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ABSTRAcr 

When 

This paper pr 'd 
OVI es a Bayesian formul;;\tion of 

observations are missing at random. 
the multivariate no. rwal missing data problem 

Conjugate prior distributions are 
the covariance matrix is k considered both When 

nown and when it is unknown. 
the posterior distribution f th When the Govariance matrix is known, 

.. 0 e mean is multivariate normal. ~\h 
unknown, th y en the covariance t ' 

e conditional distribution rna fIX is 
of the Ill. ean ' 

~~ gIven the covariance 
matrix is again 

distribution of the covariance' 
matrix is giv en and. is seen 

analytically. The paper concludes . 
with some comments on the 

multivariate normal. Th 
e kernal of the 

to be difficult to integrate 

bivariate case, Which is 
partially tractable f 

or nested missing d ta a . 

If 

2 

1. Introduction 

The problem of missing observations in multivariate normal data is important both because 

of the central role that the normal distribution plays in statistics and because it provides a base 

from which to test a variety of heuristics for handling missing data. In this paper a Bayesian 
() 

approach is employed in order to provide J a conjugate analysis for the missing data problem. 

Attention is restricted to the special case in which the data are missing at 1:andom (as 

discussed by Rubin, 1976), not because this is necessarily the most importa!lt case empirically, 

but because it is a relatively simple, tractable case. It is assumed that the parameters of the 

process causing the data to be missing are distinct from those of the normal distribution which 

generates the data. 

Let ! be a p-variate random vector having a normal distribution with mean I! and 

covariance matrix .1:; ,1; may be known with certainty or unknown. Conjugate prior families for 

both cases are considered in Section 2. In Section 3, the case when 1: is known is discussed in 

detail. Remarkably, the conjugate prior and posterior distributions take very simple forms in this 

case. In Section 4, the more general and difficult case when 1: is unknown .is considered. The 

conditional distribution of I! given <1;.' is normal, but only the kernel of the marginal distribution 

of 1: can be given because the resulting integral is difficult t6 evaluate . Comments on the case 

when p=2 are given in Section 5. 

An important point 9f comparison for a Bayesian analysis is maximum likelihood estimation, 

since, asymptoticallY, posterior distributions are normally distributed with mean given by the 

maximum likelihood estimate and precision matrix equal to the Fisher information_matrix. 
IJ' . 

(See 

Walker, 1969, for a simple exposition.) Anderson (1957) gives a treatment of maximum 

likelihood estimation for both mean and covariance matrix unknown in ~ the special case of nested 

missing data. In the nested case, the p variables are divided into k blocks, where block i has P. 
I 

k 

variables and '1: p, = p.The missing data form a nested pattern if, whenever data are missing in 
i-I I 

block j , they are missing in blocks j+ 1 , •.. ,k as well. Thus the variables can be reQrdered so 

that the missing data take the following form: 

.... 
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"1 tt indicates presence of data 
"0" indicates absence of data 

1 

Block 1 
1 

1 

:} Block 2 
1 

:} Block 3 

Further work on nested data is given by Rubin (1974 and 1'976), and a Bayesian analysis based 

on a full data conjugate prior distribution is given by Chen (1984). 
\) 

In the non-nested case, iterative methods for finding maximum likelihood. estimates have 

been given by Hartley and Hocking (971). Orchard and Woodbury (1972), and Beal~~ and Little 

(1975). .See also Dempster, Laird and Rubin (1977). Since thelikeli1lood surfacelDayhave 

multiple maxima (Murray, 1977), there may be difficulties in using numerical methods based on 

maximizing the posterior density (Stewart and Sorensen, 1981). 

2. Conjugate Opinions When Normal Data Are Missing at Random 

Let g be a ~'ectorof length p comprised of 1 's and O's. Let V be the set of all such 

vectors, except for the {.yector consisting solely of O's. The V has 2P -1 elements. Let 
',,'\. 

I g I represent the numbe~~f 1 's in g. It will now be useful to introduce some convenient 

notation from the APL r;fogramming language (Gilman and Rose, 1976). 
Co 

. The symbol/represents tbe reduction operator. If g and J! are ooth of length p , and 

gEV, then 

(1) 

is the g-reduction ofi!' It is a vector 'whose length is I g I and whose elements are ~ the 

--....,..---- ---~ -,.....----~------~----

o 

I 

t­
It 
f: 
t 
f' 
I ~ 
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,tj I \. 

i; 
~.' 
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i 
1 ' 

f 
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" l~ 

J-'~ 

tl 

';·:1 
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'1 
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elements of J! corresponding ,to the 1 's in ~. 

then e' = 
!! 

