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ABSTRACT
“\ L \_/
The motivation for thlS doctoral dlssertatlon is a problem ar151ng in Y

the police dispatch area. Typlcally, cltlzens who call for police service ’

-~ for either a critical (1 e., requlring an 1mmed1ate pollce response) or a

nonmcrltlcal (i.e., not requlring an lmmedlatc police response) matter -

20

are always being advised that "a patrol car will be right Out" ‘even though
considerable delays may occur because of the unavallablllty of patrol cars,
especially For responding to. non-crltlcal calls for serv1ce. Citizens are
being needlegsly frustrated; the frustratlon can be mltigated, if not elim-

2

inated, by formally advising citizens of potential delays. 1Indeed, because
citizen satisfaction is a function oftagggctation and because some,86.lqper-

cent of all calls for police service are non-critical in nature, a consider-

z
‘able portion of police demand can be ' managed" and, more specitically, the

formal delay procedure is one approach for managing such demand.

Incl976 the Wilmington Department of Police, Wilmington, Delaware, imple~ =

&
n

mented a formal delaylprocedure' that is, when all patrol cars were busy,
callers requesting service for a nonncritlcal matter were told to expect a
As an element of two consecutive patrol experiments, the
formal delay procedure“was:evaluated and found to be’very-effective. It,sv
should, however, be noted that- Wllmlngton s formal delay procedure is fixed
or static; that 1s, callers receiv1ng a formal delay are each adv1sed of the ;

same constant delay g 30-m1nute delay. Certainly, thlS need not and should

not be the case. Dependlng on the state of the ‘System, the expected delay

should, of course, be varlable and of dlfferent value for each non-crltlcal

]
Thus, what is needed is a dynamlc (i.e., state or quete dependent)

“{e

B
|
i
i

i

procedure for delaying responses to non-critical calls. This then is the

goal of the dissertation: the development of a dynamic delay procedure that
could be straightforwardly implemented in any police department.

In analytical queuing terms, the dynamic delay procedure can be charac-—

terized as a prioritized queueedependent model. The model is sensitive to

the need to have enough patrol cars available to respond to critical calls,
while at the same time not allow the non—crig;cal,calls to be queued up for

ltoo long. ' In addition to stating the problem that prompted the research and

outlining a research approach consisting of eight explicitly defined activi-

ties, this summa%y report also provides a brief literature review and an expo-

o

sition of some key results.
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e 7 Page R 1.1 Motivation
: ) ! (N B . ' : = ’
v \\ _ o % The motivation for.my disser’t'ation’ is a problem arising in the police
\  ABSTRACT i | L | : ;
¢ ~ 1 dispatch area. Tien and Val:.ante [1979] provide the follow:mg vivid descrip-
%\ 1. Introduction @ i
’ \ : o _ " tion of the problem )
\\ 1.1 Background - : : ' e \Q 1 b : ) , .
Vo120 Objective Y, 3 2 A woman returns home at the end of an exhausting day at the office and
: 3 o S finds her home in a disheveled:state; it has been ransacked and burglarized.
% 1.3 Model Definition 4 3 After taking stock of her losses and perhaps calling and commiserating with
! %1.4 Literature Review  ° : : o 6 Pl one or two of*her clése friends and relatives, she calls the police and is:
g A T . ’ [ T = . “told, "A patrol car will be right out". Ten minutes pass, and no patrol car
1\-5 Scope of Work E ' ' i 11 . arrives. Ten more minutes pass, and still no patrol car. Because the late
i ‘ \\,\Q ‘ ’ o , z //{f ‘ ‘ R afternoon is a busy time and a platoon shift change could be occurring, a
2. The D(N;R,M;L,Q) Model ' \\ ‘ ‘patrol car may not be available for dispatch to this non-critical (i.e., not
b \\\ , a s . requiring an immediate or emergency response) call-for-service for a rather
2.1 The D(N;N,»;L Q) Model ) ‘\\ o 19 G4 long time, perhaps up to an hour fiom the time the call is received. Mean-
| ‘i\ : - s 7 ) ‘ 5 while, the woman is becoming increasingly distraught and frustrated -- her
2“'\\ The D(¥;R,*;L,Q) Model with R<N - 22 |° . expectation, after all, was raised because she was told that a patrol car
2. B\The D(N;R,M;L,Q) Model W:.th R<N and M is Fin:;.te , 29 ’ would be rlght out.,-.»:v :
i 3. The n\(}: R,M;Q,Q) Model :‘Jihg:‘:.above) accbpunt is a common daily occurrence in cities throughout the
@ 4 - : i " : L s 4
i i : : 7 4 ‘ )
RN f”‘3 1 The D(N N, 5Q,Q) Model ' ‘ ‘ 59 nation. Citizens are always being advised that a "patrol car will be right
3.2 The D(N; R,»3Q, Q) Model with R<N o ., 66 out", even though considerablé deléys‘ may occur either b'.efc:ause no patrol cars IE
3.3 1e D(N R M:Q,Q) Model with BR<N and M is F:.n:!.te . 776 R . ‘ : o .
L . & are available for dispatch, or because the few cars that are available are
References ° 112 being reserved for dislpatch to more critical calls for service, or because the ;f
. T ‘car that is assigned to the sector in WHich the call originated is busy.
. , N @Ehﬁp Whatever the reason, citizens are being needlessly frustrated. Certainly, the
§ o ~ Aﬂﬁ & i S frustration can be mitigated, if noc't_zzﬁ eliminated, by formally advising citizens
; : | , @leﬁﬁ?mﬁw% : of potentialkdelays. Indeed, because citizen satisfaction is a function of
o ~ AGRULISLIAVES e
SN ' ¥ . %0 expectat:Lon [Kansas City Pol::.ce Department, 1977 Tien et al., 19783 Tien: and -
. Vai:.;‘mte, 1979] and because some 86.1 percent of all calls for police serv1ce' \
5 are ngn-arwwazln nature [Tien et al., 1978; Sumrall et al., 19801, a.con- o
@ si;deréble portion of police demand can be "managed" and, more specifically, i
o o ; : ' g the formal delay procedure is one approach forman:‘aging_ such démanda
- é\k‘%‘ ;‘\
° N JE& N
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In 1976 the hllmlngton Department of Police (WDP); Wllmnngton, Delaware,
implemented a formal delay procedure, that is, when all patrol cars were busy,
callers requeeting service for a non-critical matter were told,to expect a .
30-minute delay. As an element of gothﬂthe Wilmington split-fcrce patrol o
experlment [Tien et al., 1978] and the Wilmlngton management of demand program
[Cahn and Tlen, 1981], the formal delay procedure was Judged to be very
effective; the citizens' attitude toward a,delay‘-f of which they were formally
advised -- ig best eunmarized by one of the telephcne:survey respondents who
said, "I am ahtaxpayer. If it helps to keep my taxee-dOWn, then I'm all fnr‘
the police to take their time in showing up to non-emergency situations -
but I would like to be told of such a delayﬂso thaE‘I'n not just waiting
around for then" [Tien and Valiante, 197?]. |

It should, however, be noted that Wilmington's formal delay procedure. is

 fixed or static; that is, callers receiving a formal delay are each ‘advised-

of the same constant delay -= 30-minute delay. Certainlyovthis needrnot and

Dependlng on the state of the system (4. e., how many

=

should not be the case.

~of the total number of patrol cars are busy, - ‘how many critlcal and non-

eritical calls are waitlng in queue for service, at what rates the crltlcal
14

and non—crltlcal calls for serv1ce are arriv1ng at the police dlspatch center,
[

and how fast the patrol cars are handling the calls), the expected delay

snould, of course, be variable and of different value for each non-critical‘”
caller. Thus, what is needeé is a dynamic (i,eﬂ,&state or queue dependent)
procedure for delaying r%sponses to non—criticai calls.‘:This then is the.

goal‘of this dissertation: the dévelopment of a dynamzc delay procedure

Although such a procedure would be 51gn1f1cantly enhanced by the avallabillty

of afcomputer—assisted dispatch (CAD) system, it is intended to develop a pro—

cedure that could be straightforwardlyf;mplemented,in any'pclice depart%ent.

ey
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1.2  Objective

In analytical queuing terms, the dynamic delay procedure can be charac—

=

teri;ed as a prioritized ndn—preemptive queue—-dependent dispatching procedure}
The: system has a call-taker who receives calls for service and a dispatcher

/ who dlspatches the patrol cars on radio. The call-taker will be able to

# determlne whether a call—for-s;rvice (CFS) is emergency or not, that is, a

‘J

" high priorlty call or a low prlorlty call. When a CFS arrives, it will stay

in queue unt11 a patrol car arrives at the scene. This time is called the

response time which is the sum of the delay time and the travel time.

The
delaz time is the time elapsed since the CFS arrives until a patro/ car is
dispatcked. The travel time is the time elapsed since a patrol car is dis-

patched until the car is on-scene. When the patrol car arrives‘it will spend

some time on the scene, called the on-scene time. After that, it will be

available for other CFS again. Exhibit 1.1 displays the time instants at

which'the CFS arrives, car is dispatched, car is on-scene and car is available
: - o . . S

again and defines the time intervals’of'the delay time, the travel time, the

on-scene time, the response time and the service time.

CFSkArrives’ " Car Dispatched CarﬁOn-Scene Car Available

}4.— De]ay Time —)-\\4— Travel T1me -9{-(- On-Scene T1me -y.‘

cE o & f-é-;-———--—‘ ~ Service Time

Respone Time

/

”;:j L T ’1
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Exhibit 1.1
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The objective of this study is to develop a queﬁe-dependent dispatching

Ay

procedure for determing the conditional expected delay time of each call in

queue given the state of the system and the position in queue so that the

probability of a high priority call has a delay is reduced and, at the same

time, the delay of a low priority call is not too long. This can be achieved

by reserving a few cars for high'priority calls’and restricting the length of

the low priority queue when system is not full.- We describe such a dispatch-

ing procedure in section 1.3.

1.3 Model definition

Suppose fhe total~effectivefnumberfof available petrol cars is N.-

//

=,

call-taker receives a hlgh priority (i.e., crltlcal) call and at least one of

the N total patrol cars is not busy, then the call-taker would inform the

caller that a patrol car will respond with an expected delay time equal to the

then the hlgh prlorlty call is elther lost or queue& 1n,the high priority

to the expected waiting time in the high priority queue and the expected

travel time. If the call-taker receives a low priority (i.e., non-critical)

ca;i)and b, the number of busy patrol cars, is less than some number R, then

the call-taker would inform the caller that a patrol car will respond with an’

.4‘

expected delay time equal to the expected travel time: If, on the other hand,

&

P v
queue and the expected travel time,

priority call is queued in the 1ow prlorlty queue and the caller is advised

of an expected delay' equal to the expected waiting time in the low priority

$)

If the

 queue. And if it 1s queued, the caller is advised of an expected delay equal

“ b>R and the low prlorjfy queue length is less than some number AA- then the low

" In the case of R<H<N and the low priority

43

Y

- exnected trave1 time. 1If, on the other hand there is no patrol car available,

e el e, e e S . o oe w b s e - R - —
h 7/ N : ; A i
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queue length is equal to M,’the call is queued at the end of low priority

queue and a patrol car will be sent to the first call in the low priority

*x

queue. Whenever a patrol car becomes available, it will first attempt to
serve the next high priority call if there is any; second, if b>R-and the
low priority queue 1ength is greater than , it will attempt to serve the

net low priority‘eall, if there is any; otherwise, it will remain availasble

until the next call arrives.

) §
Notationally, the above diSpatchﬁﬁg procedure can be defined as: D(N;R,M)

wvhere
. N #gﬁhé total effective number of patrol cars.
R ='cqg—off point for the number of busy patrol cars; if the number
of busy patrol cars is equal to or greater than R, then only high
priority calls are served.

M = cut~off point for the number of .calls in the low priority queue;
if the number of calls in the low priority queue is equal to M
when a low prlorlty call arrives or when the number of calls in
the low priority queue is greater than M when a patrol car becomes
avallable, Lhen the R cut-off does not apply and low prlorlty
calls will be served as long as there is no high priority calls

?awaitlng to be served and as long as there is at least one patrol

car'available.
[

It can be seen that the D(N;R,M) procedure is quite mindful of the neeqx
‘\\

to have encugh patrol cars available to respond to hlgh priority calls (i.e.
3

g

the R cut-off), while at the same time not allow the low priority calls to

be queued up for too long (i.e., the M cut-off),

T A S e NSRS 4
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In general, there are two models for the emergency calls. One is when ' : 1 ~ ‘ m4wu1
it is required immediate response be made to the high priority call and, hence, ?

the-call will be lost if all ¥ patrol cars are busy; the other is when the " e i |
high priority’call can be queued in the high priorigy;gueue and waits for its
turn to be}served.‘ The low priority calls can always be queued. The D(MN;R,M)
;rocedure can apply to both of the two models. When D(N;R,M) applies to the : .
fiéét ﬁodel (i.e., high priority calls are lost when all .the patrol cars are
busy) it iSrdenoEed as D(N;R,M;L,Q) which is discﬁssed in Section 2; the L

indicates that ' high priority calls are lost when the system is totally busy

and Q indicates that the low priority calls can be queued, When D(N;R,i)

fr

applies to the second model it is denoted as D(N;R,M;Q,Q) which is discussed
in Section 3; the two Q's indicate that both the high and low priority calls

’ » : : " : " ERE

l.4° Literature Review
There is, oﬁicour;e,‘an immense literature dealing with queueing. But, : ?' e : ; l I S o - . i ;,N‘, ;

‘ suprisingiy, very few articles have éonsidergd thé D(N;R,M) procédure,and all | | | |
of those a;ticles Which considered the D(N;R,M) procedure are special cases . \ L
of the moﬁél we propose here. Thoge artinles related‘to the D(N;R,M) procedure : o vﬁ SR ; , . ,qﬂk n, : | Q? iﬁ
are summarized in the Exhibit i}é and discussed below. In addition to those 'f N . o , e ) | 1 - \:: - Y

articles, we also looked into two apprnximate?solution methods, the fluid , i ST | - o RN

approximation and the diffusion approximation.and discuss the applicabilit;

" of these approximation methods to our proposed queuing system.

3, The D(N;N,»;L,Q) model is essentially equivalent to the M/M/N queue and | S R B e

is widely referenced in the literature. i TS 7 , B S L B S R e ' ®

N . ~ The cutoff priority queuing model was first introduced by Benn [1966] in i S SR '.j  .? g

TIRER his dissertation and summarized in Jaiswal's Priority Queue [1968]. For the H 3 ST DE R   '- :‘v Cel Ly

©

e X T



i
7

. Y
N » e i T *\r - i, ; ’
‘,\_:’ WX
i et '
\' VagiZBle Distribution of Expected DistfibutiOn of . | Distxribution Conditional . . \
. 3 Delay Time of Delay Time of ‘ Server - of Expected .
; Model Low Priority Calls | Low Priority' Calls Utilization System States Delay Times
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%1 D(N;R,»;L,Q) | Taylor & Templeton | Taylor & Templeton | Jaiswal [1968] Sonick &- Proposed To Do g
L, [1980] [1980] Jackson [1973] D
i 2 o . f
i N " " Z .
- : D(N;R,M;L,Q) - Proposed To Do Proposed To Do Proposed To Do | Proposed To Do :
& { ' Taylor & Templeton | Taylor & Templeton :E
: [{1976] -~ only for | [1976] =~ only for .
i R=N-1 R=H-1 o 1
é D(N;N,»;Q,Q) | Davis [1966] Cobham [1954] Davis [1966]} Proposed To Do 4Proposed To Do ‘
! ' Dressin & Reich
: [1957] -~ for
A N=1 only
D(N;R,»;Q,Q) | Taylor & Templeton | Taylor & Templeton | Jaiswal [1968]) Proposed To Do { Proposed To Do
{1980] [1980] g ~
% D(N;R,M;Q,Q) - Proposed Tg}Do Proposed To Do Proposed To Do | Proposed To Do H
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e literature. . e '
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D(N; R o L Q) model Jaxswal [1968] used the technlque of grouplng the states

'..4 "

wblch have the same number of busy’servers\to obtaln che ser?er utllizatiob

probability, the probablllty of low prlorltv calr bexng delayed and the prob—

@

qonlck and Jackson [1973]

£ ;‘)

used an iterative method to generate empirically the distribution of queue

queblllty of hlgh priority call lost at equllibrlum

B

e,length (up to some flnlte numoer) at equilibrium. laylor and Tenpleton [1980]

solved the dlstributlon of unconditional delay time of low priorlty calls
~analytically by the transform technique and,
time. |
For the D(N;R,M;L,Q) model, Taylor and Templetion [1976] worked on a
 special‘case in which R=N-1. For this special case, they used the transform
mtechnique to obtain the server utilization probability, the expected queue
iength of low priority'call and, then, using Little's formula, to. compute the
w“unoenditional expecteduuelay time of low priority call,
- for the generaly@odel.
-‘ For the D(N;N,»;Q,Q) model, éobham {1954] used busy period analysis on
he high priority call to obtain the unconditional expected delay time for

} the low priority call. Dressin and Reich [1957] obtalned some results for
rsiugle server queuing system which allows customers of more than two 1evels
Kiof priority; they formedvthe balaneeLequations and analyticali solved

.the probability distribution of the number of customers of priority poor
;higher in queue at‘equilibrium. And, also,uthey obtainedqthe,conditional

density function for the delay of a customer of priority p given that a

~\priority p customer arrives and finds the sérver is busy and has n pustomers

Then, they weighted the condi-

(e

of priority p or higher waiting in the‘queue;

tional delay time den51ty functlon by the correspondlno stegdy state probw‘

#

abllltles to get the unconditlonal delay tgme density functloanf prlorlt
) o B . . .

then, computed the expected de;ay

No work has been done

i

i i i s i g o A
s . -

. delays.

input and output flow, one constraint has to be satisfied,

ey T o e e T T T T

customer (in the transform space). Davis [1966] extended Dressin and Reich's

work to a multi-server quéuing system. By doiné the same analysis as Dressin
and Reich, he derived thé?probabilié& that all the N servers are busy and
there are k calls of priority p or higher in queue when a call of priorit& D
arrives. Further, he used the same conditional delay time density function
as in Dressin and Reich's:to get the unconditional delay time density function
of priority p call,
A

For the D(N;R,w;Q,Qé model, Jaiswal [1966] used the discrete transform .

technique to obtain the server utilization probability and to compute the -

probabilities of high priority and low priority calls being delayed, respec-

i -

tively. Taylor and Templeton [1980] used a different method, matrix iteration,
to obtain the server utilization probability and the distribution of uncondi-
tional delay time of low priority calls.

fFor the D(N;R,M;Q,Q) uodel, no literature exists at present.’

Two potentially pe;tineut solution methods are briefly discussed next.

Newell [1965] propésed an app%oximation method,:the fluad approximation,
to solve some practlcal queulno problems which have large queues and long N
The f£luid approximation assumes that the cumulative number of arrivals,
a(t), can be approximated by a non-random continuum as if it were a fluid
flowing into a reservoir and the cumulative number of departure, §(t), can be
approximated by a non-random continuwn as ifu;t were a fluid flowingoout of
a reservoir. That is, it disregards the stochastic effects and uses the mean
values as thenestimates. Also, in order to maintain the independence of the
i.e., the queue
length shou.id not drop to zero during the time period of analysis. N(t), the

blacklog in the system expressed in‘terms of the number of customers

xR
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at time t, is equal to a(t) - S6(t). So, N(t) is also a continuous process.

The fluid approximation is not suitable to analyse the proposed problem. for

Ya

three reasomns. First, the queue of the proposed problem is formed not only

because of the high arrival rate but also because of the fluctuation of random-

ness. Second, the utilization factor of the proposed problem is never greater

than 1., Hence, if the fluid approximation method were applied, it will give

Zero dqeue-length during the times at which the non~zero queue constraint is

violated. Third, due to the continuum of N(t), the fluid approximation is not

able to find the conditional expected delay time of a call given its position

in queue and this is the biggest drawback of using the fluid approximation to

o

~approach our proposed problem.

Gaver [1968] and Newell [1968] used a better approximation method, the

diffusion approximation, to solve problems in some heavily loaded system In

the diffusion approximation, it is assumed that the arrival process and~the

a

departure process are both apéroximated by econtinuous random process which at
time -t are normally dlstrlbuted with mean a(t) and d(t) and variance G ()

2 5 , ] ‘ ; .
and 06( 32 respectively. The variance terms are introduced in order to repre-

sent the random fluctuation of these processes about their mean. N(t),

backlog in the system expressed in terms of the number of customers at time

t, is equal to a(t) - 6(t) and it is a continuous process. The diffusion

approximation is also not suitable to analyse the proposed problem for two 2

First,

reasons. the diffusion approximation gives a reasonable good estimate

only when the systen_utilization is greateffthan .9 [Gaver, 1968]. For our

proposed problem, a significant number of low priority calls‘may be waiting
\\ o

in queue for servicé&’but this is due to- the D(N;R,M) queue dlsc1p11ne and is

Second, because of the contlnuum of N(t), the

e

not due to the heavy load.

10
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diffusion approximation is not able to find the conditional -expected delay

time given its position in queue.

