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Errata For

A Model for Wide Area Police Patrol"

by Pollock, Birge and Hopp

Page 13, 1line 2: insert "fo; each replication" after "dollars."
Page 23, line 7: replace "4.16" by "4.10a, 4.15".
Pages 22, 25, 26, and 34: replace by new pages.
Page 50, :line 14: replace "24" by "24. 3",

line 15: replace "15" by "14.5",

replace "15.2" by "5.2".

Page 63, line 22: insert "orﬁ between 'little" and "mo".
Pagé 74, lines 3 and 8: replace ''variance" by "standard deviation".

Page 77, heading of column 2: replace "car" by "calls".
b

i " " eviation".
heading of column 4: <replace 'variance" by st;mdard d

Page 91, 1line 1: replace "5" by "0.5".

4, SINGLE PATROL UNIT MARKOV MODELS .

5. MULTIPLE UNIT MODEL
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1. SUMMARY

Police patrol allocation in urban areas has been extensively studied in the
past, using a variely of quantitative and management techniques. Virtually all
of these studies have been based on the assumptions that the region being
served has a high population density and that immediate response is necessary
for most calls for service. Police forces in rural or suburban areas have been
unable to adapt these models due to substantial differences between ‘the high

density (low area) and low density (wide area) environments.

In this study we have formulated and developed a new model that is con%-
sistent with conditions in large, low population regions. Termed SWAP (Stra-
tegies for Wide Area Patrol), it has been tested using data and advice from the
Washtenaw County (Michigan) Sheriff Department. The SWAP model should be
useful for evaluating rural patrol allocation policies in thousands of county
sheriff and small police departments across the country. It should prové par-
ticularly useful for maintaining effective patrols when resources made available
to the policing agencies are reduced, or in evaluating the cost-effectiveness of

providing contract police patrol services to unincorporated areas or small

towns and villages.

The model currently has been implemented on a large main frame com-
puter, in a form suitable for further development or use by patrol planners with
access to operations analysts or software professionals. Implementation on a
microcomputer, for wide-scale distribution, although an' original secondary goal
of the project has not been effected. We expect, however, that if the model is

found to be useful to rural patrol planners, microcomputer implementation will

be feasible,

2. STATEMENT OF PROBLEM

Police patrol forces operate in rural environmenls in thousands of counlics
and small towns across the country. Like fire departments and emergency
ambulance services, they must provide the community with prompt and efrfec-
tive emergency service whenever it is reéuested. Deputies in patrol cars
respond to calls for service throughout a region of primary responsibility,
called the "response area" or "beat”. The design of beats and the allocation of
patrol cars to the beats are important decisions that face every police and
emergency service department. The department’s efficiency is strongly depen-
dent on these decisions. Extensive studies have been made of the police patrol
process in dense population wrbnn areas, but the specific problems of wide-
area patrol allocation have been rarely explored. Some aspects that make
wide-area patrol different from urban. patrol include: low population density,
poor access to certain parts of the region being covered, and many distinct
types of calls for service. This report addresses these considerations by
developing a model -- termed SWAP (Strategies for Wide Area Patrol) -- suitable

for use by rural patrol forces.

2.1. Comparison of Rural and Urban Patrol Models

Larson's [1] extensive studies first formalized the urban police patrol
problem in terms of queueing models and optimization criteria. He developed
a travel time model, patrol allocation algorithm and simulation model based
on the assumptions of high population density areas. Kolesar and Blum [2]
later developed a ''square root lav'" to represent travel times for use in fire
‘engine response areas. Based on these studies, Chaiken and others at the
Rand Corporation developed three models. The first, PCAM (Patrol Car
Allocation Model) [3] is primarily used to determine the number of units to

allocate to individual pre-defined sectors. A second model, the Hypercube
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Queueing Model [4,13], is used to determine the design of these sectors or
"beats" wilhin a larger region. The third, a simulation model [6], was also
developed and used for the specific data and geography of New York City.
Other analyses of urban patrol systems include the LEMRAS 'model developed
at IBM (6], a UCLA model created for the Los Angeles Police Department [7],

and a beat optimization model by Bammi [8].

All of the above models assume that large computing resources are avail-
able to the user. While large city police departments may have these
resources, smaller departments rarely have sophisticated computers or staff
available to them. Heller, et al. [9], have developed algorithms for planning

with low-cost computer processors, but, again, their methods depend on the

attributes of an urban environment.

There are numerous basic differances between urban and rural patrol.
Urban patrol involves travel on a road grid with a high density of road mileage
wilhin each sector and small response times with respect to total service time,
However, in rural areas, travel time is often the major component of total ser-
vice time. Rural areas generally have poor road access, and travel time is
often highly dependent on the location of the vehicle relative to a limited
number of major thoroughfares. This property immediately excludes the use
of models (such as the Hypercube Queueing Model) which rely on the assump-
tion that travel time is small compared to total service time. Any model that

is to be useful for rural analysis must include this heterogeneity of travel

times across the region,

Although the PCAM and Hypercube Queueing Modelsbhave been used in
many police departments [10], to our knowledge all of these uses have been in
an urban environment., The great majority of the users have been city police

deparlments. Bach of the relatively few county sheriff department users has

5

apparently used Lhe models only for p‘atrol analysis in the urbanized areas
wilhin Lhose counlies. One analysis Lhat relales specifically to the rural patrol
problem is an Bnglish report [11] that gives only general guidelines for rural
patrol manpower requirements. Within our own experience, an implementa-
tion of PCAM was attempted a few years ago in Washtenaw County, but for the
reasons discussed above it produced results that were not useful to the county
sheriff department's wide area patrol planning. In particular, PCAM provides
information only on the number of cars needed in a region, but not on how

(when and where) they should patrol in that region.

The rural setting also complicates the redeployment and repositioning of
vehicles when one unit must "fill in" for a busy patrol car in an adjacent sec-
tor. In urban areas, several patrol cars are generally assigned to each beat,
and beats are close together. This makes the backing up of a busy car rela-
tively simple. The size of the rural regions significantly alters such behavior

and requires a new allocation strategy that an urban force rarely needs.

Another consideration required in the rural context involves distinguish-
ing among different types of calls for service. This is necessary to allow the
dispatchers to pre-empt patrol cars from low priority calls to free them more
quickly for service of emergency calls. The Hypercube Queueing Model and
PCAM do not allow for pre-emptive queue disciplines. Longer travel times and
fewer cars assigned to beats in rural aveas exacerbate the effect of pre-

emptive dispatching and limit the utility of models that do not consider it.

| 2.2. Generic Description. of Wide Area Patrol Environment

The basic model of wide area patrol is developed in Sections 4 and 5, This
model reqnires descriptive elements of the geography and patrol procedures

-of the area to be modelled. Useful descriptive terms are defined below.




a) The jurisdiction is the entire area to be covered by the patrol force. In
this study the jurisdiction is Washtenaw County, Michigan, but it could be a

portion of a county, a park, a subset of a State Highway network, or a subur-

ban area.

b) A region is the smallest useful subdivision of a jurisdiction. It should be

possible to associate the following attributes with each region;

* ageographical location (either as a point or a portion of area);

* arate of calls for service;

° a measure of the service time for calls (if different from that of the

entire jurisdiction);

* one or more patrol units with responsibility for responding to calls

for service.

In this study, the regions are the twelve rural townships in western Washtenaw

County,

¢) A patrol unit, generally a squad car, patrols a specified beat and is
available for dispatch to a call for servize. For the purposes of modelling the

patrol units are considered to be distinguishable from one another.

d) Calls for service ("CFS") are requests for some kind of in-peison, on=

site activity on the part of the patrol force, (see Larson [1]). For use in the
i

models developed here, the assumption is made that hourly rate statistics are

N

available for each region for the following three types of CFS:

y
A
by

rautine - calls which require an ordinary response by a patfb‘l unit;
* emergerncy - calls which require a rapid, "lights-and-siren" response;

* unfounded - a routine CFS that turns out to be a false alarm, or one

that otherwise requires essentially no time for servicing.

i\

Appropriate use of Lhi: model is based on the presumption that calls for ser-
vice thal can be handled by not dispatching a patrol unit (ie., by taking a
report on the telephone) are not included in the call rates. Activities besides
servicing CF'S's that take up a patrol unit's time such as lunch breaks, deliver-

ing prisoners, and performing property checks are also excluded from the CFS

rates.

A fundamental assumption made for the purposes of this study is that CFS
rates are independent of the status or number of patrol units in a jurisdiction
or region. This means that CFS rates are completely exogenous to the patrol
policy. This assumption can be easily relaxed, however, to take into account
such dependent calls as patrol iuitiated activities (Larson and McKnew [12]),
or directed patrol-generated calls, In general it is assumed that CFS rates are

readily available, or computable, from existing data sources.

e) Travel time distributions describe the likelihcod of the possible time to
travel between all pairs of regions. Obtaining these distributions is somewhat
tedious, particularly if there are a large number of regions, yet they are
essential for a realistic representation of the geographical features of a jurisd-
iction. Because of their importance, we describe in Appendix B a procedure
that can be used to efficiently generate appropriate travel time distributions.
The method involves subjective assessment of travel speeds and geometric
computation of travel distances. Whether or not the procedures of Appendix B
are used, the model requires an average travel time between all pairs of
regions for responding to both routine and emergency calls for service. Aver-

age time to travel to routine and emergency calls within all regions is also

required.

f) The service time for handling calls is assumed to be exponentially dis-

tributed, with an average time depending upon the region and type of call

- ”.‘,:.';,



Unfounded calls are assigned appropriately small average service times.

g) Disputch procedures built into the model are representative of most
agencies responsible for wide area patrol. A single dispatcher receives calls
from cilizens or other law enforcement agencies. A unit respoix;sible for
responding to the region from ‘which the call came is dispatched, if one is
available. If no unit is available, and if the call is an emergency, any free gnit
in the jurisdiction may be dispatched. If no unit is available and the call is
routine, then it is “stacked" in a "first-come first-served" queue to be serviced

as soon as a responsikle unit becomes available.

h) Each patrol unit is assigned a coverage factor (a number between 0
and 1) for every region in the jurisdiction, indicating that unit's responsibility
for routine coverage in that region. A factor of 1 indicates that it is the only
unit responsible for responding to routine calls in that region, a factor of 0
means it has no responsibility to respond, and a factor between 0 and 1 indi-

cales shared responsibility with arother unit.

2.3. Criteria Used for Policy - Making

A rural police department often faces a different set of objectives than
urban police departments. For example, since average response time is
longer in large areés with low population density, it may be more important to
respond o serious crimes and accidents within a desired time than to minim-
ize the average response time for all calls. This often leads to a formal or

informal priority system for responding to calls.

With a priority queueing system, police effectiveness may be measured by
average response time to "high priority" calls and by a different measure of
elfectiveness for lower priority calls. For example, the percentage of low

priorily calls answered within a suitable pre-arranged time interval may be an

Ry
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appropriate measure of the police department's effectiveness.

Because of the unique concerns of rural police departments, we have con-

centrated on developing a model that will produce the following measures that

could be used Lo evaluate patrol policies:

Travel time, which is defined as the time between departure of a patrol
unit to respond to a CFS and arrival at the call's location. Since travel time is
a random variable, appropriate measures are its expectations and cumulative

distribution. It is useful to have these measures for each patrol unit and for

each type of call.

Response time, which is defined as travel time plus any time during which
the call was queued awaiting availability of a patrol unit. This is also a random

variable, and it is desired for all units and types of calls.

Fraction of lime each patrol unit spends on pairol in each region. When

the duties of the police officer during patrol are specified by a supervisor, this

time is referred to as directed patrol.

Fraction of time each patrol unit spends in each region (either on patrol

or servicing calls).

Quewe characteristics, including expected number of each type of call in

quete, and fraction of time a queue exists, for each region and call type.

2.4. Policy Related Control Variables ‘, o

In order Lo develop a model to help analyze various patrol policies, it is
important to be able to represent a wide range of policy choices through a

simple, understandable set of policy variables.

The general dispatch pracedure, of course, is one aspect of policy that can

be varied by structural changes in a model. In this study, we have chosen to

oo
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allow two priority levels, "emergency" and "routine". Routine calls are
assumed to be pre-emptable by emergency calls. \(In Washtenaw County,

"emergency” and ‘'routine” calls are referred to as "immediate" and
41

g
A\
Ny

"expedite" -- see Appendix A).

The distribution of an individual unit in time and space is given in terms
of a patrol-switch matrix X , and switch interval T , where,
Zy; = prob. { unit patrolling in region i will switch
to region 7 at the end of the next interval

of length T }/ T,
ij=1,2 - N.

Note that each unit will have its own patrol switch matrizx X . The | Wz
numbers in each X matrix are intended to represent the general instructions
given by the patrol planner to each unit on how to patrol in the absence of a
CFS. Thus, without .any responses to calls, X itself could be used to calcu-

late, for example, the average fraction of time spent by that unit in each

region and the expected time spent on patrol in any region before going te the

next.

The covernge matrix C represents the responsibility the units have for

responding to calls in the various regions. Thus

Ci = fractional responsibility unit ¢ has for

responding in region j ,

where,

z Ciy = 1 for aH]
i=1 :

This matrix is used to compute response probabilities. In particular the

probability thal an available (i.e. not servicing a call) unit i will respond to a

TS

/
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call in region j is ¢ij / 3, €y , where now the sum is over available units.
i




e 2

SR

12

3. PHILOSOPHY OF MODEL DEVELOPMENT

Whenever an analyst is asked to develop a mathematical model-to help real
decision making, there are always compromises to be made between: realism
and solvability; data requirements and cost of collection; detailed results and
gaining of general insight. In this section we briefly discuss these issues in the

context of the approach we took to develop the models in Sections 4 and 5.

3.1. Analytical vs. Simulation.

Simulation is an extremely powerful modelling tool, most useful when try-
ing to represent a real system that is characterized by complexity in the logi-
cal relationships among its various components. Police patrol in wide areas

]

can be effectively simulated by.any of a number of contemporary commercial

a

/
simulation languages. To test the usefulness of/simulation as a patrol policy

planning tool, we developed a simulation model of wide area patrol specificaliy
geared to Washtenaw County. Although the specific code used and the details
of this SIMSCRIPT-based simulation, along with sample inputs and outputs are
available from the authors, they are not included in this report, (A;ppendi-x C

contains a brief discussion of the simulation model.)

On the basis of our experience, we recornmend such a simulation not be

used as the primary SWAP planning tool. There are a number of reasons for

this conclusion:

a) Monte-Carlo simulations in general are usé;ful only when interpreting
"steady-state” results. These results in turn require large numbers of replica-
tions, or "runs” (starting with the same initial conditions) to provide reliaﬂe
estimales of output measures of interest such as average response times or
percent of time on patrol. Although we were able to obtain reasonable results

after only a few hundred replications, to provide a high degree of statistical

3.2. Steady-State vs. Transient Analysis
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confidence for these resulls, computer runs of thousands of replications, cost-
ing tens of dollars, would have been necessary for evaluating each combination

of a patrol policy option and set of input parameters.

b) The compuler-sollware needed [or developing and running these simu-
lations is not necessarily available to many éf the agencies who could poten-
tially benefit by such analysis. Furthermore, there are few microcomputers
available that have computational speed, storage capacity or even compilers

to run these simulations in their present form.

c) A modest change in structure of the jurisdiction or p"‘olicy options being
simulated (e.g., addition of a region, allowing split responsibility for some cars,

changing the priority scheme) would require a complete change in the simula-

tion. Although this problem also holds for an analytical model, such changes

are more easily implemented in the latter case.

c) The transient behavior of the system (i.e.. the changing of performance

measures over the 1ength of a shift to another) is difficult and costly to simu-

late correctly. Vi
Because of the above problems associated with simulation models, our
efforts were concentrated on developing an analytical model that computes, as

a function of patrol policy, the various performance measures of interest,

Ty

Y
"N

Since the major objective of our model is to provide decision makers with

performance measures as a function of patrol policies, it is imiportant to

examine these measures closely. Fpr example, consider the measure d =

i

i B
"fraction of time car 1 is available fé§{‘ directed patrol.” Assume it is agreed
and understood that directed patrol takes ngg__eﬁwherféiiér a car is not travel-
ling to (or servicing) a call, engaged in \‘*v’f‘some self-initiated activity, or

i
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otherwise occupied (e.g., in transporting warrants or prisoners, at the gas sta-

tion, ete.). Suppose in addition that a car always spends the first half of a

shift "available” and after four hours always becomes unavailable for the
remaining four hours. Then d =1 for the [first half-shift, d =0 for the
second half-shift and d = .5 for the entire shift (the latter being valid if we
interpret d to be the average of "fraction of time available for directed
patrol” over the whole shift), This behavior becomes an issue of concern when
a measure such as d is really a function of time, i.e., d(¢) . If the measure is
not relatively constant over time, then we need to know the specific times at

which the decision maker is interested.

Steady-stale analysis, on the other hand, both in analytical and simula-
tion models, is based on the assumption that as £ becomes "largg ent;ugh".
all measures such as d(t) become corstant. Use of a steady-state result
then depends upon the assumption that f{ is indeed "large enough”, an
assumption that can be tested only by analysis of the transient (time depen-

dent) form of the model.

The model we have chosen to develop for analysis of wide area patrol is
essentially a steady state one. Our numerical computations showed that most
measures of performance reach a steady-state value within a fraction of a typ-
ical patrol shift, quickly enough to allow us to argue that transient effects are
not crucial. On the other hand, these particular results are data-dependent,
and indeed are driven by the fact that in the examples we have examined the
total call-for-service rates and service rates are reasonably large. For situa-
tions where this does not hold, a sl;ra'ightforward modification of the model

allows Lhe computation of transient performance measures,

ek,

5.
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3.3. Reality vs. Uselulness.

The analytical model presented here requires individual patrol units to be
in one of a number of possible "states,” corresponding Lo: palrolling, travelling
Lo a call, servicing one of two types of calls, etc. In addition, allowance is made
for the possibility that a call is queued (i.e., waiting to be serviced). The model
could, of course, be extended to allow for distinguishing among more than two
types of call, different travelling speeds depending upon time of day, distinc-
tion betwgen traffic patrol and road patrol, etc. However, such extensions
necessarily entail more computation, more déta, and of course more possibili-

ties for programming or conceptual errors in modelling.

The level of detail we chose ::gor this study was dictated by two factors:
data limitations and sensitivity of output measures. Our experience with
Washtenaw County was that call arrival rates and service times--the fundamen-
tal numbers needed to "drive" the model--were only known (or more impor-
tant, forecastable) to an accuracy of around 10%. 'i‘his is certainly good
enough for input into a general policy-making model, but not accurate enough
to warranl the development of a more "realistic” multi-state model, In addi-
tion, we have chosen to represent the major feature of a patrol policy by the
probabilistic switchlng process X . In the face of this useful but somewhat
abstract depiction of what actually goes on, it did not seem sensible to insist,
for example, upon a more pr.eciise‘ travel time model, or to account for the

extremely low probability events corresponding to multiple emergency calls in

gqueue.




.

ST

prem=y:

“;W

16

4. SINGLF. PATROL UNIT MARKOVY MODFLS

The SWAP model we now describe is a Markov Process representation of
calls arriving and being serviced by patrol umits, or being queued to await
altention by a patrol unit. The states of the process represent the different
possible "snapshot” conditions that could represent the status of the system at
any time, Although we will eventually compute output r‘;%easures of interest by
assumiﬁg the process is discrete (i.e., transitions betwec;\ip states occur at dis-
tinct points of time, separat‘ed by a length of time called a "transition period'),

our initial model is posed as a continuous process for notational convenience.

Since the time to travel from one region to another to answer a call, or tc;
pe-rforni directed patrol, represents a significént prcﬁportion of a patrol unit's
activit);, one of the states is an explicit "travel” state. This represents a signiﬁ-
cant difference from the high population density assumptions in such models
as the hypercube model[4] where travel times are treated as negligible. In the
models presented here, the‘ assumption of exponentially distributed ﬁravel
times is used to calculate travel rafes. A semi-Markov model, which has the

potential to represent a wide variety of travel time distributions, is discussed

briefly in Appendix F.

In the development in this section, we describe situations for a single
! W
putrol wunit, The combining of these models into multiple-unit patrols is

presented in Section 5.

4.1. Gegeral Structure-All Calls Identical.

We first describe the model in the case where all calls for service are of
the same type, possibly requiring different suirvice times in different regions.
In order to develop the model we need to define states and transition rates

between these states, It N = the number of regions, in this simple case there

17

are 3N states, three for each region:

State Description

p(i) unit on patrol in region i;
s(i)  unitisin service in region 1,
t(i) unit is travelling from region i.

Note that the travel states £(i) are indexed by the region from which the unit
is travelling, and that travelling may be due to either responding to a call or

switching to another region for directed patrol.

The transition rates among these states depend upon the system para&ne-

ters:

A¢ = rate of calls in region 1 ;

M = mean service time for a call in region 17 ;

ty; = mean travel time from regicn i toregion j ;
and upon the policy variables:

z;; = rate at which the patrol unit switches from patrolling region i

to patrolling region j .

The resulting transitionratesfor ¢ =1,2, -+ N and j=1,2,- - N are:

From To Rate
P (1) t(i) \ A= EA'_’“ Ak
k=1
0 coo=g

s{i1) p(i)

o e
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wilh all non-listed rates being 0 .

The first three of these rates reflect straightforward Lransition events: an
arriving call (from any region) causing the unit to travel; switching of patrol
from one region to another; and completion of service in a region releasing the

unit to patrol (in that region - by assumption).
The transition rate from ¢(i) to s () was set to satisfy two conditions:

a) The probability of going to region j from any travel state #(i)
should be A;/A.

b) The expected time spent in the travel state t(i) should bz i,

weighted by the probabilities of going to region J (that is, A;/ A).
By defining
, N
Ty = rate [t('i) - s(j)] =X/ ) Aoty

k=1

we see that condition a) is satisfied, since
prob. {going to region j from £ (i) } =13/ Y, Ty
J
= )\J'/}\
and b) is satisfied since

N ~1
expected time spent in state £(i) = [ > Ty ]
j=1

1

M=
™

&
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Figure 4.1 shows a Lransilion diagram for N =2 regions,

4.2. Muitiple Priority Calls for Service

Additional states can now be added for representing calls with different

service rates and different priorities. Some calls, for instance, are

"unfounded” and are discovered to require essentially no service time after

arriving in a region. There is also generally a difference between the service
time required for emergency calls (which demand immediate service) and rou-
tine calls that do not. This expanded model consists of BN states, For each

qo=1, R, <+ N, the states are:!

State  Description - Abbreviation!
p(i) patrol in i; | PATR
t(i) travel from i to a routine or unfounded call; ETRV
t*(i)  travel from i to an emergency call; ITRV
rso(i service of a routine call in i with no calls waiting; ESRV

)

) service of a routine call in i with one call waiting; ESVQ
esg(i)  service of an emergency call in i with no calls waiting; ISRV

)

service of an emergency call in i with one call waiting; ISVQ

w(i) service of an unfounded call in 1. UNFS

Note that we have now included twe queueing states for "stacked" calls. Since
the probability of receiving a call while in such states is assumed to be low,
only one call is allowed in the stack. The £*(i) travel state is used for travel-

ling to an emergency call that pre-empts service ‘of a routine call,

Lenaw county, The notation is unfortunately potentially contusi
"immediale” and routine calls are called "expedite”, hence [TRV i

!These abbreviations are used in the specitic version of the SWAP computer program for Wash-

ng since emergency calls are called
s "travel to immediate", etc,

i

N

A
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P(1) /Pfatrol Switch

P(R)

patrol in / oy Zo; —— patrol in
region 1 ion g
—/ region g

Atz CFS Arrival

t(2)

travel from

X -

travel from | —

region 1

region 2 -
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STETE D VI

Service

s(R)

service in

service in

region 1

region 2

Figure 4.1

Markov model with N=R regions and 1 patrol unit
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In order to write transition rates for this extended model, we need t

define some additional terms:

A} = rate of emergency calls in region %;

A? = rate of routine calls in region ;

A? = rate of unfounded calls in region i:

K4 = mean service time for emérgency calls in region z,
#f = mean service time for routine calls inregioni;

ud =

mean service time for unfounded calls in regioni;
and, for i = 1,2, - N and p =1,2,3:

A= N EARH D

o}
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The transition rates then become, forall i =1,2,--- N and J=12, -+ N:

From To Rate

p (i) £(i) A=AR4)3 (4.1)
p(i) t*(i) A=Al (4.2)
o (i) - p() {xﬁ 1#5 (4.3)

‘ 0 i=j

t(i) rso(7) ) AP/ (ta+ts) (4.4)
£(2) w(s) AP/ (tot+ts) (4.5)
esq(i) es, (i) A (4.8)
esg(i) p(i) 17 pd (4.7)
7so(%) - o (i) 1/ puf (4.8)
u(i) » (i) 1/ uf (4.9)
es, (i) £(3) [1/4&3][)\2;}\8] (4.10)
es (i) t*(1) AL/ X (4.10a)
rso(%) 7s1(1) AZ+A3 (4.11)
rso(i) t¥(7) A (4.12)
rs,(7) t*(3) Al (4.13)
£¥(1) eso(7) A/td (4.14)
rs4(1) t(i) 1/ puf | (4.15)

Again, these rates reflect straightforward transition behaviors from state to
state. For example, the unit proceeds from patrol to regular travel, ¢ (i), when-

ever a routine or unfounded call occurs (#.1). It an emergency call occur’é the

unit proceeds to emergency travel, t*(i) (4.2). Patrol switches from one region

to another according to the policy variables, Z;; (4.3). The transition rates

from travel to service states are weighted as in the simple model (4.4-4.5). The

transition from the special travel state, £*(j), to servicing the pre-empting

emergency call is found in the same manner(4.14).

by
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From service slates without queues, the transition can occur te the ser-
vice state with a queue, if a call arrives (4.8, 4.11) or to the patrol state if ser-
vice is completed (4.7, 4.8). If an emergency call occurs while the patrol unit
is servicing a rouline call (with or without a call waiting), then the unit enters
the special travel state, t*(j) (4.12, 4.13). Service completion from the
queue states resulls in transition to the travel state to go to the queued call
(4.10, 4.18). From the unfounded call state it is assumed that the unit returns
to patrol with high enough rate (4.9) that no other event can cccur while the

call is discovered to be unfounded.

