X-11
users, see Fromm (1978).

Extremes

Although the X-11 program is not appropriate for highly ir-
regular series, it is good to use when the series contains
expreme values. It is "resistant™ to the effect of extremes
(Pierce,1980:131), because it contains a graduated weighting
system.31 Values exceeding 2.5 standard deviations are weighted
zero, and values from 1.5 to 2.5 standard deviations are
graduated linearly from full to zero weight. This is the default
option, which the user is allowed to modify.

Series Length

The'reason for the limit on series length becomes obvious if
you consider that the X-11 algorithm searches for similarities
among months, and that there is only one January, one February,

gnd sSo on, per year. To analyze a six-year series, for example,
1s.to look at the similarities among six Januaries, six Febru-
aries, and so on. Thus, the number of observations is really

only six.

Discontinuities
' If therg is an abrupt change or discontinuity in the ser-
ies, no pontlnuous method, component or stochastic, will work

The moving average 1s a linear smoothing technique, and ali
smoothing techniques are analytically continuous, defined in the
same way tnroughout the series.32 Like other methods of continu-
ous smoothing, the X-11 cannot accurately describe discontinui-
tles.or.aprupt changes in the direction of a series, When dis-
continuities are suspected, Shiskin et al. (1967:5) suggests that
they be."ascertained by inspection," and that the series then be
broken into segments for analysis. The user should investigate
the.Qapa source to determine whether there was a change in
definition or data collection practices

37For other resistant time series ana i

Tukey (1977) or Velleman and Hoaglin (1981). ﬁ%i}ie2§§22ii’s:§f
sonal _adjustment with SABL, see Cleveland et al. (1978).

“Macaulay (1931:21), in his classic text on time series
smoothing, argues that, even though freehand smoothing with a
Erench curve is generally unsatisfactory, "if the underlyin
ideal curve is itself not smooth," then a freehand method is beté
ter than mathematical curve-fitting. If there are discontinui-
tes or sharp changes of direction (cusps) in the underlying ser-
les, then any overall, continuous smoothing method will obscure

them, rather than describe them accuratel i

. ‘ serib. . An analyst
then be.mlsled intco thinking that there was no abrupt ihangég?g
the series. For a fuller discussion of this issue, see the

Statistical Analysis Center publication, "M
c . : anual for
Description of Time Series," pages 7-8 ahd 58-59 . the Pattern
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Moving Seasonality

If, instead of an abrupt change or discontinuity, the sea-
sonal fluctuation gradually changes over the years, stochastic
methods may be more appropriate than component methods. The X-11
program assumes that any seasonal fluctuation follows a consis-
tent pattern from year to year (see "Pattern Consistency,"
above). When, over a period of years, the seasonal fluctuation
gradually increases in strength in certain months and decreases
in strength in other months, the series contains "moving season-
ality." One of the X-11 diagnostics, an F of moving seasonality,
will alert you to its presence. In contrast to the F of stable
seasonality, -which is the ratio of the between-month variance of
the seasonal to the irregular, the F of moving seasonality is the
between-year ratio. It tests the null hypothesis that the years
all have the same seasonal pattern.

When X~11 results indicate a significant F of moving season-
ality, we suggest the following procedure:

1. Inspect the series for abrupt changes or disconti-
nuities. Is there an abrupt change in level? Does the ser-
ies suddenly develop (or lose) seasonal fluctuation after a
certain date? If so, noc continuous method, whether component
or seasonal, 1s appropriate. Check the definition and
validity of the data set. If the definition of the series
changed at some point, partition the series into two parts
at that point, and analyze the parts separately.

2. If there 1is no discontinuity, compare the additive
to the multiplicative adjustment. Do both contain moving
seasonality? If not, assume that the adjustment that does
not reflects the true nature of the series.

3. If both additive and multiplicative adjustments in-
dicate moving seasonality, determine the particular month(s)
that vary in seasonal fluctuation. Using options available
in the X-11 program, change the moving average for these
months. (For more detail, see Plewes 1977:5-6.)

4, In any case, do not accept the results of an ad-
justment in which the moving seasonality F value is signifi-

cant.

The distinction between gradual change (moving seasonality)
and abrupt change (discontinuity) requires subjective interpreta-
tion and an intimate knowledge of the data source. As an ex-
ample, figure 11 shows a series containing ah apparent discontin-
uity. In this series, the number of people in Illinois receiving
the first 26 weeks of unemployment insurance, moving seasonality
F values are significant in both the aqdiftive adjustment and the
multiplicative adjustment.33 Between October, 1974 and January,

33The F values are 6.16 and 7.09, respectively. A value of
2.41 or higher should be considered significant. That is, the
possibility that the series contains moving seasonality should
not be ruled out. We cannot confidently assume that the seasonal
pattern is the same in every year of the series.
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Figure 11

TLLINCIS UNEMPLOYMENT INSURANCE RECIPIENTS,

FIRST 26 WEEKS
SGURCE: BURERU OF LABOA STATISTICS

1965-1978
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Table 4

Additive Adjustment

WRY 78

Il1linois Unemployment Insurance Recipients

Jan. Feb. Mar. Apr.
181 259 174 48
184 256 176 b9
189 29 177 52
199 247 179 63
210 248 183 T
230 255 197 83
251 265 208 100
274 277 229 121
291 292 260 128
300 310 292 132
290 332 318 120
271 352 341 112
250 366 352 94
240 370 353 83
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1975, the number of unemployed people in Illinois tripled. (For
a discussion of this phenomenon, see Block et al. 1981.) The sea-
sonal factors (table U4) reflect this drastic change. The
seasonal factor of many months changes about 1974. April, for
example, is wusually a 1little high, but is very high in 1974.
August follows the opposite pattern. October is always low, but
1974 is extremely low. These results should not be taken at face
value, but should be considered to be an indication of problems
in the adjustment. Since there was an abrupt change in 1974, the
series should be split into two segments, and each segment should
be analyzed separately.

Stochastic Methods

Stcchastic time series models are a sophisticated way of
using past observations of a series to forecast its future ohser-
vations. Box and Jenkins (1970) suggested that most time series
encountered in practice follow either (or a combination of) two
types of stochastic process: moving average and autoregressive,.
By determining what process a series followed in the past, and
assuming that that process will continue, we can forecast the
future.,

Seasonal fluctuation is one possible aspect of a stochastic

process. To identify a model for a series, the analyst must
decide whether or not a seasonal process should be part of the
model. Just as the component method did not lend itself to one

simple, objective interpretation of X-11 results to decide
whether or not a series fluctuates with the seasons, the stochas-
tic method also relies on the subjective interpretation of a num-
ber of diagnostic tests. In this section, we explain the stochas-
tic method, and discuss the most important of these diagnostics.

Moving Average and Autoregressive Processes

In a moving average (MA) process, the current observation is
a function of a past error. Error is a random disturbance, some-
times called "noise" or "shock." By definition, the error of one
observation 1is independent of the error of other observations.
However, errors can be correlated with the observations them-
selves. This happens in a moving average process.

