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ABSTP.ACT :' 

D (;\" ~ 

The motivation for this doctoral dissertation is a problem ~rising in 

the police dispatch area. Typically, citizens who call for police se~ice . 

-- for either a critical (i.e., requiring an. ~~ediate police response) or a 

non-critical (i.e .• , not requiring an immediate police response) matter--

are always being advised. that "a patrol car will be right out", even though 

considerable delays may occur because of the unavailability of patrol cars, 
If 

especially ,r respondj(;§lg to non-cr,~tical calls for service. Citizens C!-re 

being needlessly frustrated; the frUstration can be mitigated, if not elim­

inated, by formally advising citizens of potential delays. Indeed, because 
,\ 

citizen satisIaction is a function of e~j)ctation and because some 86.1 per-

cent of all calJ,s for police service are non-critical in nature, a cons:4der­
/' 

able portion of police demand can be "managed" and, lnore specifically, the 

formal delay procedure is one approach for managing such demand. 
(; 

In 1976 the Wilmington Department of Police, Wilmington, Delaware, imple-
\\ 

mented a formal delay procedure; that is, when all patrol cars Were busy, 

callers requesting service for a non-critical matter were told to expect ? 

30-minute delay. As an element of two consecutive patrol experiments, the 

formal delay procedure was evaluated and found to be very effective. It. 

should, however, be noted that Wilmington's formal delay procedure 'is fixed 
·0 (\ 

or static; that is,callers receiving a formal delay are each advised of the 

same constant delay -- a 30:-minute delay. Certainly, this need not and should 

not be the case. Depending on the. state of the system, tb,e expected delay 

should, of course, be variable and of different value fdlz: each non-critic.9,l 
Cl 

caller. Thus, what is needed is .a dynamic (1. e., state or queue dependent) 
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procedure for delaying responses to non-critical calls. Th~s then is the 

the development of a dynamic delay procedure that goal of the dissertation: 

could be straightforwardly implemented in any police department. 

i terms, the dynamic delay procedure can be charac­In analytical queu ng 

~rized as a prioritized queue-dependent model. The model is sensitive to 

the need to have enough patrol cars available to respond to critical calls, 

whi'1e at the same time not allow the non-critfrical 'Galls to be queued up for 

too long. In addition to stating the pr.oblem that prompted th~ research and 

outlining a research approach consisting of eight explicitly defined activi­

ties, this summcfry report also provides a brief literature review and an ex~o-

sition of some key results. 
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1. nITRODUCTION 

1.1" Motivation 

The motivation for" my dissertation is a problem arisin!; in the police 
,', 

dispatch area. Tien and Valiante [1979] provide the follciwing vivid descrip-

tion of the problem. 

A woman returns hqme at the end of an exhausting day at the office and 
finds her home in a di~heveledr; state; it has been ransacked and burglarized • 
After taking stock of her losses ,and perhaps calling and commiserating with 
one or two of"':'her ci~se friends and relatives, sh~calls the police and is, 
told, "A patrol car will be right out". Ten minutes pass, and' no patrol car 
arrives. Ten more minutes pass, f;lnd still no patrol car. Because the late 
afternoon is a busy time and a pla.toon shift change could be occurring, a 
patrol car may not be available for dispatch to this non-aritiaaZ (i.e., not 
requiring an immediate or emergency response)call-for-service for a rather 
long time, perhaps up to an hour from the time the call isre'c'eived. Mean­
while, the woman is becoming increasingly distraught and frustrated -- her 
expecta,tion, aft:er all, was raised because she was told that a pa.trol car 
would b''e right out.',· v ' • ~ 

" 

!h~.abovla:) acc~Ft is acomm:on daily occurrence in cities throughout the 
'1)."» 

nation. gitizens ate always being advised that 8; "patrol car will be right 

out", even though considerable delays may occur either because no patrol cars 

are available for dispatch, or because the few car~' that are available are 

being reserved for dispatch to more critical calls for service, or because the 
~ ,0 

'car that is assigned to the sector in which the call originated is busy. 

Whatever the reason, citizens are being needlessly frustrated. Certainly, the 

frustration can be mitigated, if nOb elimim1ted, by formally advising citizens 

of potenti~l delays. Indeed, because citizen satisfaction is a, function of 

expec~ation [Kansas City Police. Department, 1977; Tien et a1., 1978; Tienand 
. "~~ 

Val~~ilte, 1979] and because some 86.,1 percent of all calls for police service· 
\~ 01; " 

a~e '11fJn-arit;iaaZ in nature [Tien eta!., 1.978; Sumrall et al .• , 1980], a, con-
i( b \I, 

o 

si.de~:ahle portion of f'olice deman,.d can be "managedll and,more spec.ifically., 
f;J " 

the f~:rmaZ. deZa:,y p't'oaedure is oue approach fo1:' mana.gin~_such demand. 

',. 
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In 1976 the vlilmington Department of Police (WDP), Wiimj,ngton, Delaware, 
,-f!i' 

implemented ~ formal delay procedure; that is, when all patrol cars were btisy, 
") 

callers requesting service for a non-critical matter were told to expect a 
I] 

30-minute delay. As an element of bothothe Wilmington split-force patrol 

experiment [Tien "et aL, 1978] and the Wilmington management of demand program 

[Cahn and Tien, 1981],the formal delay procedure was judged to be very 

'r" 

effective; the citizens,~ attitude toward a delay -- of which they were formally 

advised -- is best ~ummarized by one of the telephone survey respondents who 

said, "I am a taxpayer. If it helps to keep my taxes down, then I'm all for 

the police to take their: time in showing up to non-emergency s.ituations --

but I would like to be told of such a delay so that I'm not just waiting ii' 

around for them" [Tien and Valianti:!, 197~]. 

It should, however, be noted that Wilmington's formal delay procedure is 
,) 

fixed or static; that is, callers receiving a form""l delay are each advised 

of the same constant delay -- 3.0-minute delay. CertainlyCJ this need I'not and 

should not be the case. Dependin~ on the state of the system (1. e .• , how many 

of the tota.l number of patrol car~'are busy, 'bow many critical and non-

critical calls are waiting in queue for service, at what t'ates the critical 
II 

and non-critical calls for ser,v±ce are arriving at the pol±ce dispatch center, 

and how fast the patrol cars are handling the calls), th~: expected delay 

r/l 

should, of course, be :variable and of different value fOJ;; each non-critical 
'!! Iii 

caller. Thus, what is needed is a dyncunic (Le. ,'state or queue dependent) 

procedure for delaying responses to non .... cr:itical calls. This then is the, 

go?tl of this dissertation: the deveZopment of a dynamiC! deZay procedure 
===d-c=-==·=o·==,,===,===~,"==-~==·,,=, :. __ -=""_-_-==.;.;"=::--'::::--=~-=-----'........=....=-:;~~-.--..=..;="""=-ro==-o- I' 

Although such a procedure would be significantly enhancE~d by the avail,l.bility 

, 

of a computer-assisted dispatch (CAD) system, it is int.knded to develop a pro­

cedure that could be straightforwardly'Jmplemented in c9f1y police depart~ent. 
Sf 
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L2 Objective 
,'i 

In analytical queuing terms, the dynamic delay procedure can be charac-

terized as a prioritized non-preemptive queue-dependent dispatching procedure. 

The, system has a call-taker who receives calls for service and a dispatcher 

who dispatches the patrol ~ars on radio. The call-taker will be able to 
h , •. , 

dete;mine whether a call-for-serv"~e (CPS) is emergency or not, that is, a 
ff ,~ 

, . high priority call or a low priority call. vThen a CPS arrive',!?, it will stay 

in queue until a patrol car arrives at the scene. This t~me is called the 

response t'ime which is the sum of the delay time and the tr,lvel time. The 
" 'l 

delay time is the tir:le elapsed since the CPS ar.rives until a patrd car is 
~;. 

, 
dispatched. The travel time is the time elapsed sincE!. a patrol car is dis-

patched' until the car is on-scene. \·fllen the patrol car C'Lrri ves it will spend 

some time on the scene, called the on-scene time. After that, it will be 

available for other CFS ag~rln. Exhibit 1.1 displays ~he time instants at 

which "the CPS arrives, car is dispatched, car is on-scene and car is available 

again and defines the time intervals,of the delay time, the travel time, the 

on-scene time, the respons~ time and the service time. 

CFS Arrives . Car Di spatched Car On-Scene Car Available 

-
Delay Time +-iravel Time 

Respone Time 

~ On-Scene Time 

~I 
Serv; ce Time 

Exhibit 1.1 
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The objective of this study is to develop a queue-depen~ent dispatching 

procedure for determing the aonditional, ea:peated del,ay time of eaah aal,l, in 

queu.,e given the state of the system G:(Ld the position in queue so that the 

probability of a high priority call has a delay is reduced and, at the same 

time, the delay of a low priority call is not too long. This can be achieved 

by reserving a few cars for high priority calls and restricting the length of 

the low priority, queue when system is not full.' \'1e describe such a dispatch,-

ing procedure i~ section 1.3. 

1.3 Model definition 

Suppose the total effective number of available patrol cars is N.s If the 
;/1 

call-taker receives a high priority (i.e., c~itical) call and at least one of 

the N total patrol cars is not busy, then the call-taker would inform the 

caller that a patrol car will respond with an expected delay time equal to the 

expected travel time. If, on the other hand, there is no patrol car available, 

then the high priority call is either lost or queued in the high priority 

queue. And if it 'ts queued, the caller is advised of an expected delay equal 

to the expected wai~ing time in the high priority queue and the expected 

travel time. If the call-taker r~ceives a low priority (i.e., non-critical) 
'.) 

cal(C~: and b, the number of busy patrol cars, is less than some number R, then 

the call-taker would,inf0l?- the caller that a patrol car will respond with an: 

expected delay time equ4 to the expected travel time. If, on the other hand, 
f 

'\ b>R and the low prioryy queue len,gth is less than some number Rr then the low 

p~iority call is qU7ld in the Jow priori.ty queue and the caller is advised 

of ~an expected delat equal to the expected waiting tillle in the low priority 

queue and the expeq)t:ed travel time. In the case of R<b<N and the low prdority 

[) 

-.. 

t 
rI \ I 
1 u 

1 

I 
1 

,I 
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• 

queue length is equal to H, the call is queued at the end of low priority 

queue and a patrol car will be sent to the first call ~n the ... low priority 
queue. Whenever a patrol car becomes available, ~t "'~ll 

... w... first attempt to 

serve the next high priority call if th i ere s any; second, if b>R }lnd the 

low priority queue length is greater than H, it will attempt to serve the 

next low priority call, if there is any; otherwise, it wiill remain available 

until the next call arrives. 
o 

Notationally, the above dispatchl!fl!2 procedure can - be defined as: D(N;R,M) 
to1here 

o N =~,the total effective number of patrol cars. 

R =' c~F-off point for the number of busy patrol ~ cars; if the number 

of busy patrol cars is equal to or greater than R, then only high 

priority calls are served. 

M = cut-off point for the numb~r of ,calls in the low pl.'iority queue; 

if the number of calls in the low priority queue is equal to H 

when a low pr;ority call, arl:·ive.s or when the number of calls, in 

the low priority queue is greater tha~ M when a patiol car becomes 

avaj,la6'le, th%n the ,R c~~-off does' not apply and low, 'priori ty 
j~ 

calls will be served as long h ' as t ere ~s no high priority calls 

awaiting to be served and as 1 h ong as t ere is at least one patrol 

car available. 

It can be seen that the D(N;R,M) procedure is qui!:=,'e mindf:l of the 
nee~ 

to have enough patrol cars 'I bl aVa~a e to respond to high pr~or','ty 11 ( ...... ca s i. e. , 

the R cut-off), while at the same time not allow the low priority calls to 

be queued up for too long (1. e., the 11 cut-off). 

.jJ 

" 
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!) 
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In general, there are two models for the emergency calls. One is w'hen 

it is required iI!lOediate response be made to the high priori'ty call and, hence, 

the 'call will be lost if all N patrol cars are busy; the other is when the 

high priority call can be queued in the high priorif;;y.~ ~ueue and waits for its 

turn to be served. The low priority calls can always be queued. The D(U;R,H) 
II 

procedure can apply to both of the two models. When D(N;R,H) applies to the 

first model (i. e., high priority calls are lost when all ,the patrol cars are 
o 

busy) it is ·denoted as D(N;R,M;L,Q) which is discussed in Section 2; the L 

indicates that'high priority calls are lost when the system is totally busy 

and Q indic£tes that the low priority calls can be queued~ When D(N;R,l1) 

applies to the second model it is denoted as D(U;R,H;Q,.Q) which is discussed 

in Section 3; the two Q' s indicate that both the high, and lo'tv priority calls 

can be queued,. 
/) 

1.4 Literature Revi~Y 

There is, of. course, an immense literature dealing with queueing. But, 

suprisingly, very few articles have consider~d the D(N;R,H) prockdure,and all 

of those articles which considered the D(N;R,H) procedure are special cases o 

of the model we propose here. Tho!je artic)::e.§ related to the D (N; R,M) pz:ocedure 

are summarized in the E~ibit 1.2 and discussed below. In addition to those 

articles, we also looked into two approximate solution methods,' the fluid 
,~ 

approximation and ,~he diffusion approximation ,;and discuss the applicability 

of these approximation methods to our proposed queuing sys~em. II 

The D(N;~l,oo;L,Q) model is essentially equivalent to the t1/l-1/N queue and 

is wideIy referen,c;ed in the literature. 

The cutoff priority queuing model was first introduced by Benn [1966] in 

his dissertation and summarized in Jaiswal's Priority Queue [1968]. For the 
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Distribution of Expected Distr:f,butfon of Distribution Conditional VariaBle C;' 

Delay Time of Delay Time or Server of Expected 
Model Low Priority Calls Low PriorityfCalls Utilization System States Delay Times 

/ 
D (N jN ,ooj"L t Q) 

';; . c:, 

., " * * * * * 
D(NjR,oojL,Q) Taylor & Templeton Taylor & Templeton Jaiswal [1968] Sonick &. PrQPosed To Do 

[1980] [1980] Jackson [1973] 
Q ~ 

D (N j R,}fj L ,Q) -- Proposed To Do 
. 

Proposed To Do Proposed To Do Proposed To Do 
Taylor & Templeton Taylor & :J:'empleton 
[1976] -- only for (1976) "' only for --
R;::N-1 R=N-l 

(. 

D(NjN,oojQ,Q) Davis [1966] 
0 

Cobham [1954] Davis [1966] Proposed To Do Proposed To Do 
Dressin & Reich 
[1957] -- for 
N=l only 

D(NjR,oojQ,Q) Taylor & Templeton Taylor & Templeton Jaiswal [1968] Proposed To Do Proposed To Do 
[1980] [1980] .. 

" " 
D(NjR,MjQ,Q) -- Proposed To Do Proposed To Do Proposed To Do Pr9posed To Do 

(J 

*The D(NjN,oojL,Q) model is essentially the M/M/N queue, which has been extensively dealt with in the 
literature. 

Exhibit 1.2 Summary of Literature Review 
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" 
D,,(N;R,co;L,Q) model, Ja1.swal [1968J used the techni~ueof gro~ping ,the states 

'(';{:, '.\ 

which have the same nUmber of busy; servers~i"tp obt~~n the ser:v;er utillzatidti, 

probabili ty, the probabili 1:Y of low priority cai1:br=,ing, delciyed an.d:" the prob-
'. , ... ,\ ;,:"'" !J 

if , 

sonick"£hd Jackson" (1'973] {i,ability of high priority call lost at equilibrium. 
Ii.' 

>.) 

, 1lSed an iterative method to genera.te empirically the distribution of queue 

length (up to some finite n~lF~r) at equilibrium. Taylor ~d Templeton [1980] 

solved the distribution of unconditional delay time of low priority calls 

analytically by the transform technique and, then, computed ~he expected delay 

time. 

For the D(N;R,M;L,Q) model, Taylor and Templetion [1976] worked on a 

special case in which R=N-l. For this special case, they used the transform 

technique to obtain the server utilization probability, the expected queue 

length of low priority call aD,d, then, using Little's .formula, to, compute the 

unconditional expectedLdelay time of low priority call. No work has been done 

for the general model. 

For the D(N;N,co;Q,Q) model, Cobham (1954] used busy period analysis on 

the ~igh priority call to obtain thJJunconditional expected delay time for 

,the low priority call. Dressin and Reich [1957] obtained: some results for 

single server queuing system which allows customers of more than two levels 

of priority; they formed the balance'equatiC'ns and analyticall solved 

the probability distr.ibution of th'~ number of customers of priority p or 

higher in queue atequilibr)um. And, also, they obtained '. the conditional 

density function for the del\'''l,y of a customer of' priority p given that a 

priority p customer arrives and finds the server is busy and has n .customers 

of priority p or higher waiting in the queue. Then, they weighted the condi-

tional delay time. density function by the ;corresponding steldl~ state proh-
'c-.' 

abilities to get the unconditional delay time density function Q,f 
fl 

8 

!I 

~ 

; 

f 

customer (in the transform space). Davis [1966J extended Dressin and Reich's 

work to a'multi-server q¥euing system. By doing the same analysis as Dressin 

and Reich, he derived the,probabili~y that all the N servers are bu~y and 

there are k calls of prio~ityp or higher in q¥eue when a call of priority p 

' .. 

arrives. Further, he used the'same conditional delay time density function ~ 

as in Dressin and Reich's'; to get ,the unconditional delay time density function 

of priority p call. 

For the D(N;R,co;Q,Q) model, Jaiswcil [1966] used the discrete transform, 

technique to obtain the server utilization probability and to'compute the' 

probabilities of high priority and low priority calls being delayed, respec­

tively. Taylor and Templeton [1980] used a different method, matrix iteration, 

to obtain the server utilization probability and the distribution of uncondi­

tional delay time of low priority calls. 

For the D(N;R,M;Q,Q) model, no literature exists at present. 

Two potentially pertinent solution methods are briefly discussed'next. 
Co, 

Newell [1965] proposed an approximation method, the flu,id approximation, 

to solve some practical queuing problems which have large queues and lo~g 

delays. The fluid approximation assumes that the cumulative number of arrivals, 

ct(t), can be approximated by a non .... randomcontinuwn as if it were a fluid 

flowing into a reservoir and the cumulative number of departure, o(t) can be 
~. (,' 

o 

approximated by a non-random continuwn as if ~t were a fluid flowing out of 

a reservoir. That is, it disr~gards the stochastic effects and uses the mean .' 

values as the estimates. Al.lSo, in order to maintain the independence of tne 

input and output flow, one constraint has to be sat' f' d' h . ~s ~e , ~.e., t e queue 

length shOUld not drop to zero during the time period of analysis. N(t), the 

blacklog in the system expressed in terms of the number of customers 

9 

i; 
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at t~e t, is equal to ~(t) - o(t). So, N(t) is also a continuous process. 

The fluid approximation is not suitable to analyse the proposed problem. for 

three reasons. h of the proposed problem is formed not only First, t' e queue 
'", 

but alSO because of the. fluctuation of random­because of the high arrival rate 

ness. Second, the utilization factor of the proposed prob~em is never g~eater 

than 1. Hence, if the fluid approximation method were applied, it will give 

du~ng the t~es at which the non-zero queue constraint is zero q~~ue ,length •• 

violated. Third, due to the continuum of N(t), the fluid approximation is not 

ab"le to find the conditional expected delay t~e of a call given its position 

in queue and this is the biggest drawback of using the fluid approx~ation to 

approach our proposed problem. 