4.3. Exercising the Model

The model of section 4.2 has been used to obtain steady state probabili-

ties for each state. It is important to note that for steady-state calculations

we do not nesd te assume that all probability distributions are exponential,
simply that the rates are the reciprocal of appropriate times. (In fact, call

arrival times have been found to be very close to exponential in a variety of

settings [13]). Our analysis, h6Wever. has found travel times in wide areas to

be more accurately approximated by a ‘gammav or Erlang distribution (see

Appendix B) [14].

Equnentia]i:ty of service time distributions was also investigated in Wash-
tenaw County (see appendix A). It was found that many calls required essen-
tially no service tirne and, so, were "ur‘lfounded".‘ Instead of an exponential dis-
tribution, a "spiked" exponential distribution with an atom at £=0 provides a
better ﬁt to the data. We included £h1s in the model by allowing the separate
possibility of unfounded calls. Then t}}ie exponential assumption for‘ thé
remaining calls becomes more reasori“a’é/le, Again, when using the model for

evaluating expected performancé‘ of the system, the exponential distribution

assumption is not necessary.

A
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Parameter values used in Lesling the model were Laken from actual data
from Washtenaw County. The procedure in Appendix B for determining travel

times was applied to the county’s characteristics and used for the travel time

parameters.

Washtenaw County response procedures were also included in the exercis-
ing of the model. These procedures appear to be applicable in other wide-area
regions. Priorily dispatching had been implemented in Washtenaw County to
respond more efficiently to emergency calls. In areas where travel times may
be great, this seemed especially important. The primary feature of the
dispalch policy is to differentiate between emergency calls that require
immediate service ("immediate') and routine ("expedite") calls that do not. If

a unit is servicing a routine call, then it may be pre-empted to serve an emer-

gency call.

The county is also concerned with directed patrol in certain areas. The
patrol switch probabilities z;; represent a response to this need. As policy
variables, they enable a patrol uniﬁ to "randomize” travel by switching from
region to region according to z;; . They also determine the long run state pro-

babilities which can be used to determine the amount of directed patrol in

each region absent calls for service.

Washtenaw Counly has low rates of calls for service compared to average
service capability, and so calls were queued very rarely. This justified includ-
ing only one call stacked in the queue. Additional queueing could be added,
with a concomitant growth in the total number of states, for areas with higher
call rates. We feel confident, however, that low call rates are common among

wide-area low population regions and that single-call queueing is sufficient for

such policy-oriented models.
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In implementing the model, we l:ad to determine a transition step size that
would allow computation by approximating the continuous model with a discrete
one. The value of the step size involves a trade-off between speed of conver-
gence and computational ac:uracy. We chose five minule "mtervals because the
expected number of events thal occur within this interval is less than 0.1. Con-
vergence to within 0.5 percent of steady-state solutions occurred in 15 to 35
transitions, a reasonably small number. With larger time intervals the model
lost accuracy and with smaller intervals it converged more slowly. Solution by
iteration was chosen instead of direct inversion of the transition matrix, in order
to determine the time to convergence to steady-slate, and to allow for more
general transient analysis, such as finding the probability of being in a state
after time ¢ of a shift. Analyses could then be made of both the steady-state

results and the intra-shift probabilities.

The steady state probabilities (or transient probabilities at given times) are
used to evaluate average response time, delays in servicing calls, directed patrol

frequency in each region, and other performance measures.

For example, the average emergency travel time T is found from the pro-
babilities of being in the patrol states p(i), or being in the "pre-emptable” ser-
vice states esg(t) and 7s)(i), or being in the state es, (i) and getting an
emergency call (with rate Al). These are used to weight the average time spent

in the resulting emergency travel state.

7

, . (i
i Pb(z) + es,(i) + rso(i) + 'rsl('z',)] };‘, [—}\—] ti
i=1 =1

(4.17)

T = 7
b &)(k) + es (k) + rsolk) + 'rsl(k)]
k=1
The travel time distribution can be found in an analogous way by weighting each

intersector travel time distribution. Thus, if T is the ranaom variable for

overall travel time, and Ty isthe random variable for travel time from <
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to 7,

AY

Lz)(v.) + es (i) + rsqo(i) + 'rsl('z.)} % [}\—ll] P {Tij < t}

. ) N
P{T < t} = W

kgle(k) +osa(k) + rsg(k) + 7, (i)

The average response fime to an emergency call is found by adding the

queue times:

es;(1)
P(2) * 65,(2) * rsgli) T Py .[average time in esl(i)]

Al
to the term [;\JT ti; ] in equation {4.17).

Similiar expressions hold for routine calls.

Finally, the workload is calculated by
N
1= pGE),
i=1

where the total fraction of time on patrol is the proportion of directed patrol in

each area.

Although numerical values for these computations are available, thus far we
have only considered the case where there is a single patrol unit. The next sec-
tion shows how a many-unit model may be developed by extending these results,

Presentation of the numerical results of using the model are delayed until the

multiple unit model is discussed.
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5. MULTIPLE UNIT MODEL //7/

The model developed in Section 4 was based on the assumption that therce

is only a single patrol unit capable of responding to calls for service wi.L);;i;r/; Lthe
e

jurisdiction. Although this may in fact be the case in some instanc/e:é/(i.e., fqr

the midnight to 8:00 a.m. platoon on weekdays), it is more often trrﬁé thét there

are many patrol units allocated to the jurisdiction, usually Wlth implicit or

explicit policies for the "sharing’ of respon51b111ty for responc/ng to calls from

/

i

among the different regions.

In theory the methods of Section 4 could be used to /r,{/lodel the many-unit
systems by appropr"iately defining "states" to represen}/the various possible
configurations in which all units could be at any particl}/zg{ar time, However,‘with
K units this would require a total number of (BN )K/statesi the number of all
possible combmatmns of patrol units, each in thr/l;' own state. When N & 15,
even with K =2 units this would reqmr/ei//the eventual manipulation of

14,400 x 14 400 matrices - a formldable //tabk for a main frame computer

much less the mlcrocomputer Wwe envision Pemg event.ually used.

We chose instead to represent more i\\han one patrol unit by means of an
approximation ﬁ}ethod. ‘newly developed'f\‘\}\r this study. This approximation
effectively represents the behavioral baspect;;\\(zf the system without introducing
more than a nominal amount of inaccuracy 111\ the computation of important
output values. This methpd can be most clearl;‘}y explained by considering the
extremely simple case of two patrol units in twc)////regions.

5.1. Two Unit, Two Region Example. \

The casc of two patrol units in a two—reglon ]mlsdlctlon although obvi-
ously not realistic, will serve here to 1llustrate the approfin‘ah\on method used

to represent the general I(-umt N-region system To further \lh!llfy the dis-

\\

P

-~ S SO
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cussion, it is also assumed that there is only a single priority class of calls for
service. Finally, we assume that there are no queued calls - all calls arriving
when both units are busy are essentially "lost". (Again, we remind the reader
that these gross simplifications are made in order to present the fundamental

approach -- sufficient realism is re-introduced in the next section).

The fundamental approximation made is that each wnit will behave‘
according to its own lransition diggram as in figure 4.1. The rates, however,
will depend upon the other unit's parameters and state occupancy probabili-
ties. This interaction between the two units is represented by the input vari-
ables (in addition to the arrival rates, service and travel times and patrol-
switch probabilities introduced previously) called coverage factors. These
were defined in Section 2 so that ‘

iy = prob, { unit k responds to a call in region i

given both units are available }

where c; + cp; = 1, so that some available unit must. respond. Here, avail-
able means that the unit is on patrol in one of the two regions, and is neither

travelling to nor servicing a call.

The procedure for incorporating the interaction between units -- in
essence between transition structures of the type shown in Figure 4.1 -- is
called' PIMS ( Parallel Iteration for Multiple Servers). Appendix D presents a

more complete analysis of this method, which in outline is as follows.

First, define availability a; for unit k¥ to be the probability on patrol,

i.e.,

a; = prob {p (1)} + preb {p, (2)] .

where pe(i) = prob { unit k is on patrolinregion 4 }. Then,
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1) Set a; =1,a,=1,

Ra)For unit 1, replace A; by A (l—agcs) and replace Az by
Az(1-azczg) .

2b)For unit 2, replace A; by A(l-a,c;;) and replace Az by
Xz(l“qxclz) :

3) Using any appropriate method, separately compute state probabili-

ties for both units (using each unit's adjusted transition rates).

4) Check to see if either a, or a; (computed from p,(i) and p,(i))

has changed. If one or both has, go to step 2. If not, stop.

The link between the two units is in step 2 where the general effect is to
allow the calls "seen” by a unit to be reduced in preportion to the other's avai-

lability and coverage responsibility.
A number of issues related to this method are treated in Appendix D:
a) Whether, and how quickly, this procedure converges.
b) If it does converge, what does the solution at convergence mean?

c) The method makes overt use of the assumption that both units being
available are independent events. Since this is clearly not true in

general, how misleading are the results?

d) How important is the selection of a starting value for a, and ag

(set equal to 1 in the above example)?

We have good computational experience with this orocedure and have found
that it provides output values readily useable for policy purposes. The impor-
tant fact is that step 3 involves working with (and essentially inverting) two
6 x 8 matrices. In contrast, a straightforward extension of the model of Sec-
tion 4 -~ fully accounting for the dependence between the two uniés -- would

involve a single 86 X36 matrix. Although in this case the latter is still a

B
CeEE
7z
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reasonable size even for a microcomputer to handle, recall that this example
did not allow for either different priorities or queued calls. Adding new states
necessary for incorporating these, step 5 would involve two 18 x 16 matrices,

while the full dependence model would require a 256 x 256 matrix.

It is also of interest to point out that although the procedure above was
used, in this study, to compute only steady-state performance measures, step
3 could equally well be used to compute transient probabilities (for each time

point of interest) and associated non-steady state measures.

5.2. K-units, N-regions and Two Priorities of Calls.

The PIMS procedure described above can be readily extended to the case
of K units, N regions and two priorities of calls. First we define the follow-

ing terms.

Overall auailebility for the k** unit:

a = 3 prob. (p(n)} (5.1)

n=i

Emergency availability

a'y = o + f} [prob.{rso(i)] + prob.frs,(i)j], (5.2)

i=1
overall busy probability for the k™ unit
by = 1-g; (5.3)
Emergency busy probability bfor
by = 1-a'y ., (5.4)
busy vector

B=(BBz " Br) . A (5.5)
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where

1 when unit 7 is busy
B =

0  when unil i is available ,
emergency busy vector g°

g=(8"82 8% .
unit i realization probability for routine cails

r (@) = ﬁ, [Buby + (1-8,) (1-b,)] (5.6)

ki

unit i realization probability for emergency calls

" (87 = ﬁ [826°% + (1-82) (1-b"%)]

kv

(6.7)

set of passible busy vectors

B = {0,131

The rate of routine calls to region J for an available unit & , given it

"sees" a busy vector g, is

- ck; (A;%)
P ('g) l§k (l—ﬂl)clj + Cg; ' (58)

while for emergency calls, the rate to re\g‘:'\on J for an available unit k given

an emergency busy vector 8°,is

g

A & L.
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ij >\jl T
S it A
le (1-8, ey + cy;
L L J #
er; (B = A (5.9)
- ifA
K~ 38
Lok

\

where 4 = {cg;=0 and l§k(1—ﬁ")0‘f:m )

The procedure then, in outline, is:
1. Set b,=0 for £k=1,2,- -+ K.

2. For unit & ,replace A? by
Z vr; B) e (8)
BelB

and replace A{ by

2 e (B) e (8) .

Bg'eB

3. Using any appropriate method, separately compute state proba-

bilities for each of the K units.

4. Compute g, and ey for all k from equation (5.1) and see if

they have changed. If so, go to step 2. If not, stop.

The logic behind these definitions and the procedure follows directly from
the simpler case. Expressions (5.1) - (5.4) define a unit’'s availability as being
the probability it is in a patrol state (or for einergency calls, also sérvicing a
routine or unfounded call). For gach possible busy-available combination of all
units other than unit 4 (as given by all & B ), expressions (5.8) and (5.7)
give the probability of that combination. Expressions (5.8) and (5.9) give an
effective rate of calls for unit & . The denominator is the average total cover-

age of available units (given g or g°), and the ratio of cg; to this gives the

\\\ o
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fraction of calls to which unit k& will respond. If c¢;; =0, then unit k& will
never respond to a routine or unfounded call in region j , according to (5.8).
However, even if cx; = 0, the lower term in the bracket of (5.9) reflects an
equally likely response of all units not busy on emergencies (their number

being K—-—lgkﬁ,' ) regardless of their not having assigned coverage in region j .

Note that step 2 weighs the rate conditional on a particular busy vector
£ by the probability that vector will be "seen" by unit k . The same issues
about convergence and initial conditions for b, and b'; apply, in that their
theoretical justification have yet to be established. Nonetheless, our computa-
tional experience indicates that, with care taken to assure actual convergence
(see Appendix D), useful and practical results are obtained. In particular, step
3 involves K separate solutions of problems involving (BN) x (BN) matrices,
rather than the solution of a problem with a single (8N)X x (BN)X matrix --

essentially impossible for K=2 and N =3,
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6. EXAMPLE OF USE: WASHTENAW COUNTY, WESTERN PORTION

The model of Section 5 was applied to a jurisdiction comprising the
western portion of Washtenaw County, an area consisting of tw:elve sparsely
populated regions called townships. The geographic layout of these r"'elgions
appears in Figure 8.1. The area's geography, service times, travel, and call
rates, and current policies are described in Appendix A.. The primary measures
of interest were the fraction of time a unit is on patrol in each township, and
the mean response times to emergency and routine calls. Patrol units are

referred to as "cars".
The average number of calls for services in an hour for each region appear
in Table B8.1. Table 6.2 contains the mean service times®? in each region for

emergency and routine calls. In the table, the Washtenaw County designations

of "expedite" for routine calls and "immediate"” for emergency calls are used.

Service rates for unfounded calls were assumed to be the same as those for

routine calls. Note that all regions have the same service time, and that ser-
vice times for unfounded calls are zero. The average‘travel lime from one
region to another is given in Table'6.3. The diagonal term represents the aver-
age travel time between two sites within that region. The method for determin-

ing these times is described in Appendix B.

Five different basic patrol policies were examined. Each policy consisted
of the number of cars k assigned to the entire area, and for each car the
fegions for which eaclh car is responsible (The coverage matrix C ), and the
patrol behavior (patrol-switch matrix X ). The car assigned to each region
appears in Table 6.4a. If more than one car is responsible for a region then the

average fraction of calls answered by each car is giveu in parentheses. In these

2A mean service time of 48,12 was used for this example, even though Figure A-3 suggests that,
due to two outlimmes in this smell data set, & mean of 40.5 (corresponding to the dashed line) might
have been more appropriate.

= o
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basic policies, each car has an equal probability each hour of switching palrol
from the current region to any other region in its area of responsibility. If a
car is in a region outside its responsibility, it will switch to the nearest region
for which it has responsibility with probability 1. For example the patrol-switch

matrices given in Table 6.4b are for Policy 4.

Policies 1,2,3 and 4 represent allocating 1,2,3 or 4 cars respectively to the
jurisdiction. In Policy 5, the fourth car is used exclusively in Dexter Township
(area 2) to examine the value (in terms of reduced response time) of a car con-

tracted for by that township.

Tébles 6.5 through 6.9 show the fraction of time each car is expected to
spend in each region for each-activity. Tables 6.10 through 8.14 display the
average response times for the Washtenaw County call types for each policy.
Average response times for unfounded calls are the same as those for expedite

calls in these tables.

The results indicate that two patrol cars substantially reduce average
response times to all types of calls, when compared to using a single car. A
third car in Township 6 substantially reduces average response times in that

region, and a fourth car leads to further reduction in all mean response times.

The distribution of travel time is shown, for policy 4, in table 6.15. Asis to
be expected, the presence of the fourth patrol unit with 807% patrol responsibil-
ity in township 6 (Scic) provides this region with a .54 probability of having a
travel time to a CFS of 6 minutes or less. By contrast, Sharon township (region
7) - which shares patrol unit 2 with four other townships -- has only a .38 pro-

bability of having travel time to a CF3 be 9 minntes or less.
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1 2 3
Lyndon Dexter Webster

4 5 8
Sylvan Lima Scio

7 8 9
Sharon Freedom Lodi

10 11 12

Manchester | Bridgewater Saline
Figure 6.1.

Western 12 Townships of Washtenaw Counly.
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REGION EXPEDITE IMMEDIATE

[E RS
N, OGP N

0.038
0.070
0.041
0.0486
0.036
0.197
0.012
0.015
0.038
0.020
0.009
0.021

0.017
0.032
0.019
0.021
0.017
0.091
0.006
0.007
0.017
0.009
0.004
0.010

UNFOUNDED

0.003
0.005
0.003
0.004
0.003
0.015
0.001
0.001
0.003
0.002
0.001
0.00%

Table 6.1.

Hourly Call Rates.

REGION EXPEDITE

IMMEDIATE

e
oD NOU N

_7.36
27.36
R7.36
R'7.36
R7.36
R7.36
R7.36
27.36
R7.36
_'7.36
R7.36

27.36

48.12
48.18
48.12
48.12
48.12
48.12
48.12
48.12
48.12
48.12
4B.12
4B.12

Table 6.2.

Mean Service Times in Minutes.
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CAR 1

REGION PATR ETRV __ITRV _ESRV _ESVQ ISRV __ ISVQ UNFS ALL
c.088 0.007 0.003 0.012 0.001 0009 0.061 0.000 0.119
0.117 0.010 0.004 0.022 0.002 0.016 0.002 0.000 0.174
0.008 0.001 0.000 G@G.0 0.0 0.001 0.000 0.0 0.010
0.000 0.007 0.003 0.015 0.002 0.011 0.002 0.000 0.129
0.099 0.007 0.003 0.011 0.001 0.009 0.001 0.000 0.132

G 41 -

1
3
4
5
6
7
B8
9 0.008 0.001 o0.000 0.0
11
12
ALL

i 0.010 0.001 0.000 0.0 0.0 0.005 0.000 0.0 0.016
0.071 0.007 0,003 0.004 0.000 0,003 0.000 0000 0.089
: 0.086 0.008 0.003 0.005 0001 0.004 0.001 0.000 0.1086
{ . 0.0 0.001 0.000 0.0 0.010
_JE 0.076 0.002 0.003 0.006 0.001 0.005 0.001 0.000 0.100
0.083 0.011 0.004 0.003 0,000 0.002 0.000 0,000 0.103
—_ 0.007 0.003 0.001 0.0 0.0 0.000 0.000 0.0 0.011
ﬁg 0.742 0.071 0.026 0.078 0.008 0.065 0.609 0.001 1.000
CAR 1 il CAR 2

REGION PATR BTRV ITRV ESRV ESVQ ISRV ISVQ UNFS ALL e REGION PATR BTRV ITRV ESRV ESVQ ISRV IOV& UNFS ALL
1 0.042 0011 0.004 0.009 0.002 0.006 0003 0.000 0.077 f T ’ 0.002  0.000 0.000 0.0 0.0 0.00 0,000 0.0 0.003
2 0.053 0.012 0.004 . 0.016 0.004 0.011 0.006 0.000 0.106 : é 0.002 0000 0.000 8‘0 0.0 o'ooi 0.000 0.0 0.004
3 0.043 0.009 0.003 0.010 0.002 0.007 0.003 0.000 0.077 3 0.151 0013 0005 O 0,002 0010 0.002 0.000 0.196

4 0.045 0,011 0.004 0.011 0.003 0.007 0.004 0.000 0.084 ‘ o 00 oo odl 00 ' ' 0
5 0.041 0.007 0.002 0.008 0.002 0.006 0.003 0.000 0.070 : 8'832 3'088 o oo 0o 0'801 8’808 8'8 g.ogg
6 0.100 0.021 0.007 0.046 0.011 0.032 0.016 0.001 0.234 > 0 258 0'813 8'383 8'863 8'809 8'0291; 0'0(1)2 0.001 0'217
7 0.032 0.009 0.003 0.003 0.001 0.002 0.001 0.000 0.051 e 0.001 0000 0000 0.0 0.0 0.000 0.000 0.0 0.002
8 0.083 0.007 0.002 0.004 0.001 ©.002 0.001 0.000 0.051 ] 8 0.002 0.000 0000 0.0 0.0 0.000 0.000 0.0 0.002
9 0.042 0.009 0.003 0.009 0002 0.006 0.003 0.000 0.074 L 9 0.148 0012 0004 0012 0002 0009 0002 0.000 0.189

10 0.035 0.012 0.004 0.005 0.001 0.003 0.002 0.000 0,062 0 0'04 0.00 006 o ' 000 0.000 0.0 o'1
11 0.031 0.010 0.003 0.002 0.001 0.001 0.001 C.000 0.049 ! 0‘002 0'00(1, 0'080 3'0 o0 o.ooo 0'030 0.0 0'083
12 0.036 0.012 0.004 0.005 0.001 0.003 0.002 0.000 0.063 | 1; 0'13%- 0’817 8'802 0'807 8'801 8'385 0.001 0.000 0?272
ALL__ 0535 0.131 0.044 0187 0031 0.087 0.044 0.008 1.000 B ALL 0707 0064 0.023 0095 0.014 0078 0.018 0.002 1.000

Table 6.5. Fractions of time spent on different activities for Policy 1 Table 8.8. Fractions of time spent on different activities for Policy 2
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CAR 1
REGION PATR ETRV__ITRV ESRV KSVQ ISRV ISVQ UNFS ALl

CAR 1

REG TR__ET ' "SR VQ ISRV 1SVQ UNFS _ ALL
1 0.088 0.007 0.002 0.012 0.001 0,009 0.001 0.000 0.121 REGION PATR ETRV TRV _ESRYV RSVQ
; 1 0.181 0.008 0.003 0.014 0.001 0.011 0.002 0.000 0.220
2 0.119 0.010 0.003 0.023 0.002 0.017 0.002 0.000 0.177
; 2 0.214 0.010 0.003 0.026 0.002 0.020 0.003 0.000 0.280
3 0.007 0.001 0.000 0.0 0.0 0.00:0 0.600 0.0 0.008
3 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
4 0.093 0.008 ©0.003 0.015 0.002 0.011 0.002 0.000 0.132
: 4 0.197 0.011 0.004 0.017 0.002 0.013 0.002 0.000 0.246
5 0.100 0.007 0.002 0.012 0.001 0.009 0.001 0.000 0.132
5 0.201 0.009 0.003 0.013 0.013 0.001 0.011 0.002 0.241
6 0.006 0.001 0.000 0.0 0.0 0.0000 0.000 0.0 0.008 .
5 8 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
7 0.073 0.007 0.002 0.004 0.000 0.00:3 0.000 0.000 0.090
] 7 0.001 0000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
B 0.087 0.008 0.003 0.005 0.001 0.004 0.001 0.000 0.107
8 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
9 0.007 0.001 0.000 0.0 0.0 0.00:0 0.000 0.0 0.008
5 9 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
10 0.077 0.009 0.003 0.006 0.001 0.005 0.001 0.000 0.102
10 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
11 0.084 0.011 0.004 0.003 0.000 0.002 0.000 0.000 0.103
11 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
12 0.006 0.002 0.001 0.0 0.0 0.000 0.000 0.0 0.010
ALL 0746  0.072 0.024 0.079 0.009 0.060 _0.009 0.001 1.000 12 0.001 0.000 0.000 00 0.0 0.000 0.000 0.0 0.002
: : : ' 08 : : : ALL 0805 0041 0.013 0.070 0.007 0.055 0.008__0.001 _ 1.000
CARZ2
REGION PATR ETRV__ITRV._ESRV ESVQ ISR'Y___ISVQ _ UNFS__ ALL CAR 2
1 0.00¢ 0.001 0000 00 00 0.000  0.000 0.0 0.005 REGION PATR__ETRV__ITRV _ESRV _ESVQ ISRV __ISVQ _UNFS__ ALL
2 0.004 0.000 0.000 0.0 0.0 0.00:1 0.000 0.0 0.005
1 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
3 0.202 0.010 0.003 0.015 0.001 0.012 0.001 0.000 0.244
2 0.002 0.000 0.000 0.0 0.0 0.001 0.000 0.0 0.002
4 0.004 0.001 0,000 0.0 0.0 0.000 0.000 0.0 0.005
3 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
5 0.004 0.000 0.000 0.0 0.0 0.0000 0.000 0.0 0.005
3 4 0.001 0.000 ©.000 0.0 0.0 0.000 C.000 0.0 0.002
8 0.217 0.008 0.003 0.023 0.000 0.015 0.000 0.000 0.266
5 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
7 0.004 0.001 0.000 0.0 0.0 0.000 0.000 0.0 0.004
6 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
8 0.004 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.004
7 0.178 0.005 0.002 0.005 0.000 0.004 0.000 0.000 0.195
9 0.198 0.009 0.003 0.014 0.001 0011 0001 0.000 0.237 -
8 0.194 0.005 0.002 0.006 0.000 0.005 0.000 0.000 0.212
10 0.004 0.001 0.000 0.0 0.0 0.000 0.000 0.0 0.005 «
9 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
11 0.004 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.004
10 0.179 0.004 0.002 0.00B 0,000 0.006 0.000 0.000 0.200
12 0.184 0.011 0.004 0.008 0.001 0.006 0.001 0.000 0.215
ALL ___0.831 0041 0.014 0080  0.003 0047 0003 000 000 11 0.166 0.003 0.001 0.004 0.000 ©.003 0.000 0.000 0.177
: : ~ - ' 04 . : 001 1. 12 0.180 0.005 0.002 0.009 0,000 0.007 0.000 0.000 0.204
ALL 0906 0023 0008 0032 0001 _0.028 0002 0.001 1.000
CAR 3
REGION _PATR ETRV__ITRV _ESRV ¢ESVQ ISR’V ISVQ UNFS _ ALL Table 6.8.
1 0.001 0,000 0.000 0.0 0.0 0.000 0,000 0.0 0.002 . :
2 0.001 0.000 0.000 0.0 0.0 0.00'1 0.000 0.0 0.002 Fractions of Lime spent on different activities for Policy 4
3 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
4 0.001 0.000 0.000 0.0 0.0 0.00:1 0.000 0.0 0.002 (continued on next page)
5 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
6 0.840 0.01B 0.007 0.062 0.001 0.053 0.001 0.001 0.984
7 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
8 0.001 0.000 0.000 0.0 0.0 0.0000 0.000 0.0 0.001
9 0.001 0.000 0.000 0.0 0.0 0.0000 0.000 0.0 0.001
10 0.001 0.000 0.000 0.0 0.0 0.00:0 0.000 0.0 0.001
1] 0.001 0.000 0.000 0.0 0.0 0.00:0 0.000 0.0 0,001
12 0.001 0.000 0.000 0.0 0.0 0.0000 0.000 0.0 0.001
ALL 0851 0019 0.008 0.062 0.001 0057 0.001 0.002 _ 1.000