An MA(1) moving average process means that the current ob-
servation is affected by the error of the previous observation.34
An MA(2) moving average process means that the current observa-
tion is affected by the error of the second previous observation.

34The word "affected" here simply means correlated. Al-
though the current observation may be predicted from past data in
the series, the past data do not directly "cause" the current
observation.




Figure 12

A seasonal moving average process, MA(12), means that the current t
observation is affected by the error of the observation one year
ago. In general, in a series following a moving average process,

Correlogram of Illinois Larceny/Theft

the current observation is correlated with past error(s). ‘ ‘l;
¥ s
In an autoregressive (AR) process, the current observation §.E.
is a function of a past observation (not a past error). An AR(1) AUTO- RANDOM : _
autoregressive process means that the current observation is [ m__l ORDER CORR. MODEL -1 -.75 -.58 -.25 @ .25 .59 .75 +
affected by the previous observation. An AR(2) autoregressive [ gTTomimmTmoamoomimomoanees Rl it el
process means that the current observation is affected by the ! 1 381 699 + + ¥
second previous observation. A seasonal autoregressive process, [ :l 2 L9886 .899 + + *
AR(12), means that the current observation is affected by the > 3 326 .989 LA T A
observation one year ago. 4 .885 .PBY + okt
[ S -.146 .989 t* 2 +
The stochastic process of most series can be described as ! ,}.] 6 -.232 .#88 LA
either MA(1), MA(2), AR(1), AR(2), or a combination of MA and AR 7 -.153 .688 + 1 4
processes. Some series are a combination of a serial MA or AR - ke 8 .836 .887 + okt
process (or both), and a seasonal MA or AR process (or both). 1 9 .229 .687 LA
How can we identify the process, or combination of processes, - 10 .456 .987 + + *
that best describes the series at hand? 2 11 Jb17 886 + t ¥
] 12,768 .684 + + *
- 13 993 L8895 + + *
Identifying the Process of a Series r 14 .487 .#85 + + *
- 15 144 8BS L
There is no way to measure past error directly.35 How, L ] 16 -.879 .884 +* 5 4+
then, can we differentiate a moving average process from an auto- I 17 -.298 .#84 * o+ 3 4
regressive process? An important diagnostic for identifying the ~ 18 -.397 .#83 * LA
process of a series is the correlogram. Moving average and auto- jl 19 -.341 .683 *+ o+ 1 4
regressive processes produce different "autocorrelation" pat- ‘ 28 -.162 .983 ¥ ¢ ¢
terns. Autocorrelation refers to the correlation between the i 21 .615  .#82 + x4
observations of a time series. A correlation between each B :' 22 282 882 tor
observation and the neighboring observation is a first-order - 23 353 .081 b
autocorrelation, or an autocorrelation at lag 1. A correlation I 24 L4444 . 681 + + ”*
between each observation and the observation two months away is a o ; 25 345 881 N f !
second-order autocorrelation, or an autocorrelation at lag 2. A | :l’ 26 -167 . 980 +“' :
correlogram is a chart of the autocorrelations of a series at l 27 -.041 .pB8 ok #
various lags. The correlogram in figure 12 shows each autocorre- - : 8 -.218 .879 LA T
lation from lag 1 to lag 36 for Illinois larceny/theft. The ]; 29 -.489 879 * : ¢
first-order autocorrelation is .801, which means that L : 38 -.497 .878 * + 1 4
observations in this series tend to be closely related to their l 3 -.4346 .878 * + 3 4
neighboring observations. If one observation is high, the B jl 32 -.291 .é78 LI
observations before and after it are likely to be high, and vice L , 33 —ng .g;z :*:* :
versa. : 34 872 877 :
I~ 35 218 876 + @ ¥
In a moving average process, as discussed above, observa- jl 36 386 876 + o o+
tions are correlated with one or more previous error(s). Al- I R Rl R R R ity t----i
though we cannot observe correlation with an error directly, a - -1 -.75 -.56 -.25 8 25 .58 .79+
correlation with a previous error results in a correlation with :[
the corresponding previous observation. For example, in an MA(12) I : ' ﬁulgggggg;ﬁgggg LIMITS (AFFROX.)

L

35Error may be estimated by using the residuals of a regres-
sion (the difference between an observation and the equilibrium

or mean level of the series). Roberts (1974,1975) calls this the
Durbin/ARIMA method.
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series, the current observation is correlated with the twelfth
previous observation. This is also true of an autoregressive
process. However, because errors are independent of each other
by definition, the second or greater previous observations in an
MA(1) series, or the third or greater previous observations in an
MA(2) series, or the twenty-fourth or greater previous
observations in an MA(12) series are not correlated with the

current observation. This is not true of an autoregressive
process.

In an autoregressive process, neighboring observations are
correlated with each other. For example, in an AR(1) process,
observation 1 is correlated with observation 2, and observation 2
is correlated with observation 3. Therefore, observation 1 and
observation 3 are correlated. The correlation of observations
one time period apart produces geometrically decreasing correla-
tions of observations two time periods apart, three periods
apart, and so on.

Because the second or greater previous observation is not
correlated with the present observation in an MA(1) series, but
is correlated with the present observation in an AR(1) series,
autocorrelations provide a useful clue as to what stochastic
model would best describe a series. A high autocorrelation at
lag 1 that disappears at higher lags (for example, see figure 13)
suggests an MA(1) model. A high autocorrelation at lag 1 that
decreases exponentially at higher lags (for example, see figure
14) suggests an AR(1) model.

We distinguish between seasonal MA and AR processes in a
similar way. In both kinds of series, observations twelve months
apart are correlated with each other. That 1is, the January ob-
servations are similar to each other, the February observations
are similar to each other, and so on.
MA and seasonal AR processes have significant twelfth-order auto-
correlations. However, in a seasonal MA series, the 24th-order
and 36th-order autocorrelations are small, while in a seasonal AR
series, they are significant. A high autocorrelation at lag 12
that is still high but decreasing exponentially at lags 24, 36,
and so on suggests a seasonal autoregressive model. A high auto-

correlation at lag 12 that disappears at higher seasonal lags
suggests a seasonal moving average model.

Stationarity

In general, seasonal series have a significant autocorrela-
tion at lag 12. However, the opposite is not always true. Some
series that are not seasonal may have a large correlation between
observations twelve months apart. This can happen if there is an
overall trend in the series. For example, figure 15 is the corre-
logram of a nonseasonal series with a decided increase over time.
Observations twelve months apart are correlated. Figure 16 1is
the correlogram of the same series with the increasing trend
removed. Observations twelve months apart are not correlated.
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Correlogram, First Difference
Chicago Homicide with a Gun: 1965-1978
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Correlogram, First Difference
Canadian Homicide: 1961-1980
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This emphasizes an additional complication of identifying
the stochastic processes of a series: the method we have de-
scribed for identifying a model only works for stationary series.
A series is stationary if its mean and 1its variance are the same
at every part of the series. A stationary series thus shows no
trend. Because most series of crime data do show scme trend,
they may not, therefore, be analyzed by stochastic time series
methods unless they are first transformed to remove the trend.
First, the series is transformed to make it stationary. Second,
a model is identified for the transformed series.