Gaver [1968] and ~Iewell [1968] used a better approximation method, the 

diffusion apprOximation, to solve problems in some heavily loaded system. 

the diffusion approximation, it is assumed that the arrival process and the 

In 

(,I 

departure process are both ap/roximated bY'aontinuous random process which at 
• 2 

time t are normally distributed with mean ~(t) andoo(t) and variance cr~(t) 

2 
and cro(t) , respectively. The variance terms are introduced in order to repre-

sent the random fluctuation of these processes about their mean. ~(t), the 

backlog in the system eXpressed dn terms of the number of customers at time 

t, is equal to a(t) - o(t) and. it is a continuous process. The diffusion 

also not suitable to analyse the proposed problem for two approximation is 

" 
reasons. First, the diffusion approximation gives .;i reasonable good ",estimate 

only when the system utilization is greatefthan .9 [Gaver",' 1968]. For our 

proposed problem, a significant number of low priority calls may be waiting 

in queue for serv:le",''P!)t this 0 is due to 0 the, D (II; R ,M) queue dis,I!i p l1n~-1~ is 

not due to the heavy load. Second, because of the continuum of N(t), t~e 
\~ 
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diffusion approximation is not able to find the conditional expected delay 

time given its position in queue. 

1.5 Scope of Work 

The primary objective of th;s dissertation is to develop a numerical 

solution algorithm of the contional expected delay times for low priority 

calls for each of the D(NjR,MjL,Q) and the D(I'rjR,M;Q,Q) models and to validate 

our numerical algorithms for the special cases by analytical means. A GPSS 

(General Purpose Simulation System) simulation i~ also undertaken so that we 

can check our numerical algorit~s more generally. 

The eight explicityly defined activities that-constitute this thesis re-

search are outlined below -- they are stated in proposal terms at this time. 

Then, in Sections 2 and 3, we pro~ide the key resuits of the research. In 

Section 2, we develop the D(N;R,M;L;Q) model and 3 casesC'were considered: 1) 

R=N and M~, 2) R<N and M-=, and 3) R<N and M is finite. For each of these 

three cases, we develop two algorithms, the steady state probability distribu­

tion algorithm and the conditional expected delay time for non-em~rgency calls 

algorithm, using the Markoviat}. assumptions. 

time are also computed. 
The unconditional expec~;ed delay 

1(\ 
Case 1 is trival because it is equivalent to the 

M/M/N queuing system. 
Case 2 only has one cut-off POl.· t (i '. R) th n • e. " e cut-

off on the number of busy s~rvers, and there is no restriction on the length 

of low priority queue. In other wO'l:'ds, it is a strict cut-off dispatching 

procedure. The conditional expected delay time of Case 2 can be used as an 

upper bound to that of Case 3, the general model.- The unconditional expected 

delay timf;!s are iChecked with the analtyical results. In Case 3, there are 

two cut-off points (1. e., R and H). The two algorithms in Case 3 have been 

coded in FORTRAN. For R=N-l, th~. unconditio,nal expected delay times are 
- r::::o 
ch~cked w:LJE.h th,e analytical resul ts • 

explained. 
Several properties are also observed",and 

t 
11 
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3 h D(N R M Q Q) model is developed. As in Section 2, we In Section , t e ;,;, 

h 'ToTe ""Iso develop· two algorithms for each case consider the same tree cases. l'f Q 

and, then, the unconditionaloexpected delay time is computed. Two theorems 

~d several lemmas are proved for Case 3, the most general model. In Case 

2, the unconditional expected delay time agrees with the analtyical result 

of Taylor and Templeton's analytical solution. In Case 3, we 'check the limit­

ing vahtes (Le., when M-+CO)!Jf the unco;'1ditional expected delay times; they 

also agree with the analytical solution. Finally, we make comparisons between 

the twa models, D(N;R,M;L,Q) and D(N;R,M;Q,Q), and the results seem reason-

able. 
~ 

In Sections 2 and 3, the reader is cautione,d about the fact that we use 

the conventional queuing terms; that is, we use waiting time instead of delay 

time, customer instead of CFS, server instead of patrol car, etc. The thesis 

itself employs application-oriented rather than queuing-oriented terms. 
. 

Activities 1 and 2: Develop the D(N;R,H;L,Q) and the D(N;R,M;Q,Q) l10dels and 

the Corresponding Numerical Soluti~n Algorithms 

As we can see from Exhibit 1.2, almost all of the articles on the D(N;R,M) 

procedure are special cases of our proposed models, the D(N;R,M;L,Q) and the 

D(NiR,].!;Q,Q) models. And almost all of those articles emphasize system wide 

measures such as the ~istributi~n of server utilization, the unconditional 

expected delay time of each type of c!alls. These are useful in planning the 

system but of little use in operating the system. Except for Dressin and 
)J 

Reich's paper [1957], no other paper dealt with the conditiona~ expected de~ay 

time of each waiting call in queue given the current state of the system and 

the position in queue. The conditional expected delay time is very important 

because under the D (N;R,M) dispatching procedure a signif,icant number of calls 

will have a delay, especially th,e low priority calls which are the maj ority '(j 

of the calls for service. So, it would be important to tell the caller how 
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long he/she is expected to wait until a patrol car arrives. And also, for 

those callers who called earlier and are still waiting for the patrpl car to 

show up, we can give them the updated expected response times if and when they 

call again. 

So, we would like to develop a solution algorithm for each of the 

D(NiR,M;L,Q) and the D(N;R,M;Q,Q) models which will give us the c'onditional 

expected delay time of each call in queue given the system state and the posi-

don in queue. Initially, due to the ~omplexity of the model, we need two 

Markovian assumptions to simplify the development of the algorithms. The two 

Markovian assumptions we made are i) the arrival of the high and the low 

priority calls are independent homogeneous Poisson processes with rates Al . , 
and 1..2 ; respectively, i1) the service time (for either types of call) is 

exponentially distributed with a constant expected service time of l/~. In 

addition to the two Markovian assumptions, we also made another assumption, 

that is, iii) each call receives the services of only one car. Define PI' P
2 

and P as follows: Pl=Al/~' P2=A2/~ and P=Pl +P2. 

Since the arrival rates Al and 1..2 and the service rate ~ are constant in 

time the conditional expected de~y times are time-invariant under the assump­

tions made. That is, the val~es generated by the algorithm are valid for all 

times during system operation (both the transient and the steady state periods). 

The unconditiona~ expected deZay time can be computed by Summing the 

product of the conditional expected delay times and the corresponding steady 

state probabilities ?f each state. The reason we want to compute the uncon-

ditional expected delay time is that it will help us to validate our algorithm 

by analytical means. Hence we need;?,to develop another solution algorithm 
~ \\ (i.'.\ 

which will generate the steady state probabilities numerically. 
iY' 
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Activity 3: Validate Special Cases by Analytical Means 

For the D(N;R,~;L,Q) model, i.e., the D(N;R,M;L,Q) model with M=~, Taylor 

and Templeton' [1980] had the analytical solution of the unconditional expected.,. 

delay time for the low priority call. For the D(N;N-1;M;L,Q) model, i. e., 

the D(N;R,M;L,Q) model with R=N-l, Taylor and Templeton [1976] also had the 

analytical solution of the unconditional expected delay time for the low 

11 T,7e would C3o'ke to check our numerical algorithm for the same priority ca • \"V -

special conditions. 

For theD(N;R,oo;Q,Q,) model, i.e., the D(N;R,M;Q,Q) model with M=oo, Taylor 

and Templeton [1980] obtained the analytical exp~ession of the unconditional 
'J 

expected delay time fo~ the low priority call. Our value for the case of H=oo 

should check with theirs. For the D(NjR,M;Q,Q) model withM equal to a finite 

'I bl t date We would attempt to solve number, there is no literature ava30 a eo. 

the special case of R=N-1 analytically. Hopefully, we would be successful 

so that we can use it to check our numerical algorithm. Note that the 

D(N;R,oo;Q,Q) model 30's the l3o'mit3o'ng model of, D(N,'R,M,'Q,Q) model when M-+oo. 

Since the analytical solution is available for the D(NjR,oo;Q,Q) model, we can 

check our numerical algorithm for the D(N;R,M;Q,Q) model when M is large. 

Activity 4: Validate Uore Generally by Simulation 

As we can see in activity 3, we only can validate the special case of our 

algorithms through the analytical means. 

generally, a GPSS simulation is proposed. 

In order to validate them more 

In this simulation, ~ve will choose 

the CFS as the transaction and the patrol car as the server. 

We want to measure the conditional expected delay time under the rules 

) d ' hi procedure and the three assumptions we made earlier. of D(N;R,M 30spatcng 

To measure the conditional expected delay time'we have to take doWn following 

, rrl.'ves· 1) type of the tran,saction, information at the instant transact300n a . 

2) the number of busy servers, 3) the number of transactions in the high' 
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priority queue and 4) the number of transactions in the low priority queue. 

We can foresee that, for reasonable values of Rand M and moderate input and 

output rates, a significant number of transactions will have zero delay and 

the probability of a large number of transactions in the system at the same 

time will ,be very small if we start it out with an empty system. This means 

that we need to run the simulation program for a long period of time to get 

enough data to validate our algorithm. Fortunately, there is an easy way to 

get around this. Since the conditio~al expected delay time is time-invariant, 

we can start it out with an extremely busy system. Thus, it will not take 

too long to get enough information to validate our conditional expected delay 

times algorithm. 

Activity 5: Determining the Impact of Relaxing Model Assumptions by Numerical 

and Simulation 'Methods 

Referring to the activities 1 and 2, we remind ourselves that the numerical 

algorithms are developed under the three assumptions made the~a. They are 1) 

the arrival processes are independent homqgeneous Poisson processes, 2) the 

;ervice time (sum of the travel time and the on-scence time) is exponentially 

distributed with a constant rate and 3) each call receives service by only 

one car. We would like to relax these assumptions to make the model more 

realistic and applicable. Taylor [1976] and others have addressed the first 

two assumptions. The independence of the two arrival processes seems to be 

valid since there is no relation between the emergency and non-emergency calls. 

Further, the emergency calls can be described by a Poisson process and if we 

narrow the period of analysis, for example 4 periods per day, the rate can 
, ., 

be considered as a constant. Because of the lack of data on the non-emergency 

calls, h¢. did not test the arrival pattern of non-et,nergency calls. But there 

is good ~eason to assume that it is also a homogeneous Poisson process. Because 
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a large proportion of the non-emergency calls are not scheduled and since they 
,1/ 

arrive independently from different sources their combined arrival p~ttern 
.... 

tends to be a Poisson process. The reason for the homogen~~ty of non-emergency 
~ 

calls is the same as in the case of the emergency calls. The 1:lssumption of 

exponential service time is not appropriate here. The best-fit distribution 

is the Erlang distribution of order k, k>l. 

Green [1978, 1980, 1981] has addressed the third assumption. She con-

sidered a class of queues which is characterized by customers who require 

simultaneous service from a random number of servers. One of her models is 
to 

that a customer cannot begin service until all required servers are available 
, 

and once the service begins each individual server will have independent 

service completion time, that is, the servers do not necessarily end service ':' 

together. We would like to adopt this assumption together with the Erlang-k 

(with 1<.=2,3 and';oo) se1:vice completion time assumption to develop . numerical 

solution algorithms for the steady state probability and the conditional 

expected delay time. Also, under the new assumptions, we would like to write 

a GPSS simulation program to check our numerical solution algorithms. 

Activity 6: Perform Sensitivity Analysis Using Numerical Approach 

Up to now, we are assuming the arrival rates are constant during a t:i,me 

period. But it is not so in the real world. It will have some (maybe small) 

fluctuations in time. We would like to perform the sensitivity analysis on 

the arrival rates using a numerical approach. In order to do this we have to 
,'; 

specify t't'i'O measures about the service level. The first pleasure we choose is 

the probability that a high priority call has a zerO delay at equilibrium. 

The second measure is the conditional delay time of the Mth low priority call 

in queue when all the servers are busy, i.e., the system ~s full. The reason 
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for choosing the first measure is obvious. And, the reason to choose the 

second measure is that it is an upper bound for the maximum expected delay 

that a low priority call can experience under the D(N;R,M) dispatching pro­

cedure when there is a car available. We would like to examine the sensi­

tivity of these two measures with respect to changes in the total arrival 

rates for fixed N, Rand 'k.!. B th f th l.' 0 0 ese measures will. be ob tained from the 

solution algorithms in Activity 5. 

Activity 7: Develop Approximate Numerical Algorit~ and Validate by 

Analytical and Simulation Methods 

The numerical solution algorithm we propose to develop in Activity 5 is 

based on an analytical formulatlo'on. Th t' , 'II d a loS, lot Wlo pro uce the exact values 

of the conditional expected delay times for each 1 i' 11 ow pr orloty ca in queue. 
Q ~ 

What we really want in practice is an algorithm which will produce an approx-

inr.,ate and acceptable answer very fast. The "acceptable answer" should be 

within the range specified by a lower bound and an upper bound for a given 

number of busy servers. We would like to investigate the bound analytically 

and by simulation. For fixed N, Rand H, we plot the bounds of the expected 

delay times against the number of busy servers. If the bounds are tight, we 

can simply take the average as an approximat~ value for all the M calls. If 

the bounds are not tight, we wlo'll try to 't 1 J.n erpo ate these t1 values by a 

curve between the bounds. 

Activity 8: Refine Numerical Algorithms for use in Both Manual and Automated 

Environment 
o 

Because "ole hope to see that these 1 'thm ' a gorJ. s are ~plemented by the police 

departments or other emergency servJ.'ce systems '11' f' h , 'tole Wlo re lone t e algorithms 

so that it can be ,used in both a manual and an automated environment. For 
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those systems which have computer (perhaps, microcomputer) facilities they 
o 

can implement our computer-based algorithms directly on their facility. Then, 

by e~ering the model parameters N, R, M, the current rates Al , A2, ~ and the 

currerit=st~e of the system, it will determine the expected delay times for 

each of the non-emergency call in queue. For those systems which are not in 

an automated environment, we would like to produce some easy-to-read plots of 
,DI 

the conditional. expected delay times 'so that ~vhen a CFS arrives the call-taker 

can give the caller an estimated response time. 

,J 
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2. D(~;R.H;L,Q) Model' 

In the D(N;R,M;L,Q) dispatching procedure, there is only one queue, the 

low priority queue. The ~ighpriority customer will leave the system without 

having service when all the servers are busy at the time when he/she arrives. 

'The state of the system can be represented as (n,q), where n is the number of 

busy servers and q is the ilumber of low priority customers waiting in the 

queue. In this section we assume that both of the high priority customer and 

the low priority customer have Poisson arrival" time with the arrival rates 

Al and A2 respectively and the servers have exponential service time with the 

',. 

same expected service time l/~ for both types of customers, Pl=Al/~' P2=A2/~ and P=P
l

+P
2

. 

There are three cases we should consider. 

cases of the third one. 

(1) 

(2) 

R=N and M= 

R<N and M::O.) 
V 

\\ 

The first two are the special 

(3t R<N and M i~\finite 
\\;, 

tve wil1.study for &~ch case the steady state probability distribution 
\\ 

" \\ 
and the condition~l expec~~d ~aiting times of low priority customers at a given 

\\ 
\~\ 

"" \\ 
.. 1\ 
'~~,:, \~ 

\~. e:Jl 
Let P{n,q) denote the stead}, ~ate probability 

state. 
o 

at state (n,q), EW~(n,q;k) 

the kth high pr.iority customer denote the conditional expect~~d\waiting time of 
~ II 

at state (n,q) in D(N;R'M;L'Q)\m~\del and EW~(n,q;k) denote the conditional 
\ I 

expected waiting time of the kt~loW priority customer at state (n,q) , k<q, 

in D{N;.a,M;L,Q) model. The uncO\tlitional expected waiting time is 

denoted by EW~ and EW~ for high.11rrioruy customer andi. low priority customer 

respectively. II 

I 19 

f II 



f' 
;~ ,,( 

:'I~l;,\ I, 

,\ 
I 

~ 
~. 

D 

2.1 D(N;N,oo;L,Q) Model 

For this dispatching procedure, no server is reserved for high priority 

customer. When the system is not full, we send a serv~7=' to the just arrived 

customer no matter what the priority the customer is •. When the system is 

full, the high priority arrivals are lost and the low priorit~, arrivals are 

queued in the low priority queue and wait for the service. When a server 

completes a service and returns to free, it will check the low priority queue. 

If the queue is not empty then the first waiting low priority customer will 

start the service. If the queue is empty, the server will remain free. 
o 

Exhibit 2.lis the transition diagram"for D(N;N,oo;L,Q) model. 

• • 

IV,..j }}I" rAf. 

e~ Q~ · , , ::@~ .. · 
N,IJ V Nt" .Vl"· U "'~ 

Exhibit 2.1 Transition diagram for D(N;N,oo;L,Q) model 

Steady State Probability Distribution 

From the transition diagram in Exhibi,t 2.1, we ca~ecognize that it is 
~, 

M/M/N queue with input rate Al +A2 and service rate ~ per server before the 

',. 

system is full. When the system is full, it changes to MIMII queue with input" 

rate A2 and service rate Nll •. Hence,cit is veri easy to write down the steady 
D " 

state probability P(n,q). 
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L , 1 
i l ,-

-£. P(n,O) - nl P(O,O), n=1,2, •• • 'N 

-- (NP2)q P(N,q) P(N,O) 

(

p . q N 

= N
2

) ~! P(O,O), q=1~2, 0# .' " 

Summing llll the probabilities to 1, we have 

P(O,O)= I L+L-L 
[

N-l n NJ-l 

O n! N-p N' n= 2 • 

o 
(2.1) 

(2.2) 

(2.3) 

Substitute (2.3) to (2.1) and (2.2), we will have all the steady state prob-

ability. Note that the s'teady s~ate can be reached only when iJZ<N. 
" 

The Cond:i:tional Expected Waiting Times for High Priority Customer 

Sinc,e the high priority is not allowed to be queued in D(N;N,oo;L,Q) model, 

the conditional expected waiting time of high priority customer will be ° at . 

any state, • 
),] 

The Conditional Expected Wait~ng Times for Low Priority Customer 

Let Wi~ be the time that the kth low priority customer spent in the queue, k=1,2, ••. 

By the st;t:'ategy of this dispatching pro~edure, only when the system is full ,) , 

-,'; <' 

the low p:riority customer 'starts to queue up and at this time the high priority 

customer is not allowed to enter the system. H; h(:\ th 1 ence, t fl., J ow priori ty 
" 

customer will start the setvice until a server completes the service k times. 

w;. is the Erlang distributi~n with parameters N\;1 and k. The density function 

.. is 

f~(t) 
k 

(NU)k k-l -Nllt 
= -:(~k -"-:1:-:")"'":""1 t e , 
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The expected waiting time of the k th, low priority customer at state (N,q) is" 

m/'(N,q;k) ~ 1... , CJ2:k>l 
00;1 NJ.l 

. (2.5) ... 

If ,: 
\: 
Ii 

The unconditional e~ected waiting time for low priority cus'tomer is 

EWi
= co (2.6) 

The reason for equation (2.6) is, when a low priority customer arrives ancffinds, the 

system at state (N ,:k) thtom he/ she will enter the low priority queue at the (k+l) st 

position. So, the expected waiting time for him/her is EW!(N,k+1;k+l). 

2.2 D(N;R,co;L,Q) Model,with R<N 

For this dispatching procedure, N-R servers are reserved for high prj.ority 

customer. That is, when the·' nUlIlber of busy servers, b, is less than R the 

arriving customer will be served immediately no matter what his/her 

priority is .' But when b>R,only high priority .arri vals are allowed to b~ served 
/ i 

immediately and low priority ar+ivals have to join the low priority queue. 

When b=N, Le., the system is full, the high priority arr1.va1s will be lost. 

A low priority in the queue can be served only whenb drops below R and the 

queue discipline is FIFO. Exhibit 2.2 is the transition diagram for 

,D(N;R,co;L,Q) model. 

Steady State Probability Distribution 

In Jaiswal's pribr~ty queues [1968], it j~ a formula to compute P(O,O) 

C~j! for this model. 

P (0,0) 

Q 

= 
[

R-Il ;in (:;,;.1 nr-
n=O (R-l) !P

2 

P~ + r p~}~l 
R! . n=R+l nl, 

c) 
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n 
N PI 

I n' n=R . 
(2.7) 

'I 
j 

'I o 

• ...<. --- ,. 