Table 6.7. Fractions of time spent on different ¢ activities for Policy 3
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CAR 3 REGION PATR ETRV__ITRV _ESRV _ESVQ ISRV ISVQ _UNFS __ ALL
REGION PATR. ETRV. _ITRV._ESRV _FESVQ ISRV ISVQ UNFS__ ALL 1 0.274 0008 0.008 0015 0.001 0012 0.001 0.000 0.314
1 0.002 0.000 D0.000 0.0 0.0 0.000 0.000 0.0 0.002 ] 2 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
2 0.002 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.003 e 3 0.001 0000 0000 0.0 0.0 0.000 0000 0.0 0.003
3 0.272 0.010 0.003 0.0186 0.001 0.013 0.001 0.000 0.315 N 4 0.280 0.008 0.003 0.018 0.001 0.014 0.001 0.000 0.337
4 0.002 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002 S 5 0295 0008 0.003 0.014 0.001 0012 0.001 0.000 0.334

e 0.002 0.000 0.000 00 00 0000 0.000 0.0  0.002 T 6 0.003  0.000 0000 0.0 0.0 0002 0000 00 0005
6 0.290 0.008 0.003 0.024 0.000 0.016 0.000 0.000 0.340 : 7 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
7 0.002 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002 8 0.001 0.000 0.000 0.0 0.0 0,000 0.000 0.0 0.001
8 0.002 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002 9 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002

9 0.284 0.011 0.008 0.015 0.001 0.011 0.001 0.000 0.328 " % " 10 0.001 0.000 0.000 0.0 0.0 0.0000 0.000 0.0 0.001
10 0.002 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002 N 11 0.001 0.000 0.000 0.0 0.0 0.0000 0.000 0.0 0.001
11 0.002 ©0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002 ‘ 12 0.001 0.000 0.000 0.0 0.0 0.0000 0.000 0.0 0.001
12 0.002 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002 . ALL 0.870 0.025 0.009 0.048 0.003 0.041 0004 0.001 1.000

AL 0.860 __0.029 0.010 0.054 0.002 0.042 0.003 0.001 _ 1.000 i
CAR 4 ) i
REGION PATR _ETRV __ITRY _ESRV ESVQ ISRV __ISVQ _UNFS__ ALL - CAR 2

1 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001 . REGION PATR _ETRV.__ITRV _ESRY _ESVQ ISR V___ISVQ _UNFS _ AllL

2 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002 1 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002

3 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001 - 2 0.001 0.000 0.000 0.0 0.0 0.000 0,000 0.0 0.002

4 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001 3 0.002 0.000 0,000 0.0 0.0 0.0000 0.000 0.0 0.002

5 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001 4 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
8 0.844 0.018 0.007 0.062 0.001 0.053 0.001 0.001 0.987 | 5 0.001 0.000 0.000 00 0.0 0.0000 0.000 0.0 0.002

o 0.001 0.000 0.000 00 0.0 0.000 0.000 0.0 0.001 i 6 0.003 0.000 0.000 0.0 0.0 0.002 0.000 0.0 0.005

8 0.001 0.000 0.060 0.0 0.0 0.000 0.000 0.0 0.001 . e 7 0.177 0.005 0.008 0.005 0.000 0004 0.000 0.000 0.194

9 0.001 ©0.000 0.000 0.0 0.0 0.000 0,000 0.0 0.001 A 8 0.198  0.005 0.002 0.006 0.000 0005 0000 0.000 0.214
10 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001 _E 9 0.001 0.000 0.000 0.0 0.0 0.0000 0.000 0.0 0.002
11 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001 10 0.177 0.004 0002 0.008 0.000 0.006 0000 0.000 0.198
12 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001 oy 11 0.184  0.003 0.001 0.004 0.000 0003 0000 C.000 0.1786
ALL 0.854 0.019 _0.007 0.062 0.001 0.055 0.001 0.001 1.000 _,» 12 0.179 0.005 0.002 0.009 0.000 0.007 0.000 0.000 0.202
S ALL 0.904 0.023 0.009 0032 0001 0029 0002 0.001  1.000

Table 6.8. (continued from previous page)

Table 8.9. Fractions of time spent on different :activities for Policy 5

' g ) (continued on next page)
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CAR 3
REGION _ PATR __ETRYV _I1TRV  ESRV _ESVQ 1SRV 15VQ UNFS ALl

1 0.001 0.000 0.000 0.0 0.0 0.000 0,000 0.0 0.001
0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001

3 0.201 0.014 0.005 0.014 0,002 0.011 0.0028 0,000 0.249

4 0.001 0.000 o0.000 0.0 0.0 0.000 0.000 0.0 0.001

5 0.001 0.000 0,000 0.0 0.0 0.000 0.000 0.0 0.001

6 0.321 0.018 0.006 0.086 0.009 0.052 0.011 0.001 0.485

7 0.001 0.000 ©0.00C0 0.0 0.0 0.000 0.000 0.0 (.G01

8 0.001 0.000 O0.000C 0.0 0.0 0.000 0.000 0.0 0.001

9 0.207 0.015 0.005 0.013 0.002 0.010 0.002 0.000 0.254
10 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
11 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
12 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
ALL 0.738_ 0.050 0.017 0.093 0.013 G.073 0.016 0.002 1.000

CAR 4

REGION _PATR _ETRV ITRV __ESRV ESVQ ISRV ISVQ UNFS ALL
1 0.001 0.000 0,000 0.0 0.0 0.000 0.000 0.0 0.001

2 0.915 0.007 0.003 0.030 0.001 0.024 0.001 0.000 0,982

3 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002

4 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001

] 0.001 0.00C0 o0.60C 0.0 0.0 0.000 0.000 0.0 0.001

6 0.003 0.000 0.000 0.0 0.0 0.002 0.000 0.000 0.005

7 0.001 0.000 0.000 0.0 0.0 0.000 o0.000 0.0 0.001

8 0.001 0.000 0.000 0.0 0.0 0.000 ©0.000 0.0 0.001

9 0.001 0.000 0.000 0.0 0.0 0.00C 0.000 0.0 0.002
10 0.001 0.0c0 0.000 0.0 0.0 0.000 0.000 0.0 0.001
il 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
12 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
ALL 0.928 0.008 0.004 0.030 0.001 _0.028 0.001 0.000 _1.000

Table 6.9. (continued from previous page)

Table 6.10. Policy 1 Average Response Time To Each Region (Minutes)

a7
REGION _ EXPEDITE _ IMMEDIATE
1 37.858 23.483
2 34.018 20.395
3 35.546 21.538
4 36.041 22.070
5 31.000 18.166
5 32.056 18B.840
7 37.805 23.663
B 32.917 19.828
9 33.560 20.173
10 40.465 25.779
11 39.031 R4.614
12 42.027 26.766

REGION EXPEDITE _IMMEDIATE
1 25.488 16.030
2 24.609 14,963
3 R2.936 13.782
4 24.111 15.009
5 21.146 12.443
B 18.626 10.515
7 R4.955 15.842
B8 22.589 13.688
9 19.827 11.569
10 R7.279 17.646
11 28.465 18.233
12 25.978 16.601

)

Table 8.11. Policy 2 Average Response Time To Each Region (Minutes)

Table 6.1

REGION EXPEDITE IMMEDIATE
1 25.0862 15.545
2 24.281 14.548
3 21.266 13.818
4 R3.712 14.500
5 20.820 12.030
6 9.593 6.900
7 24.557 15.444
B 2R.286 13.363
9 17.629 11.175
10 26.868 17.321
11 2B.168 17.985
12 23.184 15.627

2. Policy 3 Average Response Time To Each Region (Minutes)
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REGION _ EXPEDITE _ IMMEDIATE
1 16.288 10.385
2 16.327 10.080
3 16.836 11.130
4 17.671 11.171
5 15.608 9.428
6 B.758 6.386
7 20.638 14.663
8 16,653 11.468
8 16.603 10.891
10 16.869 11.950
11 16.268 11.431
12 £21.190 15.104

Table 6.13. Policy 4 Average Response Time To Each Region (Minutes)

REGION _EXPEDITE  IMMEDIATE
1 14.874 9.979
2 7.4B2 5.152
3 18.719 11.101
4 14,400 9.623
5 13.891 9.049
6 15.278 B.497
7 20.652 14.871
B 16.548 11.492
9 18.575 11.044
10 16.938 12.008
11 16.305 11,512
12 21.221 15.228

Table 6.14. Policy 5 Average Response Time To Each Region (Minutes)

419

PROBABILITY TRAVEL TIME TO IMMEDIATE CALLS IS LESS THAN OR EQUAL TO

MINUTES

REGION 3 6 9 12 i85 18 21 24 27

LYND 0.036 0.217 0.506 0.757 0.901 0.864 0.988 0.996 0.999

DEXT 0.081 0.268 0.509 0.720 0.855 0.929 0.966 0.985 0.993

WEBS 0.076 0.282 0.560 0.787 0.926 0.977 0.993 0.998 1.000

SYLV 0.033 0.!88 0.432 0.657 0.812 0.904 0.954 0.980 0.991

LIMA Q.039 0.236 0.523 0.766 0.907 0.969 0.991 0.997 0.999

SCIO 0.141 0.542 0.813 0.933 0.977 0.993 0.998 0.9992 1.000 3
SHAR 0.020 0.134 0.380 0.661 0.852 0.946 0.982 0.995 0.998 i
FREE 0.033 0.173 0.404 0.645 0.818 0.916 0.964 0.986 0.995 j
LODI 0.060 0.283 0.571 0.804 0.928 0,978 0,994 0.998 1.000 |
MANC 0.034 0.208 0.505 0.765 0.908 0.96B 0.989 0.997 0.999

BRID 0.025 0.178 0.445 0.704 0,871 0.953 ©.985 0.995 0.999

SALT (©.024 0.157 0.418 0.676 0.840 0,926 0.968 0.987 0.995

Table 8.15. Cumulative travel time distributions for Policy 4
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7. GENERAL POLICY USES AND IMPLICATIONS

The model's primary use is the rapid computation of response times and
coverage capabilities under different patrol policies. The decision maker can
change the number of cars, regions of responsibility, and patrol policies within
the regions. The average response times and coverage fractions then indicate

the advantages of the different plans. This may be of particular interest to
’ f

communilies involved in evaluating either the benefits of increased service or

the cosls of decreased service.

In Washtenaw County, several townships contract for a car to be present in
their township a cerlain percentage of the time. The fraction of time spent on
patrol can be used to show that the township is adequately covered. Response
times demonstrate the expected effect of that coverage. For example, a com-
parison of the results from Policy 3(Table 6.1R) and Policy 5(Table 6.14) shows
that an additional car with full responsibility for Township 2 (Dexter) results in
a reduction from 24 to 7.5 minutes in the average time to respond to a routine
call, and a reduction of from 15 to 15.2 minutes in the average time to respond
to emergency calls. In addilion, under policy 3 region 2 has a car patrolling
only 12% of the time, whereas using policy 5 this figure rises to 96%. This infor-
mation is of obvious use to that township in helping to decide whether to con-
tract for a patrol car. This kind of information about the effects of adding or
deleting a car is especially important considering the current financial plight of
many comumunities. The merit of an additional car can be more accurately

assessed and weighed against the costs of providing thal car.

Anolher possibility for Dexter township would be to join with Townships 1,
4, and 5 and Lo contract for a car, as in Policy 4. In this case, a car will patrol
Dexter 22% of the time, and the mean response times are 18 minutes for rou-

tine calls and 10 minutes for emergency calls, Given each of these alternatives

N

b1

and Lhe model's results, the township has a better idea of whether additional

patrol is worthy of the cost of this service.

The Washtenaw County Sheriff Department considered these kinds of com-
parisons to be one of the major polential benefits of the model. They also
thought that expressing patrol policy in terms of the patrol-switch probabilities
from region to region was natural. Of particular interest to them was the frac-
tion of time spent on patrol in cach region. This time, called "directed patrol”,
is considered Lo be available for various crime prevention strategies. The abil-
ity of the model to compute directed patrol time, given the policy in terms of
probabilities of swilching from region to region, represented a major step to

them in terms of quantifying their directed patrol capability.

The full model was implemented on the University of Michigan Amdahl V/8
computer. This large computer was especially useful to us, in that it has a vir-
tually unlimited storage capacity. A microcomputer was initially used for the
project but memory limitations made the large computer more convenient.
With sufficienl coding efficiency and use of disk storage for intermediate
results the model will be implementable on a small machine. If this is done the
model would be accessible to many departments. Two remaining difficulties
would be in terms of the computational speed of the microcomputer and in
obtaining useful and readable cutput formats. The latter may be improved with
more expensive peripherals. The computation time should be in the order of
tens of minutes for a 12-region jurisdiction for each policy, a practicable length
of time for policy planning purposes. In general, however such implementation
considerations could be addressed readily, and should offer no real technologi-

cal challenge.

In implementing the model, users must of course be aware that the results

are only as good as the input data. Thus actual policy decisions should not be

o
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based on model outputs without sufficient verification of both input data and
the model's structure being a representation of the actual procedures of the

patrol units in the jurisdiction.

The model, as presently coded, computes the distribution of travel times.
Distributions of response times can also be included as mentioned in Sectiion 4.
These may be especially important where the tails of the distributions
represent the problems perceived by the community and where their elimina-

tion would lead to an improvement in the comnmunity's perception of service.
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B. CONCLUSIONS AND OPEN QUESTIONS

The SWAP model has been developed to be a policy tool for use in wide area
police patrol. In those areas where travel time is a significant component in
servicing a call, urban based models such as PCAM [3] and the hypercube
queueing model [4] do not sufficiently represent reality. Our model explicitly

incorporates travel time, making it a useful alternative.

Travel is incorporated by representing the patrol system in terms of a Mar-
kov process model, using a travel state for each region. Other states represent

patrol, service for different priority calls, and service with calls waiting.

The parallel iteration (PIMS) solution approach allows this model to be
used for multiple patrol units. In this method, calls that arrive in a region
where the unit with coverage responsibility is busy are taken by a car from a
neighboring region. The model successively computes the probability that each
car is busy and modifies call rates to account for calls that cannot be handled
by cars from their region of origin. The model iterates until these probabilities
converge. This approach avoids solving a combinationally large problem for

multiple cars and, in practice, has performed efficiently.

The Markovian nature of the model requires exponentiality of both arrival
and travel time distributions. This assumption fits call data fairly accurately
and can be modified for service time distributions by distinguishing between
unfounded calls and others. Travel times, however, may have distributions
closer to gamma or FErlang than exponential. The model can incorporate these
distributions to produce steady-state results by using the methods of Sec‘tion 6.
A transient analysis in this case requires a semi-Markov model, and associated
computational difficulties. Fortunately, our results have indicated that steady
state is achieved fairly quickly and that transient analysis is not necessarily

needed for patrol policy evalualion.
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The exponential assumption helps to make calculations tractable. More
reality may be added by extending the model, but policy experience and details
idiosyncratic to a particular jurisdiction would be necessary before these
details could be included. In addition to adding non-exponential travel times,
for example, additional queueing states could be used. In Washtenaw County,
these states were judged unnecessary because of the low probability of such
states. The problems inherent in evaluating a more complex model, requiring

more computational effort to solve, outweigh the need for this degree of model

accuracy.

A potentially useful extension of our model would include the addition of
"patrol initiated aclivities” (PIA's). These activities (see [12]) may occupy a
large portion of the patrol unit's time. In fact, in the less populated areas of
Washtenaw County, the occurrence rate of these activities may be substantially
larger than the rate of calls for service. This behavior may be in fact typical of

areas where calls for service are relaljvely infrequent.

PIA's may be easily integrated into the SWAP model by introducing transi-
tions from the patrol slates p(j) directly to service slate esg(s) or rsy(5).
The rates for these transitions would be based upon data on the frequency of
PIA's while a car is on patrol. Unfortunately, this type of dala was not routinely

gathered in Washtenaw County, and apparently is not in most other rural jurisd-

ictions.

PIA's were specifically not included in our model because the car's patrol
time in a region is a measure of "directed patrol”, Thus, the [raction of time a
car is patrolling represents the time that the car is available to initiate other
activily. The number of PIA's in the region and the type of activity initiated
may then be used to evaluate the effect of that directed patrol. The patrol pol-

icy may be modified to shift directed patrol, and the results for PIA's with that
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policy may be compared with the previous policy.

Another potential extension and use of the model would be aimed at the
generation of a set of "good" policies by a "semi-automatic" selection process.
The model is currently purely descriptive and offers no prescriptive solutions.
However a multiple objective or goal programming optimization, using criteria
that the decision maker feels are relevant, could be developed. Since the
changes in the steady-state distributions are not, in general, linear in the input
parameters or policy variables, such an optimization scheme could become
extremely complex. A method for linearizing the solutions is presented in
Appendix G. This method can be used to formulate successive linear programs
that will lead to a "good"” but not necessarily optimal policy. Additional work in
this area may prove extremely beneficial in enhancing the model's applicabil-
ity.

The model as presented here is general and representative, but the
speciflic computer code is a prototype, and practical use will most certainly
require alterations especially, in its presentation. Problems of microcomputer
implementation need to be addressed before the model is accessible to the
greal majority of the nation's low population, wide area law enforcement agen-
cies. This effort should entail coding in a universal microcomputer language,

such as BASIC, and should address efficient pracedures far data storage and

retrieval from disks or cassettes.

A properly coded use of the model would also require a user's manual to
accompany the code that would explain, in terms accessible to a deputy sheriff
or patrol officers, how the model works. This should also include extensive
internal documentation of the code and examples of usage on different sys-
tems. In too many instances, sofﬁvare for policy evaluation is neglected

because of the user's difficulty in understanding its function.
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Detailed descriptions should also be given of the procedures needed to col-
lect inpul data for the model and to construct the travel time distributions.

These data may not be currently routinely gathered by the department, and so

some description of how to gather it may be necessary.

This project has constructed a mode] of wide area-police patrol that should
expand the possibilities for policy evaluation. It has been tested with data from

one area bul warrants verificalion by using da'a and procedures from other

areas. Nonetheless we have concluded that wide area patrol may be modeled
efficiently and additional effort spent in implementing it on a microcomputer

may make it beneficial to many departments around the country,
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lect inpul data for the model . and to conslruct the travel time distributions.

These data may not be currently routinely gathered by the department, and so

some description of how to gather it may be necessary.

This project has constructed a model of wide area-police patrol that should

cxpand the possibilities for policy evaluation. It has been tested with data from

one are

areas.

a bul warrants verificalion by using dala and procedures from other

Nonetheless we have concluded that wide area patrol may be modeled

efficiently and additional effort spent in implementing it on a microcomputer

may make it beneficial to many departments around the country,
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APPENDIX A: WASHTENAW COUNTY
A.1 Geography

Washtenaw County is rectangular, 30 miles wide in the east-west dimension
and 24 miles wide in the north-south dimension. It is divided into 20 six mile by
six mile townships. Figure A.1 shows the basic layoul of the county. As shown in
this figure, the largest cities in the county are Ann Arbor and Ypsilanti. Because
of these cities, the townships of Ann Arbor and Ypsilanti are fairly urban in
nature and are patrolled primarily by their city police departments. The other
Lownships are relatively rural. The western 12 townships provide a convenient
block of rural townships and were therefore chosen as a test area for this

analysis.

There are five Sheriff's Department stations in the county: the main station,
located between Ann Arber and Ypsilanti, and four substations, in Ypsilanti,
Dexler, Northfield, and Chelsea. Cars patrolling the western 12 townships gen-
erally work out of the Dexler and Chelsea substations. The dispatchers are
located in the main station, as are the jail and administrative services. Some of
the townships, such as Scio, have contracted with the Sheriff's Department for a
patro]l car during certain hours of the day. These contract cars are over and
above the department's responsibility Lo patrol the portions of Washtenaw
County not serviced by another police department. In addition to Ann Arbor and
Ypsilanti, the cities and villages of Machester, Saline, Pittsfield, Chelsea, and
Milan have their own police departments. These departments and the Sheriff

Department cooperate when possible and back each other up in emergencies.

The roads in the western 12 townships include 1-94, an east-west interstate
highway, M-52, a north-south state highway, and US-12, a state highway that cuts
diagonally through Saline township. The other roads consist of paved and

unpaved county roads. The underlying pattern of these roads is an orthogonal
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grid with roads every mile on the mile. lowever, irregularities due to farms,
lakes, and diagonal roads prevent finding travel distances belween points by
using the "Manhattan metric” The methods used Lo estimale travel limes on

these roads are discussed in Appendix B

A.2 Call Rales and Service Times

The Washtenaw County Sheriff Department fills oul a card on each call for
service it receives These cards give a desceription of the call Llype, car and off-
icer assigned, localion of incident, and other relevant data. in addition, these
cards are punched by the dispatcher into a time clock four limes: first, at the
time the call 1s received; second, when a car is dispatched to the incident; third,
when the officer radios that he/she has arrived al the seene of the incident; and
fourth, when the officer radios thal he /she has completed service. These cards
were Lhe main source of data on call rates by township and service times used to

test the models in this study.

To estimale lhe call rales for each township the data from 20 months of
1981-82 cards werce collected Total calls during these 20 months, broken down
by Lownship, are presented in Table A1, This table also shows the average calls
per hour for each lownship. Thesc averages were used as the call rates for the
applications of the model to Washtenaw Counly. However, Lthese overall averages
are nol completely representative of the call rates faced by the Washtenaw
County Shenfl Department This 1s because call rales vary throughout the day.
Figure A 2, which presents 9 days of data [rom February 1982, showed significant
fluclualion in call rates during the day As would be expecled, there were very
few calls between 4 and 8 am, while the period from ! to 7 pm registered a sub-
stantially greater number of calls. In realistic applicalions of the model
developed in Lhis study, separate runs should be made for different periods of

the day, in order Lo reflect the variations in call rates.

—

e s a



62

Table A.1:
Call Rates by Township in
Washtenaw County

Total Calls
) ' Jan.-Dec., April-Nov., 20 Month Ave
Township 1980 1981 Total Calls/r ﬁgir*

Yp'silanti 17,328. 13,570. 30,898. 2.111
Scio . 2.615. 1,820. 4,435, 0.303
Superior 2,609. 1,766, 4,375. 0.299
Ann Arbor 1,422, 1,113, 2.535. 0.173
Northfield 1,833. 1,275. 3.108. 0.212
Yprk . B864. 579, 1,443, 0.099
Pittsfield B8786. 556, 1,232. 0.084
Augusta 825. 600. 1,425. 0.097
Dexter 977. 608. 1,685, 0.108
Sylvan 617. 422, 1.039. 0.071
le?. 491. 326, 817. 0.0586
Lodi 491. 357. 898. 0.058
Lyndon 490. 362. B52. 0.058
Websler 511, 356%. B63. 0.069
Salem 642. 329. 971. 0.066
Mar_mhester 262. 188. 450, 0.031
S'alme 290. 175. 485. 0.032
Freedom 207. 125. 332. 0.023
Sh_aron 111, 163. 274, 0.019
Bridgewater 112. 99. 211. 0:014

33,373. 24,785, 58,158. 3.973

m
Calculated by dividing column 3 by 14,840 = number of hours in 20 months (810 days)
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In addition to call rates, the SWAP model requires input data on service
times and travel times. However, the data cards in use by the Washtenaw
County Sheriff Department at the time of this work did not clearly indicate
priority of the call. Because it was felt that a correlation might exist between
service Llimes and call type, an experiment was conducted during the week of

May 17, 1982. During this week, dispatchers marked all data cards as immediate
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priorily or expedite/normal priority. 89 calls were received during this weck, 32
immediate priorily and 57 expedile/normal priority. These dala were used to

estimate service times and travel Limes by priorily Lype.

Table A.2 presents a summary of ﬁhe data collected during the experiment.
These travel Limes provide some standard of comparison for estimating travel
times. However, because travel time is dependent on location of both car and
call, as well as travel speed and availability and quality of roads, these simple
estimates are not adequate for use in the model. The model requires a mean
and variance of the travel time when a car goes from a specified township to
another specified township. Analytical estimates of these parameters are dis-

cussed in Appendix B.

