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to be difficult to integrate analytically,
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1. Introduction
The problem of missing observations in multivariale normal data is imporfant both because
of the central role that the normal di‘stributi;my plays in statistics and becaﬁse it provides a base
from which to teét a variety of heuristics' for handling missing data. Ini this paper a Bayesian
‘ : O
approach is employed in order to provide<’z}x conjugate analysis for the missing data problem.
Attention is restricted to the special case in which the data are missing at \tandom (as
discussed by Rubin, 19765, not because this is necessarily the most important case empirically,
but because it is a relatively simple, tractable case. It is ass{xmed that the parameters of the

process causing the data to be missing are distinct from those of the normal distribution which

generales the data.

Let x be a p-variate random vector having a normal distribution with mean x4 and
covariance matrix E, Z may be known with‘w&értainty or unknown. Conjugate prior families for
both cases are coﬁsidered in Section 2. In Section 3, the case when 2 is known is discussed in
detail.. Remarkably, the conjugate prior and poStérior distributions take very simple forms in this

case. In Section 4, the more general and difficult case when I is unknown is considered. The

~conditional distribution of y given X' is normal, but only the kernel of the marginal distribution

of X can be given because the resulting integral is difficult to evaluate. Comments on the case

when p=2 are given in Section 5.

An important point of comparison for a Bayesian aﬁal}vsis is ,m;iximum likelihood estfmation,
since, ;syrrnptotically, pbsterior distriﬁutiom. aré normally distributed with mean given by the
maximum likelihood estima‘tc‘ and pr"ecisioﬁ, fnatrix equai to the Fisher ‘informatiorzr,xpatrix. (See
‘Walker, 1969, for a simple exposition.) - Anderson (1957) gives a treatment of maximum

likelihood estimation for both mean and' covariance matrix unknown in the special case of nested

[

missing data, In the nested case, the p variables are divided into k blocks, ‘where block i has P,

K

variables and X p, = p. The missing data form a nested pattern if, whenever data are missing in
' =] . . » - ‘

block j , they are missing in blocks j+l,..,k as well. Thus thg’ variables can be reordered so’

that the missing data take the fdllowing form:
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X 1 1 1 1
Block 1
X, 11 1 1
x 111 1 0
pl+l S
Block 2
. 11 1, 0
x 12 1 10 0
Py .
Block 3
1 1 0 . 0 : .
"1"" indicates presence of data
0" indicates absence of data
Further work on nested data is given by Rubin (1974 and 1976), and a Bayesian analysis based
on a full data conjugate prior distribution is given by Chen (1984).
- 0
In the non-nested case, iterative methods for finding maximum likelihood estimates have
. been given by Hartley and ‘Hocking (1971), Orchard and ‘Woodbury (1972), and Beal€” and Little
(1975). See also Dempster, Laird and Rubin (1977). Since the likeliiood surface niay have
multiple maxima (Murray, 1977), there may be difficulties in using numerical methods based on
maximizing the posterior density (Stewart and Sorensen, 1981). o
2. Conjugate Opiniohs When Normal Data Are Missing at Random
Let d be a vector of length p comprised of I's and 0's. Let D be the set of all such
© vectors, except for the vector consisting solely of 0's.  The D has 271 elements. Let
|d | represent the mumber of 1's in d. It will now be useful to introduce some convemient
/ L : :
notation from the APL pfogramming language (Gilman and Rose, 1976).
_The symbol / represents the reduction operator. If gl_‘ and y are both of length p , and
, ‘deD, then
sy =4l R (0
| is the d-reduction of x It is a vector ‘whose length is [d| and whose elements are the
: »‘:W s - M*%wmw;\‘w

i

’4

 fterms of the sufficient statistics

B e TR A L T

-elements of # corresponding to the I's in d.

’ (1,2,3) and ¢/ =
then j_/d = (1,3).

For example, if Y= (1,0,1),

) N " ) < '
ole that d can be viewed as a patiern of missing data, where a "1" corresponds to the

presence of a data element and a *Q" corresponds to its absence

; Hence, if 4 is the vector of
meaigg‘-;«for all p variables, 4, is' the mean vector for the observed variables

A similar operation can be performed on a matrix 2. The matrix

d/ 3

Is the column reduction of 3, so the Tesulling matrix will have as many rows as does X, and
14| columns. Also, | |

| d+Z
Is the row reduction of I, yielding a matrix which has as many columns as X ang |d] rows

If ¥ is square and Symmetric, it is easily verified that

d/d+Z=d+d /3 (2)

is again squar i :
g quare and symmetric, and has |d| rows and columns.