Just as there are seasonal MA and AR processes, there can be
season=l lack of stationarity. In such a case, each month is
systematically higher (or 1lower) than the same month one year
ago.36 In addition, Jjust as it is possible to have a combination
of serial and seasonal processes in the same series, it is possi-
ble to have a combination of serial and seasonal lack of station-
arity. How do we decide whether or not a series 1is stationary,
and if we decide it is not, how do we transform it?

To decide whether or not a series is stationary, first look
at a graph of the series.37 Does the level of the series seem to
increase or decrease over time? Second, look at a correlogram.
In a series with trend, the correlogram shows a pattern of high
autocorrelations that do not decrease with lag. In contrast, in
a series that 1is stationary, but follows an autoregressive pro-
cess, the autocorrelations decrease geometrically (see above sec-
tion). Similarly, in a series with seasonal trend, the autocor-
relation at the first seasonal lag is high, and the auto-
correlations at successive seasonal lags do not decrease, For
example, figure 17 is the correlogram of the Illinois 1larceny/
theft series with serial trend removed (by first differencing;
see below). The autocorrelations are .567 at lag 12, .520 at lag
24, and .416 at lag 36. The seasonal autocorrelations do de-
crease a little with lag, but the decrease is certainly less than
geometrical. This suggests seasonal lack of trend instead of an

AR(12) process.

36 Another cause of lack of stationarity is a change in the
variance from the beginning to the end of the series. We do not
discuss this kind of seasonal lack of stationarity, because it is
difficult to imagine a seasonal change of variance. However,
with serial change in variance, transforming the series with a
log or a square root may produce a stationary series. For more
detail, see Nelson (1976), McCleary and Hay (1981), or the other
stochastic time series analysis sources listed in the bibli-

ographg.

371t is easier to see a trend in a graph of a standardized
series than in a graph of the raw data. In a standardized ser-
ies, each observation is converted to its Z score, or its stand-
ard deviation above or below the mean. This useful option 1is
available in the IDA package (Ling and Roberts,1982).
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Figure 17

Correlogram, First Difference

Illinois Index Larceny/Theft: 1972-1981
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Differencing is a transformation intended to produce a sta-

tionary series. An overall trend can usually be removed by a
first difference; a seasonal trend can usually be removed by a
twelfth difference. In a first difference, each observation 1is

subtracted from the following observation.3é In a twelfth differ-
ence, each observation is subtracted from the observation twelve
months away. The differenced series is interpreted as the change
from one observation to the next for a first difference, or the
change from one year to the next for a twelfth difference. If a
series has both a serial and a seasonal trend, you would trans-
form it into a stationary series by taking a twelfth difference
of the first difference.

For example, figure 17 is the correlogram of Illinois
larceny/theft after first differencing. Figure 18 is the corre-

" logram of the series after first and twelfth differencing. In

other words, each observation was subtracted from the following
observation, which produced a series of first differences. These
first difference values were then subtracted from the first
difference value twelve months away. Compare these correlograms
to the correlogram of the original series, figure 12 above.

A drawback of differencing is that the differenced series
has fewer observations than the original series. If the original
series has 144 observations, for example, a first difference has
143. Even more observations are lost with twelfth differencing.
However, if your series is not stationary, analyzing a difference
transformation of it may be the only alternative if you want to
identify a stochastic process.

Model Evaluation

After obtaining a stationary transformation, or determining
that the original series 1s already stationary, the next step is
to estimate the stochastic process or processes that best de-
scribe the stationary series. In the Illinois larceny/theft ex-
ample, the first and twelfth-order autocorrelations are signifi-
cant, but the second and 24th-order autocorrelations do not dif-
fer significantly from zero. This pattern of autocorrelations
suggests a combination of MA(1) and MA(12) processes. Therefore,
to model larceny/theft, we applied MA(1) and MA(12) processes to
the differenced series. This produced the modelled series
graphed in figure 10 (above). How do we decide whether or not
this model accurately describes the stochastic process of the
series?

38some curves require two successive first differences to
make them stationary. That is, each observation is subtracted
from the next observation. This produces a series of first dif-
ferences, which will be a straight line with a trend. Then this
differenced series is differenced again. The second differencing
produces a stationary series.
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Figure 18

Correlogram, First and Twelfth Difference
Illinois Index Larceny/Theft: 1972-1981

Wy o Wy My Moy By My IS

5.E. [
AUTO- RANDOH -
CORR, MODEL -1 -.75 -.58 ~.25 @ L2300 .88 .75 #1
-.388 .89% o+ + -
-.138 .8%5 4¢3 +
L1500 994 + + + -
L7880 L8094 + ki
-.133 L899 oo+ )
T - L + £ +
.684 .403 + A [
-.852 .492 +  ¥3 + u
-.133 .@92 ++ +
L1810 L8591 + P4+ B
243 891 + : +t
~.499 690 + o )
128 890 + HE 2 -
136  .g8®% + I
.188 .48¢° + : * -
-.314 .088 t o4 : +
144 688 For e B
HA15 887 + 0t ¢ -
-.634 887 + ks o+
-.826 .886 + ¥: 4+ —
123 08¢ + o %4
~.851 .B8% Fokro+ -
-.§89 .885 o+
LB52  .9B4 + ¥ 4 B
LB76 0 L 884 + o ok g
-.848 .983 + 1 4
-.191  ,983 o1+ B
L2809 882 + 1 44
~. 604 882 + ¥+ B
-.855 .481 + w4 —
-.683 .881 + + o+
691 489 oo ¥4 o
-.122 .988 L I B
B18  .879 + ¥ ¢
849 470 + 4+
8246 878 + k4
-1 =75 -.58 -.25 8 25 .58 .75 4+

¥ ¢ AUTOCORRELATIONS
+ &+ 2 STANDARD ERROR LIMITS (AFPROX.)

|
-

i

5

el vl el e el el el el el el

T EaE
-

-

Correlogram of Residuals

One way to evaluate a stochastic model 1is to analyze the
residuals, the discrepancy between the modelled values and the
actual series. Residuals of a good model vary randomly over
time.39 The correlogram of the residuals of an MA(1) and MA(12)
model for Illinois larceny/theft (figure 19) does indeed indicate
such a random pattern.40 Compare this pattern to the correlo-
grams of the original series (figure 12), the series transformed
by first differencing (figure 17), and the series transformed by
both first and twelfth differencing (figure 18). Clearly, the
residuals look most like a random series.

However, 1like component analysis, stochastic analysis is
open to alternative interpretations. The Illinois larceny/theft
series exemplifies a common situation requiring interpretation:
is the series non-stationary, or is it an autoregressive process
with a very high correlation between one observation and the
next? The series transformed by first and twelfth differencing
(figure 18) has negative autocorrelation at lag 12. One inter-
pretation of this 1s that it suggests the model described above,
a moving average process with a negative relation between obser-
vation and error. On the other hand, the differencing may have
overadjusted the series, adding a systematic pattern that was not
in the original series. A simpler twelfth difference without the
first difference produces a transformed series that has the
autocorrelations in figure 20. This pattern of autocorrelations
suggests an AR(1) or AR(2) process.