The service times in Table A.2 have means fairly close to standard devia-
tions, and therefore might reasonably be approximated by exponential distribu-
tions. However, Figures A.3 and A.4 which show the complementary cumulative
distribution  (1—F(z) vs. £, where z = service time in minutes) indicate a
potential problem with using an exponential distribution. Both of these graphs
show reasonably linear curves on the semi-log scale, indicating appropriateness
of the exponential distribution. In Figure A.3, the fit is made closer by excluding
the two outliers which took over 150 minutes, as the dashed line does. Note that
the intercepts of the curves do not occur at the 100 percent point. This is
because both immediate and expedite priority calls have a positive probability
of requiring little no service lime. In the period studied, 14 immediate priority
calls and 20 expedite/normal priority calls had essentially zero service times.
The officers radioed in arrival and completion at the same time (at least the
dispatchers punched these two times simultaneously). These calls are called
“unfounded” because, although an officer responds to them, they do not require
service. 1f these unfounded calls are not considered, an exponential distribution

provides a good fit for the service times of the remaining calls. A representative
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Table A.2:

Travel Time and Service Time &statisties
for 12 Western Townships in
Washtenaw County,

May 17-23, 1982.

Immediate Exypredite/Normal
Priority Priority Total

Number of Calls 3% 57 B9
Travel Times

Mean (Minutes) 15.12 19.00 17.92

Standard Deviation 21.81 15.90 17.88
Service Times

Mean (Minutes) 48.12 27.39 34.05

Standard Devialion 65.31 25.19 43.43

model thus must have the capability to treat umifounded calls as a separate

category, and thereby justify the use of exponentizil service times for the other

calls.

A.3 Response Policy

In general, when the Washtenaw County Sheril’f Department receives a call
for service, the dispatchers assign a car to handle: the call immediately. How-
ever, because such a simple policy could result in a misallocation of resources,
in 1981:the department implemented épri,ority-bas ied response policy. This pol-
icy assigns calls Lo four groups: immediate dispatc h, expedite dispatch, routine
dispatch, and deferred response. Immmediate resjponse calls lake precedence
over all others and can preempt a depuly from se rvicing a ncn-immediate call.
(Thus they are the equivalent of "emergency" calls in the SWAP model) Cars can
be called out of their assigned regions if necessary’ to cover immediate priority
calls. Expedite calls are handled by a car assigned to that township as soon as it

is available. Rouline calls are handled essentially; as expedite calls, with the
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exception that their level of urgency is lower and therefore deputies may drive
slower in responding to them. Deferred response calls don't require a patrol car

and are therefore delayed and serviced by phone.
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APPENDIX B: TRAVEL TIME DETERMINATION

B.1 Introduction

In rural police patrol systems, times to service calls are apt to be non-
exponential due to non-exponential travel times, which comprise a significant
portion of total service timme. Any model of rural police patrol activities must
therefore be provided with a characterization of travel times. This Appendix
presents a practical method for approximating travel time distributions, and

illustrates it by application to Washtenaw County.

There have been previous efforts made to characterize travel time distribu-
tions. Primarily, work by Larson [1] analyzed travel times in urban areas with
roads configured in a Manhattan metric, Larson's method is not well-suited to
the rural setting because of the low density of roads and the lack of a consistent
Manhatlan metric. Work has also appeared in the geography literature on travel
time distributions in Fuclidean space. This work is also not directly applicable
to Lhe rural police patrol problem because sparse roads make Euclidean travel a
poor approximation. It wouwld be possible to analytically combine the work of
Larson and the geography literature. However, a simpler, more realistic numer-
ical method for generating travel time distributions has been developed. This
method transfers some of the burden from the analyst to the computer thereby

reducing front-end effort. The procedure is described below.

B.2 Development of Model

The area under consideration (in this case, the county) is divided into
subregions (in this case, townships). We wish to find travel time distributions

both within (intra) townships and between (inter) townships.

Each township can be represented by a set of nodes. Nodes could be inter-

sections, parking lots, police stations, ete, (The practical considerations of how
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to choose a reason:ible set of nodes is discussed in the next section). Once the
set of nodes for a township has been developed, the travel times between all
directly connccted nodes must be estimated. Again, developing these travel
times is conceptually simple but quite involved from a practical standpoint.
Once this network of interconnected nodes has been developed, a number of
available shortest path algorithms can be used to construct a travel time

matrix, which gives the minimum travel time from each node to all others.

To generate ari intratownship travel time distribution, probabilities of the
patrol car being at each node and the incident (call for service) being at each
node must be assig ned. The product of the probability of the car being at node
z and the probabi lity of the incident being at node y defines the probability
of arc z—y Dbeing traveled. Weighting all arcs in the travel time matrix by
thesc probabilities and summing yields the mean travel time. Similarly, weight-
ing squared times .for each arc by the same probabilities and summing allows
computation of the variance. The mean and variance could then be used to fit a
function (e.g., a ga mma distribution). The arcs could also be used to derive a

cumulative probabi lity distribution.

To find an inte:rtownship travel time distribution between any two townships
the problem is to c onstruct a travel time matrix of minimum travel times from
each node in the t ownship that contains the patrol car (exit township) to all
nodes in the townsliip where the incident occurs (entrance township). This can
be done by identify ing "exit ports” in the exit township and "entrance ports” in
the entrance Lownslnip. Exit and entrance ports are simply nodes where a patrol
car leaves and ente rs the townships. These ports can be identified by consider-
ing all possible rout.es between the two townships. Common sense is required to
prevent the numbeir of such routes from becoming unmanageable. Travel times
from each exil port to each entrance port must be estimated. Then, a matrix of

travel times from nodes in the exit township to the nodes in the entrance
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township can be developed by exhaustively examining the sum of the travel
limes rom a node in the exit township to each exit porl to each entrance port
Lo a node in the entrance township and choosing the minimum time. Minimum
times from nodes to exit ports and minimum times from entrance ports to
nodes have already been developed in the intratownship travel time matrices,
Thus the intertownship travel time matrix can be generated easily using exhaus-
tive search melhods. By assigning probabilities of the car and incident being at
individual nodes in the exit and entrance townships, respectively, mean and vari-

ance ol the travel time distribution can be computed as in the intratownship

case.

B.3 Practical Consideralions of Lhe Appreoach

The first practical problem in implementing the approach described above
Is representing a township by a set of nodes. At a maximum, all intersections
and points of importance could be designated as nodes. However, the more
nodes used the larger the travel time matrices will be. Large matrices will be
cumbersome in the computer operations, particularly if a small system (e.g., a
TRS-80) is used. Someone well-acquainted with the township should be involved
in selecting a set of nodes to ensure that the township is realistically
represented. The tradeoffs in choosing a set of nodes are:
«  The more nodes used, the fewer arcs will be necessary to represent
directly connected nodes. This must be balanced with the need to

keep the travel time matrices small,

It a large number of nodes is used, it is likely that many of the nodes
represenl obscure places thal are unlikely to generale calls. The user
must take care Lo counterbalance chis by assigning low probabilities

to these nodes to avoid artificially skewing the travel time distribu-

tion.
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Once a set of nodes has been developed to represent each township, the
nexl problem is Lo assign travel times between pairs of arcs directly connected
by roads. Clearly in any realistic application, where there is likely to be on the
order of 50 nodes per township, it is unreasonable to ask a member of the police
department to estimate the time between all pairs of directly connected nodes.
Instead, it is possible determine the speeds attainable on all roads in the town-
ships under consideration by interviewing someone with patrol experience and
to use this information, together with distances estimated from a map, to calcu-

lale travel times between nodes.
A sample protocol follows:

Analyst - To characterize travel times, 1 need to get some idea from you on
how fast the police travel on the roads in the county. In particular,
I'm interested in determining your effective average speed, including

stops, on each road when you're in a hurry and traveling under siren.

Depuly - Well, there's a lot of variability of course. Weather, traffic, experi-
ence of the deputy, even farmers driving equipment on the county

roads will greatly affect our effective speed.

Analyst - Okay. Let's just consider normal conditions and forget about snow-
storms, etc. Can you give me a range of speeds for each road that

considers varying traffic and deputy experience?
Deputy -1think so. Lets try some roads.

After considering a few roads a pattern began to emerge. The deputy had

developed six classes of roads. These are shown below,
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Pange of Speeds Average Speed Road Speed

55 - 100 90 Highways

45 -85 70 Very good paved

40-70 60 Good paved

30 - 60 40 Good unpaved

30 - 45 30 Poor roads, curves
<30 20 Congested urban areas

Since many roads traverse multiple townships, reviewing all the roads was
not overly Lime consuming. One issue that did arise was that attainable speeds
do not remain conslant over the entire length of a road. Changes in the quality
of the road or bad curves must be identified in order to make the eslimated
speeds reflecl realily. The method used in this study was to mark each road
type on a map wilh a different color magic marker. This allowed the analyst to
record the estimates made by the deputy rapidly enough to keep the discussion
moving.

Once speeds on the roads inside and between townships are eslablished it is
useful to identily routes belween lownships. It is not necessary Lo identify
routes belween adjacent 'Lownships if nodes are defined so that both townships
share a set of nodes at poinls where roads cross the border between the two
townships. (The only exceplion to this would be & case where a patrol car might
choose to take a route in another township. This case is probably not tos com-
mon and if neglected would probably not change the results significantly.) Iden-
tifying travel routes between pairs of non-adjacent townships is very useful.
While it might be possible to feed geographical orientation of the townships into
a computer and have it examine all possible routes, this would alniost certainly
take a iong time on a2 small computer. It would also require more complex
software. The simpler approach we recommend is to simply ask a deputy what

routes he or she might use to travel between pairs of townships.
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A sample protocol follows:

Analyst - Given that you are patrolling somewhere in Dexter Township and get

a call to go to Bridgewater Township. What roads would you use?

Deputy - It depends on where 1 am in Dexter and where the call is in Bridgewa-

ter.
Analyst - That's okay. I want to know all possible routes you might use.

Deputy - Well, those two townships are pretty far apart so I wouldn't use the
minor roads, but there seem to be two basic routes. First, if either I
or the call was on the east side of our township I'd probably take
Werkner down to M-52 and M-52 to Austin. If I or the call was on the
west part of the townships I'd take Island Lake or Dexter-Pinckney to
Parker to Pieasant Lake to Schneider. If 1 was on the east and the call
was on the west or vice versa it would depend on the specific location

of me and the call.

Analyst - That's as it should be. When I give this information to the computer
it will look at both routes to go frem each point in Dexter to each point

in Bridgewater.

In the process of identifying routes between all non-adjacent pairs of townships
it became apparent that the routes from township X to township Y were just
the reverse of the routes from Y to X . This would be the case unless there
was a highway exit that didn't have an entrance or some other unusual road con-
figuration. Another observation that saved interview time was the fact that the
routes from a township X to a township Y were very similar to the routes from
X to Z il Z was located "past’ Y from X . All total, to ascertain road
speeds and routes for&a portion of county consisting of 12 townships took about

3 hours of time from an analyst and an experienced patroller.
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B.4 Results of Computer Runs

A set of BASIC programs was developed Lo calculate shorlest palh Lravel
timme matrices for cach of 12 townships in Washtenaw County and to use these
matrices to calculate mean and variance of the travel time distribution from

each township to the others. The results are presented in Table B.1. It was

assumed that the locations of both call and incident were uniform in space, so
that the resulting matrix is symmetric.® The matrix would also be symmetric for
non-uniform car and call location as long as the distributions of the car and a

call are the same in each township. Mean to variance ratios range from about

0.5to 1.9.

3The smaliest geographical location routinely kept for origin of a call was "Lownship", so that
finer resolution of “where” in the township a cal] originates from was impossible with the data we had
available. The Jocation of the car at time of a call being received was never routinely recorded,
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TABLE B.1

INTRA- AND INTER-TOWNSHIP TRAVEL TIMES*

10

11

12

11 12

1 2 3 4 5 8 7 8 2] 10 1L 1z
. 15.1 10.9 11.5 17.4 18.9 20.1 21.8 22.8 2r. 35.
(g:?) (190.79) (12.2) | (23.3) | (13.8) | (12.4) | {(20.1) (12.2) (12.;) (;2.2) (;g.g) (Z;.g)
k . .8 10.1 11.0 21.2 18. . 4. . .
(g:;) (170?3) (:'13(45.3) (18.8) | (13.8) | (22.3) ; (12.4) | (13.3) | (17.5) | (15.3) (1?.2)
5.4 19.4 11.8 9.9 21.5 17.3 16.9 20.8 22.9) (23'5)

(8.8) | (20.1) | (16.9) | (16.1) | (20.0) | (16.4) { (17.7) | (17.4) | (18.8 .

7.8 8.1 13.7 13.0 15.2 18.2 18.4 24.9 32.;)

(16.7) | (14.4) | {12.3) 1 (30.1) | (17.8) | (18.3) | (23.8) | {24.5) | (29.

8.1 8.9 i4.1 10.8 11.8 18.8 1.3 20.7

(9.7) 1 (11.9) | (18.8) | (18.8) | (15.5) | (13.9) | (13.9) | (20.8)

5.8 18.3 12.8 9.9 23.8 19.8 17.6

(8.2) | (18.8) | (16.9) | (17.5) | (13.5) | (20.5) | (21.2)

8.8 11.6 18.7 11.9 16.8 25.5

(13.1) | (17.8) { (14.5) | (20.8) | (20.8) | {27.2)

5.9 9.0 13.8 10.8 15.2

(9.8) | (12.6) | (14,7) 1 (18.1) | (26.1)

5.5 10.2 13.8 11.2

(8.2) | (14.3) | (17.5) | (18.8)

5.8 10.0 15.9

(8.3) | (15.9) | (15.1)

. 8.5 10.8

(11.1) | (18.4)

B 6.6

(11,8)

istri i inei : o be uniform.
¢ matrix is symmetric because distributions of call and inciden’. are assumed t

1-LYNDON
2-DEXTER
3-WEBSTER

4-SYLVAN

5-LIMA 9-L0ODI

6-SCIO 10-MANCHEST
7-SHARON 11-BRIDGE
8-FREEDOM  1R2-SALINE

Y
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B.5 Sensitivity Analysis

Depending on how the nodes are assigned and how police cars actually
patrol, the assumptions of uniform spatial distributions for car and incident may

or may not be valid. To test the sensitivity of the results to the choice of these

distributions a number of cases were examined,

Intra-township trave] times under a variety of probability distributions were

calculated for Lyndon and Manchester townships. The results of these trials are

presented in Table B.2. In general, variance seemed more sensitive than the

mean Lo variations in the probability distributions. One intuitively realistic case

had the probability of a cal} being 50% evenly distributed over 3 "hot spots"” and

the other 50% distributed over the remaining nodes. In both townships this case

resulted in about a 10% increase in variance and, in Lyndon, varian
by i5%.

ce increased

Clearly, the specilic effect depends on the localion of the "hot spols".

These results do indicate, however, Lhat uniform distributions might be reason-

able approximations. Other observalions include: a car can reduce mean trave]

lime but increase the variance by patrolling only "hot spots”, and a car can

reduce both mean and variance by patrolling only fast roads.

Inter-townships travel times under different probability distributions Wwere

calculated for trips from Lyndon to Manchester and from Manchester to Lyndon.

The results of these trials are presented in Table B.3. As in the intratownship

case, the variance was considerably more sensitive than the mean to changes in
the probability distributions For the case where 50% of the probability is con-
centraled on 3 "hot spols" a

Bution. abz

Considering the fact that it might be difficull to obtain estimates for the

probabililies that should be assigned to nodes, since these estimates would have

Lo come from subjective impressions (unless data collection procedures are
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TABLE B.2

INTRA-TOWNSHIP TRAVEL TIMES-SENSITIVITY ANALYSIS

MANCHESTER TOWNSHIP

istri i Distribution Mean Variance
lgflsct:;;butlon oflsCar (minutes) (Minutes)
Uniform Uniform 5.8 9.3
Uniform All calls at one 5.39 5.48
. node in center
of Township on
slow road
Uniform All calls at one b5.54 10.16
node in corner
of Townsiiip on
fast road
Uniform 50% of calls 5.66 7.92
concentrated
on three nodes
& 507% distribut-
ed over remain-
ing 36 nodes
90% of time on Same as car 511 B8.44
three nodes, distribution
507% ovi remain-
ing 36
Car always at 50% of calls on 4.28 6.46
central node on three nodes
slow road (node 50% ‘ on
is one of the remainder
three "hot
spots")
Car patrols only 50% of calls on 5.04 8.36

M52 & Austin
(fast roads)

three nodes
50% on
remainder
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changed) the assumption of uniform spalial distribution within a region is nol

unreasonable.

As in Lhe intratownship case, a patrol car can reduce both mean and vari-
ance by exclusively patrolling fast roads. Of course, such a procedure would

conflict with the need for performing thorough preventive patrol.

B.6 Switching Times Between Townships

One final issue concerns the time to travel from one township to another
during routine patrol. (i.e. when called for by the patrol-switch probabilities)
Clearly travel times are longer than in the cases where the patrol cars are trav-
eling at high speeds with "lights and sirens”. However, routine travel times
would not simiply be the high speed travel titnes multiplied by a constant. There

are two reasons for this. First, while a deputy might slow down from 90 to 50

mph on good roads he might only slow from 30 to 25 on bad roads, a much

smaller percentage decrease. Second, if a deputy decides to change townships
and is not in any extreme huarry, he is apt to choose the easiest route and avoid

driving rapidly on poor roads.

To characterize travel times during routine patrol, new speed classes for

roads were devised. Those are as follows:

Road Type Speed {mph)
Highways 556
Good Paved Roads 50
Good Gravel Roads 40
Urban Areas 20

Using Lhese roads speeds and the list of main routes belween townships obtained

during the interview of the depuly, single number estimates of inter-township
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travel times during routine patrol were made. These are presented in Table B.4.
To account for variability in conditions, etc., a variance equal Lo 157 of the mean

was assigned for each average travel time.
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TABLE B.3

INTER-TOWNSHIP TRAVEL TIMES- SEN SITIVITY ANALYSIS

LYNDON to MANCHESTER

Distribution of Car

Distribution of Call

in Bxit Township in Entrance Township Mean Variance
Uniform Uniform 22.8 15.2
Uniform All calls at one "hot 25.6 6.0
spot"
Uniform 80% of calls on one 24.1 13.1
"hot spot"
50% on remaining 38
nodes
Uniform 50% of calls on three 22.9 12.7
"hot spots”
50% on remaining 36
nodes
50% of time on 50% of calls on three e4.4 8.8
three "hot spots" "hot spots”
50% on remaining 50% on remaining 36
40 nodes nodes
All time on one 50% of calls on three 23.5 6.7
node, central "hot "hot spots”
spot” 50% on remaining 36
nodes
Car patrols only Uniform 19.8 12.0
M52 (fast roads)
Car patrols on 50% of calls on three 20.2 9.5
M52 (fast roads) "hot spots" .
50% on remaining 38
nodes
Uniform Uniftorm 22.8 15,2
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—TABLE B.3—

Uniform

507% on three "hot
spots"

50% on remaining
36 nodes

Car patrols only
M52 and Austin
(fast roads)

Car patrols on
M52 and Austin
(fast roads)

B1

CONTINUED

50% of calls on three
"hot spots"

50% on remaining 40
nodes

50% of calls on three
“hot spots"

50% on remaining 40
nodes

50% of calls on three
"hot spots"
507 on remainder

Uniform

23.6

24.0

14.5

12.0

8.7

9.5

o
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TABLE B.4

INTER-TOWNSHIP SWITCHING TIMES

10

11

1 2 3 4 5 B
: 7
g 0 8.4 0 1.8 | 101 | 7.6 ::8 2296 1]504 21c] X
; . . . . . 14
g (1631 7oa @c.)s) LS L) (22 | (34) | 23) | (30) (218 s%
} . 1.0 | 152 | 21.8 | 278 | 2 '
0 . } 3.0 | 28.0 )
8 (112.18) 200 (0.;5) {(2.3) | (3.3) | (4.1) | (38.4) | (4.2} (127.?8)
: . 16.4 | 868 | 8.6 | 24.2
0 . 17.8 | 17.8
(2(.)0) (063) 8o2 (25) | (1.3) 1 (1.3 | (3.6) | (27) | (2.7)
} 0 86 | 150 | 7.8 | 12.8 | 21.2
0 8 (162) o ltuo | a2l @] (3.2
8.0 0 0 138 | 8.6 | 12
. ) .0
0 8 (lol.aaL 0 0 21) | (1.4) | (1.8
; 0 0 198 | 9.8 | 120
0 (1.8) 0 0 (20 | (1.4 | (1.8
g 0 8.4 0 50 | 13.4
0 {1.3) 0 {0.8) (2.0)
0 0 4.2 0 3.1
0 0 (0.6) 0 (0.5)
0 12.0 | 54 0
0 (1.8) | (0.8) 0
0 0 8.4
0 0 (1.28)
0 0
0 0
0
0

1-LYNDON 4-SYLVAN  7-SHARON 10-MANCHESTER

2-DEXTER  5-LIMA 8-FREEDOM  11- TWAT
3-WEBSTER  6-SCIO g-LODI ié-gﬂ?ﬁﬁ}‘fwmm
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APPENDIX C: SIMULATION MODEL

A simulation model developed in the course of this study used the SIM-
SCRIPT simulation language. SIMSCRIPT is a high-level simulation language that
has built-in features to facilitate the modeling of systems with inter-event times
that follow specilied distributions. This police patrol simulation model is an
event simulation thal assumes exponential inter-call times, exponential service
times, and Frlang travel times. The model runs for a specified amount of (simu-
lated) time, generales nealls” and "service times" according to the above distri-
bulions, and tallies statistics on the performance of the police patrol system for
thal particular run.

A number of structural assumptions, in addition to the inter-event time dis-
tribution, are built into the model. The model allows three types of calls
(immediate, expedite, and unfounded), each with its own mean service time.
The model assumes that cars patrol for an amount of time (specified by the
user) in a township and then switch to another township according to user-
specified probabililies.

Each township has one car assigned to it, When a call for service comes, the
car assigned to that township services it if the car is not busy. 1f the car
assigned to the township requiring service is busy, the behavior of the model
depends on the type of call:

a) Expedite priority calls are queued when the car serving their township
is busy. They are then serviced in the order they were received when

the car becomes available,

b) Imrnediate priority calls preempt the car assigned to the township

from servicing any non-immediate priority calls. If the car is already
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servicing an immediate priority call, then the closest* available car

from another township is assigned to the immediate call.
The fpllowing input data are required for the simulation model.

« Number of Cars

Nurmber of Regions (Townships)

Call Arrival Rales

Service Time Means
« Car Assignments to Townships
* Fraction of Calls of Fach Type
« » Patrol Stay Time Mean
* Simulation Batch Length.

The input dala was formatted using the Michigan Terminal System EDITOR,

but an interactive front-end program was developed to compleiment the simula-

tion model.

A SIMSCRIPT listing of the simulation model is available from the authors.

4”Close:st" is de}’i{led in terms of the average travel time from the township containing the car to
the township containing the call. Because travel times are not deterministie, it is possible that
another car might turn out to have a shorter actual travel time. Howsver, since the model only

"knows" t‘ng township containing each car and not the location of the cars within the townships, aver-
age travel time is used. -
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APPENDIX D: PARALLEL ITERATION FOR MULTIPLE SERVERS

This appendix deals with the Parallel lteration for Multiple Servers (PIMS)
approach to the analysis of Markovian service systems. The method is an
approximate one, and depends upon an assumption of independence among
servers (in the case of this report, police patrol units) that in fact does not exist.
Nevertheless useful results are attainable, ones that hold intuitive appeal and
moreover have been borne out by numerical experimentation using the SWAP

model.
D.1 General Approach.

We assumie that there are K service units, each of which can be in one of
M states. Transition between states are governed for the k** unit by the Mar-
kov transition matrix P®), k =1,2, ' ' - K, producing state occupancy probability
vectors n‘®) . In order to account for interaction among the service units, some
of the elements of P®) explicitly depend upon the state occupancy probabili-
ties of the other units, that is P®) = p&)n) 7@ ... 5k)]  When steady-state
probabilities are of interest, the problem reduces to finding the simultaneous

solutions Lo

n®)pk) = qlk) =12, .. K

D.1
n®le =1 k=12 K (D-1)

where e = (1,1, - ,1)¢.

The iterative method of solution is to define m{") to be the solution to
miIAk) = n6) g =12 - - Kin=12 " (02)
mikle =1 '
where

AR = PO [n), w® . omlE)] k=12 Kin=12 (DJ)

Y T T
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The iteration starts with an initial set of vectors w$h, m$, nd¥) . Bquation

(k) for k=12 —""K.

(D.3) is used lo corﬁputo. A Then equations (D.R) are However, Lhe approach is the same.

(1), n®, n{)  which are used in (D.3) to find AfFY D.2.1. Exact Solution

solved to find ete.

k=12 K
a) i) > n®) as 1 o =, independent of wde) . “ 0 = no servers busy
b) The convergence of a) is rapid enough, and regular enough, Lo allow - 1 = server 1 busy
: pumerical computation of n*) by a sufficiently small number of ) Zissr:zrzbusy
,‘ iterations ‘ oth servers busy
c) n*) canbe interpreted to be steady-state probabilities of interest to - The transition rute matrix” is:
a policy maker. i . 1
In the following sections these assertions are examined from both an — 0] * A f 103
analytical and computational perspec\;ive. in the context of two simple exam- B | R = 1] o . 02 \
ples. For these examples it is possible to obtain analytical solutions to both _ 2 | ua 0 . N
exact representations and PIMS-like approximations. Comparisons between the _ Bl o m u *
two solution melhods show the advantages and potential problems with the
approach. ' (Note thal a discrete time transition matrix P may be obtained fr;m the rate
1.2 Example 1: Two Servers. two regions, 0o queues. I matrix by mulliplying all off-diagonal terms by the transition period A and
+ vogions. The rate of calls for - then appropriately making the diagonal terms such that row sums are one.)

sider a system with two servers and lw

.
. ( . f

is A, the total rate is thus A=A +Ag. The (exponential) service

1 to service. The policy is such

region 4
Rm=0,me =1)are

rate for server i iS [ and there is no trave

Lhat if both servers are free (i.e. not servicing a call) then server i responds to

he other services any arriving

o

calls from region i . If one server is busy, then t

call. 1f both servers are busy, then an arriving call is "lost”.

