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PROLOGUE 

When most consumers of seasonally adjusted series 
and that includes nearly every economically literate 
person -- are confronted by the question of why they 
prefer such a series to the original, the most common 
and natural reaction is that the answer is obvious. Yet 
on further reflection the basis for such a preference 
becomes less clear, and those who give the matter 
extensive thought often finish by becoming hopelessly 
confused. 

-- Grether and Nerlove (1970:685) 
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EXECUTIVE SUMMARY 

This report is an introduction to the fundamentals of 
seasonal analysis, with an emphasis on practical applications to 
criminal justice. Administrators, policy makers, researchers, 
and others who make decisions based on crime data now have time 
series data available that allow them to answer questions that 
could not be answered only a few years ago. But to answer these 
questions, it is necessary to use methods appropriate to the 
analysis of time series, including methods of detecting and 
analyzing seasonality. Many fields outside of criminology have 
long had a wealth of time series data available to them, and have 
developed methods to analyze seasonality in those data. This 
report gui.des the reader to the use of the most common of these 
methods. 

In the analysis of time series data, as in the analysis of 
cross-sectional data, description must precede explanation. We 
must describe the past before we can forecast the future. We 
must become familiar with patterns of change over time in the 
original data before we can develop complex causal models. If we 
do not, we risk misspecifying the model, and forecasts and policy 
decisions based on that model may be erroneous. 

An elementary part of the description of patterns over time 
in monthly or quarterly data is the description of seasonal fluc­
tuation. Some monthly and quarterly series fluctuate with the 
seasons of the year; others do not. If we assume that a series 
is seasonal, when it is not, or that a series is not seasonal, 
when it is, we risk erroneous forecasts and explanatory models. 

This report discusses the two major approaches to defining 
and detecting seasonality the component approach and the 
stochastic approach. Although the two approaches are 
mathematically similar, there are practical differences in 
emphasis. The component approach emphasizes a separate 
description of seasonal fluctuation, while the stochastic 
approach emphasizes forecasting the future wi th a model that 
incorporates seasonality. The component approach focuses on 
seasonality itself, while the stochastic approach focuses on 
seasonality as it affects the accuracy of a forecast. 

No single method of analysis is appropriate in every 
situation. The method of choice depends upon the objectives of 
the analysis. For example, a decision to build a new prison will 
depend upon a forecast of the total number of inmates, with 
seasonal fluctuation included in the total. On the other hand, 
if there are wide seasonal fluctuations in the number of inmates, 
it might be necessary to open an additional wing during some 
months of the year. The decision to do this would depend on an 
analysis of the seasonal component. 
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Neither the component approach nor the sto~hastic approach 
offers a simple, objective, yes-or-no criterion for detecting the 
presence of seasonality in a time series. Both approaches depend 
heavily on the judgment of the analyst, al though each approach 
gives the analyst a number of statistical tools upon which to 
base that judgment. This report disGusses and compares these 
tools, and gives the analyst some basic rules of thumb for using 
them in various practical situations. 

In addition, for those who need more detail than this report 
provides, it includes an annotated bibliography of 110 references 
to literature about seasonal analysis and to reports analyzing 
the seasonality of crime. 

vi 
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INTRODUCTION 

Administrators, policy makers and researchers now have time 
series data available that allow them to answer quest::i.ons that 
could not be answered only a few years ago. But to answer these 
questions, it is necessary to use methods appropriate to the 
analysis of time series, including methods of detecting and 
analyzing seasonality. Many fields outside of cr'iminology have 
long had a wealth of time series data available to them, and have 
developed methods to analyze seasonality in those data. This 
report is an introduction to the most commonly used of these 
methods, with practical crime data examples. 1 

The question of seasonality is a paradox. On one hand, the 
concept seems simple. Criminologists have traditionally believed 
(see Wolfgang,1966:96-106 for a review) that more crimes occur 
during some months of the year than others. On the other hand, 
this simplicity is deceptive: a precise definition of seasonality 
is elusive, and the detection and measurement of seasonality are 
subjective. 

The quote by Grethel~ arId Nerlove in the prologue exactly 
describes the Statistical Analysis Center staff's experience when 
we first confronted the question of seasonality. We naively 
thought that it would be a simple problem, that all we had to do 
would be to discover the ~tandard "cookbook" seasonal adjustment 
method and apply it. However, we soon found that there is no 
standard cookbook approach to seasonality. Our routine search 
for a standard program soon became a lengthy investigation of the 
philosophical approaches and related mathematical methods for the 
detection, measurement and adjustment of seasonal fluctuation. 

This report is a summary of the results of that investiga­
tion. It reviews the two most common approaches to detecting and 
measuring seasonality. It also discusses the qualitative and 

1 A complete review of all seasonal analysis methodB would 
fill at least one book. This report is limited to the two most 
commonly used methods, the seasonal component method and the sto­
chastic modelling method. Readers who want to investigate alter­
native methods should see Kendall (1976), Zellner (1978), or 
Pierce (1980) for an overview; Lovell (1963) or Dutta (1975) for 
dummy regression; Shiskin (1957) for same-month-Iast-year; Land 
(1978,1980) and Land and Felson (1976) for econometric and time­
inhomogenous methods; Bliss (1958) or Warren, et al. (1981) for 
periodic regression analysis (PRA); Cleveland, et al. (1979) or 
Velleman and Hoaglin (1981) for resistant methods, and Rosenblatt 
(1965) for spectral analysis. For a technical guide to using the 
seasonality and ot.her time series computer programs that are 
available at SAC, see the SAC report, "Technical Manual for Time 
Series Pattern Description," by Louise S. Miller. 
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quantitative choices that a user of any seasonal. anal~si~ method 
must make. As a simple introduction to seasonallty, lt lncludes 
statistics only when necessary, but it also includes a long, 
annotated bibliography of technical reports, for those who need 
more detail. In short, it is the report that I wish had existed 
when I first began to analyze the seasonality of time series. 

WHY DOES SEASONALITY MATTER? 

Time ser ies containing time periods shorter than a year, 
such as monthly or quarterly series, may vary according to the 
season of the year. That is, a phenomenon may occur more fre­
quently at certain times of the year, and less frequently at 
other times. On the other hand, not every monthly or quarterly 
time series is seasonal. For example, the number of aggravated 
assault offenses known to the police in Illinois (figure 1) is 
seasonal, but the number of homicide offenses known to the police 
in Illinois (figure 2) is not seasonal.2 

If we ignore the question of seasonality, we may make the 
error of assuming that a series is not seasonal, when in fact it 
is. On the other hand, if we automatically adjust for seasonal­
ity without first analyzing the series to see if it is seasonal 
or not, we may make the error of adjusting for nonexistant sea­
sonality. What difference would either sort of error make to 
common administrative or policy decisions? 

If we make the first error, ignore the question of seasonal­
ity in a series that is seasonal, we ignore two kinds of informa­
tion that may be useful in making decisions: a description of 
seasonal fluctuation, and a description of the variation in the 
series with the seasonal fluctuation removed. Such descriptions 
prov ide a necessary foundation for explanatrory models, fore­
casts, and tests of intervention hypotheses. Without a prior 
des c r i pt ion, model s may be misspecified, forecasts inaccurate, 
and hypothesis tests erroneous. 

Pol icy makers and administrators often need to know the 
amount of seasonal fluctuation in order to allocate resources. 
For example, if more rapes oicur in the summer, a police chief 
may want to allocate more resources to a rape crisis center or to 
a rape investigation unit in the summer months. If more people 
are sentenced to prison in the fall, a prison administrator may 
want to arrange for more beds in the fall months. Knowledge of 
the pattern of seasonal fluctuation around the overall trend 
helps the administrator estimate the resources needed from month 
to month. 

Ignoring seasonality may also lead to erroneous conclusions 
in comparing one month and another. Suppose that a crime preven­
tion program were instituted in May, and that one of the goals of 
this program was to reduce larceny. If more larceny incidents 

2The lines superimposed on the raw data in figures 1 and 2, 
and other figures in this report, are "line segment fits," which 
use linear spline regression to describe the general pattern of 
change over time in a variable. For more information, see the 
Statistical Analysis Center report, "Manual for the Pattern 
Description of Time Series." 
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ordinarily occur in the summer than in the spring, the effect of 
the program might be obscured by seasonal variation. The number 
of larcenies occurring in ,June might be as high or even nigher 
than the number of larcenies occurring in April, even if the pro­
gram actually decreased larceny. In such a situation, the policy 
maker or administrator is not primarily interested in seasonal 
fluctuation, but is interested in the overall trend, with sea­
sonal fluctuation removed. Once seasonality has been taken into 
account, were there fewer larcenies after the crime prevention 
program? 

These two kinds of descriptions -- description of the pat­
tern of seasonal fluctuation, and description of the pattern of 
the variable with the seasonal fluctuation removed -- can help in 
communication to policy makers, and other users of crime data 
(see Granger 1978:38-39). Seasonal fluctuation may be so great 
that it obscures any other pattern over time. Suppose that a 
reporter or a member of the City Council asks the Police Depart­
ment's crime analysiS unit whether larceny offenses are 
increasing or decreasing. The unit's answer will be more easily 
understood if it is accompanied by a graph of the seasonally 
adjusted data (figure 4), than if it is accompanied by a graph of 
the original data (figure 3). There is much less variation in 
the seasonally adjusted lat'ceny series than in the original 
larceny series. The variation due to a known cause, seasonality, 
has been removed. With this seasonal fluctuation removed, the 
general pattern of larcenies over time appears much more 
clearly.3 

The second kind of error, to assume that a series is seasonal 
when, in fact, it is not, may also lead to an inaccurate descrip­
tion of the pattern of the series. Failure to recognize a lack 
of seasonality may lead to model misspecification and inaccurate 
forecasts in the same way as failure to recognize the presence of 
seasonality (see Fromm,1978:26). We will make the same descrip­
tlve mistakes discussed above, but for the opposite sort of 
error. An erroneous assumption that all Mays are higher than av­
erage, for example, might lead to a misallocation of May 
resources. 

In addition, if we seasonally adjust a nonseasonal series, 
or build a complex model under the incorrect assumption that a 
series is seasonal, we will add error to the analysis.4 Such a 
misspecified model !loveradjusts" for seasonality; it removes or 

3Departures from the general pattern, such as the extremely 
low observation in May 1979, also appear more clearly in a graph 
of a seasonally adjusted sBr'ies than in a graph of the raw data. 