Exhibit 2.2 " Transition diagram for D(N;R,oo;L'~Q) model 

We will use • (2'~ 7) to compute the',\steady "t t b b "I" " • ~ a e pro a 1 1t1es. We summarize 
. \ 

the steps below~~ 
~ .'\ 

STEP 1), Compute P(n,O), n=1,2, ... R. 

STEP 2) Define a recursiye sequence to compute P(n,O)~ n=R+l, .. • N. 

STEP 3) For each ~1, do 

STEP 3.1) Compute P (R,:q) 

~' STEp 3.2) Defi~e two .rJ=~fursive sequences to compute P(I!,~q), 

n=;R+l~ •• . N. 
fJ 

*In this proposal, ",we will forego presenting the detailed derivation of our 
results. 0 

o 
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STEP 1) Compute P(n,O), n=1,2,.~.R. 

Before the number of busy servers reaches R, 0 it is M/M/R queue. Hence, 

n 
P(n,O) = 2- P(O 0) 

n! ' n=1,2~ .• ,.R (Z.8) 

Q; 

STEP 2) Define a recursive sequence to compute P(n,O), n=R+l, ••. N. 

Form the balancee:''luation at state (N,O), (N-l,O), ... (R+l,O) successively, 

we obtain a recursive sequence A , n=N,N-l, •.• R, 
n 

<:' ~ 

'with ~=l and~~l = (!~+P2)lp;I.' 

Then the ~teady stateprob~:biiH;y at',;,~;tate· (n,O), n=R+l, ••• ,N is 
;' 

I) 

P(n,O) = (An/Ap) P(R,O), ·r:.::=R+l., • ~.N 
~ > <I' 

;.,";: 

STEP 3) For ~ldo 

Step 3.1) . ComputeP(R,q). 

N 
P (R, q) = 0 (PZ/R) I 

n=R 
[P(n,q..:1)] 

Step 3.2):: Define two' recur~ive sequence to compute P (n,q) , 

(2.9) 

(2.10) 

! (2.11) 

jl ' 

Ii '" 
t=R+l, ••. N. 

! ,"' 
, 

Form the balance equation at state (N,q), (N-1,q), ..• (R+l,q) succ1~ssively. 

We 9btain two recursive sequence A , B n' n=N,N-l, ••• R, n 

0' 

A = [ (n-H+p) An+l - (n+2) An+2]PI n c:) 

B = [(n+l+p) Bn+l - (n+2)B
n
+2 ::;;' p2P (n+l ,q-l) lIP

1 n (2.12) 
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with AN = 1 (.:.; 

~-1 = (!HPZ) /P
1 

BN = ° 
B N_1= -P

2
P(N,q-1)/p

1 

Then 

(2.13) 

We can increase q by 1 and repeat STEP 3. 

We do a simple example to illustrate this procedure. 

Example 2.1: Find the steady state probability distribution in D(S;3,oo;L,Q) 

model with "'1=1, "'2=1, ].1=1. 

,We haveN=S', R=3, PI =P
2
=1, p=2 

Plug these values in (2.7), we have 

P(O,O) = .12409 

At STEP 1, by (2. 8), we have . 

P (1,.0) =' .24818 

P(2,0) = .24818 

:r" P(3,0) = .16545 

At STEP 2, by (2.9), we have 

AS = 1, A4 = 6, A3 = 31 

Then, by (2.10), we have 

P(4,0) = ,.03202 

P(5,0) = .00534 

~or q=l, by (2.11) at STEP 3.1), we have 

P(3,1) = .0676 
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At STEP ,3.2), by (2.12), we have 

AS = 1 

A4 = 6 

A3 = 31 , 

By (2.13), we have 

P(4,1) = .02014 

P(S,l) = .00424 

BS = 0 

B4 = -.00534 

B3 = -.06406 

C' 

We can keep increasing the q until we find enough state we want. 

In writing computer program one may choose an E so that the total 

probability found so far is greater than l-E to stop the iteration on q. 

Note that,the sequence A in the algorithm will not change at each itera­

tion and the steady state can be reached on;Ly"when P2<R. 

The Conditional Expected Waiting Times for High Priority Customer 

The conditional expected waiting time for high priority customer is 0 

' .. 

at any state because no high priority is allowed to be queued in this dispatch-

ing procedure. 

The Conditional Expected Waiting Times for Low Priority Customer 
() 

In this mode~ the conditional waiting time distribution for low priority 

customer is not known. However, we found a very easy way to compute the expected 

Let EW (n,q;k) denote the conditional expected waiting time of the kth co value. 

low priority customer at state (n,q) in D(N;R',co;L,Q) model, where k<q. Here 

we have dropped the superscript t without confusion. The expected waiting 

time for a low priority only depends on the position in the queue and does 

not depend on how many low priority in the queue. Notationally, this property 

can be written down in the following equation 

(2.14) 
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This property is true only when M=, i.e., no restriction on .the low priority 
\ ~ 

queue. When Mis finite, equation (2.14) \vill not hold any more. Because at 

the time the queue length reaches M, the system will have one more server to 

work and the service rate of the system will be bigger than it was. We will 

discuss this more in Section 2.3. 

We now derive a recursive formula to compute EWco(n,q;k). The 

system will stay in the current state until one of the following three events 

oc.curs: 

(A) A server completes service and returns to free. 

(B) A high priority customer arrives. 

(c) A low priority customer arrives. 

As soon. as" one of the three events occurs the system will change the .. 

state. Now, 'let's compute IDvco(n,q;k) for k=l. At state (N,l), 

1 + .N],l ) A2 ( ) EWco(N,l;l) = N],l+A2 N],l+A2 EWco(N-l~l;l + N],l+A2 EWco N,2;1 

The first term on the righthand side (RHS) of (2.l5),i5 the expected duration 

time at state (N,l). The 2nd term on the RHS of (2.15) is the product of the 

probability of event (A) occurs and the expected waiting time of the 1st low 

priority customer when even (A) occurs. The third term on the RHS of (2.15) 

is the product of the probability that event (C) occurs and the expected wait-

ing time of the 1st low priority customer when even (C) occurs. Note that 
" 

',. 

event (B) cannot occur at state (N,l). Apply (2.14) and mUltiply both sides by 

N],l+A2, we have [) 

(2.16) 

Continue to do this at state (N-l,1),(N-2,1), ... and (R,l) successively, we will 

have 
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EW (n,l;l) = EW (n-l,l;l) + Dn , 
00 00 

where Dn is defined recursively in the following way 

D = n n=N-l,N-2, ••• ,R 

with 

By the same analysis, we can extend this to k>l. 

EW (n,k;k) = EWoo(n-l,k;k) + D , 
00 n n=R+l, ••• ,N 

where the Dn' s ar,,~ defined recursively as in (2.18). 

Note that equation (2.19) together with (2.14) has defined all the 

., (2.17)'" 

(2.18) 

(~.19) 

expected waiting" times of low priority customer at all the feasible states. We 

do the example 2.1 to illustrate how this recursive relation works. In example 

I' 
2.1, we have N=S, R="3, :\1=1, :\2=1 and j.l=l. 

By (2.18), we have 

DS = .2 

D4 = .3 

D3 = . 433 

By (2.19) , have, for k>l 
4) 

we 
I' 

EW (3 k'k) = .433 k 
00 ' , 

EW (4,k;k) = .433k + .3 
00 

EW (S,k;k) = .433k + .3 + .2 = .433k + .S 
00 

Q.E.D\~ 
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"[ 
Taylor i.~nd Templeton [1980] found the unconditional expected waiting time of 

low pribri.t:y customer for this model. 
I' 
! 

~'le would. like to compare our result to 

theirs. Ii In order to make the comparison, we have to unconditionalize our 
'I II 

conditi()nal expected waiting times. 
Ii 
,I 

To do this we have to weigh our conditional 

expecteir waiting times by the corresponding steady state probabilities and sum 
!ill ! 

them al~~ up. The unconditionalizing formula is 
Ii 
Ii,' 
II 
:l 
II 

!I' EWoo = 
" II, 

1:11 
!'!: 

00 N 
I I P(i,j) EWoo(i,j+l;j+l) 

j-O i=R 
(2.20) 

The rea~lpn for (2.20) is when a low priority arrives and finds the system at 
Ii 

state. (~~:,j) then he/she will join the low priority queue (if necessary) in the 
" " st" . 

(j+l) ilposition. And, the expected waiting time for him/her will be 
11:: 

EWoo (i, j~lri ;j+ 1) • 
II 

A ~~I:'ogram has been written which generates P(i,j), EW (5.,j ;j) and compptes 

EW in j!1L20), with j up to 49. Exhibit 2.3 is a list ~-?comparisons of the 
00 :1 

II" 
expected waiting time for low priority customer between the theoretical value 

I' I' I,,; 
and the !fesult obtained from the program. 

1'1 

As /fe can see from Exhibit 2.3, our result checks with the theoretical 

value. !,As expected, our result is not greater than the theoretical value 

because in the program it only includes part of equation (2.20). The condi-

tional expected waiting time of D(N,R,oo;L,Q) can be used as upper bound for 

D(N;R,M;L,Q) model. We will discuss this in Section 2.3 • 

2.3 D(N;R,M;L,Q) Model with R<N and U<oo 

For'this dispatching procedure, we reserve N-R servers for high priority 

customer and, at the same time, we do not allow the low priority queue to 
Q 

exceed l1 whe.n tHere is a server free. The state space,' S: is 
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N 

5 

5 

5 

10 
o 10 

10 

15 

15 

15 

15\ 

(; 

Expected ~\Taiting Time 

R Al A2 II Theoretical Value Our Result 

3 1 1 1 .3418 . 3418 

4 1 2 1 .3649 .3649 

4 2 I.: 1 1 .2246 .2246 

8 1 1 1 .0002 .0002 
() 

8 2 4 1 .1679 . 1678 

8 4 2 1 .1263 .1263 

12 1 1 1 0 0 

12 2 8 1 .2272 .2271 

12 8 2 1 .142 :142 

12 .05 .25 .034 2.3067 2.3067 

Exhibit 2.3 Comparison of the unconditional expected 
waiting times in D(N;R,cc.;L,~) model 

(n,q): q=O when n=O,l, ••• ,R-l 

s = q=O,l, •.• M whenn=R, .•• ,N-l 

q=O,l, .•• when n=N 

" 

'Ie 

;, 

When a high priority customer arrives and finds the system at state (n,q),.he/ 

she will be served immediately if n<N, otherwise he/she will leave the system 

without having the service. When a low priority customer arrives and finds 

the system at state (n,q) , then exactly one of the following four actit~ns will 

be taken: 

1) if n<R, he/she will be served immediately. 

2) if R<n<N and. q<H, he/she will join the queue at the last position. 

3) if R<n<N and q=M, he/she will join the queue at the last position 

and the first waiting low priority customer in the queue will start 

the service immediately. 
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4) if n=N, he/she will join the queue at the last position. 

Wh:.p-"a server completes a service and the system changes state from (n,q) to 

(n-l,q) then exactly one of the following four actions will be taken: 

1) if n-l<R and q=O, it will remain free . 

2) if n-l<R and q>O, the first waiting low priority customer will 

start the service and the system will change the state from 

(n-l,q) to (n,q-l) instantaneously • 

3) if n-l>R and ~M, it will remain free. 

4) if n-l>R and q>M, the first waiting low p~iority customer will 

start the service and the system will change the state from (n-l,q) 

~o (n,q-l) instantaneously. 

Exhibit 2.4 is the transition diagram for D(N R M L ) ; , ; ,Q model. e 
.u1 ~·A'·"'Az. 

• 

, 
• r 

it,A 1 ~'A\ i" k1.. 

; • " ~ N"Jl-1 * Ai:Mf', ~ • " • 88
~ 

o AI.~ ~(.( 

Transition diagram for D(N;R,M;L,Q) model 
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For this model, Taylor and Templeton [1976] worked on a special case," , 
() 

R=N-l. They got the distribution or the ~umber of busy servers and the uncon-

ditional expected waiting time for low priority customer. Here, we try to 

soble the generallllOdel for the steady state probability and the conditional 

expected waiting time of each waiting low priority customer at a given state. 

Steady State Probability Distribution 

We will first find all the P(n,q) i~ terms of P(O,O) and then sum them all 

up to 1 to find P(O,O). We summarize the procedure of finding the P(n,q) in 

terms of P(O,O) below. 

Find P(n,O), n=1,2, ••. ,R~ in terms of P(O,O). STEP 1) 

STEP 2) Define a recursive sequence to find P(n,O), n=R+l, •.. ,N in terms 

ofP(O,O). 

STEP 3) For q=1,2, ••• ,M-l, do 

Find P(R,q) in terms of P(O,O). STEP 3.1) 

STEP 3.2) Define two recursive sequ~nces ~o find P(n,q),n=R+l, ..• ,N 

in terms of P(O,O). 

STEP 4) For q=M, do 

Find P(R,M) in t;,erms of ;P(O,O)~ STEP 4.1) 

STEP 4.2; Define two different recursive; sequences to find P(n,l1), 

n=R+1, ••. ,N in terms of P(O,O). 

STE:P 5) Find P(N,q), q=H+l,~1+2, ••• in terms of peo,O). 

I P(n,q)=l to find P(O,O). STEP 6) 
-:;;:; 

n,q II 
Now we illustrate briefly each~tep below. 

STEP 1) Find P(n,O), n=l, ••. ,R 

pn 
P(n,O) = -r P(O,O), n. n=l, .•• ,R' (2.21) 
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STEP 2) " Ii 

Define a recursive ~equence to find P(n,O), n=R+1, •.• ,N. 
I' rl equa tion at (N, 0) its 
,( 

q 
'I 

(N~+A2) P(N,P) = A1P(N-1,0) 

Divide both sides by ~, we have 

;( :: ~-1 P(N,O) 

where we have defined ~=1, ~-1=(N+P2)/P1' 

The balan~e 

(2.22) 

Form the balance equation at state (N 1 0) '(N 2 0) -, , -, , .•. (R+1,O) successively. 

We will have a recursive sequence 

An = [(n+1+p) An+1 (n+2) An+2]/Pl' n=N-2,N-3, ... ,R (2-.23) 

Then P(n,O) = (An/~) P(R,O) , (2.24) n=R+1, •.. ,N 

"Since P(R',O) is already defined in terms of P(O,O) 4n .... (2.21), l1:f~~j.S 

P(n,O), n=R+1, •.• ,N. 

STEP 3) For q=l, 2, ... M-l, do 

STEP 3.1) Find P(R,q) 

- •• -::C. 

P2 N 
P(R,q) = R [r P(n,q-l)] 

n=R IJ (2.25) 

STEf' 3.2) Define two recursive sequencd~ to f4 d P( ) n, 1 '"'.,. - ..... n , n,q , n=4\.+ , ••. ,N. 

Form _'!:",l?-~""balance equation at state, (l~ q) (N 1 q) (R+1) '" , , -", ••• " ,q successively, 

we will have two recursive sequences 
-;-;.:....-:- -' 

. .:~. 

= 
/) 

; "~ 
o 
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D 

. {; 

Bn = [(n+l+P)Bn+l - (n+2)Bn+2 ~ P2P (n+l,q-l)]/Pl , n=N-2 ,N-3 .... ,R, 

with ~:=l, 

B =0 N 

Then we have 

P (n, q) 

STEP 4) q=M, do 

B.., = -p
2

P, (N, q-l) / PI -U-l 

p; 
'-1~." 

STEP 4.1) Find P(R,M) 

P2 N 
P(R,M) = a- [L P(n,M-l)] 

n=R 

lJ 

n=R+l, ... ,N 

"~a 

(t~. 26) 

(2.27) 

STEP 4. 2~) Define two recursive sequences to 'find P(n,M), n=R+l, •.. ,N. 

Form the blanace equation' at state (N ~M) ,(N·-l,M) , ••• ,(R+l,M) successively, 

we will have two rectlrsive sequences 

,. 

Dn = [(n+I+p)Dn+
1 

- (n+2)Dn+2 - P2P(n+l,M-l)]/P , 

D =0 
N 

Then we have. 

34, 
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n+N-2, ••. ,R 

(2.29) 

1 
t! 

I.) 

o 

'~', ) 

"-

n=R+l, ••• ,N' .. (2.30) 

STEP 5) Find P(N,q), q=M+l, .•• 

P(N,q) = (:2)q-M P(N,M) q=M+l, ••• (2.31) 

00 

, P(n,q), ce.M+l, is a geometrical sequence so we can find. the sum, r P(N,q), 
q=l1+l 

without difficulty. 

() STEP 6) Find P(O,O) 

(C 

Then 

1 = L P(n,q) = sP(O,O) 
n,q 

p(O,O) = l/s(\ 

EJFhibi t 2.5 is the "block diagram of the above procedure • 

(2.32) 

As we can see from the block diagram, the number of operations is of the 

order of o (M(N-R+l) ). So, it is very efficierf-t. When R=N-l, the probabilities 

produced by our algorithm are exactly the same as Taylor and Templeton's. 

-
The Conditional Expected Waiting Time for High PrioritY"P4stomer 

- " ?il" 

Sipce there is no high priority customer waiting in the queue, the condi-

tional expected waiting time for high priority customer is ° at any state. 

The Conditional Expected Waiting Times for Low Priority Customer 

Let EWM(n,q;k) denote the expected waiting time of the kth low priority 

customer at state (n,q) 'for mode,l D(N;R,M;L,Q), where k<q. Note that ;~ have 

Q dropped the superscript ~ in the notation without confusion. In this section 

we will "derive a recursive formula to compute EWM(n,q;k) for each k at all 
\) 

35 

• .. 



o 

(I 
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c;:?-. 

() 

o 

Find P(n,O) 
n=l, .• ;',R 

Find P(n,O) 
n=R+l, .•. ,N 

q=l 

YES:: ~------------------~o , 

N" 

/' f 

fuchibit 2.5 

, NO 
.} 

J Find P(R,q) 

Find P(n,q) 
n=R+I, ..• ,N 

~~ 

~< 'I I q=:~({ 

} ".;. 

[ I Find P(R,M) 

.1 c· 

r 
-- Find P (n ,11) 

\.'1.' 

'n=R+I, .•. ,N 
! 

l 

r Find P(N,q) 

I q=M+I, ... 

1 
Find P(O,O) 

Block diagram of finding the P(O~O) 
in D(N;R,1-i;L,Q) model 

CJ 
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feasible states (n,q)", Following that we will carry out an example to show how 
':; 

it works. For R=N-l, Taylor and Templeton [1976] got the unconditional 'expected 
' .. 

waiting fime for this model. We will give a formula to unconditionalize our 

conditional expected waiting times and show numerically that 'they are identical. 