If ¥ is the covariance matrix of a set of random _variables and d represents a

- pattern of
missing data, then |

o

Z,=d/d+3 | (3)

is the covariance matrix of the observed variables.

Let X ek

g be a sample of N veclors of size [d] X 1 that are mutually

1o independent,
normally " distributed, and each having missing data pattern d.  Then their joint distribution,
conditiong! on knowing ,gq and Z"g, is‘ given by

f X 2,20 e > |

(X enrX ’ = py _12 = - /! =1 -

LTI £y = expl- Z (e Z %81 ,
Nlale g
(27) 1z | (4)

L , , 4
15 well known (see Press, 1982, P. 186) that this likelihood function ‘may be rewritten in’

§ R R SRR T

S
B



i

eaan i YR
et ——r

LR

N
3 5
. [N
I = ——2‘ x:.
~d N 1 ~id
d
i T T e 5
0" Ej,} (:g,j'd-;g 4)<?‘-j, X 2 , (5)
n =N -1,
d d
so that )
_ we-laf-e . 3 o
f(gg.Vd]gd,Zd) © Ile : exp {-% tr Zq _[Vq+Ng(§q-gq)(;i_d-yd) ]
-7 - N T3 '
d
1z, )
The conjugate distribution for sz given z s
'z l-lq.lfz 15! :
= 1%y - - -

(Press, 1982, p.83), and the conjugate distribution for g, and Zd jointly is

(v +1)12

f{gq.zg) o lZ:l 4 exp {-’/z [(;_:‘g-g_d)’ Z: (gq-@_q)bq + tr Z: Wg]}' (8)

In general, let = g, When Z, and consequently Zd, is known, and let 6 = (g d,Zd)

~d

when X is unknown. = Thus Gd is the parameter pertaining to the missing data pattern d.

Similarly, let the sufficient statistic § = X, When Z is known, and § = (gg,vd) when X is

unknown, Fina.ny, let t y be the hyperparameter: it is (g_g,bq) when X is know and

2

('g_d,bd,Wd,vd) when X is unknown. - The property of cdnjugacy can be wfiticn_as
fs 1808 L)

Vs, g m8, 1t o,

(9)

where t ’d =t/ d(g_ d') is the posterior value of the hypsrparamgtcr after observing data having

sufficient statistic § .

- Now suppose that data are availabl'e on various patterns of missing data in D. The missigg
- data are missing at random, and the parameters governing the process by which data are missed
are assumed to be independent of f. Suppose in particular that N 2 | for each d ¢ "D! _C_-D

Then the likelihood function has the form

T

Lo

FRAYPERA

. 6
glfvr f(s_glgg). (10)
One set of prior distributions that might be considered for this problem is
| ‘EI‘D; f‘QQIL(_R- | (11)
* With this prior distribution, the posterior distribution is proportional to .
F‘DI f(g_g]~g)f(Q4|Lq), (12)
i.e., proportional to
. ! :
anvl f(leLQ) (13)

which is in the same family as the prior distribution. Hence the family in (11) is conjugate to
the likelihood given by (10).  This analysis holds for missing data from any family having

sufficient statistics of fixed dimension.

The next two sections explore the consequences of this theory for the two special cases of
interest in this paper: multivariate normal data with known covariance matrix but unknown mean

vector, and multivariate normal data with mean vector and covariance matrix both unknown.

3. Normal Data Missing at Random With Unknown Mean znd Known Covariance

Matrix
It is first helpful to introduce additional APL nolation. The symbol \ is the expansion
operator.  If X is a vector of length lg.l, then
d\x .
is the d-expansion of x; it is a- vector of length p (the length of d) having elements of x where
the corresponding element of d is 1, and having zeros elsewhere. Thus if 4/ = (1,0,1,0,1) and
x/ = (1,2,3), then (d\x) = (1,0,2,0,3). In an analogous way, 1
d\Z |

is the column expansion of X,

:
)

is the row expansion of X, and so forth.