4For discussions of the problem of overadjustment, see 
Nettheim (1965), Rosenblatt (1965), Grether and Nerlove (1970: 
682-683), or Kalleck (1978). For a discussion of other errors 
that may result from erroneous assumptions about seasonality in a 
regression model, see Wallis (1974). 
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otherwise controls for seasonal fluctuation that never existed. 
This produces a series that is negatively seasonal observa­
tions twelve months apart are negatively associated with each 
ot~1Gr. Not realizing that the negative seasonal pattern is the 
resul t of, not the reason for, statistical manipulation, the 
analyst may then correct the model for this imaginary sea­
sonality. If the model becomes complex, it may be very difficult 
to detect this error. 

Thus, if we knew a priori that some variable fluctuated with 
the seasons, it would be a good idea to take seasonality into 
consideration when we analyzed, or based any decision upon, the 
series.5 Conversely, if we had reliable evidence that a variable 
did not fluctuate with the seasons, we would know that a model of 
that variable would be misspecified if it incorporated a seasonal 
assumption. In practical situations, however, we usually do not 
know whether a series is seasonal or not. Therefore, in order to 
avoid both of these errors -- assuming a series is seasonal when 
it is not and assuming a series is not seasonal when it is -- an 
analysis of monthly or quarterly data should begin with the 
question: Is this series seasonal? 

5Even when we know a series is se~sonal, some decisions may 
require the actual raw data, not the seasonally adjusted data . 
As Fromm (1978:26) argues, "It does not help workers seeking jobs 
to tell them that seasonally adjusted they are employed." Con­
sumers have to pay the actual price, not a seasonally adjusted 
price, for out-of-season fruits and vegetables. The prison ad­
ministrator must find a bed for each new prisoner, without regard 
to whether the prisoner is part of a seasonal fluctuation or not. 
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WHAT IS SEASONALITY? 

To answer the question, "Is this series seasonal?" we must 
first define seasonality. As Granger (1978:35) notes, "It is re­
markable how many papers discuss [seasonality] without consider­
ation of definition." It is not suprising that two investigators 
would come to conflicting conclusions about the presence of sea­
sonal fluctuation in a series, if neither began the analysis with 
a definition of seasonality. 

Such a definition needs to be more than a mathematical for­
mula. The method used to calculate the presence of seasonality 
should have some basis in the analyst's concept of what season­
ality is. For example, if we conceive of seasonal fluctuation as 
being relatively constant from year to year, consistency should 
be incl uded in the measure of seasonality. By not ex pI i cit 1 y 
stating our definition of seasonality, we risk using a measure 
that conflicts with that definition, and the analysis will yield 
confusing if not erroneous conclusions. 

To avoid this, we need a clear conceptual definition of sea­
sonality. There are two majur empirical approaches to defining 
and detecting the presence of seasonality, the component approach 
and the stochastic approach. Although these two traditions are 
historically distinct, with adherents, literature and jargon that 
seldom overlap, there is a close mathematical similarity. Each 
approach can be expressed in terms of the other, and it is 
possible to combine the two to reap the benefits of both.6 
However, because they are generally seen as separate approaches 
to seasonality, the following discussion treats them separately. 

The Component Definition of Seasonality 

Perhaps the most common conceptual approach to seasonality 
is the component approach, expressed by Kallek's (1978:15) simple 
and straightforward definition: 

Seasonality refers to regular periodic fluctuations which 
recur every year with about the same timing and with the 
same intensity and which, most importantly, can be meas­
ured and removed from the time series under review. 

A series with strong seasonal fluctuation, such as long gun 
registrations, (figure 5) easily qualifies as seasonal under 
Kallek's definition. However, the seasonality present in many 

6This combination, an "X-11 ARIMA" method (Dagum,1978, 
1980), uses a stochastic time series model to improve the quality 
of X-l1 forecasts. For definitions of these terms, see "The 
Stochastic Definition of Seasonality," below. 
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Figure 5 

CHICAGO lO~G GUN REGISTRATIONS. JANUARY 1969-JUlY 1980 

SOURCE. GUN REGISTRATION SECTION OF THE. 
CHICAGO COMPTROLLER'S OFFICE 
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Figure 6 

CHICAGO HANDGUN REGISTRATIONS. JANUARY 1969-JUlY 1980 
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SOURCE: GUN REGISTAAT!ON SECT ION OF THE 
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crime series, such as handgun registrations (figure 6) is less 
obvious, and categorizing the series as "seasonal" or "not sea­
sonal" becomes a subjective question. To reduce the subjectiv­
ity, or at least make it explicit, we need measures for aspects 
of the conceptual definition, such as "regular periodic fluctua­
tions," "same timing," and "same intensity." For example, what 
if all summers were high except one, and that summer were abnor­
mally low? What if the degree to which the summer months were 
high were less than the degree to which the summer months varied 
among themselves? In such cases, which in crime series are very 
common, we need objective criteria to measure, or "operational­
ize" Kallek's definition. The component approach operationalizes 
seasonality by separating seasonal fluctuation from the rest of 
the series. 

The final clause of Kallek's definition, that seasonal fluc­
tuation "can be measured and removed from the time series under 
rev i ew," is the foundation of the component approach. The ana­
lyst imagines that each seasonal series has three components. 
The trend/cycle component consists of long-term trend and any 
nonseasonal but regular fluctuations. The seasonal component is, 
"the intrayear pattern of variation which is repeated constantly 
or in an evolving fashion from year to year," (Shiskin et al. 
1967: 1) . The irregular component consists of everything else, 
the "residual variation." Thus, the total number of occurrences 
in a given month equals the number due to the trend/cycle, the 
number due to seasonality, and the number due to irregular 
fluctuation.7 A "seasonally adjusted" series is a series from 
which the seasonal component has been removed. It has all the 
characteristics of the original, except seasonal fluctuation. 

The component approach is commonly referred to as "seasonal 
adjustment," or as "Census X-11 adjustment." Since 1954, when 
the U.S. Bureau of the Census introduced an early version of the 
X-11 seasonal adjustment program, it has become one of the stand­
ards against which seasonal adjustment methods are measured.8 It 
is widely used by both governmental agencies and academic 
scholars in the United States and elsewhere. When you see econo­
mic data labeled "seasonally adjusted," with no other qualifying 
statement, you can usually assume that the data were seasonally 
adjusted by the X-11 prog~am, or some version of it.9 

7The relation between components may be additive or multi­
plicative. See "Component Methods," below. 

8For more information on the Census X-11 and other seasonal 
component methods, see Shiskin (1967), Plewes (1977), Grether and 
Nerlove (1970), Hannon (1960,1963), Lovell (1963), Willson(1973), 
Nettheim (1965) and Rosenblatt (1965). In addition, more than 
twenty papers on aspects of seasonal adjustment and analysis are 
contained in the Census Bureau publication, Seasonal Analysis of 
Economic Time Series (Zellner, 1978). 

9Be11 Laboratories has recently developed a program, called 
SABL, that is similar in concept to the X-11, but contains sev­
eral improvements. See Cleveland et al.(1978). 
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Thus, the problem_of detecting seasonality becomes a problem 
of dividing a series into its three components. The usual method 
for doing this is to smooth the series by some variation of a 
moving average, isolate the seasonal component, and then remove 
it. (For details, see "Component Methods," below.) .Once the sea­
sonal fluctuation has been separated from the rest of the series, 
the component method uses a variety of statistical tests, which 
compare the removed seasonal component to the trend/cycle and ir­
regular components, as criteria for the presence of seasonality. 
If the seasonal component is large enough relative to the irregu­
lar component, then the component approach decides the series is 
seasonal. For example, the three components of the seasonal 
larceny/theft series are graphed in figures 7, 8, and 9. Figure 7 
shows the seasonal fluctuation, figure 8 shows the irregular, and 
figure 9 shows the trend/cycle. 10 
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Figure 7 
ILLINOIS INDEX LARCENY-THEFT. FINAL SEASONAL FACTORS 
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10These components were calculated by the X-11 program under 
the additive assumption. The F value for the amount of variation 
in the seasonal relative to the variation in the irregular is 96. 
E'or details, defini tions, and other seasonal component analysis 
examples, see the section, "Component Methods," below. 
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Figure 8 

ILLI~~IS INDEX LARCENY-THEFT. FINAL IRREGULAR SERIES 
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Figure 9 

ILLINOIS INDEX LARCENY-THEFT. FINAL TREND CYCLE 
SOURCES. ORIGINAL SERIES. SRC EDITION ILLINOIS 
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The Stochastic Definition of Seasonality 

The foundation of the component approach to seasonality is 
its conception of seasonal fluctuation as separate from the rest 
of the series. In contrast, the "stochastic time series anal­
ysis" or "autoprojection" method incorporates .seasonal fl';lct':la­
tion into a single descriptive model of the serles, a descrlptlon 
of the stochastic process.11 In a stochastic pr?cess, one obs~r­
vat ion follows the next with a certain probablilty. In a serles 
wi th seasonal fluctuation, observations twelve months apar.t a.re 
correlated which means that they follow each other wlth a. 
certain p~obability.12 Thus, seasonality may be part of a 
stochastic process. 

In the stochastic litera.ture, as in the component litera­
ture it is unusual to find an explicit conceptual definition of 
seas;nality. The closest thing to such a definition in Box and 
Jenkins (1976:301) is the following: 

In general we say that a series exhibits periodic 
behavior with period s, when simi~~rities in the 
series occur after s basic time intervals. 

Nelson (1973:168) paraphrases this in less mathematical language: 

Seasonality means a tendency to repeat a pattern of 
behavior over a seasonal period, generally one year. 

Therefore, like the component definition, the stochastic de~in~­
tion of seasonality emphasizes the existence of regular perlodlc 
fluctuation. However, unlike the component definition, the sto­
chastic definition does not emphasize separating this fluctuation 
from the rest of the series. 

An additional difference between the two approaches is that 
the stochastic approach is not so much concerned about describ~ng 
the past as it is about forecasting the future. Box and Jenklns 
(1976:301) emphasize that a reasonable description of each of the 
three components of a series may not produce a good forecast. Of 
course, description of the past must precede a forecast of the 

11 Stochastic time series analysis is also called Box­
Jenkins or ARIMA, in reference to the authors and to their mne­
monic for the method. There are many approaches to the problem 
of stochastic time series modeling, and an extensive literature 
on the subject, some of which requires a knowledge of advanced 
statistics. This report is only a brief guide to these methods, 
especially a.s they pertain to seasonal analysis. For a more 
complete, but still elementary introduction, see Nelson (1973) or 
McCleary and Hay (1981). 