1.5 Scope of Work .

The Primary objective of this dissertation is to develop a numerical
solution algorithm of the contional expected delay times for low priority
calls for each of the D(N R,M;L,Q) and the D(N;R,M; 3Q,Q) models and to validate
our numerlcal algorithms for the special cases by analytical means. A GPSS
’(General Purpose Simulation System) simulation is also undertaken ‘so that we
can check our numerical algorithms more generally.

The eight explicityly defined activities that-constitute this thesis re~
search are outllned below —- they are stated in proposal terms at this time.
Then, in Sections 2 and 3, we prov1de the key results of the research. In
Seetion 2, we develop the D(N;R,M;L;Q) model and 3 cases ‘were considered: 1)
R=N and M=w, 2) R<N and M=x, and 3) R<N and M is finite.“ For each of these

three ca i
ses, we develop two algorithms, - the steady state probability dlstrlbu

tion al
- gorithm and the conditional expected delay time for non-emergency calls

algorithm, using the Markovian assumptions,

coded in EORTRAN.

checked wr\h the analytical results.

The unconditional expec{ed delay
time are also computed. \

Case 1 is trival because it ig equlvalent to the

M/M/N i - -
M/ queulng system. Case 2 only has one cut-off polnt (i.e., R), the cut
3y 2

off on the n
umber of busy servers, and there is no restriction on ‘the length

of low w - n
ow priority queue. In other ords, it is a striet cut-off dispatchi g
, C

ro i :
procedure. - The conditional expeeted‘delay time of Case 2 can be used. as. an

upper 1 ‘ ' ’
pper bound to that of Case 3, the general mode]. The unconditional expected

delay times are checked with the analtyical results.,

In Case 3, there are

two cut- f '
cu of f points (i.e., R and M). The two algorithms in Case 3 have been

For R=N-l, the unconditlonal expected delay times are

Several Properties are also observed _and

explained. S , b L
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Ia Section 3, the D(N;R,M;Q,Q) model is developed. As in Section 25$we
consider the same three cases. We alsotdeﬁelop»two algorithms for each”case
and, then, the unconditionaloexpected delay time is computed. Two theorems
and several lemmas are proved for Case 3, the most general model. In Case

2, the unconditional expected delay time agrees with the analtyical’result

of Taylor and Templeton's analytical solution. In Case 3, we check the limit-
ing values (i.e., when M=) of the unconaitional expected delay times; they
also agree with the analytical solutlon. Finally, we make comparisons between

the two models, D(N3;R,M;L,Q) and D(N R,M;Q,Q), and the results seem reason-

able.
3
In Sections 2 and 3, the reader is cautioned about the fact that we use

the conventional queuing terms; that is, we use waiting time instead of delay

time, customer instead of CFS, server instead of patrol car, etc. The thesis
itself employs application-oriented rather than queuing-oriented terms.

Activities 1 and 2:  Develop the D(N;R,M;L,Q) and the D(N;R,M:Q,Q) Models and
the Corresponding Numerical Solution Algorithms

As we can'see from ﬁxhibit 1.2, almost all of the articlee oa the D(N;R,M)
procedure are special cases of our proposed models, the D(N;R,M;L,Q) and the
D(N;R,M;Q,Q) models. And almost all of those articles emphasize systemiﬁide
measures such as the distribution of server utilizatioa; the unconditional
expected delay tlmé of eaeh type of ealls. These are useful intplanning the
system but of little use in operatiné the systemn. Except'for Dressin and
Reich's paper [1957],’no other paper dealt with the conditional expected delay
time of each waiting call in queue given the current state of the system and
the position in queue. The conditional expected delay time is very important
because under the D(N;R,M) dispatching procedure'a‘signifieant number of calls
will have a delay, especially the low priority calls‘which‘ate the majority :a

of the calls for service. So, -it would be important to tell the caller how

12

long he/she is expected to wait until a patrol car arrives. And also, for
those callers who called earlier and are etill waiting for the patrol car to
show up, we can give them the updated‘expected response times if and ﬁhen they }
call again.

So, we would like to develop a solution algorithm for each of the
D(N;R,M;L,Q) and the D(N;R,M;Q,Q) models which will give us the conditional
expected delay time of each call in queue given the system'state and the posi-
tion in queue. Initially, due to the complexity of tﬁe model, we need two
Markovian assumptions to simplify the develanment of the algorithms. Theytwo
Markovian assumptions we made are i) the arrival of the high and the low

“t

priority calls are independent homogeneous Poisson processes with rates A

and Az; respectively, ii) the service time (for either types of call) is
exponentially”distributed with a constant expected service time of 1/u. In
additlon to the two Markovian assumptions, we also made another assumption,.
tﬁat is, iii) each call receivee the services of only one car. Define pl, p2
and pkas follows: pl=Al/u, p2=lz/u and p=p1+p2.

Since the arrival rates: A and A and the service rate U are constant in
time the condltlonal expected delay times are time-invariant under the assump-
tions made. That is, the values generated by the algorithm are valid for all
times duting system operation (both the transient and the steady state periods).

| The unconditional expected delay time can be’computed by summing the |
product of the conditional expected'delay times and the corresponding steady
state probabilities of each state. The reason we wantrto compute the uncon-
ditional expected delay time is that it will help us to validate our algorithm

by analytical means. . Hes nce we neeqfto develop another solutlon algorithm

which will generate the steady state probabllltles numerically.

13
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Activity 3: Validate Special Cases by Analytical Means

For the D(N;R,*;L,Q) model, i.e., the D(N;R,M;L,Q3 model with M=, Taylor
and Templetdn.[l980] had the aﬁaiYﬁical solution of the unéquitional expected%'
delay time for the low priority call. For the D(N;N—l;M;L,Qj model, i.e.,
the D(N;R,M;L,Q) model with RFNei, Taylor and Templeton [1976] also had the
analytical solution of the unconditional expected delay time for the iow u
priority call. We would iiike to check our numerical algorithm for the same
special conditions. | |

lFor the D(N;R,»;Q,Q,) model, i.e., tHe‘D(N;R,M;Q,Q)‘quel with M=w, Taylor
and Templeton t1980] 6btained the analyticél exﬁ;ession\of the unconditional
expected‘delay time for the low priority call. Our value for thg case of M=x
should check with theiré. For the D(N;R,M;Q,Q) model with M equal to a finite
number, there is no literature available to date. We would attempt to solve
th; special case of R=N-1 analytically. Hopefully, wg would be successful
so that we can use it to check our numerical algorithm. Noté that the
D(M¥;R,»;Q,Q) model is the limiting model of.D(N;R,M;Q,Q)-model when M-,
Since the analytical solution is availablg for the D(N;R,»;Q,Q) model, we can
check our numerical algorithm for the D(N;R,M;Q,Q) model whenﬂM'is large.

Activity 4:  Validate More Generally by Simulation

As we can see in activity 3, we only cén validate the special case of our
algorithms through the analytical means. In order to validate them more
generally, a GPSS simulation is proposed. In this simulation, we will chéose'
the CFS as the transaction and the patrol car as the server.

We want to measure the conditional expected delay time'under the rules
of D(N;R,M) dispatching procedure and the three assumptions we made earlier.
To measure the conditional expected delay tﬁmE‘we‘have to take down fdllowing
information at the instant transaction arrives: 1) ty?e of the transaction,

2) the number of busy servers, 3) the number of traﬁ%actions in the high

14
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priority queue and 4) the number of transactions in the low priority queue.
We can foresee that, for reasonable values of R and M and moderate input and
output rates, ; significant number of transactions will have zero delay and
the probability of a large number of transactions in the(system at the same
time Qillwbe very small if we start it out with an empty systém. This means
that we need to run the simulation program for a long period of time to get
enough data to validate our algorithm. Fortunately, there is an easy way to
get around this. Since the conditidgal expeéted delay time is time-invariant,
we can start it out with an extremely busy system. Thus, it will not take

too long to get enough information to validate our conditional expected delay

times algorithm.

Activity 5: Determining the Impact of Relaxing Model Assumptions by Numerical

. and Simulation Methods

‘Referriné to the activities 1 and 2, we remind ourselves that the numerical
algorithms are developed under the three»assumptions made theve. They are 1)
the arrival processes are independent homogeneous Poisson processes, 2) the
;ervice time (sum of the travel time and the on-scenée time) is exponentially
distributed with a constant rate and 3) each call receives service by only
one car, We would like to relax these assumptioné to make the model more
realistic and applicable. Taylor [1976] and éthers have addressed the first
two assumptions. 'The independence of the two arrival processes seems to be
valid since there is no relation between the emergency and non-emergency calls.
Further, the emergency calls can be described by a Poisson process and if we
narrow the period of analysié, foi\example 4 periods per day, the rate can
be considered as 'a constant. BeCaﬁse_of the lack of data on the non-emergency
calls, hé‘did not test the arrival pattern of non-emergency calls. But there

is good reason to assume that it is also a homogeneous Poisson process. Because
i

i
-
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a large proportion of the non-emergency calls are not scheduled and since they
arrive independently from different sources their combined érrival pattern
tends to be a Poisson proceés. The reason for the homogen%;ty of non—emergencf‘
calls is the same as in the case of the emergency calls. The stumption of
exponential service time is not appropriate here. The best-fi¢ distribution

is the Erlang distribution of order k, k>1.

Green [1978, 1980, 1981] has addressed the third assumption. She con-
gsidered a class of queues which is characterized by customers who require
simultaneous service from a random number of servers. One of her moéels is
that a customer cannot begin service until all required servers are available
and once the serﬁice begins each individuailserver will have independent
service completion time, that is, the servers do not necessarily end service ”
together. We would like to adopt this assumption together with the Erlang-k
(with k=2,3 and’w) sé;vice completion time assumption to develop numerical
solution algorithms for the steadyustate probability and the conditional
expected delay time. Also, under fhe new assumptioﬁs, we would like to write

a GPSS simulation program to check our numerical solution algorithms.

Activity 6: Perform Sensitivity Analysis Using Numerical Approach

Up to now, we are assuming the arrival rates are constant during a time
period. But it is not so in the real world. It will have some (maybe small)
fluctuations in time. We would like to perform the semsitivity analysis on

the arrival rates using a numerical approach. In order to do this we have to
. O

specify two measures about the service level. The first measure we choose is
the probability that a high priority call has a zero delay at equilibrium.

. th . . .
The second measure is the conditional delay time of the M~ low priority call

in queue when all the servers are busy, i.e., the System is full. The reason

16
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for choosing the fifét measure is obvious. And, the reason to choose the
second measure is that it is an upper bound for the maximum expected delay
that a low priority call‘can experience under the D(N;R,M) dispatching ﬁro~
cedure when there is a car available. We would like to examine the sensi-
tivity of these two measures with respect to changes in the total arrival
Both of these measures will be obtained from tﬁéy

rates for fixed N, R and M.

solution algorithms in Activity 5.

Activity 7: Develop Approximate Numerical Algorithms and Validate by
Analvtical and Simulation Methods

The numerical solution algo?ithm we propose to develop in Activity 5 is
based on an analytical formulation. .That is, it will produce the exact values

of the conditional expected delay times for each low priority call in queue.
§
What we really want in practice is an algorithm which will produce an approx-

imate and acceptable answer very fast. The "acceptable answer' should be

within the range specified by a lower bound and an upper bound for a given

e

number of busy servers. We would liké to investigate the bound analytically

N

and by simulation. For fixed N, R and M, we plot the bounds of the expected

delay times against the number of busy servers. If the bounds are tigﬁt, we
can simply take the average as an approximaté value for all the M calls. If
the bounds are not tight, we will try to interpolate these M wvalues by a

curve between the bounds.

Activity 8: Refine Numeéerical Algorithms for use in Both Manual and Automated

Environment

o

Because we hope to see that these algorithms are implemented by the police

departments or other emergency service systems, we will refine the algorithms

so that it can be used in both a manual and an automated environment. For

[
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those systems which have computer (perhaps, microcomputer) facilities they
0 :

can implement our computer-based algorithms directly on their facility. Then,

by entering the model parameters N, R, M, the current rates Al’ Xz, U and the
currghf%ﬁﬁixé of the system, it will determine the expected d?lay times for

each of the non-emergency call in queue. For those systems which are not in
an automated environment, we would like to produce some easy-to-read plots of

the conditional expected delay times o that when a CFS arrives the call-taker

can give the caller an estimated response time.
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2. D(N:R,M;L,Q) Model

In the D(N;R,M;L,Q) dispatching procedure, thére is only'oneyqueue, the

%4

low priority queue. The high priority customer will leave the system without

having service when all the servers are busy at the time when he/she arrives.
The state of the system can be represented as (n}q), where n is the number of
busy servers and q is the hﬁmber of low priority customeré waiting in the
queue. In this section we assume that both of the high priority customer and
the low priority customer have Poisson arrival® time with the arrival éates

Al and AZ respectively and the servers have exponential service time with the

same expected service time 1/u for both 'types of customers, p1=

A/, Py=A,/u and P=p,+0, .

There are three cases we should consider. The first two are the special

cases of the third one.
(1) R=N and M=

(2) R<N and M=w
\. S '
(3). R<N and M is\finite
- v
We willigpudy for each case the steady state probability distribution
- )

K . \\-¥§ \‘\ . . 0} 3 . ]
and the conditlonaliexpecﬁgd walting times of low priority customers at a given
Ny T )

state. S

N N \ :\ k //
- LR = , b
Let P(n,q) denote the steady\§§ate probability at state (n,q), EWﬁ(n,q;k)

\ N
denote the conditional expected%yaiting time of the kth high priority customer

at state (n,q) in D(N;R,M;L,Q)\m%del and Ewé(n,q;k) denote the conditional

|

expected waiting time of the kt\Jﬂow priority customer at state (n,q), k<q,

4
in D(N;R,M;L,Q) model. The unconditional expected waiting time is

|

denoted by EW§~and EWZ for highp

M riority customer and/ low priority customer

respectively.

i
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2.1 D(N;N’m;L,Q) MOdel - P(n’o) - %l_ P(0,0), n=l’2’,,.N ¥) (2.1)
For this dispatching procedure, no server is reserved for high priority . . }
. ; oo ; " P
customer. Whep the system is not full, we send a server Eo the just arrived P(N,q) = (ﬁg) P(N,0) e
customer no matter what the priority the customer is.  When the system is i . ) o
: | ¢ ot ; : ‘ P N T
full, the high priority arrivals are lost and the low pr10r1ty\arr1val§ are ; (Nz) o P(O 0, =12, « - (2.2)
queued in the low priority queue and wait for the service. When a server i
Eompletes a service and returns to free, it will check the low priority queue. ® Summing all the probabilities to 1, we have
If the queue is not empty then the first waiting low priority customer will el = " -1
| : . in free. P(0,0) = e+ 8 o (2.3)
v start the service. If the queue is empty, the server will remain free. , L ] N—Dz o :

Exhibit 2.1is the transition diagram for D(N;N,~;L,Q) model.

Substitute (2.3) to (2.1) and (2. 2), we will have all the steady state prob-

ability. Note that the steady state can be reached only when Py<N.

u1IﬂM'AL The Conditional Expected Waltinginmes for High Priority Customer
I
<::::> Since the high priority is not allowed to be queued in D(N;N,~;L,Q) model,
, the conditional exXpected waiﬁing time of high priority customer will be 0 at
s e
7 o any state.
v'iLA‘”“ a The Conditional Expected Waiting Times for Low Priority Customer

_/L=_~. ...s ._’-; L.
o v ;'V,“ B ;J’A ‘Vﬂ

Exhibit 2.1 Transition diagram for D(N;N,»;L,Q) model

o

Steady State Probability Distribution

. N
From the transition diagram in‘Exhib$t2.l, we ca%fiecognize that it is

Let Wi% be the time that the kth low priority customer spent in the queue, k=1,2,...
By the strategy of this dispatchingaprogedure, only when the system is full .
the low priority cuztomer starts to queue up and at this time théFhigh priority

2 hy < N
customer is not allowed to enter the system. Hence, thgﬂ&ﬁh low priority

customer will start the éalvice until a server completes the service k times.

Wﬁ is the Erlang distribu ion with parameters Nu and k.

M/M/N queue with input rate Al+12 and service rate | per server before the va The density function
b system is full. When the system is full, it changes to M/M/1 queue with input. - 1s
rate A, and service raté Nu. -Hence, -it is very easy to write down the steady o : k s
2 o . : ST kel -Mpe |
’ 4 - ) fwgl(t) b (k"l)! t e P .- ,,2,;., (2,4)
state probability P(n,q). k ‘ ” -
" . | - 21
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- The expecfed'waiting time of the ktg,low priority customer at state (N,q) is:

-

= ‘ T

ko ekl ST (2.5)

L
EW_(N,q;k) O

R
N

7
¥

W
Ji
//

The unconditional expected waiting time for low priority customer is

EW = Z By, K W (0, kel sket1) (2.6)
k=0 |

The reason for equation (2.6) is, when a low priority customer arrives and finds.the
systanatstate(N;k)thenhe/shewill‘enterthelowpriorityqueue at. the (k+l)St

position. So, the expected waiting time for him/her is EWi(N,k+l;k+l);

-

2.2 D(N;R,>;L,Q) Model with R<N

For this dispatching procedure, N—R servers are reserved for high priority
customer. That is, when the number of busy servers, b, is less than R the
arriving customer will be served immediately no matter what his/her
priority is. But when bzR,.enly h%gh priorit&.arrivals are allowed to be served
immediately and low priority arrfpeis have to join the low priority queue.

When b=N, i.e., the system is full, the high pn@ofiey arrivals will be lost.
A low priority in the queue can be eerved oniy when‘b drops below R and the

queue discipline is FIFO. Exhibit 2.2 is the transition diagram for

. D(N3;R,®:L,Q) model.

Steady State PrObabilitX,DiStributidﬁ:’

In Jaiswal's prfﬁr%ty queues [1968], it has a formula  to computé P{0,0)
: : At ;

for this model. o
a0 { . : -1 el o1
i R~1 :m n n
P00 - | I &- (R-i?! N ijf ! E% % 3 (2.7
n=0 i . 'pz pz n_R+l = n > .
—
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Exhibit 2.2 Transition diagram for D(N;R,w;iﬂQ) model
We will use'(217) to compute'the\steady‘étatevprobabilities. We summarize
the steps below ‘ ° N i
\\\ [ e
STEP l)g Compute P(n 0), n—l 2 ,Bﬁ
STEP 2) Define.a recursive sequence to compute P(n,0), a=R+1,...N. =
STEP 3) For each q_l do 5
STEP 3.1) Compute E(R, q) ’;*
,pg' STE% 3.2) Define two ggpursive sequences to compute P(npq),- = ko

‘n=R+1$_,_N, : R

23

*In this proposal,,we will forego presentlng the detalled derlvatlon of our.

results.

&
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- §TEP 1) Compute P(n,0), n=l,2,...R.

Before the number of busy servers reaches R, it is M/M/R queue.

=
D
> s 4o
BRI = o -

-
P(n,0) = £ P(0,0) , n=1,2;...R

P2

Yo

Hence,

(2.8)

STEP 2) Define a recﬁrsive seauence to compute P(n,0), n=R+1,...N.

Fommthebéiance:aqﬁation at state (H,O),(N—l,O),...(R+l,O)‘successively,

_ we obtain a recursive gequence An’ n=N,N-1,...R,

=

A = [‘“+??@?4h+¢f§9+33 Al

Vs R

‘with Ay=l and A o = (Hp,d/o,.

Then the §tea&y statéWprgbéﬁiﬁiﬁy:éffétaﬁev(n,O),~n=R+l,...,N is

Rt

?(g,dju=f(Ah/AR} P(R,éf;fa'

STEP 3) For q>l.do
Step 3.1?1 Cqmpute’P(R;ql>
P(R,q) = (0,/R) ]

~n=R

tod

4

[

1eul

o

[P(n,q=1)]

Step 3.2) gDefinE‘tdereeurgive sequence to compute P(n,q),

Q

(2.9)

(2.10)

L (2.11)
u'

|
!

];1=R+l 5 . «N.

L

£

Form the balance equation at state (N,q),(N-1,q),...(R+1,q) sucd%ssively.

We obtain two recursive sequence An, Bn’ n=N,N-1,...R,

A

o= L) A - (ni2)

B
n

7

A

24

n+21P1

[(mH4D) By - ()3, 5P (m41,9-1)1/p;

kil

SR S4' s

with

Ay =1 - I
Ayop = (B4p,)/p,

BN =0 . J“ | B

o)
]

N-1
Then

P(@,0) = (4 /A)[P(R,q) - Bpl + B, n=R+l,...,N (2.13)

' We can increase q by 1 and repeat STEP 3.

We do a simple example to illustrate this procedure.

Example 2.1: Find the steady state probability distribution in D(5;3,=;L,Q)

model with Rl=l, A2=l, p=1l.
. We have N=5, R=3, p1=pz=l, p=2
Plug ;hese values iny(2.7),kwe have
| ‘P(d,O) é‘.12409
At STEP 1, by (2.8), we have °

P(1,0) =" .24818

P(2,0) .24818

16545

§  P(3,0)

At STEP 2, by (2.9), we have |
A5 =1, A4 5‘6, A3 =31

Then, by (2.10), we have
P(4,0) = .03202
P(5,0) = .00534

Eqr'q=1, by (2.11) at STEP 3.1), we have

P(3,1) = .0676

25
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At STEP .3.2), by (2.12), we have

Ag =1 , By =0 |

‘ “
A, =6 , B, = -.90534
Ay =31 By = -.06406

"By (2.13), we have

P(4,1) .02014

P(5,1) .00424

We can keep incréasiﬁg the q until we find‘énough state we want.