Cumulative Periodogram of Residuals

Another diagnostic, the cumulative periodogram, is very use-
ful in evaluating a tentative model, especially when the series
may contain seasonal fluctuation. The cumulative periodogram is
based on the assumption that a series is made up of sine and
cosine waves. The analysis of the period, phase, and amplitude
of these waves is known as examining the series in the "frequency
domain," in contrast to the "time domain," which is the kind of
analysis we have discussed so far in this report. Period is the
time required for a full cycle. Frequency is the number of
cycles per time unit. Because frequency is the reciprocal of
period, the meaning of '"high frequency" and "low periodicity" are
the same, and "power dcmain" means the same thing as "frequency
domain." Phase is the position of the cosine function relative
to the starting point of the series. The measure of amplitude,
or power over the frequency domain, is the spectrum, or "power
spectrum." (See Rosenblatt 1965:1-2 fopr more detail.) A
periodogram measures the intensity of the spectrum at a certain

39This random variation in a time series is sometimes called

"yhite noise."

OTwo of the 36 autocorrelations in figure 19 are slightly
outside of the two standard deviation limit, but a small percent-
age of significant autocorrelation is expected by chance.
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frequency, and the "normalized cumulative periodogram" (Box and
Jenkins 1976:295) is a good tool for detecting periodic patterns

in the residuals of a model. :

For example, figure 21 shows two cumulative periodogram

graphs side by side for comparison. The first, a graph for the
original larceny/theft data, indicates a distinct departure from
linearity at about a twelve-month period. The graph of the

residuals of the MA(1) MA(12) model, on the other hand, do not
indicate any significant periodicity.

A cumulative periodogram gives you the same sort of informa-
tion that a correlogram gives you, but from a different perspec-
tive. The spectrum is mathematically equivalent to the autocor-
relation function (Box and Jenkins 1976:39-45). It is simply an
alternative way of describing the pattern of relationships among
the observations. However, Box and Jenkins (1976:294) recommend
it over the correlogram in evaluating departures from randomness
in the residuals of a model. When we fit a model to a series
containing seasonal fluctuation, we want to be sure that the
model accounts for all of the seasonality. We do not want the
residuals of the model to contain periodicity. As Box and
Jenkins point out (1976:294):

Therefore, we are on the lookout for periodicities in the
residuals. The autocorrelation function will not be a
sensitive indicator of such departures from randomness,
because periodic effects will typically dilute themselves
among several autocorrelations. The periodogram, on the
other hand, is specifically designed for the detection of
periodic patterns in a background of white noise.

Appropriate Applications

Neither stochastic nor component methods are appropriate for
highly irregular series, short series (six or fewer years), or
series containing an abrupt change or discontinuity. A general
rule of thumb in stochastic time series analysis is that a mini-
mum of 50 observations are necessary to estimate the stochastic
process of a series (see Hartman et al.,1980). However, with sea-
sonal stochastic processes, even more observations are necessary.
Also, keep in mind that, if a twelfth difference is necessary to
make the series stationary, twelve observations will be lost.

Discontinuities
A model of a stochastic process, like a component model, is

analytically continuous. Analytic continuity means that the
behavior of the series in one small region is the same as the
behavior of the series everywhere (Cox,1971:36). A stochastic
process describes the relationship of each observation to pre-
ceding observation(s). This relationship is the same throughout
the series. If there is an abrupt change or discontinuity in the
definition of the series, a single stochastic model is not appro-
priate. If you suspect that this is the case, first inspect the

ha

[ S |

—

WO M N O LY —

.

0O N0 A s g

PR3 P P T R PO O P
[=c RS BE- N 5 I SR AT Xy

3
~o

&

[
o

31

FREQ

L8884
8168
8252
8336
0429
8584
.83588
8672
8734
88490
8924
L1808
1892
4176
L1281
L1345
1429
L1513
1597
L1468t
L1745
1849
L1933
L2817
L2181
.2185
£ 2269
.2353
2437
. 2321
2685
.2689
2773
. 2857
2941
L3825
L3189
L3193
32727
L3361
+3445
.352¢
3613
.3697
L3782
.3844
3958
4934
4118
4202
.428¢4
4376
4454
.4538
4622
4786
L4798
4874
.4938

AFPRDX
PERIOD

119.8
o3
39.7

59

2

£ T Gl 03 Gl G G B G G G G “ a -
R ST b el R

P21 RO PO 1O MO PO P FI FI 3 PO 1D P P M3 £
- . e » . . s - . P

8
8

.8

W 4 B3R P2 WG B e LA O O

. P A v e e = . . « = . “ s s e x s »
dmmﬂ&—‘—-r\’!u-bf-ﬂo-\lm&'—t»l.b‘?‘m&f.)-b\IQNO~GA'OLHYQ~OCD~OT\)O

[

Figure 21

Cumulative Periodograms
Qriginal Data and Model Residuals
Illinois Index Larceny/Theft: 1972-1981
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series carefully, and check the original data source for possible
changes in definition or data collection practices. Based on
your knowledge of the series, you may want to hypothesize that
some intervention changed the behavior of the series after a
certain date. Such an hypothesis can be tested (see Glass et al.
1975; Shine,1980,1982). Your final model may be complex, in-
cluding a change in level or stochastic process after the occur-
rence of the hypothesized intervention. 1In any case, do not try
to fit a continuous stochastic process to a series containing a
discontinuity.

Extrenes

Stochastic methods, in contrast to component methods, are
not resistant to the effect of extremes (see Chernick et al.
1982). Therefore, they are not appropriate for series containing
extreme values. However, stochastic methods can, of course, be
used if the series is first transformed to remove or re-weight
the extremes.

Moving Seasonality

On the other hand, stochastic methods are more appropriate
than component methods for series containing moving seasonality.
The stochastic process concept is based on the assumption that
the current observation 1is more strongly related to recent
observations than it is to observations in the distant past. The
whole purpose of identifying an autoregressive or moving average
process 1is to describe this decreasing relationship. Thus, the
stochastic approach was developed to allow for gradual change
over time "in the seasonal pattern.

Summary

Obviously, the combinations of moving average processes and
autoregressive processes, serial processes and seasonal proces-
ses, can become quite complicated. Identifying the stochastic
processes that define a series is not entirely objective, nor 1is
it simple for an analyst to state these subjective decisions in a
published report. It is not uncommon for two statisticians using
the same stochastic time series analysis methods to identify
different models for the same series. As Pierce (1980:130)
argues, "Theoretically incompatible models can produce results
uncomfortably close to each other and uncomfortably far from the
truth." Unlike the Census X-11 program, which can be used easily
and quickly for a large number of series, and which has standard
options and criteria that can be explicitly stated, stochastie
methods require a lengthy analysis and re-analysis of each
individual series. Therefore, they are most appropriate when one
or two important series must be analyzed, and not as the standard
metgos of analyzing all of an agency's data (see Kuiper,1978:
58-60) . )
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Alt, Frank B., Stuart J. Deutsch and Jamie J. Goode

1977 Estimation for the multi-consequence intervention model.
Proceedings of the Statistical Computing Section, American
Statistical Association.
Presents an algorithm for an interrupted time series exper-
iment.