12However, the opposite is not always true. If observations 
twelve months apart are correlated, the series is not necessarily 
seasonal. See "Stochastic Methods," below. 
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future. However, the stochastic approach does not describe the 
series with a regression or harmonic function, or describe the 
separate components. Instead, it describes the stochastic pro­
cess of the series. If we can describe the probability, or set 
of probabil it ies, under which observations followed one another 
in the past (the stochastic process), and if the same process 
continues unchanged, then we can accurately forecast the future. 

Stochastic time series analysis assumes that a times series 
has followed some unknown stochastic process in the past. The 
problem is to identify or "model" that process.13 The stochastic 
method uses trial and error, "iterative decisions," to arrive at 
the best model. These iterative decisions begin with an initial 
diagnosis of the series. With respect to seqsonality, the ana­
lyst uses descriptions of the relationship between observations 
at one time period and another to discover any systematic 
seasonal movement. If this diagnosis suggests seasonality, the 
analyst then considers a number of alternative seasonal processes 
that may describe the pattern of the series. Each set of alter­
native processes becomes a tentative model, which the analyst 
then evaluates. By fitting a tentative model to the series, 
calculating the difference between the model and the actual data, 
and analyzing these "residuals," the analyst determines whether 
or not the chosen seasonal process successfully describes the 
series. Eventually, the analyst reaches a stochastic model that 
appears to describe the series better than alternative models. 
If this final model includes a seasonal term, the stochastic 
approach decides that the series is seasonal. 

For example, stochastic diagnosis, estimation and evaluation 
of the Illinois larceny/theft series suggests that the series 
follows a seasonal process.14 The current observation is related 
to the error of the observation twelve months ago. In addition, 
the current observation is related to the error of the preceding 
observation. (For details, see "Stochastic Methods," below.) 
Figure 10 shows the original larceny/theft series (dark line) and 
the modelled series (light line). Each of the modelled val ues 
was calculated from the immediately preceding observation and the 
observation one year ago. For the years 1972 through 1981, we 
used the actual numbers of larceny/theft· to calculate th~ 
modelled, value. The January, 1982 modelled value was calcula t ed_ 
from the actual December, 1982 and January, 1981 values. To fore­
cast for February, 1982, we used the actual February, 1981 obser- ( 
vation and the modelled value for January, 1982. By continuing 
this process, we calculated the 1982 forecasted values in figure 
10. 

13A model is "a set of assumptions concerning the origin or 
generating mechanism of a series," (Pierce,1980:125). 

14The model realized in figure 10 is a (0,1,1)(0,1,1) ARIMA 
process, or a first-order seasonal and serial moving average pro­
cess with seasonal and serial differencing. For definitions and 
details, see "Stochastic Methods," below . 
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Summary: Two Definitional Approaches 

This section discussed two major approaches to defining and 
detecting seasonality, the component approach and the stochastic 

I 

approach. Al though the two approaches are mathematically simi-
lar, there are practical differences in emphasis. The component 
approach emphasizes a separate description of seasonal fluctua­
tion, while the stochastic approach emphasizes forecasting the 
future with a model that incorporates seasonality. The component 
approach is'more interested in seasonality itself, while the sto­
chastic approach is more interested in seasonality as it affects 
the accuracy of a forecast. 

Both approaches model seasonal fluctuation. However, in the 
component model, seasonality is separated from the rest of the 
series, while in the stochastic model, it is not. There are two 
schools of thought concerning the separation of seasonal fluctua­
tion from the rest of the series. One school (see Kendall,1916: 
66) argues that, since seasonality is variation due to a known 
cause, it should be removed prior to building an explanatory 
model, forecasting, or any other complex analysis. Tbe other 
school (see Plosser,1918) holds that it is more logical to 
include seasonal fluctuation as an integral part of the final 
analysis. The first school of thought would use the component 
method, but the second would not. 

In reality, models of separate components are necessary to 
answep some questions, Rnd one model incorporating seasonality is 
necessary to answer other questions. For example, a decision to 
build a new prison will depend upon a forecast of the total num­
ber of inmates, with seasonal fluctuation included in the total. 
On the other hand, if there are wide seasonal fluctuations in the 
number of inmates, it might be necessary to open an additional 
wing during some months of the year. The decision to do this 
would depend upon an analysis of the seasonal component. 

There have been several experimental comparisons of various 
approaches to detecting the presence of seasonality (Kuiper, 
1918; Granger,1918; Grether and Nerlove,1910; Buchin,1982). How­
ever, Kendall and Stuart (1966) probably give the best advice: 
"Try several methods and choose the one which appears to give the 
best results." No single method of analysis is appropriate in 
ever'y situation. The method of choice depends upon the objec­
tives of the analysis. In the following sections of this report, 
we discuss and compare the tools for detecting and analyzing 
seasonality that are offered by the two approaches, and give the 
analyst some basic rules of thumb for using these tools in 
various practical situations. 
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TOOLS FOR DETECTING AND ANALYZING SEASONALITY 

Neither the component nor the stochastic approach to season­
ality offers a simple, objective, yes-or-no criterion for detec­
ting the presence of seasonality in a time series. Both 
approaches depend heavily on the judgment of the analyst, 
although each approach gives the analyst a number of statistical 
tools upon which to base that judgment. In the following 
sections, we introduce the reader to some of these tools for 
detecting, measuring and adjusting for seasonality. 

Component Methods 

The X-11 program, developed by the U.S. Bureau of the Cen­
sus, gives the user a vast amount of information that can be used 
to answer the question, "Is this series seasonal?"15 If the an­
swer is lIyes," the X-11 program allows the user to describe both 
the seasonal fluctuation and the pattern of the series with the 
seasonal fluctuation removed. 

The X-11 program partitions a series into three components 
(seasonal, trend-cycle, and irregular) by fitting a moving aver­
age to it (for details, see below). This smooths the series, and 
allows seasonal fluctuation, if present, to be isolated and 
described. 

The standard output of the X-11 program is voluminous, and 
its interpretation is an art as much as it is a science. The user 
must weigh the results of various diagnostic tests against each 
other, and make a number of subjective jUdgments. The final 
decision as to whether or not a given series fluctuates with the 
seasons is a function of the analyst's interpretation of these 
diagnostics. Two analysts may disagree. Thus, published results 
should mention the diagnostic tests the analyst used to arrive at 
the decision, and the results of those tests. 

, Pierce (1980: 130) argues that, 
are never more than approximations." 

"seasonal adj ustment models 
However, the objectivity of 

15The Bureau of Labor Statistics (BLS) of the U. S. Depart­
ment of Labor provided the X-11 program we use at SAC. BLS staff 
also provided documentation, and were very helpful in answering 
questions about interpretation. The X-11 is available in the 
SAS/ETS (Econometric and Time Series) package. In addition, an 
alternative component program, SABL, is available from Bell Labs 
(Cleveland et al.,1978). We use an abbreviated component program 
as a screener. This "Bell-Canada" package was developed by John 
Higginson of Statistics Canada. For instructions on using both 
of these programs on the SAC system, see Miller (1982). 
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these approximations can be improved if .analysts use ~he ~ame 
diagnostic tests, interpret these tests uSlng ge~er~l gUldellnes 
or "rules of thumb," and explicitly state any devlatlons from the 
use of these guidelines. At the Statistical Analysis Center, we 
have found the following guidelines to be helpful. 

Moving Average 

A moving average calculation takes successive averages from 
the beginning to the end of the series.16 For example, it might 
calculate the average of observations 1 through 5, then observa­
tions 2 through 6, observations 3 through 7, and so on to t~e e?d 
of the series. These means are, then, a transformed serles ln 
which random variation and periodic fluctuation (within a five­
month span) are "averaged out." A moving average is smoother 
than the original series, and, depending on the number of 
observations within each average, does not contain periodic 
fluctuation.17 It is also shorter than the original series. 
This "end effect" is often important, because we may be most 
interested in the most recent past of the series.18 

The goal of a moving average is to produce a smoothed series 
that does not contain random variation or periodicity, but still 
contains the other patterns in the series. However, there are 
many kinds of moving average, and not every kind will meet this 
goal for every series.19 'According to Kendall (1976:53), 

Trend-fitting and trend-estimation are very far from 
being a purely mechanical process which can be handed 
over regardless to an electronic computer. In the 
choice of the extent of the average, the nature of 
the weights, and the order of the polynomial on which 
these weights are based, there is great scope -- even 
a necessity -- for personal judgment. To a scientist 

16The concept and calculation of moving average, in this 
context, is very different from the moving average process in 
stochastic time series analysis. The moving average (MA) process 
received its name because it is similar to a conventional moving 
average in one way: it assumes that each observation is affected 
by a finite number of other observations. For more detail, see 
Nelson (1973:33). 

17In the context of spectral analysis, a moving average is 
called a "filter." For example, a "low-pass filter" removes high 
frequency periodicity. See Kendall (1976:44) and the section, 
"Cumulative Periodogram of Residuals," above. 

18There are various statistical techniques to handle the end 
effect in a moving average. See Kendall (1976) for a rev iew. 
The X-ll ARIMA method uses stochastic time series analysis to 
estimate end values. See Dagum (1978,1980). 

19For a clear discussion of the effects that various moving 
averages have on a series, see Kendall (1976:29-54). For ratio­
to-moving average, see Hickman and Hilton (1971). 

it is always fclt as n departure from correctness to 
incorporate subjective elements into his work. The 
student of time-series cannot be a purist in that 
sense. 

Therefore, the X-11 program utilizes iterative approximations of 
the best moving average, and offers the user a choice of moving 
average options (see Shiskin et al.,1967 for details). 

Additive/Multiplicative Assumption 

The seasonal, trend/cycle, and irregular components have two 
possible relationships to each other, dependent or independent.20 
If we consider them to be independent of each other, then we add 
them together to equal the total number of occurrences. If we 
consider them to be depend ent on each other, then we m ul t i pI Y 
them together to equal the total number of occurrences. For ex­
ample, if the relationship for larceny were additive, then the 
number of larcenies due to seasonal fluctuation would remain the 
same no matter if the total number of larcenies were 50 or 500. 
If the relationship were multiplicative, the number of larcenies 
due to seasonal fluctuation would be greater if the total r.umber 
of larcenies were higher. The additive/multiplicative assumption 
is the analyst's choice. Most economic series are assumed to be 
multiplicative. However, we know of no theoretical argument for 
assuming the components of a crime series to be either dependent 
or independent. In our experience, the additive assumption has 
produced the better adjustment in the majority of crime series 
analyzed. 