This system is most convenicntly represented as a continuous parameter

Markov process (rather than as a discrete process 88 discussed in section D.1).

v . %n all rate matri ‘
: ices, i N
row terms, ces the:T diagonal terms - indicated by * — are the negative sum of the oth
other -

T B N T
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PXEITIN A2+ U
n(o)=[1 . () pA R

HRAHL) | Mz
2
w(1) = 2;\1“ {k :L,:lm] (0)
. 2 (D.4)
n(2) = 27~1+u l)‘ L‘:AZ] m(0)

n(B) = [n(1)+n(2)] %

where g = g+tie . These are the desired variables needed to evaluate the
system’s performance.
D.2.2. PIMS Solulion

The PIMS approximation treats the two servers separately. In particular,

server 1 is represented by a two-state Markov process with states

F, = server 1 is free

B, = server 1 is busy ,
and b, = prob {/7;] = 1—prob {/}

Similarly, server 2 is assumed to be in one of two stales

Fy = server 2 is free
By

and by = prob {Bp} = 1—prob {Fz} . We see that &, and by are variables of

server 2 is busy

1

interest to a decision maker.

Since an emply server 1 will receive calls from region 2 only when server 2
is busy, Lhe transition rate matrix for server 1 is, according to the PIMS approxi-

mation,

89
Fy B,
R(l):- Fl * Al‘{'b 2}\2
By | *

Similarly {or server 2 the rate matrix s

. Fy B2
R®=  Fy | * Ngtb )\
By | pe *

The variables of interest, b, and bz, can now be determined by simultane-

ously solving the steady-state equations

(b, 1-b,)RM = (0, 0)
(bg, 1-bz)R® = (0, 0)

which yield:

b, = —————
! [L1+Al+bg>\z (D5a)

Aatb A

HatAg+b Ay (D-5b)

ba

Thesge non-linear equations in this simple example can be, in fact, solved
analytically since equations (D.5) produce quadratic equations in b, or bp.

The more general iterative approach te the solution of equations (D.5)

makes use of the fact that we can define the sequence b,(n) and

by(n), n=0,1,2 -+ with initial values &,(0), bg(0), so that
_ A+ba(n —1)N
by(n) = - 2-(- ) 2 (D.6a)
_ Ao+b (n—1)A
ba(n) = ——? L (D.6b)

[Lz'*'xz"‘gl(n "‘1))\1

If equations (D.5) represent a contraction mapping taking the unit interval

into itself, then the contraction mapping theorem (see, for example, Edwards,

: .‘(r" T
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C.H., Advanced Calculus of Several Variables, Academic Press p.181) gives:

Em by(n)>b, lim by(n) - b,
“+oo n o

The conditions under which (D.5) is a contraction mapping are readily found by

noting that by(n) can be gotten from (D.6), by solving

b"' (TL+2) - 7+ﬁgl(n)
! O(+651('n)

where:

o= )\17\2 + 7\1[.1;2 + >\22

B =A%+ ANy

Y = NAg + Mg + A+ Mgy + gty
g = }\12 + AjAg + }\1/1,1

The equation

_ a+fz
J(z)= y+oz

is a contraction mapping when |By~aé| <?, a condition which can be shown to

hold for all A;, u; = 0.
D.2.3. Comparison of Exact and PIMS Solution

The accuracy of Lhe PIMS approximaté’ solution caﬁ be demonstrated by
comparing output Variz;bles of interesi obtained from solutions of (D.4) with
(D.5). A first comparison involves the var)\i\\é\xble prob. {server 1isbusy}. This
s b, in the PIMS approximation, and is (1) + m(B) in the exact soluﬁion.
Numerical analysis shows that the percent difference between these is less than
0% for a wide range of values of A\; and K; , including all those typical of real
service syslems that would be Ioé.d-sharing between regions (i.e.
OR=A/M<b, 0.5y /puy=2). In particular, when A, = Ay and My = Mo

the mazimum error of 4.5% is attained when A/ =1, and this falls to less than

91

3% for A/ u<5.

In order to compare computations of prob. { both servers are busy }, which
equals m(B) in the exact model, it is necessary to examine the dependence
between the servers implicit in the PIMS approach. In particular

prob { both servers busy ]} = prob { server 1 busy }.

prob { server 2 busy | server 1 busy }

AatA,

XA ie >0

=0,

The first term in equation (D.7) ci,bmes directly from the simultanecus solutions
of equations (D.5). The second term comes from the second equation of (D.5)

with b, = 1 (i.e. the "given' that server 1 is busy).

Similarly, it is possible to compare 7(0) of the exact solution to

prob { both servers are free | = prob { server 1 free }.

prob { server 2 free | server 1 free }

Az

e (D.8)

={1- {71)

Again, numerical computation shows that both (b.’?) and (D.8) differ from the
exact values ( 7(B) and 7(0)) by less than 5% for all reasonable values of A,
and u; .

Thus, even in this case where arrivals are lost to the system when both
se,r\}“ers are busy -- a case that will exacerbate errors introduced by the PIMS

independence assumption ~- the results are definitely usable for policy purposes.
D.3. Example 2: Two servers, two regions with queues.

We now compare the exact and PIMS approach in the case of two servers

and two regions, with queued calls allowed -- the queue being '"shared" between

":,9"
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the two servers. Again (for convenience of discussion) there is no travel to ser-
vice. If both servers are [ree lhen server i1 responds lo calls from region 7 . If
one server is busy then the other services any arriving call. If both servers are
busy, then arriving calls enter a queue from which they are serviced by the next

server Lo become free.
D.2.3.1. Exact Solution

For the exaci solution, consider the states:

f ' 0 = no servers busy
la = only server 1 is busy
1b = only server 2 is busy

2

n = both servers are busy, (n—2) calls are in the queue, n = 3,4, - - -

both servers are busy, none in queue

and againlet A = Aj + g, 0 = g + s

The transition rate matrix is

0 la 1b 2 3 .
0 * A Az 0 0
R= 1a iy . 0 A 0
, 1b iz 0 . A 0 :
Q 0 He Ha * A 0
3 0 -0 0 /5, * A

and the resulling steady-state probabilities are

(D.9)
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2 2 -1

_ L ABHpA,  ABHuAg
o) = [1 Paneem T T ke

_ 1 }\2-0-;1)\1
n(la) 2A+p[ o ]n(o)

i }\2+u)\2

n(iy) = e [ o n(0)

We note that two variables of interest are

prob. § server 1 is free } = w(0) + mw(1b)

prob. { server 2 is free } = n(0) + m(1la)

D.2.3.2. PIMS Solution

Again we force interdependence between the servers to appear only as a

adjustments to the arrival rate "seen" by each server. The state space for

server 1 is:

]
H

server 1 [ree

3
i

with an associated rate matrix;

0 1 2
0 . A b g 0
1 7 * Abe
RO = 2 0 ™ * A
3 0 “y

- smpoo0 W

server 1 busy, (n~1) calls are in the queue,

Abg

[P
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where by = prob § server 2 is busy J.

A similar argument hclds for the rate matrix R® of server 2, with of

course the subscripts properly adjusted. Steady-state solutions then give

}\1+b 2)\2
Uyt +b z(Ag—A)

b, = prob { server 1is busy } =

Aat+b oA,
tatAgtb (A —Ag)

b, = prob { server 2 is busy ] = (D.10)

Again, although it is easy Lo reduce equations (D.10) to two separate qua-
dratic equations, one in b, and one in by, it is possible to solve them itera-

Lively by defining

)\1+52('n "‘1)}\2

b,(n) = =
fy+A b (n —1)(Ae—Ay)
¢ Hzt A+ (n —1)(A—Ae) ‘

and using initial values b,(0) and b,(0). These also represent a contraction

mapping, and so convergence o the solution of equations (C.10) is assured.
D.2.3.1. Comparison of Exact and PIMS Solution

Numerical computations were performed to compare results obtained from
the exact solutions (D.9) and PIMS approximations (D.11). The variables of

interest are

L=
41

:“?
A
JeP

-

b1

RN
=~ R
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variable exact PIMS
prob {server 1 is busy] 1—m(0)—m(1b) b,
prob {server 2 is busy] 1—m(0)—m(1a) by
prob {both servers are {reej n(0) Lo
(1-b,) or
Mot Az
[t
1-b
( z)[ﬂl*‘)\l]
Table D.1

The PIMS computation of the probability that both servers are free is once more
obtained from prob {server 1 is free} - prob { server 2 is free | server 1 is freej.
Again, the PIMS approximation is quite accurate. Errors are less than 3% for
05<u/puz<2 and 0.2=<A/A=5, (as long as both A/ p <1 and

Ao/ iz < 1, the usual conditions for stability).
For the special case A; =\ and u; = pg, equations (D.9) reduce to the

well known M/ M/2 queue results

m(0) = %—:—%

m(la) = w(1s) = pn(0)

m(n) = 2p™w(0)

where p =A/p. The PIMS equations (D.10) give b, = by =p . Using these in
table D.1 shows that, for the variables of interest listed above, the PIMS
approach gives exact solutions,

Thus in the case where queueing is possible, the PIMS approximation is

extremely attractive, producing accurate or even exact results,

f(“[e} e
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D.4. Convergence of PIMS and Selection of Initial Conditions.

For the full scale SWAP model used in section 5 of this report, the iterative
golution method was necessary due to the size of the state space involved. Two
praclical issues remain to be completely resolved, although our numerical

experience to date has been encouraging.

The first issue concerns the rate of convergence of the iterations. For a
wide variety of inpul data, our experience has been that at most 5 or 6 itera-
tions were needed to have all m{¥) sufficiently close to n,(,’i)l so that conver-
gence is assured. Although the theoretical basis for this rapid convergence, and
results guaranteeing error bounds, still remain to be established, we are satis-
fied that the approach is sound and applicable to well-balanced patrol systems
(that is systems which a priori attempt to roughly equalize total call rates per
responding unit).

The second issue involves the choice of initial conditions né") . An unfortui-
tous choice may effect the type of éonvergence to wlk) (whether monotone or
oscillatory), and therefore could effect the accuracy with which values of

7, (k) , gotten at the end of an "absolute difference" termination criterion,
reflect those of n®*). Numerical experimentation has shown that results are
sometimes sensitive to the initial conditions. However; by judiciously selecting a

number of differenl initial conditions and comparing results at convergence, it

is possible to rapidly "bracket” the true solutions to equations (D.1) to any ‘

degree of accuracy. In particular, selecting for initial conditions ones that

imply either of the extremes

a) prob {unit k& is patrolling § = 1
or b) prob {unit k is serving § = 1

. .
it 5 78 . : i i K g B s 2 |
: 1 o iy S 1 A . PO SR R L 1
i - i [ i RN ‘
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produces a good "bracket" of the values of n{®) .

s
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APPENDIX E: SWAP COMPUTER PROGRAM

The SWAP program uses a Markov chain that has B states for each region for
each car. The B states are patrol (PATR), expedite® travel (ETRV), immediate
travel (ITRV), expedite service (ESRV), expedite service with a queue (ESVQ),
immediate service with a queue (ISVQ), unfounded service (UNFS). As described
in section 5, the Markov models for each car are run in parallel until the entire

system reaches equilibrium.

The input data for the SWAP program is entered interactively by the user.

The required data items are:
¢ Number of Regions

* Number of Cars

Travel Time Means (minutes) from each region to all others.

Hourly call rates of each call type in each region

* Mean service times of each call type in each region

Hourly patrol switching probabilities

Assigned coverage of each car to each region

The SWAP program echoes the input data and copies both input and output

into a file. An example of a file from a run for Washtenaw County follows.

A listing of the FORTRAN code for the SWAP program is also included in this
appendix.

8This notation is due to Washtenaw County's use of the terms "immediate” for "emergency", and
"expedite” for “routine”.

E.1

Sample Input and
Output from the SWAP

Computer Program




,

i

TEST12.4
NUMBER OF REGIONS
12
NUMBER OF CARS
4
TRAVEL ALPHA VALUES
0.68 0.93 1{1.26 0.46 0.87 1.38
0.93 0.64 0.76 0.48 0.59 0.82
1.26 0.76 0.56 0.67 0.68 0.61
0.46 0.48 0.67 0.39 0.66 1.09
0.87 0.59 0.68 0.66 0.66 0.79
1.38 0.82 0.6t 1.09 0.79 0.7%
0.95 0.94 1.07 0.46 0.78 0.98
1.19 1.33 1.04 0.8B6 0.65 0.78
1.42 1.23 0.95, 1.10 0.76 0©.61
1.50 (.41 1.7 0.82 1.73 1.74
1.64 1.53 1.26 1.00 1.40 0.96
{.70 1.34 1.18 1.08 1.0t 0.85
TRAVEL TIME K VALUES
4 8 19 5 10 24
) 3 6 7 6 9
19 G 3 i3 8 -]
5 7 13 3 6 15
10 2 8 6 4 7
24 ] 6 18 7 4
18 20 23 5] 11 19
24 22 i3 13 7 10
31 20 16 20 S [
34 35 51 16 25 41
43 36 30 25 27 19
61 36 28 35 21 15
HOURLY CALL RATES
REGION EXPEDITE IMMEDIATE UNFOUNDED
LYND 0.038 0.017 0.003
DEXT 0.070 0.032 0.005
WEBS 0.041 0.0189 0.003
SYLV 0.046 0.021 0.004
LIMA 0.036 0.017 0.003
SCIO 0. 197 0.091 0.015
SHAR 0.012 0.006 0.001
FREE 0.015 0.007 0.001
LODI 0.038 0.017 0.003
MANC 0.020 0.008 0.002
BRID 0.0089 0.004 0.001
SALI 0.021 0.010 0.002
MEAN SERVICE TIMES
REGION EXPEDITE IMMEDIATE UNFOUNDED
LYND 27.36 48 .12
DEXT 27.36 48.12
WEBS 27 .36 48,12
SYLV 27.36 48.12
LIMA 27.36 48.12
SCIO 27 .36 48.12
SHAR 27.36 48 .12
FREE 27.36 48. 12
LODI 27.36 48.12
MANC 27.36 48. 12
BRID 27.36 48.12
SALL 27.36 48,12

HOURLY PATR

GL SWITCHING PROBABILITIES
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DEXT
WEBS
SYLV
LIMA
SCIO
SHAR
FREE
LoDi
MANC
BRID
SALI

|

a0t




POLICE PATROL MODEL OUTPUT
CAR 1 FRACTION OF TIME BY ACTIVITY
REGION PATR ETRV ITRV ESRV ESVQ ISRV ISVQ UNFS ALL
LYND 0.181 0.008 0.003 0.014 0.001 0.011 0.002 0.000 0.220
DEXT 0.214 0.010 0.003 0.026 Q.002 0.020 0.003 0.000 0.280
| WEBS 0.00% 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
- SYLV 0.187 0.011 0.004 0.017 0.002 0.013 0.002 0.000 0.246
| LIMA 0.201 0.008 0.003 0.013 0.001 0.011 0.002 0.000 0O.241
f SCIO 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
' SHAR 0.001{ 0.000 0.000 0.0 0.0 0.000 0.C00 0.0 0.002
¢ FREE 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
LODI 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
MANC 0.001 0.000 0.000 0.0 0.0 0.000 G.000 0.0  0.002
BRID 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
; SALI 0.00%1 0.001 0.000 0.0 0.0 0.000 0.000 0.0 0.002
: ALL 0.805 0.041 0.013 0.070 0.007 0.055 0.008 0.C01 1.000 =
]
| CAR 2 FRACTION OF TIME BY ACTIVITY I
| REGION PATR ETRV ITRV ESRV ESVQ ISRV ISVQ °UNFS ALL
i LYND 0.001 0.000 0.000 C.0 0.0 0.000 0.000 0.0 0.002
} DEXT 0.002 0.000 u.000 0.0 0.0 0.001 0.000 0.0 0.002
WEBS 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
SYLV 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 G.002 E;
i LIMA 0.001 0.000 0.00C 0.0 0.0 0.000 0.000 0.0 0.002 )
| SCIO 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
| SHAR 0.178 0.005 0.002 0.005 0.000 0.004 Q.000 0.000 0.195
f FREE 0.194 0.004 0.002 0.006 0.000 0.005 0.000 0.000 0.212
LODI 0.001 0.000 0.00C 0.0 0.0 0.000 0.000 0.0 0.001 B
MANC 0.179 0.004 0.001 0.008 0.000 0.006 0.000 0.000 0.200 B
BRID 0.166 0.003 0.001 0.004 0.000 0.003 0.000 0.000 C.177 4
SALI 0.180 0.005 0.002 0.008 0.000 0.007 0.000 0.000 0.204 k
ALL 0.906 0.023 0.008 0.032 0.001 0.028 0.002 0.001 1.0V0 o
CAR 3 FRACTION OF TIME BY ACTIVITY i
REGION PATR ETRV ITRV ESRV ESVQ ISRV ISVQ UNFS ALL
LYND 0.002 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
DEXT 0.002 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.003
WEBS 0.272 0.010 0.003 0.016 0.0L01 0.013 0,001 0.000 0.315
SYLV $.002 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
LIMA 0.002 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
SCIO 0.290 0.008 0.003 0.024 0.000 0.016 0.000 0.000 0.340
SHAR 0.002 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
FREE 0.002 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
LODI 0.284 0.010 0.003 0.015 0.001 ©.011 0.001 0.000 0.326
MANC 0.002 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
BRID 0.002 0.000 0.000 0.0 0.0 $.000 0.000 0.0 0.002
SALI 0.002 0.000 0.000 0.0 0.0 €.000 0.000 0.0 0.002
ALL 0.860 0.029 0.010 0.054 0.002 0.042 0.003 0.001 1.000
CAR 4 FRACTION OF TIME BY ACTIVITY
REGION PATR ETRV ITRV ESRV ESVQ ISRV ISVQ UNFS ALL
LYND 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
DEXT 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.002
WEBS 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
SYLV 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001 o
LIMA 0.001 0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001 ¢
SCIO0 0.844 0.018 0.007 0.062 0.001 0.053 0.001 0.001 0.887 i




SHAR
FREE
LOD1
MANC
BRID
SALI
ALL

.001
.001
.001
. 001
.001
.001
.854

COO00O0OCQCO

REGION  EXPE
LYND 16
DEXT 16
WEBS 16
SYLV 17
LIMA 15
5CI0 8
SHAR 20
FREE 16
LODI 16
MANC 16
BRID 16
SALI 21

AVERAGE TIME

REGION  EXPE
LYND 3
DEXT 3
WEBS 2
SYLV 3
LIMA 3
SCIO !
SHAR 1
FREE 1
LoDn1 2
MANG 4
BRID 1
SALI 1

PROBABILITY TRAVEL

REGION
LYND
DEXT
WEBS
SYLV
LIMA
sCI0
SHAR
FREE
LODI
MANC
BRID
SALI

0.000 0.000 0. 0.0 0.000 0.000 0.0 0.00f
0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
0.000 0.000 0.0 0.0 0.000 0.000 0.0  ©.00f
0.000 0.000 0.0 0.0 0.000 0.000 0.0 (.00t
0.000 0.000 0.0 0.0 0.000 0.000 0.0 0.001
0.000 0.000 0.0 0.0 0.000 0.C00 0.0 ©.001
0.019 0.007 0.062 0.001 0.055 0.00% 0.00t 1.000
AVERAGE RESPONSE TIME TO EACH REGION (MINUTES)
DITE IMMEDIATE  UNFOUNDED
.264 10.368 16.264
.335 10.088 16 1335
.762 11.076 16.762
.583 11.182 17.583 -
.602 9.408 15,602
.780 6.405 8.780
.651 14.675 20.651
.525 11.446 16.525
.539 10.846 16.539
.840 11.929 16.840
.231 11.414 16.231
191 15,106 21.191
IN QUEUE (MINUTES)
DITE IMMEDIATE  UNFCUNDED
.612 0.000 3.612
,612 0.000 3.812
.615 0.000 2,615
.612 0.000 3.612
.612 0.000 3.612
., 354 0.000 0,354
.768 0.000 1.768
.768 0.000 1.768
.615 0.000 2.615
.768 0.000 1.768
.768 0.000 1.768
.768 0.000 i.768
TIME TO IMMEDIATE CALLS IS LESS THAN OR EQUAL TO
MINUTES
6 9 12 i8 18 21 24 27
0.217 0.506 0.757 0.90! 0.964 0.988 0.996 0.999
0.268 0,509 0.720 0.855 0.929 0.966 0.985 0.993
0.282 0.560 0.797 0.926 0.977 0.993 0.998 1.000
0.188 0.432 0.657 0.812 0.304 0.954 0.980 0,991
0.236 0.523 0.766 0.907 0.969 0,991 0.997 0,999
0.542 0.813 0.933 0.977 0.993 0,998 0.999 1,000
0.134 0.380 0.661 .852 0,946 0.882 0,995 0.998
0.173 0.404 0.645 0.818 0.916 0.964 0.986 0.995
0.283 0.571 0.804 0.929 0.978 0.994 0.998 1.000
0.208 0.505 0.765 0.908 0.968 0.989 0.987 0,999
0.178 0.445 0.704 0.871 0.953 0.985 0.995 0,999
0.157 0.418 0,676 0.840 0.926 0,968 0.987 0.995

3
0.036
0.081
0.076
0.033
0.039
0O, 141
0.020
0,033
Q.060
0.034
0.025
0.024
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SWAP Program

Listing

APPENDIX I
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C THIS PROGRAM ACCEPTS INPUT DATA FOR THE TRANSITION MATRIX FOR THE
C~CAR MARKCV MODEL WITH THREE TYPES OF CALLS AND QUEUEING.
DIMENSION XLAM(20.3).XCHNG(20.20‘5).TTMN(20,20).SRVMN(20.2)
DIMENSION P{5,160,160),P1(160),TLAM(3,5),A(20,20)
DIMENSION COVP(5,20).TTLAM(5).BUSI(S).BUSY(S).PROB(S.160)

c

OO0O000O0O0O000000a000000000GO0000O000

-

DIMENSION COVI(5.20).COVE(5.20).RPROB(5.20).APROB(5,20).TCPROB(S)

DIMENSION TLAMP(3,5),TTLAMP(5),0BUSY(5),0BUSI(5)
INAME (20)

DIMENSION NX(32,4), ESTA(3.5,20),
INTEGER DATA(4),KP(20,20)
DATA 1YV/'Y v/

COMMON /X 1/XLAM,XCHNG, TTMN, SRVMN,P,PI,TLAM,DATA ,N.COVP NC,
{ BUSY,BUSI,COVE,COVI,ESTA,TLAMP, TTLAMP NX, M, PROB

COMMON /X2/INAME, A, KP

XLAM - CALL ARRIVAL RATES 1{- EXPEDITE
2~ IMMEDIATE
3- UNFOUNDED

XCHNG - SWITCH PROBABILITIES

TTMN - MEAN TRAVEL TIMES

SRVMN - MEAN SERVICE TIMES 1- EXPEDITE
2- IMMEDIATE

P - TRANSITION MATRIX
PI - LONG RUN PROBABILITIES

PINEW - WORK VECTOR FOR LONG RUNS

TLAMP - CAR C'S DRIGINAL RATES FOR EXP, IMM, AND UNF CALLS

TLAM - CAR C’S TOTAL EFFECTIVE RATES FOR EXP, IMM, AND UNF CALLS

TTLAM - CAR C'S TOTAL EFFECTIVE RATE FOR ALL CALLS

COVP(C,J) - COVERAGE FOR CAR C IN REGION J

DATA - NAME OF DATA SET TO WRITE TO

START INPUTING DATA

CHOOSE TO MODIFY OR CREATE A NEW FILE
WRITE(6,1)

FORMAT(’ DO YOU WANT TO MAKE A NEW D

et AN TLE

ATASET ?7')

901
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C THIS PROGRAM ACCEPTS INPUT DATA FOR THE TRANSITION MATRIX FOR THE

C C-CAR MARKOV MODEL WITH THREE TYPES OF CALLS AND QUEUEING.
DIMENSION XLAM(20,3),XCHNG(20,20,5).TTMN(20,20),SRVMN(20,2)
DIMENSION P(S5,160,160),P1(160),TLAM(3,5),A(20.20)
DIMENSION COVP(5,20),TTLAM(S) ,BUSI(5),BUSY(5),PROB(5, 160)
DIMENSION COVI(5,20),COVE(5,20).RPROB(5,20),APROB(5,20),TCPROB(S)
DIMENSION TLAMP(3,5).TTLAMP(S),0BUSY(5),0BUSI(5)
DIMENSION NX(32,4), ESTA(3.5,20), INAME(20)
INTEGER DATA(4),kKP(20,20)
DATA 1V/'Y ‘/

COMMON /X 1{/XLAM,XCHNG, TTMN, SRVMN,P ,PI,TLAM,DATA,N,COVP,NC,
{1 BUSY,BUSI,COVE,COVI,ESTA,TLAMP,TTLAMP ,NX M,PROB
COMMON /X2/INAME, A, KP
XLAM ~ CALL ARRIVAL RATES 1- EXPEDITE
2- IMMEDIATE
3- UNFOUNDED
XCHNG - SWITCH PROBABILITIES
TTMN - MEAN TRAVEL TIMES
SRVMN - MEAN SERVICE TIMES 1{1- EXPEDITE
2- IMMEDIATE
P - TRANSITION MATRIX
PI - LONG RUN PROBABILITIES
PINEW - WORK VECTOR FOR LONG RUNS
TLAMP ~ CAR C’S ORIGINAL RATES FOR EXP, IMM, AND UNF CALLS
TLAM - CAR C’S TOTAL EFFECTIVE RATES FOR EXP, IMM, AND UNF CALLS