Then, we give an upper bound and a lower bound for Et-lH(n,cuk). Following that 

we will di~CUSS a property about EWM(n,q;k) for this model. Finally, we 

examine an example obtained from the police department. 
(7 

Now, we start toder'ive a 'recursiv:~ formula to compute EWM(n,q;k), 

~k>l. Because the "restriction on t~e queue length, EWM(n,q;k) will depend on 

q as well as on nand k. It is very easy to see this at state (N,M) and sta~e 

~ (N,M+l).~ At state (N,M+l), the first ~aiting low priority customer in the 

queue will start the service as soon as a server completes a service and returns 

tp free. But at state (N,M), when a server completes a service and returns to 
'" 

free tne system changes state to (N-l,H) and the first waiting low priority 

customer still has to wait in the queue. Hence, equation (2.14) wili not hold 

in general for this model. We have to find a state such that the expected 

waiting time at that state is known to start the recursive process for each k • 

Fortunately, it is very easy to find such a sl,tate. For example, k=l, 

'\ / 
EWM(N,M+l;l) = l/N]J. B)~pause at state (N,l#l), ther,e are M+I low priority 

// 
customer waiting in the queue and all N servers are busy. The first low 

priority customer will start the service as soon as a server completes the 

service. Since N servers .are working with service rate lJ per server~ the 

expected waiting time for the first waiting low priority customer is l/N]J. In 

general, ~M(N,M+k;k)=k/N1-l, k=1,2, .'.. Now, we start to compute EWM(N,q;k) for 

k=l. ,We have 
'" 

, C2.M+I • (2.33) 
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a 

At state (N,M), we have 

') A 
Et"M(N ,M;l) = Nll~A2 + N~;A2 EHM(N-l,M;l) + Nll!A2 EWM(N ,H+l ;1) 

The reason for (2.34) is the same as for '(2.15). Multiply both sides by 

Nll+A,and substitute (2.33) into (2.34) we, have 

1+A2/Nll .N}l ~ 
= Nll+A2 + Nll+A2 EWM\\N-l,M;l) 

(2.35) 

where we have defined ~= (1+A2/Nll) / (Nll+A2) and BN:::~p/ (Nll+A2) . By doing th(a 

same analysis at state (N-l,M), ... ,(R,M) successively, we will have two 

recursiv~ sequences An and Bn 

n=N-l, ... ,R (2.36) 

Then we have (I 
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EWH(n,M;l) = An + Bn EWM(n-l,M;l) , n=R+l, ... ,N (2.37) fA 
o Ii 

Equations (2.33) anf! (2.37) have defined the conditional expec:~ted waiting r,., 
r ~ times of the first low pl:'iority customer at those states (n,q) with q>M. j.;! 

Fol:' 'q=M-l,follow the same an~lysis we will have two recursive sequences, 1"1 
'·t 

'.' An and Bn defi~ed~~ L~I 
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with 
1+A2EW

M
(N,M;1) 

~::: N + 2 

Then 

(.; 
[. 

n=N-l, ... ,R 

(2.38) 

(2.39) 

In general, for q=M,M-l, ... ,l, we can define A and B in the following way 
n n 

n=N-l, ... ,R (2.40) 

with 
1+A2illvM(N ,q+l; 1) 

~ ::: Nll+A2 0 

Then the conditional expected waiting time of the. first low priority customer is 

EW}1(n,q;1) ::: An + Bn EWM(n-l,qjl) n=R+l, ... , (2.41) 
. c 
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Note that equations (2.33) and (2.40) will completely define the expected wait-

ing times of the first low priority customer at every feasible state. Exhibit 

2.6 is the block diagram of finding ~he Et~M(n,q;l) for n=R, ... ,N and 

q=M,M-l, ••• ,l. As we. can see from the block diagram, the number of operations 

to find the expected waiting tim9s of the first low priority is of the or.der of 
~ 0 

O(M(N-R+l)). This algorithm can be extended to the kth low priority with k>l. 

Now we give an algorithm to compute EWM(n,q;k) for k=I,2, •.• ,K at all feasible 

states. 

STEP 1) [Assign the expected waiting times to 0 for all infeasible states] 

EWU(n,m;O) +- 0, n=R, ... ,N and m=O,l, ... ,M 

EWM(n,l1tl;;<) +- 0, n=R, ... ,N-I and k=l, ... ,K 

STEP 2) [Compute the expected waiting times for the kth low priority customer] 

k +- 1 

() 

STEP 3) [As ' h d·" f h kth 1 . ; sJ.gn t. e expecte waJ.tJ.ng tue 0 t e ow prJ.orJ.ty customer at 

the starting state] 

EWM(N ,m;k) +- ~k/Nl1 ,m=M+k,M+k+l, ... ,M+K 

STEP 4) q +- M+k-l 

STEP 5) [Compute EWM(N,q;k) for q>M] 

If q>M and ~k, then 

l: q + q-l and repeat this STEP. 

, 
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Exhibit 2.6 

I) 

EWM(N,M+l;I) =l/Nl1 1 

I+A2EWM(N,q+I;I) 

~ = Nl1+A2 

~ = N~¥A 

UO 

EWM(R,q;I)=~ 

EWM(n,q;I)=An+BnEWM(n-l,q;l), 

n=R+l, .•. ,N 

.~ YES 

8 
Block diagt'am of finding the expected waiting time for 
the 1st lo-tJ. priority customer in D(N;R,M;L,Q) model 
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If q>M and q<k, GO TO STEP 7) 

STEP 6) [Compute EWM(n,q;k) for ~] 

~+-
1+A2EWM(N,q+l;k) 

Nl-l+A2 

Nl-l 
BN +- Nll+A2 

STEP 6.1) Define A and B <for n=N-l, ••• ,R+l n n 

-f l+AIAn+l +A2~f(n+l ,~;k-l) 
A +-

nl-l+(l-Bn+l ) Al +A2 
when q=M n 

1+AIAn+l+A2EWM(n,q+l;k) 
B 0(-

nl-l+(l-Bn+l ) A1+A2 
when q<M n 

,!'~ 

and 
'\\ 

(~ 
B +- nld 
n nl-l+(1-Bn+l)~+A2 

STEP 6.2) Define Aa 

1+RllEWM(R,q-l;k-l)+A1Aa+l+A2EWM(R+l,M;k-l) 

Aa +- Rl-l+(1-BR+1) Al +A2 

1+RllEWM(R,q-l;k-l)+Al Aa+l+A2EWM(R,q+l;k) 
Aa +- - Rl-l+(l-B

R
+

l
) Al +A2 

STEP 6.3) 

, ----~.,.,-

1 

D 

~-
~ t· 

r 
I'> 
I 
! 
1 
I ,-

i1 I 
! 
I 
r' 
t, 
ri 
f } 

~I l. 
f 
I 

t-> 
r 
1. 
r 
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f 
Ii 
11 
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II 
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II 
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I 

when q=M 

when q<M 

< .... '- .. ~ --'-~' ,,' 

~ --- -~--- ----~---

q +- q-l '" 

If ~~repeat STEP 6) O.w. GO TO STEP 7). 

STEP 7) k +- k+l 

If k<K, GO TO STEP 3) o. tv. STOP. 

The number of operations to find the conditional exp,ected waiting time of the Kth 

low priority customer is of the order of O(KH(U-R+l)) for K<H and is of the 

order of O(~(N-R+l) for K>M. We do an example to show how this algorithm 

works below. 

Example 2.2. Find the conditional expected waiting times for the first three 

low priority customers in D(5;3,2;L,Q) model with Al=A2=J1=1. Exhibit 2.7 is the 

transition diagram of D(5;3,2;L,Q) model. 

Exhibit 2.7 Transition diagram for D(5;3,2;L,Q) 
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In this example we have N=.5, R=3, M=2, K=3, A
1

=A
2

=1l=1. 

STEP 1) EW2 (n,m;0) = 0 , n = 3,4,S m = 0,1,2 

EW2(n,.3;k) = 0 n = 3,4 k = 1,2,3 

STEP 2) k = 1 

STEP 3) EW2 (S,m;1) = .2 , m = 3,4,S 

STEP 4) q = 2 
I, 

STEP S) Skip this step because of q5M 

STEP 6) A = S .2 , B = S .833 

A = 4 .232 , ]34 = .774 

A = 3 .292 

EW2 (3,2;1) = .292 

EW2 (4,2;1) = .4S8 

EW2(S,2;1) = .S82 

q = 2-1 = 1 > k = 1 , 

STEP 6) AS = .264 , BS= .833 

A4 = .333 , B4 = .774 

A3 = .38S 

EW2(3,1;1) = .38S 

EW2 (4,1;1) = .631 

EW2 (S,1;1) = .789 

hence repeat this step. 

q = 1-1 = 0 < k = 1 , hence GO TO STEP 7) 

STEP 7) k = 1+1 = 2 ~ K = 3 , hence GO TO STEP 3) 

STEP 3) Et~2(S,4;2) = EW2(S,S;2) = .4 

STEP 4) q = 2+2-1 = 3 
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STEP S) 

STEP 6) 

EW2 (S,3;2) = .718 

q = 3-1 = 2 = M , GO TO STEP 6) 

AS = .286 BS = .833 

A4 = .362 B4 = .774 

A3 = .704 

EW2(3,2;2) = .704 

EW2 (4,2 ;,2) = .906 

EW2(S,2;2) = 1.042 

q = 2-1 = 1 < k = 2 , GO TO STEP 7) 

k = 2+1 = 3 < K = 3 , GO TO STEP 3) 

EW2 (S,S;3) = .6 

q = 2+3-1 = 4 

EW2 (S,4;3) = .86S1 

.q = 4-1 = 3 > M = 2 repeat this step 

EW2 (5,3;3) = 1.179 

q = 3-1 = 2 < k = 3 , GO TO STEP 7) 

STEP 7) k = 3+1 = 4 > K = 3 , STOP. 

We summarize the results in the following diagJ?am. The numbers under each 

~tate are the expected waiting time!; of each low priority customer at that 

state. 

G 
.385 

e 
.631 

Q 
.789 

.2, .718, 1.179 

'" 

.J 

ij 



We are not surprised to see that EW2 (3,2 ;1)<EW2 (4,2 ;1)<EW2 (5,2 ;1). We can explain 
~ ., 

this in the following way. At state (3,2) the 1st low priority customer will 

start the service only when 1) a server completes the service or 2) another 

low priority customer arrives. But at state (4,2) " the 1st low priority 

customer will start the service only when 1) 2 servers complete the service 

or 2) another low priority customer arrives. Hence, the former is less than 

the'latter. This relation holds in general~ That is, 

for N>R and ~k>l. 

.... 

We also observe that Et-J'2 (n,2;1)<E1v2 (n,1;1), n=3,4,5 .. We also can explain this 

in the following way: At state (3',2) the 1
st low priority customer will start 

t ' 
the service onlY"when 1) a server comple'tes the service or 2) a low priority 

\ t customer arrives. But at state (3,1), the IS low priority customer will start 

the service only when 1) a server completes the service or 2) two low priority 

customer arrive. Hence, the former is less than the latter. This relation also 

holds in general, that is 

~. (2.42) 
~~; 

for n=R, ..• ,N and 1 <k<M. 
., 

With R=N-l, Taylor and Templeton obtained the unconditional expected wait-

ing time-=f15t7-"'low priority customer:- We wo,;YdoIik~ to check our result with 

theirs when R=N-l., In order to make the comparison, we have to unconditionalize 

Otlr cOIlditional expected waiting time. To unconditionalize o the conJiitional 

expected waiting times we have to weigh the conditional expected Wai~ng times 

by the corresponding steady state probabilities. Let EWM denote the uncondi­

tional expected waiting time of low priority in D(N;R,M;L,Q) model. Then 
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M-l N N-I 
I I P(n,q) EWM(n,q+l;q+l) + I P(n,M) EWM(n+l,M;M) 

q=O n=R n=R 

00 

+ I P(N,q) E1vM(N,q+l;q+l) 
q=H 

(2.43) 

The reason for (2.43) is, when a low priority customer ar~~ives and finds 

that 1) the system is at state (n,q), n:aR, ••• ,N and q=O, •.• ,M""I\l, then helshe 
. \ 

.... 

st \ 
has to wait in ~~e queue at the (q+l) position with the expecfed waiting time 

\ \ "'''-''' ',1 
~ \ 

equals to EWM,(n,q+l;q+l), 2) the system is at state (n,H), n=R, .V.' ,N-I, then 
II 

he/she has to wait in the queue at the Mth position with the exp~;cted waiting 
1\ 
\~ 

time 7,,Q~1.s to ETv'1M(n+l,l1;M), 3) the system is ,,~:-:tate (N, q)~. '2:.M,\then hel she 
~t ~ 

has to wait in the queue at the (q+l)~ position with the expected ~aiting 
- , . \\ 

time equals to EWM(N,q+l;q+l) • This a:lgorithm"h~s been programmed in\JfORTRAN. 
'\ 

In the program, it computesP(n,q), EwH(n,q;k) anq. E"I'1MD In computin~ the EWM, 
'.~ 

it includes the first two terms of (2.43) and part of the, third' term (onl)[ up to 
i\ 

• 0 1\ 

q=20). Exhibit 2.8 is a list of comparisons of the expe~ted waiting ti~es of low 
\\ 

priority customer in D(N;R,M;L,Q) mod~l between the theoretical value and the 
, 1\ 

result from the program for R=N-l. As expected, our results 

theoretical values and all of them are very close to the 

" 

are not greater '\~lian 
'~ 
II 

theoretical value'!'!. 

Now, we start to discuss the bounds. As we mentioned earlier in 

the 

Section 2.2, the expected waiting time of low priority customer(n D(N;R'~;\'Q) 

mode,l can be used as an upper bound in the D(N;R,M;L,Q) model. That is, \ 

(J '. ___ ( ) EW",,(n,q;k)<EW (n,q;k~ for any finite M at any corresponding state n,q with 
1'1 '... .. .. 00 

~k. Furthermore, EWM(n,q;k) is an increasing f'LiIlction of H. 'That is, 

(2.44) 

for any M>l at any corresponding state (n,q). 
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N M Al 

5 1 1 

,5 1 -~;'?l 

5 5 1 

5 5 2 

,~ 5 10 1 

5 10 2 

10 1 2 

10 I 1 6 

10 t: 2 I ,J 

10 5 6 

10 10 2 

10 10 6 

15 1 .05 

15 5 .05 

15 10 .05 
, 

Exhibit 2.8 

Expected Waiting Time 
IJ 

A2 ).1 Theoretical Value Our Result 
'., 

2 1 .135. .135 
" 

l' 1 .1282 .1282 

2 1 .3029 .3029 

1 1 .2199 .2199 

2 1 .3552 .3552 

1 1 .2246 .2246 

6 1 .09932 .09927 

2 1 .06412 .06412 

6 1 .2182 .2181 

2 1 .1114 .1114 
I' 

6 1 .3158 .3152 

2 1 .1142 .1142 

.25 .034 .2278 .2278 

.25 • 034 .3979 .3979 

.25 .034 .4358 .4357 
'" 

Comparisons of the unconditional expected 
waiting time in D(N;N-1,M;L,Q) model 

'" 

I 
The smaller the M, the larger "pressure" L 

~·,l 
We can explain (2.44) in this way: 

the system has. The larger pressure the system has, the "faster" the servers 

will work. The faster the servers work, the less conditional expected waiting 

time of low priority cust~m.e1:_.~.~,~ .~ve. __ FRr~~~"~J!.!pl_e---, (J,l.)) is, .. a. 
- .::..-:.:.--.,.:.-...:;-~ ,"~-=--'--" .'-_ .. :,-----< - _.-, -

feasible state for all of this model. When M=l, state (R,l) is at the limit. 

One more low priority cust,Pmer arrives will begin the service of "the first 

low priority". When M=5, state (R,l) is not at the limit. 
11 

It can tolerate 

four more low priority arrivals. When 11= the system will not have-. any pressure 

at all. Hence,} EWOo(n,q;k)is an upper bound of EWM(n,q;k) and it does not take 
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too long to reach the upper bound. For example, at state (12,1) in D(15;12,M;L,Q) 

model with Al =.05, A2=.25, ).1=.034, we have 
.,. 

M , 1 2 3 4 5 6 7 <Xl 

EWM(12,1;1) 1.59 2.25 2.53 2'~65 2.71 2.74 2.75 2.76 

T 
C> 

when M=7, m~7(12,1;1) is very close to EW<Xl(12,1;1). So, for any fixed M, EWM(n,q;k) 

is bounded above by EWoo(n,q;k) which is equal to WNoo(n,k;k). And EWoo(n,k;k) can be 

found very easily by the method in Section 2.2. Now, we try to find a lower bound of 

EwM(n,q;k). From equation (2:42), IDvM(n,M;k) is a lower bound of IDvM(n,q;k), 
o 

(2.45) 

for n=R, ... ,N and l<k<~ . 

Hence, EWM(n,q;k) is bQunded below by EWM(n,M;k) for all k<~ and the lower 

bound is exact when q=M. To find EWM(n,M;k) we have to carry out the recursive 

sequences A and B "which are defined in this section. For q<M, it will be n n ~ 

easier to find the lower bound than. to find the actual value of EWM(n,q;k). 

" We do a simple example to illus.trate how to find the bounds. 
\, 

Example 2.3. A low priority customer arrives and finds the system at state 

(3,0), that is, 3 servers are busy and nol.ow prio±~ty CUS.1:0'l:!l.~h in the queue. 
~==---=--=::::..::::' .,.,- -:-:--:.--::==.!" -~-,~ -" ,,---

The system has 4 servers in total and USes the dispatching procedure D(4;3,3;L,Q) 

to dispatch the servers. Hence, the arriving low priority customer will have 

to wait in the queue for his turn for service. The input rates to the system 

are Al=l, A2=1 and the service rate per server is ).1=1. What is the maximum 

expected waiting time and what is the minimum eXpected waiting time for thi9 
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lo~ priorityr~ustomer? In this ex~mple, we 'have N=4, R=3, M=3, Al =AZ=j.l=l. The systew. 
, 0 

is at state (3,1) and "the low prioroity" is in the first position- in"the queue. 

So, the conditional expected 'waiting time is EW3(3,1;1). 

EW3(3,3;1) < EW3 (3,1;1) < EW
CXI

(3,1;1) 

(1), Compute Etv
CXI

(3,1;1), ,the upper bound. 

From Section 2.2, we have 

Hence, we have 

EW (3,1;1) = .4167 
CXI 

(2) Compute EW3(3,3;1), the lower bound. 

From this Section, we have 

1+A2/NU 

~ = NWA
2 

~-1 

Hence, 

Etv3 (3,3;1) = .2976 

That is, 
if 

.2976 < EW3(3,1;1) < .4167 Q.E.D. 

.4167 

From above, we have 

. !.'. 

o 

1 
J 
t 

;1 
I 

In general, given D(N;R,M;L,Q), it is not hard to find the upper bound 

analytically for EWM(n,q;k), but it is very tedious (but not impossible) to 

find th~? lower bound' analytically, especially for k>1. But it should be very 

easy to compute the numerical value of the lower bound for any k. 

Now, olet' s define the boundary state f dID (N R M L Q) or mo e ;,;,. The 

~oundary states in D(N;R,M;L,Q) model are those states which have exact M low 

priority customer in the queue. For example, in D(5;3,1;L,Q), the boundary 

states are (3,1), (4,1) and (5,1), in D(5;3,2;L,Q), the boundary states are 

(3,2), (4,2) and (5,2'). ~xhibits 2.9 and 2.10 are the configurations of the 

boundary state (3,1) and the boundary state (3,2) in D(5;3,1;L,Q) and 

D(5;3,2;L,Q) respectively. 

hS1 ", ... sl " tr,<. r-rt'< 

~ Pi a A-" • 

C0~ 

Exhibit 2.9 The configuration 
in D(5;3,1;L,Q) 

of bounqary state (3,1) 

1-';.$1 

A s fre( f"'~< ~ .Q.;. ...Q:.. .;;, • i} " ~ Q 

Exhibit 2.10 The configuration of boundary state (3,2) 
in'D(5;3,2;L,Q) 

'\ 
"; 

~ \ 
~ 

11 

(J 

" In D(5;3,1;L,Q),at state (3,1), the first low priority customer (indicated by 

the arrow in Exhibit 2.9) :Ls experiencing the same "fo"rces ll as the first low 
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priority customer (indicated by the arro,w in Exhibit 2.10) at state (3,2) in D(5;3,2 ;,L,Q) . 
L~' e.'! -' ff 

The forces are 1) server completes the service and returns.,'to free, 2) high 
' .. 

priority customer arrives, and 3) low priority customer arrives. Those are 

the only forces can make the sys,~em change the ~tate. Since they are experienc­

ing the same forces, they should have the same (expected) waiting time. That 
" ., 

is, EWl (3,1;1)=EW2 (3,2;1). The same a~gument applies to all the boundary 

states in the model D(N;R,M;L,Q). Hence, in general, we have 

EWl(n,l;l) = EW2 (n,2;1) = (2.46) 

for n=R, •.. ,N. 