(1,3). 

4 

For example, if e' = (1,2,3) and d' = <I,0,1), 

Note that ~ can be viewed as a pattern of missing 
data, wbere a "1" corresponds to the 

presence of a data element and a "0" corresponds to its absence . 
Hence, if J! is the vector of 

me~lli),._-0for all p variables, JJ!! ' 
. 0: IS the mean vector for the observed variables. 

A similar operation can be performed on a matrix ,l:. The matrix 

is the column reduction ofl:, so the 
resulting matrix will have as many rows as does l:, and 

I !! I columns. Also, 

is the row reduction of l:, yielding a matrix which has 
as many columns as .l: and I!! I rows. 

If l: is square and symmetric, it is easily verified that 

g/!!+l:=!!+g/l: 

is again square and symmetric, and has I g I rows and colUmns. 

(2) 

If l: is the covariance matrix of a set of random 
variables and 9 represents a pattern of 

missing data, then 

l:!!= 9 / !! + l: 
is the covariance matrix of the observed variables. 

(3) 

Let x x b . 
-).\!'· .. ·-N d e ,a sample of N vectors of size I d I X 1 ha 

11'- !! - t t are mutually independent. 
normally distributed, ~nd each havi'ng missing dat a pattern g. 

conditio~~, on knowing J! and:r, is given by 
I! I! . 

Then their joint distribution., 

Nu I!! 1/2 N 12 
(211) - /l:1! I I! 

It is well known (see Press, 1982" p. 186) that thi 1'k . 
s I 'ellhood function may be rewritten in 

(4) 

terms of t>(~ sufficient statistics 

:; 
~:.' 
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so that 

1 N 

X - "iJ X_"d -oJ N j-I J0-
g 
N 

~-~-- ..... -------

5 

V = ~ <1 (x -x")(x _X")I 
<1 jaJ -'j,1I -c;! -j,1! d 

{p 

n = N - 1, 
4 11 

~-I 
tr ~d 

N d 
[V +N (x -J! )(x -J! >/] 

II .J -d d -II d - - - - . 

The conjugate distribution for p <1 given ~ c;! is 

I~ 1-1<11 /2 

f(u I~) = 2: lill a exp [«-b )/2) (u -a )'1:-
I
(J!-a d)J 

-I! I! <l -I! -<1 <1 <1 --

(Press, 1982, p.83), and the conjugate distribution for J!1l and.2<1 join~ly is 

(v +ll/2 { 1 . 1 } 
f(J! ~. ) oc: 12"1 I I! exp -~ [( Ii -a )1 ~- (J! -a)b + tr ~- Wc;!] • 

, 4' I! ~ , ~Il -I! Il Il -c;! 11 Il 

(5) 

(6) 

(7) 

( 8) 

In general, let ttl! = J!<1 when 1;, and consequently J:: t!' is known, and let f} c;! = (J!\l'};. <1) 

when 1: is unknown. Thus f} oJ is the parameter pertaining to the missing data pattern g. 

5I'mI'larly, 1 t th uff' i nt statistic s - x when 1: is known, .and s ::: (x V) when };. is e e s Ie e _<1 - -d -11 ~\!' <1 

unknown. Fina~ty, let 1.11 be the hyperparameter: it is (a ,b) when };. is know~/;!I' and 
-Il c;! ~ 

-;:::---" 

(a ,b ,W ,v ) when 1: is unknown. 
-I! I! c;! I! 

The property of conjugacy can be written as 

(9) 

::: t I (5 ) is the posterior value ·of the hyperparameter after observing data having 
- Il -4 

sufficient statistic s . 
-Il 

Now suppose that data are available on various patterns of missing data it) V. The missiJ;lg 
','.I 

data are missing at random, and the parameters governing the process by which data are missed 

are assumed to be independent of (). Suppose in. particular that N ~t for each 2 E'O
t 
C .'0. 

Il 

Then the likelihood function has the form 

6 

n -n f(s I f} ). 
dE V -d-d - r - -

(10) 

One set of prior distributions that might be considered for this problem is 

II V f( f) It). 
dE -II-d 

(11) 
- 1 --

With this prior distribution, the l'0sterior distribution is proportional to 

(12) 

i.e., proportional to 

n-n f(f} It/) (13) 
d f v -d - d 
- 1 - -

which is in the same family as the prior distribution. Hence the family in (11) is conjugate to 

the likelihood given by (10). This analysis holds for missing data from any family having 

sufficient statistics of fixed dimension. 