Our general procedure at SAC is to make no prior judgment 
about whether seasonal fluctuation is additive or multiplicative 
but to adjust the series under both assumptions, and choose th~ 
best adjustment of the two according to the diagnostic tests dis­
cussed below.21 The two assumptions usually produce very similar 
results, but, when they do not, we assume that the better adjust­
ment, additive or multiplicative, reflects the true relationship 
among the components.22 

20For a discussion of additive versus multiplicative rela­
tionships in stochastic process models, see' Box and Jenkins 
(1976:322-324). The relationship in stochastic models, as in com­
ponent models, is usually assumed to be multiplicative. 

210f course, it is not possible to adjust under a multipli­
cative assumption if the series contains an observation that is 
zero. 

22 Fo r an important series in wh ich the mul t ipl icati ve or 
additive relationship is not clear, it may be necessary to use 
more complex analytical methods than this report can cover. The 
literature on seasonal adjustment contains may discussions of the 
pro b I em. For ani n t t' 0 d u c t ion , see s eve r a I 0 f the pap e r sin 
Zellner (1978). For some practical hints, see Plewes (1977). 
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F of Stable Seasonality, and 
Relative Contribution of the Irregular 

The F of stable seasonality is a ratio between the seasonal 
component and the irregular component.23 The F value's signifi­
cance is based on the assumption that the irregular is normally 
distributed, homoscedastic, and varies randomly over time 
(Shiskin et al.,1967:59). With time series data, the assumption 
of independence of successive observations may be violated 
(Anderson, 1950) . Therefore, there is some question as to the 
proper interpretation of this F value.24 

Seasonal series typically have very high F values. The sta­
ble seasonality F is 96, Sor example, for the Illinois larceny/ 
theft series, and it is not unusual to find an F value of 100 or 
more. In light of this, how should we interpret an F that is 
much smaller, but not small enough to be statistically insignifi­
cant, providing we could assume independence? If we cannot apply 
the usual significance tables, what does an F value of 5 or 10 
indicate about the presence of seasonality? 

As a guide to interpreting such X-1~ results, Plewes (1977) 
prepared a set of "rules of thumb" for the staff of the Bureau of 
Labor Statistics. We have found these guidelines to be very 
helpful, and describe some of them here. Plewes suggests that 
interpretation of the stable seasonality F value should be guided 
by information about the irregular. This makes sense, when we 
realize that the assumptions upon which the F is based have to do 
with the behavior of the irregular. 

Another diagnostic computed by the X-11 program, the "rela­
ti ve contribution of the irregular" varies from 0% to 100%, and 
indicates the contribution of the irregular component to total 
month-to-month variation, relative to the contributions of the 
seasonal and the trend/cycle components. It indicates the abso­
lute importance of each component to the variation in the total 
series .25 Pley,)'es (1977:4) suggests that the F value should be 
interpreted in light of the relative contribution of the irregu­
lar, according to the following rule of thumb: 

23Stable seasonality assumes that seasonal fluctuation is 
constant from year to year. For "moving seasonality," which does 
not assume consistancy, See the "Appropriate Applications" 
section, below. 

24 If we could assume independence of observations and use 
the F table, a value of 2.41 would be significant. This is the 1% 
1 evel for a 10-year series. Differences in significance levels 
for series of other lengths are negligible (Shiskin et al., 
1967:59). 

25In X-11 printed results, we also find the relative contri­
butions of each of the three components over a two-month span, 
three-month span, and so on, up to a twelve month span. 

F Value % Cont. of I Decision 
----
0.00-2.40 > 0% no stable seasonality 

2.41-15.00 > 14% no stable seasonality 

15.01-50.00 > 25% no stable seasonality 

50.01 and up > 30% no stable seasonality 

To this rule of thumb, we would add a qualification.26 The 
percent contribution of the irregular reflects the relative c~n­
tributions of both the seasonal and the trend/cycle. In crlme 
series in contrast to many economic series, the contribution of 
the tr~nd/cycle may be very low. As a result, both the irregular 
and the seasonal relative contributions may be high. Therefore, 
with a stable seasonality F value over 15 and a percent contribu­
tion of the irregular about 30, before rejecting the stable sea­
sonality hypothesis, check the percent contribution of the. sea­
sonal. Accordtng to Plewes (1977 :7) "a seasonal component wl.th a 
[relative contribution] value of less than 50.0 percent In.a 
one-month span signals a weak seasonal." If the seasonal contrl­
bution is 50 percent or more, use additional diagnostics (see 
below) to make the final decision. 

Therefore, even if it cannot be interpreted as an exact sta­
tistic the F of stable seasonality can be used in an exploratory 
way a; one indicator of the amount of seasonality in a s~ries. 
For example, as we mentioned above, the stable seaS?nal.lty F 
val ue for Illinois larceny/theft is 95.82. The contrlbutlon of 
the irregular over a one-month span is 18 percent. According to 
Plewes's rule of thumb, we should not reject the hypothesis of 
stable seasonality. In contrast, for Illinois Index homicide 
(figure 2) the stable seasonality F value is 2.78 and the contri­
bution of the irregular is 70 percent. This indicates that the 
series does not contain stable seasonality. On the other hand, 
for Index aggravated assault (figure 1) the stable seasonality F 
value is 45.70, and the contribution of the irregular is.38 per­
cent. According to Plewes's rule of thumb, we should :eJe?t the 
hypothesis of stable seasonality. However, the contrlbutlon of 
the seasonal component over a one-mont.h span is 60 percent. 
Therefore, other diagnostics should be consul ted before making 
the final decision.27 

26Kathryn Beale of the Bureau of Labor Statistics, who was 
very helpful in explaining X-11 interpretation, pointed this out 
to us. 

27The statistics given here are for the additive or multi-
plicative adjustment, whichever has the highest stable seasonal­
ity F. Statistics for the alternative adjustment for these 
series are very similar. 
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Average Duration of Run 

The average duration of run (ADR) is a simple test of the 
smoothness of .variation over time. By definition, the irregular 
component var1es randomly over time. If it does not, then the 
calculation of the seasonal adjustment should be suspect. 

. The ADR is the mean length of runs of values consecutively 
h1gher (or lower) than the preceding value. The higher the ADR, 
the fewe~ the total number of runs in the series. If the irregu­
lar ADR 1S lower than would be expected in a random series, the 
adjustment may have assigned some seasonal or trend/cycle varia­
tion to the irregular component. If the irregular ADR is higher 
than woul.d be exp~ct~d in a random series, the adjustment may 
have ass1gned var1at1on that should be considered irregular to 
~he sea~onal or trend/cycle component. An ADR from 1.36 to 1.75 
1S cons1dered random. 

Again, Plewes (1977:8) provides a rule of thumb to interpret 
the irregular ADR. It is the following: 

The ADR of the irregular (I) should fall between 1.36 
and 1.?5 .. When value~ fall outside of this range, the 
F-stat1st1c and relat1ve contribution of the irregular 
should be consulted. If both meet their tests the 
series may still be accepted. ' 

For example, for Illinois Index larceny/theft, the ADR of 
the irregular is 1.59. For Index homicide, it is 1.45, and for 
Index aggravated assault it is 1.51. These ADRs are all within 
the "random" range, which indicates that the adjustments can be 
t~usted. The irregular components seem to vary randomly over 
t1me, as they should. The ADRs indicate that the irregular com­
ponents do not contain seasonal fluctuation nor do the other 
components contain irregular fluctuation. ' 

. In our experience, using the X-11 with hundreds of crime and 
cr1m~-r~lated series, we have found only four series in which the 
ADR 1nd1cated a non-random irregular. Three series wi th an ADR 
bel<?w th~ random. range are very short (four to six years). One 
ser~es w1th a h1gh ADR, Chi?ago Index assault 1967-1978, is a 
mov1ng-average transformatlon of an original series that was 
col~ected in units of thirteen police periods per year. This 
mOy1.ng aver~ge probably has less irregular variation than the 
or1g1nal ser1es, resulting in an overly smooth irregular. 

Thus, in practice, you may find very few series with an ir­
regular ADR outside the random limits. If you do find one, 
consider it as a wa.rnin~ that something may be amiss. Look 
carefully at the ser1es 1tself for an explanation. In the above 
exa~ples, the low and high ADRs were apparently related to short 
ser1es ?r to unusually smooth series. In any case do not accept 
the adJustment .unless other indicators, especi~lly the F of 
stable se~sonal1ty and the percent contribution of the irregular 
are unequ1vocal. ' 
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Months for Cyclical Dominance 

Months for cycl ical dominance (MCD) compares the relative 
contribution of the trend/cycle to the relative contribution of 
the irregular. As discussed above (see note 25), the standard 
output of the X-11 program includes a table giving the relative 
contributions of each of the three components over a one-month 
span, a two-month span, and so on. 

From one month to the next, t~e irregular usually provides 
the most visible movement in a ser1es. Thus, the relative con­
tribution of the irregular over a one-month span is usually high. 
In contrast, the contribution of the trend/cycle to month-to­
month variation is usually low. However, the trend/cycle contri­
bution usually builds over time; its contribution over a two­
month span is greater than over a one-month span, its contribu­
tion over a three-month span is still greater, and so on. Thus, 
in most series, the relative effect of the trend/cycle gradually 
increases, until it exceeds the contribution of the irregular. 
The span at which this occurs is the MCD. 

An MCD of 1 means that the percent contribution of the 
trend/cycle over a one-month span exceeds the irregular contribu­
tion. An MCD of 2 means that the trend/cycle exceeds the irregu­
lar over a two-month span. In many economic series, the MCD is 
low. The relative contribution of the trend/cycle is substantial 
over a one-month span, and increases rapidly, until it exceeds 
the irregular contribution at the three- or four-month span . 
However, the contribution of the trend/cycle in many crime series 
is less than this. Consequently, we have found few crime series 
that meet Plewes's following rule of thumb: 

Series with MCD values of 1, 2, or 3 usually exhibit 
sufficient smoothness to be acceptable; series with 
MCD's of 4 or 5 are borderline, and the impact of the 
irregular should be carefully analyzed; when an MCD of 
6 appears, the particular month in which the I/C ratio 
becomes less than one should be identified (the X-11 
program prints no value larger than 6). The decision to 
publish the series should be made on other grounds, since 
a long MCD is usually reflective of other problems in the 
series. 