Let's generalize the definition of the boundary state and define the mth 

boundary states, m<M, in D(N;R,M;L,Q) are the states which have exactly (H-m+l) 

low priority customers in the queue. So., the first boundary states are the 

boundary states defined earlier. The 2nd boundary states in D(5;3,3;L,Q) are 

(3,2), (4,2) and (5,2), the 3rd boundary states in D(~;3,3;L,Q) are (3,1), 

(4,1) and (5,1). ·th~ d We can extend (2.46) to the m ~~ary states. That is, 

(2.47) 

for n=R, .•. ,U and 1 <m<}f. 

We can extend (2.47) further more to the; kth. low priority. That is, 

for n=R, •.• ,N and M>m>k>l. 

I 
/ 

(2.4?5' 

Exhibit 2.11 is the diagram of the conditional expected waiting times for 

models D(15i'12,1;L,Q), D(15;12,2;L,Q) and D(15;12,3;L,Q) with Al =.05, A2=.25 

and~=.034. As we can see that 
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EXPECTED'WAIT:NG T:LME FOR O(N;R,M:L,Q) 
N=lS R=T2 I M=d LAMJA1=O.OSOO LAMOA2=O.2500 MU=O.0340 

.... ., 

8 8 0) .r-->..,. 
•• r -.... 

\ c· - ~ . .r'/ 

• 2.SD lJlI 4J13 

EXPECTED· WAITING TIME FOR O(N;R.M:L,Q) 
(. 

N=15 R=12· IM=21 LAMOA1=O.OSOO LAMOA2=O.2500 j1U=O.0340 

0) 

Exhibit 2.11 Comparisons of the expected waiting times with 
different M-cutoff in D(15;12,M;L,Q) models 
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and 

EWl(~2,1;1) = EW2(12,2;1) = EW3 (12,3;1) = 1.59 

EW2 (12,2;2) = EW3 (12,3;2) = 3.96 

and etc. which confirm the'relations in (2.48). 

\\ 
Following example is obtained from the police department. A police 

depart:nent has 15 cars on duty. The utilization factor is .6 and on average 

17% of total calls are emergency (high priority). The expected service time 

is 30 min. for both types of calls. From this information we can compute the 

arrival rates and the service rate. That is, Al =3/hr=.05/min,A2=15/hr=.25/min 

and 1l=2/hr=.03~roi:n per car. The department head decides to reserve 3 cars 

for emergency calls and at the same time do not allow more than 5 nonemergency 

calls waiting >::in the a,;ueue if there is a car available. The emergen~y call 

will not be able to wait if a car is not available at -its arrival time. This 

is D(15 ;12,5 ;L,Q) model. Apply our algorithm, we.got the steady state prob­

abilit~ distribution ang the conditional expected -waiting times for each low 

priority call at every state. Exhibit 2.12 is the transition diagram for 

D(15;12,5;L,Q) model. Exhibits 2.13 and 2.14 provide the, steady state prob­

ability and the conditional expected waiting times, respectively, for those 

states~hat are in the dashed box in Exhibit 2.12. 

InExhibit2.l0, the number below each state is the steady state prob­

ability of that state. For example, at state (14,3), P(14,3) = .00034.' In 

E~ibit2.l4, the values below each state are the expected waiting times for 

each low priority call in the queue. For example, at state (14,3), there are 

three low priority calls waiting in the queue and the expected waiting time 

st 6 2 . f the 2nd call J.' s 8 .. 85 min;:,' for the 3rd call is for the 1 call is • mJ.n., or 

11.54 min. at the instant when the system went into state (14,3). Several 

"interesting results emerge from Exhibit 2.14. First, the more low priority 
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calls waiting, the less is the expected waiting time in the same position. 

Second, the busier the system, the greater the expected waiting time. We 

already explained these properties before. Third, if we were to choose M=4 

instead of Ma 5, then state (12,4) would be a boundary state of the system. 

Consequently, if one more low priority call ar.rives then the first call in the 

queue would start the service and the system enters state (13,4). In compar-

" 

ing the expected waiting time for the fourth dall at state (13,4), Le., 

EW4 (13,4;4) which is equal to EW5 (13,5;4)=10.7l, to the expected waiting time 

for the fifth call at state (13,5), i.e., EW
5

(13,5;5)=11.88, it should be 

noted that the ,former is less than the latter;,. The difference indicates the 

gain, i.e., less waiting time, for the low priority call, if we were to switch 

from M=5 to M=4. The trade-off here is it will ~ause more high priority calls 

lost. 

In the next section we will discuss the D(N;R,M;Q,Q) model, that is, the 

high priority call will also be queued in the high priority queue if there is 

no free car available at the time it arrives. 
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"h = Number of Ousy Servers 

q = Length of Low Priority Queue 
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Exhibit 2.12 Transition diagram for D(15;12,5;L,Q) model 
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STERDY STRTE PROBABILITY FOR O(N;R,M;L,O) 
Co 

N-1S R=12 MaS LAMOAi-O.OSOO L::lMCr:!2=Q.2S00 iiU=Q.0340 

THE PROBABILITY OF HIGH PRIQRIiY CUSTOMER LOST IS 0.0065 

THE PROBA8!LITY OF LOIJ PR!ORITY CUSTOMER WAIT IS 0.1532 

8 8 
D.0S488 o.oo~ 0.00031 

8 8 
0.04275 o.OO"&! 0.00042 

8 (0 
O.C2!3S Q.QQ382 Q.OCC41 
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Exhibit 2.13 Steady state probability distribution 
for D(15 ;12,~,;L,Q) _.c· 
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EXPECTC:D WAITING TIllE FOR O(N:R,M:L,O) 

N=lS R= 12 M=5 LRMOR 1-0. 0500 LRnOR2:z0.2S00 MU=O.0340 

THE ?ROBP.8ILliY OF HIGH PRIORITY CUSTOMER LOST IS 0.0065 

. 
THE FROBR8ILITY OF LOU FRIORITY CUSTOMER URIT IS 0.1532 
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Exhibit 2.14 Conditional expected waiting times of low 
priority .customers in D(15;12,5;L,Q) 
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~)(N;R,M;Q,Q) Model 

In this model there are two queues, the high priority queue and the low 

priority queue. Unlike the D(N;R,M;L,Q) model, the high priority custome~ will 

be put into the high priority queue if the system is full at the time he/she 

arrives. The low priority customer will be put into the low priority queue 

whenever service can not be provided immediately. Customers in the queue will 
'G 

be served in the FIFO order within the class. In this section we also assume " 

that both high priority customer and low priority customer have independent ., 

Possion arr,ival time with the arrival rates' Al and A2 , respectively. The server 

has exponential service time with the expected service time ll'll for both types 

of customers. Let Pl=Al/'Il, P2=A2/'Il and P=Pl +P2. 

We need three variables to characterize the state of the D(N;R,M;Q,Q) 

model. Let (n,ql,q2) designate the state in the D(N;R,M;Q,Q) model where n is 

the number of busy servers, ql is the number of customer in the high priority 
c~~ 

queue and q2 is the number of customer in the low priority que'ue. As it is in 

the D(N;R,M;L,Q) model, we shoU\~d consider following 

two cases are special cases of ~he third one). 

three cases (with the first 

" 
(1) R=N and M=. 

\i\ 

(2) R<N and M=. \ 
(3) R<N and M is finite. \ 

l 
In the following of th~. seCfion we will study each case the steady state 

distribution and the conditiona1.~~pec·ted waiting times for both the high priority ":, . 
and low priority customers at a gi,en state. 

Let P(n,q1,q2) Ifenote the stea~y state probability at state (n,qp Q2)' 

~(n,ql,q2;k), k<:::q],\ denote the conditional expected ~vaiting time of the kth 

'h' h .. '\ > •. . 'l. ' 
" .• ~;t.g "~rl.orl.ty custome\ at state (n,ql,q2) and EWM(n,ql,Q2;k), k<Q2' denote the 

.~':-';.-' (,;\ 
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conditional expected waiting time of the kth low priority customer at state 

(n,ql,q2) in D(N;R,M;Q,Q) model. 
',. 

3.1 D(N;N,oo;Q,Q) Model 

For this model no ser"ler is reslarved for high priority customer. When 

the system 'is not full we will send a server to the arriving customer no matter 

what priority the customer is. If all the servers are busy at the time a 

customer arrives then he/~he has to be queued in the corresponding queue. w"hen 

a server completes service and returns to free it will first check the hig~ 

priority queue. If the "high priority queue is not empty then the first customer 

will start the service. If the high priority queue is empty then it will check the 

low priority queue. If the low priority queue is not empty then the first 

customer in the low priority queue will start the service. If the low priority 

queue is also empty then the server will remain free. Exhibit 3.1 is the 

transition diagram for the D(N;N,oo;Q,Q) model. ~ 

Steady State Probability Distribution 

This is a special model of Taylor and Templeton's [1980] with R=N. In 

their work, they obtained the probability distribution of the number of busy 

ser\Ters. Hence, they got P(O,O,O), the probability of all the servers are free. 

P(O,O,O) n pin! (3.1) 

We will start to derive the steady state probability distribution by knowing 

the P(O,O,O). We summarize the steps of finding these steady state probabilities 

below. 

STEP 1) 

STEP 2) 

Compute P(n,O,O), n=1,2, ••. ,N. 

Prove a theorem and compute P(N,ql~Q), ql=1,2, ..• ,Ql' 
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n = Number of Busy Server 

ql = Length of High Priority Queue 

q2 = Length of Low Priority Queue 

Al = Arrival Rate of High Priority Customer 

Arrival of Low Priority Customer 

= Service per Server 

• • 

. (} 

• 
• 

,. 
,. 

Exhibit 3.1 Transition Diagram for D(N;N,oo;Q,Q) Model 
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" 

STEP 1) Compute P(n,O,O), n=1,2, •.• ,N. 

Before the system is full, it is an M/M/N queue. Hence 

n 
P(n,O,.O) =.e,. P(O,O,O), n=1,2, •.. ,N (3.2) 

. n. 

STEP 2) '.' Prove a theorem and compute P(N,ql'O), Ql=1,2, ... ,Ql' 

THEOREM 3.1: 
ql . 

IIi D(N;R,M;Q,Q)"modeJ., P(N,qpO)=x P(N,O,O) 

where x = [(l'l+P) c-y' (N+p) 2 -4NP1 ] /2N 

.-~...,--~~ --------- -----~~--- - - ---- ~- ----------- ------

Since the steady state exists, O<x<l. 

Q.E.D. 

Note that Theorem 3.1 holds for the general model, D(N;R,M;Q,Q), hence it holds 

for the special models also. For"fixed P, x is an increasing function of PI 

and x ~ p/N when PI ~ p. Using Theorem 3.1, we can compute P(N,ql'O), ql=1,2, ... 

From the computation point of view we can ignore those states which have prob­

abilities smaller than €, for example €=lO-7p (O,O,O). Let Ql be the integer 

such that P(N,Ql+l,O)<€ and P(N,Ql,O)~E. luen we can compute P(N,ql'O), 

ql=1,2, .•• ,Ql' 

STEP 3) 

STEP 3.1) Compute P(N,O,q2) 

" ( , 

PROOF: i-1e assume that the steady state exists>. The balance eqUltion, at' 
I, 

~""."". t ' , 
'h;;~ 

state (N,ql'O), ql=1,2, •.. is 

(Nll+A1+AZ)P(N,ql'O) = AIP(N~\i~l-l,O) + NllP(N,ql+l,O) 
! \ ' 

II Div~e both side~ by II and move all the terms to)the RHS,. we have 
/' " 

NP(N,ql+l,O) - (N+P)P(N,ql'O) + PlP(N,ql-l,O) = ° (3.3) 

() 

All the coefficients in (3.3) are constant and (3.3) holds for al+ ql>1. 
, % 0 

Hence, we have P(N,ql'O)=x P(N,O,O) and substitute,this into (3.3), we 

have 

(N+P).± v{N+P)2_4NP1 
x = n 2N 
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(3.4) 

STEP 3.2) , Compute P(N,ql,q2)' ql=1,2, ... ,Ql recursively. 

~y ignoring the flow from the state (N,Ql+l, q2) into the state (N,Ql,q2) and 

the flow from the state (N,Ql,q2) into the state (N,Ql+l,Q2)' the balance 

equation at state (N,Ql,q21 is 

(Nll+A2)P(N,Ql,Q2) = AlP(N'~1-1,q2) + A2P(N,Ql,q2-l ) 

j DiViding-both sides by ll, we can express P(N,Ql-l,Q2) in terms of P(N,Ql,Q2) 
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(3.5) 

o 

N+P
2 

. -P2 ' 
where we have defined CQ =1, CQ -1 =-- , DQ =0. and DQ -1 =-P- peN ,Ql ,q2-l ) . 

1 1 PIll 1 

By doing the same ~nalysis, we obtain two recursive sequences Cq and Dq , 

(3.6) 

For q=O, we have 
" 

r'. , 
Since, we already know P(N;JO,q2) from (3.4), we have 

1t () 

(3.7) 

Substitute (3.7) into (3.6) we ~ill have P(N,Ql,q2)' ql=l,~,~;. ,Ql' , We can keep 

ind:easing qz by land repe";:t STEP 3) until P(N,0,q2) is smaller tha1"l a pre-

specrfied valll:e~ 'Note that the steady state can be reached only when p<N. 

Conditional Waiting Time Distribution 'for High P~iority Customer 

Le~' ~ denote the time that the kth high priority customer spent in the 
() 

~< 

queue given that he/she has to wa~t. Then ~~ 
c- IT! (i 

is Erlal1g distributed with 
o 
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parameters Nll and k. That is, the density function of :~ is 

(Nu)k k,":l -Nut 

I, 
f0 (t) k=1,2, ..• = (k-l)! 

t e 

k 
() 

The condit~<;)nal expected waiting time of the kth high priority customer, 

~(N,ql,q2;k), is 

.' 

.EW~(N,qi,q2;k) = ~u 

(3.8) 

\.l 

(3.9) 

Note that the conditional (expected) waiting time of the kth ·high priority 

customer is ~nly dependent on the position in the queue, i.e., k, and not on 

',. 

the number of high priority customer in the queue and the number of low priority 

customer in the queue. 

Conditional Waiting 'Time Distribution ForJ;t.ow Priority Customer 

Let Jr + +1 denote the time a low priority spent in the queue when he/ 
ql q2 

she arrives and finds the system is at state (N,ql,q2)' Then the density func-

tion of Wi +q +1 can be expressed in the transformed' space '(Davis, 1966). 
ql 2 

(s) I
Ol 

-st ... Q. 
= e W- +q +1 (t) dt ° ql 2 

The conditional expected waiting time of this low priority customer is 

(3.11) 

Suppose, in D(N;)l,Ol;Q,Q) model wi,t;h R<N,' there are,! ql customer waiting 
, th c> 

() in the high priority queue at the time the q2 low priority customer arrives. 
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th We want to find the conditional expected waiting time of the k low priority 

customer, k<Q2' that is, the EW:(n,q1,q2;k). The conditional expected waiting 
'., 

time of the kth low priority customer in D(N;R,oo;Q,Q) model isynot dependent on 

q2 because there is no restriction on the low priority queue length. So, the 

number of busy servers will not increase when low priority customers enter the 

system. But this is not true when the low priority queue length is restricted 

to a finite number, i. e., when the M-cutoff point exists. w~ will discuss more 
d 
!i 

about this in Section 3.3. Hence, from (3.11), and the above analysis, in 

D(N;N,oo,Q,Q) model we have 

(3.12) 

NO.te that (3.12) have defined the conditional expected, ~o1aiting times of low 

priority customers at all the feasible states. 

3.2 D(N;R,oo;Q,Q) Model withR<N 

For this model:, (N-R) servers are reserved for high priority customer. 

That is, when the npmber of busy servers, b, is less than R, the arriving 
\\ 
~~ :, 

custoIl!-er will be se.,rved immediately no matter what priority the customer is. 

But when b>R, only, the high priority customers are served whenever there is a 

server available. When all the servers are. busy the high priority customers 

will be queued in the high priority queue. /) 
When a server completes service and 

returns to free it will first check the high pl!iority queue. If tp.e high 

priority queue is not empty then the first customer will start· the service. If 

b<R (this will guarantee that the high priority queue is ~mpty) and the low priority 

queue is not empty then the first low priority custo~~r will start t~e service. 

/ 
In any other case, the server will""remain free. Exhibit 3~ 2 is the transition 

diagr~ for D(N;R,oo;Q,Q) model. 
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Steady State Probability .Distribution 

Taylor and Templeton [1980] worked on this model. They obtained the 
',. 

probability distribution of the number of busy servers. Hence, they obtained 
!j 

a formula for P(O,O,O) 

{RIl pn/h! + (pR/(R_l)!) }-l P(O,O,O) = S(R,N)/[R-PZS(R,N)] (3.13) 
n=O 

. ~, 

P~~! 
N-l 

(P~/N! ) where S(R,N) = [I pili! + N/(N-Pl)] 
i=R 

We will use (3.13) to der~ve the steady state distribution for D(N;R,oo;Q,Q) model. 

We summarize the steps of finding these steady state probabilities below. 

STEP 1) 

STEP 2) 

STEP 3) 

Compute P(n,O,O), n=l, ... ,R. 

Use Theorem 3.1 to compute P(n,O,O), n=R+l, ... ,N and P(H,ql'O), 

ql =1, .•• , Ql' 

For each q2>1, do 

Compute P(R,O,qZ) STEP 3.1) 

STEP 3.2) Compute P(n,O,q2)' n=R+l, ... ,N and P(N,ql,q2)' ql=l, ... ,Ql 

We outline these step's below. 

STEP 1) 

STEP 2) 

o 

Compute P(n,O,O), n=l, ... ,R. 

pn 
P(n,O,O) = -, P(O,O,O) ; n=l, ••. ,R n. 

Substitute ql=l in Theorem 3.1, we have 

P(N,I,O) = x P(N,O,O) 

The balance equation at state (N,O,O) is 

(N+P)P(N,O,O) = PlP(N~l,O,O) + NP(N,l,O) 

Substitute (:3.15) into above equation, we have 

o 
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(3 .. 14) 
(I 

(3.15) 

--- ,'--- "-~-------. 

P(N-l,O,O) = P(N,O,O) [N(l-x)+P]/Pl 

- CN_lP(N,O,O) 

d1.o/fined CN=l and CN_l =[N(1-x)+P]/P1 
~ 

where we have 

Doing the same analysis at state (N-l,O,O), •.. ,(R+l,O,O), we got 

defined recursively as below. 

n=N-Z, ..• ,R 

Then we can express P(n,O,O), n=R,R+l, ... ,N in terms of P(N,O,O). 
" 

P(n,O,O) = C P(N,O,O) 
n 

For n=R, we have 

P(R,O,O) = CRP(N,O,O) 

or, P(N,O,O) = P(R,O,O)/CR 

n=R, .•. ,N 

() 

(3.16) 

a sequence Cn 

(3.17) 

(3.18) 

(3.19) 

Substitute (3.19) into (3.18) we will have P(n,O,O), n=R+lf~' .• ,N. Apply 

Theorem 3.1 we will have P(N~ql'O), ql=1,.·.,Q1' where the Ql is determined 

in the same way as it is in D(~;N,oo;Q,Q) model. 

STEP 3) For eac~. q2>1, do 

S']:EP 3.1) Compute P(R,O,qZ) 

= [¥ P(n,0,q2-1) 
n=R 

+ L 
q =1 

1 

',. 

(3.Z0) 

() 

STEP 3.2) 
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Ignoring the flow from state (N,Ql+l,q2) into state (N,Ql,q2) and the flow 

from state (N,Ql,q2) into state (N,Ql+l,q2) and forming the balance equation at 
~, 

(! state (N,Ql,q2)"'" (N,0,q2) successively, we obtained two recursive sequences 

A and B ,ql=Ql""'O, 
ql ql 

= 0, AQ -1 
1 

Let CN=AO and DN=BO' Forming the balance effation at state (n,0,q2)' 

N 1 R:'+l . 1 b' d J_. C d D n= - , ... , . success~ve y, we 0 ta~ne two recurs~ve sequence an , n n 

n=N-l, .•. ,R 

n=N_2,0 ... ,.R 

Then we can express P(n,O,q2) in terms of P(N,Ql,q2) 

n=R, ... ,N (3.22) 
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I r. 