In writing computer program = one may choose an € so that the totél l
probability found so fat is greater than 1-€ to stop the iteration on q.

Note that- the sequence A in the algorithm will not change at each itera-
tion and the steady state can be reached on;y“when p2<R,<{;

The Conditional Expected Waiting Times for High Priority Customer

The conditional expected waiting time for high priority customer is 0
at any state because no high priority is allowed to be gqueued in this dispatch~
ing procedure.

The Conditional Expected Waiting Times for Low Priority Customer

st

) , .
In this model the conditional waiting time distribution for low priority

customer is not krown. However, we found a very easy way to compute the expected
h

value. Let EW@(n,q;k) denote the conditionél éxpected waiting time of the kt
low priority cﬁstomer at state.(n,q)vin D(N;R;m;L,Q) model; where kfg. Here
we have drépped the superscript % w;thoﬁt confusion. The expected waiting

. time for a low pribrity oﬁly &epends on the position in the queue and does
not depend on how many low priority in the queue. Notationally; this property

can be written down in the following equation

EW_(n,q3k) = EW_(n,k;k), q>k>1 (2.14)

26
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This properﬁxlis true only when M=», i.e., no restriction on the low priority

5

38

queue. When M'is finite, equation (2.14) will not hold aﬁy~more. Because at
the time the queue length reaches M, the system will have one more server to
work and thé service rate of the system will be bigger than it was. We will
discuss this more in Section 2:3.

We now derive a recursive formula to compute EW&(n,q;k). The

system will stay in the current state until one of the following three events

occurs:

o)
2

(A) A server completes service and returns to free.
(B) A high priority customer arrives.
(C) A 1low priority customer arrives.

As soon as'one of the three events occurs the system will change the

state. Now, let's compute EW_(n,q;k) for k=1. At state (N,1),

1Y o ok Nu . Y R
EW,(N,131) = {ing + fpeg e (®-1,151) + EW_(N,2;1) (2.15)

Nu+A2

The first term on the righthand side (RHS) of (2.15) is the expected duraticn
time at state (N,1). The 2nd term on the RHS of (2.15) is the product of-the
probabiiity of event (A) ocCufs and the expected waiting time of the lst lo&
priority customer when even (A) occurs. The third term on the RHS of,(ﬁ.lS)

~is the'product of‘the probability‘that event (C) occurs and the expected wéit-
ing time of the lét low priority customer when even (9) occurs. Note that

e#ent (B) cannot occur at state (N,1). Apply (2.14) and multiply both sides by

Nu+A2, we have k o
, v 1
EW_(N,1;1) = EW_(N~-1,1;1) +<§E : o : , (2.16)

Continue to do this at state (N—l,l),(N—Z;l),...and (R,1) successively, we will

have
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i
%é EW_(R,1;1) = Dy
i
ﬁ EW_(n,1;1) = EW_(n-1,1;1) + D, m=R+l,...;N

where Dn is defined recursively in the following way

I
= l-Man+l

3 - s =N-1,N-2,...,R

=
=l

with D

By the same analysis, we can extend this to k>1.

EW@(R,k;k)

kDp

EWm(n,k;k) EW_(n-1,k;k) + Dn" n=R+l,...,N

where the Dn's arg defined recursively as in (2.18).

R S e R I R e

“(2.,17)

(2.18)

(2.19)

Note that equation (2.19) together with (2.14) has defined all the

expectéd waiting6times of low priority customer at all the feasible
»ido thg gxamPle;Zf;vgo illustrate how this recursive relakion works.
2.1, we have N=5, R43, A;=1, A,=1 and p=l.
Byk(2;18), we have
D, =.2 | o
D, = .3 | |
Dy = .433
By (2.19), we have, for ki;y

433 k

EW_(3,k;k)

EW_(4,k3;k) = .433k + .3

EW_(5,k;k) = .433k + .3 + .2 = .433k + .5 Q,E.D,

[

N
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Taylor %nd Templeton [1980] found the unconditional expected waiting time of

low prigcrity customer for this model.  We would like to compare our result to

Y

theirs.! In order to make the comparison, we have to unconditionalize our

conditipnal expected waiting times. To do this we have to weigh our conditional

|

expected waiting times by the corresponding steady state probabilities and sum

them ali‘up. The unconditionaliz{hg formula is

o N
EW, = )} 1 P(i,3) EW_(i,j+l;3+L)
i j=0 i=R
ffi

(2.20)

The reaﬁpn for (2.20) is when a low priority arrives and finds the system at
I

state‘(igj) then he/shewilijointhelow priority queue (if necessary) in the
(j+1)St‘Position; And, the expected waiting time fpr him/her will be
Ewg(i,jii;j+l).

A program has been written which generates P(i’j)l\waﬁ}’j;j) and computes
EW_ in QZ.ZO), with j up to 49. Exhibit2.3isa list<;;iigfcomparisons of the
expectegtwaiting tige for low priority customer between the theoretical value
and the %esult obtained from the program.

il

As |we can see from Exhibit 2.3, our result checks with the theoretical

value. ;As expected, our result is not greater than the theoretical value
because in the program it only includes part of equation (2.20). The condi-
tional expected waiting time of D(N,R,»;L,Q) can be used as upper bound for

D(N;R,M;L,Q) model. We will discuss this in Section 2.3.

'2.3 D(N;R,M;L,Q) Model with R<N and M<w

For this dispatching procedure, we reserve N-R servers for high priority
customer and, at the same time, we do mot allow,thé low priority queue to

exceed M when there is a server free. The state space, 'S, is

29
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Expected Waiting Time
N T Y | Theoretical Value | Our Result
3 1 1 1 3418 .3418
4 1 2 1 .3649 .3649
4 2 1 1 .2246 2246 ¢
10 8 1 1 1 .0002 .0002
o 10 8 2 4 1 .1679 1678
10 8 4 2 1 .1263 .1263
15 | 12 1 1 1 0 0
15 | 12 2 8 1 2272 .2271
15 | 12 8 2 1 142 1142
15 | 12| .05 | .25 | .034 2.3067 2.3067

Exhibit 2.3 Comparison of the unconditional expected
waiting times in D(N;R,»;L,Q) model

(n,q): gq=0 when n=0,1,...,R-1
S = 'q=0,1,...M when n=R,...,N-1

q=0,1,... when n=N

When a high*ﬁriority customer arrives and finds the system at state (n,q),-he/
she will be served immediately if n<N, otherwise he/she will leave the system
without having the service. When a low priority customer arrives and finds

the system at state (n,q), then exactly one of the following four acti

%ns will
be taken: > |

1) 4if n<R, he/she will be served immediately.

2)  if R<n<N and q<M, he/she will join the~q;eue at the last position.
@5 3)  if R<n<N and q=M, he/she will jbin the queue at the last poéition ,
and the first waiting low priority customer in ﬁhe queue wiil start

the service immediately.

G ©
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4)  if n=N, he/she will join the queue at the last position.
When a server completes a service and the system changes state from (n,q) to
(n—l,q) then exactly one of the following four actions will be taken:

1) ' if n~I<R and q=0, it will remain free.
2) if n-1<R and q>0, the first waiting low priority customer will
start the service and the system will change the state from
(a-1,q) to (n,q-1) instantaneously.
o 3)  if n-1>R and q<M, it will remain free,
4) if n-1>R and q>M, the first waiting low prlorlty customer will
start the service and the system will change the state from (n-1,q)
Fo (n,q-1) instantaneously.
Exhibit 2.4 is'the transition diagram for D(N;R,M;L,Q) model.

ad JAcran
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Exhiblt 2 4 Transition dlagram for D(N;R,M;L,Q) model
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For this model, Taylor and Templeton [1976] worked on a special case,’
R=N-1. They got the distribution of the number of busy sé}vers and the uncon-
ditional expected waiting time for low priority customer. Here, we try to ‘
sol@@ the general smodel for th;‘steady state probability and the condition;l

expected waiting time of each waiting low priority customer at a given state.

Steady State Probability Distribution

We will first find all the P(m,q) in terms of P(0,0) and then sum them all

up to 1 to find P(0,0). We summarize the procedure of finding the P(n,q) in

¢

terms of P(0,0) below.

STEP 1) Find P(n,0), n=1,2,...,R, in terms of P(0,0). |

@

STEP 2) Define a recursive sequence to find P(n,O), n=R+1,...,N in terms
of P(0,0). i ’R
STEP 3)  For q=1,2,...,M-1, do - |
STEP 3.1) Find P(R,q) in terms of P(0,0).? /
STEP 3.2) Define two recursive sequences %o find P(n,q),'n=R+l,...,N @\
in terms of P(0,0)-. | “
STEP 4) For gq=M, do ) f o

STEP 4.1) Find P(R,M) in temms of P(0,0),
STEP 4.2) Define two different recursive;sequences to find P(n,M),
=R+1,...,N in terms of P(0,0).
STEP 5) Find P(N,q), q=M+1,M+2,... in terms ;f P(0,0).

STEP 6 Y P(n,q)=1 to find P(0,0).

S ma |

Now we illustrate briefly each step below.

STEP 1) Find P(n,0), n=1,...,R
o™ | Fa
P(a,0) = = P(0,0), =n=l,...,R (2.21)

32
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Define a recursive sequence to find P(a,0), n=R+1, .

STEP 2)

.+.,N. The balance

LY

-
"

equation at (N,0) i

i

(Nu+A2) P(N,ﬁ) = A\[P(¥-1,0)

Divide both sides by U, we have

« = Ay P(N,0) (2.22)

where we have defined AN=1, AN l=(N+pz)/pl.
Form the balance equation at state (N-l,O);(N-2,0),...(R+l,0) successively.

We will have a recursive sequence

A = -
0 [(n+l+p) An+l (n+2) An+2]/pl s n=N-2,N-3,...,R (2-.23)
- Then P(n,0) = (Ah/AR) P(R,0) , n=R+l,...,N (2.24)
fy
‘Since P(R,0) is already defined in terms of P(0,0)min (2.21), so is
P(n,0), n=R+l,...,N. .
STEP 3) For g=1,2,...M~-1, do
STEP 3.1) Find P(R,q)
}é e T. N p2 ' N x
. - P(R,q) =X [-) Pln,q~1)] N (2.25)
. S n=R Y ;
STE§%§.2) Dgfine two recursive seqﬁeﬁ¢e$ to find P(n,q), n=R+l,...,N.

Formgggiﬂﬁalance equation at state (N,q),(N-1,q),...,(R+l,q) successively,

- we will have two recursive sequences

7‘"‘&5;7“‘:_‘ . . . ‘ ) 5&
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A = [(n+1+t>)An_,_:L - (a+2)A_,1/04 ' . -
Fn = [(n+l+p)Bn+l - (n~+2)Bn+2 = ézP(n+l,q-l)]/pl,, n=N-2,N;3....,R» v
| with A=l , Ag . = (Np,) /0y §\ |
k By=0 , By = -p,P (N,q-1) /04 - . Q . (2.26)
Then we have "
P(n,q) = (An/ARlﬁP(R,q) - BR] +‘Bn , n=R+l,...,N (2.27)
STEP 4) q=M, do

STEP 4.1) Find P(R,M)

o X : I
PRM) = 2 [ ZR P(a,M-1)] | (2.28)
A, L

STEP 4.2) Define two recursive sequences to find P(n,M), n=Rtl,...,N.

0
<

we will have two recursive sequences

s : »

(@)
]

(=)
]

[(n+l+p)Dn+l "' (n+2)Dn+2 - sz (n+1 3M_l) ]/p s n+N_29 L] ’R .

with Cy=l1 , Cy ; = (Npy)/e

-p,P(N,M-1)/p (2.29)

Then we have .../

T e A A

B e e e

Form the blanace equation at state (N;M),(N-l,M),...,(R+l,M) sgccessively,

Lol

e R Bt e 4

AT T 3 E Cewns et g e e i o o g i St T SIS 5

P(n,M) = (C /CL)[P(R,M) = D] + D, n=Rtl,...,N. (2.30)
STEP 5) Find P(N,q), q=M+l,...
q-M G
Py
P(N,q) = |\~ PON,M) , q=MHI,... (2.31)

Ve

X «@
" P(u,q), q>M+l, is a geometrical sequence so we can find.the sum, Z” P(N,q),

q=M+1
without difficulty.
¢ STEP 6) Find P(0,0)
1=} P(n,q) = sP(0,0) ¢
n,q
& 3
Then
. RN IR
P(0,0) = 1/s" ) (2.32)

Exhibit 2.5 is the block diagram of the‘aboveiprocedure.

As we can see from the block diagram, the number of operations is of the
o;def of O(M(N-R+1)). So, it is vezy efficient. When R=N-1, the probabilities
produced by our’algorithm are exacti§ the same as Taylor and Templeton's.

DY
o &
< 0

The COnditional Expected Waiting Time for High P:iorityrggstomer

Since there is no high priority customér waiting in the queue, the condi-

tional expected waiting time for high priority customer is O at any state.

The Conditiqnal Expected Waiting Times for qu Priority Customer

Let EWH(n,q;k) dehote the expected waitingyt;me of the kth low pr@ority
customer at stat; (n,q) ‘for model D(N;R,M;L,Q), where k<q. Note that we have
dropped the suﬁerscfipt £ in the notation yithoutréﬁnfusion: In this section

we willéderive a recursive formula to compute EWM(n,q;k) for each k at all
3




{

174

\ ;’ -

Find P(n,0)

n=1,..7,R

4

3]

Find P(n,0)
n=R+l,...,N

1

=1

' YES:

rd

e

q=M/r<

¢ NO

v,

Find P(R,q)

{

Find P(n,q)
n=R+l,...,N

1

Q

q=q+i

N\

Exhibit 2.5

Loy el e pnss b o

s

Find P(R,M)

&

Find P (n am)

““;h=Rﬁ1,;..,N

’Find P (N s q.)
q=M+l,...

I

~ Find P(0,0)

in D(N;R,M;L,Q) model

fan
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Block diagram of finding the P(0;0)
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feasiblestates(n;ﬁlg Following that we will carry ouﬁ an example to show how
it works. For R=N-1, Taylor and Templeton [1975] got the unconditional ‘expected
waiting time for this model. W; wiil givé a formula to unconditionéiize our ‘
conditionai exéected wai%ing times and shaﬁ Qumerically thgt;they are identical.
Then, we give an upper bound and a lower bound fof EWH(ﬁ,qgk); Following that
we will diiéuss a property about EWM(n,q;k) for this model. Finally, we
examine ancfxample obtained from the police department.

Now, we start to.derive a'iecursiyg forﬁula to compute EWM(n,q;k),

‘QEkii' Because the restriction on the queue length, EWM(n,q;k) will depend on

q as well as on n and k. It is very easy to see this at state (N,M) and state

. (N,M+1) .. At state (N,M+1), the first waiting low priority customer in the

queue will start the service as soon as a server completes a service and returns

to free. But at state (N,M), when a server completes a service and returns to

free the system changes state to (N-1,M) and the first waiting low priority
cuséomerystill has to wait in the queue. Hence, equation (2.14) will not hold
in geﬁerai for this mndel: We have to find a state such that the expected
waiting timé at that state is known to start the recursive process for each k.
Fortun#ﬁely, it’is very easy to find such a‘iﬁate. For example, k=1,

£

_ A ’
EWM(N,M+1;1) = 1/Nu. é?pause at state (N,2+1), there are M+l low priority
customer waiting in the queue and all N servers are busy. The first low
priority customer‘will start the service as soon as a server completes the

service, . Since N servers are WQ:king with service rate I per server, the

expected waiting time for the first waiting low priority customer is 1/Nu. 1In

//general, EWM(N,M}k;k)=k/Np, k=1,2,.;. Now, we start ;o compute EWM(N;q;k) for

: k=1. FWe'H%ve i

R (N,q31) = 1/Ny o, L (2.33)

O

o
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At state (N,M), we have

iy sy b e i

e .
. N }\

Nu
+ Np+A2 EW (N 1,M31) + o——— Sy

1
Nu+A2

EWM(N,M;I) = EWM(N,M}i;I)

The reason for (2.34) is the same as fqr‘(Z.lS). Multiply both sides by

Nu+i2_and substitute (2.33) into (2.34) weﬁhavé

1+A,/Nu
. 2 Ny Q
EW,, (N,M;1) = Wrrio + Nu+l2 (N 1,M: 1)
= AN + BN EWM(N—l,Mgl)

(2.35)

where we have defined AN=(1+A2/Nu)/(Nu+A2)”andBN;Nu/(Nu+l2). By doing the
’ (7

same analysis at state (N-1,M),...,(R;M) successively, we will have two

recursive sequences An and Bn

9] l+}\ A
A = 1+l

n nu+(1- Bn+l)kl+l2

' (2.36)

B = nu+“(1—gz+1)kl+xz ,  n=N-1,...,R Q
‘Then we have _ ‘ ,0¢‘
W (R,M;1) = Ay |
B (n,M;1) = A_ + B_ EWM(n-l,M;l), n;Rﬁl,..;,N (2.37)

tF

Equations (2.33) and (2.37) have défined the conditional expécted waiting
times of the first low prlorlty customer at those states (n,q) w1th q>M

For q—Mﬁl follow the same analy51s we will have two recur51ve ~sequences,

o

A and B defln d=ag ‘ . -

e

<
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(2.38)"

o

Q

H ‘X}»i. T

N

l+llA +1+A2EW (n,M;1)

n nut(i-B

n+l)A1+A

B_ = A
n nu+(l—Bn*1

)k1+A2 s n=N-1,...,R

1+A EW (N,M; 1)
N + 2

R

with AN =

N

= ‘
N = Npti2 (2.38)

B

-ty

Then

AR

A + B EW (n-1,4-1;1),

EWM(R,M;l;Ib

EWM(n,M-l;l) a=R+1l,...,N (2.39)

B

In general, for q=M,M-1l,...,l, we can define An and Bn in the following Way

A = 1+A1A o EWM(n,q+l;l)

ap+(l- Bn+1)ll+k

B = oy ,
n nu+(%TBn+l)Al+A2

. n=N-1,...,R (2.40)

LA By (N, q+15 1)
Nu+Az -«

with | Ay =

. i
N Nu+A2

" Then the conditional expected waiting time of the first low priority customer is

EWM<R;CI;1) = A‘R

EWy(n,q31) = A+ B_ EW%CP-l,q;l) o, n=R¥l,..., | (254;)

39




Note that.equations(2.33) and (2.40) will completely define the expected wait-

ing times of the first low priority customer at every feasible state.
2.6 is the block diagfam of finding the EWM(n;q;l) for n=R,...,N and

q=M,M"'l, L ,‘lo

Exhibit

‘e

As we can see from the block diagram, the number of operations

to find the expected waiting timgs of the first low priority is of the order of

%ﬁ

O(M(N-R+1)). This algorithm can be extended to the k" 10w priority with k>1.

Now we givé an algorithm to compute

states.

STEP 1)

STEP 2)

STEP 3)

- STEP 4)

| St

STEP 5)

EWM(n,q;k) for k=1,2,...,K at all feasible

[Assign the expected waiting times to O for all infeasible states]

.

EWM(n,m;O) <0, n=R,...,N and m=0,1,...,M

EW, (n,M+15k) < 0, n=R,...,N-1 and k=1,...,K

[Compute the expected waiting times for the kth low priority customer]

k +1
[Assign the expected waiting time of thek low priority customer at

the starting state]

EWM(N,m;k) < k/Nu , m=M¥k,Mik+l, ... ,MHK

q +~ Mtk-1

[Compute EWM(N,q;k) for q>M]

1f q>M and q>k, then

1 . w Ay |

Nz T STV B y(Nsa-Lsk=1) + s Bl (N, g+15k)

M(N9q: k) «

q + q-1 and repeat this STEP.

40
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y/

EW, (N, M+151)=1/Np

q=M Y

— =
>

142, EWy, (N, q+1;1)

AN s Nu+k2 i
= D
BN Nu+io

L

n=N-1

l:

A._1+A1A +l EWﬁ(n,q+1;l) (puﬁh
o} nu+(1- Bn+1)Al+l2 N
B_= of

n nu+(l—Bn+l)A]+W2

‘n=n=-1

NO

n<R

YES

EW (R, q51)=4,

By (n,q51)=A_+B EW, (n-1,q;1),
n=R+1l,...,N

q=q-1

NO

q<l
|, ¥Es e N

‘EHIHL ' : ' / b
- . : \'

Exhlblt 2.6 Block diagram of f1nd1ng the expected waltlng time for
the 1lst low priority customer in D(N R,M;L,Q) model
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If q>M and q<k, GO TO STEP 7)

-

STEP 6) [Compute EWM(n,q;k) for q<M]

1A, B (N, q+13K)
Ay * NutA2

Nu
By * Turnz
STEP 6.1)

. 1+ A +l+}\2EWH(n+1 M;k-1)
An nu+(l Bn+1)Kl+X2

l+)‘lA +F EW (n,q+l;k)

B <«
n ap+(1- Bn-i-l) Al

and
n]J
P (B _ A,

STEP 6.2) Define A.R

LHRUEW,, (R, q-15k-1)+A A +A,

EWM(R+1,M;k—l)

&

Ya

Define A.n and Bn*for n=N-1,...,R+1

when gq=M

f

- when q<M

when. q=M

) bl
A V TR, AT,

.L+Rust(R,q-1-k—1>+A1AR+I+A2EwM(R,q+1;k)

e
A RIF (1B, ) A, FA

STEP 6.3)  EWy(R,q;k) + Ay

3

when q<M

STEP 7)

low priority customers in D(5;3,2;L,Q) model with A1=A2=u=l.