The conjugate family given in (11), with factors as in (7), becomes

P
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.conjugate prior as long as 2 is known.

l 'lil-

ryt o la ,
‘ M) = Ip 4yt exp [.___ (e E )] (14)
Since 4, appears only in the exponential funciion, (14) may be rewrilten as
f(u) oo exp {Zv [—-—-—(;_:d-ag)’ E: (gd-gd)]} (15)

The sum in (15) is awkward because the quadratic forms which are being added are of different

dimensions. They can be made to have the same dimension with the help of the expansion

Leta®=¢ \a

operator.

and let H = d \ d-b, }:;’. Then

d

(g2 b4 2 (gd-a ) = (16)

9 <4 (Ll_a )/H (g_ )'

g o

since zeros have been 'introduced in H y corresponding to the pattern of missing data in d.

Anything can appear in. the vector that multiplies with Hd in these posilions without altering the

value of the quadratic form.

Substituting (16) into (15) gives

fly) exp{ ED[ -l (g-a *YH (g-g_d)l} un

" This kernel has the form of the product of a number of normal distribution kernels for g with

means 2 and precision matri,ces H . The product is also a normal kernel, with precision matrix
H = Z D H, and mean 2 = H! Zv H a:, as long as H is invertible. (H will be invertible if

each varxable is observed at least once. and this can be assumed without loss of generality.)

I

]
4

Thus, remarkably, the prior. family (11) is no more complicated than the full data
The nonmissing data combine in the. likelihood function
and prior distribution to yield a posterior distribution that is a p-dimensional normal distribution.

. \\\\.w:‘;
4. Normal Data Missing at Random With Unknown Mean and Covariance Matrix

In this section the conjugate prior family in (11), with factors. given in (8), is studied. In

“this case,

’ A (vdtl)l"
f(p2) o I P [Z | =

/

exp { 8 [(gd—a )’E‘l ;(gd-a )b +1r Z w ]}

~d

Since this distribution is the product of normal kernels for 4 glven 2‘ and inverse Wishart

(18)'

b,

By

A~ ?jf

kernels for Z._;' it is natural-to think of this joint density as the product of a density on y given

2, and a density on Z.

Using' the results of Section 3, f( #1Z) is again normal with mean a2 and precision matrix

H. Hence,

*

.1 ~1

v +1)2
¢ exp{-‘/z(tr Z: W +z_1.:' Hdg:)}]

) 1 *y/ -1 *
exp {/Z(Z?:fvl qu_x_g) H (4}:‘01 Hgg_g)}. (19)
To simplify the exponential term, first note that
*y * = ! -]
2, H, & 7y, Zq b 2
= -l /
T b 2 aga,
Hence,
/“\\ 1 * * ]
J ?{' J} r z-d Wy g‘q/ Hoa =t 2. (wg+ R 9‘4/)' (20)
Also the “term
\// A4 7
\\\ = —/// * 1 *
_— ! - _
(E‘Dx Ha)H (quDl H g_g). where H = ‘QZGDI H (21)

needs to be simplified.

Consider the block-partitioned matrix H which has the form

H' 0
0 H

] *

it
[

0
N -
with l{}le Hg down the mam diagonal and matrices of zeros off the diagonal. Let I = (I,I,...,I)

be a matrix containing as many p-X p identity matrices as there are matrices down the diagonal

of H. Then H =T HI' Also, Tp H aj =1 Ha" where 2™ = (a, a,.). Then (21)
FeD Ty 2

can be rewritten as '

; v, B2 B Qp Hyap =" BRI T HINT He' 22

R 1 ¢
Now rewrite (20) so that it may be combined with (22):

Y

L
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- / _ ' !
;‘SeDl tr Zg <W4 + b4 2, g.) = tr ‘._f_;v‘ ZQ (W +b s & g_~)
=t I WHI, “(23)
where Wis a block-diagonal matrix with c_i_"' block given by -
!
d \ d&tr (Wg + bg 2, gg). - (24
Hence the argument of the exponential function in (19) can be written as
ATV CHID'TH -0 T WRT
=tra HV (T HD ' THa -t T WHT/
-
- = LB T Ha"a" H 1'] - tr [(1 RIN'YT BI) I WH 1']
celdamt Tde - I ET) (25)
Let W = a* a% oA I/ T W Then
1 L (v #DR2 - e o i
£(3) o TH )3 ]Zd ]] exp {-’/z tr [ THIN'TEWE I’]} (26)