For ~=R in (3.22), we have 

Or, (3.23) 

Substitute (3.23)i.nto (3.22) and (3.21) we \ .. ill have P(n,0,Q2)' n=R+l, ... ,N 

and P(N,Ql,Q2)' Ql=1,2,· •• ,Ql' 
, 

We can keep increasing Q2 by 1 and repeat STEP 3) until P(R,0,Q2) is 

smaller than a prespecified value. Note that the steady state can be reached 

Oonditional Waiting Time Distribution for High Priority Customer 

The conditional waiting time distribution for the kth high priority 

customer is also Erlang distributed with parameters N~ and k. It is exactly 

~he same as it is in the D(N;N,oo;Q,Q) model (s~e equation 3.8). 
"0 

Conditional Expected Waiting Times for Low Priority Customer 

The conditional waiting time distribution of low priority customer ~ not 

. known at this moment. How~ver, we found a very easy way to compute the expected 

value at a given state for each low priority customer. 

• Let EW: (n,Ql' Q2 ;k) '. QZ>k, denote the conditional. expected waiting time of 

the kth low priority customer at state (n,Ql,Q2)' As we discussed earlier in 

th Section 3.1, the conditional eA~ected waiting time of the k low priority 

customer in D(R;R,oo;Q,Q) model is not dependent on Q2' the number of low 

priority customers in the queue. Hence we have the following expression in 

the D(N;R,oo;Q,Q) modeL 

(3.24) 

The system will not change state until one of the following events occurs. 
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(A) A server completes service and returns to free. 

(B) A high priority customer arrives. 

(C) A low priority customer arrives. 

As soon as one of the three events occurs the system will move to a new 

state. We summarize the steps of finding the conditional expected waiting times 

of the first low priority customer below. 

STEP 1) Express ~(N,cil,l;l), q 1 =0 , 1 , 2 , . . • , in terms of Ew!(N,O,l;l). 

STEP 2) Express EVt-(n,O,l;l) , n=N,N-l, .•. ,R+l 2 in terms of EW (n-l,O,l;l). 
00 ' 00 

STEP 3) Compute Ew!(n,q,l;l), n=R, ... ,N and ew!(N,qi,l;l), ql =1,2 ... 

{\Te now outline these steps below. 

STEP 1) Express E1V:(N,ql,1;1), ql=O:l, ... , in terms ofW2(N,O,1;1). 
00 

Suppose the syst~ is full and there is a low priority cus~omer in the 

queue. Let Tl be the time elapsed since the (ql+l)st high priority customer 

arrives until the 1st low priority customer goes into service. Then, 

E(Tl)~~(N,ql+l,. ;1). Let T2 be the ti'IJ!e elap.sed since the ql th high priority 

customer arrives until the 1st low priority customer goes into service. Then 

E(T2)=~(N,ql,·;1). Let T=TI -T2 . Then we have 

By dbing·the busy period analysis on the high priority customer, [Davis, 1966], 

1 
we have E(T) = N~-A 

Hence 

That is, 
1 
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STEP 2) Express ml-oo(n,O,l;l), n=N,N-l, .•. ,R+l, in term'" of 'C'T.T
2 (n 1 ° 1 1) ~ !;IIVoo - , ,; . 

Define DN = II (N~-Al) and 

then 

where we 

D = (l+AlDn+l)/n~ n , 

~(n,O,l;l) = EW!(n-l,O,l;l) 

have defined ~(R-l,O,l;l)=O. 
00 

\~> ~, 

n=N-l, ... ,R 

+D 
n , n=R, ... ,N 

(3.26) 

STEP 3) Compute ~(n,O,l;l), n=R, ... ,N and ~(N,ql,l;l), ql>l. 

EW!(R,O,l;l) = DR. (3.27) 

Substitute (3.27) into (3.26) and (3.25), we will have ___ f( ° ) EW~ n, ,1;1 , 
2 

n=R, ... ,N and Et\Too(N,ql,l;l), ql>l. \\Te can extend this procedure to find the 
,.\ 

conditional expected waiting times of the kth low priority customer, by defin-

ing the exact same sequence Dn' n=R, ••• ,N in (3.26). Then 

k=1,2, •.• (3.28) 

Note that (3.28) together with (3.24) has defined all the cOrldit:ional expected 

waiting times of each"low priority customer at every state. 

, The un~4~ional expected waiting time of low priority 'in 

model is 

~= 
N 00 

I I P(n,O,qz) EW!(n,o,q2+1;q2+l) 
n=R q2=O 

00 00 

+ I I P(N,ql,q2) El~(N,ql,q2+l;q2+l) 
ql=l q2=O 

~-:, " 'I n 
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~ .. 



,. 

The reason for (3.29)I\is the same as it is for the D(N;R,oo;L,Q) model. 

A program has been written to compute the steady state probabilities, the 
'" c;--~_ 

,Ii 

conditional expecte~! waiting times for the low priority customers and the 

unconditional expected waiting time for low priority customer (using (3.29) 

with ql up to Ql and q2 up to 50). Exhibit 3.3 is a list of comparisons 

between the theoretical values and the results obtained from the program. 

N 

5 

5 

5 

10 

10 

10 

15 

15 

15 

15 

Unconditional Expected tvaiting 
Time of Low Priorit Customer 

R 1..1 1..2 11 Ql Theoretical Value Our Result 

3 1 1 1 5 .3592 . 3592 

4 1 2 1 6 .4639 .4639 

4 2 1 1 10 .4664 .4663 

8 1 1 1 2 .0002 .0002 

8 2 4 1 4 \~ .1794 .1794 

8 4 2 1 9 .1823 .1822 

12 1 1 1 2 0 0 

12 2 8 1 2 .2283 .2282 

12 8 2 1 10 .2279 .2275 

12 .05 .25 .034 2 2.3094 2.3094 

Exhibi t ,3'.3 Comparison,s of the uncondi tional expec ted wai ting 
time for low priority customer 

• ' to .. 

As we can see from Exhibit 3.3, our result checks with the theoretical value. 

As expected, none of our results is greater than the theoretical value because 

we did not include all the terms in (3.29). 

It is also interesting to compare the conditional expected waiting time of 

low priority customer in the D(U;R,::O;Q,Q) model to the conditional expected waiting 

time of low priority customer in the D(N;R,oo;L,Q) model. As expected, the former is 
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greater than the latter at all the corresponding states. For example, in the 

h d ··· f h kth 1 example at the bottom of page ,t e expecte wa~t~ng t~me 0 t e ow 

priority customer is .433k at state (3,k) in D(5;3,oo;L,Q) model. But in 

D(5;3,oo;Q,Q), by (3.28), the expected waiting time of the kth low priority 

customer is .438k at state (3,0,k). The unconditional expected waiting time of 

low priority customer in D(N;R,oojQ,Q) model is also greater than it is in the 

D(N;R,oo;L,Q) model. In the following exhibit, Exhibit 3.4, we list the 

comparisons of the unconditional expected waiting times of-low priority 

customer between these two models . 

II 

'N R 

5 2 

5 4 

5 4 

10 8 

10 8 

10 8 

15 12 

15 12 

15 12 

15 12 

)) 

~, Unconditional Expected Waiting 
Time of Low Priority Cus,tomer 

1..1 1..2 11 
cf' P(N;R,oo;L,Q) D(N;R,oo;Q,Q) 

1 1 1 .3418 .3592 
" 

1 2 1 .3649 .4639 

2 1 1 .22/+6 .4664 

1 1 1 .0002 .0002 

2 4 1 .1679 .1794 

4 2 1 .1263 .l823 

1 1 1 <j 0 0 

2 8 1 .2272 .2283 

8 2 1 .1#2 .2279 

.05 .25 .034 2.3067 2.3094 

V 
Comparisons of the unconditional expected waiting time 

"of low priority customer in D(NjR,oo;L,Q) model and 
D(N;R,oo;Q,Q) model 

From Exhibit 3.4, we can see another property about the unconditional 

~ . 

, 'G 
expected waiting time of low priority customer in the D(N;R,oo;L,Q) model. That 

is, for the same total arrival rate, the bigger the high priority customer 
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arrival rate, the less the expected waiting time of the low priority customer. 
\~'.-~'; 

The reason for this is that the actual input rate to D(N;R,c:O;L,Q) model decreases 

with increase in high priority arrival rate and, at the mean time, the average 

of number of busy servers increases with increase in high priority arrival 

rate. But, in general, this is not true for the D(N;R,oo;Q,Q) model. 

3.3 D(N;R,M;Q,Q) Model with R<N and M<oo 

In this model~ we reserved N-R servers for the high priority customer 

and, at the SaDle time, we do not allow the low priority queue length exceed~ 

M when the sys.t:em is not full. The state space S is 

S = 

when n<R 1 
when !t<n<N , 

r "when n=N 

When a high priority customer arrives and finds the system is at state (n,ql,q2)' 

he/she will be served immediately if n<N, otherwise he/she will be queued in 

the high priority queue. When a low priority customer arrives and finds the 

system is ,at state' (n,ql ,q2)' then exactly one of the following four actions 

will be taken. 

1) If n<R, then he/she will be served'immed1ately. 

2) If R<n<N and q2 <M, then hel she will be queued in the low priority,. 

quepe in the l'ast position. 

3) If R<n<N and qZ=M, then he/she will be queued in the low priority 

queue in the last position and, at the sam~ time, the, first customer 

in the low priority queue will start the service. 

If n:::N, then he/She., will be queued in the low priority queue l,n "de 4) 
.. 

last position. 
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When a server completes service and returns to free the system, changes 

state from (n,q~,q2) to (n-l,ql,q2), then exactly one of the following five 
',. 

\'\., I \ 

actions will be taken: 

1) If ql>O, then the first high priority customer will start the 
c) 

service and the system~r:.ill go into the state (N,ql-l,Q2) instanta-
~. 

neously. 

2) If ql=O and q2>M, then the first low priority customer will start 

the service and the system will go into the state (N,O,q2-l) instanta-

neously. 

3) If n-l>R and ql=O, q2<M, then the server remains free.·· 

4) If n-l<R and Q2>O, then the first low priority customer will start 

c 
the service and the system will go into the state (n,O,Q2-1) 

instantaneously. " 

5) If n-l<R and q2=O, then the server remains free. 

Exhibit 3.5 is the transition diagram for the D(N;R,M;Q,Q) model. 

Steady State Probability Distribution 
Ii ;" 

In the following procedure we try to find all the P(n,ql;Q2) in terms of 
o 

P(O,O,O)'and then sum them up to 1 to get P(O,O,O). We summarize the steps 

below. 

STEP 1) 

STEP 2) 

STEP 3) 

STEP 4) 

Find P(n,O,O), n=l, .•. ,R in terms of;P(O,O,O). 

Use Theorem 3.1 to define a recursive sequence to find,P(n,O,O), 

n=R+l, ..• ,N in terms of P(O,O,O). 

For a small prespecified numbers l , to find Ql and use Theorem 3.1 

; to find P(N,ql'O), ql=1,2, •.• ,Ql in terms of P(O,O,O). 
(~ 
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• 
o 

® q2 
n = Number .of Busy Server 

to = Length df High Prit;>rity Queue 

• = Length of Low Priority Queue 

= Arrival Rate of High Pr.iority Customer 

= Arrival Rate of Low Priority Customer ") ) 

= Service Rate per Server 

. . " 

NA1 ~.\\ NA1 ~A \ AI}41 }., -t}.1.. 

8'A~ ~8~ ;.1,0:0 ---: N,O, / co 
,. 

• /I tV: O,M -.:-- ~tJ,N-tf ~ • • • 
'. 

Np. AlA • 
'::;0 

}J~'j VI "',IA 1 ~,\~ NA~AI ~,4 k,AI 

9'8' ~~. N) I, 0 ~ N, i I (" ~ .. • • N, I,,,,, N:',Mt/.· 
() 0 

(? 

,~, 

"",1 ~A\ }J,'(1 ~A' "'A1 p.\ ..JJA1 ~AI 
• t . '.~. ,. 

"" r , e ,. , p ,. .-

NfC1 ~A \ NM1 }f\ tV~1~\ 

ft.@~~ .' .' J 9 iii • "'--:J1' IV ~"M • Iv, 8i,.':111 ~ . 6/, )1 

'I.) 

NA ~A\ Nf(1 ~AI v){ 1 t)., Io'A~).' 
." 

!) I .::;, , 1'" , 
f' # , 

i~:~; , 
Ii ~ , 

Exhibit 3.5 Transition Diagram t;qr D(N;R,M;Q"Q) Model n . ., I.' 
l.! 

(I 

o 
..... J? 
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j 
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0 
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J 
I 

I 
STEP 4.1) Find P(R,0,q2) in terms of P(O,O,O). 

STEP 4.2) Define recur;;ive sequences to find P(n,0,q2)' n=R+l, .•. ,N and 

P(N,ql,qZ)' ql=l,···,Ql in terms of P(O,O,O). 

STEP 5) For qZ=M, do 

STEP 5.1) FindP (R, ° ,~i)' in terms of P(O,O,O). (. 

STEP 5.Z) Define recursive seque~ces to find P(u,O,M), n=R+l, •.• ,N and 

P(N,ql,M), ql=l,Z, ••• ,Ql in terms of P(O,O,O). 

STEP 6) For qZ>~!' do 
:~ 

STEP 6.1) 

STEP 6.Z) 

Find P(N,O,qZ) in terms of P(O,O,O). 

terms of P(O,O,O). 

STEP 6.3~ STOPPING criterion for STEP 6).- We keep increasing qz by 1 

until P(N,0,qZ)<e:2P(0,0,O), where E2 "is a small number. 

STEP 7) Express the probabilities for the rest of state (i.e., ql>Ql hnd 

qz>Qz in terms of P(O,O,O)''),' 

STEP 8) Sum all of these probabilities to 1 to obtain P(O,O,O). 

We outline this procedure below. 
o 

STEP 1) 

STEP Z) 
c 

Find P(n,O,O) ,n=l, ••• ,R. 

n 
P(n,O,O) ==.e., P(O,'O,O) n. , n=1,2, ..• ,R .(3.30) 

Form the' balance. equation at state (N, 0,0) , (N-l, 0,0), ••. , (R+l,O ,0) 

and apply Theorem 3.1, we obtained a recursive sequence C 
n 

n=N-Z ,N-3, .•• ,R 

'10 

w~th CN~l and CN_l - [N(l-x)+P]/Pl where x is defined in Theorem 3.1. 
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. b 5/ 

Then we have 

P(n,O,O) = C P(N,O,O) 
n 

For n=R in (3.31), we have 

or P(N,O,O) = P(R,O,O)/C
R 

n=R, .•. ,N (3.31) .. , 

(3.32) 

But P (R, 0,0) is already found in terms of P (0, 0,0) in (3.30), .h~nce n 

we can substitute (3.32) into (3.31) and obtain P(n,O',O), n=R+l, ..• ,N 

in terms of P(O,O,O). 

STEP 3) As we did before, we can find the integer Q
1 

such that P(N,Ql+l,O)< 

E1P(0,O,0) and P(N,Ql'C) ~tlP~O,O~O) for a prespecified small number 
-7 \\..~;::::' > 

El , for example 10 Then we can apply Theorem 3.1 to find 

D(N,q1'0), q=l, ••• ,Ql in ~erms of p(O,O,O). 

STEP 4) 

STEP 4.1) P(R,0,q2) y= 

II 

= [ I·p(n,0,q2-l ) 
n=R 

Sl"EP 4.2) .. By ignoring the 'flow: from state (N,Ql+l,q2) to state (N,Ql;q2) 

and the flow from state (N,Ql,Q2) to state (N,Ql+l,Q2)' We can .' 

obtain fourt"~_(!llr§_iye sequences Cq , Dq , An and~Bn;q 1 ==Q
l 

' .•. ,1, 
. 1 1 

n=N, .•• ,R from the balance equation at state (N,ql,q2)' ql=Ql,.':"~~l 

and (n,0,q2)' n=N, •.• ,R. The sequences are defined below. 
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and 

CQ -1 == (N+P2)/P l 1 

C
ql 

== [(N+P)C
ql

+l NC
ql

+2J/Pl' 

~ == [(N+P)Cl - NC2 ]/Pl 

~-l = [(N+P)~ - NC1]/P l 

'" )) 

n=N-2, •.. ,R 

BN == [(N+P)Dl - ND2 - P2P(N,1,QZ-l)]/P
l 

BN_l == [(N+P)BN - NDI - P2P(N,0,Q2-l )]/P
l 

Bn == [(n+l+P)Bn+l - (n+2)Bn+2 - PZP(n+l,0,q2-1 )]/P1 ' n=N-2, .•. ,R 

Then we have 

n==R, ••• ,N 

and 

(3.34) 

For n=R in (3.34) we have 

or. 

(3.35) 

' .. 



• 

Since we already know P(R,O,q2) in (3.33), we can substitute (3.35) 

into (3.34) to get the probabilities in terms of P(O,O,O). 

STEP 5) 

STEP 5.1) 

P(R,O,M) 
P2 =-
R [ I P(n,O,M-l) + I P(N,ql,M-l) ] 

n=R q =1 
o 1 

P [N Q
l J ;; R2 IP(n,O,M-l) + I P(N,ql,}1-l) . 

n=R q =1 
1 

(3.36) 

STEP 5.2) By ignoring the flow from state (N,Ql+l,M) into the state 

(N,Ql,M) and the flow from state (N,Ql,M) into the state (N,Ql+l,H), 

we can generate four recursive sequences, 0 ,D ,A and B , 
ql . ql n n 

ql=Ql, ••• ,l, n=N, .•. ,R from the balance equation at state (N,ql,M), 

ql=Qp ••. ,l and state (n,O,M), n=N, ... ,R. The sequences are, .. defined 

as below. 
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(> 

Ql 
~-l = [(N+P)~ - NOl - P2(~ + I 0 )]/p 

q =1 ql 
1 

n=N-2, ... ,R 

Ql 
111-1 = [(N+P)~ - NDl - P2P(N,O,M-l) -PZ(BN + I D )]/p 

ql=l ql 

Bn = [(n+l+P)Bn+1 - (n+2)Bn+2 - P2P(n+l,O,M-l)]/p , n=N-2, •.. ,R 

Then we have 

n=R, •.. ,N 

(3.37) 

For, n=R in (3~37) we have 

(3.38) 

Since P(R,O,M) is already kn0W'lr from Step 5.1), we can substitute 

(3.38) into (3.37) to get the p'l;obabilities .in terms of P(O,O,O). 

STEP 6) For q2>11~ do 

00 

STEP' 6.1) 

= (PZ/N) (3.39) 

STEP 6.2) By doing the same analysis in the Step 5.2), we have two 

recursive sequences, C and D ,ql=Qls""O. The sequences 
ql ql 

0q and Dq is d~fined recursively below. 
1 • 1 
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(/ 

.)' 

and 

C = 1 Q
l 

C Q ~'l = (N+p 2) / PI 
1 

7' [(N+p)C +1 - NCq +2]/Pl ql 1 

D = ° Ql 

D = - P2P(~,Ql,q2-l)/Pl Q
l 

Then we have 

\) 

For ql=O in (3.42), we have 

P(N,O,qZ) = COP(N,Ql,qZ) + DO 

or 

.. - ~ --~.--~ --.-. 

' .. " 

17 

ql=O,·,···,Ql (3.40) 
~~ 

- (3.41) 
" 

Since we already found P(N,O,qZ) ~~ (;3.39), we can substitute (3.41) 

into '(3.40) to ~et P(N,ql~q2)' ql=l,···,Ql· 

STEP 6.3) We keep increasing q2 by 1 each time until P(N,0/<!2)<€2P (0,0,0) 

/ -4 
where €Z is a small number', for example, 10 Let the final value. 