Anderson, R.L. :

1950 Tests of significance in time-series analysis. Pp. 352-355
in Statistical Inference in Dynamic Economic Models.
Tjalling C. Koopmans (ed.) New York: John Wiley & Sons.
Discusses the F of stable seasonality.

Ascher, William
1978 Forecasting: An Appraisal for Policy-Makers and Planners,
Baltimore: Johns Hopkins University Press,.

Beaton, Albert E. and John W. Tukey

1974 The fitting of power series, meaning polynomials, illustra-
ted on band-spectroscopic data. Technometrics 16(May,2):
147-185.

Bliss, C. I.

1958 Periodic regression in biology and climatology. Connecti-
cut Agricultural Experimental Station Bulletin 615:1-56.

1970 Statistics in Biology. Vol. II. New York:McGraw-Hill.
Two sources for periodic regression analysis (PRA). For an
example of the use of PRA, see Warren, et.al.

Block, Carolyn Rebecca

1976 Cross-sectional and longitudinal analysis of developmental
data. Social Science Research 5:137-151.

1979 Descriptive Time Series Analysis for Criminal Justice Deci-

sion Makers: Local Illinois Robbery and Burglary. Chicago:
Statistical Analysis Center, Illinois Law Enforcement Com-
mission.

An appendix reviews "methods of determining the presence of
seasonality.”

1980 Is Crime Seasonal? Working paper, Illinois Law Enforcement
Commission, Statistical Analysis Center.

Block, Carolyn Rebecca and Richard L. Block

1980 Patterns of Change in Chicago Homicide: The Twenties, The
Sixties, and The Seventies. Illinois Law Enforcement Com-
mission, Statistical Analysis Center.

Block, Carolyn Rebecca, Craig McKie, and Louise S. Miller
1983 Patterns of change over time in Canadian and United States
Homicide. Policy Perspectives, forthcoming.
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Block, Carolyn Rebecca and Louise S. Miller . . ‘

1982 Manual for the Pattern Description of Time Series. Chicago:
Statistical Analysis Center, Illinois Law Enforcement
Commission.

Block, Carolyn Rebecca, Louise S. Miller, Richard Block, Douglas
Hudson ‘ . . _
1981 Explaining patterns of change over tlme.ln Chlcago.homl-
cides with a gun. Manuscript. Statistical Analysis Center
Tllinois Law Enforcement Commission.

Box, George E.P., and Gwilym M. Jenkins

1970 Time Series Analysis: Forecasting and Control. San Fran-
cisco: Holden-Day.
The classic treatment of ARIMA.

Box, George E.P., Gwilym M. Jenkins and D.W. Bacon .

1967 Models for forecasting seasonal and nonseasonal t}me ser-
ijes. Pp. 271-311 in B. Harris (ed.) Advanced Semlgar on
Spectral Analysis of Time Series. New York:John Wiley and
Sons, Inc.

Buchin, Stanley I.

1982 Sales forecasting for the marketing function. Paper pre-
pared for the Info/Manufacturing 82 Conference by Temple,
Barker & Sloane, Inc., 33 Hayden Ave., Lexington, Massachu-
setts 02173. Journal of Forecasting, forthcoming.

Describes a forecasting competition, performed on 1000 time
series by eight statisticians using 24 alternative methods.
Forecasts using adjusted series were more accurate than
forecasts using raw data, with all methods. Box-Jenkins
forecast was almost never more accurate than a forecast
equal to the actual (seasonally adjusted) observation last
period. Also see Kendall (1976), Hibbs (1977)? Willson
(1973), Kuiper (1978), for other method comparisons.

Campbell, Donald T. and H. Laurence Ross ‘
1968 The Connecticut crackdown on speeding. Law and Society Re-

|
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view 3:33-53. _
One of the first time series experiments.

Campbell, Donald T. and Julian C. Stanley

1966 Experimental and Quasi-Experimental Designs for Research.
Chicago: Rand McNally Collrge Publishing Co.
This is the classic reference on time series experiments.

Chernick, Michael R., Darryl J. Downing, and David H. Pike
1982 Detecting outliers in time series data. Journal of the Am-

erican Statistical Association 77 (December,380):743-T47.
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Cleveland, William S., Douglas M. Dunn and Irma J. Terpenning

1978

SABL: A resistant seasonal procecure. Graphical methods
for interpretation and diagnosis. Pp. 201-241 in Zellner
(ed.) 1978.

SABL is like the X-11 in its component approach, but dif-
fers in its treatment of extremes, its choices regarding
multiplicative versus additive adjustment, and its graph-
ical displays.

Cohen, Lawrence E., Marcus Felson and Kenneth C. Landg

1980 Property crime rates in the United States: A macrodynamic
analysis, 1947-77, with ex ante forecasts for the mid-
1980s. American Journal of Sociology 86(1,July):90-118.
Also see Felson and Land (1977).

Cox, M. G.

1971 Curve fitting with piecewise polynomials. Journal of the
Institute of Mathematics and its Applications 8(1):36-52.

Dagum, Estela Bee

1978 A Comparison and Assessment of Seasonal Adjustment Methods

1980

Deutsc
1978

1979

Deutsc
1977

for Employment and Unemployment Statistics. Background pa-
per No. 5, National Commission on Employment and Unemploy-
ment Statistics, Washington, D.C. 20006.

The X-11-ARIMA Seasonal Adjustment Method. Seasonal Adjust-
ment and Time Series Staff, Statistics Canada, Ottawa,

K1A 0T6.

Dagum has done, or inspired others to do, much of the ad-
vanced work in seasonal adjustment today, including the
X-11/ARIMA method. :

h, Stuart Jay
Stochastic models of crime rates. International Journal of
Comparative and Applied Criminal Justice 2(2):127-1571.

Builds stochastic models for seven Index c¢rimes in each of
ten U.S. cities. Finds that robbery, burglary, aggravated
assault, larceny, and motor vehicle theft are seasonal, but
homicide and forcible rape are not.

Lies, damn lies and statistics: A rejoinder to the comment
by Hay and McCleary. Evaluation Quarterly 3(2, May):315-
328.

h, Stuart Jay and Francis B. Alt

The effect of Massachusetts' gun control law on gun-related
crime in the city of Boston. Evaluation Quarterly 1(4,
November) :543-568.
Finds that assault with a gun and armed robbery are season-
al, but homicide is not. See Hay and McCleary (1979) for a
criticism, and Deutsch (1979) for the rejoinder. Also see
Pierce and Bowers (1979) for an analysis of the same data.
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Deutsch, Stuart Jay and Lu Ann Sims

1978 An identification algorithm for dynamic intervention mo-
deling with application to gun control. Series no. J-78-
29, Georgia Institute of Technology, Atlanta 30332. Mimeo-
graphed. }
See Alt, Deutsch and Goode (1977).

Dutta, M.
1975 Econometric Methods. Cincinnati: South-Western Publishing
Co.

See Chapter 6 for an elementary discussion of analyzing
seasonality by regressing dummy variables.