AT
! Sy
The distribution whose kernel appears in (26) may be regarded as a generalization of-’the inverse

Wishart distribution.  This kernel .apparently cannot be integrated in closed form.  And unlike the

case of Section 3, the kernel does not reduce to the full-data conjugate case, which would be an

inverted Wishart distribution. ,,z'/
S

5. Data Missing at Random When p = 2
Surprisingly, the bivariate normal case of data missing at ra‘ndom does not, in general, lead

to a mathematically tractable form for (26). An examination of the bivariate kernel reveals the

complexity inherent in the missing data problem.

Since it is the inverses of the covariance matrices Z which appeér in (26), it is helpful to

@

reparametrize in terms of Zd'l. Let Z;: o " Zl* Z(‘; N Z , and

cosmirsines

B

S

u

T

10
-l el 2 -
zn.x) = 7 T
%a 7,
= 1 sz
=Z.
) 12 Z,
Then it is easy to see that
2 e ro _(zz -z 3
o (crl o, = 0'12) Z2 Z2
(27)
Z’* = 1 = (lel - Zl.?,z)
2 (d 0‘ - ") Z A ’

i :

In other words, the precisions are defmed dlfferently in terms of %4> and T
1772

. ) 1 in different
dimensions. -

Also,
o, let (a ,b W v) be the hyperparameters corresponding to d’ = (1,0) and a .b .w v
’ ] » ’
272" 2

be the h
yperparameters corresponding to g’ = (0,1). For the totally observed data, represented by

& ( ) l the hypel para elers be a !
-~ 1’1 » et, m t
., B ’ ‘ ( 3'.]2' 3“] ]")’ Where

A =
i & (ﬁsr
and : ‘ = \
| owefw, w
Then, since the Jacobxan of the transformation from X to 37 js | = 1z]7, (26)
| , ma
( be rewritten as y
1
KZ) o *(vl+l)/2 (v <12
.z %2
bZ*+b 2z bz [0 %
, 1“1 12°) 12°12
12‘212 ’ bzzz* +b zz
(ZZ Zz )x(vpﬂ)/") -3 [ |
) \S -,— - ex -l { -~ ¢ 2
12 ‘ pL - (W3l+b}‘,~;&31 )z.x
+ 2w 2 ’
' ( ‘+bha31a )Z ‘+ (w32’+b,2a32 )zz, * (w]+bla12)z‘*

A‘ /A\ :
£ ‘ )
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¢
( b .3)2 * @ : Z Z l- o :
+ (w_+b a = i
2 22y (z A )L{b b+(b, +b +b )b }z z-502 | f
[b’bpalanz 26 aa 27 o'z Y2}
+bb'a“ZZ +bbe~Z f(Z,Z,Z‘) : .
1227172 T 2 Tt e % :
+ b8 2 (2,2, ) + bYZH (22,2 )
e [as,z, V20,7 72111 ER an
where . - ';7 2
f(2.2,Z ) = 222, Z +2aa . Z +2aa.Z,
. © = .f
§ L g
s v v aazzw T3, - b
fz(zl'zo’zlz) N axasx(zxzz-Ziz) * (asl -‘axasn)zr'.’, :
, + 2 xarz’zlz ¥ alanZlZ'u * a;?.z;‘" |
, ) ) 2 2
~FS(ZI,ZZ,Z‘§) b aza,sz(zxzzfzzz) *+ (2, azasz) zxz ‘
J B \ ¥
e Sr 4223 ZZ vaa ZZ +a + Z>. H
% 3173271712 31 1
Unfortunately, substitution for Z] and Z does not allow (28) to be written in a s:mple form, %
and there is no apparefx}t\"\’ivay 1o integrate (28) with respect to Zl, Z, and Zx'- over the region
given by Z > 0, Z, > 0, and (ZIZ;Z‘;’; > 0 except by using-numerical methods. g
If the missing data are assumed to form a nested pattefn, the resyits of Chen (1584) may * :L
be used to find the integrating constant for the kernei in (18). Assume that data are m;issing on . L2

o

X, but not on X. The kernel can be reparametrized “from Fl,o‘z,d'f,d‘;dp‘)‘ to the distinct

parameters (a, .,a' & s ‘7721) wher,g . SRR ‘ e
ar  ,~ a = F-; - ﬂ/llv
L 7 L3 e = N
= ”12/ Ty
. he
and SN ” ' a';l = 'az - a""z,/af .