TTLAM - CAR C’'S TOTAL EFFECTIVE RATE FOR ALL CALLS

COVP(C,J) - COVERAGE FOR CAR C IN REGION J

DATA - NAME OF DATA SET TO WRITE TO

OOOOOOOOOOOODOOOOCOOOOOOOOOOOO

C __________________________________________________________________
C
C START INPUTING DATA
C
C CHOOSE 70 MODIFY OR CREATE A NEW FILE
WRITE(6,1)
1 FORMAT(’ DO YOU WANT TO MAKE A NEW DATASET ?77)
READ(5,2) IM
2 FORMAT(A1)

IF(IM.EQ.1Y) GO TO 5
CALL CHNGDT
GO TO 214
5 CONT INUE
WRITE(G, 10)
10 FORMAT(’ INPUT THE NUMBER OF REGIONS (12)°)
READ{S,11) N

201

W
W

Y Y Y
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61 c N - NO OF REGIONS
62 o
63 14 FORMAT(I2)
64 c
65 C NC - NUMBER OF CARS
66 c
67 WRITE(6,40)
68 40 FORMAT( 'ENTER THE NUMBER OF CARS (I2)')
63 READ(5,11) NC
70 c
71 C LOOP THROUGH ALL REGIONS
72 v
73 DO 20 1=1, N
74 c
75 C START CALL RATE INPUT
76 C
77 WRITE(6,12) I
78 12 FORMAT(’ ENTER THE EXP, IMM, UNF CALL RATES PER HOUR IN REGION ’,
i 79 1 12,' (3F5.3)")
7 80 READ{S, 13) (XLAM(I,J),J=1,3)
’ 81 13 FORMAT(3F5.3)
82 c
83 C START TO INPUT SERVICE MEANS
84 c
85 WRITE(6,14) I
86 14 . FORMAT(’ ENTER THE EXP AND IMM SERVICE MEANS IN ‘,12,
87 1 ¢/ IN MINUTES (2F6.2)')
88 READ(5, 15) SRVMN(I,1),SRVMN(I,2)
89 15 FORMAT(2F6.2)
80 c
91 C INPUT PATROL SWITCH PROBABILITIES
92 c
a3 DO 201 K=1,NC
a4 Do 201 J=1,N
a5 WRITE(6,16) K, I,J
96 16 FORMAT(’ ENTER THE ONE-HR PATROL SWITCH PROBS FOR CAR ’,12,
a7 1 ’ FROM “,12,’ TO ’,12, ' (F5.3)')
98 READ(5,17) XCHNG(I,J,K)
99 17 FORMAT(F5.3)
100 201 CONTINUE
101 c
102 c INPUT COVERAGE
103 o _ ,
104 DO 203 K=1,NC
105 WRITE(6,161) K,I
106 161 FORMAT(‘ ENTER FRACTION COVERAGE FOR CAR ‘,I2,’ IN REGION ’,12.,’ (F5.3)")
107 READ (5,17) COVP(K,I)
108 203  CONTINUE
109 C
110 C INPUT THE ALPHA VALUES FOR TRAVEL TIMES
111 c
112 DO 20 J=1,N
113 WRITE(6,18) I,J .
114 18 FORMAT(’ ENTER THE ALPHA VALUES FOR TRAVEL TIME FROM ‘,12,' 70 ’,12,
115 1 / IN MINUTES(F6.3)’)
g 116 READ(5,19) A(I,J)
\\ 117 19 FORMAT(F6.3)
118 20 CONTINUE
119 c
120 C INPUT K VALUES FOR TRAVEL TIMES

201
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124 c
122 DO 2001 J=1,N
123 WRITE(6,2002) I,dJ
124 2002 FORMAT(' ENTER K VALUE FOR TRAVEL FROM ‘,12,‘ 7O /,12,
125 1 4 IN MINUTES(12)*)
126 READ(S,2003) KP(I,dJ)
127 2003 FORMAT(12) .,
128 2001 CONTINUE
129 (o
130 ¢ INPUT REGION NAMES
131 C
132 Do 2020 I=1,N
133 WRITE (6,2010) 1
134 2010 FORMAT {’ ENTER 4 LETTER NAME FOR REGION ’,12)
135 READ (5,2011) INAME(1)
{36 2011 FORMAT (A4)
137 2020 CONTINUE
138 c
139 21 CONT INUE
140 o
41 C
142  roreem e e e m—————— o e o e e e e e
143 c
144 € CHOOSE DATA SET
145 c s
; 146 G mrrmmm e m e e e e e e B e e e o
147 c @
148 WRITE(6,3000)
149 3000 FORMAT(' DO YOU WANT TO PUT THIS ON A NEW FILE 7')
160 READ(5,3001) NK
151 3001 FORMAT(A1)
152 IF(NK.NE,IY) GO TO 3005
1563 WRITE(6,301)
154 301 FORMAT(‘ WHAT FILE WILL THIS BE ON ?°)
155 READ(5,302) DATA
156 302 FORMAT (4A4)
157 Cc
168 C ASSIGN 2 TO THE CHOSEN FILE
159 c
160 CALL FTNCMD('S$CRE 7',6,DATA)
161 3005 CONTINUE
o 162 CALL FTNCMD(’ASSIGN 2=7’/,10,DATA)
5, 163 c
‘ 164 C WRITE OUT DATA
e 165 ¢
166 C MAME OF DATA SET
“\ : 167 c
) 168 WRITE(2,3020) DATA
169 3020 FORMAT (1X,4/4)
{70 c
1714 C NUMBER OF REGIONS
172 c
173 WRITE(2,303) N
174 303 FORMAT(’ NUMBER OF REGIONS',/,13)
175 c
: 176 ¢ NUMBER OF CARS
AN 177 C
, 178 WRITE(2,300) NC
o 179 305 FORMAT ('’ NUMBER OF CARS‘,/,13)
180 c
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121

2002

2003
2001
o}

DO 2001 J=1.,N

WRITE(6,2002) 1.J

FORMAT(’ ENTER K VALUE FOR TRAVEL FROM ’,(I12,’ TO °,12,
4+ IN MINUTES{(I2)’)

READ(S,2003) KP(I,J)

FORMAT(I2)

CONTINUE

C INPUT REGION NAMES

C

DO 2020 1=1,N

WRITE (6,2010) I .

FORMAT (’ ENTER 4 LETTER NAME FOR REGION ',I2)
READ (5.2011) INAME(I)

FORMAT (A4)

CONTINUE

CONTINUE

301

302
C

WRITE(6,3000)
FORMAT(' DO YOU WANT TO PUT THIS ON A NEW FILE ?7)

READ(S,3001) NK

FORMAT (A1)

IF(NK.NE.IY) GO TO 3005

WRITE(6,301)

FORMAT (¢ WHAT FILE WILL THIS BE ON ?')
READ(5,302) DATA

FORMAT(4A4)

C ASSIGN 2 TO THE CHOSEN FILE

c

3005

C

CALL FTNCMD( ‘$CRE ?’,6,DATA)
CONTINUE
CALL FTNCMD(’ASSIGN 2=?',10,DATA)

C WRITE OUT DATA

C

C MAME OF DATA SET

c

3020
C

WRITE(2,3020) DATA
FORMAT (1X,4A4)

C NUMBER OF REGIONS

c

303
(o
C
C

WRITE(2,303) N
FORMAT(’ NUMBER OF REGIONS’,/,13)

NUMBER OF CARS

WRITE(2,306) NC
306 FORMAT (' NUMBER OF CARS’,/,I3)

80t
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181

182
183
184

1895
186
187
188
189
180

192
183
194
195
196
197
ig8
199
200
201
202
203
204
205
206
207
208
208
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

239
240

C TRAVEL PARAMETERS

C

3061
C

304
305
(o

3051
30562

3053
C

WRITE (2, 3061)
FORMAT (‘ TRAVEL ALPHA VALUES ’)

po 305 t=1,N

WRITE(2,304) (A(I,J),Jd=1,N)
FORMAT (12F6.2)

CONTINUE

WRITE(2,3051)

FORMAT( ' TRAVEL TIME K VALUES')
Do 3052 I=t.N

WRITE(2,3053) (KP(I.J),u=1,N)
CONTINUE

FORMAT (1216)

C CALL RATES

307

3071
315

WRITE (2, 307)

FORMAT (‘ HOURLY CALL RATES‘’ / ‘ REGION EXPEDITE IMMEDIATE UNFOUNDED')

DO 315 I=1,N

WRITE(2,3071) INAME(I), (XLAM(I,J),J=1.,3)
FORMAT (2X,A4,3X,F5.3,5X,F5.3,5X,F5.3)
CONTINUE

c
C SERVICE MEANS

c

3151
c

308
320

WRITE (2, 3151)

FORMAT.(’ MEAN SERVICE TIMES‘’ / ' REGION EXPEDITE IMMEDIATE UNFOUNDED')

DO 320 I=1,N

WRITE(2,308) INAME(1), (SRVMN(I,U).J=1.2)
FORMAT (2X.A4.3X.F5.2.5X.F5.2,5X,F5.2)
CONTINUE

[
C SWITCH PROBABILITIES

308
310
311
330
C
C

3301

3i2
340

WRITE (2, 309)

FORMAT (‘/ HOURLY PATROL SWITCHING PROBABILITIES’)
DO 330 K=1,NC

WRITE (2, 310) K

FORMAT (’ CAR.’,12)

DO 330 I=1,N

WRITE(2,311) (XCHNG(I,J.K),J=1,N)

FORMAT (12F6.3)

CONTINUE

COVERAGE MATRIX

WRITE (2, 3301) N
FORMAT (‘/ COVERAGE’ / ‘ CAR REGIONS 1-',12)

DO 340 K=1,NC

WRITE(2,312) K, (covP(K,J),J=1,N)
FORMAT (I3,12F6.3)

CONTINUE

C
C REGION NAMES

Cc

3410

WRITE (2,3410)
FORMAT (‘ REGION NAMES’)
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288
289
290
291
292
293
294
295
296
297
298
299
300

DO 350 I=1,N
WRITE (2.3415) I, INAME(I)
3415 FORMAT (13,5X.4a4)

350 CONTINUE

C

C END OF INPUT

C

G mm m e e eSS m s s mem e
Cc

Cc INITIALIZE PARAMETERS FOR FIRST CALCULATION OF

c THE TRANSITION MATRIX

C

C —————————————————————————————————————————————————————————————————————————
Cc

C . M - SIZE OF THE MATRIX

C

c TTLAM -~ TOTAL CALL RATE FOR ALL TYPES

C

C

C CALCULATE TRAVEL TIME MEANS

C

DO 959 I=1,N

DO 951 J=1,N

TTMN(I W) =KP{1,J)/A(1,J)
951  CONTINUE

9}

¢ v
c CONVERT TO 5 MIN PERTODS
C

po 950 I=1, N
XLAM(I,1)=XLAM(I,1)/12.0
XLAM(I,2)=XLAM(1,2)/12.0
XLAM(I.3)=XLAM(I1,3)/12.0
SRVMN( T, 1)=SRVMN(I1,1)/5.
SRYMN(I,2)=SRVMN(I,2)/5.
DO 950 J=1, N
TTMNCI,J)=TTMN(I,J)/5.0
DO 950 K=1, NC
XCHNG(I,J,.K)=XCHNG(I,JU,K)/12.0
950 CONTINUE

c

C START COVI AND COVE MATRICES WITH COVP VALUES

c
DG 970 I=1{,N
DO 960 uU=1,NC
cavi(J,I1) = covP(J, 1)
COVE(J,1) covP(J,1)

960  CONTINUE

970  CONTINUE

c

c NX - MATRIX OF O‘S AND 1’S FOR PARALLEL ITERATIONS
c CREATE NX MATRIX
c

LINE = O

DO 700 I=1,
DD 700 J=1,
DO 700 K=1,
D3 700 L=1,
LINE = LINE

+PORNNON

ott




I

W

P

ST Y XN e PR e

= ¥ e £ : ’_,J,, : ' i Q ¥ il E i! s 4 4
S J— — o - wd ‘ ¢ '."5‘ # ‘!\‘ _4 L,_*-,“
301 NX(LINE,1) = L - 1
302 NX(LINE,2) = K - 1
303 NX(LINE,3) = J - |
304 NX(LINE,4) = I -
305 700  CONTINUE
306 c
307 C CALCULATE PERMANENT RATES
308 c
309 DO 391 K=1,NC
310 TLAMP(1,K)=0.0
311 TLAMP(2,K)=0.0
312 TLAMP(3.K)=0.0
313 DO 391 I=1{,N
314 TLAMP( 1.K)=TLAMP (1 ,K)+XLAM(I, 1)*COVP(K,I)
315 TLAMP(2,K)=TLAMP(2,K)+XLAM(I,2)*COVP(K,I)
316 TLAMP (3,K)=TLAMP(3,K)+XLAM(1,3)*COVP(K,I)
317 TTLAMP(K)=TLAMP(1,K)+TLAMP(2 ,K)+TLAMP(3,K)
318 391 CONTINUE
319 c
320 C INITIALIZE TEMPORARY EFFECTIVE RATES
321 DO 392 K=1,NC
322 DO 392 J=1,3
323 TLAM(J,K)=TLAMP(J,K)
324 392  CONTINUE
325 C
326 C START WITH BUSY AND BUSI EQUAL TO ONE AS THE SEED =
327 o s
328 DO 383 1I=1,NC
329 BUSY(I)=1.0
330 BUSI(I)=1.0
331 393 CONTINUE
332 c
333 M=8+N
334 o]
335 € = mmm e e e m e —em—e oo
336 c
337 C FIND STEADY STATES (TMATRIX) AND ITERATIVELY REVISE
338 C CALL RATES (PARIT) UNTIL PROBABILITIES OF BEING BUSY
339 C CONVERGE
340 c
341 € e im o o o e eSS S m S oSS
342 c
343 C STORE OLD BUSY PROBABILITIES
344 c
345 ICON = 1
346 ICOUNT = O
347 3930 DO 394 K=1,NC
348 OBUSY (K} =BUSY(K)
349 OBUSI(K)=BUSI(K)
350 394 CONTINUE
351 c
352 ICOUNT = ICOUNT + 1
353 - WRITE (6,3941) ICOUNT
354 3941 FORMAT (‘ ITERATION NUMBER ¢,I12)
355 c
356 C CHECK FOR CONVERGENGE
357 C
358 IF (ICON .EQ. 1) CALL TMATRX
359 IF (ICON ,EQ. 1) CALL PARIT
360 ICON = O

e e mmdl a e . . _mva a
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361

362
363
364
365
366
367
368
369
370
371

372
373

374

375

376

377
378
378
380
381

382
383
384
3ss
386
387
388
388
380
391
382
393
394
385
396
397
398
399
400
401

402
403
404
405
406
407
408
408
410
411

412
413
414
415
416
417
418
419
420

c
C FIND DIFFERENCE BETWEEN OLD AND NEW BUSY PROBABILITIES
C

DO 395 K=1,NC

DIFF1=ABS(OBUSY(K) - BUSY(K))

DIFF2=ABS(0BUSI(K) -~ BUSI(K))

If (DIFF1 .GE. 0.001) ICON={

IF (DIFF2 .GE., 0.001) ICON={
395  CONTINUE

C

IF (ICON .EQ. 1) GOTO 3930
C
C CALCULATE PRUBABILITIES SUMMED OVER REGIONS AND AVTIVITIES
C
C RPROB(I) - TOTAL FRACTION OF TIME CAR K SPENDS IN REGION I
C APROB(I) - TOTAL FRACTION OF TIME CAR K SPENDS ON ACTIVITY J
(o}

DO 3930 K=1{,NC
Cc

DO 3965 I=1 (N

RPROB(K,I)=0
Cc

DO 3960 IJ=1.,8

Ju=8*(I-1)+I1dJ

RPROB(K,I)=RPROB(K,I)+PROB(K,JJ)
3960 CONTINUE

c
3965 CONTINUE
c
DD 3875 J=1,8
APROB(K,J)=0
C

po 3970 Ld=1,N

LL=8*(LJ-1)+J

APROB(K,J)=APROB(K,J)+PROB(K,LL)
3970 CONTINUE

c
3975 CONTINUE
c

TCPROB(K)=0
c

DO 3980 I=1,N
TCPROB(K)=TCPROB(K)+RPROB(K,I)
3980 CONTINUE

C

3990 CONTINUE

C

C WRITE OUT FINAL PROBABILITIES
C

WRITE (6,3890)
WRITE (2,3880)
3890 FORMAT (‘4’)
WRITE (6,3900)
WRITE (2,3900)
3800 FORMAT (72%)
WRITE (6,38901)
WRITE (2,3901)
3901 FORMAT (’ POLICE PATROL MODEL OUTPUT‘)

DO 3850 K=1,NC

] ‘34. 1 5 §
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421 WRITE (6,3800)
422 WRITE (2,3900)
423 WRITE (6.3903) K
424 WRITE (2,3903) K
425 3803 FORMAT (’ CAR’,I2, FRACTION OF TIME BY ACTIVITY')
426 WRITE (&,3905)
427 WRITE (2,3905)
428 3005 FORMAT (' REGION PATR ETRV ITRV ESRV ESVQ ISRV ISVQ UNFS  ALL‘)
429 c
430 DO 3840 I=1,N
431 c
432 IFIRST = 8*1-7
433 ILAST = B*1
434 c
435 WRITE (6,3907) INAME(1), (PROB(XK,IJ), IJ=IFIRST,ILAST). RPROB(K,I)
436 WRITE (2,3907) INAME(I), (PROB(K,IJ), IJ=IFIRST,ILAST). RPROB(K,I)
437 3907 FORMAT (2X,A4,2X,9F6.3)
438 3940 CONTINUE
439 c
440 WRITE (6,3908) (APROB(K,J), uJ=1,8), TCPROB(K)
441 WRITE (2,3908) (APROB(K,J)., J=1,8), TCPROB(K)
442 3908 FORMAT (’ ALL‘,3X,SF6.3)
443 c
444 3950 CONTINUE
445 c
446 C CALCULATE RESPONSE TIMES =
447 o (]
448 CALL RESPNS
448 c :
450 END
451 c
452 C END OF MAIN PROGRAM
453 c
454 C t*ttt.r*xk‘#*t*\t*‘*i*‘#*‘t**‘**#*#*tt#t‘**tk*##**v*t***t#t*t*nv*x**#******it*
455 c
456 C SUBROUTINE TO CALCULATE TRANSITION MATRIX AND STEADY STATES
457 C FOR INDIVIDUAL CARS
458 c
459 C t*tt*ttu‘-#!*tﬁ#*tt#tttt*#**t***tttt#t*tttw*ttnttv*w*t***tt**t'**tvt#t*#*it*
460 c
461 SUBROUTINE TMATRX
462 c
463 DIMENSION XLAM(20,3),XCHNG(20,20,5),TTMN(20,20),SRVMN(20,2)
464 DIMENSION P(5, 160, 160),PI{160),PINEW(160)}, TLAM(3.5)
465 DIMENSION COVP(5,20),TTLAM(5),BUSI(5),BUSY(5),PROB(5, 160)
466 DIMENSION COVI(5,20), COVE(5,20),A(20,20)
467 DIMENSION TLAMP(3,5), TTLAMP(5)
468 DIMENSION NX(32,4), FRACT(3,5,20), ESTA(3,5,20), INAME(20)
469 INTEGER DATA(4),STATE,M1,M2,M3,M4,M5,M6,M7 ,M8,KP(20,20)
470 DATA M1//PATR’'/,M2/'ETRV’/ ,M3/'ITRV'/ M4/"ESRV’/ MG/ 'ESVQ’'/,
471 . 1 MG/'ISRV’'/,M7/'1SVQ‘/ M8/ UNFS’'/, IY/*'Y +/ M9/ 0UTS/
472 COMMON /X1/XLAM, XCHNG, TTMN, SRVMN,P,PI,TLAM,DATA ,N,COVP,NC,
. 473 {1 BUSY,BUSI,COVE,COVI,ESTA,TLAMP,TTLAMP ,NX ,M,PROB
N 474 COMMON /X2/INAME, A ,KP
475 c
476 C START KTH CAR ITERATION
477 c
478 DO 200 K=1, NC
479 TTLAM(K)=TLAM(1,K)+TLAM(2,K)+TLAM(3 ,K)
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481
482
483
484
485
486
487
488
488
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

530

531
532
533
534
535
536
537
538
539
540

C*DEBUG WRITE (6.50) K
SO FORMAT (‘ CAR ‘,12)
c
C ITERATE THROUGH THE REGIONS
C
DO 100 I=1.,M
DO 100 u=1t M
P(K,1.J)=0.0
100 CONTINUE
Cc
DO 200 I=1,N

FIND PROBS FROM PATROL

aooooo

L=8+(I-1)+1

L - LEAVING STATE

OO0

P(K,L,L)=1.0

TO TRAVEL (EXPEDITE OR UNFOUNDED)

OO0

P{K,L,L+1)=TLAM(1,K)+TLAM(3.K)

TO TRAVEL (IMMEDIATE)

s NeNel

P(K,L,L+2)=TLAM(2,K)

TO SELF

OO0

P(K,L,L)=1-P(K,L,L+1)-P(K,L,L+2)

TO OTHER PATROL

[eRoNe}

DO 110 J=1,N

IF(1.EQ.J) GO TO 110

LL=8*(U~1) + 1

P(K,L,LL)=XCHNG(I,J.K)

P(K,L,L)=P(K,L,L)-P(K,L,LL)
10 CONTINUE

FIND PROBS FROM TRAVEL (EXPEDITE OR UNFOUNDED)

OO0 -

L = 8*(I-1) + 2

FIND DENOM FOR CALCULATION

[eNoNe]

DEN=0.0
P(K,L,L)=1.00
0D 120 J=1,N
DENT=XLAM(J,1)*TTMN(I,J)*COVE(K,J)*1.3
DEN3=XLAM{J,3)*TTMN(T,U)“COVE(K,J)*1{.3
DEN=DEN+DEN1+DEN3

120 CONTINUE

C v

C*DEBUG WRITE (6,55) DEN

14!
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541
542
543

544
545
546
547
548
5489
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
5381
5982
593
594
595
596
597
598
5388
600

55 FORMAT (' DEN 1,3 = ’,F5.3)

c

C TO SERVICE

c
DO 130 J=1,N
LL=(J-1)*8+4

o

C EXPEDITE SERVICE

C
P(K.L'LL)=XLAM(d,1)*COVE(K.J)/DEN
P(K,L.L)=P(K,L,L)-P(K,L,LL)

c

C UNFOUNDED SERVICE

c
LL=LL+4
P(K,L.LL)=XLAM(J.3)*COVE(K,U)/DEN
P(K,L.L)=P(K,L,L)-P(K,L,LL)

130 CONTINUE

c

c

c

C FIND PROBS FROM TRAVEL (IMMEDIATE)

o

L = 8*(I-1) + 3
P(K.L,L)=1.0

FIND DENOM FOR CALCULATION

[eNe N

DEN=0.0
DO 131 JU=1,N
DEN=DEN+XLAM(J,2)*TTMN(I,J)*COVI(K,J)
131 CONTINUE

C
C*DEBUG WRITE (6, 60) DEN
60 FORMAT ( ‘DEN 2 = ',F5.3)
c
C TO SERVICE (IMMEDIATE)
c
DO 132 J=1,N
LL=(J-1)*8 + 6
P(K.L.LL)=XLAM(d.2)*COVI(K.J)/DEN
P(K,L,L)=P(K,L,L)-P(K,L,LL)
132 CONTINUE
C
c
C
C FIND PROBS FROM UNFOUNDED
c
L=1*8
tt=L - 7
P(K,L,LL)=1.0
o]
c
c
C FIND PROBS FROM EXPEDITE SERVICE (NO QUEUE)
C
L=(1-1)%8 + 4
c
C TO SERVICE AND QUEUE
c

GIT
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GOt
602
603
604
605
606
607
608
609
610
611
612
613
614

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

636 .