For example, table shows the relative contributions of 
each component to the total variation in the larceny/theft ser­
ies (additive adjustment) from a one-month to a twelve-month 
span. Because the trend/cycle contribution exceeds the irregular 
contribution for the first time at a five-month span, the MCD for 
larceny/theft is 5. For compal~ison, the MCD of the Index homi­
cide series is over twelve months (the trend/cycle contribution 
never exceeds the irregular contribution). The MCD of the Index 
aggravated assault series is 6. Notice that the contribution of 
the seasonal component drops close to zero over a twelve-month 
span. This makes sense, because, by definition, seasonal values 
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Table 1 

Relative Contributions of Components to Variance 
Illinois Larceny/Theft, Additive Adjustment 

Span in 
Months 

1 
2 
3 
4 
5 
6 
7 
9 

11 
12 

Irregular 

18.16% 
7·29 
3.95 
2.65 
2.40 
2. 1 1 
2. 15 
3.67 

10.83 
21 .01 

Trend/ 
Cycle 

1.16% 
1 .49 
1.97 
2.53 
2.97 
3.60 
4.82 
9.70 

39.28 
78.75 

Table 2 

Seasonal 

80.69% 
91 .22 
94.07 
94.82 
g4.63 
94.29 
93.02 
86.64 
49.89 

0.24 

Relative Contributions of Components to Variance 
Illinois Aggravated Assault, Additive Adjustment 

Span in 
Months 

1 
2 
3 
4 
5 
6 
7 
9 

11 
12 

Irregular 

38.46% 
16.40 
10.50 
8.07 
6.30 
4.79 
5 .. 15 
8.41 

23.55 
36.53 

Trend/ 
Cycle 

1 .92% 
2.94 
3.53 
4.07 
4. !~4 
4.84 
6.36 

12.59 
43.26 
63.20 

Seasonal 

59.62% 
80.66 
85.97 
R7.86 
89.26 
90.36 
88.49 
79.00 
33. 19 
0.27 

twelve months apart are similar to each other. The seasonal dif­
ferencing technique (see "Stationarity," below) takes advantage 
of this fact. 

A high MCD is a warning that the series may contain so much 
irregular variation that the presence an d d egr e e 0 f s easo nal 
fluctuation cannot be reliably determined. In practice, we have 
found only a few crime series with an MCD of 3 or 4, and none 
wi than MCD of 1 or 2 (al though we commonl y find a low MCD in 
non-crime series). Because the contributions of the irregular, 
the trend/ cycl e, and the seasonal add to 100%, a high MCD does 

26 

not always indicate that the adjustment should be rejected. If 
the MCD is high, look at the percent contribution of the seasonal 
over a one or two-month period. In a series containing little or 
no overall trend, both the irregular and the seasonal components 
may contribute more than the trend/cy2G8component. For example, 
in the Illinois aggravated assault series ~ the contribution of 
the trend/cycle does not exceed the contribution of the irregular 
unt il a six-month span (tabl e 2). However, the contri but io n 0 f 
the seasonal is 60% over a one-month span. In such a case, con­
sider the possibility that the series may contain relatively 
weak, but consistent, seasonal fluctuation. Look at other diag­
nostics, in particular the final seasonal factors (see below). 

Pattern Consistency 

Con sis t en c yin the seasonal pattern is another important 
consideration in determining whether or not a series is sea­
sonal. Both the component and the stochastic approaches include 
consistency, or regularly evolving fluctuation, in their concep­
t ual definition of seasonal i ty . 2Cl While a grad ual change from 
year to year may indicate mov ing seasonality (see "Appropr i ate 
Applications," below), abrupt change and change in sign from one 
year to the next argue against the hypothesis that the series is 
seasonal, by this definition. 

There are two kinds of seasonal consistency: year-to-year, 
and within-season. For example, if April observations are very 
high in four scattered years of a ten-year series, and very low 
in the other years, then April is not consistently high; the 
series does not have a consistent pattern of seasonal fluctuation 
from year to year. Similarly, we should conclude that a certain 
season tends to be high only if each month of that season tends 
to be high. For example, if June is always slightly high over a 
ten-year period, and July and August are very high, then we might 
say that summers are generally high. On the other hand, if June 
is always high, July is low, and August is high, then all we can 
say is that the patterns of the summer months vary. 

The "seasonal factor" table, produced by the X-ll program, 
allows us to examine year-to-year and wi thin-season consist en­
cy.29 The seasonal factors indicate, for each month of the ser­
ies, the amount by whidh it is high or low due to seasonal fluc­
t ua t ion. There are 144 seasonal factors in the seasonal factor 
table of a 12-year monthly series. 

28See Warren et ale (1981) for an example of an analysis of 
seasonality that does not include year-to-year consistency in the 
definition. 

29For a similar diagnostic check for consistency, but using 
stochastic methods, see Thompson and Tiao (1971:540-541). 



In a multiplicative adjustment, the seasonal factors show 
the relative seasonal weight of each month. In an additive ad­
justment, the seasonal factors show the absolute amount by which 
the month is high or low. Thus, in a multiplicative adjustment, 
the seasonal factors range from .00 to 1.99, with 1.00 indicating 
an average mo~th with no seasonal fl uct uat ion. In an ad d i t i v e 
adjustment, the seasonal factors range above and below zero, and 
the scale depend~1 upon the particular data. For example, in a 
homicide series, a seasonal factor of +20 for a certain month 
indicates that that month was seasonally high by about 20 homi­
cides. With the standard deviation, which the table includes, 
you can decide whether a month was high, low, or average. 

The seasonal factors (multiplicative adjustment) of homi­
cides of male victims in Chicago from 1965 through 1978 (table 3) 
show that, while some months may be decernably high and others 
low in the number of male homicide victims, there is no consis­
tent pattern from year to year.30 January changes over time from 
an average month to a low month. March begins as an average 
month, but becomes high in later years, while April begins 
average but becomes low. July, August, September, October, and 
November, all change their seasonal factors over the time period. 
Only one month, February, is consistently high or low, although 
some argument could be made for July being high. If we consider 
all the evidence, includinG the lack of seasonal consistency, the 
low stable seasonality F (4.00), the high relative contribution 
of the irregular (63%), an irregular ADR of 1.52 (indicating that 
the irregular does not contain any seasonal fluctuation), and an 
MDR higher than twelve months, it becomes difficult to argue that 
murders of males occur seasonally. 

Trading Day Option 

The X-11 package provides a "trading-day adjustment" that 
gives the user an idea of the importance of each day of the week. 
The adjustment counts the number of Mondays, Tuesdays, and so on, 
in each month of the series, and determines whether months with 
three Mondays (for example) differ from months with five Mondays. 
The program then calculates weights for each day of the week, and 
computes standard tests of significance for each day. Thus, X-11 
trading-day statistics are not a result of direct analysis of the 
effect of each day of the week. Rather, they are estimated from 
aggregate data. 

30We chose this homicide series as an example because it 
evidences the most seasonality of any homicide series we have 
analyzed (Block and Block,1980; Block et al. 1982). However, it 
is commonly assumed that homicide is seasonal (Wolfgang, 1966; 
President's Commission,1967; Warr'en et al. 1981). These dif­
fering conclusions are probably due to differing definitions and 
ffi!aSUres of both homicide and seasonality. 
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Year 

1965 
1966 
1967 
1<)68 
1969 
1 9'70 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 

Table 3 

Final Seasonal Factors, Multiplicative Adjustment 
Male Homicide Victims, Chicago: 1965-1978 

Jan Feb Mar Apr May Jun Jul Aug ~ Oct 

1.04 0.7(' 0.<18 1.06 0.C)5 1 .0'3 1.05 1.14 1 .01 1.13 
1.01 0.77 0.97 1.06 0.<)6 1.02 1.04 1 .15 1.02 1.13 
0.98 0.79 0.94 1.0J 0.')9 1.01 1.04 1.15 1.04 1.13 
0.94 0.82 0.91 1 .04 1.01 1.01 1.04 1.13 1.05 1.12 
0.90 0.85 O. fm 1.02 1.0"5 1 .00 1 .07 1 .13 1 .05 1 .11 
0.117 0.88 O.rp 1.01 1.03 1 .01 1.11 1.12 1.02 1.09 
0.87 n.S9 0.90 0.r,11 1.03 1.02 1.16 1.12 1.00 1.07 
o.m 0.119 O.~I;' 0.94 1.03 1.0:'\ 1. 1 9 1.09 0·99 1.07 
o .E\I1 0.87 1.M 0.1111 1.03 1.04 1.21 1.06 1.00 1.09 
0.El7 0.8:; 1 .013 C.D5 1.03 1.04 1.20 1.02 1.04 1.09 
0.86 0.82 1 .14 0.1)7. 1.01 1.04 1.18 1.00 1.08 1.08 
O.fl4 0.80 1.17 0.83 0.r,8 1.04 1.16 0.98 1.13 1.07 
0.113 0.7g 1.20 o .l1"i 0.9~ 1 . 0~1 1 .15 0.99 1 .16 1.06 
0.8?' 0.78 1.21 0.83 0.94 1 .0'3 1.15 0.99 1.17 1.05 

Nov Dec '-

0.83 1.03 
0.85 1.04 
0.89 1.03 
0·92 1.02 
0·95 1 .01 
0·95 1 .01 
0·94 1.01 
0·92 1.02 
0·91 1.02 
0·91 1.03 
0·92 1.05 
0·9'1- 1.07 
0.94 1.08 
0.94 1.08 

Therefore, analysts who are primarily interested in diurnal 
periodicity might qant to analyze daily data, if available, in 
preference to estimates from monthly data. On the other hand, 
use of the trading-day adjustment is quicker and less expensive 
t han co nd uct ing an ext ensi ve anal ysis of dail y data. It may 
uncover effects that might be overlooked by other methods. To 
utilize the advantages of both approaches, use them sequentially. 
The X-11 program allows the user to set a priori weights for days 
of the week. A direct analysis of daily data may provide the 
information with which to set these daily weights. 

However, there are limits to the use of the trading-day op­
tion. It will ~ot provide accurate estimates when the contribu­
tion of the irr .?gular over a one-month span is eight percent or 
more (Shiskin et al., 1967) . Because most crime series are more 
irregular than this, the trading-day option can seldom be used 
with crime data. 