Chen demonstrates that these d: mct paramcters are  independent - when the missing data form a
\\

nested. pattern. \Chen actually assumes a complete data conjugate prior instead of 1he more

- P ,
general con_}ugate prior descnb(/eu hen.m. However, in the case of nested missing data, s
. 2
posterior kernel has the same form as the general prior kernel gBen in (18))
N . ° S
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In our notation, Chen’s results imply that ' ) ;
- . (b, +b D +w DALHS (a\*? ) ) \
(a) o~ ~ Wishart ( 1217 Zal , v v 41 ) CN
1, . b +b
° [t :
-2 ( bxal+b11a3] -1 2 )
£ (b) ¥ | @ ~ Normal v v’\(bx*'bxz) o)
112 v :
;‘
(c) (e, /] af ~ matrix Normal
5 ]
0
: S 2 =
! T2z
LY . . . ‘
2 bt T w2 ‘
(d), T ™ Wishart (w32 wm/wn, v\u+1).
: Therefore the integrating constant for the kermel in (18) is known in the special case of nested ,
u missing data. Bv pullmg out the conditional normal dens1ty on (p V) glven (a ,o’ ,0' ) the
complete marginal density for (d ,o‘ ,a’ ) can also be obtained, but as_ 1nd1cated by (19), its o )//,/'
S form is quxte cumbersome. ' i
The density for (z 2,2, ) has a simpler form in this .special case and appears to be an
mterestmg generahzatxon of the Wishart density:
‘ '/~(v ¥ _+1) ' By ) ;
;f(zl,“z’..z§) = A ; (w,, - wlz_/wm] .
© /2“;%“'&+2v;2‘+2)v<b1+b12)ﬁ;1 ! : . - | . r; ’
' o V2n Ty +v +1)/2) T((v ,+1)/2) : ' :
' \ L ‘-(t{,tlzﬂﬁlz : - (vlwu—-u/z { R , : zp‘-’ 1 } T e
s . 2 . » : ‘ 2 y : S B
T ' %y ' (z:'rzz zxz,)‘ exp L% ['3121+ 122 T ,8222 * ﬂa z +7ﬂ4 Z ] o g,
g ' ' ' ' ‘ 2 2 RIS
where R ' @
¢ * .
: 2 Wy +v_+1) .
. ' L [ (b +b )v(w W, ) bxbu(a: a, ) ] Mty | . ,
; = (b +b ) ‘ . B . ' o, ; ‘
i ' :
1 @ . : &
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- {18) may always be found in the nested missing” data case.

13

2 202
s (al_aSI) blb12 2 bl 2‘lv‘n(bl‘}‘bl:z)
b]+b1_,

—.

B, =23 (b, -1)- 2w,

A, = a32_(b12-1)-w32
5 - (am-al) b]l:l:-%aI bI +Wl(b]+b12.)
3 b +b
1 12
and
/3 = a1 bl. . ‘ f ' i
4 b:”’p : '

Chen’s results apply to any nested configuration of missing data, so the "complete density for.

Chen’s méthod does not ‘generalize to

the non-nested case, however, since distinct parameters can no ‘longer be identified. A direct

method of integration 1is still required in the ‘general case.

~

o
6. Conclusmn

We have ~shown that the conjugate-prmr analysis of multivariate normal data mlssmg at
random is tractable when the covarlance matrix cap’J be assumed to be known,
oths/rwise. The kernel for a useful generalization of the inverse Wishart distribution is given, but
we do not know liow to integrate it in non-x_zested t:ases.

\&L

unsolved problem, others will take up the challenge..

s

57

and dlfflcult,

Perhaps stxmulated by this notice of an .

i crenons e

* Gilman, L. and Rose, A. J. (1976) APL: An Interactive Approach.

‘Hartley, H. O. and Hocking, R. R. (1971) "Incomplete data’analysis."

‘ Stewart,

eI
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