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Ihis paper deals with the use 0'£ additi.ve value. models when attrib-

utes have overlapping dependencies. An interdependent additive formu~ 

1ation due to Fishburn (1967) is adapted to the axiomatic systemdefin~ 

~ng an additive conjoint structure (Krantz et a1. [1971)). This is ac­

complished by replacing the independence condition defined within the 

additive conjoint structure with a. conditional. independence condition. 

The interdepe~dent additive formulation is shown· to· be the appropriate 

form for value functions defined over attribute sets when. certain con-

ditions hold. 
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. ';,\ Additive· Conjoint "Structures 
I: 

Krantz e:; al.i: (1971) define~n additive conjoint structure in. rela-: 
:: Ie \\ n. . .'. 

to .~ componen.l!t set 'designated\ as X =X' ~"where·:i.e:N = {1~2, ••• n}, 

L!I ' - i=l 1 '. f': f' 
n ~ 3, and,? is a;;binary relation ·on. the component set S'at:1S y1ng l,;ve 

I: 

specific. conditio~~S. In particular, . the structure< x~,x2:t ••• ,xn ' >,:: >is 
I' 

defined as an n-cc~mponent, additive conjoint structure if and only if it: 
il , 

satisfies t~e fivJ~ axioms referred to as.; a weak orderln'g, independenc.e, 

restricted solvab:hity-, the Archimedean property and essentialism.. These. 

" c0!lditions are discussed at length in "Krantz et al.(1971) •. 

The weak ordering axiom imFlies that the component set satisfiea 

.connectedness and the concept of transitivity. Tf x,y,z € X~ the con~ 

nectedness condition is satisfied if x~ y- or y'ir x, X~7"Z or z-':;:..x and 

y>;.z or z},:.y. Transitivity implies that, if x>;.y and y~z it follows 

that x~z. A proof that connec.tedness and transitivity imply a weak 

ordering is provided in Krantz et: al. (197l t page 1.9). 

The }-;. binary relation on'T-7- x
1
" satisfies" independence if and only. 

'~i=l --
if for' every index subset;; leN = {1,2, ••• "nJ, the~ ordering>rr induced h-~ 

);:on X for specific alternatives xie: . Xi' i € i. (i.e .. ,' the. index. co~ 

plement of I) is unaffected by the choice of thosea1.t.ernatives. 

The restricted solvability condition is satisfied' if for any index 

- t" 1 bound y. from above and below then whenever i, if'y i 'and y i respec 1ve :y 1. 

\1 

yl'···'yi'···.'yn);:: zl' •.• 'Zi'~··'Zn)r.· Yl'° •• 'Yi'···'Yn ' 

then there exists Yi € ·xisatis£ying:. 
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The Archimedean property requires that all strictly bounded stan.­

Given N = {l,Z,.~.,n} _ dard sequences in t.he component. set be finite. 
'\ 1\ 

a set '{y~ Iyj 
~ i. e: x. ,j e: N} is a standard sequence on x. if there exists 

~ ~ 

j ·~+l 
wk'~k e: ~(k#i) such that (wk '" zk) for all j',j+l e: N.~ (y;i.,wIJ "- <Yi: ' 
zk) ~ 

Essentialism, requires that there exist y.,z. e: x. such that y. j; .. 
~l. l.. J.. 

z. for' i=l,2', .... " n. 
J... 

Based on their definition of the, n-component, additi.ve conjoint 

structure, Krantz et aL (197.1) show that there e..nst real; valued func-

WI'" .,w ~ Yl"'" ,y iff n n' 

n n r <p. (w.J ~ L 9i. (y .) • 
i=l l. ~ i=l l. 

Attribute Sets as Additive Conjoint Structures 

In problems t'l7here a decision maker (DH) is attempting t;o eV~l,U;\.te 

riskless alternatives described over multiple attributes, it isp<!lssib1e. 

to i~er the existence of an additive preference func,~ion if the a1';tJ:i.-

bute set: sa.ti.sfies the requirements for an n component additive' codjoint' 

structure. If an att.ributeset A .= {A
l

,A
2

, ••• "An}s,atisfies thefotf; 

"technical conditions" (i.e., weak ordering, restricted solvabi.l:i.ty.: 

Archimedean and essentialism), the typical procedure to shmJ, that an~d­

ditive preference model holds is to test the attribute set for mutual1 

preferential independence (MPI). Keeney and Raiffa (19-76) define 

preferential independence as follows: 
il \.~ 

.. 
3 

The subse.t of attributes Y e: A is preferentially independent of the 

compJ,ementary set Z, iff 

[( .. ,.) '- (..... ...).] Y "Z r,.- Y ,.Z [(y"',Z)'ir: (y ..... ,z)] !::Iz,y",y'''' 

where y',y ..... and z,z" are levels of Y and. Z, respectively. 