EWM(n,q;k) = An+BnEWM(n—l,q;k) » n=R+l,,..,N

q « q-1
i)

If q>k, repeat STEP 6) o.w. GO TO STEP 7).

k + k+1

If k<K, GO TO STEP 3) o.w. STOP.

The number of'operations to find the conditional expected waiting time of the Kth

low priority customer is of the order of O(RM(N-R+1)) for RK<M and is of the
order of O(MZ(N-R+1) for K>M. We do an example to show how this algorithm

works below.

Example 2.2. Find the conditional expected waiting times for the first three

transition diagram of‘D(5;3,2;L,Q) model.

}. |
—>~o<-~=@-‘-of-

Exhibit 2.7 Transition diagram fdr\D(S;S,Z;L,Q)
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Exhibit 2.7 is the




In this example we have N=5,

STEP 1)

STEP 2)

STEP 3)

STEP 4)
STEP 5)

STEP 6)

STEP 6)

STEP 7)

STEP 3)

STEP 4)

1
o

EWz(n,m;O) =

1}
o

EWz(n,S;k)

k=1

AR K po ST e
-
ARk
w o
T
|ps]

= 3,4,5 , m

s}
|

3

s = 3,4 , k '

EWZ(S,m;l) = .2 , m= 3,4,5

>
|
o
w
Y
[v:]
Foy

~
W

“
[38]

B
et
~
i

N
~
>~

L
38}

-
=
~

il

=2-1=12>k =1, hence repeat this step.

A, = ,385

EW2(3,1;1)

EW2(4,1;1) =,

EW2(5,1;1) =,
q=1-1=0<

k=14l = 2 <

because of q<M
= .833

= 774

= .,292
.458

= ,582

= ,833

= .774

.385

631
789

k

K= 3, hence GO TO STEP

EWZ(S,é;Z) = EW2(5,5;2) = .4

q = 24+2-1 = 3

]
[
IS
W

1 , hence GO TO STEP

44
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R=3, M=2, K=3, A =A,=y=L.

7)

3)

0

?NT\W {

g

STEP 5)

STEP 6)

STEP 7)
STEP 3)
STEP 4)

STEP 5)

STEP 5)

STEP 7)

We summarize the results in the following diagram.

State are the expected waiting times

state,

EW,(5,3;2) = .718

qQ=3-1=2=M, GO TO STEP 6) ;
A5 = .286 , B, = ,833 /
Ay = 362, B, = .774 L w/
Ay = .704 ' |
EW,(3,2;2) = .704

EW,(4,2;2) = .906

EW,(5,2;2) = 1.042

) q=2-1=1<%k=2 » GO TO STEP 7)

]
"

k=2+1 =3<K=3, GO TO STEP 3)
EW,(5,5;3) = .6
qQ=243-1 =4

EW2(5,4;3) = ,8651

qa=4~-1=3>M=2 s repeat this step

*

EW2(5,3;3) = 1.179

qQ=31=2<k

]

3, GO TO STEP 7)
k = 3+1

4 >K

(]

3 , STOP.

)

.385

.631

+2, .718, 1.179

.789
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We are not surprised to see that EW2(3,2;1)<EW2(4 231)<EW., (5,2;1), We canexplain
this in the following way.

At state (3,2) the 15% 10w priority customer will

U'.
start the service only when 1) a server completes the service or 2) another

low priority customer arrives. But at state (4,2), the lSt

low priority
customer will start the service only when 1) 2 servers complete the service

or 2) another low priority customer arrives.

Hence, the former is less than

the latter. This relation hplds in generall That is,

o
EWM(R,q;k) <'EWM(R+l,q;k) < e.. < EW,(N,q;k) (2.41)

for N>R and q>k>1.

We also obegrve that EWZ(n,2;1)<EW2(ﬁ,1;1), n=3,4,5. Wealso canexplain this
in the following way: At state (3,2) the 1$t low priority customer will start

/ :
the service only“when 1) a server comple&es the service or 2) a low priority

customer arrives. But at state (3,1), thetlSt

low priority customer will start

the service only when 1) a server completes the service or 2) two low priority

customer arrive. Hence, t

the former is less than the latter. This relation also
holds in general, that is

BWy,(n,M3k) < EWy(n,M-15k) < ... < EWj(n,k;k)

Qx\_\\(g.az)

for n=R,...,N and 1<k<M.

With R=N-1 Tafior and Templeton obtained the unconditional expected wait-

ing time forIow priority customer. We would 1like to check our result with
theirs when R=N-1.

In order to make the cOmparison, we have to unconditionallze
our conditiomal expected waiting time. To unconaitionalizeOthe conditional

exﬁected waiting times we have to weigh the conditional expected waiting times
by the corresponding steady state probabilities. Let EWM denote the uncondi-

tional expected waiting time of low prioxity in D(N;R,M;L,Q) model. Then
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&

M-1 N N-1 | ‘
My =1 1 P(n,q) W, (n,q+l;q+l) + | P(n, M) By (et M)
q=0 n=R n=R
+ Z P(N,q) EW,(N,q+1;q+1) H : (2.43)
q=M '

B
3
i
I

The reason for (2.43) is, when a low priority customer arﬁives and finds

that 1) the system is at state (n;q), n=R,...,N and q=0,...,M~1, then he/she

!
s . . )y ‘o .
has to wait in tﬁe queue at the (q+l) t position with the expected waiting time
(RS g

)
equals to EWM(n,q+l;q+l), 2) the system is at state (n,M), n=R,.\

.yN=1, then
B \\
he/she has to wait in the queue at the Mth position with the expétted waiting

time %g_als to EWM(n+l;M;M), 3) the system is at state ,q), qZM then he/she
has to wait in the queue at the \q+l) positlon with the expected waltlng
time equals to EWM(N,q+l;q+l). Ih

\\

algorithm has been programmed 1n\FORTRAN

i\
In theprogrmm,itcomputesP(n,g},EWH(u,q;k)and EW, Incomputing the EWM’
it includes the first two terms of (2.43) and part of the third“term (only up to

q=20).

k)

Exhibit 2.8 is a list of comparlsons of the expected waiting tlmes of low

priority customer in D(N;R,M;L,Q) model between the theoretlcal value and the

result from the program for R=N~1.

\

AsexpeCLed,ourresults are not greater than the

|
e L 3
theoretical values and all of them are vers close to the theoretical wvalues

As we mentioned earlier in \ L
Section 2.2, the expected waiting time of low priority customer dn D(N;R,; L,Q)

Now, we start to discuss the bounds. A

\ !
mgdel can be used as an upper bound in the D(N;R,M; L ,Q) model. That is, ‘

|
va(n q3 k)<EW (n,q k) for any finite M at any corresponding state (n,q) with |

ﬁ
q>k. Furthermore, EWy(n,q;k) is an increasing function of M. That is, 3

EWM(n,q;k) < EWM+l(n,q;k) < Ewm(n,q;k)

Sl

for any M>1 at any corresponding state (n,q)
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$‘ i too long to reach the upper bound. For example, at state (12,1) in D(15;12,M;L,Q)
¢ Expected Waiting Ti %
i xp - ng time %, model with ll=.05, Aé=.25, u=.034, we have
N M Al AZ, H Theoretical Value | Our Result b N
5 1 1 2 1 .135. .135
o _ . - ) M .1 2 3 4 5 6 7
-0 T N e 3 1 1 .1282 .1282 I8 ,
5 5 1 2 1 .3029 .3029 ! EWM(IZ,l;l) 1.59 { 2.25 { 2.53 | 2.65 | 2.71 | 2.74 | 2.75 2'76r
51 s 2| 1 1 .2199 .2199 |
=5 10 Ly 2 1 .3552 .3552
5 10 2 1 1 .2246 .2246 5 when M=7, EW7(12,1;1) is very close to EW_(12,1;1). So, for any fixed N, EWﬁ(n,q;k)
10 1 2 6 1 .09932 .09927 ,
is bounded above by EW_(n,q;k) which is equal to EW_(n,k;k). And EW_(n,k;k) canbe
0} 1 6 2 1 .06412 .06412 @
10 “S : 2 6 1 9182 2181 found very easily by the method in Section 2.2. Now, we try to find a lower bound of
10 5 6 2 1 L1114 1114 g EWM(n,q;k). From equation (2.42), EWy(n,M;k) is a lower bound of EWy(n,q3k),
g 10| 10 2 6 1 .3158 .3152 = | 0
. 10 10 6 2 1 .1142 .1142 | EWy(n,M5k) < EW,(n,q;5k) < EWy(n,k;k) < EW_(n,k,k) (2.45)
Y 15 .05 .25 .034 .2278 .2278
15 5 .05 | .25 | .034 .3979 .3979 for n=R,...,N and 1<k<q<M.
15| 10| .05 | .25 | .034 .4358 .4357 ; «
! ] Hence, EWM(n,q;k) 1s bounded below by EWM(n,M;k) for all k<q<M and the lower
i
| 1 bound is exact when q=M. To find EWﬁ(n,M;k) we have to carry out the recursive
| Exhibit 2.8 Comparisons of the unconditional expected : ’
;J ‘ waiting time in D(N;N-1,M;L,Q) model 1oy sequences A.n and Bhwwhich are defined in this section. For q<M, it will be
: | easier to find the lower bound than to find the actual value of EWH(n,q;k). |
We can explain (2.44) in this way: The smaller the M, the larger "pressure' 4 ?&3 We do a éimple example to illustrate how to find the bounds.
the system has. The larger pressure the system has, the "faster'" the servers e _
H Example 2.3. A low priority customer arrives and finds the system at state
will work. The faster the servers work, the less conditional expected waiting . LI
, i ) , (3,0), that is, 3 servers are busy and no low priority customer in the queue,
Sy o U T ‘ ‘ The system has 4 servers in total and uses the dispatching procedure D(4;3,3;L,Q) .
| feasible state for all of this model. When M=1, state (R,1) is at the limit.
) N : B to dispatch the servers. Hence, the arriving low priority customer will have
: One more low priority customer arrives will begin the service of 'the first - ‘ ' r
! . : s : to wait in the queue for his turn for service. The input rates to the system
z low priority". When M=5, state (R,1) is not at the limit. It can tolerate i
! # , are kl=l, A2=l and the service rate per server is u=l. What is the maximum
: four more low priority arrivals. When M= the system will not have any pressure 3 ‘
; [ expected waiting time and what is the minimum expected waiting time for this
i at all. Hencey EW_(n,q;k) is an upper bound of EW,(n,q;k) and it does not take . '
: ® M
&
' 48 ‘ } = 49 . .
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lospfiority%ustdmer? Inthisexémple,wehaveN=4,R;B,M%B,A1=AZ=‘=l. The system
is at state (3,1) and "the low brié;ity" is in th first'positionxinb$h6~queue-

So, the conditional expected waiting time is,EW3(3,l;l). From ab%Ve, we have

EW3(3,3;1) < EWB(B,l;l) < EWm(B,l;l)

(1), Compute EW;(B,l;l),fthe upper bound.

From Section 2.2, we have

I wm

I+K1DN _ l+ll/Np B Nu+Al _ ) = .
N-1 RNy

Hence, we have

EW_(3,1;1) = .4167

" (2) Compute EW,(3,3;1), the lower bound.

From this Section, we have

~ l+k2/Nu . X
Ay = N, N T W,
L gy o ,
Ay-1 5R RIF(T-By) A +h,

: (§u+xz)Nu+NuAl+XlA2 o ‘2076 s ,
(Ru+A2)(Nu+A2)Nu+NuAlA2 ,

' Hence,
Ew3(3,3;1) = .2976 .
That is, ’ V )
L2976 < EW,(3,1;1) < L4167  Q.E.D.
50 ]
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In general, gi;enkD(N;R,M;L,Q), it is not hard to find the upper bound
anélytically for EWM(n,q;k), but it is very tedious (but not impossible) to

find tﬁ@>lower'bouﬁd)anaiytically, especially for k>1. But it\should be very
égsy to compute the numerical value of the lower bound for any k.

ﬁow,oleé's define the boundary state for model D(N;R,M;L,Q). The
boundary states in D(N;R,M;L,Q) moqel are those states which have exact M low
priérity cdstomer in the queue. F;r example, in D(5;3,1;L,Q), the boundary

states are (3,1), (4,1) and (5,1), in‘D(5;3,2;L,Q), the boundary states are

(3,2), (4,2) and (5,2). Exhibits 2.9 and 2.10 are the configurations of the

" boundary state (3,1) andtthe-boundary state (3,2) in Dk5;3,l;L,Q) and
D(5;3,2;L,Q) respectively.
busy kusy ‘ bu57 frec free, . ‘k
, : . .\\\
| X
. O« |
Exhibit 2.9 The cbnfiguration of boundary‘state (3,1)
in D(5;3,1;L,Q)
busy b by frec frec
4 £ .8 A
j d 2.0 - T & o
. ) 0
O+
Exhibit 2.10 The configuration of boundary state (3,2)
: in D(5;3,2;L,Q) o |
In D(5;3,1;L,Q), at state  (3,1), the first lowﬁpriority customer (indicated by
‘the arrow in Exhibit 2,9) is experiencing the same "forces" as the first low
i 0 51
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prioritycustomer(indicatedbythearrgwinxhibit2.10)atstéte(3,2)in D(5;3,2;L,Q).
o o 2

The forces are 1) server completes the service and returnsfmafiee, 2) high

priority customer arrives, and 3) low priority cpstomer arrives. Those are

the only forces can make the system change thé state. S%nce they are exﬁeriené?

ing the same forces,“they should have the same (expected) waiting time. That

is, EW1(3,1;1)=EW2(3,2;1). The saﬁe argument applies to all the boundary

states in the model D(N;R,M;L,Q). Hence, in general, we have

EWl(n,l;l) = EWZ(n,Z;l) = ... =-EWM(n;M;l)b (2.46)
. N - k\;:;‘ .

for n=R,...,N.

Let's generalize the definition of the boundary state and define the mth
boundary states, me{ in D(N;R,M;:L,Q) are the‘states which have exactly (M-m+1)
low ‘priority customers in the queue. So, the first boundary states are the
boun&ary states defined ea?iier. The an boundary states in D(5:;3,3;L,Q) are
(3,2), (4,25 and (5,2), the.3rd boundary states in,D(§;3,3;L,Q) are (3,1),

(4,1) and (5,1). We dén extend (2.46) to the ﬁthié:gggary states. That is,

EWh(q,l;l) = Ewm+l(n,2;l) = .. = EWM(n,M—m+;;l) (2.47)

- for n=R,...,N and 1<m<M.

We can extend (2.47) further more to théikth,low priofity. That is,

: | y
EWﬁ(n,k;k) = EWm+l(n,k+l;k) =’... = EWﬁ(n,Mém+k;k) (2.48)
for n=R,...,N and M>m>k>1,

Exhibit 2.11 is the diagram of the conditional expected waiting times for
models D(15;12,1;L,Q), D(15;12,2;L,Q) and D(15;12;3;L,Q) with xl=.05, A2=:25

and p=.034. As we can see that

o
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EXPECTED WAITING TIME FOR DIN:RM:L.Q)
LAMOAT=0.0500 LAMDA2=0.2500  MU=0.0340

M=

—_—

-

@;

EXPECTED- WARITING TIME FOR D(N:;R,M:L.Q)
N=15 R=12 LAMDA1=0.0500

se

®)

J

W

LAMDR2=0.2500

MU=0.0340

403 124

EXPECTED WRITING TIME FOR D(N:R‘.’M;L,O)
N=i5 R=12 [H=3] LAWOAI=0.0500 LAMDA2=0.2500  MU=0.0340

Exhibit 2.11 Comparisoms of the expected waiting times with

=)

s
17 s
255 S8 14 :

148

803 ~83%4

&2
504 280
A sz s

403 724

different M-cutoff in D(15;12,M;L,Q) models

3 ¥
N=15 R=12
15
225
153 398 '
225 inm -
1S9 -8 652
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EW,(12,3;1) = 1.59

EW, (12,1;1) = EW,(12,2;1)

and EW2(12,2;2) = EW3(12,3;2) = 3,96

and etc. which confirm the relations in (2.48). -
Following example is obtained from the police“department. A police

department has 15 cars on duty. The utilization factor is .6 and on average

17% of total calls are emergency (high priority). The expected service time

_ is 30 min. for both types of calls. From this information we can compute the
~arrival rates 'and the service rate. That is, Al=3/hr=;OS/min,A2=lS/hr=.25/min

- and u=2/hr=.03§/miﬁ per car. The department head decides to reserve 3 cars

for emergency calls and at the same time do not allow more than 5 nonemergency
calls waiting "in the queue if there is a car available. The emergency call
will not be able to wait if a car is not available at dits arrival time. This
is D(15;12,5;L,Q) model. Apply our algorithm, we got the steady state prob-
ability distribution and the conditional expected;waiting times for each low
priority call at every state. Exhibit 2.12 is the transition diagram for
D(15;12,5;L,Q) model. Exhibits 2.13and 2.1l4 provide the steady state prob~
ability and the conditional expected waiting times, respectivély, for those
states’that are in the dashed box in Exhibit 2.12.

In Exhibit 2.10, the number below each state is the sﬁeady state Prob-
ability of that state. For example, at state (14,3), P(14,3) = :00034:” In
Exhibit 2.14, the values below each state are the expected waiting times for
each low priority call in the queue. For example, at state (14,3), there are

three low priority calls waiting in the queue and the expected waiting time

 for the ISt call is 6.2 g;n.,for the an call is 8.85 min., for the 3rd call is

11.54 min. at the instant when the system went into state (14,3). Several

o

binteresting results emerge'frmnExhibit2.14. First, the more low priority
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calls waiting, the less is the expected waiting time in the same position.

Second, the busier the system, theée greater the expected waiting time. We

L)

already explained these properties before. Third, if we were to choose M=4

-

instead of M=5, then state (12,4) would be a boundary state of the system.

Consequently, if one more low priority call arrives then the first call in the
queue would start the service and the system enters state (13,4). In compar-
ing the expected waiting time for the fourth call at state (13,4), i.e.,
EW4(13,4;4) which is equal to EW5(13,5;4)=10.71, to the expected waiting'time
for the fifth call at state (13,5), i.e., EW5(13,5;5)=11.88, it should be
noted that the former is less than the latter., The difference indicates the
gain, i.e., less waiting time, for the low priority call, if we were to switch
from M=5 to M=4, The trade-off here is it will ‘cause more high priority calls
lost.

In the next section we will discuss the D(N3;R,M;Q,Q) model, that is, the

high priority call will also be queued in the high priority queue if there is

no free car available at the time it arrives.

2
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= Number of Busy Servers

: “q = Length of Low Priority Queue Lo
1 ) . ) ‘

Wi A, = Arrival Rate of High Priority Calls
. _ {;/”(A] = 0.05 per minute) -
. 5 \E : ‘
) Ay =Arrival Rate of Low Priority Calls
,,ﬂ’[l,k.ﬂ\z (A, = 0.25 per minute)

Serviée Rate of All Calls
(1/u = 29.4 minutes)

I
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Exhibit 2.12 Transition diagram for D(15;12,5;L,Q) model
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STERDY ST ATE PROBRBILITY FOR DIN;R,ML,C)
NelS R=12 M=5 LAMORi=0.0S00 LAMDA2=0.2500  HU=0.0340

THE PROBRBILITY OF HIGH PRIORITY CUSTOMER LOST IS 0.0085

L

THE PROBABILITY OF LOU PRICRITY CUSTOMER WAIT IS (.1S32

" 05488 GLos? 0.00031

®) S

0.5427S 0.0048° 0.00042

©
=

0.02080 | . o.oo2ee

©

b 'uk.mass; | o amem 0.00027
" (13,3 : : | 12,§)
:.q:c;s - s  amses

Exhibit 2.13 Steady state probability distribution

- ~ for D(15;12,5;L,Q) P
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3. D(N;R,M;Q,Q) Model

N=iS R=12 N=5 LAMDAI=0.0500 LANCA2=0.2500 nu=0.034C

———— , —~ In this model there are two queues, the high priorit ueue and the low
THE PROSARBILITY OF HIGH PRIORITY CUSTCMER LOST IS 0.0085 , q ’ gh p ¥y q

KL

. o ; , : priority queue. Unlike the D(N;R,M;L,Q) model, the high priority customer will
THE PROSABRILITY OF LOW FRIORITY CUSTOMER WAIT IS 0.1832 j :
. ‘ : : ; be put into the high priority queue if the system is full at the time he/she
' ‘ @ . . arrives. The low priority customer will be put into the low priority queue
, : ) . ; ;; whenever service can not be provided immediately. Customers in the queue will

be served in the FIFO order within the class. In this section we also assume * - i

"f
; . : . that both high priority customer and low priority customer have independent . ;//é
‘ ) 2.1 13,1 14,1 @ | Possion arrival time with the arri‘fral rates')\l and )‘2’ respectively. The server :
: e ,
' en = . N e = has exponential service time with the expected service time 1/u for both types
i of customers. Let pl-"-Al/u, Py= 2/11 and p= pl+p2
| @ @ s, 2 ,, We need three variables to characterize the state of the D(N;R,M;Q,Q)
e & o C es s 1w ; model. Let (n,ql,qz) designate the state in the D(N;R,M;;Q,Q) model where n is
' | the number of busy servers, 9 is the number of customer in the h}\gh priority .
- queue and 9, is the number of custamer in the low priority quehe. As it is in
i 12, 3 @ s 3) the D(N;R,M;L,Q) ‘model, we shouf\ld consider following three cases »(With the firsf 7
: e s 1E =1 Is e = oem o Me wR @ two cases are special cases of .[,he third one). f
; . . a . (1) R=N and M=, . (
g m - m /=“ “ | (2) R<N and M=,
F U @ / | \'_/N | . . . N
. 22 a7 ;| M8s 17 62 L8 LM B TYSRR T T RRE £33 L T eSE - (3) R<N and M is finite. i
f . iz ’ In the following of this sec\:ion we will study each case the ;teady state
X ‘ | f : /_\ /\\ | ' distribution and the conditiomal c\a\xpec‘ted tyaiting t:imgs for both ‘the high priority
@ @ | ‘:_j; \E_j' i j and low priority customers at a giyen state. :
L€ 286 653 18 NEE 29 L€ T8 BN 1346 158 32w nee e (53 T2 wz oo 1 }'4 X
¢ %

"Let P(n,ql,qz) \denote the stea\ly state probability at state (n,ql,qz),
1 h\ 7
Exhibit 2.14 Conditional ekpected W‘aitirig times of low 3 , EWh(n,ql,qz,k) k<q],\ denote the condltional expected waltlng time of the k th
X . o) , , w { : : .
: priority customers in D(15;12,5;L,Q) » :

A

b,:.gh priority custome\x\ at state (n,ql,qz) and sz(n,ql,qz,k) k<q2, denote the

&
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conditional expected waiting time of the kt low priority customer at state

(n,4;,9,) in D(N;R,M;Q,Q) model.