Edgerton, Julie, Linda Phelps,Karen Boley-Chang,Constance Osgood

1978 Ecology of Rape, Kansas City Metropolitan Area: Summary Re-
port of the Rape Data Bank. Institute for Community Stud-
ies, University of Missouri, Kansas City. Report Prepared
prepared for the Metropolitan Organization to Counter Sex-
ual Assault.
"No definite seasonal pattern" in 1971 and 1975 rape offen-
ses in Kansas City, Missouri, Kansas City, Kansas, and
Independence, Missouri. The method used was simple inspec-
tion of two years of monthly data.

Felson, Marcus and Kenneth C. Land

1977 Social, demographic and economic interrelationsips with Ed-
ucational trends in the United States. Research in Popula-
tion Economics: An Annual Compilation of Research, Vol.l.
Julian Simon (ed.)
Example of time-inhomogenous analysis method. Also see
listings under Land, Land and Felson, and Cohen et al.

Fromm, Gary
1978 Comment on "An Overview of the Objectives and Framework of
Seasonal Adjustment," by Kallek. Pp.26-29 in Zellner (1978)

Glass, Gene V.

1968 Analysis of data on the Connecticut speeding crackdown as
a time series quasi-experiment. Law and Society Review 3
(August) :55-76.

See Stanley and Ross (1968.)

1971 Estimating the effects of intervention into a non-station-
ary time series. University of Colorado, Laboratory of Ed-
ucational Research, Report No. 51.

Glass, Gene V., Victor L. Willson, and John M. Gottman

1975 Design and Analysis of Time-Series Experiments. Boulder:
Colorado Associated University Press.
With Campbell and Stanley (1966,) this is the classic time
series experiment literature. For time series intervention
also see Shine (1980,1982), Tyron (1982).

Granger, Clive W.dJ.
1978 Seasonality: Causation, interpretation and implications.
Pp. 33-46 in Zellner (1978).
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Grether, D.M., and M. Nerlove

1970 Some properties of "optimal" seasonal adjustment. Econome-
trica 38(5,September) :682-703. -
Clearly written. For other discussions of criteria, see
Lovell (1963), Willson (1973), Granger (1978).

Hannon, E. J.

1960 The estimation of seasonal variation. The Australian
Journal of Statistics 2(1,April):1-15.

1963 The estimation of seasonal variation in economic time ser-
ies. American Statistical Association Journal 58(March):
31-44.

Hartmann, D.P., J.M. Gottman, R.R. Jones, W. Gardner, A.E. Kazdin
and R. Vaught

1980 Interrupted time-series analysis and its application to be-
havioral data. Journal of Applied Behavior Analysis 13:
543-559.
Review of literature on necessity of 50-100 observations
for fitting a stochastic model. For a simplified interven-
tion analysis for shorter series, see Tyron (1982).

Hauser, Robert M.

1978 Some exploratory methods for modeling mobility tables and
other cross-classified data. University of Wisconsin-
Madison: Center for Demography and Ecology.

Also see Land (1980), Felson and Land (1977).

Hay, Richard A., Jr. and Richard McCleary

1979 Box-Tiao time series models for impact assessment: A com-
ment on the recent work of Deutsch and Alt. Evaluation
Quarterly 3(2,May):277-314.
The two analyses disagree on the seasonality of the armed
robbery series. Also see Deutsch's (1979) rejoinder.

Hibbs, Douglas A., Jr.

1974 Problems of statistical estimation and causal inference in
time-series regression models. Pp. 252-308 in Sociological
Methodology 1973-1974.

1977 On analyzing the effects of policy interventions: Box-
Jenkins and Box-Tiao vs. structural equation models. Pp.
137-179 in Sociological Methodology 1977. David R. Heise
(ed.) San Francisco: Jossey-Bass.

Also see Buchin (1982), Willson (1973).

g

Hickman, J.P. and J.G. Hilton !
1971 Probability and Statisties. Scranton, Pa: Intext.

See Chapter 19 for an explanation of the ratio-to-moving-

average method.

Hurwicz, Leonid

1950 Variable parameters in stochastic processes: trend and sea-
sonality. Statistical Inference in Dynamic Economic Models
Tjalling C. Koopmans (ed.) New York: John Wiley & Sons.
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Kallek, Shirley
1978 An overview of the objectives and framework of seasonal ad-

justment. Pp. 3-25 in Zellner (1978).

Kendall, Sir Maurice

1976 Time-Series. Second edition. New York: Hafner Press.
This 1s and excellent introduction to time series analysis.
Unlike most other beginning texts, it covers all methods:
component, stochastic, etc. It includes an overview of
problems relevant to all time series analysis, and discus-
ses the application of various methods to solving these
problems. It also describes a forecasting competition by
Reid (see Buchin,1982). Highly recommended as an initial
text for someone new to time series analysis.

Kendall, M.G. and A. Stuart

1966 The Advanced Theory of Statistics. Vol.3. New York: Hafner
Pub. Co., Inc.
Chapter 46 outlines seasonality and trend. Contains more
technical detail than Kendall (1976).

Ku, Richard and Bradford Smith

1977 First Year Evaluation of the Illinois Urban High Crime Re-
duction Program: Final Report. Manuscript. Abt Associates,
Inc., Cambridge, Massachusetts.

1978 Second Year Evaluation of the Illinois Urban High Crime Re-~
duction Program: Final report. Manuscript. Abt Associates,
Inc., Cambridge, Massachusetts.
Analysis of 1972 to mid-1978 -~esidential burglary and rob-
bery in Peoria, Champaign, and Joliet, Illinols. Models
fitted by polynomial regression. Uses ratio-to-moving-
average to adjust for seasonality, but does not address
questions of whether the series contain seasonal fluctua-
tion. No diagnostic results given.

Kuiper, John

1978 A survey and comparative analysis of various methods of
seasonal adjustment. Pp. 59-76 in Zellner (1978).
For other method comparisons, see Buchin (1982), Kendall

(1976) .

Lamp, Rainer

1983 Jahreszeit und Kriminalitat. (Time of year and criminality)
Paper presented at the International Congress on Criminol-
ogy, Vienna. Max-Planck-Institut, Freiburg.

Land, Kenneth C.

1978 Modelling macro social change. Soclilal Science Quantitative
Laboratory, University of Illinois at Urbana-Champaign.
Mimeographed.

1980 Modeling macro social change. Ch.8, pp. 219-278 in Socio-
logical Methodology 1980.
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Land,
1976

Kenneth C. and Marc Felson

A general framework for building dynamic macro social indi-
cator models: including an analysis of changes in crime
rates and police expenditures. American Journal of Socio-
logy 82:565-604.

Also see Cohen, et.al. (1980).

Leinhardt, Samuel and Stanley S. Wasserman

1979

Exploratory Data Analysis: An Introduction to Selected
Methods. Sociological Methodology.
For another introduction to EDA, see Velleman and Hoaglin

(1981).

Lester, David

1972

Why People Kill Themselves. Springfield, Illinois: Charles
Thomas.

Contains a review of literature on seasonality of suicide.
Also see Vigderhous (1978).