Appro~riate Applications 

At the Statistical Analysis Center, we have found component 
seasonality methods to be very useful in the initial description 
of a series. Since the X-11 program is relatively simple to use, 
it is especially appropriate when the patterns in a large number 
of series, for example the 714 series of seven Index crimes in 
Illinois' 102 counties, must be described and compared to each 
other. It is also appropriate when the decision at hand requires 
a separate description of the pattern of seasonal fluctuation, or 
the pattern of the series adjusted for seasonality. 

.. ,-- .. -----~---~~-~----'----------



· The X-11 pr~gram is not appropriate for highly irregular 
ser les, short ser les (six or fewer years) or for ser i e s co n­
taining an abrupt change or discontinuity (blewes 1977:2; Shiskin 
et al. 1965:5-6). For an overview of potential problems for X-11 
users, see Fromm (1978). 

Extremes 
Although the X-11 program is not appropriate for highly ir­

regular series, it is good to use when the series contains 
extreme values. It is "resistant" to the effect of extroemes 
(Pierce,1980:131), because it contains a graduated weighting 
system.31 Values exceeding 2.5 standard deviations are weighted 
zero, and values from 1.5 to 2.5 standard deviations are 
graduated linearly from full to zero weight. This is the default 
option, which the user is allowed to modify. 

Series Length 
The reason for the limit on series length becomes obvious if 

you consider that the X-11 algorithm searches for similarities 
among months, and that there is only one January, one February, 
and so on, per year .. ~o a~a~yze a six-year series, for example, 
is. to look at the slmllarltles among six Januaries, six Febru­
arles, . and so on. Thus, the number of observations is really 
only SlX. 

Discontinuities 
If there is an abrupt change or discontinuity in the ser­

ies, no .continuous me~hod, c?mponent or stochastic, will work. 
The m~vln!5 av~rage lS a llnear smoothing technique, and all 
smoothlng technlques are analytically continuous, defined in the 
same way t~roughout the series.32 Like other methods of continu­
o~s smoothlng, the X-11 cannot accurately describe discontinui­
t 1 e s . 0 r. a? r u p t c han g e sin 1-, h e d ire c t ion 0 f a s e r i e s . Wh end i s­
contlnultles are .suspecte.d, Shiskin et al. (1967:5) suggests that 
they be. "ascertalned by lnspection," and that the series then be 
broken lnto segments for analysis. The user should investigate 
the. ~a~a source to determine whether there was a change in 
deflnltlon or data collection practices. 

31 For other resistant time series analysis methods see 
Tukey (1~77) or Ve~leman and Hoaglin (1981). For resistant'sea_ 
sonal adjustment wlth SABL, see Cleveland et al. (1978). 

3~ Mac a ul ay (1931: 21), in his classic text on time series 
smoothlng, argu.es that, even though freehand smoothing wi th a 
~rench curv.e :-s generally unsatisfactory, "if the underlying 
ldeal curve lS lts.elf not smooth," then a freehand method is bet­
ter than mathematlcal curve-fitting. If there are discontinui­
~es or sharp changes of direction (cusps) in the underlying ser­
les, then any overall, continuous smoothing method will obscure 
them, rat~er than describe them accurately. An analyst might 
then be. mlsled into thinking that ther'e was no abrupt change in 
the ~er:-es. For ~ fuller discussion of this issue, see the 
Statlstlcal Analysls Center publication "Manual for the P tt 
D . t· f' , a ern escrlp lon 0 Tlme Series," pages 7-8 and 58-59. 
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Moving Seasonality 
If, instead of an abrupt change or discontinuity, the sea­

sonal fluctuation gradually changes over the years, stochastic 
methods may be more appropriate than component methods. The X-11 
program assumes that any seasonal fluctuation follows a consis­
tent pattern from year to year (see "Pattern Consistency," 
above). When, over a period of years, the seasonal fluctuation 
gradually increases in strength in certain months and decreases 
in strength in other months, the series contains "moving season­
ality." One of the X-11 diagnostics, an F of moving seasonality, 
will alert you to its presence. In contrast to the F of stable 
seasonality, which is the ratio of the between-month variance of 
the seasonal to the irregular, the F of moving seasonality is the 
between-year ratio. It tests the null hypothesis that the years 
all have-tne same seasonal pattern. 

When X-11 results indicate a significant F of moving season­
ality, we suggest the following procedure: 

1. Inspect the series for abrupt changes or disconti-
nuities. Is there an abrupt change in level? Does the ser­
ies suddenly develop (or lose) seasonal fluctuation after a 
certain date? If so, no continuous method, whether component 
Ol~ seasonal, is appropriate. Check the defini tion and 
validity of the data set. If the definition of the series 
changed at some point, partition the series into two parts 
at that point, and analyze the parts separately. 

2. If there is no d iscont inui t y, compare the addi t i ve 
to the multiplicative adjustment. Do both contain moving 
seasonality? If not, assume that the adjustment that does 
not reflects the true nature of the series. 

3. If both additive and multiplicative adjustments in­
dicate moving seasonality, determine the particula~ month(s) 
that vary in seasonal fluctuation. Using options available 
in the X-11 program, change the moving average for these 
months. (For more detail, see Plewes 1977:5-6.) 

4. In any case, do not accept the resul ts of an ad­
justment in which the moving seasonality F value is signifi­
cant. 

The distinction between gradual change (moving seasonality) 
and abrupt change (discontinuity) requires subjective interpr0~a­
tion and an intimate knowledge of the data source. As an ex­
ample, figure 11 shows a series containing an apparent discontin­
uity. In this series, the number of people in Illinois receiving 
the first 26 weeks of unemployment insurance, moving seasonality 
F values are significant in both the aqditive adjustment and the 
multiplicative adjustment.33 Between October, 1974 and January, 

33The F values are 6.16 and 7.09, respectively. A value of 
2.41 or higher should be considered significant. That is, the 
possibility that the series contains moving seasonality should 
not be ruled out. We cannot confidently assume that the seasonal 
pattern is the same in every year of the series. 

, 
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Figure 11 

IllINOIS tTNEf1PLIlTKENT INSURRNCE RECIPIENTS. ]955 ... 1975 
FIRST 26 WEEKS 
SOURCE,BURERU OF lRBOR STRTISTICS 

Table 4 

Seasonal Factors, Additive Adjustment 
Illinois Unemployment Insurance Recipients 

Ye~r Jan. Feb. !iar. ~ May Jun. .Jlll. ~ S.;lot. Oct. Nov. 

1965 181 259 17tl li8 -17 -76 -39 -65 -150 -150 -116 
1966 184 256 176 49 -17 -75 -3'7 -6'7 -150 -153 -117 
1967 189 249 177 ':5:~ ·15 -70 -36 -71 -153 -164 -117 
1968 199 247 179 63 ,-15 -65 -40 -79 -161 -177 -117 
1969 210 248 183 71i -14 -61 -47 -88 -172 -196 -123 
1970 .230 255 197 88 -10 -62 -54 -96 -187 -213 -139 
1971 251 265 208 100 -3 -54 -52 -105 -2011 -21-13 -165 
1912 274 277 229 121 8 -45 -46 -118 -227 -274 -193 
19'73 291 292 260 128 11 -40 -31 -131 -238 -299 -221 
1974 300 310 ;~92 132 2 -42 -26 -130 -243 -309 -238 
19'75 290 332 318 120 -17 -47 -28 -123 -235 -303 -246 
1 :)'16 ,271 352 341 112 -34 -58 -46 -112 -228 -287 -241 
19'17 250 366 352 94 -51 -75 -63 -101 -215 -261 -237 
1918 240 3'70 353 83 -63 -88 -75 -91 -205 -243 -235 

1)ec. 

-52 
-51 
-52 
-50 
-47 
-115 
-5 /1 
-58 
-65 
-61 
-60 
-4/-1 
-35 
-32 
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1975, the number of unemployed people in Illinois tripled. (For 
a discussion of this phenomenon, see Block et al. 19B1.) The sea­
sonal factors (table 4) reflect this drastic change. The 
seasonal factor of many months changes about 1974. April, for 
example, is usually a little high, but is very high in 1974. 
August follows the opposite pattern. October is always low, but 
1974 is extremely low. These results should not be taken at face 
value, but should be considered to be an indication of problems 
in the adjustment. Since there was an abrupt change in 1974, the 
series should be split into two segments, and each segment should 
be analyzed separately. 

Stochastic Methods 

Stochastic time series models are a sophisticated way of 
using past observations of a series to forecast its future obser­
vations. Box and Jenkins ~1970) suggested that most time series 
encountered in practice follow either (or a combination of) two 
types of stochastic process: moving average and autoregressive. 
By determining what process a series f0110wed in the past, and 
assuming that that process will continue, we can forecast the 
future. 

Seasonal fluctuation is one possible aspect of a stochastic 
process. To identify a model for a series, the analyst must 
decide whether or not a seasonal process should be part of the 
model. Just as the component method did not lend itself to one 
simple, objective interpretation of X-11 results to decide 
whether or not a series fluctuates with the seasons, the stochas­
tic method also relies on the subjective interpretation of a num­
ber of diagnostic tests. In this section, we explain the stochas­
tic method, and discuss the most important of these diagnostics. 

Moving Average and Autoregressive Processes 

In a moving average (MA) process, the current observation is 
a function of a past error. Error is a random disturbance, some­
times called "noise" or "shock." By definition, the error of one 
observation is independent of the error of other observations. 
However, errors can be correlated with the observations them­
selves. This happens in a moving average process. 

An MA(1) moving average process means that the current ob­
servation is affected by the error of the previous observation.34 
An MA(2) moving average process means that the current observa­
tion is affected by the error of the second previous observation. 

34The word "affected" here simply means correlated. Al­
though the current observation may be predicted from past data in 
the series, the past data do not directly "cause" the current 
observation. 
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A seasonal moving average process, MA(12), means that the current 
observation is affected by the error of the observation one year 
ago. In general, in a series following a moving average process, 
the current observation is correlated with past error(s). 

In an autoregressive (AR) process, the current observat io n 
is a function of a past observation (not a past error). An AR(1) 
autoregressive process means that the cur r en t 0 b s erv a t ion is 
affected by the previous observation. An AR( 2) autoregressive 
process means that the current observation is affected by the 
second previous observation. A seasonal autoregressive process, 
AR( 12), means that the current observation is affected by the 
observation one year ago. 