The next two sections explore the consequences of this theory for the two special cases of 

interest in this paper: multivariate normal data with known covariance matrix but unknown mean 

vector, and multivariate normal data with mean vector and covariance matrix both unknown, 

3. Normal Data Missing at Random With Unknown Mean and Known Covariance 

Matrix 

It is first helpful to introduce additional APL notation. The symbol \ is the expansion 

operator. If ~ is a vector of length 121. then 

is the g-expansion of ~; it is a· vector of length p (the length of g) having elements of ?; where 

the corresponqing element of g is 1, and baving zeros elsewhere. Thus if gl = (1,0,1,0,1) and 

?;' :: (1,2,3), then (g \?;)! = (1,0,2.0.3). In an analogous way, 

is the column expansion of 1:, 

is the row expansion of };., and so forth. 

The conjugate family given in (11), with factors as in (7), becomes 



\ 

j,' 

7 

1:£ ,-I d 1/2 [-b ! (('] 
HI!) = n V d I tl jJ.! exp _<I (I!<I -!!)I :£~ (I!J'-~) . "f 1 (217') . 2 - - - - _. 

(14) 

Since I!<J appears only in the exponential function. (14) may be rewritten as 

exp {rfV, [-~d (l!g_;~)1 :£~I (I!<J-~<J)]). OS) 

The sum in US) is awkward because the quadratic forms which are being added are of different 

dimensions. They can be made to have the same dimension with the help of the expansion 

operator. 

Let a * -
-'" 

g \ and let H = d \ d ~ b :£-~ 
g - - <J <J 

Then 

(I6) 

since zeros have been introduced in H", corresponding to the pattern of missing data in g. 

Anything can appear in the vector 'that multiplies with H", in these positions without altering the 

value of the quadratic form. 

Substituting (i6) into (IS) gives 

f~l!) 0:: exp { 1: V [-Ih (u-a *)/H {u-a *)]}. 
d f 1'/" d ·10 -d 

(I7) -, - - -
This kernel has the form of the produ~t of a number of normal distribution kernels for I!. with 

means a and precision matrices H . -d . d The product is also a normaL kernel, with precision matrix 
- ...-

H = :£ V H and mean a= H-1 :£ H a *,. as long as H is invertible. (H will be invertible if "f d - II f 11 g-g - 1 - 1 

each variable is observed at least once. and this can be assumed without loss of generality.) 

Thus, remarkably. the prior .. family (ll) is no more complicated than the full data 

,conjugate prior as long as 2: is known. The nonmissing data combine in the likelihood function 

and prior distribution to yield a posterior distribution that is a p-dimensional normal distribution. 

\)"C 
',-~/ 

4. Normal Data Missing at Random With Unknown Mean and Covariance Matrix 

In this section the conjugate prior family in (IO, with factors. given in (8), is studied. In 

'this case, 

Since 

(V +1)/2 { } 
f(I!,l:) 0:: n V 11: -II g,) exp -Vv [(I! -a )11:-1 (I! -a)b + tr 2-1 W 1 . 

. d f d d -d " d -d d d d /1 1 - -- - --: --

this distribution is the product of normal kernels for I! given 1:, and inverse Wishart 

(18) 

i 
! 
i 
I 
t 
i 

I 
\ 

I 
I . 

I 
! I 
\1 I 

lj 
/" 
! 
i 

j 
I 

I 
I 

I' 

t 

t 
\:)1' 

I 

I .... 1 .. ·, t 

l 
L} 

8 

kernels for :£g' it is natural Ao think of this joint density as the product of a density on I! given 

1:, and a density on 2. 

Using the ~esults of Section 3, f<'i! 1:£) is again normal with mean ~ and precision matrix 

H. Hence. 

exp {Ih(:£ V H a *)1 H-'(:£ V H a "'n. 
d f d-d d f ,_'-d_ 
- 1 • - - 1 

(19) 

To simplify the exponential term, first note that 

tr1:-' (W + b a a I). 
g 9 \! -<J -~ 

(20) 

needs to be simplified. 

(2 V H a *)1 B-1 (:£ V H a *) where B = 'C' H 
II f, g -'" <J f I \! -'" 'tf VI <J 

(21) 

Consider the block-partitioned matrix H which has the form 

H 0 
0

1 
H 

H= 2 

. , 
0 

;~ 

with tfe HI! down the main diagonal and matrices of zeros off the diagonal. Let r = O.I ..... n 
be a It\atrix containing as many p.X P identity matrices as there are matrices down the diagonal 

of H. Then H = f H II. Also, 1: H a * = I H * where a *1 = (a , ) 
<J fll

J 
9 -II a • -1 ~2"'" Then (21) 

can be rewritten as 

(:£ H. a *)1 H-1 (1; H a *) =a*1 H II <i H 1/)-lf H :I: 
tI f V "d'"., -I! " f V d -d a . -, - ·1--