Leuthold, R.M., A.J.A. MacCormick, A. Schmitz and D.G. Watts

1970

Ling,
1979

1980
1982

Forecasting daily hog prices and quantities: A study of al-
ternative forecasting techniques. .ournal of the American
Statistical Association 65(March):90-107.

Example of an econometric model with day of the week and
season of the year as predictors. Uses Theil's (1966) in-
equality coefficient to measure the accuracy of prediction.

Robert F. and Harry V. Roberts

Exploring Statistics with IDA. Clemson University and Uni-
versity of Chicago. Mimeographed.

Users Manual for IDA. Palo Alto, California: The Scienti-
fic Press.

IDA: A User's Guide to the IDA Interactive Data Analysis
and Forecasting System. New York: Scientific Press and
McGraw-Hill.

IDA is an easy-to-use, very "friendly" interactive package
for time series analysis. It was originally developed by
the University of Chicago Graduate School of Business, but
is now supported by SPSS, Inc, The stochastic analysis ex-
amples in this report were done on IDA. Also see listings
under Roberts. '

Lovell, Michael C.

1963

Seasonal adjustment of economic time series and multiple
regression analysis. American Statistical Association
Journal 58(304,December):993-1010.

An excellent, clearly written review of criteria for sea-

sonal adjustment methods. Also see Willson (1973), Kuiper

(1978), Grether and Nerlove (1970), and Buchin (1982) for
other critical reviews.




Macaulay, Frederick R.

1931 The Smoothing of Time Series. New York: National Bureau of
Economic Research.
An early, classic review of smoothing, including moving
average. For detecting seasonality, see pp. 121-129.

McCain, Leslie J. and Richard McCleary

1979 The statistical analysis of the simple interrupted time-
series quasi-experiments. Pp. 233-293 in Quasi-experimen-
tation: Design and Analysis Issues for Field Settings, by
Thomas D. Cook and Donald T. Campbell. Chicago: Rand
McNally.
A practical guide to stochastic seasonal analysis models,
especially with respect to intervention analysis.

McCleary, Richard, and Richard A. Hay, Jr.

1980 Applied Time Series Analysis for the Social Sciences.
Beverly Hilills:Sage Publications.
With Nelson (1973), this is an excellent introduction to
stochastic time series analysis.

Makridakis, Spyros and Steven C. Wheelwright

1978 Forecasting: Methods and Applications. Santa Barbara:
John Wiley and Sons.
A basic forecasting textbook.

Marshall, Clifford W.

1977a Application of Time Series Methodology to Crime Analysis.
The Polytechnic Institute, 33 Jay St. Brooklyn, 11201. Law
Enforcement Assistance Administration Grant #76-TA-99-0028

1977b The State Space Forecasting Technique Applied to Reported
Crime Data. Supplement to 1977a, above.
Uses X-11 with crime data for Cincinnati, 1967-1974. Finds
robbery and aggravated assault, but not burglary, to be
seasonal. Rape has too much irregular variation to tell.

Nelson, Charles R.

1973 Applied Time Series Analysis. San Francisco: Holden-Day,
Inc.
With McCleary and Hay (1980), this is an excellent intro-
duction to stochastic time series analysis.

Nettheim, Nigel F.

1965 A Spectral Study of "Overadjustment" for Seasonality. U.S.
Department of Commerce, Bureau of the Census. Working
Paper No. 21.

Pfeifer, Phillip E. and Stuart Jay Deutsch

1980 Identification and interpretation of first order space-time
ARMA models. Technometrics 22(August,3):397-408.
An extension of stochastic methods into the spatial domain.
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Pierce, David A.

1980 A survey of recent developments in seasonal adjustment. The
American Statistician 34(August,3):125-134. -
This is a relatively simple review and update.

Pierce, Glenn L. and William J. Bowers

1979 The impact of the Bartley-Fox gun law on crime in Massachu-
setts. Unpublished manuscript, Center for Applied Social
Research, Northeastern University, Boston, 02115.
Found aggravated assault with and without a gun to be sea-
sonal. Also see Deutsch and Alt (1977).

Pittman, David J. and William Handy

1964 Patterns in criminal aggravated assault. Journal of Crimi-
nal Law, Criminology, and Police Science 55:462-470.
Random sample of 25% of aggravated assaults known to police
in St. Louis, 1961.- Found no seasonal pattern, no relation
between indoor-outdoor location and season.

Plewes, Tom

1977 Criteria for judging the accuracy of a seasonal adjustment.
Technical paper, U.S. Department of T.abor, Bureau of Labor
Statistics, Washington, D.C.
See discussion in text, under "Component Methods."

Plosser, Charles I.

1978 A time series analysis of seasonality in econometric models
Pp. 365-397 in Zellner (1978).
States the argument for incorporating seasonal fluctuation
into a model.

President's Commission on Law Enforcement and the Administration
of Justice

1967 The Challenge of Crime in a Free Society. U.S. Government
Printing Office.
"Murder is a seasonal offense. Rates are generally higher
in the summer, except for December, which is often the
highest month and almost always 5 to 20 percent above the
yearly average. In December 1963, following the assassina-
tion of President Kennedy, murders were below the yearly
average by U4 percent, one of the few years in the history
of the UCR that this occurred."(p.27). Also see Wolfgang
(1966) .

Quetelet, Adolphe

1842 A Treatise on Man and the Development of his Faculties.
English translation 1963. New York: Burt Frankliln.
Quetelet, a Belgian statistician, states, "The seasons, in
their course, exercise a very marked influence: thus,
during summer, the greatest number of crimes against per-
sons are committed and the fewest against property; the
contrary takes place during the winter," (p. 90). Also
see Sylvester (1982).
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Roberts, Harry V.

1974
1976
1978

Conversational Statistiecs. Palo Alto: The Scientific Press
Hewlett Packard University Business Series.

Conversational Statistics II. University of Chicago, Grad-
uate School of Business. Mimeographed.

Comment on "The analysis of single and related time series
into components: proposals for improving the X-11" by
Raphael Raymond V. Bar On. Pp. 161-170 in Zellner (1978).
Also see listings under Ling and Roberts.

Roberts, Harry V., Robert F. Ling and George R. Bateman

1979

Exploring Statistics with IDA. Palo Alto, California: The

Scientific Press.
Also see listings under Roberts, Ling.

Rosenblatt, Harry M.

1965

Spectral Analysis and Parametric Methods for Seasonal Ad-

justment of Economic Time Series. U.S. Department of Com-
merce, Bureau of the Census, Working Paper No. 23.

A clearly written basic introduction to the spectral anal-
ysis of seasonal fluctuation.

Schlicht, Ekkehart

1981

Seasonal adjustment principle and a seasonal adjustment
method derived from this principle. Journal of the Ameri-

can Statistical Association 76:374-378.

Schneider, Anne L. and David Sumi

1977

Patterns of Forgetting and Telescoping in LEAA Survey Vic-
timization Data. Institute of Policy Analysis, 777 High
Street, Suite 222, Eugene, Oregon 97401.