STEP 7) 
. ~ 

First we consider the probabilities at the states (N,qpqZ)' 

Q 

Empirically it shows that, for every ql=O,l,.·.,Ql' 

cannot proof this at this moment. We use it here wi.thout the proof. 

(X) 

Then,', 

ql=O,l, .•• ,Ql 

(3.42) 

f1 
1 

! 
-I " 

j 

'1 

Second, consider the probabilities at the states (N,ql,q2)' ql>Ql' 

qZ=0,1, ... ,Q2. Empirically it also shows that for every q2=0,1, ... ,QZ' 

the ratio of P(N,ql,qZ)/P(N,ql-l,qZ) converges to a constant as ql-loCO. He 

also use it here without the proof. Let S(qZ)=P(N,Ql,qZ)/P(N,Ql-l,qZ), 

qZ=0,1, ••. ,Q2. Then 

(X) 

(3.43) 

Third, we consider the probabilities at the states P (N, ql ,"qZ)' Ql>Ql' 

qZ>QZ· 

STEP 8). L P(n,ql,qZ) .J= sP(O,O,O) = 1 
n,ql,qZ 

P(O,O,O) = l/s 

" 

Note that we can omit STEP 7) if the €Z in STEP 6 .3) is small ~!~bugh, 
[, -

say 

The., reason we have STEP ]) here is that we will have less iterations 

on qz if we choose a bigger €i~ This algorithm has been programmed in{,FORTRAN 
t(:" 

-7 ='::' -4 
i~ double precision with €1=10 in STEP 3) and€2=10 in STEP 6.3). The 

"P (0, 0,0) we get from the program is at least ~or,rect up to the 6 th signif~cant 

digit for any model. Exhibit 3.6 is the block diagram of finding the P(O,O,O) 

in the ~(N;R,M;Q,~) model. 

As we can see from the block diagram, the number of operations is of the 

order of 0(Q2(N-R+l+Ql)). 

is less than 50. 

'l 

I~.-~~st of the models, Ql is less than 10 and Q2 
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~,:.:, 

in 

For a given E1 to computeQ1 and 
Find P(N,ql'O), ql=l, ••• ,Ql in 
terms of PCO ° 0) 

Find P(R,0,q2) in terms of P(O,O,O) 

Find P(n,0,q2)' n=R+l,.~.,N and 
IP(N,ql,q ),ql=l,···,Ql ~n terms of 

(~) 0 

YES 

Find P(N,0,q2) in terms of P(O,O,O) 

YES 

in 

() 
/'; 

Exhibit 3.6 'Block d:fkgram of finding P(O,O,O) in the 
D(NaR l1'Q'ti) model , 'I~' , 
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1 
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'.~ 

The P(O,O,O) in the D(N;R,M;Q,Q) model should decrease as M increase (be-
<\ 

cause it has more states when Mincreases). For the special case R=N-l, the 
'" 

p(o,O,O) in the D(N;N-l,M;Q,Q) model is bounded below by the P(O,O,O) in the 
/~/ .... \ 
\// 

D(N;N-l;~;Q,Q) model and is bounded above by the P(O,O,O) in the D(N;N-l,O;Q,Q) 

model which is equivalent to D(N;N,~;Q,Q) model. And, when M-+oo, PM(O,O,O) -j. 

P~(O,O,O), where PM(O,O,O) is the steady state probability at state (0,0,0) in 

the D(N;N-l,M;Q,Q) model. Since we know the exact values of the bounds, PO(O,O,O) 

and Poo(O,O,?), we would like to compare the PM(O,O,O), M=1,2, •.. to the bounds 
rJ :1 

PO(O,O,O) and P~(O,O,O). Exhibd.t 3.7 is a list of the comparisons of P(O,O,O)'s 
~ 

with M=O;1,5 ,10,20 and 00 in D(N;N-l,M;g,Q) model. As we can see from Exhibit 

3.7., the,PM(O,O,O), M=1,2, ••. is between POCO,O,O) and Poo(O,O,O) and it decreases 

to P (0,0,0) a$ M increases to 00. c::q 

N R 

5 4 

5 4 

5 4 
" 

I:' 
'5 4 

5 4 

5 4 

10 9 

10 9 

10 9 

10 9 

10 9 

10 9 

" 

Exhibit 3.7 

)". 

Al A, 1.1 :,M PMCO,O,O) .. 
1 2 1 ° . 4664}E-l 

1 2 1 1 • 446l5E-l 

1 '2 1 5 .4l893E-l 

1 2 1 10 .4l334E":l 
0 

1 2 1 20 • 41242E-l 

1 2 1 00 • 41237E,-1 
,~ 

2 6 1 ° 27657E-3 

2 6 1 1 ,t. 26628E-3 

2 6 1 5 .24322E-3 

2 6 1 10 . 23070E-3 

2 '6 1 20 • 2226 IE:'" 3 

2 6 1 00 . 22025E-3 

Comparisons of PCO,O,O)'s for different 
M-cutoff point in D(N;N-l,MjQ,Q) model 
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Waiting Time Distribution ,;for High Priority Custome~. 

The waiting time density function for the kth high priority customer in 

the queue is also Erlang distributed with parameters ~~ and k. It is exactly 

the same as in the D(N;N,oo;Q,Q) model (see equation 3.8). 

Conditional Expected Waiting Time for Low Priority Customer 

i Let EWM(n,ql,q2;k), q2>k, denote the conditional expected waiting time of 

' .. 

the kth low priority customer at state .(n,ql,q2) in the D(N;R,M;Q,Q) model. In 

this section, we will derive a recursive formula to compute Et-~(n, ql' q2 ;k) for 

each k<q2 on all the feasible states (n,ql,Q2)' 

Following that we will carry o.~t an example to show how it works. Note 

that, fO'r R=N-l, the unconditional expected waiting time of 10\01 priority 
", -

cu~":.tomer in D(N;N-l,M;Q,Q) model should be bounded above and below by the 

" 
unconcl:,ional exp~cted waiting times of low priority customer in 

D(N;N-l;~;Q,Q) model and D(N;N,oo;Q,Q) model respectively for M=1,2, .•. And, 
II 

for R=N-l, ~(n,ql'Q2;k) in D(N;N-l,M;Q,Q) model will approach to EiV:(n,Ql,q2;k) 

in D(N;N-l,co;Q,Q) model as M-?CO. Since we have the exact value of the bounds, 

. we want to compare our results to the bounds. Following that we \vill discuss 

an ti'pper bound and a lower bqund on the conditional expected waiting times. 
.. / 

Finally, we examine an example, D(15;12,5;Q,Q), with. the same rates as they are' 

in Section 2.3. 

i 
.Now, we start to compute EWM(n,Qp Q2;k), k<q2' Since the 10\01 priority 

queue length is restricted to M when the system is not full, Et-~(n,ql,q2;k) will 

depend on q2 as well as on n, Ql and k. It is ve.ry easy to see this property 

at sta1're (N,O,M) and state (N,O,M+l). ,r At state (N,O,Mtl)., the first low priority 
t:-

customer will start .the service if no high priority customer enters the system 

before a server completes service. But at state (N,O,M}, the first low priority 

i~/ 
stil~ wAit in the queue when a server completes service. 

'<, 
Hence, customer 
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equation (3.25) will not hold in general. But it still holds when q2>M+k, 

k=1,2, .•. , because when q2>~1+k the D(N;R,M;Q,Q) model works just like the 

D(N;N,oo;Q,Q) model. As it is in the D(N;R,M;L,Q) model, we have to find a 
=~:"' 

state such that the expected waiting time at that state is known to start the 

recursive process for each k. 1\ 
Ii 

For k=l, we start at state (N,O,Mtl). At state (N,O,M+l), there are M+l 

customer waiting in the low priority queue, no customer waiting in the high 

prioritj' queue and all the N servers are busy. Let T be the. time elapsed 

since the system went into state (N,O,Mtl) until the first low priority 

customer goes into s~rvice. Then, E(T)=~(N,O,M+l;l). Under D(N;J.t,M;Q,Q) 

model, the density function of T can be expressed in the transformed space 

And, E(T)=l/(N~-Al)' Hence, we have 

~(N,O,M+l;l) = E(T) = 1/(N~-Al) (3.44) 

At state (N,ql,M+l), there are (M+l) customer waiting in the low priority 

queue, ql customer waiting in the high priority queue and all the N.servers 

are busy. Let T be the time elapsed since the system went into state 
ql 

(N,ql,M+l) until the first low priority customer goes into service. The dis-

st . 
tribution of.T is the (ql+l) . fold convolution of the distribution of T 

ql 
and the expected value, E(',I'q ), is equal to (ql+l)/(Nll-A

1
). Hence 

1 

In applying (3.12) for q2>M+l, we have 
!/ 

89 

(3.45) 



\ I 

r 

',J 

IN 
{;~,~' 

" 

',. 

~ 

J 
( 

\ 
\\ 

r 

I 
t 
\ 

! 
J. ' 
~ 

(j 

(I, 

1 
I 
\ 



"(3.46) 

Now, we have found " st 1 .:.. the '~conditional expec,ted waiting times of the 1 ow pr~or.!.ty 
~ 
\ 

We want to proceed this for'Q2=M. customer for q2>M. 

At state (R,O,M), we have 

_~I}. 1 Al i 
Ew.:M~(R,O,M;l)\! = A A + Rll+A +A EWM(R+l,O,M;l) , Rll+ 1+ 2 .. 1 2 

:: ~ + BR ~(R+l,O,M;l) (3~ 47) 

1 PI 
where we have defined ~, = ll(R+P) and BR ~ R+p 

\t, 

Follow the same analysis at state (n,O,H), n=R+l •... ~N-l, we have 

EI~(n,O,M;l) = An + BnEV~(n+l,o,M;l), n=R+l, .•. ,N-l (3.48) 

\) " 

rj 

, -~ 1, 
where 

At state 
f; ) 

11 

vlhete 
1/1l+N~"'1"'1'2/ (Nll~'Al) 

,AN = N(l-BN_l)~ and 

" J 
>~: 

/] , 
I,,; 

\\ 

Ii 

, (3.50) 

= 1/1l+N~+2P2/(Nll-Al) 
. ~. 

with 
°1 N(l-BN)+P 

1/1l+NCql_l +P2 (ql+l) / (Nll-A~)" 1 

Cq = N(l-D 1)+P and D = N(l-D 1)+P' ql=2,3, ... 1 q,,- ql q _ 

-JI' 1 II 
= 

As we can see from equation C3.50), we nel~d a value of E\ol~(N,ql+l,~;l) (,Ito 

compute E\-l~(N,ql,M;l). We found that E\-l~(N,ql+l,M;l)-E~(N,ql,M;l)~l/(Nll-Al) 
as ql~' We prove this in the following lemma. 

Lemma 3.1:, The sequence D in (3.50) appro~~h to 
ql 

[N+p - YcN+P ) 2 -4Np 1 J /2N as q ~ 
1 

Proof: In (3.50) we have~ O<D <1 for every ql and D 
ql ql 

is monotone sequence of ql' 

Let D +D as ql~' then 
ql 

2 
ND .... (N+p) D + PI = 0 

or 

The sequence C -C 
o ql+l ql 

Lemma 3.2: 

in Lemma 3.1. 

Q.E.D. 

Ii 

Proof: From (3.50), we have 

1/1l+NC
q1

+P2(ql+2)/(NJ-A
1

) 

N(l-D )+p 
ql 

t/ 

\? 

~ 

~ 

"'-:.: 

~,-



, 
> 

j 

,'I 

\\ .. 

From Lemma 3 .. 1, D ~ 'dS q1-l<O· 

ql; ~ 

o 

o or Q.E.D. 

Proof: From (3.50), we have 

Then 

or 

~(N,ql+1,M;1)'iI.,~ .. ~(N,ql ,M;"l) 

:: (G -G) + D +1 EW~(N~qcf,M;l) 
ql+l ql ql 

. {{ 
E = ,G + DE \-"", 

" (')' 

G 
E =-­

I-D 

\J 

o 

Sl\bstitute G and D in Lemma 3.1 and 3.2,·respectively, we have 

Q.E.D. 

"If we pick .. a value Q
1 

~~Id apply Lemma 3.3, we have 

From equation (3.46), we have 

92 

1 
Nll-J.. 1 

-. 
o 

--. ,,~,",.,,',"", ",,,,",~"'"~,'<'!l~.::l..."ll--'(';:""h:.u.~;:.J<:k:~ "'-"-- f 

! 

' .. 

II 

(3.51) 

(3.52) 

\ 

o f 

Equate (3.51) ~o (3.52), we h~ve 

1 
(GQ + N -J.. )/(l-DQ ) 1 II 1 1 

(3.53)'" 
~) 

'<.11 
.... , , 

Substitute (3.53) backwards into (3.50), (3.49), (3.48) and (3.47) we 
(> 

wi1l1 have the conditional expected waiting times of the first low priority at 

those states with low priority queue length equals M. 

'\'" '~In general, for each" q2=M-l,M-2, .•. ,1, we have 

~ '" 

where 

and 

~(N,ql,q2;1) = 

~ 

~ = [1/11+P2
Etv:r(R,0,q2+1 ;1)]/(R+P) 

BR = P
1

/ (R+P) . 

(3.54) ,) 

:;'1 

A.n = [1/11+nAn_l+P2Et~(n.,,o,q2+1;1)]/[~~(1-Bn_l) + p] , n=R+l, ... ,N 
'V" o ~. 

Bn = Pl/[n(l-Bn_l ) + p] n=R+l, •.• ,N 

t " 
G1 :: (l/1l+N~+P2EWM(N,1,q2+1;1)]/[N(1-BN)+P] 

Dl =Pl / [N (l-B!.~)! + p] 
I) 

',) As we can see from (J.54)'cFgain, we need a value of E"tV~(N,ql+l,q2;1) to compute 

still holds for qZ<M. The sequence D is exactly 
ql 



11,\ 

, 

the same as it is at q2=M. Hence, Lemma 3.1 holds for every q2=M-l, ••• ,1. 

~ n~~ prove Lemma 3.2 holds for Q2=M-l. 

Lemma 3.4. When 

defined in (3.54) 

Proof: From (3.54) we have 

"" 

N(l-D )+p 
q 

In applying Lemma3!L3 and let ql~' we have 

or Q.E.D. 

is 

Use Lemma 3.4 and the t~chniques we used in the proof of Lemma 3.3, we ha.ve 

lim [EW!(N,ql+l,M-l;l) 
ql~ 

We 

We can repeat this process unt:i..Lq2=l. We state this in the following Lemma. 

Lemma 3.5. lim [EW!(N,Ql+l,q2;1.) 
Q1~-

for 1<Q2<M. 

Hence, we can>pick a number Ql such that 

1 

(by 3.54) 

(by Lemma 3. 5 ) 

o 

, . 

I) 

I} 

= [CQ + 1/(N~-A1)]/(1 - D
Q1

) 

II 1 
\\ 

(3.55) 

Substitute (3.55) into (3.54), we will have the conditional expected waiting 

times of the 1
st 

low priority customer. 

Exhibit 3.B is the block diagram of finding the conditional expected wait­

ing times of,the 1
st 

low priority customer. As we can see from the block 

diagram, the number of operation to compute these expected waiting times is of 

the order ·of O(M(Q1+N- R+1». the We can generalize this procedure to the k ::: low 

priority customer, k>l. We summarize the steps of finding the conditional 

expected waiting times of the kth low priority customer, k=1,2, ... ,K below. 

STEP 1) 

STEP 2) 

STEP 3) 

STEP 4) 

~~) 

~ STEJ:1::'S) 

II 

[~.ssigt? the conditional expectecl waiting times to ° at all the 
" J 

infeasib1e.states.] II 

R, 
EWM(n,O,M+1;k) ~ ° ,n=R, •.. ,N-l and k=l, ... ,min (M,K) 

)) 
EW~(n,O,m;o) ~ 0 I' n=R,.:.,N-l and m=O,l, .•. ,M 

"~~, 
EWM(N,q,m;l) + 0 Q=O,l, ... ,Ql and m=O,l, ... ,H 

[Compute the con~~tional expected waiting times for the kth low 

priority customer.] 

k + 1 

[Set up the starting states for the kth low priority.] 
(I 

Q+ M + k -1 2 -

') 9,5 

q=O,l,···,Ql 

m=M+k, ... ,M+K Ii 

I, 



f 

I 

c 

/) 

i ' 

i EWM(n,O,M+1;1)=O, n=R, ... ,N-1 

~(~i, ~,M+1;1)= (q+1) I (Nll-A1) , q=O,l, ..• ,Q 
(, 

t 
I qZ=M I 

~J, 

~=[1/1l+PZEW~(R,O,q2+1;1)]/(~+P) 
BR=P1I (R+p) 

• i 
An=[1/1l+nAn_1+PZEWH(n,O,qZ+1;1)]/[n(1-B~_1)+P] 

B =pi[n(l-B 1)+P], n=R+1, ... ,N n n-
C1 =[l/ll+N~+pZm~(N ,1!,qZ+1 ;1)] I [N(l-BN)+P] 

D1=P1/[N(1-BN)+P] 
i - Cq=[1/1l+NCqi1+P2EWM(N,q,q2+l;1)]([N(1~Dq_l)+P] 

Dq=P1/[N(1-Dq_1)+P], q=l,Z, •.. ,Q 

1. 
i .1-

EWM (N, Q+1, q2; 1)= [CQ + Nll-A
1

] / (l-DQ) 

1 
~(N,q,q2;1)=Cq+Dq~CN,q+1,q2;1) 

for q=Q, Q:"'l, ... ,1 '0 "" \\ (I 

~(N,Q,q2;1)=~+BNEv~(N,1,q2;1) 

~(n,o,qz;1)=An+Bn~(n+1,O,qz;1) 
,-' 

for n=N-1, .•• ,R 

1 
<.'. qZ=qz-1 

NO ~ G 

J YES 
,c. 

Continue to compute 

~(n,q,q2;k), k>l 

Exhibit 3.8 Block diagram of finding the'tonditional expected 
waiting times of the IS1;c1ow priority customer 

\0 •. 

;0 

() 

.--

" 

J 

I 
~ 

i 
J 
1. 
j 

! 
J !I 

\ 

1/1l+~(N,O,qz-1;k-1)+PZ~(N,O,qZ+1;k) 
Co = N+p 

q=1,Z,···,Q1 

q=1,Z,···,Q1 

q2 + qz - 1, and repeat this step. 

If q2>M and q2<k, GO TO STEP 7)~ 

If qz <M" GO TO STEP 6). 

STEP 6) [Compute ~Cn,q,q'2;k) for q
2

<M.] 
,J 

~ = 1/1l+REW~(R,O,qz-l;k-1:')-rp2Ei~(R+1,O,qz ;k-1) 
R+p if qZ=M 

,) 

BR = P1/ (R+p) 

i 
1/1l+nAn_1+PZEWMCn+1,O,q2;k-1) 

An = "n(l-B)+p " 
n-1 

97 

n=R+1, ... ,N-1 when q2=M 

n=R+1, ... ,N when q2 <M 

and n=N when qZ=M 

" 
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o 

B =Pl/[n(l-B 1)+P] n n-
n::::R+l, .. " ,N 

c 
Q 

l/ll+H~ +P2EW~ (Nil' 1, q2 + 1 ;k) 

N(l-BN)+P 

= ~/1l+NCq_l+p2~(N,q'q2+1;k) 
N(l-Dq_l)+P 

/ 

If Q2>k, repeat STEP 6). O.W,', GO TO STEP 7). 

STEP 7) k +- k+l 

If k<K, GO TO STEP 3). C.W. STOP. 

n=N-l, ... ,R 

In Steps 5) and 6) of the above algorithm we used an approximation 

We state this in the 

following Theorem. 