. The attribute set A is mutually preferentially independent if every sub-

set Y of A is preferentially independent of its complement. 

In some problems, it is not reasonable to' assume mutual preferen-

tial independence holds on an attribute set. One. way to deal with such· 

a situation is to,' redefine the attribute set to eliminate interdepend-

encies'. In some cases, this can be accomplished by the formation of 

attribute groupings. Such groupings t.fould be d'es'igned to isolate inter-

dependencies .existing between individual ~ttributes t.rithin the subgroups .• 

In this way, it may' he possible to define the subgroups such that: they 

satisfy NFl.. Attribute subgroups could then be redefined as componet:lts 

t'l7ithin an n-component additive conjoint structure if they satisfied the 

four technical conditions. Keeney and Raiffa (1976) discuss the use of 

non-overlapping multidimensional attributes in additive preference func-

tions. 

Interdependent-Additive C~njoint Structures 

Xn some problems ,it: may not be possible to redefin~ attributes to 

satisfy MPI without formatj.on of prohibitively' la,rge attribute subgroups. 

For example, suppose we had the eight attribu7e set {xl,x2,x3,x4,xS»x6' 

Xpxa} and. interattribute dependencies exist on, the attr.ibute pairs; (Xl' 

x3), (xl,xS), (:'/CZ'x
3
), (x

4
':x:

S
,), (x6 ,x

7
). If we were to form the multidimen-
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siona~. three attribute set given by {(xI,x2.'·~3.7X4~X5)' ("6'x7), (xa) L. 

it could satisfy HPI if no interdependencies other than those stated 

existed. 

4 

However, it may not be practical to rank or interpret alternatives 

. wit~ respect to measuring an attribute level def~ned over. fiye separ-· 

at.e dimens.ions. One way to overcome. this problem would be to form the. , 

multidimensional fou·r attribute set given by; -{{x
l

=,x2 ,x
3
), (x

1
,x

4
,x:s) 2 

(x
6
,x

7
), (x

8
)}. He will designate these, four' attribute groups as (y~ 

Y,&'Y3"4)· 

The above~choice of. an attribute set essentially forces condition-

a1 preferential independence between y~ and Y2 by including xl within 

each subgroup. However, for-any given alternative the ~ver~apping at-

tribute set still satisfies the four technical conditions defining an 

additive conjoint structure. Given- that independence is satisfied, it 

would be possible to show that a preference fUnction defined. on {y ~~Y 2~' 

y 'Y4} was additive using an approach analagoustQ;tne proof provided 
3 

by Krantz et al.,{~971, Theorem. 13) . Specifical1y; 

if and onl~ if; 

4 r ¢. (y-:) 
i.=l 3. 3. 

An important question concerns how to select an appropriate form 

for the 4>. in the presence of overlapping multidimensional attributes. 
:L 

A formulation suggested within the context of uniq.imensional expected 

..... + ...... ~'""'- ..... -- .-.- ~ - -. ""." """'..;",.V;"" _ . __ 0'"_.<_., __ .... 

, , 

utility theory c.an be applied if three additionaLassumption~ hold. 

1. ) interval scaled, measurable value functions. can. be. asses~ed 

on multidimensional subgroups of the Xj (e.g ... ~ £.1 (Y'i,)) as. 

well as the unidimensional attributes· (i.e.~ fj(xj..))" 

2 .. ) preference interactions bettv-een the Xi are measurable by 

the differences of the fi and fj value functi~ns. 

3.) for anytlio alternatives y' ,y'''' i.f ~i.(Yi? = ~i.(y~ .. ) for, 

i=1,,2$ ••• ,m then y' '" y ....... 

'5 

We ~ill state the appropriate form of the'4>i.due to Fishburn (1967) 

in the context of Theorem 1. 

Theorem 1. Let {x
l

,x2., ••• ,x
n

}, n> 3, be a set.of unidimensional.attri­

butes satisfying the four technical conditionS of. aa n-component additive 

conjoint structure. Suppose a set of multidimensional (possibly overlap­

ping) attributes {Yl'Y2' ••• 'Ym}, n > m .:: 3 can be defined from {xi'x2."'"' •• ~ 
,I 

x } to satisfy conditional preferential independence and the four tedt1.m..." 
n 

cal conditions. If assumptions 1 thro~lgh 3 hold then for yi..' ,.yi. e: y 

4>l(Yl ) = fl(yl ) and 

i-1 
4>i (YiL= fi (Y i ) + k~l (_l)k ;. 

i=2,3,. ••• ,m 

(1) 
~ 

.. 
,\ 

\~ 
4> 

, 
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,where f* is the appropriate subgroup value func:tion for the ~nidimens'ion.­
al. attribute(s) contained in I fty. n.y·.]. 

, " .2.=1 J
1 

1. 