Discusses seasonal patterns in victim survey responses.
Suggests that respondents use the season of the year to as-
sist their long-term memory of a victimization. Also notes
that police reporting practices may affect the seasonality
of crimes "known to the police." The aggregate number of
unfounded crimes is subtracted each month from the aggre-
gate number of reported crimes, rather than cancelling the
actual crime report that was unfounded. The effect of this
would be to reduce the intensity of any seasonal fluctua-
tion. Also see US/BJS (1980).

Shine, Lester C., II

1980
1981

1982

On two fundamental single-subject behavior functions. Ed-
ucational and Psychological Measurement 40:63-72. -
Tntegrating the study of Shine's actualized and pure single
subject behavior functions. Educational and Psychological
Measurement 41:673-685.

En illustration of how the effects of serial dependencies
are handled in analyses of Shine's pure and actualized
single-subject behavior functions. Educational and Psycho-

logical Measurement U42:87-94.
An alternative approach to testing intervention hypotheses.

62

Shiskin, Julius

1957 Electronic computers and business indicators. The Journal
of Business 30(4,0ctober):219-267.
This 1s a good introduction to the logic of the Census X-11
program, as it was originally developed. It reviews the
X-11 in comparison to easy methods that are still =owmon,
such as same-month-last-year, monthly-means, and ra-io-to-
ratio-to-moving-average.

1968 Time series: seasonal adjustment. Pp. 80-88 in Interna-
tional Encyclopedia of the Social Sciences 16. David L.
Sills (ed.)
Also see Tintner, et al. (1968).

1978 Keynote address: Seasonal adjustment of sensitive indica-
tors. Pp. 97-~103 in Zellner (1978).
Shiskin is considered to be the "father" of the Census X-11
program. The conference recorded in Zellner (1978) was or-
ganized to honor him.

Shiskin, Julius, Allan H. Young, and John C. Musgrave

1967 The X-11 Variant of the Census Method II Seasonal Adjust-
ment Program. U.S. Department of Commerce, Bureau of the
Census. Reprinted 1976.
This is the Census X-11 user's guide.

Sims, Christopher A.
1974 Seasonality in regression. Journal of the American Statis-

tical Association 69(347,September) :618-626.
Discusses bias in regression due to seasonal adjustment and
seasonal noise. See Rosenblatt (1965), Wallis (1974).

Stein, Donald P., Jay-Louise Crawshaw and Algrid R. Barskis

1967 Computer-Aided Crime Prediction in a Metropolitan Area.
Technical Reports 1-202 and 1-202-A, The Franklin Institute
Research Laboratories, Philadelphia.
1966 Part I offenses, 5 per cent sample. Predictors inclu-
ded weather, time of day, day of week, month of year, phase
of the moon. Probability that a certain type of crime
would occur, given that some crime did occur.

Sylvester, Sawyer F.
1982 Adolphe Quetelet: At the beginning. Federal Probation 46
(December,4) : 1419,

Thiel, Henri

1966 Applied Economic Forecasting. Amsterdam: North Holland
Publishing Co.
A classic economics forecasting text.

Thompson, Howard E, and George C. Tiao

1971 Analysis of telephone data: A case study of forecasting
seasonal time series. The Bell Journal of Economics and
Management Science 2(Autumn) :515-5L47.
Contains a diagnostic check for consistency, the implicit
assumption "that the same relationship exists between ob-
servations 12 periods apart for all 12 months of the year."
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Tintner, Gerhard, P. Whittle, Herman Wold and Julius Shiskin
1968 Time series. Pp. U47-88 in International Encyclopedia of
the Social Sciences 16. David L. Sills (ed.)
Also see Shiskin (1968).

Tukey, John W.

1962 The future of data analysis. Annals of Mathematical Sta-
tisties 33:1-67.

1977 Exploratory Data Analysis. Reading, Mass.: Addison-Wesley.

Tyron, Warren W.

1982 A simplified time-series analysis for evaluating treatment
interventions. Journal of Applied Behavior Analysis 15
(3,Fall):423-429.

Velleman, Paul F. and David C. Hoagliu

1981 Applications, Basics and Computing of Exploratory Data
Analysis. Boston:Duxbury Press.
This is a beginner's guide to EDA (Exploratory Data Analy-
sis). See Tukey (1977). It includes a discussion of re-
sistant time series analysis methods. For a resistant sea-
sonal adjustment method, see Cleveland, et.al. (1978).

Vigderhous, Gideon

1978 Forecasting sociological phenomena: Application of Box-
Jenkins methodology to suicide rates. Pp. 20-51 in Socio-
logical Methodclogy 1978.
Good overview of stochastic time series analysis methods.

United States, Bureau of Justice Statistics

1980 Crime and Seasonality. National Crime Survey Report SD-
NCS~N-15,NCJ-64818. Report written by Richard W. Dodge and
Harold R. Lentzner, Crime Statistics Analysis staff, Center
for Demographic Studies, U.S. Bureau of the Census.
Although plagued by short series and other problems, this
is the most comprehensive seasonal analysis of victim data
to date. Uses Census X-11 with 1973-1977 National Crime
Survey data. Finds stable seasonality F values of 10.0 or
higher for household larceny (under and over $50), personal
larceny without contact (under and over $50), and unlawful
entry without force. Also see the pioneering article on
this subject, Schneider and Sumi (1977).

Wallis, Kenneth F.

1974 Seasonal adjustment and relations between variables. Jour-
ngl of the American Statistical Association 69(March,3L45):
18-31.

Argues that the use of seasonally adjusted and unadjusted
data in the same model may lead to spurious dynamic rela-
tionships.
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Warren, Charles W., Jack C. Smith and Carl W. Tyler

Seasonal variation in suicide and homicide: A question of
consistency. Unpublished manuscript. Public Health Ser-
vice, U.S. Centers for Disease Control, Atlanta, 30333.

Although this paper does not explicitly define seasonality,
the implicit definition includes the possibility of year-
to-year inconsistency. Example of PRA (periodic regression
analysis). See Bliss.

Willson, Victor L.

Estimation of intervention effects in seasonal time-series.
University of Colorado, Laboratory of Educational Research,
Report No. 63.

Compares four methods of handling seasonality (linear sine
term, prior seasonal adjustment, differencing, and ignoring
the seasonal component) with seven simulated series. Finds
that a sine term "works best in cases where error variance
and amplitude are of the same order of magnitude. Seasonal
adjustment seems better for situations when the amplitude
is much larger than the error variance. Differencing was a
poor method in all cases." Also see Hibbs (1977).

Wolfgang, Marvin E.

Patterns in Criminal Homicide. New York: John Wiley & Sons
See pp. 96 to 106 for a review of research on seasonality
of crime, from the early 1800's. Also see Quetelet (1842),
Lester (1972), and US/BJS (1980).

Zellner, Arnold (ed.)

Seasonal Analysis of Economic Time Series. Proceedings of
the Conference on the Seasonal Analysis of Economic Time
Series, September 9-10, 1976, Washington, D.C. U.S. Depart-
ment of Commerce, Bureau of the Census, Economic Research
Report ER-1.

This is an extremely valuable source book. Unfortunately,
it is out of print. The Illinois State Library has a copy.
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