3.1 D(N;N,»:;Q,Q) Model

_ customer in the low priority queue will start the service.

For this model no server is resérvedvfor high priority customer. When
the system is not full we will send a server to the arriving customer no matter
what priority the customer is. If all the servers are busy at tpe time a
customer arrives then he/ghe has to be queued in the corresponéing queue. When
a server completes service and returns to free itPQill first cbeck the high
priority queue. If the high priority queue is not empty then the first customer
will start the service. Ifthehighpriorityqneueis/emptythenit will check the
low priority queue. If the low priority queue is not empty then the first
If the low priority
queue is also empty then the server will remain free. Exhibit 3.1 is the

transition diagram for the D(N;N,~;Q,Q) model. - 2

Steady State Probability Distribution 4

This is a special model of Taylor and Templeton's [1980] with R=N. In
their work, they obtained the probability distribution of the number of busy

servers. Hence, they got P(0,0,0), the probability of all the servers are free.

-1

&

N-1 |
P(0,0,0) = | I p%/nl + 0N/ @-1)1) N/ N-p)) K¥-p, N/ (N=p,))
n=0

(3.1)

We will start to derive the steady state probability distributionvby knowing

the P(0,0,0). We summarize the steps of finding these steady state probabilities

below.
STEP 1) Compute P(n,0,0), n=1,2,...,N.
STEP 2) Prove a theorem and compute P(N,qlAQ), ql=l,2,...,Ql.

R
DV

60

Number of Busy Server
@ q; = Length of High Priority Queue

Length of Low Priority Queue

*
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>
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Exhibit 3.1 Transition Diagram for D(N;N,®;Q,Q) Model
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. i _ , Since the steady state exists, 0<x<l.

STEP 3) For each q,21, do - . ,
Hence, x = l:(N+p) -’V(N+Q)2-4Npl]/2N Q.E.D.

STEP 3.1) Compute P(N,O,qz)

STEP 3.2) Compute P(N,ql,qé), q1=l,2,...,Ql recursively.

®o |
Now, we outline these steps. ? Note that Theorem 3.1 holds for the gemeral model, D(N;R,M;Q,Q), hence it holds

SrEP X Gompute P(2,0,0), 0=1,2,.. ... for the special models also. For'fixed p, x is an increasing function of pl

Before the system is full, it is an M/M/N queue. Hence and x + p/N when Py + P. Using Theorem 3.1, we can compute P(N,q;,0), q4=1,2,...

“From the computation point of view we can ignore those states which have prob-

n
o .
P(n,0,0) = = P(0,0,0), n=1,2,...,N (3.2) e -
sU, = Al IR 34 ’ abilities smaller than €, for example £=10 7P(O,O,O). Let Ql be the integer

STEP 2) ° Prove a theorem and compute P(N,ql,O), a7=1,2,...,0Q;. §UCh that P(Nle+1s0)<€ and P(N,Ql,o)zﬁ- Then we can compute P(N,ql,o),

= o .. . ‘  1;=1,2,...,0Q;
THEOREM 3.1: In D(NiR,M;Q,Q) model, P(N,q.,0)=x "P(N,0,0)

- STEP 3) For qzz;, do
‘ ' 2 ' .

‘ : h = | o) = V(N+p)“-4lp, |/2N : | N
s where x [:( p) (N+p) Dl:}/ ‘ o | 5 1 STEP 3.1)  Compute P(N,0,q,)

PROOF: We assume that the steady ‘state exists. The balaﬁce equation affic{; 5 ] - %
@ ) | s : P(N,0,q,) = | [ P(N,q;,q,-1) |(py/N)
state (N,q3,0), q7=1,2,... is | ’ R : | o o -’q1=0
(Np+kl+A£) P(N,q;,0) = AP(Nyq,-1,0) + NP (,q,+1,0) \ ' B Y ‘
Ve . ~.;1 . Bk . _ = Z P (N, ql,qz-l) :l (DZ/N) ‘ (3 4
: : : o ; , ~ q.= ,
Div%gé both sides by u and move all the terms to the RHS, we have . L : " L
// = ) ;

WE(N,q,+1,0) - (WP)P(,q;,0) + pyB(N,q4-1,0) = 0 3.3) STEP 3.2) . Compute P(N,qy,q5), q;=1,2,...,Q; recursively.

. | o : By’ignoring the flow from the state (N,Q,+1, into th t \
ALl the coefficients in (3.3) are constant and (3.3) holds for all g>l. . | | 1t1s 4) inmto the state (N,Q;,q)) and
- 1 \ the flow from the state (N,Q.,q,) into the state (N,Q.+1,¢ e
Hence, we have P(N,qq,0)=x lP(N,O,O) and substitute this into (3.3), we' D HAHh Sy, he betence
- ‘ ; equation at state,(N,Ql,qzy is
have

! L c < . .. | * © (NwkA)P(N = \,P(N,Q,- im
Nx® - ()X +py = 0 | | R L | “‘ 2)PM,0Q;595) = A P(N,Q;-1,q,) + 4,P(N,Q;,45-1)
| ‘ 5“ . & o Dividing both sides by p, we can expregs P(N,él~l,q2) in terms of P(N,Ql,q,)
(N+p) + V(WD) ~4Npy : bt . -
X =7 N "~ : - 1 . v

e e kAL ¥ o e N el S it . ;s y - '



N+p, - P

‘ NPy Py o :
P(N,Q,~1,q,) = P(N,Q,,q,) - == P(N,Q;,q,~1)
=1 22 pl 132 l 1232 '
1 1 .
| ~ Mo, P2 s,
where we have defined C, =1, C = — =0. and D, _, =— P(N,Q,,q
Qp 77 Tt P T Y -l oey 1°72

By doing the same enalys{s, we obtain two recursive sequences Cq and‘Dq,

q=Q1-2,...,0

”Dq = [(N+Q)Dq+l;" NDq+2 = ,OZP(II’Q+laq2"l)J/pl o
Then we can express P(N,q,qz) in terms of P(N,Ql,qz).
P(g:q,‘QZ) = CqP(N:QlSQ2) + Dq 2 q=o,al’ see an : ‘ (3-6)
For g=0, we have | o
: | | | | ~
P(N,O,qz) = COP(\NQleqZ) + DO . ¢ e
Since, we already‘kﬂ%w"P(Nfo,qz) from (3.4), we have
= [ )~ ' - (3.7
P(N,Ql,qz) [P(N,0,q,) D0]/cO (3.7)
Wi ::53’:": ):::} .

Substleute (3.7) into (3. 6) we w1ll have P(N,ql,qz) q;= {;%¢,Qi. We can keep
1nc?ea51ng_q2 by 1 and repeet‘STEP 3) until P(N,O,qz)ils smaller thsn a pre=

specified value. 'Note that the steady state can be reached only when p<N.

, Condltlonal W31t1ng,T1me Dlstrlbutlon ‘for ngh Prlorlty Customer

)\

Let Wh denote the time that the k th hlgh priority customer sPent in the

4

queue given that he/she has to wait. Then Wn is Erlang dlstrlbuted with

-
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parameters ﬁu and k. That is, the density function of ﬁi is
k\\\ :
N k-1 -Nut e
fwh (£) = Ek“i), gkl N . k=1,2,... (3.8)
' ‘ . o
th 0
The conditional expected waiting time of the kb high priority customer,
EWﬁ(N,ql,qz;k), is
h i 2N ) . k . ‘
Fww(N,ql,quk) = ﬁ].—l (3.9

Note that the conditional (expected) waiting time of the k?h

-

customer is unly dependent on the position in the queue, i.e., k, and not on

‘high priority

the number of high priority customer in the queue end‘the number of low priority
customer ‘in the queue.

Conditional Waiting Time Distributiod For’iLow Priority Customer

Let W£ +q.#1 denote the time a low priority spent in the queue when he/
4172
she arrives and flnds the system is at state (N,ql,qz).

tion of'Wz can be expressed in the transformed~space'(Davis, 1966).
AP IE | D

Then the demsity func—

~(s+Nu+Al)~/(s+Nu+A1)2—4Npl

2Al | -

(3.10)

I

+1(t) dt =

¥ - m - :
TE o (e) = J ¢St b
W 0 1,7+
ql+q2+l _ .

 where qlgp, ngp.

The conditional eﬁpected waiting time of this low priority customer is

W0, .t L L R
BN (N,qy,q,+03G,+0) = 57— \ (3.11)

Y

Suppose, in D(N3R,;Q, Q) model with R<N,:there are ql customer waltlng

&)

in the high priority queue at the time the q2 low priorlty customer arrives..

o
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i We want to find the conditional expected waiting time of the kt low prlorlty ’ . .

customer, kiqz, that is, the EW’Q'(n,ql,qz;k). The conditional expected Waltlng , : ‘ /' [//\ - '
‘ ; = Number of Busy Server "

time of the kth low priority customer in D(N;R,~;Q,Q) model lS not dependent on i ‘ .
y : : ° q; = Length of High Priority Queue

4 because there is no restriction on the low priority queue length. So, the % ¢
e ' . o ‘ ; (Il-‘)a/l LM*AL 49 = Length of Low Priority Queue -
number of busy servers will not increase when low priority customers enter the 71
) o _ ' : - , . }‘l = Arrival Rate of High Priority Customer
system. But this is not true when the low priority queue length is restricted . |
t finite number, i.e v&hen the M—cutéff oint exist Ve will discuss more S }\2 " Arvival Rate of Low Friority Customer
0O a rinite n er, 1l.&., P =39 ,.»7"' W scuss mo . E K“1 [Mn*/\‘- = Service Rate per Server .
about this in Section 3.3. Hence, from (3.11), and the above analysis, in ' v @ _'\j;. Az A2
& o é
D(N;N,»,Q,Q) model we have o : n/.{ A/“:
| (&7')/41 bA (‘*CM b \ﬂﬂ)éﬂ Ay ' (wél LM
: ' 2 A ql+k % ‘ [ )
EW (N, ,d93k) = EW_(N,q;,k;k) = Fooa. @ 92kl s q;>0 (3.12) : : . o a . .
“ l : . . (' d L] -
i Note that (3.12) have defined the conditional expected waiting times of low ; " ‘ : ‘*Nﬂ'] LA' M,«" I/\\ A{a1 V‘\ . NA V\
| | | \ , .
@ priority customers at all the feasible states. “ ‘3 %*N,O,l ﬁ»# e e 2% —*; e s o
' 5 . g I3 ‘L\:,J « — s
3.2 D(N;R,»:;Q,Q) Model with R<N . N5 « 1 Al v ”/4 by Mﬂ L*\ wd [/\\ .
i ; v Ho SR A A A
’ For this model, (N-R) servers are reserved for high priority customer. CH —’3 —‘?‘A% e o 5 -A% o0 o
Thar is;(\ when the rrlumber of busy servers, b, is less than R, the arrlv:mg ; N/"1 l"\\ N'M1- l"*! "f‘;] L’:"A‘ | ”/4 LA‘
customer will be served immediately no matter what priority the customer is. : i . . e ’ ¢
B ’ ’ P #
But when b>R, Only.& the high priority customers are served Whenever there is a /“‘ . . o
; ’ 4 Ay ' A
- server available. When all the servers are busy the high priority customers ' + S N’“l l' N/ﬂ l'A‘ . /ﬂ l'A‘ : WA A
s | ’ s y v | § ; FA A Ao Av An
L will be queued in the high priority queue. When a server cc{mpletes service and B R @@ > —;“ ¢ r = —_— . < 2
returns to free it will first check the high priority queue. If the high B .M“1 L"\‘ N/«»] ['M ",’/11 LA‘ M'él L/\(
priority queue is not empty then the first customer will start: the service. If : 3 . : ; : : :
' b<R (this will guarantee that the high priority queue is empty) and the low priority o ’ g ‘ e
i t empty then the first low priority custom ill start ti\e rvice. e L -
queue is no pty. ti . p ity cus omer will start the se blce Exhibit 3.2 Transrgr:a.on Diangm for D(N;R,»;Q,Q) Model
\ ¢ In any other case, the server will remain free. Exhibit 3.2 is the transition \ : ‘
\ diagram for D(N;R,»;Q,Q) model. , 67 .
Y % R
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Steady State Probability Distribution

Taylor and Templeton [1980] worked on this model. They obtained the

A7}

probability distribution of the number of busy servers. Hence, they obtained

/" IS

a formula for P(0,0;O)

R-1 B -1
P(0,0,0) = & [ o%/at + 0%/ (R-1)1) SR,M)/[R-0,5(R,M)] (3.13)
n=0
; N-l y o
where S(R,N) = leRL[ I o1/il + (p1/N1) N/(N-p )]
i=R

We will use (3.13) to derive the steady state &istribution for D(N;R,»;Q,Q) model.

We summarize the steps of finding these steady state probabilities below.

STEP 1) Compute P(n,0,0), n=1,...,R.
STEP 2) Use Theorem 3.1 ﬁo compute P(n,0,0); n=R+1l,...,N and P(N,ql,O),
q4,=1,...,0;.
STEP 3) For each g,21, do
STEP 3.1) Coﬁpute P(R,O,qz)
STEP 3.2) Compute P(n,O,qz), n=R+1,...,N and P(N,ql,qz), ql=l""’Ql

We outline these steps below.

13

STEP 1) Compute P(n,0,0), n=1,...,R.
pn X . o
P(n,0,0) = £-2(0,0,0) , »=1,...,R (3,14)
STEP 2) Substitute q1=l in Theorem 3.1, we have w
P(N,1,0) = x P(N,0,0) (3.15)

The balance equation at state (N,0,0) is

(¥+0)P(N,0,0) = p;P(¥-1,0,0) + NP(N,1,0)

Substitute (3.15) into above equation, we have

P

-] ’ ) ) _;,’/
4

o S
68 :
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P(N-1,0,0) = P(N,0,0) [N(1-x)+pl/p;

Cy_1P(¥,0,0)

where we have dgfined Cy=1 and CN_1=[N(l-x)+D]/pl .

(3.16)

Doing the same analysis at’ state (N-1,0,0),...,(R+1,0,0), we got a sequence Cn

defined recursively as below.

C_ =

a pl[ﬁﬁuﬂ)CMﬂ-ﬁﬁ” Col

P(n,0,0)

CP(N,0,0) , n=R,...,N

For n=R, we have

P(R,0,0) = CyP(X,0,0)

or, P(N,0,0) = P(R,O,O)/CR

Theorem 3.1 we will have P(qul,O), ql=l,...

in the same way as it is %n D(N;N,=3;Q,Q) model.

STEP 3)  For each q,>1, do
- STEP 3.1) Compute P(R,O,qz)
— |
P(R9O:q2) = 2 P(nsquz-l)'+

, n=R ql=l
- I N . Ql'

= e P(n,O,qz—l) + )

n=R ‘ ql=

0

69
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Then we can express P(n,0,0), n=R,R+l,..§,N in terms of P(W,0,0).

N

Substitute (3.19) into (3.18) we will have P(n,0,0), n=R+1£..;,N.

Z P(Nyql’qZ“%) (pz/R)J

P(N;ql,qz-l) (p,/R)

(3.17)

(3.18)

(3.19)

Apply

,Ql; where the Ql is determined

(3.20)

LSTEP 3.25 - Compute P(n,Q,qz), n=R+l,...,N and P(N,qlfqz), ql=l,...,Ql,
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Ignoring the flow from state (N,Ql+l,q2) into state (N,Ql,qz) and the flow

from state (N’Ql’qz) into state (N,Ql+l,q2) and forming the balance equation at

g state (N,Ql,qz),...,(N,O,qz) successively, we obtained two recursive sequences

Aql and Bql, 47=Qq, -+ +50,

f =g
]

=
]

ql [(N+Q)Bql+l - NBql_l_z - sz (N:ql'*'lan"l)]/pl E} ql=Ql_23Ql"'33 cors0

with A, =1, B =0, A, _, = (N+p,)/p
QG Y -t 2t

and BQl'l = =p,P(N,Q;,q,-1)/p; -
Then we can express P(N,ql,qz) in terms of P(N’Ql’qz)

P(N,q7,9,) = AqlP(N,Ql,qz) + Bql > 97=0,1,...,Q; B2

B

Let CN=AOuand DN=BO° Forming the balance %iration at state (n,O,qz),

~ . ‘ , N .
n=N-1,...,R+l successively, we obtained two recursive sequence Cn and Dn’

n=N-1,...,R

(@]
1]

o = LE0)C, - (e, 10

(w)
b}

N “*[(n+l+p)Dn+l - (n+2)Dn+2f— sz(n—i—l,O,qz-l)]/pl , n=N-2,...,R

. %
'~ with -1 = [(N+p)A0‘f NAl]/Pl and uDN-l = [(N+P)BO—NBl—DQP(N,0,qz'l)]/Dl
i ﬁ Then we can express P(n,O,qz) in terms of P(N,Ql,qz)

P”Sn,‘o, qz) e CnP(N,ngqz) + Dn ) n=R’_ oo ,N (3.22)

70
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. known at this moment.

‘Section 3.1, the conditional expected waiting time of the kth low priority‘

v

{i\#

For n=R in (3.22), we have

P(R,0,q,) = CpP(¥9,,q,) + Dp

or, P(N,Q;,0,) = [P(R,0,q,) = Dpl/C, . (3.23)

Substitute (3.23) into (3.22) and (3.21) we will have P(Q,O,qz), n=R+1,...,N

and P(N,ql,qz), ql=l’2""’Ql'

We can keep increasing q, by 1 and repeat STEP 3) uatil P(R,O,qz) is

smaller than a prespecified value. Note that the steady state can be reached

G

when p2<R and pl+pz<N;

Conditional Waiting Time Distribution for High Priority Customer

The conditional waiting time distribution for the kth high priority
customer is also Erlang distributed with parameters Nu and k. It is exactly

ithe same as it is in the D(N;N,*;Q,Q) model (sée equation 3.8).

Conditional Expected Waiting Times for Low Priority Customer

The conditional waiting time distribution of low priority customer Qs not )

\

However, we found a very easy way to compute the expected

value at a given state for each low priority custcher. : o
. » Let Ewi(n’ql’qz;k)% qzzk, denote the conditionél expected waiting time of

the kt low priority customer at state (n,ql,qz). As we discussed earlier in

customer in D(N;R,®:Q,Q) model is not dependent on d9s the number of low
priority customers in the queue. Hence we have theﬁfollowing expression in '

the D(N;R,»;Q,Q) model.
EWE( k) = EWx( kik) =R N >0 and q,5k>1 3.24
m;nqusqz: /T co,n’ql’ -1y s DR, o0 3Ny ql__ H qz_._ ( . )
The syéteﬁ will not change state until one of the following events occurs.

2

7L
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(A) - A server céﬁpletés service and returns to free.

(B) A high priority customer arrives.

(C) A low priority customer arrives.

As soon as one of the three events occurs the system will move to a new

state. We summarize the steps of finding the conditional expected waiting times

of the first low priority customer below.

STEP 1) Express EWi(N,ql,l;l), q1=0,l,2,.,;, in terms of EWﬁ(H,O,l;l).

STEP 2) Express EWﬁ(n,O,l;l), n=N,N-1,...,R+1 in terms of EWi(n—l,O,l;l).

STEP 3) Q9mpute EWi(n,Q,l;l), n=R,.f.,N and EWi(N,qi,l;l), ql=l,2...