The. proof of Theorem., 1 has two parts. 'The firs t part is to show: 

that {Yl'Y2'" ·',ym} is an m-component additive conjOint structure. 
tvith 

the assumption that the Yi are conditionally preferentia:lly independent:p' 

this result could be shown using the approach of Krantz' et ala (1971, 

pages.307-308). 

The second part of the, proof of' Theorem 1 is to show that the $1 

functions are of the appropriate form. This could be done using an 

approach similar to that of Fishburn (1967). To see this:p suppose we 

take, the summation of f. (y.) over 1 to m "to obtain; 
J J 

m 

I 9. (y.) 
j=l J J 

Now suppose tha.t the 'above expression is partitioned into its positive 

and negat~vo.; elements by defining the functions g + (i) and g -(i) where, 

{ 

0 if (_1)i > 0 
g+(i)= 1 

othertvise 
and 

_ {O if (_1)i < 0 
g (i)= 

, 1 otherwise 

Using these functions" the assertion is that; 

. ! 

I 
I 

" 

! 
I 
I 

. .. 

An alternative means for stating thiS ,,,ould be; 

m 2:, f (LOl yiJ) .~. $(y) + l g-(j) 
J=1 l<i< ••• <i.<m - J-
m 

g+(j) 2:- f([!~\ yiJ) l 
j=l l<i< ••• <i.<m - l-

To prove' Theorem 1, we can show that the above two expres~d\'Jns 

are equivalent with respect to y. for i=1,2, ••• ,nt. To do this,'we de­
l. 

fi!le the left hand Side of (2) with respect to Y
j

• Dropping the, value 

functions for the moment and concentrating on the actual prefer~lce 
states, the left hand side of the above. expression With respect: to Y

j is given by; 

m 
y. + I g -(k) .. 

J k=l [ 
k ]" ' n y. . 

1=1 1.1 J 

+ 2: 
1<1< ••• <~m 

jt{1, •.• ,~} 

't-lhere [y i] j represents the"overlap of y i with y
j

• The preference state. 

On the right hand side can be described as; 

m + I g (k) 
k=l [ k] "" [ k ] ny .. + L.J ny.(\y.j 

,1=1 1.1 J ~i< •• • <i~m .2.=101 1. J 

·ji{i, ••• ,~} 

L 
1<1< ••• <~m 

.je:{i, ••• ,i
k

} 

7 

(2) 
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Taking the component for k=l out of' this eJcpression from the sununatioa: 

where jdi, .•• ,i
k

} yields; 
'. 

m + 
Yj + I g (k) 

k=1 

k 

[ fly, ]. 
1.=1 ~R.. J 

k>l 

+ ,2:' 
l<i< ••• <i

k 
<m 

ji{i, .• "'~} 

tv~th this, the firs,t term in the. expre~sions .for the .1eft and right· band 

sides of eXE>ression '(2) cancel, and it remains to sho~..r that; 

. , 

m 
l g (k) 

k=l 
I: 

l<i< ••• <i.<m - ~ 

.~. fny.}-
l<i< ••• <~m 1=1 ~R... J 

and, 

m 
I g~(k) 

k=l 

ji{i,. •• ,ikl 

'~ 
l<i< ..... <~m 

je:{i, ' ••• ,i
k

} 

m 
fif(k) 

k=l 

In (3) , notice that () y _ has been deleted 
- J 

we can also delete i.2, == 3 and correspondingly 

right~hand side of (3) equal to; 

je{i,. ••• ,.~} (3) 

(4)-

[ n. Yi. n. yj]j 
1=1 ,R.. 

k 
from. C\ y. " as a result 

.2.=1 ~~ 
reduce k by one: to get the 

.. 

I 

I 
tt 
H 
! ~ n. 

.' , I 

t, .' 

---~----- - -------- . 

9 

I:' . 
1<i< ••• <i

k 
<m 

m 
L g-(k) • 

'k=l 
[ 

k . ] . n y .. 
R..=l ~l. J 

(5) 

je:{i., ••. ,i
k

} 

If m 'is odd, then k=m in the right hand, side o~ (3) becomes k:::m-1in (5.), 

otherwise the maximum value of k on the right hand si.de of (3) is m~l 

which goes to m-l in (5). However, if m, is even,., then je.{i.,. •• ~,i l ,.,. 
m 

{1,2, ...... ,m} so that (5) has no terms when k=m thus. establishing (3). 
. k 

-In (4), the right hand expression has {\y. added ont~ (\ Y1s0 that 
. J" Jl..=l 1.-

i =j can be added to the other in and the index k can be incremented by one 
R.~ N 

to obtain; 

1: 
l<i< ••• <~m 

m 
L g (k) • 

k=l 
(6) 

je:{i""J~} 

In (6), we need not consider k=m+1 if m is odd since g+(k)=O in (4) and 

this term drops out. Otherwise, k=m-l in the right hand side of (4) goes 

into k=min (6) establishing (4) and completing ,the proof. 
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