637
638
639
640
641
642
643
644
645
646
647

648
650
651
652
653
654
655
656
657
658
659
660

c
C

135

a0 leNe NN Y] ooon [sReNe]

leNeRrNoNel

[eNeNeNeNe]

140

(o}
C
o}
C

o0

£

CALCULATE PROBABILITY THAT OTHER CARS WITH RESPONSIBILITY FOR

REGIDN I ARE ALL BUSY, THUS CAUSING A QUEUE TO FORM

135 IK=1,NC
.EQ. K) GOTO
IF (covpP(IK,1)
XPROD=XPROD*BUSY (IK)

.EQ. 0) GOTO

MULTIPLY RATES OF TYPE § AND 3 CALLS BY XPROD TO GET PROB OF QUEUE
P(K,L,L+1)=(TLAMP (1 ,K)+TLAMP(3,K))*XPROD
TO TRAVEL (IMMEDIATE)

P(K,L.L-1)

P(K.L,L)=1.0-P(K,L,L+1)-P(K,L,L-1)

P(K.L,L-3)=1/SRVMN(I, 1)

91T

UPDATE SELF
P(K,L,L)=P(K,L,L)-P(K,L,L-3)

FIND PROBS FROM IMMEDIATE SERVICE (NO QUEUE)

TQ SERVICE WITH QUEUE

CALCULATE PROBABILITY THAT ALL OTHER CARS ARE BUSY

DO 140 1IK=1,NC
.EQ. K) GOTO 140
ZPROD=ZPROD*BUSI{1IK)

MULTIPLY RATE OF TYPE 2 CALLS BY ZPROD AND MULTIPLY TYPE
AND TYPE 3 CALLS BY XPROD TO GET PROB OF QUEING CALLS

P(K,L,L+1)=(TLAMP(1,K)+TLAMP(3,K))*XPROD+TLAMP(2,K)*ZPROD
P(K,L,L)=P(K,L,L)-P(K,L,L+1)

P(K,L,L-8)= {/SRVMN(I,2)

P(K.,L,L)=P(K,L,L)-P(K,L,L-5)

T S S
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TR

gt
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et
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661
662
663
664
665

657
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
a6
687
688
6589
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

707

708

709
710
711
712
713
744
715
716
717
718
719
720

C
C FROM EXPEDITE SERVICE WITH QUEUE
C
L = (I-1)=8 + 5
P(K,L,L)=1.0
C
C TO TRAVEL (EXPEDITE) IF DONE
(o}

P(K,L,L-3)=1/SRVMN(I, 1)
P(K,L,L)=P(K,L,L)-P{K,L,L-3)

c

C

c

C FROM IMMEDIATE SERVICE WITH QUEUE

c
L =L + 2
P(K.L,L)=1.0

C

C TO TRAVEL (EXPEDITE) IF DONE

c
P(K,L,L-5)=(1/SRVMN(I,2))*(TLAM(1.K)+TLAM(3,K))/TTLAM(K)

C

C TO TRAVEL (IMMEDIATE) IF DONE

C .
P(K.L.L—4)=(1/SRVMN(I.2))*TLAM(2,K)/TTLAM(K)

C

P(K,L,L}=P(K,L,L) - P(K,L,L-5) - P(K,L,L~4)
200  CONTINUE
C
C WRITE OUT TRANSITION PROBABILITIES
o
GOTO 2001
DG 2000 K=1,NC
DO 2000 L=1,M
DO 2000 LL=1,M :
WRITE (6,201) K.L,LL,P(K,L,LL)
201 FORMAT (¢ P(’,12,7,7,12,7,/,12,')= ‘,F5.3)
2000 CONTINUE
STOP
2001 CONTINUE

END DATA ENTRY

“NITIALIZE CGUNTERS FOR ACCUMULATING PROB OF CAR I BEING IN REGION J.
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DO 3900 I=1,NC

SET FRACT AND ESTA TO ZERO

OO0

DO 3800 IJ=1,3

DO 3800 J=1,N

FRACT(1J,1,J)

ESTA(IJ,I,d)=
3800 CONTINUE

=0
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LA

- AR

721
722
723
724
‘725
726
727
728
728

731
732
733
734
735
736
737
738
738
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
758

761
762
763
764
765
766
767
768
769
770
771

713
774
775
776
777
778
778
780

Bepatuic LN

C

3900 CONTINUE

C

C START CAR K LOOP
Cc

DO 435 K=1,NC
¢ .
C SET ACCUMULATORS TOTE AND TOTI TO ZERO
(o]

TOTE=0O
TOTI=0

DO 400 I=1,M

PINEW(I)=0.0
400  CONTINUE

DO 401 I=1,N

L=8+1-7
PINEW(L)=1/FLOAT(N)
C*DEBUG WRITE (6,4001) L. PINEW(L)
4001 FORMAT ( ‘PINEW(',12,‘)s *,F6.4)

401 CONT INUE
C

C MULTIPLY AS LONG AS DIFF > .00f%
c

NITR = O
Cc
C WITR - NO OF ITERATIONS
C
410 CONTINUE

NITR = NITR + {
DO 412 I=1 .M
PI(I)=PINEW(I)
412 CONTINUE
Cc
C MULTIPLY OUT THE VECTOR
c

DO 420 I=1,M
PINEW(I)=0.0
DO 420 J=1,M
PINEW(I)=PINEW(I) + PI{(J)*P(K,J,1)
420  CONTINUE
o
C CHECK FOR ACCURACY
C
DO 425 I=1,M
DIFF = ABS(PI(I)-PINEW(I))
IF(DIFF.GE.0.Q01) GO TO 410
425  CONTINUE

C
C HERE ALL PROBS ARE WITHIN .001 OF PREVIOUS ITERATIONS
c
C DEBUGGING AID - PRINTS OUT PROBS ON EACH ITERATION OF TMATRIX
C
GOTO 4352
C
C WRITE OUT HOW LONG 1T TOOK AND THE PROBS
c

WRITE (6,429)
WRITE (2,429)
429 FORMAT (72X)

a11
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781
782
783
784
785
786
787
788
788
780
781
792
793
794
788
786
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
818
820
821
822
823
824
825
826
827
828
829
830
831
832
833
\\ 834

835

836

837

838

838

840

S|

oy L . <
WRITE(6,430) K, NITR
WRITE(2,430) K, NITR
430 FORMAT(‘CAR’,12,’, *,15,' ITERATIONS FOR .001 DIFFERENCE')
c
DO 4351 I=1.M
Cc
C FIND THE PROPER STATE
C
KS = MOD(I,8)
IF(KS.EQ.1) STATE=M1
IF(KS.EQ.2) STATE=M2
IF(KS.EQ.3) STATE=M3
IF(KS.EQ.4) STATE=M4
IF(KS.EQ.5) STATE=M5
IF(KS.EQ.6) STATE=Mg&
IF(KS.EQ.7) STATE=M7
IF(KS.EQ.0) STATE=M8
433  CONTINUE
2I=(1-1)/8.0
IF(I.LE.8*N) IJ=INT(ZI)+1
IF(I.GT.8*N) IJ=N+(I-8*N)
c
WRITE(6,434) STATE,IJ,PI(I)
434 FORMAT(A4,14,°‘ PROB =* ,F5.3)
4351 CONTINUE o
et
¢ ©
4352 CONTINUE
C

DO 500 J=1,M
PROB(K,dJ)=PI(dJ)

500 CONTINUE

C
Cc
o}

436

C*D
436
(o}
C
[o}

437
C*D
437

O0O000O0000

COMPUTE PROBABILITY CAR K IS BUSY (ANY CALL)

SUM = O

DO 436 Iu=1, N

L=8*I1J-7

SUM = SUM + PI(L)

CONTINUE

BUSY (K)=1-5SUM
EBUG WRITE (6,4361) K, BUSY(K)
1  FORMAT (’ BUSY(',I1,’)= ’,F5.3)

COMPUTE PROBABILITY THAT CAR K IS BUSY (IMMEDIATE CALL)

BUSI(K)=0
DO 437 IJ=1,N .
L1=8+IJ-2
L2=8%IJ-1
BUSI(K)=BUSI(K)+PI(L1)+PI(L2)
CONTINUE
EBUG WRITE (6,4371) K, BUSI(K)
1  FORMAT (' BUSI(’,I1,’)= ‘,F5.3)

COMPUTE PROB CAR K IS IN REGION IJ AND AVAILABLE FOR CALLS OF TYPES 1,2,3
FRACT(L.,K,IJ) - FRACTION OF TIME CAR K IS IN IJU AVAILABLE FOR TYPE L CALLS

TOTE (TOTI),- TOTAL TIME CARS .ARE AVAILABLE FOR EXPEDITE (IMMEDIATE) CALLS
ESTA(L,K,IJ) - PROB CAR K IS IN IJ AVAILABLE FOR TYPE L CALLS

¢
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841
842
843
844
845
846
847
848
843
850
851

852
853
854
855
856
857
858
BS5S8
860
861

862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877

879
880
881
882
883
884
885
886
887
888
889
880
891
892
893
894
895
886
897
898
889
800

0O 4353 I=1,M
KS=MOD(1,8)
Z1=(1-1)/8.0

IF(I.LE.8*

N) IJ=INT(ZI)+1

IF(I.GT.8*N) IJ=N+(I-8"N)

c
IF (KS .NE. 6 .AND. KS .NE. 7) FRACT(2,K,IJU)=FRACT(2,K,IJ)+PI(I)
IF (KS .NE. 6 .AND. KS .NE, 7) TOTI=TOTI+PI(I) ‘
IF (KS .EQ. 1) FRACT{1,K,IJ)=FRACT(1,K,1J)+P1(I)
IF (KS .EQ. 1) TOTE=TOTE+PI(1)

c N

C*DEBUG WRITE(6,4340) FRACT(1.K,1J), TOTE

4340 FORMAT (’ FRACT1= ‘,FS5.3,’ TOTE= ’,F5.3)

C+DEBUG WRITE (6.4341) FRACT(2,K,IJ), TOTI

4341 FORMAT (‘' FRACT2= ’,F5.3,’ TOTI= ’',F5.3)

4353 CONTINUE
C

DO 4362 IJ=1,N
ESTA(1,K,IJ) =
ESTA(2,K, 1J) =
ESTA(3,K,IdJ)

FRACT(1,K,1J)/TOTE
FRACT(2,K,I1J)/TOTI
ESTA(1,K,1J)

C*DEBUG WRITE (6,4360) ESTA(1,K,IJ)

4360 FORMAT ('

ESTA1= ' ,F5.3)

C*DEBUG WRITE (6,4370) ESTA(2,K,IJ)

4370 FORMAT (*
4362 CONTINUE
C
435  CONTINUE
(o}

ESTA2= ',F5.3)

#i*4**1**t****##*i*it**#**t**********x******i**i***#*#t‘t**ﬂ*****t*##t*#wi‘\*tt*

SUBROUTINE TO PERFORM PARALLEL ITERATIONS. CALL RATES ARE
UPDATED DURING EACH ITERATION THROUGH COVI, COVE, BUSY, AND BUSI

**t*t**&*tv*w*v*w#kr:**i**t#***tvi*i***t?ﬁ*«***t#i**tvvw*t**t**‘******#*tﬁtv*'m#

XLAM(20,3) ., XCHNG(20,20,5), TTMN(20,20), SRVMN(20,2)
P(5,160,160),PI(160),TLAM(3,5)
COVP(S,20),TTLAM(S) ,BUSI(5),BUSY(5) ,PROB(S, 160)
COVI(5.20), COVE(S,20), EXIMM(5,20), EXEXP(S5,20)
TLAMP(3,5), TTLAMP(5),A(20,20)

NX(32,4), ESTA(3,5,20), INAME(20)

INTEGER DATA(4).KP(20,20)

COMMON /X 1/XLAM,XCHNG, TTMN, SRVMN, P, P1,TLAM,DATA N, COVP,NC,
{ BUSY,BUSI,COVE,COVI,ESTA,TLAMP,TTLAMP NX M, PROB

COMMON /X2/INAME,A,KP

IF (NC .EQ, 1) RETURN

CALCULATE NUMBER OF ROWS OF NX TO 8E USED

RETURN
END

C

C END OF TMATRX

C

c

o

c

C

C

c

C
SUBROUTINE PARIT

Cc
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

C

C

c

[of

[

NROWS = 2

** NC

0st

s
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DO 806 I=1,N
DO 805 KK=1,NC
EXIMM(KK,I)}=0
EXEXP(KK,I1)=0
805  CONTINUE
806  CONTINUE

INITIALIZE EXIMM AND EXEXP TQ ZERO

c
DO 810 I=1, N
DO 800 KK=1, NC
o
C LOOP THROUGH NC ROWS OF NX MATRIX
C
DO 770 IJ=1,NROWS o
C
C NO EXCESS CALLS IN CASE WHERE CAR KK IS BUSY
o
IF (NX(IJ,KK) .EQ. 1) GOTO 770
c
SUMI = O
SUME = O
SUMX = O
PRODI = 1.0
PRODE = 1.0
o
C GO THROUGH ROWS OF NX TO REPRESENT POSSIBLE BUSY, NOT
C BUSY COMBINATIONS
C
C SUMI ~ TOTAL COVERAGE OF BUSY CARS FOR REGION I (IMM CALLS)
C SUME - TOTAL COVERAGE OF BUSY CARS FOR REGION I (EXP CALLS)
C SUMX - NUMBER OF BUSY CARS
¢ PRODI - PROB CARS ARE BUSY SERVING IMMEDIATE CALLS
C PRODE - PROB CARS ARE BUSY SERVING EXPEDITE CALLS
C
DO 760 IK=1, NC
IF (IK .EQ. KK) GOTO 750
SUMI=SUMI+NX(IU.IK)*CDVP(IK.I)
SUME=SUME+NX(IJ,IK)*COVP(1K,I)
SUMX =SUMX+NX(IJ, IK)
PRODI=PRODI*{NX(IU,IK)*BUSI(IK)+(1-NX(IJ,IK)})*(1-BUSI(IK)))
PRODE=PRODE* (NX(IU, IK)*BUSY(IK)+{1-NX(IJ,IK))*(1~BUSY(IK)))
C
C*DEBUG WRITE (6,7510) SUMI, SUMX, PRODI
C*DEBUG WRITE (6,7511) SUME, PRODE
7510 FORMAT (’ SUMI= ‘,F5.3,’ SUMX= ’,F5.3,’ PRODI= ’,F5.3)
7511 FORMAT ('’ SUME= ' ,F5.3,' PRODE= ’,F5.3)

750 CONTINUE
760 CONTINUE

i~

<

C ADD UP COVERAGE OF ALL FREE CARS

Cc
DENOM = O
DO 765 KJ=1,NC

DENOM=DENOM+( 1-NX (IJ,Kd) ) *COVP(KJ, 1)

765 CONTINUE
C
C*DEBUG

WRITE (6,7651) DENOM

7651 FORMAT (' DENOM= ‘,F5,3)

=t
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861
962
963
964
965
866
967
268
969
870
871
972
973
974
975
976
977
Q78
Q79
980
981
282
983
984
985
8986
887
988
989
890
991
292
993
984
98§
986
997
998

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
N 1016
1017
1018

» 019
1020

c
IF (DENOM .EQ. Q) COEFF = 1/{NC-SUMX)
IF (DENOM .NE. O) COEFF = COVP(KK,I)/DENOM
EXIMM(KK, I)=EXIMM(KK, I)+( {-BUST(KK))*PRODI*SUMI“COEFF
IF (DENOM .NE. O) EXEXP{KK,I)=EXEXP{KK,I)+(1-BUSY(KK))*PRODE*SUME+*COEFF
c
770 CONTINUE
c
C*DEBUG WRITE (6,766) KK, I, EXIMM{(KK,I)
C*DEBUG WRITE (6.767) KK, 1, EXEXP(KK,I)
766 FORMAT (* EXIMM(‘,I1,7,*,I1,’)= ’,F5.3)
767 FORMAT (' EXEXP(’,I1,’,’,11,%)= *,F5.3)

c

800 CONTINUE

810 CONTINUE

c

C UPDATE COVI BY ADDING EXIMM TO COVP AND UPDATE
C COVE BY ADDING EXEXP TO caove
c

DO 8100 I=§,N

DO 8100 KK=1,NC
COVI(KK,I)=COVP{KK, I)+EXIMM(KK,I)
COVE(KK,I)=COVP(KK,I)+EXEXP(KK,1)

o}

C*DEBUG WRITE (6,7601) KK, I, COVI(KK,I)
7601 FORMAT (' covi(',12,’,7,12,’)= ‘ F5.3)
C*DEBUG WRITE (6,7602) KK, I, COVE(KK,T

7602 FORMAT (/ COVE(’,12,’,7,12,')= ‘ F5.3)
8100 CONTINUE

c
C UPDATE EFFECTIVE CALL RATES
c
DO 8111 K=1,NC
TLAM(1,K)=0.0
TLAM(2,K)=0.0
TLAM(3,K)=0.0
c
DO 8110 I=1,N
TLAM(1,K)=TLAM( 1 ,K)+XLAM{I,1)YCOVE(K, 1)
TLAM(2,K)=TLAM(2 ,K)+XLAM(I,2)*COVI(K.I)
TLAM(3,K)=TLAM(3 ,K)+XLAM(I ,3)*COVE(K.1)
8110 CONTINUE
c &
C*DEBUG WRITE (6,8101) I, TLAM(1,K), TLAM(2,K), TLAM(3,K)
8101 FORMAT (¢ REGION /,I1,/: TLAMi= * F5.3,’ TLAM2= ‘ F5.3,’ TLAMS= * F5.3)
o]
8111 CONTINUE
C
RETURN
END
c
C END OF PARIT
C
C 4"*ttt*t‘t*t***tv*ti****wtv*tv‘**tr*#t***#h@t*#**&vt‘ttvti'&ti*‘Ak-rwktt#t;“&*“*»»
c
C THIS SUBROUTINE CALCULATES EXPECTED RESPONSE TIME FOR CAR K TO TYPE L CALLS
C AND PLACES THIS VALUE IN RESPON(K,L)
C
c ttm##ttivttvtt#s*ttqmt«yc*t*mo¢tmtw*t***t#$t#*a‘ti#*v#tvttt*#***‘tv«#tvu**th‘¢vﬁv
c
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1021
1022
1023
1024
1025
1026
1027
1028
1028
1030
1031
1032
1033
1034
1035
1036
1037
1038
1038
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
062
1063
1064
1065
1066
1067
10G8
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

"

SUBROUTINE RESPNS

DIMENSION XLAM(20,3),XCHNG(20,20,5),TTMN(20,20),SRVMN(20,2)
DIMENSION P(5,160,160),PI(160),TLAM(3,5),A(20,20),CDF(20,8)
DIMENSION COVP(5,20),TTLAM(S),BUSI(5),BUSY(5),PROB(5,160)
DIMENSION ERESP(20,3), TESTA(3,5), COVI(5,20), COVE(5,20)
DIMENSION RBUS(20), TLAMP(3,5), TTLAMP(S), 0(20,3)
DIMENSION NX(32,4), RESFON(20,5,3), ESTA(3,5,20), INAME(20)
INTEGER DATA(4),KP(20,20)
COMMON /X 1/XLAM,XCHNG, TTMN,SRVMN,P,PI,TLAM,DATA,N,COVP NC,
{1 BUSY,BUSI,COVE,COVI,ESTA,TLAMP, TTLAMP ,NX,M,PROB
COMMON /X2/INAME,A,KP

c

C SET RESPON TO ZERO

c
DO 8200 I=1,N
DO 8200 K=1,NC
DO 8200 L=1,3
RESPON(I,K,L)=0

8200 CONTINUE

Cc
C NORMALIZE COVE AND COVI MATRICES
c
C
DO 8302 I=t,N
Cc
DEN1=0
DEN2=0

D0 8301 K=1,NC

DEN1=DEN1+COVE(K, 1)

DEN2=DEN2+COVI(K,I)
8301 CONTINUE

DO 8300 K=1,NC
COVE(K,I)=COVE(K,I)/DENI
COVI(K,I)=COVI(K,I)/DEN2
8300 CONTINUE
c
8302 CONTINUE
C
C CALCULATE TOTAL PROB OF CAR K BEING AVAILABLE FOR TYPE L CALLS
C
DO 8201 K=1,NC
DO 8201 L=1,3
TESTA(L,K)=0
8201 CONTINUE

DO 8202 L=1,3
DO 8202 K=1{,NC
DO 8202 uU=1,N
TESTA(L,K)=TESTA(L,K)+ESTA(L,K,J)
8202 CONTINUE
C

C SET CUMULATIVE TRAVEL TIME DISTRIBUTION TO ZERO
C
DO 8203 I=1,N
DO 8203 ICT=1,9
CDF(I,ICT)=0
8203 CONTINUE
C
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LA

waTS

N

108 1
{082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1094
1085
1086
1087
1088
1099
1100
1101
1102
1103

1104

1105
1106
1107
1108
1109
1110
111t
1112
1113
1114
1115
1116
1117
1118
1119
1120

C LOOP FOR EAGCH CALL TYPE
C
00 840 L=1{, 3
C
Cc LOOP FOR EACH CAR
C
DO 830 K=1,NC
C
C LOOP THROUGH ALL PAIRS OF REGIONS
C
DO 820 1=1,N
DO 815 J=1,N
c
C MULTIPLY TIMES PROB CAR K IS IN J TIMES EXPECTED TRAVEL FROM J TO 1I
C TRAVEL IS 1.3 TIMES GREATER FOR EXPEDITE THAN IM4EDIATE
C
ETRAV = ESTA(L,K,J)*TTMN(J,I)*S/TESTA(L,.K)
IF (L .NE. 2) ETRAV = ETRAV * 1.3
RESPON(I,K,L)=RESPON(I,K,L)+ETRAV
C
C*DEBUG WRITE (6,8015) ETRAV
8015 FORMAT (‘' ETRAV= ', F5,3)
C*DEBUG WRITE (6, 8016) K, 1, TTMN(J,I)
8016 FORMAT (/ TTMN(’,I1,’,*,I1,')= *,F5.3)
C
C CALCULATE CUMULATIVE PROB THAT RESPONSE TIME TO REGION I
C IS LESS THAN OR EQUAL TO ICT BETWEEN 3 AND 27 MINUTES
c
IF (L.NE.2) GO TO B15
c
DD 814 ICT=1,8
IT=ICT*3
CALL CTRAV(A(J,1),KP(J,1),IT,CDV)
COF(I,ICT)=CDF(I1,ICT)+ESTA(2,K,J)*COVI(K,I)*CDV/TESTA(2,K)
C*DEBUG WRITE (6,8141) 1,U,COV
8141 FORMAT (' cbv(’,12,’,',12,')= * F6.3)
814 CONTINUE
o
815  CONTINUE
820  CONTINUE
830  CONTINUE
840  CONTINUE
c
C CALCULATE EXPECTED TIME AN EXPEDITE OR UNFOUNDED CALL IS QUEUED
c
C FIND DENOM FOR PROBS OF CALLS COMING FROM REGION I
c
TXLAM1=0.0
TXLAM2=0.0
TXLAM3=0.0
DO 841 I=1,N
TXLAMi=TXLAM{+XLAM(I, t)
TXLAM2=TXLAM2+XLAM(I,2)
TXLAM3=TXLAM3+XLAM(I,3)
B4 CONTINUE
c
C CALCULATE PROB OF ALL CARS BUSY WITH IMMEDIATE CALLS
pt .

ABUS=1.0
DO 8412 K=1,NC
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1141 ABUS=ABUS*BUSI(K)
1142 8412 CONTINUE
1143 C
1144 C CALCULATE PROB OF CAR HANDLING CALL BUSY WITH EXPEDITE AND ALL OTHER
1145 C CARS WITH RESPONSIBILITY FOR REGION I BUSY WITH ANY TYPE CALL
{146 c
1147 Do 8417 I=1,N
1148 RBUS(1)=0.0
1149 o]
1150 DO 8416 K=1,NC
1151 IF (COVE(K,I).EQ.0) GOTO 8416
1152 BUS=BUSY(K)-BUSI(K)
1153 c
1154 DO 8415 KK=1,NC
11585 1F (COVE(KK,I).EQ.O) GOTO 8415
1156 IF (KK.EQ.K) GOTO 8415
1157 BUS=BUS*BUSY (KK)
1158 8415 CONTINUE
1159 c
1160 RBUS(1)=RBUS(I)+COVE(K,I)*BUS
1161 c
1162 C*DEBUG WRITE (6,8418) I, RBUS(I)
1163 8418 FORMAT (' RBUS(',I12,7)= ',F6.3)
1164 o]
1165 8416 CONTINUE
1166 c -
1167 8417 CONTINUE N
1168 c G
1168 C EXPECTED QUEUING TIME GIVE CALL COMES FROM I
1170 C EQUALS P(CALL IS QUEUED BEHIND A TYPE 1 OR 2 CALL)
1171 C TIMES EXPECTED QUEUE TIME (SERVICE YIME)
1472 C TYPE 2 CALLS CAN ONLY BE QUEUED BEHIND TYPE 2 CALLS
1173 c
1174 DO 8411 I=1{,N
1175 po 8411 L=1,3
1176 Q(I,L)=0
1177 8411 CONTINUE
1178 c
1178 DO 842 I=1,N
1180 Q(I,1)=(RBUS(I)*SRVMN(I,1) + ABUS*SRVMN(I,2))*5
1181 Q(I,2)=ABUS*SRVMN(I1,2)*5
1182 Q(1,3)=Q(1,1)
1183 C*DEBUG WRITE (6,8420) (Q(I,L), L=1,3)
1184 8420 FORMAT (’ Q1= ’,F5.3,’ Q2= ‘,FS5.3,’ Q3= ‘,F5.3)
1185 842  CONTINUE
1186 c
1187 c
1188 C CALCULATE EXPECTED RESPONSE TIMES TO EACH REGION
1189 c
1190 DO 8430 I=1,N
1191 po 8430 L=1,3
1192 ERESP(1,L)=0.0
1193 8430 CONTINUE
1194 c
1195 DO 8431 I=1,N
N 1196 DO 8431 L=1,3
1197 DO 8431 K=1,NC
i198 IF (L.EQ.2) ECOV=COVI(K,I)
1199 IF (L.NE.2) ECOV=COVE(K,I)

1200 ERESP(I,L)=ERESP(I,L)+ECOV*RESPON{I,K,L)
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1201
1202
1203
1204
{1205
1208
1207
1208
1209
1210
1211
1212
1213
1214
1215
{216
1217
1218
1218
1220
1221
1222
1223
1224
1225
1226
1227
{228
1228
1230
1231
1232

1237
1238
1239
1240
1244
1242
1243
1244
1245
1246
1247
1248
1248
1250
1251
1252
1253
1254
1255
1259
1257
1258
1259
1260

8431
C

i st B g S 1 15

CONTINUE

C ACD GQUEUING TIME TO EXPECTED RESPONSE TIMES

C

843

aoon

(@]

850

851

O ®

853

880

8900

8490

8495

[eNoR ]

Do 843 I=1.N
DO 843 L=1,3
ERESP(I,L)=ERESP(I,L)+0(I,L)
CONTINUE

WRITE OUT EXPECTED RESPONSE TIMES

GOTO 8800

WRITE (6,849)
WRITE (2,849)
FORMAT (72X)
WRITE (6, 850)
WRITE (2, 850)
FORMAT (’ EXPECTED TRAVEL TIMES')
DO 890 K=1,NC

WRITE (6,849)

WRITE (2,849)

WRITE (6.851) K

WRITE (2,851) K

FORMAT (/ CAR’,12,'

WRITE (6,852)

WRITE (2,852)

FORMAT (‘ REGION EXPEDITE

CALL TYPES')

DO 880 I=1,N

WRITE (6,853) INAME(I), (RESPON(INAME(I).K,L),
WRITE (2,853) INAME(I), (RESPON(INAME(I).K.L).
FORMAT (2X.A4,5X,F6.3,6X,F6.3,6X,F6.3)

CONTINUE
CONTINUE

WRITE (6,849)
WRITE (2,849)
WRITE (6,849)
WRITE (2,849)
WRITE (6,8480)
WRITE (2,8490)