We now outline these steps below. ﬁ )

STEP 1) Express EWi(N,ql,l;l), q;=0,1,..., in terms of EWi(N,O,l;l).
Suppose the system is full and there is a low priority Cusgomer in the

queue. Let Ti be the time elapsed since the (ql+l)St high priority customer

. s st . e . .
arrives until the 17~ low priority customer goes into service. Then,

E(Tl)=EWi(N,qI+l,-;1). Let Tz‘be the ti@e elapsed since‘the qlth high priority

. . st : P s .
- customer arrives until the 1~ low priority customer goes into service. Then

E(T2)=Ewi(N,ql,-;l). Let T=T1—T2. Then we have

E(T) = E(T;) - E(T,) = EWi(N,ql+l,';l) - Ewﬁ(n,ql,-;l)

By doing- the busy period analysis on the high priority customer, [Davis, 1966],

1
Nu—-A

we have E(T) = That is,

1
EWE(N,q,+1,+31) = EWS(H,q,,031) = wme >0
o 21 TL, % - EWNLWL,445%5 = Nu—}\l ’ Q27

Hence
v

q | |
>0 . (3.25)

2. 1
Eweo(N’q]_’.;l) = EWi(N,O,';l) +ﬁ,-u—_—}q s ql_

&
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STEP 2) Express EWi(n,O,l;l), n=N,N-1,...,R+1, in terms of Ewi(n—l,o,l;l).

{

Define DN = l/(Nu—Al) and
By, "

—

(w
i

h = (1+A1Dn+l)/nu s n=N-1,...,R

then

EW.(n,0,151) = EW:(a-1,0,1;1) + D_ , n=R,...,N

3.26

where we have defined EWi(er,O,l;l)=0. (3.26)
STEP 3) Compute EWﬁ(n,O,l;l), n=R,...,N and EW&(N,ql,l;l),‘q1>l.

BWL(R,0,151) = D (3.27)

Substitute (3.27) into (3.26) and (3.25), we will have EW'(n,0,1;1),
o 3 3
- 2 k
n=R,...,N and Ewm(N,ql,l;l), qlzﬁ. We can extend this procedure to find the
conditional expected waiting times of the kth low priority customer, by defin-

ing the exact same sequence Dn’ n=R,...,N in (3.26). Then

92 .
Eﬂn(R,O,k;k) = k'DR
& EW(n,0,k;k) = EW® f
I AR A B R - w(n"lyosk;jk) + Dn 3 n=R+l,...,N
wa;(N’ql’k;k) = EWf;(N,O,k;k) +""k—" ’ k=l,2,... (3.28)

Nu-kl

Note that (3.28) together with (3.24) has defined all the coﬁditional expected

waiting times of each low priority customer atvévery state.

&~

a N\
model is

K\I
) . : :
The uncoaditional expected waiting time of low priority in the D(I;R,*;Q,Q)

i ] ]

P(naosq2> EWi’(n,O,qz'i'l;qz-'i'l)

n=R q2=0
o © ‘ h . =
+ 7 7 P(N.q;,9,) EWﬁ(N,ql,q2+l;qq+1) T (3.29)

'
/ @
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The reason for (3.29) (is the same as it is for the D(N;R,=;L,Q) model. greater than the latter at all the corresponding states. For example, in the

A program has been written to compute the steady state Rggbfbilities’ the example at the bottom of page , the expected waiting time of the kth low
conditional expectedywaiting times for the low priority customers and the ‘ priority customer is .433k at state (3,k) in D(5;3,%;L,Q) model. But in
unconditional expected waiting time for low priority customer (using (3.29) i ‘ 3 D(5;3,;Q,Q), by (3.28), the expected waiting time of the kth low priority
with q; up to Ql and 4, up to 50). Exhibit 3.3 is a list of comparisons customer is .438k at state (3,0,k). The unconditional expected waiting time of
between the theoretical values and the results obtained from the program. low priority customer in D(N;R,w;Q,Q)fmodel is also greater than it is in the

; D(N;R,~3;L,Q) model. In the following exhibit, Exhibit 3.4, we list the
Unconditional Expected Waiting . : ‘ ,
Time of Low Prioritv Customer 3 , comparisons of the unconditional expected waiting times of.low priority
N R A A . ‘ ; :
1 2 H % | Theoretical Value | Our Result customer between these two models.
, R ‘ .
5 3 1 1 1 .3592 .3592 S : ” ) )
410 1 2 1 <4639 4639 3 : ' § Unconditional Expected Waiting
5 4 2 1 1 10 4664 4663 ‘ ] ' ; Time of Low Priority Customer
o 8 11 2 +0002 -0002 | | , P(N;R,®;L,Q) | D(N;R,©:Q,0)
0] 8| 2 4 1 4 B ,1794 1794 ] 1 |
: 5 2 1 1 1 .3418 Ty, 3592
10 8 4 2 1 9 .1823 .1822 o o
, 5 & 1 2 1 .3649 .4639
15 1 12 1 1 1 2 0 ; 0
e 5 4 2 1 1 L2246 4664

15 | 12 2 8 1 2 .2283 .2282 '

10 8 1 1 1 .0002 .0002

15 | 12 8 2 1 10 .2279 .2275

10 8 2 4 1 .1679 1794
15 | 12 05 .25 .034 2 2.3094 2.3094
10 8 4 2 1 .1263 .1823
' _ . . . 15 12 1 1 1 &Y 0 0
Exhibit 3.3 Comparisons of the unconditional expected waiting B I ’ 15 12 2 8 1 .2272 2283
time for low priority customer ' R |
) 15 12 8 2 1 _ 142 .2279
15 12 .05 .25 .034 2.3067 2.3094
As we can see from Exhibit 3.3, our result checks with the theoretical value. . ;ﬁi ! . - ~
As expected, none of our results is greater than the theoretical value because [ y Exhibit 3.4 Comparisons of the unconditional expected waiting time
, ~ I - - of low priority customer in D(N;R,~;L,Q) model and
we did not include all the terms in (3.29). | g D(N;R,=3Q,Q) model
It is also interesting to compare the conditional expected waiting time of E0C A .
low priority customer in the D(N;R,»;Q,Q) model to the conditional expected waiting - - Q ~ From Exhibit 3.4, we can see apother property about the uncondi;ional
P o 3 ‘ : i ’
‘ v E L v : . s . R
time of low priority customer in the D(N;R,=;L,Q) model. As expected, the former is & expected waiting time of low priority customer in the D(N;R,»;L,Q) model. That
o 5 is, for the same total arrival rate, the bigger the high priority customer
) f " * 75
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When a server completes service and returns to free the system changes

arrival rate, the less the expecfed waiting time of the low priority customer.

- R
The reason for this is that the actual input rate to D(N;R,~;L,Q) model decreases
. .
with increase in high priority arrival rate and, at the mean time, the average

state from (n,qy,qz) to (n—l,ql,qz), then exactly one of the following five

N,

actiBné will be taken:

7

of number of busy servers increases with increase in high priority arrival 1) 1€ q1>0, then the first high priority customer will start the

rate. But, in gemeral, this is not true for the D(N;R,~;Q,Q) model. service and the SYstemgyill éo into the state (N,ql"l,qz) instanta-

3.3 D(N3;R,M:Q,Q) Model with R<N and M<» neously.

In this model, we reserved N-R servers for the high pri&rity customer 2) £ ql=0 and q2>M’ then the first low priority customer will start

and, at the same time, we do not allow the low priority queue length exceeds the service and the system will go into the state CN?O’qZ-l) instantas

-

M when the system is not full. The state space S is neously.
~ ' 3) If n-1>R and ql=0, q,<M, then the server remains free..

.
. = = < i : ; >
(n,ql,qz) 9 9, q2‘0 when n<R 4) If n-1<R and q2>0, then the first low priority customer will start

S = { q,=0, q,M when R<n<N ) : D | the service and the system will go into the state (n,O,qz—fB
;; 4,20, 4,20 .when n=N : L“ instantaneousiy.ﬁ
; ; / 7 ~ . 5) If n-l<g and q,=0, then the server remains free. |
f When a higﬂ priority customer arrives and fi?ds the system is at state (n,ql,qz), | Exhibit 3.5 is the transition diagram fo: the D(N;R,M;Q,Q) model.
%; he/she will be served immediately if n<N, otherwise he/she will be queued in . | Steady State Probability Distribution -
% the high priority queue. When a low priority customer arrives and finds th; . ” ] In the followiﬁg procedure we‘try to find all the P(n,ql;qz) incferms of
b system is at statev(n,ql,qz), then exactly one of the following four actions ! ?(0,0,0) -and theg sum them up tovl to get P(0,0,0). We summarize the steps

>

will be taken. . below.

| 1) }f n<R, then he/sye will be served ‘immediately. , B STEP 1) Find P(n,0,0), n=l,...,R in terms of P(0,0,0).

2) If R<n<N and q2<M, then he/she will be queued in the low priorityqy ‘} o

0
o3

STEP 2) Use Theofem 3.1 to define a recursive sequence to find ,P(n,0,0),

) K i . n=R+1l,...,N in terms of P(0,0,0).
! 3) If R<n<N and q2=M, then he/she will be‘queued in the low priority @

i queue in the last position.

STEP 3) For a small prespecified number €., to find Ql and use Theorem 3.1

1
‘to find P(N,ql;O), q,=1,2,...,Q, in terms of P(0,0,0).
[«

queue in the last position and, at the same time, the first customer i

in the low priority queue will start the service. ) N T e STEP 4) For lﬁﬂz<Ms do

4) If n=N, then he/she will be queued in the low priority queue inigié

.-

last position. ’ , .

N N a
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3 e STEP 4.1)  Find P(R,0,q,) in terms of P(0,0,0).
Y @ - STEP 4.2) Define recursive sequences to find P(n,O,qz), n=R+1,...,N and
3 s
A L AvrA= n = Number of Busy Server | "’ P(N’ql’qz)’ ;= ,...,Ql in terms of P(0,0,0).
¢ = Length of High Priority Queue :
. 91 enE & ority Q i STEP 5) For q,=M, do
. q, = Length of Low Priority Queue iE ‘
= Arrival Rate of High Priority Customer STEP 5.1) Find P(R,0 M> in terms of P(0,0,0). ¢ L
= Arrival Rate of Low Priority Custom%r h (I STEP 5.2) Define recursive sequences to find P(n,0,M), n=R+l,...,N and
= Service Rate per Server : .
P P(N,q;,M), q;=1,2,...,Q; in terms of P(0,0,0).
' k . g '~ STEP 6) For 1M, do B
. : I 5} . Y o s .
-, :__ | : ﬁ STEP 6.1) Find P(N,0,q,) in terms of 2(0,0,0).
. A RA : 1 ‘ ;
kgﬁ)/“" L/\H-A:. : | STEP 6.2) Define recursive sequences to flgd P(N’q;}_’qz)’ q;=1,...,Q; in
“ . . “ : T | , terms of P(0,0,0). ;
,,’ e & ’/ i : f;‘
. v e ‘ : STEP 6.3) STOPPING criterion for STEP 6).. We keep increasing q, by 1
" N/A l,)\\ N/q (} until P(N,O,q2)<€2P(0,O,O), where €, is a small number.
, . ‘—-9 o o . o STEP 7) Express the px;f)babilities for the rest of state (i.e., q1>Ql.*z;md
. f N/AIV‘ /\\ )  1 o % | - | q2>Q2 in terms of P(0,0,0))(. o : )
‘ , Tk | B STEP 8) Sum all of these probabilities to 1 to obtain P(0,0,0).
! , . R We outline this procedure below. o ’
., é R f-i " STEP 1)  Find P(m,0,0), n=l,...,R
? ] e /
. ) ’ . [ : ) ) 3 '
o gl hA M wldl S IR R P(n,0,0) = &-2(0,0,0) , nm=1,2,...,R ... (3.30)
o . ' - . ‘ . - : ;) : I ' o STEI:{N 2) Form the balance equation at state (N,0,0),(N-1,0,0),...,(R+1,0,0)
: . 5, . . i o # and apply Theorem 3.1, we obtained a recursive sequence C
o y ¢ ‘ n t 2 £1 ’ . "
' oot g ‘ Wi I ” =L ((f1tp)c . 3
. ® ~ S " N ; 6y T Dl[(n 0C oy - (FC 1, 0=l=2,8-3,. . 00R
Exhibit 3.5 Transition Diagram for D(N;R,M;Q,Q) Model " N 5 I 4 : \ ' - : _
. g ) ‘ L .S S - with CN=1 and CN—l = [N(l—x)+p]/pl where x is defined in Theorem 3.1.
’ (55 1 §
¥ 78 poe \ 79
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1 E
STEP 3)
STEP 4)
| STEP
it

Q

Then we have o ,
P(n,0,0) = CnP(N,0,0) » n=R,...,N (3.31),, |
5
For n=R in (3.31), we have K
P(R,0,0) = CRP(N,O,O)
or P(N,0,0) = P(R,0,0)/Cy (3.32)
But P(R,0,0) is already found in terms of P(0,0,0) in (3.30),.h@nceh
we can substitute (3.32) into (3.31) and obtain P(n,0,0), n=R+l,...;N
in terms of P(0,0,0). ?
As we did before, we can find the integer Ql such that P(N,Ql+l,0)<
ElP(O,D,O) and P(N,Ql,e) 2;€lP(0,0?0) for a prespecified small number - ,:
€15 for example 10-7. Then we can apply Theorem 3.1 to find4) i
D(N,ql,O), q=l,...,Ql in terms of P(0,0,0). 3:ﬂ
For 1<q,<M, do . . i
_ e - :
. N © . ]
4.1)  B(R,0,q,) = | [ P(n,0,q,-1) + ] P(N,q,,q,-1)| (p,/R) i
2 2 1’72 2 fo
7 “ n=R ql=l ’\:.
L - ' . - o
) — N ) 01 . - g
= | I'P(m,0,q,~1) + ] P(,q,,q,-1){(p,/R) (3.33) i
& 2 - 1’72 2 .
n=R q,=1 T g
4;2)4 By‘ignoring the Tlow from state (N,Ql+l,é2) to state (N’Ql;qz) C-
and the flow from state (N,Ql,qz) to stata”(N,Ql¥l,q2). We can f
obtain four recursive sequences qu, Dql, A and By q.=Qp,...,1, ;;.
n=N,...,R from the balance equation at state (N,q,,q,), ql=Ql,fffj1 i
and'(n,O,qz), n=N,s..,RL The sequences are defined below. ?
i
v D

‘ .
ch =1 .
CQl_l = (N+p,) /0, "
O, =[O0, 4y - qul+21/piJ » 4370;-2,..051 | }
DQl =0 = |
DQI_; = = p,P(N,Qy,0,-1)/py
in = [(N+p_)Dql+l - NDql+2 - bé%(N,qlfl,qé-l)]/pl , q1=Ql-2,--a,L’
Ay = [(¥p)Cy - NC,1/py :
Ay ;= [(p)A - NC,1/p, %
An = [(n¥l+p)Am+l - (n+2)Ah+2]/blvi, n=N-2,...,R g "
By = [(¥)D; - ND, - p,P(N,1,q,-1)1/p; ;
By = [(¥+p)By - ND, - DZP(N,quz‘l)]/Dl ?
and v, Z ,g
~ B, = [(n+l4p)B .. - (n+2)3#+2 - pz?(?fl,o,qz-l)]/Pl ; n=N-z,...;R é'
'Then we have u | o i‘
P(n,0,q,) = A P(N,Q,.q,) +B_ n=R, ... N g
and ‘ | gi
P(N,q;,4,) =cqlP(N,Ql,q2) + Dql ,lvql=1,...,Q1 (3.34) %j
For n=R in (3.34) we have . % é
P(R,0,,) = AgP(N,01,0p) + By
or, R o | | ‘
P(N;Qi;qz) = {P(gto,qz) - BR]/AR~: ) (3.35) :

8]

TR R R e




o e
- = - o * .
4 »
, ‘ . , : ' : Q
{ . Since we already know P(R,0,q,) in (3.33), we can substitute (3.35) : : : 1
| RS ’ ; | Ay = [QH)AL - NGy - py(ac + § € )1/p
. into (3.34) to get the probabilities in terms of P(0,0,0). , qq=1 °1
STEP 5)  q,=M, do ' : : A = [(o+l4p)a o = (ut2)A ,1/p  , n=N-2,...,R
STEP 5.1) R ‘5 ~ - CNn oy
AR .
P(R,0,M) = == P(n,0,M-1) + P(N,q. ,M-1) : S
- R . 1 . ~ : = - - - -0
a=R q,"1 By = [(N#P)By - ND; - p,P(N,0,M=1) - 0, (By + ] D, /e
L , \ : ql=l 1
) p2 - X Ql . g ;,’ ‘ Bn = [(n+l+p)Bn+l - (n+2)Bn+2 - sz(n+l,0,M-l)]/p , o=N-2,...,R
f = == ) P(n,0,M=1) + ) P(N,q,M-1)| (3.36) .
% - L—n=R 7 q1=l ’ . ;} Then we have
o - - | | P(n,0,M) = 4 P(N,Q;,¥) +B_ , n=R,...,N
STEP 5.2) By ignoring the flow from state (N,Ql+1,M) into the state = L n
(N,Ql,M) and the flow from state (N,Ql,M) into the state (N,Ql+l,M), .j' : and'P(N,ql,M) = quP(N,Ql,M) + Dql s QI=1,---,Q1 (3.37)
»*fé*i . we can generate four recursive sequencgs,bcql, pql, An and Bn’ j" 1{ i | vFor, n=R in (3.37) we have !
q:=Q,,...,1, n=N,...,R from the balance equation at state (N,q,,M), ' \
: 11 v : 1 ;
i : P(R,0,M) = ARP‘(N,Q]_,M) + BR
1 ql=Ql,...,l and state (n,0,4), n=N,...,R. The sequences are,defined i b
| as below. : | e e N :‘ P op P(N,QI,M) = [P(R,0,M) - BR]/A'R (3.38)
; /{3 ¢ -1 : : = “ Vj; o Since P(R,0,M) iévalready knowp‘ffom Step 5.1), we can substitute
Q 1 : _ , ! \
l Sl e e
SR S 1 (3.38) into (3.37) to get the probabilities in terms of P(0,0,0).
| Oq-1 = (¥e)/ey STEP 6)  For q,>M, do |
C = [(Hp)C ., = NC_ . 1/p. , q.=Q=2,...,1 - R N 2
S q; [ a+p) qtL g2 P1 RN REERERE | z b  STEP 6.1) P(N,0,q,) = (p,/N) ] P(N,qy,q,-1)
| SR . PRI ql=0 .
{ D. =0 2R I L ‘ '
§ o Q ) y EE ‘ . L 11 \ o
| Dy _y = = PoR(N,QpH-1)/0, | | | = (py/M) ) PN.ap,a,-1) (3.39)
1 £ RS
Dql = {(N+p>Dql+1 - N, o, ~ P, P(W,q +1,M-1)1/pg 5 97Q;-2,...,1 e | STEP 6.2) By doing the same analysis in the Step 5.2), we have two
i o : ‘ ‘ . b R recursive se uences, ‘C  and D_ = P I '
Ay = [Qwe)C; - NC,1/p ., i B ) qp ¥ Vg 01700 The sequences
‘ - : ; : g IR C and D is defined recursively below.
T . ? 77 83
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c. ., = (N+92)/pl

a:
(1

[aeo)C, 4y - NC

¥ ql k l q1+2]/pl 3 ql=Ql“2, P a ,0

. P = 7
= - sz(N,Ql:QZ-l)/pl

(=
[

~ (N+p)D ~ND
and Dil [ (¥+p) a+ " " Dg 2

= sz(Naql+lsq2-l)]/pl ’ ql=Ql—2,f--yo

Then we have

h P(N,q7,4,) = c lP(R Ql,qz) + D, a q1=0’;"':’91 i§3.40)d
i For ql=0 in %3.42), we have |
P(N,0,qy) = CP(N,Qp,q) + Dy |
- or  P(NLQ ) = [BM,0,a)) - Dol/ey = " (3.61)

[

Since we already found P(N,O,qé)wgé (3.39), we can substitute (3.41)

into *(3.40) to get P(N,ql.qz), 9= ,...,Ql

i

. STEP 6.3) We keep 1ncrea51ng q2 by 1 each time until P(N,0 q2)<s P(0,0 O)

wherebe2 is a small number, for exgmple, 107 Let the final wvalue .

Of q2 be Qz ) ‘ bt o g}
STEP 7) First we consider the prdbabllltﬂes at the states (N,ql,qzj,
l=0 1,...,Ql‘and q2>Q2 Emplrlcally 1t shows that, for every ql~0 l""’Ql’
the ratio of P(N,ql,qz)/P(N,ql,q2 =1) converges to a constant as 4y We

cannot proof thls at this moment. We use it here without the proof.