(:' 

(22) 

Now rewrite (20) so that it may be combined with. (22): 

I) 

, 



it 
" 

/\' 

I' 

II 
\' 

t 

l 
'I 

!: 

9 

= tr l: V l: -I (W
4 

+ b a a/> 
<.If ~ ~ -4 -~ - I - - -= tr I WH I, 

where W is a block-diagonal matrix with ~ lit bI'ock given by 

g \ ~ ~ tr (W
4 

+ bl! ~~ ~~>. 
Hence the argument of the exponential function in (19) can be written as 

a*1 H I' <i H I'fl I H a* - tr I WH I' 

= tr a *1 H I I (I HI) -I i H a * - tr i W H I I 

«~') = tr [(i H i/fl I H a* a*1 H i/] - tr [(I H i/rl(I if I') i W~ 1/1 
= tr [<1 H I'fl I rIa* a*1 - I'i ¥J Hill 

Let W = a* a*1 Then 

(23) 

(24) 

(25) 

f(l:) I 1: I ~_.-I I (v /1)/2 exp {-lh tr [ (I H 1/)-1 I H WH II ]}. (26) 
oc I H I It: \! E VI U 

The distribution whose kernel appears in (26) may be regarded as a generalization of "the inverse 

Wishart distribution. This kernel.apparently cannot be integrated in closed form. And unlike the 

case of Section 3, the kernel does not reduce to the full-data conjugate case, which would be an 

inverted Wishart distribution. 

5. Data Missing at Random When p = 2 

Surprisingly, the bivariate normal case of data missing at random does not, in general. lead 

to a mathematically tractable form for (26), An examination of the bivariate kernel reveals the 

complexity inherent in the missing data problem, 

~ hi h l'n (26), it is helpful to Since it is the inverses of the covariance matrices ""4 w c appear 

reparametrize in terms of 1:\! -I, Let ~:.O) = ZI *, ~~.J) = Z/' and 

~-----~---

------ ----- - --

10 

= Z Z I 12 
= Z. 

Z Z 12 2 
Then it is easy to see that 

Z * = 1 (Z Z - Z 2) 
I, -:-...,.r--..,--_..--__ = _--,-I -=2'-----.;1!.,:;2_ 

(tT .:. (T 2 - tT 2) Z Z 
I 2. 12 2 2 and 

(27) 

1 (Z z - Z 2) 
Z * = -:--:r--:r----,.,-- = I 2 12 

2 (tT .! tT .! - tT .!) Z Z 
i, I 2 12 I I 

In other words, the pI\~cisions are defined differently in terms 'f 2 2 d 
,0 tTl' tT2 , an (]' in different 

12 dimensions. 

Also, let (aI' b I' W I' V I) be the hyperparameters corresponding to gl = (I,O) and a b w v 
2' 2' 2' 2 

be the hyperparameters corresponding 10 g! = (0,1). For the totally observed data, represented by 

~/= (I,1), let the hyperparameters be (~3'~12,W3' v 12)' where 

and 
W 

3 

=- (031'-; a32) 

12 32 ) 

-(:'::"\ 
Then, since tIle Jacobian of the transformation from 1:' to 1;-! is /1:-1,,/-(1'+1) = 3 /Z/-, (26) may 
be rewritten as 

I 
feZ) oc 

/

b Z * + b Z 
1 1 12 1 

b 2 , 
12 12 

bl2Zbl2 zJ7 Ih 

bZ*+ 
2 2 12 

(v +1)/2 
Z * I 

1 

., I(V p +!)f2J - 3 [ { 

(Z;22 -Z;2) - exp . -~ (w +b-~,a 2)Z 
31 1'2 31 .1 

(v -1'1)/2 

Z * 2 
2 

-I- 2(w +b a a)Z + (w +b a 2)2 + (w ~b a 2)Z * 
12 12 3132' 12 32 12 32 2 I 1 1 .1 

'-' . 
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where 

11 

., * I:' Z1 Z2 
+ (w +ba-) Z - ---..---f'!4"-----l..-.!:'-----'r----..--"1-

2 2 2 2 (Z Z -Z-) b b'+(b +b +b)b Z Z -b b Z-
'e) 1 212 1 2 I 2 12 12 1:2 I 2 12 

" .~, ., 
[ b~b a a Zi:*Z +b2b a a Z'2 *+b2b a2Z :(z * 

1 12 I 31 I 2 2 12 2 32 1 2 1 2 I 1 2 

+ b b2a2Z" *Z *\b b b Z *Z *f (Z Z Z ) 
1 2 '2 1 2 1 2 12 1 2 1 I' 2' 12 

"*( "*() + b b- Z f Z ,Z ,Z ) + b b-Z f z .z",z '2 
1 12 1 2 I 2 12 '2 122 3 1 _ 1 