FORMAT (' AVERAGE RESPONSE TIME TO EACH REGION {MINUTES) ')

WRITE (6,852)
WRITE (2,852)

DO 8495 I=1,N

WRITE (6,853) INAME(I), (ERESP(I,L). L=t
WRITE (2.353) INAME(1), (ERESP(1,L), L=t
CONTINUE

PRINT OQUT AVERAGE QUEUE TIMES

WRITE(6,B49)
WRITE(2,849)
WRITE(6,849)
WRITE(6,849)

£

IMMEDIATE UNFOUNDED ‘)

931




Y

SN o i T R 2R

p—

—

erm———er

=

IENEEERN

12614 WRITE(6,8501)
1262 WRITE(2,8501)
1263 8501 FORMAT(’ AVERAGE TIME IN QUEUE (MINUTES) ')
1264 WRITE(6,852)
1265 WRITE(2,852)
1266 o]
1267 DO 8502 I=1,N
1268 WRITE(6,853) INAME(I).(OQ(I.L),L=1,3)
1269 WRITE(2,853) INAME(I),(Q{(I,L),L=1.3)
1270 8502 CONTINUE
1271 Cc
1272 C PRINT OUT CUMULATIVE DISTRIBUTION OF TRAVEL TIMES TO IMMED CALLS
1273 C R
1274 WRITE(6,849)
1275 WRITE(6,849)
1276 WRITE(2,849)
1277 WRITE(2.849)
1278 WRITE(6,8505)
1279 WRITE(2,8505)
1280 8505 FORMAT(’ PROBABILITY TRAVEL TIME TO IMMEDIATE CALLS IS LESS THAN OR EQUAL TO')
1280.2 WRITE(6,85086)
1280.4 WRITE(2,8506)
1280.6 8506 FORMAT(’ MINUTES’)
1281 WRITE(6,8507)
1282 WRITE(2,8507) a
1283 8507 FORMAT(’ REGIGCN 3 6 9 12 15 18 21 24 27°) [\
. =
1284 o8
1285 DO 8509 I=1,N
1286 WRITE(6,8508) INAME(I),(CDF(I,J),u=1,9)
1287 WRITE(2,8508) INAME(I),(CDF(I,J),J=1,9)
1288 8508 FORMAT(2X,A4,1X,9F6,3)
1289 8509 CONTINUE
1290 C
1291 c
1292 C END OF RESPON
1293 c
1294 RETURN
1295 END
1296 va**#*i*t*t#t**tttt*t*tkt*ttti*ttﬁ**ttittw*ttti**t**##"t#ttb*?*4#¢ta‘t
1297 C
1298 c THIS SUBROUTINE CHANGES OLD ACCORDING TO NEW SPECIFICATIONS
1298 c
1300 C**t***t#**t*t*#*t**tﬁ*t**tt-:v*tt*ﬁ**&*t**&##*t*i*ttttt*tt#*v#vt***t*##t
1301 SUBROUTINE CHNGDT
1302 DIMENSION XLAM(20.3).XCHNG(20,20,5), TTMN(20,20),SRVMN(2G,2)
1303 DIMENSION P(5,160,160),PI(160),TLAM(3,5)
1304 DIMENSION COVP(5,20), ESTA(3,5,20), INAME(20), A(20,20)
1305 INTEGER DATA(4), KP(20,20)
1306 DATA IY/'Y )
1307 DATA MC1/‘RATE’/.MC2/'TRAV‘/ MC3/'SERV‘/ ,MC4/'SWIT'/ MC5/'COVE'/,
1308 { MD1/’EXPE’/,MD3/'UNFC’/,MD2/’IMME’/,1ZERD/’'O r/
1309 COMMON /X 1/XLAM, XCHNG, TTMN, SRVMN,P,PI , TLAM,DATA,N,COVP NC,
1310 4 BUSY,BUSI,COVE,COVI,ESTA,TLAMP,TTLAMP ,NX,M, PROB
1311 COMMON /X2/INAME, A, KP
1312 WRITE(6, 1)
1313 i FORMAT(‘ WHAT FILE DO YOU WANT ?7)
1314 READ(S,2) DATA
. 1315 2 FORMAT(4A4)
1316 CALL FTNCMD(’ASSIGN 2=7’,10,DATA)
1317 C .
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1318
1318
1320
1321
1322
1323
1324
1325
1326
1327
1328
1328
1330
1331
1332
1333
1334
1335
1336
1337
1338
1338
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1368
1370
1371
1372
1373
1374
1375
1376
1377

C READ IN THE NAME
C

READ(2,302) DATA
302 FORMAT(1X,4A4)
WRITE(6,3) DATA
FORMAT(* FILE =‘,4A4)

READ IN THE NUMBER OF REGIONS

OO0 w

READ(2,303) N
303 FORMAT(/13)

C
(o} READ NUMBER OF CARS
C
READ(2,303) NC
c
C READ IN TRAVEL ALPHA VALUES
c

READ (2, 3031) IDUM
3031 FORMAT (A4)
c
DO 305 1=1,N
READ(2.304) (A(I,J).Jd=1,N)
304 FORMAT (12F6.2)
305 CONTINUE

C
C READ IN TRAVEL K VALUES
c
READ(2,3031) IDUM
c

DO 3051 I=t{,N
READ(2,3052) (KP(I.,J).,Jd=1,N)
3051 CONTINUE
3052 FORMAT (1216)
c
C READ IN CALL RATES
C
READ (2, 306) IDUM
306  FORMAT (/ A4)
c
DO 315 I=1{,N
READ(2,307) IDUM, (XLAM(I,u),J=1,3)
307 FORMAT (2X,A4.3X,F5.3,5X,F5.3,5X,F5.3)
315 CONTINUE

[
C READ IN SERVICE MEANS
c

READ (2, 306) IDUM
c

DO 320 1=1{,N
READ(2,308) IDUM, (SRVMN(I,J),u=1,2)
308 FORMAT (2X,Ad,3X,F8.2,5X,F5.2,5X,F5.2)
320  CONTINUE
c
C READ IN SWITCH PROBABLITIES
c
READ (2, 3031) IDUM
DO 330 K=1,NC .
READ (2, 3031) IDUM
00 330 I=1,N

ac1
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1378 READ(2.311) (XCHNG(I,J,K),J=1,N)
1379 3114 FORMAT (12F6.3)
1380 330  CONTINUE
1381 C
. 1382 c : :
; 1383 C READ COVERAGE
} 1384 c
1385 READ (2, 306) IDUM
1386 C
1387 DG 340 K=1,NC
1388 READ(2,312) IDUM, (cCOVP(K.J).J=1,N)
1389 312  FORMAT (I3,12F6.3)
1390 340  CONTINUE
1391 c
1392 C READ REGION NAMES
1393 o
1394 READ (2,3031) IDUM
1395 c
1396 DO 350 I=1,N
1397 READ (2,3410) IDUM, INAME(I)
1398 3410 FORMAT (13,5X,A4)
1399 350  CONTINUE
1400 c
1401 C END OF DATA RECOVERY
1402 c
1403 DS =
1404 c N
1405 C
1406 C SELECT THE AREA TO CHANGE
1407 c
1408 c
1409 9 CONTINUE
1410 WRITE(6,10)
1411 10 FORMAT(“ WHAT WOULD YGU LIKE TO CHANGE ?7°,/,
1442 1 *(RATES,TRAVEL,SERVICE,SWITCH,COVERAGE,STOP) ')
1413 WRITE (6, 12)
1414 12 FORMAT (' ENTERING O WILL STOP LEVEL OF QUERY’)
1415 READ(5, 11) JCH
1416 11 FORMAT(A4)
1417 IF(JUCH.EQ.MC1) GO TO 20
1418 1F(JCH.EQ.MC2) GG TO 30
1419 IF(JCH.EQ.MC3) GO TO 40
1420 1F(JUCH.EQ.MC4) GO TO 50
1421 IF(JCH.EQ.MCS) GO TO 60
1422 RETURN
1423 c
1424 C HERE YOU RETURN TO THE MAIN PROGRAM
, 1425 c
i 1426 c
1427 PR iatataiatate bbb
1428 c
1429 o
1430 c CHANGE THE CALL RATES
1431 c
1432 20 CONT INUE
: 1433 WRITE(6,21)
| 1434 21 FORMAT(’ WHICH TYPE OF RATE WOULD YOU LIKE TO CHANGE ?7./,
! 1435 4 * (EXPEDITE, IMMEDIATE,OR UNFOUNDED)')
¢ 1436 READ(S,22) JCH
g 1437 IF (JCH .EQ. IZERO) GOTO 9
! ;
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1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462

22

o

C

28

23

24

204

25

33

34

35

C

FORMAT(A4)

IF(JUCH.EQ.MD1t) IL=1
IF(JCH,EQ.MD2) IL=2
IF(JCH.EQ.MD3) IL=3

C NEXT SELECT THE REGION

CONTINUE
WRITE(6,23)

FORMAT(’ WHAT REGION? (I2)')
READ(5,24) 1

1IF (I .EQ. 0) GOTO 20
FORMAT(12)

XL=XLAM(I, IL)

CONTINUE

WRITE(6,25) JCH, XL

FORMAT(‘ THE CURRENT HOURLY’ / A4,’ RATE IS’',FB.4,/,

i1 ¢ WHAT WOULD LIKE TO CHANGE IT TO ?(F5.3)")
READ(S,26) XL

FORMAT(F5.3)

XLAM(I,IL)=XL

GO TO 28

CHANGE THE TRAVEL MEANS

CONTINUE
WRITE(6,31)

FORMAT(/ WHAT ARE THE REGIONS THAT YOU WANT TO CHANGE THE

1 ¢ TRAVEL MEANS FOR ? (212)*)
READ(5,32) 1,d
IF (I .EQ. O) GOTO 9

FORMAT(212)
TT=TTMN(I1,J)
WRITE(6,33) I,J,TT

FORMAT(‘ THE CURRENT MEAN TIME FROM'’,I4,’ TO ‘/,I4,’

WRITE(6,34)

FORMAT(* WHAT NEW VALUE DO YOU WANT ? (F6.3)'Y)
READ(5,35) TT

FORMAT(F6.3)

TTMN(I,JU)=TT

TTMN(J, 1)=TT

GO TO 30

C CHANGE SERVICE MEANS

C
40

41

42

o

CONTINUE
WRITE(6,41)

FORMAT( ' WHAT TYPE OF SERVICE TIME WOULD YOU LIKE TO CHANGE?',/,

1 /(EXPEDITE OR IMMEDIATE)’)
READ(5,42) JCH

IF (JCcH .EQ. IZERO) GOTO 9
FORMAT (A4) :
IF(JCH.EQ.MD1) IL=1
IF(JCH.EQ.MD2) IL=2

C CHOOSE REGIDN

C
48

CONTINUE
WRITE(6,43)
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1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
15C9
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1853
1554
1555
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43

44

45

57

51

52

53

54

62
66

63

64

65

C END
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FORMAT (‘' WHAT REGION? (I2)°)
READ(5,44) I

IF (I .EQ. QO) GOTO 40

FORMAT(12)

SS=SRVMN(I,IL)

WRITE(6,45) SS

FORMAT(’ THE CURRENT VALUE IS’,F8.4)
WRITE(6,46)

FORMAT(‘ NEW MEAN (IN MINS)? (F8.4)‘)
READ(5,47) SS :
FORMAT(F8.4)

SRVMN(I,IL)=SS

GO TO 48

C
(o} CHOOSE NEW SWITCH PROBABILITIES
c
5

CONTINUE
WRITE (6, 56)

FORMAT (' FOR WHICH CAR DO YOU WANT TO CHANGE PATROL SWITCH PROBS? (12)*)

READ (5, 24) K

IfF (K .EQ. O) GOTO 9

CONTINUE

WRITE(6,51)

FORMAT(’ WHAT PATROL SWITCH PAIR (I,J) DO YOU WANT TO CHANGE? (212)‘)
READ(5,52) I,J

IF (I .EQ. O) GOTO 50

FORMAT(212)

XS=XCHNG(I,J,K)

WRITE(6,53) K,I,J,XS

FORMAT{‘ THE OLD PROB FOR CAR’,I4,’ FROM’,I4,’ TO ‘,I4,' WAS ’,F8.4)
WRITE(6,54)

FORMAT(‘ WHAT NEW PROB DO YOU WANT? (F5.3)’)

READ{5,55) XS

FORMAT(F5.3)

XCHNG(1,J,K)=XS

GO TO 57

HERE YOU CHANGE THE COVERAGE FUNCTION

CONTINUE
WRITE(6,61)

FORMAT(’ WHAT CAR 7 (I2)*)

READ(5,62) K

IF (K .EQ. O) GOTO 9

FORMAT{12)

CONTINUE

WRITE (6, 63)

FORMAT ('’ COVERAGE FOR WHAT REGION? (I2)’)

READ (5, 24) I

IF (I .EQ. O) GOTO 60

WRITE (6, 64) K, I, COVP(K,I)

FORMAT (' COVERAGE FOR CAR *‘,I2,’ IN REGION ’,I2,‘ IS ‘,F5.3)
WRITE (6, 65)

FORMAT ('’ NEW COVERAGE? (F5.3)‘)

READ (5, 55) CV

COovP(K.I) = Cv

GOTO 66

OF CHANGER

18T

T N S



© i parig e

Lneey
TN
Y
CHRNS
R K
L6604
v:.',g;/:f
¥GE0
sy
1568
f56Y
1577
177 ¢
1577
1571
$t 14
1575
1576
1577
16076
1579
1584
1ha Y
§5R2
fressy
15814
1545
st AL
1687
t9AR
1589
T4y
14491
16597
fuay
1654
14504
1696
101
165491
1599

sngny
i.lil'i"ﬁ!'tlfbt"""."’

"tkcotwqac'nvaacavcc#lf.arqvaaw'vttiaciﬁirvvc

4
P opent, CmRGTINE TS Py ARES ooty AT T COARATT T JA L. BUMDOA ED AN
£ TRTOIBTION cam T PARAMETEDA APE A P eary o 14Dy AND BT
s ez potin At YLD o6y O E O ITOIG s ot (A e F JADEATEE L5
Is
ftﬁ'if#"ﬁé"&'#"ff't"I"Oi’wd&l’&dé&tut'i’ﬁ*"&k't’.v'd&'t".klév'##v’lé"'tl'
.

CrppmApyTISE S IRALIAR #D TT ST
.

TE Iyp HE 1) PR
rd

Lipph ety
/\

tify My Kt v

R Y R T TR R AR RS cyyerqpl [ApR It aFtFLr Tl 1)
(34} 2espt [ALHF
’

TN AR R L

(A 2R 12 8)

£40)
p
{)0674‘#?0'-)‘*0#"G‘V#ttk#tﬂ.&diﬁ&l#l#'*&tlto#k’&‘f&#l!QJ#Q‘S«#«VCUO#I#OU‘)C#QOi
s
’ 1415 N!H?,TI{}H POUPTITES TBIF FASL i AL F DN THTFHED o
’.:
I'*Ovﬁltibw’f!iQQQQO6&’4‘0*lﬁ«ii%’ifﬂl‘&it!if!vbdt'l#I#&ib"lii'ﬁf'l"ld't"l&14
3

Fute 110N [FRLTIY)
r

1FACT -1 ‘

1F (v LT 27 GOt

nty & 1-2.K

tEAET~1EAN TS
i thNTTHIF
7 st P RUE
,

HE RN

FHfy




S ——————————— i

a

B sty

o

2

et e

Q2

133

APPENDIX ¥ A SEMI-MARXOV MODFEL,

The Markov process model presented in Section 4 assumes that travel limes
are exponentially dislributed. This assumption does not aller the steady state
probabilities, but the model may not be valid for transient analysis if the
assumplion does not hold In Lhis case, a semi-Markov process can be used. A
semi-Markov process differs from a Markov process in Lhat the rate of transition
from stale i to stale j depends on the time spent in state i1 in addition to
the states i and j . A Markov process is then a special case of a semi-Markov

process in which all Lransilion time distributions are exponential. (For a more

detailed account, see Cinlar [14].)

The travel times found for Washtenaw County appeared to have a non-
exponential Erlang-type distribulion (see Appendix B). The main goal of the Mar-
kov model, however, was to [ind steady state probabilities and to be easily imple-
mentable. Since the Markov model converged fairly quickly, it has been
developed in this reporl. In the future, however, il may prove beneficial to
attain a higher level of detail in deflining transient effects by employing the

semi-Markov model presented here.

We will present a rudimenlary 2N state model analagous to the 3N state
model of section 4 1. In this model, a palrol stale p(i) and a service statle
s(i) exist lor each region i1 . We could add states for different types of service
and queucing as in the Markov model, bul we will use the simpler rodel for ease
of exposition. The basic difference between this model and the Markov model is

that no travel slale is required. Instead, the time of travel is reflected in a non-

exponential distribution for Lravel between two states.

pi; = probability of going from p (i) Lo s(j) in the next transition ,
7; = probability of going from p(i) to p(j) in the next transition.

I
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The matrix of Lhese probabililies is Lhe Lransilion probabilily malrix P .

We use arrival rates, A; , switching rates, z;; , and mean service times, y; ,
as in the Markov model. We assume that travel from region i to region j Iis

irlang distributed with

ni'
mean = —- and

Bi;
. VT
variance = .
Bi;
We then have that
Aj
Py =g N +and
2 AJ + Z x.;j (1)
i=1 J=1
Gi
z‘ij
Z )\j + 2 .'L'ij (2)
j=1 i=1
Fei

Semi-Markov processes are governed by a semi-Markov kernel @ which is
the product of the probability of a transition from i to 7 and the distribution

of that transition time. In this model, we define three types of kernels. The first

two are:

Qp(i'j‘t) = PXnH = S(j), Tn+1 - Tn = tIX'n =p(i)}
= py f (1.4.t), and

@ (ig.t)= P{Xnu =p() Tnn —Th s £ X, = p(3) } .

=Ty Q('i.J.t)‘

;
&
- c o
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where 7, is the tire of the m** transition and X, is the state of the system

immedialely after the n** transition.

N N
For A = E AJ‘*‘ Zzij.weﬁnd

=T

Fagt) = P{Tnﬂ — To S| Xpir = 5(). X =p(v:)]by

[}

¢ t-z S ST 741 ~-Bsz
s [Thor) 2RdGE w0

which is the probability of a call arrival in (0,s) ., and of travel in (s,t) . (Note
that the distribution of the arrival of the next call is independent of where the

call occurs.) From (3), we can show that

ﬂ‘j
Bs
.. R
JFEgj.t)y=1-e [Es-—)\]

T psTitk gBst ‘
+ o p"]
k=0 |Bs —Al™

ng—1 k
g el e (@
k=0 k!

We can find g (i.7,t) similarly Lo also be equal to (4).

For transitions from service, there is no choice of state after the next tran-
sition since patrol starts in that area. In this case, we have the third kernel type

¢

Qiit)=1—-e .

This completes the definition of the kernel @ .

The semi-Markov process is defined as Y; where

TR e

[

Mg A . s

Y S
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Yt:{xnl-'/'ngt<’[‘n+l .

Associated with Y is a potential function V which represents the expected

time the process spends in some state j given a start in state 1,

¢
V@zn=mukﬂnmﬁ.

where

1,if ¥ =7
Xi (%) = 0, otherwise .

In a transient analysis, we would be interested in V (i.7.t.)) given different

starting positions i . To find V (i,7,t) , we define the semi-Markov renewal ker-

nel K by

R(ijt)=Y @ (i.4.b),

n=0

and we defline

2N
h(jt)=1- kZ_)I Q7 k.t .

We then have

[t ]

t
V(ij.t) :{R(i,j,ds) { h(jw)du . 6))

Iiquation (5) is typically solved by laking the Laplace transforms of K and k

and inverling Ltheir product to find V (see Cinlar [14]).

OV - 9 s v 4 . ]
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We can also find the long run average time spent in each state, »(j) , by

, . 1 .o 1 , ,
= lim — t) = — . ,
o(j) =lim ¢ V(g .t) = — n(j)m () (6)
2N
where [m(i)] is a vector satisfying wP =m, .Zlﬁ(’i) = 1 for the transition pro-
iz
bability matrix P, and [m (i)] is a vector of the mean sojourn times in each

state., By using

1MQ=ZP—;Q@H4Mv (7)

we can find these steady-state probabilities. The resulting v(j) will be the
same as we would receive from the Markov model, but the transient effects in

atlaining these probabilities will be different.

As an example, let us consider a two region problem where

A =02

Ag = 0.3

M1 = Mg = R _

B11 = Bez = B0

ny =7ngpe =86

Bz = a1 = R0

nyg = Ng = 4

Tyg = Xgp = 0.5.
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For this problem, the transition matrix is

p(1) s(1) p(R) s(?)

Ol

P = s(1) 1 ] 0 0
M@ 7 5 0 g%
s(2 | o 0 1 o |,

4
and the resulling 7 suchthat 7P =7 and % #(j) =1 is
j=1

14 2 & 1
" [45‘15'45'5]‘ (8)

The mean sojourn times from (7) and (4) (using the definitions of &, &. and

& ) are

m = (1.18, 1.17, 0.5, 0.5). (9)

We then obtain from (8) and (9)

v(1) = 0.39
v(2) = 0.07
v(3) = 0.44
v(4) = 0.11 . (10)

%
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The transition matrix for a corresponding Markov model, with a six minute

transilion inlerval and Lhe same mean travel times, is

p(1) (1) s(1) pRR) t{R) s(?
1) .90 .05 0 .05 0 0
)| o 375 25 0 0 .37

(
(

s(1) | .20 o 80 0O 0 0
()| 05 0 0 .90 .05 ©
(
(

Rounding off the results from our Markov model program, we obtain

v(1) = 0.36
v(2) = 0.03
»(3) = 0.08
v(4) = 0.40
v(5) = 0.03
v(6) = 0.11, (11)

The time spent in patrol and travel in the Markov model should be equal to the
time in patrol in the semi-Markov model. The results in (11) only differ from

those in (10) in the thousandths place, which is the limit of the model accuracy.

(11)
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APPENDIX G: LINEAR APPROXIMATIONS FOR PRESCRIPTIVE ANALYSIS
The emphasis of Lhis projecl has been on providing descriptive analysis for
use in assessing different palrol policies. 1L may also be possible to provide
direction Lo guide users toward “good" policies that optimize or satisfy criteria
specified by the user. The simplest optimization model would be a linear pro-
gram in which changes in the steady state probabilities would be approximated
by linear functions. For small changes in policy, then, this model would accu-~

rately predict the change in steady-state.

In the Markov model of Section 4, we can find a steady state m by solving

TP =m,
and
me =1, (1)
where e = (1,1, - -,1)! . Solving (1) is equivalent to solving a system with a new

matrix P which 1s the identity minus P with e substituting for one column,

ﬁ-—{[, —Pl‘fz“Pz\"'lfN-l "PNA‘E]- ()

where I; is lbe j* columnof / and P; is the j* columnof P. 7 is then

the solulion of

nP:[o.o,m,o,ll. (3)

Let 7 solve (3) for some matrix P . We want to see how 7 changes if we
change P by altering the switch probabilities z;; . Suppose Zy is changed to

LTS This implies P changes to P' where

P (p(i)p(3)) ==z'y ==y + B,

= 3

]
.
P &
—ty Ll'
-9
¥

S
‘,
-‘;‘
i
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P (p(i)p(i)) = P(p(i)p (i) —A. (4)

We form a new matrix P' as in (2), where

(5)
=, — p(i)
p'= P + 0o 0 0 O 0 Py 0
p(i) 0 —A O 0 + A
0 O 0 0 0

We leb p(i) be the k™ row of P and let p(j) be the I column of P. We

then define the k* rowof P! as

(P k. = (@1, Bz " * * 1On) (8)

and the L™ rowof P! as

(1_5—1)1- = (oy.0ug 7 * Q) - (7)
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From (5), (8) and (7), we have
k
Py P = 1
0] 1
k| AMoagi—ayy) 0 1+ Mo —ag)
1
0
So, from (8), we have
1
Py = (B
0
1
—A(o—ay,y) L 1
1+A(og —e) L+A(og —oy )
0

Hence, the new m = o' where,

n =[00, - 0,1} (P,

A(ak'n —aln)
0
1
(8)
'-A(akn '_aln)

1+ A{ oty 0y )

(10)
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is

Vo Ao, —ay,)
TEIM T 1+A(rx,¢ "'au‘)

1
Tk [1+A(ak,,—-oqk)] T

A(alm "a]n)
14+ Ao —Olu,;)

Ty — Tk [

(11)
Now, we look at the difference between n' and 7 to find |
Bng . 'y = g
axX,; Aw A
[ﬂb (o —0tie) q=k
I ™ (akq "'alq)- q#k.
(12)

The result in (12) can be used in a linear optimization problem to represent

decision variables dy; where
' [a"q .
Wg = W Y\ dij +my . . (13)
i i laﬂ:v

Before solving a linear program, a set of decision variables zy is given and
the corresponding steady state probabilities are _}\found, The aim of the linear

program is to find changes in the z; to optimize any of several criteria. For

example, we can use the results in Chapter 4 and (13) to find the fractions of "

time spent patrolling in each region, the workload of each car, or the average

" response -times. We can then optimize these criteria {for example, minimize

expected response time or use goal programming to most nearly achieve our

goals, such as balancing workload), One set of constraints would limit di; so

P
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that the approximation is appropriate (for instance |d;j|=<.1) and others

would be used to guarantee minimum directed patrol times in each region.

After solving for the optimal values of d;; , we could then use the new zy

to find the exact values of the new steady state probabilities. These new values
may be used again as in (13) and a second linear program may be solved to find
another set of dy values. This procedure may be repeated until the linear pro-
gram does not lead to any improvement in the objective function criteria. Vafi-

ous methods (see [17]) may also be used to optimize multiple criteria chosen by

the user.
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