: 3] .
Let R(ql) P(N’ql,Qz)/P(N,ql,Q2 ~1) for ql—O lyeee Ql.,,Then,w

E(qulaqz) = P(Nyqlaqz) ® R(ql)[(l“R(ql)).’ ql=0’l"."Ql
+1

27 v | | . (3.42)

84
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£(0,0,0) we get from the program is at least correct up to the~6th

Second, consider the‘probabilities at the states (N’ql’qz)’ ql>Q1,

q2=0,l,...,Q2. Empirically it also shows that for every q2=0,l,...,Q2,
the ratio of P(N,ql{gz)/P(N,ql—l,qz) converges to a constant as ql+w. We

also use it here without the proof. Let S(q2)=P(N,Ql,q2)/P(N,Ql-l,qz),

o

'q2'=0,l,...,Q2. Then

=

(o}

}  PWN,q,q,) 3

P(N,Q ,q,)5(a,)/ (1-5(a,)) 5 4.=0,1,...,Q
ql_Ql+l 12722 2 2 2 2

(3.43)

Third, we consider the probabilities at the states P(N,qlfqz), ql>Q1’

© o}

)

P(N,q,,q,)
a75Q+ qp=Qy*l

2 P(N,Q,,Q,)R(Q;)5(Qy)/ [ (1-R(Q)) (1-5(q,))]

STEP 8). )
n!ql’qz

P(n,ql,qz),s sP(0,0,0) =1 .

P(0,0,0) = 1/s

Note that we can omit STEP 7) if the g, in STEP 6. 3)1s small enough, say

-7

EzflO . The reason we have STEP 7) here is that we w1ll have less iterations

on q, if we choose a bigger €% This algorithm has been programmed iﬂigORTRAN

%
gt

- == —
in double precision with £.=10 7 in STEP 3) and £,=10 4 in STEP 6.3). The

1 2

significant

digit for any model. Exhibit 3.6 is the block diagram of finding the P{0,0,0)

in the D(N;R,M;Q,Q) model.

As we can see from the block diagram, the number of operatioﬁs is of the

order of O(QZ(N-R+1+Q1)). IQA? st of the models, Ql is less than 10 and Q2

is less than 50. . i
. !
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I-Find P(n,0,0), n=l,2,...;§7in

terms of P(0,0,0)

{_terms of P(0,0,0)

Find P(n,0,0), n=RFi,...,N in

For a given €7 to compute Qj and
Find P(N,ql,O), q1=1,...,Qy in

terms of P(O,Q,O)

qZ?l

)

Find P(R,0,q,) in terms of P(0,0,0)
i T

Find P(n,0,q5), n=R+1l,...,N and

P(N,ql,q ),ql=l,...,Ql in terms of
LQ(.Q\O\% ~

Find P(N,q7,q,), q7=1,...
;grms’of P{0, ¥O)

,Q% in

‘q2=q2+l
) t

Exhibit 3.6 Block diagram of finding P(0,0,0) in the

N ¥
Q2=q2-li

Computé.R(i), i=0,...,Ql and
S(j)s i=0$-"’Q7'

Find/?(N,ql,qz) at all the remain-
ing states in terms of P(0,0,0)

5 : °
[oum all P(n,qq,q9,) to
tecompute P(0,0,0)

o

$)
&5

D(N;Rzy;q;ﬁﬁ model
& .
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The P(0,0,0) in the D(N;R,M;Q,Q) model should decrease as M increase (bg—

" cause it has more states when M increases). For the special case R=N-1, the

P(0,0,0) in the D(N;N—l,M;Q,Q) model is bounded below by the P(0,0,0) in the

L
(et

S
9

D(N;N-1;°;Q,Q) model and is bounded above by the P(0,0,0) in the D(N;N-1,0;Q,Q)

model which is equivalént to D(N;N,»;Q,Q) model. And, when M-, PM(O,O;O) >

Pm(0,0,0), where PM(O,O,O) is the steady state probability at state (0,0,0) in

the D(N;N-1,M;Q,Q) model. Since we know the exact values of the bounds, PO(O,O,O)

and P_(0,0,0), we would like to compare the PM(O,O,O), M=1,2,...

to the bounds

PO(O,O,O) and P;(0,0,0). Exﬁibit 3.7 is a liat of thé comparisons of P(0,0,0)'s

with;M%O,l,S,lO,20 éhd ® in D(N;N-1,M;Q,Q) model. As we can see from Exhibit

3.7, the,PM(O,O,O), M=1,2,... is between PO(O,O,O)

to Pm(0,0,0) as- M increases to =,

and Pm(0,0,0) and it decreases

’ N| R [ A A, u M P,;(0,0,0)

5| 4 1 2 1  46647E-1

51 4 1 2 1 .44615E-1

5| 4 |1 2 1 .41893E-1

"5 4 1 2 1 10 | .41334E-1

5 4 |1 2 1 20 .41242E-1

50 4 1 2 1| = .41237E-1

0] 9 | 2 6 1 +27657E-3

10°] 9 2 6 1 .26628E-3

f 0 9 2 6 1 .24322E-3
” 0] 9 | 2 6 1 | 10 .23070E-3
0| 9 2 6 1 20 | .22261E-3

10 9 2 6 1 % .22025E-3

Exhibit 3.7 Comparisons of

e

M~cutoff point

87

P(0,0,0)'s for different
in D(N;N-1,M;Q,Q) model
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Waiting Time Distriﬁﬁtiondfgr High Priorifty Customer
The waiting time density function for the kth high priority customer in
the queue is also Erlang distributed with parameters Nu and k. “It is exactly

the same as in the D(N;N,®;Q,Q) model (see equation 3.8).

Conditional Expected Wéiting Time for Low Priority Customer

Let EWé(n,ql,qz;k), qzzk, denote the conditional expected waiting time of
: the kth low priority customer at state (n,qléqz) in thé D(N;R,M;Q,Q) model. 1In
this section, we will derive a recugsive formula to compute EWﬁ(n,ql,qz;k) for
each kﬁgz on all the feasible states (n,ql,qz).

Following tﬂat we will carry out an example to show how if works. Note
“. that, for R=N-1, tﬁe unconditioﬁal expected waiting time of low prioritx‘
;ﬁgpomer in D(N;N-1,M;Q,Q) model should be bounded above and below by the
unco;&iFional expecféd waiting times of low priority customer in
D(N;N—l;%;Q,Q) model and D(N;N,«;Q,Q) model respectivgly for M=1,2,... And,
for R=N-1, Ewﬁ(n,ql,qz;k) in D(N;N-1,M;Q,Q) model will approach to EWi(n,ql,qz;k)
in D(N;N-1,2:;Q,Q) model as M+»o. Since we have the exact value of the bounds,

"we want to compare our résults to the bounds. Following that we will discuss
an upper bound and a lower bound on the conditional expected waiting times.
Finally, we examine an example, D(15;12,5;Q,Q),‘with,the same rates as they are’
in Section 2.3. *

Now, we start to compute EW&(n,ql,qz;k), kfgz. Since the low priority
queﬁe length is restricted to M when the system is not full, EWﬁ(n,ql,qz;k) will
depend on q, as well as on n, qg and k. It is very easy. to see this property
at staffe (N,0,M) and state (N,0,M#1). At state (N,0,M+l), the first low priority

customer will start .the service if no high priority customer enters the system

before a server completes service. But at state (N,0,M):, the first low priority

customer stzl;wwﬁlt in the queue when a server completes service. Hence,

&l
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equation (3.25) will not hold in general. But it still holds when q23M+k,

k=1,2,..., because when q22M+k the D(N;R,M;Q,Q) model works. just like the

.l.

D(N;N,=;Q,Q) model. As it is in the D(N;R,M;L,Q) model, we have to find a
state such that the expected waiting timergz that state is known to start the
recursive process for each k. |

For k=1, we start at state (N,0,M+1l). At state (N,0,M+1), there are M+l
customer waiting in the low priority queue, no customer waiting in the high
priorit?.queue and all the N servers are busy. Let T be;the time elapsed
since the system went into state (N,0,M+1) until the first low priority
customer goes ‘into service. Then, E(T)=EW§(&,O,M+1;1). Under D(ﬁ;R,M;Q,Q)

model, the density function of T can be expressed in the transformed space

' ‘ N 2 S
£q(s) = (s+Nu+Aly-ﬁV25+Nu+Al) ~4NUA) /20,

And, E(T)=1/(Nu-kl). Hence, we have
EWG(N,0,36+151) = E(T) = 1/ (Nu=A,) (3.44)

At state (N,ql,M+l}, there are (M+1) customer waiting in the low priority
queue, q, customer waiting in the high priority queue and all the N servers

are busy. Let Tq be the time elapsed since the system went into state
1
(N,ql,Mﬁl) until the first low priority customer goes into service. The dis-

tribution othq is the (ql+-.1)St fold convolution of the distribution of T
: 1
and the expected value, E(Eq ), is equal to (ql+l)/(Nu—Al). Hence

1

=1,2,... (3.45)°

Ewgcu,ql,m+1;l> R NCAIC T RS

¥

E4

In applying (3.12) for q,>M+l, we have
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“(3.46)

2 ,
QEWM(N,ql,qZ;l) = (q1+l)/(Nu-Al), qupqu22ﬁ+l

R ¢ . ‘ st A
Now, we have found the§sonditional expected waiting times of the 1"~ low priority

kY

customer for q2>M. We want to proceed this for q2-M

At state (R,0,M), we have

A

: 1 1 2
1Y = .
EW (R, 0,1), BTt WL, Ph(RL0GD)
= A+ By Ewﬁ(a+1,o,m;1) (3.47)
h have defined A = —i—— 2nd B, = L.
where we have define AR,— TR) & R ™ R
Follow the same analysis at state (ﬁ;O,M), n=R+1l,...,N-1, we have
EWﬁ(n,O,M;l),= Ang+‘BnEW§(n+1,0)M;l), n=R+l,...,N~1 (3.48)
5
B 1/u+nA P oy, ”
whers . A = —p—BSne apd B = —metl o
, " n(l-B__ )+ n n(l-B _,)+p

At stata (N 0 M),

) e 1 Ny 2
i (N, 0551 = ,.Nu+)\l+}\2 Nu+k 7x, Hhy (-
UL ‘\\\ &3

+ ——— EWQ(N,‘,M 1)3

Nu+k

(I

I

Substitute the value EWﬁ(NsO,M+1;1)cin (3.465ﬂ

e

“ I B
B (N,0,M31) = Ag + By B, (9, 1,1631)

l/u+NAN l+02/(Nu—ll) - and B‘:
N(T-By_,)%0 ne Sy z

where

Au"

P

.

A0
s

Lemma 3.2:

; Proof:

N

L S T S e o

/L//

%, ' ‘ <
B, (N, q,,131) = cql + DqlEW§(N,ql+l,M;l) , 4=1,2, ... (3.50) (
n . 1/u+NA +20 - )
with ¢, = iAo,/ (i-Ay) N
~ N(I-B )+ LT RTEpm -
i 1
“q é N(l_D ’)+p — and D .= - s 9 =2,3,...
1 4,1 q ~ W Dqlfl)+p 1

b |
As we can see from equation (3 50), we need a value of EW (N,ql+l M 31) to

compute EW (N,ql,M 1). We found that EW (N,ql+l M; l)—EWl(N,ql,M l)+1/(Nu-X )

We prove thlS in the following lemma.

-~

as ql .

The sequence D in (3.50) approdch to
1

[ ~V(¥0) 2-4Np | 1/2N as q (7

In (3.50) we have. 0<Dv <1 for eve | and D. =
C ey 75 #E 5, TRaD,

Lemma 3.1:

Proof:

is monotone sequence of’ql.

Let D D as q, -,
ql ql then

N2 - (N+p)D + Py =0

or . D= [(p) - Vo2 - 4Np,1/2N Q.E.D.

2 . 3
(p-Nm)(Nu_A y as qI*”where D is defined

The se uénce c -~C
-0 q q1+l ql

in Lemma 3.1.

From (3.50), we have

l/u-!-NCq +p2(ql+2)/(Nu-X ) l/u+NC

- C &= 1
CCC O - N(-D )+p

4,119 (@) / (A

C
L

N(1-D

9




e

8!

W

N

- N
M\.’ N o o~
.
From Lemma 3.1, D >D as qléw
ql . >
‘- ; e, th NE Sscaes
Let qu+l Cgl+C when q97% then .
N E\)k’kr ‘
L Nerey/ ()
N(1-D)+p
. - ) ’ i k
or C = p,/[(p-ND) (Nu=4,)] Q.E.D. | %
. ) L
Lemma 3.3. EW'Q(N qy +1,M31) = EW (N,ql,M 1)~ --11—_-'}:; as qp7®
Proof: From (3.50), we have
EW£(N qy +1,M; 1)‘ EWl(N,ql,M l) :
= SM;1) S DL EWS(N,q -1,M;1
= (€, 1+l ) + Dq1+1 EWM(N&qi%M,l) Dql M; sy -1,M51)
Let EWz(W,q +1/M 31) - EWl(N,ql,M 1)> E as qq7® . x\
Then J
é(
E=C+ DE & '
' O
. E = C
or =1p | .
Substitute C and D in Lemma 3.1 and 3.2, respectively, we have
' 1
E = Q.E.D.
Nu—xl )
' 4
OIf we pick a value;Q1 a@d apply Lemma 3.3, we have
iii?% EWE(N,Q;,M51) 3 EWg(N,Q+1,M31) - T (3.5
£ M 1 M o u 1
From equation (3.46), we have
EWL(N,Q;,M31) = Cq. *+ Dq. EWl(ﬂ Q+1,M;1) (3.52)
- 1 1 e

92 .-

N

iy

. .

S VI

Equaﬁe (3.51) to (3.52), we héVe.h - =

. |
EW (N,Q +1,M) = (CQl + Nu—AI)/(l'DQ ) (3.53)

1 b

Substitute (3.53) backwards into (3. 50), (3. 49), (3.48) and (3.47) we

o
will have the conditional expected waiting times of the first low priority at

_those states with low priority:queue length equals M.

"\{=k In general, for each q,=M-1,4-2,...,1, we have
\

Sy
N ‘

‘ )
EWé(n,O,qz;l) =4+ BnEW§(n+l,O,q2;l) , n=R,...,N-1 7
g . < ' ‘J‘ ' j
ES(N,0,q,31) = » ; %
na(,0,0,31) = Ay + BUEWG(N,1,q,51) .

A
EWﬁ(N,ql,qz;l) = qu + DqlEWM(N,ql+l
where =7 .

14931 5 qp=1,2,...,Q  (3.54) .

A_R :

[1/0+0,B0y(R,0,0,+151) 1/ (Rép)

= ' D
By = P/ (RtP) |
A= [;/u+nAh_l+szWﬁ(nﬁ0,q2+l;l)J/[%Sl-Bn_l) +p] , n=R+l,...,N
) ] ®
B =p,/[n(1-B__) +pe] , u=R+1,...,N
C. =

1 [l/u+NAN+p2 (N 1,q2+1 l)]/[N(l-B )+o]

Lo
)

Q
]

- [1/wC, 1+pz <N,ql,q2+1 1)]/IN(1-D

)+p] s g =29----,Q
93 1 ql-l 1 1

and

It

‘Dql Dl/[N(l-pql;l) +ol . qy=2,...,0Q

As we can see from (3. 54), .again, we need -a value of Ewl(N,ql+l,q2,l) to compute

EWK(N,ql,qz,l) - Lemma 3.3 ~still holds for q2<M. The sequenqe D

is exactly
I ,

Q

' N
93

|




A

the same as it is at q2=M. Hence, Lemma 3.1 holds for every q2=M-l,...,l. We

now prdﬁe Lemma 3.2 holds for q2=M-l.

Lemma 3.4. When q2=M—l, lim [C 1" q ] =0 /[(p ND)(Nu—ll)], where qu 1sn
qq 4 1 ) e
defined in (3.54) and D is defined in Lemma 3.;. -
Proof: TFrom (3.54) we have -
h %
1/u+NC l+szW£(N,ql+l M3l) l/u+Nqu_l+p2EWM(N,ql,M,l)
c c = N(I-D
9t gy N(1-D )+p ( ’_ q-1¥P
\.\\\‘ SED
In applying Lemma '3%3 and let q1+m, we have
llm [C ] = C = N(l D)+Q A/_//,f\\,
;> qqtl ql A
N S

or C= p2/[(p-ND)(Nu-Al)] Q.E.D.
Use Lemma 3.4 and the teéhniques we used in the proof of Lemma 3.3} we have

Lim [BR(N,q,+1,8-131) = EWg(N,q;,M-131)] = 1/ (Nu-A,) E

97
We can repeat this process,untilmq2=l. We state this in the following Lemma.

| , g T -
Lema 3.5. Lim [EW(N,q;+1,q,51) - BRG(N,q4;,0,51)] = 1/ (Numhy)
g7 7 :
l ety
' 4
, for 1<q,<M.
Hence, we can pick a number Q; such that
1y = C. +D. E N, +1 ;1) (by 3.54)
EW (N, Q; ,q,51) ch ‘DQleﬁ( Ql4u,q2 ) (by

]

1 S

94

&

<

Lo

e
Bl

B

v

or Ew§<N,Ql+1,q2;1> = [Cq +1/@u-AD1/ - D ) (3.55)

1 . ‘1
| |
Substitute (3.55) into (3.54), we will have the conditional expected waiting *

times of the lst low priority customer.

e

Exhibit 3.8 is the block diagram of finding the conditional expected wait-

ing times of the lSt low priority customer. As we can see from the block

diagram, the number of operation to compute these expected waiting times is of

the order of O(M(Q1+N‘R*1))- We can generalize this procedure to thelk%hclow

priority customer, k>1. We summarize the steps of finding the conditional

expected waiting times of the kth low priority customer, k=1,2,...,K below.

STEP: 1) [Aqsign the conditional expect%ﬁ waiting times to 0 at all the
/
1nfea51ble states. 1 4
EWﬁ(n,O,M}lgk) +0 , n=R,...,N-1 and k=1,...,min(M,K)
g . N\ ,
”EWM(n,O,m;0)~¢ 0 % n=R,...,N-1 and m=0,1,..
ol
v . EWM(N«,q,m;l) «0 -, q-—:O,l,...,Q:L and w=0,1,...,M
STEP 2)‘ [Compute the conditional expected waiting times for the kth low
priority customer. ]
k « 1 ' :
STEP 3) [Set up the starting states fog\the‘kth low priority.]
: . G
Eﬁé’(N,q,m;k) 4_1\1_11;1'1;_ , Q=O,ls-.-an )
\ 1 m=M+k, ... MK ’
STEP 4) g * M+ k-1
%, STEP 5) [Compute EWM(N,q,Qz;k) for q,>M.]

©

If qzéM and qzzk'then define Cq and’Dq’,‘q=O,l,...,Q1 ; R 8
. 295




b

P

/

REERE VAP ANON 9. AP o

.
E?ﬁm Eem———
0
Ew (a,0,M+131)=0, n—R,...,N—l | i
pwi(n g, L3 1)= (q+L)/ (Nu-Ay), q=0 Lees0
¥ "
q2=M
AR~[l/u+02 ¥ (R,0,4,+151) 1/ (R+p) g
-[1/u+nA 1+p2EW (n, o,q2+1-1)]/[n<1-3h_l)+p]
-p/h(lB P)#0], n=RHL,.. N :
~[l/u+NAv+pz"W£(N 1.9,%1; l)]/[N(l-B )+0]
l—pl [N(1-B, )+p]
Dq=gl/[N(1-Dq_l)+o], 9=1,2,...,Q
2
m&mn&LqP1>[c+ﬂuxJ/u.n> ”
EWy (N, 4, 4,51)=C_+D EWZ(N,q+l,q2,l)
for q=Q,Q-1,...,1 N
“ Ewﬁ(N,Q,qz;1)=AN+BNEW§(N,1,q2;1)
EW,iQ{(n,O,qz;l)=A +B ?Wf’i(n+l,0,'q2;l)
for n=N-1,...,R
. = 1=dp~t :
NO ‘ ; ;
9,<1 e |
lLYES L
Continue to compute g
EWl(n,q,qz,k) k>1 f
\2 :
Exhibit 3.8 Block diégram of findingbthe“éonditionalwex?ected j
waiting times of the lst.low priority customer BE
u 86 .
® : =

(@}
]

a

FA-D e

SR,
l/u+NEWl(N 0,q,-13k- l)+p2 :ﬁ(N,O,qé+l;k) .
N+p
1 :
N+p
%

L/WHNC 1 +0) By, (N, 4,41 5K) s .