The stochastic p ..... ocess of most series can be described as 
either MA(l), MA(2), AR(l), AR(2), or a combination of MA and AR 
processes. Some series are a combination of a serial MA or AR 
process (or both), and a seasonal MA or AR process (or bot h) . 
How can we identify the process, or combination of processes, 
that best describes the series at hand? 

Identifying the Process of a Series 

There is no way to measure past error directly. 35 HOw, 
then, can we differentiate a moving average process from an auto­
regressive process? An important diagnostic for identifying the 
process of a series is the correlogram. Moving average and auto­
regressive processes produce different "autocorrelation" pat­
terns. Autocorrelation refers to the cor'relation between the 
observations of a time series. A correlation between each 
observation and the neighboring observation is a first-order 
autocorrelation, or an autocorrelation at lag 1. A correlation 
between each observation and the observation two months away is a 
second-order autocorrelation, or an autocorrelation at lag 2. A 
correlogram is a chart of the autocorrel a tions of a s e r i e sat 
various lags. The correlogram in figure 12 shows each autocorre­
lation from lag 1 to lag 36 for Illinois larceny/theft. The 
first-order autocorrelation is .801, which means that 
observations in this series tend to be closely related to their 
neighboring o.bservations. If one observation is high, the 
observations before and after it are likely to be high, and vice 
versa. 

In a moving average process, as discussed above, observa­
tions are correlated with one or more previous errore s) . Al­
though we cannot observe correlation with an error directly, a 
correlation with a previous error results in a correlation with 
the corresponding previous observation. For example, in an MA(12) 

35Error may be estimated 
sion (the difference between 
or mean level of the series). 
Durbin/ARIMA method. 

by using the residuals of a regres­
an observation and the equilibrium 

Roberts (1974,1975) calls this the 
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Figure 12 

Correlogram of Illinois Larceny/Theft 

S.E. 
AIJTO- RANDOM 
CaRR. HODEl -1 ~o- -.59 -.25 " .25 .50 ,0- +1 -.ld • ,I oj 
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" 
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.036 .087 + ::f: + 

.229 .087 + + * 

.450 .087 + + * 

.617 .886 + + * 

.708 .086 + + * 

.595 .885 + + * 

.497 .085 + + :t-

.166 .085 + * 
-.979 .084 +* + 

-.290 .084 * + + 

-.397 .083 :+: + + 

-.341 .983 * + + 

- .162 .083 * + 

.015 .882 + * + 

.2~2 .082 + +* 

.353 .081 + + *' 

.444 .981 + + * 

.345 .881 + + :f: 

.167 .~80 + :+: 

-.041 .080 + :t:: + 

-.210 .079 H + 

-.409 .079 :I: + + 

-.497 .078 * + + 

-.436 .078 * + + 

-.291 .078 * + + 

-.124 .017 +* + 

.972 .077 + :* t 

.218 .076 + +* 

.306 .876 + + * :----:----:----:----:----:----:----:----: 
-1 -.75 -.50 -.25 0 .25 .50 .75 +1 
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series, the current observation is correlated with the twelfth 
prev ious observation. This is al so t rue of an autoregress i v e 
process. However, because errors are independent of each other 
by definition, the second or greater previous observations in an 
MA(1) series, or the third or greater previous observations in an 
MA(2) series, or the twenty-fourth or greater previous 
observations in an MA( 12) series are not correlated with the 
current observation. This is not true of an autoregressive 
process. 

In an autoregressive process, neighboring observations are 
correl a ted with each other. For exampl e, in an AR ( 1) proc e s s , 
observation 1 is correlated with observ~tion 2, and observation 2 
is correlated with observation 3. Therefore, observation 1 and 
observation 3 are correlated. The correlation of observations 
one time period apart produces geometrically decreasing correla­
tions of observations two time periods apart, three periods 
apart, and so on. 

Because the second or greater previous observation is not 
correlated with the present observation in an MA( 1) series, but 
is correlated with the present observation in an AR( 1) series, 
autocorrelat ions provid e a use ful cl ue as to wha t s t 0 c has tic 
model would best describe a series. A high autocorrelation at 
lag 1 that disappears at higher lags (for example, see figure 13) 
suggests an MA( 1) model. A high autocorrelation at lag 1 that 
decreases exponentially at higher lags (for example, see figure 
14) suggests an AR(1) model. 

We distinguish between seasonal MA and AR processes in a 
similar way. In both kinds of series, observations twelve months 
apart are correlated with each other. That is, the January ob­
servations are similar to each other, th~ February observations 
are similar to each other, and so on. Therefore, both seasonal 
MA and seasonal AR processes have significant twelfth-order auto­
correlations. However, in a seasonal MA series, the 24th-order 
and 36th-order autocorrelations are small, while in a seasonal AR 
series, they are significant. A high autocorrelation ac lag 12 
that is still high but decreasing exponentially at lags 24, 36, 
and so on suggests a seasonal autoregressive model. A high auto­
correlation at lag 12 that disappears at higher seasonal lags 
suggests a seasonal moving average model. 

stationarity 

In general, seasonal series have a significant autocorrela­
tion at lag 12. However, the opposite is not always true. Some 
series that are not seasonal may have a large correlation between 
observations twelve months apart. This can happen if there is an 
overall trend in the series. For example, figure 15 is the corre­
logram of a nonseasonal series with a decided increase over time. 
Observations twelve months apart are correlated. Figure 16 is 
the correlogram of the same series with the increasing trend 
removed. Observations twelve months apart are not correlated. 
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Figure 13 

Correlogram, First Difference 
Chicago Homicide with a Gun: 1965-1978 

S.E. 
AUTO- RMHIOM 
CORR. MODEL -1 -.75 -.50 -025 Il '1C" 

• ,;...J .50 .75 +1 
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'" 
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Figure 14 

Correlogram, Chicago Assault Homicide: 1965-1978 
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Figure 15 

Correlogram, Canadian Homicide: 1961-1980 
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Figure 16 

Correlogram, First Difference 
Canadian Homicide: 1961-1980 
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Th i s emphasi zes an additional compl icat ion of identi fying 
the stochastic processes of a series: the method we have de­
scribed for identifying a model only works for stationary series. 
A series is stationary if its mean and its variance are the same 
at every part of the series. A stationary series thus shows no 
trend. Because most series of crime data do show some trend, 
they may not, therefore, be analyzed by stochastic time series 
methods unless they are first transformed to remove the trend. 
First, the series is transformed to make it stationary. Second, 
a model is identified for the transformed series. 

Just as there are seasonal MA and AR processes, there can be 
season::>l lack of stationarity. In such a case, each month is 
systematically higher (or lower) than the same month one year 
ago.3 6 In addition, just as it is possible to have a combination 
of serial and seasonal processes in the same series, it is possi­
ble to have a combination of serial and seasonal lack of station­
arity. How do we decide whether or not a series is stationary, 
and if we decide it is not, how do we transform it? 

To decide whether or not a series is stationary, flrst look 
at a graph of the series.37 Does the levpl of the series seem to 
increase or decrease over time? Second, look at a correlogram. 
In a series with trend, the correlogram shows a pattern of high 
autocorrelations that do not decrease with lag. In contrast, in 
a series that is stationary, but follows an autoregressive pro­
cess, the autocorrelations decrease geometrically (see above sec­
tion). Similarly, in a series with seasonal trend, the autocor­
relation at the first seasonal lag .is high, and the auto­
correlations at successive seasonal lags do not decrease. For 
example, figure 17 is the correlogram of the Illinois larceny/ 
theft series with serial trend removed (by first differencing; 
see below). The autocorrelations are .567 at lag 12, .520 at lag 
24, and .416 at lag 36. The seasonal autocorrela tions do de­
crease a little with lag, but the decrease is certainly less than 
geometrical. This suggests seasonal lack of trend instead of an 
AR( 12) process. 

36Another cause of lack of stationarity is a change in the 
variance from the beginning to the end of the series. We do not 
discuss this kind of seasonal laok of stationarity, because it is 
difficul t to imagine a seasonal change of variance. However, 
wi th serial change in variance, transforming the series with a 
log or a square root may produce a stationary series. For more 
detail, see Nelson (1976), McCleary and Hay (1981), or the other 
stochastic time series analysis sources listed in the bibli­
ography. 

37It is easier to see a trend in a graph of a standardized 
series than in a graph of the raw data. In a standardized ser­
ies, each observation is converted to its Z score, or its stand­
ard deviation above or below the mean. This useful option is 
available in the IDA package (Ling and Roberts,1982). 
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Figure 17 

Correlogram, First Difference 
Illinois Index Larceny/Theft: 1972-1981 
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Differencing is a transformation intended to produce a sta­
tionary series. An overall trend can usually be removed by a 
first difference j a seasonal trend can usually be removed by a 
twelfth difference. In a first difference each observation is 
subtracted from the following observation.3$ In a twelfth differ­
ence, each observation is subtracted from the observation twelve 
months away. The differenced series is interpreted as the change 
from one observation to the next for a first difference, or the 
change from one year to the next for a twelfth difference. If a 
series has both a serial and a seasonal trend, you would trans­
form it into a stationary series by taking a twelfth difference 
of the first difference. 

For example, figure 17 is the correlogram. of Illinois 
larceny/theft after first differencing. Figure 18 is the corre­
logram of the series after first and twelfth differencing. In 
other wordS, each observation was subtracted from the following 
observation, which produced a series of first differences. These 
first difference values were then subtracted from the first 
difference value twelve months away. Compare these correlograms 
to the correlogram of the original series, figure 12 above. 

A drawback of differencing is that the differenced series 
has fewer observations than the original series. If the original 
series has 144 observations, for example, a first difference has 
143. Even more observations are lost with twelfth differencing. 
However, if your series is not stationary, analyzing a difference 
transformation of it may be the only alternative if you want to 
identify a stochastic process. 

Model Evaluation 

After obtaining a stationary transformation, or determining 
that the original series is already stationary, the next step is 
to estimate the stochastic process or processes that best de­
scribe the stationary series. In the Illinois larceny/theft ex­
ample, the first and twelfth-order autocorrelations are signifi­
cant, but the second and 24th-order autocorrelations do not dif­
fer significantly from zero. This pattern of autocorrelations 
suggests a combination of MA(1) and MA(12) processes. Therefore, 
to model larceny/theft, we applied MA(1) and MA(12) processes to 
the differenced series. This produced the modelled series 
graphed in figure 10 (above). How do we decide whether or not 
th is model accurately describes the stochastic process of the 
series? 