I} 

Theorem 3.2. 
~"" i 
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We are not presenting the proof here, but we will prove it in the disserta:... 
,; 

tion. Note that Theorem 3.2 is a generalization of Lemma 3.5 for k> 1. The' 

physical meaning of Theor~m 3.2 is that, for;,the kth low priority customer, 

the difference of the expected waiting time fin the queue at state (N,ql+l,q2) 

and at state (N,Ql,q2) appr9aches to a constant, l/(NJ1-Al ), when ql approaches 

to infinite, for every Q2>k>1. And, this constant is just the expected time 

of the system goes from state (N,ql+l,q2) to (N,ql,Q2)' (i 
j 

In this algorithm', the number of operations IS of the order of 
. ,It·. 

o (KM(N-R+l+Ql) ), where .K is the number of low priority customer one wants ,.to 

compute, M is the cutoff point on the low priority queue, N-R,is the number of 

servers reseI\"Jed for high priority customer and Ql is an estimate of th~ maximum high 

priority" Qtielle length. In most of these models, Q). =5 will give the very good 

approximations. We do a single example with Ql =2 p~low. 

Example 3.1. Find the conditional expected waiting times of the first 3 low 

priority customer in D(5;3,2;Q,Q) model with Al =A2=1l=1. 

Solution: In this example, we have N=5, R=3, M=2, K=3, P
1

=P
2

=P=1 and pick 

STEP 1) 

STEP 2) 

STEP 3) 

STEP 4) 

STEP 5)~ 

9., 
EW2(niO,3;k) = ° , n=3,4 and k=1,2 

9., 
EW 2(n,O,m;0) = ° 

k =1 

q= 2 
2 " 

SkiPpe] because 

n=3,4 and m=O,1,2 

ql=0,1,2 and m=3,4,5 
'! 

o 
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\l~ 

STEP 6) A3 = .2 , B3 = .2 

A4 = .346 B4 = .192 

AS = .494 BS = ,.166 , 
1\ 

C = 1 .643 , D = 1 • 162 

C2 = .802 D2 = .162 
c 

~ (S ,3,2;1) = 1.2SS 

Q 

EW2 (S , 2,2; 1) = 1.00S 

t 
EW2 (5,1,2;~) = .806 

wi (S,0,2;1) = ~627 

wi (4,0,2;1) = .467 

~(3,0,2;1) = .293 

q = 2-1 = 1 > k = 1 2 - (repeat STEP 6) 

STEP 9) A = 3 .2S9 , B3 = .2 

A4 = .481 , B4 = .192 

1l - .668 B = .166 c ...... S co- S 

C = 1 .834 , D = 1 .162 

C = 2 .997 , D = 2 .162 

t = 1.494 EW2(S,3,1;1) 

wi(S,2,1;1) = 1.238 
I. 

11 ~(S,I,l;I)~= 1.034 

~(S,O,I;I) = .839 
II 
:1 

~(4,0,1;1) .642 
II = 

Elo~(3,0,1;1) = .387 

q2 = 1-1 = ° < k = 1, GO TO STEP 7). 
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STEP 7) k = 1+1 = 2 ~ K = 3, GO TO STEP 3). 

STEP 4) q = 3 2 

STEll S) .. q? = 3 > M = 2 and q2 = 3 o'~ 2 

STEP 5) 

STEP 6) 

Co = .662 

C = .971 2 

DO = .143 

Dl = .lS9 

t 
El12 (S ,3',3; 2) = 1. 4S 7 

t 
~{2(S,2,3;2) = 1.206 

. 
.Q, , 

EW2 (S,1,,3;2) = .997 

EW9-o'(~ - ) 2 ~,O,~;2 = .80S 

q2 = 3 ... ,1 = 2, and repeat STEP 5). 

qz = 2 ~;M, GO TO STEP 6) 

A3, ::; .526 , B3 = .2 

A4 = .717 , B4 .... ,= .192 

AS "" .893 B5 = .166" 

:1 

C1 "., 1.047 , Dl = .162 

IDv;(5,2,2;2) = 1.482 

"9. 
Elv2 (S ,1,2; 2) = 1. 287 

9. 
EW2 .. ~5,O,2;2) 

.1___ ;, 

= 1.106 

t 
EH2 (4,0,2;2) = .93 

~ (3,0,2;2) n= .712 

o 

.... 

IJ 

i .t 



STEP 7) 

STEP 3) 

STEP 4) 

STEP 5) 

STEP 5) 

STEP 5) 

STEP 7) 

,:;. 

k = 2+1 = 3 ~ K = 3, GO TO STEP 3). 

.. 2. _ q+3' 
EWi(5,q,m;3) - 4 q=0,1,2, m=5 

q2 = 4 

q2 = 4 > M = 2 and q2 = 4 > k = 3 

Co = .825 ,) D = .143 , ° 
C1 = .974 , D1 = .159 

C2 = 1.148 , D = 2 .161 

2 1.667 EW2(5,3,4;3) = 

mv;(5,2,4;3) 
~'" 

= 1.416 

2 1.2 E1-12 (5 ,1 ,4 ; 3) = 

2 ~\ EW2 (5,O,,4;3) == .996 \, 
\1 

q2 = 4-1 = 3, and repeat STEP 5). 

q2 = 3 > M == 2 and q2 = 3 > k = 3 

Co = 1.075 DO = .143 

C1 = 1.205 D1 =.,159 

C2 = 1.361 , D2 = .161 

2 
EW

2
(5,3,3;3) =:,:;~92 

2 EW
Z 

(5,2,3 ;3) = 1. 67 

2 
EW2 (,5 ,1,3'; 3) = 1. 471 

2 EW
2

(5,0,3;3) = 1.285 

q2 = 3-1 == 2, repeat STEP 5). 

---- -~~ ~ 

q2 = 2 < M a~d q2 = 2 < k = :3, GO TO STEP 7). 

k = 3+1 == 4 > K = ~, STO~" 
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We summarize the results below in Exhibit 3.9. The numbers below each 

state are the expected w'aiting times for each waiting 1m .. priority customer" 

e e 1/\ 
" 

.387 .293, .712 

8 9 
.642 .467, 

iC 

.93 

8 8 @ 
.839 .627, 1.106 .25, .805, 1,285 

G g Q 
1.034 .806, 1.287 .5, .997, 1.471 

8 0> 0) 
1.238 1.01, 1.482 .75, 1.20~. 1.67 

Exhibit 3.9 Conditional expected waiting times of low priority 
customer in D(5;3,4;Q,Q) model 

As we can see from Exhibit 3.9, the numbers are. slightly greater than those 
c 

numbers in the corresponding states of D(5;3,2jL,Q) model (see page +~) . 

Following two properties which hold in the D(N;R,M;L,Q) model also hold 
o :;;\ 

in the D(N;R,M;Q;Q) model. 
o 

(1) "The busier th~ system or (when the system. is full)" the more high 

priority customers waiting, the greater the conditional expected 

waiting time for low priority customer. 
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(2) The more ,low priority customer waiting, the less 7ondj,J:ion.::f expected 
~ I ) 

" ~ ;l ,~-;, 

waiting time of low priority cus,tomer in. the same position. That:' is '0'() 
" ,~ 
-I:' II. 

far R<n<N, EW~(n,O,k;k»EW~(n,O,k+l;k» ••. ,~EW~(~,Ojl;k)' l<k<M 

f.or n='N" EW~(N '~l ,k;k?: ••. >EV~(N, ql ,M;k) >Etv~(N, ql' q2 ;k), Q2>H>k, 
.. ~~~'I;) 

ql=0,1,2, .•. 

The reason for above two properties are the same as 'they are in the D(N;R~M;L,Q) 

model, 

9/' Let EWM be the unconditional e~pected w.aiting time ~or the D(N;R,M;Q,Q) 

model. Then 
/I 

M-1 N-l 
EW~ = ~ . I P.(n,0,q2) E~(n,0,q2+1;q2+l) 

q =0 "n=R 
2 

N-l t 
+ ~ P(n,O,M) EW

M
(n+l,0,11;M) 

n=R 

00 00 

+ I L P(N,ql,q2) E~(N,ql'q2+1;q2+l) 
q2=0 ql =0 . 

<) 

(3.56) 

The reason for (3.56) is that: if a low priority customer arr~ves and finds 

<r' 1) the' system at state (n,0,q2)' R<n<N aI7,d ~2<M, th'~n he/she ;ill join the low 

priority q~eue in the (q2+l) st position- Yfith the\~e?pe,cted waiting time equals 

EW!:(n ° q +l'q +1) 2) the system at state (n,O.,'M), R<n<H, then"the first low 
M ' '. 2 '2"· -

priority customer in the queue vI~llbeginthe service and the arriving low 
, th... a 

customer will join the queue in the M pos~t~on w~th the expected pr'iority 
~'-_Q. 

waiting time equals ~~(n+l,O,M;M), 3) the 

he/she will join the low priority queue in 

system at state (N,ql,Q2)' then 

st 
the (q2+l) posit~ol w~,th the 

t 
expected waiting time ,equals EWM(N,ql,q2+1 ;Q2+l ), " 

~:=" 
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A program has been written to compute P(n,Ql,q2)' 

(3.56) to compute EW~ with ql up t6 Q1 and q2 up to Q2 , 

denoted should be b.ounded below by the E~'~' 

D(N;N,oo;Q,Q) model and bounded above by the 

as EH~ in Exhibit 3.10 '; in the 
' .. 

~ __ fl, 
EVIl{' deno ted as EWe:, in Exhib i t 3 .10 , 

in the D(N;N-l,oo;Q,Q) model. And , EW!:M+~ as M-loOO. 
• co 

Exhibit 3.10 verifies this. 

N R 

5 4 

5 4 

5 4 

5 4 

5 4 

5 4 

10' 9 

10 9 

10 9 
G 

10 9 

10 . 9 

10 9 

15 14 

15 14-

15 14 

15 J.4 

15 14 

15 14 

Exhibit 3.10 

~ .. , 
.,' 

Al A2 ).l M ~ 
y 

-~ 

1 2 1 0 .0249 

1 2"", 1 {? ~ 
1 .0614 

~i': 

1 , 2 1 5 .0867 

1 2 1 10 .0876 
,. .:,\ 

1 2 1 20 .0876 

1 2 1 co .0876 

2 4 1 0 .0317 

2 4 1 1 .0448 

2 4 G 1 5 .0656 

,~ 4 1 10 .0704 

4 1 20 .0712 

2 4 1 co .0712 

.05 .25 .034 0" .2196 
a 

.05 .25 ( .034 1 .3052 

.05 .25 .034 5 .4394 
" 

.05 .25 .034 10 .4676 

.05 .25 .034 !O .4714 
.. 

.05 .25 . 034 CO .4715 

Comparisons oJ the unconditional expected 
waitil1g time '~f low priority customer in 
D(N;N~l,M;Q,Q) model 

• I/. 

D t . 
Now we discuss thE} bounds of EWM~n,q1,q2;k) in D(N;R,l1;Q,Q) model. 

in Section 3.2. That is 

105 

o 

For any M, 

, ' 



o 

;;\ 

at any corresponding feasible state of D(NjR,M;Q,Q) model and D(NjR,OOjQ,Q) mod~l. 

The reasons for this is the same as it is for the D(N;R,MjL,Q) model. For 

example~ the state (12 3 0,1) is a feasible state for D(lSj12,00;Q,Q) model and
u 

D(lS;12,M;Q,Q) model for every M. ~vith Al=.OS, A2=.2.5,}.l='.034, ~(12,0,ijl) 

are displayed in the following table for M=l, .• ,7 and"00. 

11 1 2 3 4 5 6 7 00 
" 

EW'M(12,0,1;1) 1.59 ' 2.25 2.52 2.65 2.71. 2.74 2.75 2.76 

As we can see"f,rom the above table, it does not take too long to reach the upper 

bound. 
o 

As it is in the D(N;R,M;L,Q) model, EW~(n,ql,q2;k) i:s bounded below by 

m~(n,O,M;k) for R<n<N, k<q2<M and the lower bound i~ exact when q2=M. That is, 

for n=R, ..• , Nand 1 <k<M. (J 
t 

To find the lower bound EWM(n,ql,M;k), we have to carry out the recur~bye sequences 
<) 

A ,B,C ,D which are defined in this section. It~ill be easier to find the 
n n ql ql 

lower bound than the exact value. We do a simple example below to show how to 

find the bounds. 

In the D(4j3,3;Q,Q) model with Al =A2=11=1. Example 3.2. A low priority customer 
r~ 

arrives and find the system is at state (3,0). What is ",the maximum expected wait ... 
c 

ing time and what is the lttir:',imum expected waiting time of this 10vl priority customer? 
u ~ 

Solution. The arriving low priority customer will enter the low priority queue in the 

first position and the expected waiting time for him/her is ~(3,Oi-:l;1). From 

above discussion we have 

f) 

1\ 

~(3,0,3;1) < EW~(3,0,1;1) < ~(3,0,1;1) 

(1) 2 Compute the upper bound EW (3,0,1;1). 00 

From Section 3.2 we have 

.J-
EW (3,0,1;1) = .444 00 

(2) Compute the lower bound EW;(3,0,3;1) 

For Simplicity, we pick Ql=2. Then we have 

A3 = .2 , B3 ,= .2 

A4 ~ .4103 3 B4 = .1923 

Cl = .6324 

C2 = .8652 

Dl = .1912 

D2 = .191 

~(3,0,3;1) = .3148 

Hence, we have .3148 < Et~(3,0,ljl) < .4444 

)J 
__ ,y'/ 0 

o 

/"': 
In general, for a given model D(NjR,HfQ,Q), it is much easier to find the 

\ 
upper bound than the lower bound, numerically. 

\) 

vTe can define the boundary states in the D(N;R,M;Q,Q) model in the same way as 

they are in the D(N;R,M;L,Q) model. All the properties about the boundary 
(1 

ste.tes also hold in the D(N;R,M;Q,Q) model ,,(see page sl) and we do not repeat 

here. 

Now we "show the example we did in Section 2.3, the D(15;12,5;L,Q) model. e 
When the system is full, instead of los'i, the high priority calls are queued 
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in the high priority queue. Hence, it isD(15;12,5;Q,Q) model. Exhibit 3.11 

is the transition diagram for D (15; 12,5; Q, Q) model. . Exhibits 3.12 and 3.;P.3 are 
'. 

the steady state probabilities and the conditional expected waiting t,ime's of 

low priority calls, respectively, for those states that are in the dashed box 

in Exhibit 3.11. Comparing the steady state probability in the D(15;12;ti;Q,Q) 

model to the steady state probability in D(15;12,5;L,Q) model, one can notice 
\') 

that the former's probability is slightly less than the latter's. As a matter 0 

() 
of fact, this is true in general because in the D(N;R,M;Q,Q) model it has more 

states than the D(N;R,M;L,Q) model has. 

The properties about the conditional expected waiting times of low priority 
.,P 

calls in the D(N;R,M;L,Q) model also hold in the D(~;R,M;Q,Q) model. Comparing 

the conditional expected waiting time of low priority call in D(15;12,5;Q~Q) 

model to the conditional expected waiting time of low priority call in 

D(15;12,5;L,Q) model, one can notice that the former is slightly greater than 

the latter. T4.is is also true in general because in D(N;R,H;Q,Q) model there 

is a probability that high priority calls may come into the system when the 

system is full and those high priority calls will be served before any of the 

waiting low priority calls can go into the service. The unconditional expected 

waiting time of low priority call also has this property; In D(15;12,5;Q,Q) 

model, the unconditional expected waiting time of low priority call is 1.705 

and in D(15;12,5;L,Q) model, the unconditional expected waiting time of low 

priority is 1.66. 

() 
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'C\ 
~ 
/,di·A.-rh 

Q 
~(.(1I''''I1'A .. 

n .. :,u::loer of 3usy Se:ver 

q1 .. Length of High Priority Queue 

q2 • Length of Low Priority Queue 

A1 .. Arrival R4te of High Priorit\' Call 
()'l .. 3/hr· ,05/min) . 

}'2 .. A:rival Rate of Low Priority Call 
(~2 .. l5/hr • ,25/min) 

~ • Service Rate of All Calls 
(l/u .. 29,4 Qin) . 

, 
" 
# 

Exhibit 3.11 Transition diagram for D(15;12,5;Q,Q) model 
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THE STERDY STRTF, PROB FO(1 0(15:12, 5;0,0) 
" LRMDR 1= 0.0500, LRMDR2= 0.2500, MU= 0.0340 

THE PROS OF HIGH· PRIORITY CUSTOMER WRIT IS 0.00802 
, . 

THE PROS OF LOW PRIORITY CUSTOMER WRIT IS 0.22418 

h2, 0, 0 /13, 0, 0 
.6478E-Ol .4562E-02 

G2, 0, I I 1,3. 0, 1 I 
.4269E-Ol ' .4685E-02 

h2, 0, 2 I "3, 0, 2 I 
.293IE-01 .3814E-02 

1t2. 0, 3 I lt3, 0, 3 I 
.2057E-OI'~ .2889E-02 

/12, 0, 4 I h3, 0, 4 I 
.1461E-Ol .2128E-02 

/12, 0, 5 I /13, 0, 5 I 
.1044E-Ot .8456E-02 

/14, 0, 0 
.3069E-03 

/14, 0, 1 I 
A230E-03 

/14, 0, 2 I 
A068E-03 

114. 0, 31 
.3400E-03 

!t4, 0, 4 I 
.2657E-03 

"4, O. 5 I 
.5486E-02 

liS, 0, 0 \'~l l,s, 1. !). 

.1975E-04 .1270E-05 

ItS. 0, 1 I Its, 1. 1 I 
.3384E-04 .2604E-OS 

"5, 0, 2 I Its, 1.2 I 
.3763E-04 .3302E-OS 

"5, 0, 3] Its, 1. 3 I 
.3472E-04 .3358E-OS 

Its, 0, 4 I Its, 1. 4 I 
.2902E-04~, .3017E-OS 

"5, 0, 5 I /15, 1. 5 I 
.3243E-02 .2097E-03 

Its, 0, 6 I "5, 1, 6 ] 
.1700E -02' . 1798E -03 

Exhibit 3.12 Steady state probabilities for D(15 ;12,5;Q ,Q) model 
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flw· L'ofldJtLorral ~-xpected'~Waitifl!:J rlmt~!.i' In"O(fS;L!, ~);U,O) . 
I (U·/UHI::..U.0500. I. f1MO~I~::. 0.25UO. f1U=- U.0340 

Tile unrondlHonal EW =- 1.7050. flu:' I:w:::. "I.tiU5 t3 

2:11 

'. fI~~ ~~L- 2 I 
2.65 5.3' 

(g_o ... D 
2.SJ 5.11 1.15 

O~! .. Q!-.~J 
2.25 •• 12 1.31 9.96 

(IrQ. 51 
1.59 3.96 6.52 9.211I1i9~ 

Exhibit 3.13 

'} 

l!~! 0=0 
5.11 1.22 9.011 10.04 

fI$~_J! 2:] 
10.UO 12.03 

li1~_QJ..J lH. _Q. 3.J' 1~.Jl~1 II[_J2.1 4.58 1./6 9.01 6.22 0.9011.50 7.61/0.31 83.1. 8.9511.01 14.64 

Q 1;, 

ML. o!.~D [5. C.1J ru/.1] liI'_0: 4 ) 
3.07 6.43 9.11 11.02 5.06 7.0510.64 13.41 6.17 9.14 12.02 I •. O!> ,1 •• 210. 46 13.~Cl 16.27 

113 •. _ O •. ·~··l 
2.50 5.17 1.991U.711 13.56 n~:']=-5-l 

5.6.11 0.0!,w.9J 14,69 ruo 

o 

2.11 5.60 0.0911.9314.09 OS 7.4010.44(13,4216.35" 
1].11.1 19.24 

o , 

Conditional expeetedwaitin'g times of 
eus tomer for D{l5; 1275; Q, Q) m.odel 
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