N(l_Dq—l)_l_p 5 79 ’ .y l

Py

q=1l,2,... :Ql

1
. Yo T W
B (N,Qp#1,qy3k) + —= :
Ql
EWx(N q,9,3k) <« C_+ D EWZEN +1 k = '
M 2N 'q q ™M » g sq.za ) s q—Ql’Ql-l3~-',0
9y * 9, - 1, and repeat this step.
If q,>t and q,<k, GO TO STEP 7). -
If q,<M, GO TO STEP 6). )
STEP 6) [Compute EWﬁ(n,q,qQ;k) for q2<M.] ;
. !\)i — o
= A\ E
AR = l/u+REW§[(R90:qz-l;k-l”)'*'pzm‘zé(R'*'l:O’q:z;k"l) : N
xS if q,=M ;
 L/WREWL(R,0,q,-13k~1)+0,EWE (R, 0,q, 1K) ?
s T R 1 qyM o
By = P/ (Rip) §
9 ;
. - l/u+nAn_l+92EWﬁ(n+l,O,qz;k—l) o ;
N e n(1-B Yo ~ , n=R+1,...,N~1 when q2=M b
'xg n-17 b
i : - }
; q g A
X =»l/u+nAn_l+D2EWﬁ(n,0,q2+l;k) n=R+1l,...,N when q2<M
I | n(l—Bn_l)+p > and n=N when q,=M
N ; ]
) 97 §
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LHRI | AR P R “,ﬂi‘::i:w; e O - e e "‘v

2 ~ oy &1 ‘s in th
‘ EWM(g,Ql,qz;k) = EW&(N,Q1+},q2,k) ﬁﬁ:xz s 9y>k>1. We state this in the

‘ ﬁheorem 3.&.’ lim [EW&(N,ql+l,q2;k)‘- Ewi(N’ql’QZ;k)] = W

oy,

= - = + vy N
Bn Dl/[n(l Bn—l)+p] » n=R+l 53

[} . ,
l/u+NAN+p2EWM(MPl?q2+l§K) - -
¢ = N(I-3)+p ‘ |
N
1/u+NC _l+92EWi(N,q,q2+1;k> -
C = ———— z » [3=2,3,...,Q |
: X i
: . I
Dq = pl/ [N(l-Dq—l)-hoJ ’ q_?aés cae ’/(/Ql
o s J
T — / v
: o WX
EWM(N,Ql+l,q2;k) *"""f:g;"’f: /
L ¢ /
v /
EWﬁ(N,q,qz;k) “C ¥ DqEWﬁ(N,q+l%é2;k) > 49=Q15Q;71,. .51

i

/

: : ; /
BV (N,0,0,3K) + Ay + Bnmﬁm,l;qz,k)
;

: &
EWﬁ(n,O,qz;k)>+ A.ri + BnEW§(qfi,0,q2;k) , n=N-1,...,R

9y ¥ qy 7L

If q,>k, repeat STEP 6). 0.W.” 60 TO STEP 7).

STEP 7) k « k+1

If k<K, GO TO STEP 3). O.W. STOP.
In Steps 5) and 6) of the above algorithm we used an approximation

foliowing Theorem.

B8y

g

o 1

91

i;\m

for qzzkz;.
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We are not presenting the proof here, but we will prove it in the disserta=-

tion. Note that Theorem 3.2 is a generalization of Lemma 3.5 for k>I. The
physical meaning Of:Theorem‘B.Z is that, for the kth low priority customer,
the difference of the expected waiting time in the queue at state (N3q1+l,q2)
“and at state (N,ql,qz) approaches to a constaht, l/(Nqul), when d approaches
to infinite, for every qzzkzl. And, this constant is just the expected time
of the system goes from state (N,ql+1,q2) to (N,ql,qz). {
In this algorithmi, the number of operatioﬁs is of the order of
O(KM(N—R+1+Q1)), where K is the number of low priority customer omne ﬁ%ntskto
compute, M is the cutoff point on the low priority queue, N-R is the number of
servers reserved for high priority customer and Ql is an estimate of the maximumhigh -
prioritthﬁéue length. 1In most of these models, Ql=5 will give the very good
approximations. We do a single example with Ql=2 below.
’ : . « o
Example 3.1. Find the conditional expected waiting times of the first 3 low f
. ’ 0 (
priority customer in D(5;3,2;Q,Q) model with A1=A2=u=l. :
Solution: In this example, we have N=5, R=3, M=2,,KF3,.pl=pz=p=l and pick
Ql=2' . )
STEP 1)  EWa(ns0,3;k) = 0 n=3,4 and k=1,2
L | i
.sz(n,O,m;O) =0 , n=3,4 and m=0,1,2 r
oo | ‘ o
EWé(S,ql,m;O) =0, q1=0,l,2 and m=0,1,2 ;
STEP 2) k =-1 | 5
: 2 ql+l 4 °
STEP 3) EW2(5,q1,m;l) =7 ql=0,l,2 and m=3,4,5
~ STEP 4) a, =2
STEP S)Q ~Skipped becauSe 9y = M. ‘ : | .
99




- e gy -
. - SR, v b L e e . R P T R s . % : fl ¢ &
Lo b L
f ‘ } } gy =
| | &
5 - STER 7} k =1+l = 2 <K = 3, GO TO STEP 3.
STEP 6) A, = .2, B, = .2 % i . o ’ ,
3 | Voot T _ q¥2 Yo
4, = 346, B, = .192 ! LT mGem) = G2 qe0,1,2 and w5, y

~.166 . J ' SIEP 4) =3 .

>
|
£
\O .
~
-
vl
I

: © o G =.643, Dy = .162 STEP 5) q, =3 >M=2 and 9, =332

’C = .802 , D, =..162 , . : T o CO = .662 , DO = ,143

.255 : | . R 6 =.805, 0D

.159

i
il

il
o

BWS (5,3,2;1)

(9
1

2 971, D2 = .161

g l . > §°
EW, (5,2,2;1) = 1.005 | : | el

EW,(5,3,3;2) = 1.457

By (5,1,2;1) = .806 o . o}
’ . . | .%

”,A ‘Q
] . ‘ | EW : = 1,
| B, (5,0,251) = 1627 ! o E,(5,2,3;2) = 1.206
"“ le i
: ¥ _EW 933 =,
3 B (4,0,231) = 467 : 2(5:1,3;2) = 397

EW 5 5 =
EW§(3,O,2;1) = ,293 ‘2(3,0,5,2) _805

4y = 2-1 = 13>k =1 (repeat STEP 6) “ & T2 7 371 = 2, and repeat SIEP 5).

STEP 5)

2 <M, GO TO STEP 6)

SIEP 6) A, = .259 , By = .2 A | T 1| STEP 6)

o B et S TR L i

526, B. = .2

A 3
A

7

; : A, = .481 , B, = .192 o | : | L

i ;40) | 4, =k-217 » By .= 192
E » ’ AS T:_“ ) 668 ,f‘ BS T 166 R - v é A’S ‘527. “"' 893 ’ BS =, . ls‘g‘ !
; Cl = .834 s Dl = .162 = o r/ = : ; ‘ ) . ) cl == l.‘b47 s Dl - ..1,62 ‘,

2

¢, =.997 , D, = .162 | f ) | oo Gy = 1.202, b, = 162

2 . ‘ S = R o
o B, (5,3,151) = 1.494 | | AR & A By (5,3,212) = 1.734

it
i

B, (5,2,1;1) = 1.238 1.482

2 _
EW, (5,2,2;2)

w

R TV SRS

i

. ,’r‘ 5 2
By (5,1,151) 1.034 EW,(5,1,2;2) = 1.287

[
k]

1.9y = i B [} y
Efwg(S,O,l,l) .839 ] , ¢ N _ EWZSS*O’Z;Z) 1.106 . .,

.93

i

@ ‘Ewg(4,o,1;1) = .642 E | - (IR N | EW§(4,0,2;2)

EW§(3,0,1;1)

9 = 1-1 =0 <k = 1, GO TO STEP 7).

101
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STEP 7) k= 2+l = 3 <K = 3, GO TO STEP 3). - | We summarize the results below in Exhibit 3.9. The numbers below each
: ;é. . i state afé the expected waiting times for each waiting low priority customer.
{Q STEP 3) Ewg(S,q,m;3) = SZ— » q=0,1,2, m=5 | @ o . ! o ) 5
»% ) . o
‘ STEP 5) q, =4 >M=2andq,=4>k=3 387 293, .712
o . L , .
Co = ,825 DO = 143 . 5 .
C, = 974 , D, = .159 : {
C, = 1.148 , D, = .161 ) ‘ g . ) <642 467, .93
L . ) : o |
? EW,(5,3,433) = 1.667 J ° )
: | .839 .627, 1.106 .25, .805, 1,285
| w’é(s,z,a;s) = 1.416 | _
EWy (5,1,433) = 1.2 ’ - \5.1.2 @
: ¢ N -~ 1.034 .806, 1.287 .5, .997, 1.471
z EW,(5,0,433) = .996 \ ”
} \\ & : -'. '
q, = 4=1 = 3, and repeat STEP 5). 9
STEP 5) q,=3>M=2andq,=3>k=3 o | | | 1.238 1.01, 1.482 .75, 1.206, 1.67 s
{ = . = . 4 ‘
: C0 1.075, DO 143 . } : ‘ ‘Exhibit 3 9 Conditional expected waiting times of low priority i
| ¢, = 1.205 , D, = .159 # , : | , S : customer in D(5; 3,2;Q, Q) model 3
o ’ A g @ 4 E v : : 3
i = - § 4 { '
! 02 = 1.361 , D, = .161 é» | / | & “ ; 0 |
9 . . ' i i As we can see from Exhibit 3.9, the numbers are. slightly greater than those i
EW,(5,3,353) =192 B By /\ 3
. ° - ‘ ; . : numbers in the correspondlng states of D(5;3,2;L,Q) model (see page 43 ). 4/ ,
. , I o f
:3) = 1.6 O A A ‘
EWZ(S’Z’B’S) 1-67 o ‘ - 'é° W ) Following two propertles whlch hold in the D(N R,M;L,Q) model also hold .// ,
- | BWy(5,1,333) = 1.471 | . | 1l in the D(¥;R,M;Q,Q) ‘model. B
é EW?(S,O,B'B) = 1.285 Q \ : ‘,% 3 (l{ *The busier the'system or iwhen the system. is f?ll)athe more high B
%Q a, = 3-1 = 2, repeat STEP 5). R ' N i  '. 1 S priorit¥ customers waiting, the’greater the conditional expected *f
STEP 5) 0, = 2 <M and q, = 9 <k = 3 o TO STEP 7). . | B B 4 ' . waiting time for low‘priéifty customer. That is, . @ W
STEP 7) k= 3+1 = 4 > K = 3, STOR. | AR ,> ) S ‘ | 2
) ’ | i i ! i EWM(R,O,qZ;k)<..,.,<EWM(N‘,0,<12;1§)’<@;’:\,~<EW§(N,Q'1,qz;,k)<EWM(N,ql l,qz,k)
. cn for q >‘® > 1. .50 . ’ . - .
. o 2 — — ] ql * . ' A -
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waltlng time of low prlorlty customer in_the same positlon

..3;1;,

That is,,

for R<n<N, EWﬁ(n,O,k;k)>EW§(n,O,k+l;k)>...>EW (n Q5 I k), 1<k<M

for n=N, EW (N,ql,k k)>...>EW£(N,q1,M k)>EW (N, ql,qz,k), q2>M>k

\\ )\

q;=0,1,2;..

s The reason for above two properties are the same as:they,are in the D(N;RgM;L,Q)

model.

Let Ewiﬂbe the unconditional'expected waiting time for the D(N;R,M;:Q,Q)

model. Then , - 7
// B =
di?f’ 3 M-1 N-1 7
? S oEe, = ) ) Bm, O,qz) EWZ(n 0,q,+13q,+1) .
: q,=0 'n=R 4 ’
W—l
% : + ) P(n,0 M) EW (n+1,0,M;M)
H =R
‘ © © - ’ .
R . + 1 L P(,4q,9p) Ewﬁ(N,ql,q2+1;q2+l> (3.56)
P 1,70 9;=0 ~ : :
(// i The reason for (3.56) is thati if a low priority customer afrives and finds

N R s

1) the system at state (n,O,qz), R<n<N and q2<M, tﬁgﬁ he/she will join the low

i priority queue in the (q2+l)St position with the°e§pgpted,waiting time equals

| Ew}ﬁ(n,o,QQ-*-lng-*-l)va 2) the system at state (n,0,4), R<n<H, then the first low
priority customer in the queue will begin the service and the arriving low

priority customer will join the queue in the M~ position with the %xpecte§

waiting time equals EWz(n+1 0,M;M), 3) the system at statek(N,ql,qz), then
he/she will join the low prlorlty'queue in the (q2+l) positip% with the

expected waiting time equals EW (N ql’q2+l q2+l)

oo <:{ \\\>1 St | 104 o o
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(2) The more .low prloréty custom°r waltlng, the less condntlonal exnected )

e

b’
&

o

B

8
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i I v
’(3.56) to compute EW, with q; up to Q and qy Up to Q,-
should be bounded below by the EW£ denoted as Ewg in Exhibit 3.10; in the

D(N;I‘«

in the D(N;N-1,%;Q,Q) model.

I

fnd, EWLEWS as M,

e st ol

W

Exhibit 3.10 verifies this.

A program has been written to compute P(n,ql,qz), EWﬁ(n,ql,qz;k)Cand using

For R=N-1, the‘EWﬁ

«3;Q,Q) model and bounded above by the EWR, denoted as EWl in Exhibit 3. 10,

{;} N R | A A, u/y M "
5 4 1 2 1 .0249
5 4 1 2. 17 .0614
5 4 1 2 1 .0867
5 4 1 2 1 10 .0876
5 4 1 2 1.0 20 .0876
5 4 | 1 2 1 = .0876
10- "9 2 4 1 .0317
10 9 2 4 1 .0448
10 9 | 2 b |1 .0656
10 9 | 2 4 1 10 .0704
10 | -9 \ 2 4 1 20 .0712
10 9 2 4 1 o | .0712
> | 15 4 .05 .25 .034 .2196
15 | 14| .05 | .25 .034 .3052
15 14 .05 .25 .034 4394
) 15 4 | .05 .25 .034 10 L4676
o 15 | .14 | .05 | .25 | .03 | 20 4714
15 14 .05 .25 .034 @ .4715

&

&

Exhibit 3.10 Comparisons of the unconditional expected.
waiting time of low priority customer in
D(N;N-1,M;Q,Q) model

Now we discuss the bounds of EWg(n ql,qé;k)’in D(N'R‘M'Q Q) model. For any M,
oL (n ql,qz,k) is bounded above by EW (n,ql,qz,k) which we dlscussed earller

‘1n Sectigg 3.2, That is ‘ g '
SO R S s
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Ewﬁ(n,ql,qz;k) < Ewi(n,qi,qz;k) s kj_<_q2
at any corresponding feasible state,?f D(N:R,M;Q,Q) model and D(N;R,*;Q,Q) modﬁl.
The reasons for this is the same as it is for the D(N;R,M;L,Q) model. For
example, the sfate (12,0,1) is a feasible state for’D(lS;lZ,m;Q,Q) model and

- D(15;12,M;Q,Q) model for every M. With A1=‘053 Az=.25; ué.oﬁa, EWﬁ(lZ,O;i;l)

==

are disﬁlayed in the following table for M=l,..,7 and, «. =

M 1 2 3 4 5 6 | 7 ©

EWM(lZ,O,l;l) 1.5992.2512.52|2.65|2.71:{2.74 |1 2.75|2.76

As we can see.from the above table, it does not take too long to reach the upper

_bound. o

fo)

As it is in the D(N;R,M;L,Q) model, EWﬁ(n,ql,qz;k) is bounded below by

EWﬁ(n,O,M;k) for R<n<N, kﬁngM and the  lower bound is exact when q2=M‘ That is,

z . et L,
EWM(n,ql,M;k)<EWM(n,ql,M-l;k)<-;.<EWM(n,q1,q2;k)<--KEWﬁ<p,ql,k;k)

for n=R,...,N and l§k<M.3} ‘ ‘ s
To find the lower bound EWﬁ(n,ql,M;k), we have to carry out the recursive seduences

An’Bn’Cq ,Dq which are defined in this section. It will be easier to find the
1 *1 ,
lower bound than the exact value. We do a simple example below to show how to

find the bounds.

4

Example 3.2. In the D(4;3,3;Q,Q) model with kl=kz=p=l. A low priority customer

arrives and find the system is at state (3,0). What isthe maximum expected wait-

ing time and what is the'¥inimum expected waiting time of this low priority cus;tomer?
; R o\ )

Solution. Thearrivinglowpgioritycustomerwillenterthelbwpriorityqueueinfhe
first position and the expected Waiting;time for him/her‘is EW%(B,O;i;l); From

above discussion we have
N )
i ‘ . 106
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Ew§(3,0,3;1) < BW3(3,0,151) < EWS(3,0,1;1)

(1) Compute the upper bound EWi(3,0,l;l).

From Section 3.2 we have

1

D = e
N Nu—kl
1+
D =D = 1Py = Nu =42 4
N~-1 ”R - Ru Ru(Nu—Al) 9 )

BW(3,0,151) = 444

(2) Compute the lower bound EW§(3,0,3;1) %
For simplicity, we pick Ql=2. Then we have
A, = .2, B3¢= 2
A, & .4103 , B, = .1923 ’

C, = .6324 , D .1912

1

C, = .8652 , D, = .191

2

EN3(3,0,3;1) = .3148

Hence, we have .3148 < EWS(3,0,131) < .4444

In general, for a given mddel D(N;R,M?éfé}, it is much eésier to find the
upper bound than the lower bound, numericaiiy;
Wg ca:i define the boundary states J.n the D(N;l{,M;Q,Q) model in the same way as
they are in thé D(N;R%M;L,Q) model. All‘ghe properties about the boundary
states also hold in the D(N;R,M;Q,Q) model (see page $i) and we do not repeat
here. o ' I
B ‘Now wecshow the example we did inaSecyion 2.5,‘the D(15;12,5;L,Q) model .
When the syg;emﬁis fuli, instead of lost, the high priofity calls are queued
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in the high priority queue. BHence, it is D(15;12,5;Q,Q) model. Exhibit 3.11

g is the transition diagram for D(15;12,5;Q,Q) model. ' Exhibits 3.12 and 34?3 are :
- . | : " . B = Sumber ¢f 3usy Sarver

.y ) q; = Lengch of High Priority Queue o -

the steady state probabilities and the conditional expected waiting times of
\Qé.ql' 9, = Length of Low Priority Queue.

Y
5

low priority calls, respectively, for those states that are in the dashed box
Arrival Rate of High Priori:v Call

O = 3/hr = ,05/min)

2
.
x
iy
>
A
>
”
d.
>
—
L]

in Exhibit 3.11. Comparing the steady state probability in the D(15;12,5;Q,Q) ‘
; -‘-u1 l.)\\’*’- )
%y = Artival Rate of Low Priority Call

model to the steady state probability in D(15;12,5;L,Q) model, one can notice
, ‘ (A, = 15/hr = ,25/min)

' . : E D ;
that the former's probability is slightly less than the latter's. As a matter .- | : ; u 'semdce:hﬁeOfAllCaLb ‘
' o . ’ . ; u'u1 Airdg (1/u = 29,4 ain)
of fact, this is true in general because in the D(N;R,M;0,Q) model it has more ‘ :
states than the D(N;R,M;L,Q) model has. . ‘ ‘ _
R . - ~ ﬁ./u“’ LA["AL ________ —_

The properties about the conditional expected waiting times of low priority @@ Lx_\ A,.
- v

Comparing ’#4LA‘ :‘%AL“ - A '&41*‘ 1 A

; calls in the D(N;R,M;L,Q) model also hold in the D(N;R,M;Q,Q) model.

the conditional expected waiting time of low priority call in D(15;12,5;Q,0)
model to the conditional expected waiting time of low priority call in

D(15;12,5;L,Q) model, one can notice that the former is slightly greater than

|
|
!
!
l
!
{
|
] |
v |
jf the latter. This is also true in general because in D(N:R,M;Q,Q) model there » ’ ; . . '
) i : : ; g el % “ : Ae, A ' 2 b
t e N —a-w—-}->
. ] ] —”
P !
| \ . ,
' .
|
|
L

is a probability that high priority calls may come into the system when the

system is full and those high priority calls will be served before any of the

waiting low priority calls cam go into the service. The unconditional expected

In D(15;12,5;Q,Q) .

waiting time of low priority call also has this property: TR - - o e e
model, the unconditional expected waiting time of low priority call is 1.705 \ fnﬂ’A. 1/A ;lk'
: : _ AL 4 [5a0-¥ M (;-/] A U?’j L/\‘

<<
=
s
plagd 4
<
b
J'r-
=
N
o
—
¥
5
r
5.
ir

and in D(15;12,5;L,Q) model, the unconditional expected waitidg time of low

priority is 1.66.

Exhibit,3.ll Transition diagram for D(15312,5;Q,Q) model
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THE STERDY STATE PROB FOR DUIS;12, 5,0,0)
LAMDAT= 0.0500, LAMDA2= 0.2500, MU= 0.0340
THE PROB OF HIGH PRIORITY CU%WONER WALIT IS 0.00802

THE PROB OF LOW PRIORITY CUSTOMER WAIT IS 0.22418

12, 0, 0 13, 0, 0 14, 0, 0 5,001 1510
6478E-01  4562E-02  3069E-03  .197SE-04  .1270E-05
12, 0, 1 13, 0, 1 4.0 1 | {15 01 15. 1, i
4269E-01 - 4685E-02  4230E-03  .33B4E-04  2604E-05
12, 0, 2 13, 0,2 | 0114, 0 2 15, 0, 2 15, 1. 2
2931E-01  .3814E-02  .4068E-03 .3763E-04 .3302E-05
20,3 | (1303 4.0 31 |15 0 3 15, 1, 3
2057E-01 °  2889E-02 .3400E-03 .3472E-04 .3358E-05
12, 0, 4 13, 0, 4 14, 0, 4 15, 0, 4 5, 1, 4
1461E-01  2128E-02  .2657E-03 .2902E-04 - .3017E-05
12,0, S 13, 0, 5 4,05 | |15 0 5 15 1. 5
1044E-01  .B456E-02  5486E-02 3243E-02 .2097E-03
" 5. 0, 6 15, 1, 6
1798E-03

1700E-02

* Exhibit 3.12 Steady state probabilities for D(15312,5;Q,Q) model
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