38Some curves require two successive first differences to 
make them stationary. That is, each observation is subtracted 
from the next observation. This produces a series of first dif­
ferences, which will be a straight line with a trend. Then this 
differenced series is differenced again. The second differencing 
produces a stationary series. 
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Figure 18 

Correlogram, First and Twelfth Difference 
Illinois Index Larceny/Theft: 1972-1981 
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Correlogram of Residuals 
One way to evaluate a stochastic model is to analyze the 

residuals, the discrp-pancy between the modelled values and the 
actual series. Residuals of a good model vary randomly over 
time.39 The correlogram of the residuals of an MA(1) and MA(12) 
model for Illinois larceny/theft (figure 19) does indeed indicate 
such a random pattern .40 Compare this pattern to the correlo­
grams of the original series (figure 12), the series transformed 
by first differencing (figure 17), and the series transformed by 
both first and twel fth differencing (figure 18). Clearly, the 
residuals look most like a random series. 

However, like component analysis, stochastic analysis is 
open to alternative interpretations. The Illinois larceny/theft 
series exemplifies a common situation requiring interpretation: 
is the series non-stationary, or is it an autoregressive process 
with a very high correlation between one observation and the 
next? The series transformed by first and twelfth differencing 
(figure 18) has negative autocorrelation at lag 12. One inter­
pretation of this is that it suggests the model described above, 
a moving average process with a negative relation between obser­
vation and error. On the other hand, th8 differencing may have 
overadjusted the series, adding a systematic pattern that was not 
in the original series. A simpler twelfth difference without the 
first difference produces a transformed series that has the 
autocorrelations in figure 20. This pattern of autocorrelations 
suggests an AR(1) or AR(2) process. 

Cumulative Periodogram of Residuals 
Another diagnostic, the cumUlative periodogram, is very use­

ful in evaluating a tentative model, especially' when the series 
may contain seasonal fluctuation. The,cumulative periodogram is 
based on the assumption that a series is made up of sine and 
cosine waves. The analysis of the period, phase, and amplitude 
of these waves is known as examining the series in the "frequency 
domain,," in contrast to the "time domain," which is the kind of 
analysis we have discussed so far in this report. Period is the 
time required for a full cycle. Frequency is the number of 
cycles per time unit. Because frequency is the reciprocal of 
period, the meaning of "high frequency" and "low periodicity" are 
the same, and "power domain" means the same thing as "frequency 
domain." Phase is the position of the cosine function relative 
to the starting point of the series. The measure of amplitude, 
or power over the frequency domain, is the spectrum, or "power 
spectrum." (See Rosenblatt 1965: 1-2 for more detail.) A 
periodogram measures the intensity of the spectrum at a certain 

39This random variation in a time series is sometimes called 
"white noise." 

40Two of the 36 autocorrelations in figure 19 are slightly 
outside of the two standard deviation limit, but a small percent­
age of significant autocorrelation is expected by chance. [ 1 
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F'igure 19 

Correlogram, Residuals of (0,1,1) (0,1,1) Model 
Illinois Index Larceny/Theft: 1972-1981 
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Figure 20 

Correlogram, Twelfth Difference 
Illinois Index Larceny/Theft: 1972-1981 

S.t:. 
AlJTO- Ri'I/-lDOM 

ORDER tORR. MUnEl 

2 
3 
4 

6 
7 
8 
9 

1 e 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

26 
"17 
~I 

28 
29 
30 
31 
32 
33 
34 
35 
36 

.603 

.509 

.519 
• .381 
• .3 -1-3 
.295 
.177 
.113 
.158 
.122 

- .102 
.069 
.135 
.096 

-.080 
-.e!H 
-.IH3 
-.094 
-.066 
-.063 
- .150 
- .193 
-.148 
-.155 
-.230 
-,250 
- .120 
-.163 
-.190 
- .177 
-.198 
-.254 
-.214 
-.187 
-.213 

.095 

.094 

.094 

.094 

.t}93 
.l07 

• v I 'J 

.{192 

.{392 

.il91 

.091 

.090 

.e90 

.089 

.089 

.088 
,088 
.1~88 

.@87 

.087 

.HS6 

.086 

.085 
• 08~i 
.084 
.084 
.983 
.083 
.082 
.082 
.081 
.081 
.080 
.079 
.079 
.078 
.078 

:----:----:----:----:----:----:----:----: 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 

+ + :1' 

+ 'I" 

+ -I + 
+ "1"+ 
+ -I' + 
+ "j + 
+ : t + 
+ :+:+ 

+ l + 
+ *- + 
+ ~' + 
+ *: + 
+*: + 
+ -I: + 
+ 'I: + 
* + 

It + 
;,- + 

l + 
t + + 
'I + + 

+-1; + 
I + 

1'+ + 
It + 
'1:+ + 

:j- + + 
:j:+ + 
H + 
*+ + 

_., 

" 

'I: 

:----:----:----:----:----:----:----:----: 
-1 -.75 -.5(; -.25 ')1:-

• L. .~, .50 .75 +1 

* : AUTOCORRELATIJNS 
+ : 2 STANDARD ERROR LIMITS (APPROX.) , 

, ' 



f:;C; """ ; 

frequency, and the "normalized cumulative periodogram" (Box and 
Jenkins 1976:295) is a good tool for detecting periodic patterns 
in the residuals of a model. 

For example, figure 21 shows two cumulative periodogram 
graphs side by side for comparison. The first, a graph for the 
original larceny/theft data, indicates a distinct departure from 
linearity at about a twelve-month' period. The graph of the 
residuals of the MA( 1) MA( 12) model, on the other hand, do not 
indicate any significant periodicity. 

A cumulative periodogram gives you the same sort of informa­
tion that a correlogram gives you, but from a different perspec­
tive. The spectrum is mathematically equivalent to the autocor­
relation function (Box and Jenkins 1976:39-45). It is simply an 
alternative way of describing the pattern of relationships among 
the observations. However, Box and Jenkins (1976:294) recommend 
it over the correlogram in evaluating departures from randomness 
in the residuals of a model. When we fit a model to a series 
containing seasonal fl uct ua t ion, we want to be sur e t hat the 
model accounts for all of the seasonal i ty. We do not want the 
residuals of the model to contain periodicity. As Box and 
Jenkins point out (1976:294): 

Therefore, we are on the lookout for periodicities in the 
residuals. The autocorrelation function will not be a 
sensitive indicator of such departures from randomness, 
because periodic effects will typically dilute themselves 
among several autocorrelations. The periodogram, on the 
other hand, is specifically designed for the detection of 
periodic patterns in a background of white noise. 

Appropriate Applications 

Neither stochastic nor component methods are appropriate for 
highly irregular series, short series (six or fewer years), or 
series containing an abrupt change or discontinuity. A general 
rule of thumb in stochastic time series analysis is that a mini­
mum of 50 observations are necessary to estimate the stochastic 
process of a series (see Hartman et ale ,1980). However, with sea­
sonal stochastic processes, even more observations are necessary. 
Also, keep in mind that, if a twelfth difference is necessary to 
make the series stationary, twelve observations will be lost. 

Discontinuities 
A model of a stochastic process, like a component model, is 

analytically continuous. Analytic continuity means that the 
behavior of the series in one small region is the same as the 
behavior 0 f the ser ies everywhere (Cox, 1971 : 36) . A stochas tic 
process describes the relationship of each observation to pre­
ceding observation(s). This relationship is the same throughout 
the series. If there is an abrupt change or discontinuity in the 
definition of the series, a single stochastic model is not appro­
priate. If you suspect that this is the case, first inspect the 
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Cumulative Periodograms 
Original Data and Model Residuals 

Illinois Index Larceny/Theft: 1972-1981 
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series carefully, and check the original data source for possible 
changes in definition or data collection practices. Based on 
your knowledge of the series, you may want to hypothesize that 
some intervention changed the behavior of the series after a 
certain date. Such an hypothesis can be tested (see Glass et al. 
1975; Shine,1980,1982). Your final model may be complex, in­
cluding a change in level or stochastic process after the occur­
rence of the hypothesized intervention. In any case, do not try 
to fit a continuous stochastic process to a series containing a 
discontinuity. 

Extremes 
Stochastic methods, in contrast to component methods, are 

not resistant to the effect of extremes (see Chernick et al. 
1982). Therefore, they are not appropriate for series containing 
extreme values. However, stochastic methods can, of course, be 
us ed if the series is first transformed to remove or re-weight 
the extremes. 

Moving Seasonality 
On the other hand, stochastic methods are more appropriate 

than component methods for series containing moving seasonality. 
The stochastic process concept is based on the assumption that 
the current observation is more strongly related to recent 
observations than it is to observations in the distant past. The 
whole purpose of identifying an autoregressive or moving average 
process is to describe this decreasing relationship. Thus, the 
stochastic approach was developed to allow for gradual change 
over time 'in the seasonal pattern. 

Summary 

Obviously, the combinations of moving average processes and 
autoregressive processes, serial processes and seasonal proces­
ses, can become quite complicated. Identifying the stochastic 
processes that define a series is not entirely objective, nor is 
it simple for an analyst to state these subjective decisions in a 
published report. It is not uncommon for two statisticians using 
the same stochastic time series analysis methods to identify 
different models for the same series. As Pierce (1980: 130) 
ar g ue s, "Theoreticall y incompat ible models can prod uce resul ts 
uncomfortably close to each other and uncomfortably far from the 
truth." Unlike the Census X-11 program, which can be used easily 
and quickly for a large number of series, and which has standard 
opt.J..ons and criteria that can be explicitly stated, stochastic 
methods require a lengthy analysis and re-analysis of each 
individual series. Therefore, they are most appropriate when one 
or two important series must be analyzed, and not as the standard 
me t hod of anal yzing all of an agency' s data (see Kuiper, 1978 : 
59-60). 
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Discusses bias iri regression due to seasonal adjustment and 
seasonal noise. See Rosenblatt (1965), Wallis (1974). 

Stein, Donald P., Jay-Louise Crawshaw and Algrid R. Barskis 
1961 Computer-Aided Crime Prediction in a Metropolitan Area. 

Technical Reports 1-202 and 1-202-A, The Franklin Institute 
Research Laboratories, Philadelphia. 
1966 Part I offenses, 5 per cent sample. Predictors inclu­
ded weather, time of day, day of week, month of year, phase 
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and aI(lplitude are of the same order of magnitude. Seasonal 
adjustment seems better for situations when the amplitude 
is much larger than the error variance. Differencing was a 
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