+ b3(Z Z _Z3~ [a2Z +2a a Z +a2Z ]]}] 
12 1 2 1_ 31 1 31 32. 12 322 

o 

2a a Z + 2a a Z + 2a a Z 
1 31 1 a 322 1 32 12 

+ 2a a Z ;. a a Z 
, 02 31 12 1 '2 12 

.., . ., ., 
a a (Z Z -Z-) + (a --a a )Z ,-

1 31 1:2 12 31 1 31 12 

+ 2a a Z Z 
31 32 '2 12 

+ a a Z Z 
I 31 I 12 

'2 ., ., 
a a (Z Z -Z ) + (a- -a a ) Z-

232 1 2 12 32 2 32 12 

+ 2a a Z Z + a a Z Z + a2 + Z2 • 
31 32 1 12 2 32 2 12 31 1 

() 

(28) 

() 

o 
UnfortJ.l~tely, sUbstitution ,for ZI * and Z/ does not allow (28) to be written in a simple form, 

o 

and' there is no apparertt i\vaytQ integrate (28) with respect to Z, Z' and Z" over the region 
1 2 1_ 

given by ZI> 0, Z_'" > 0, and (Z Z., _Z2) > 0 except by using""numerical methods. 1 _ 12 • 

If the missing data are a:.sumed to form a nested pattern, the res~.its of Chen (1984) may 

be used to find the integrating constant f9r the kernel in (18). Assume that data are mIssing ,5ln 

X but not on X. 
2 1 

parameters (P1,~;~,.z.'p'O'~2'1)' whert, o 

and 

Chen demonstrates that these dy;tinct pa/:'ameters are independent whem the mi(;'3ing data form a 
~ 0 

nesteq,,~pattern. (Chen actually assumes a complete data conj\igate prior instead of the more 

general, ,j::onjugate prA;r ~escrila !:herein. ~owever, in the c~se of nestedplissing data, hiS 

posterior kernel bas the same form as the general prior (18).) 

,(,) c:> 

Ci 

" ... 

.... 
" 

,' .. 

l o o ' ; .. ........ -"., .. ':"."'~...,--.,...,.,.,., .. " 

12 

In our notation, Chen's results imply that 

(a) 

. \.~, .., 

(
b +b )(w +w )+b b (a ~~ )-

fT-2 "" Wishart 1 12 1 31 I 12 I,: 31 
1 b +b 
.'0' 1 12 

V +v +1 ) 
'I 12 

( 
b a +b a 

(b) PI I fT21 "" Normal 1 1 12 31 
b +b 

, (b +b ) -1 0'2 ) 
. 1 12 1 

1 12 

w 
_12_), 
w 

3~a "/W~ 
1 w 31 31 

/ • 31 

Therefore the integrating constant for the kernel in (18) is known in the special case of nested 
., ., 

missing data. By ~ulling out the conditional normal density on. (P1,P.) given (O'
1
-,fT2-, (T12)' the 

complete marginal density for (O')2,O"/"O'
t2

> can also "be obtained, but as indicated by (19), its 
. 

form is quite cumbersome. 

o 
The density for (ZI,Z2,ZI2) bas a simpler form in this special case and appears to be an 

interesting generalization of the Wishart density: 

" 
1 

C,l 

jA( l' +2 v' +2V(b +b ) t::'" 
2 1 12 1 12 '/W 31 

.rr; r« v +v +1)/2} r« l' + 1)/2) 
I 12 . 12 

-{"\ '+\lI2 (V +1' 4)/2 { 
• Z 't· (z z _Z2) 1 12 exp 1h r.p z+ fJ z 

." 2 "'I 2 I~ .J I 12 12 

2 } z 1· 
+ .p Z + fJ...l1- +.p -J 

22 3Z 4Z 
2 2 

where 

., 
r (b +b )(w +W )+b b (a +a )- ] 

A = '!.o.. 1 12 1 31 1 12 1 31 
(b

l 
+b

I2
) 

'Mv +1' +1) 
1 12 

( 
'\ 



and 

., ., ., ", 

(a -a )-b b -a -b --2w (b +b ) 
1 31 1 12 1 1 1 1 12' 

b +b 
1 12 

n - 2a a (b -1)-2w 
t'12 - 31 32 12 12 

p = a2 (b -l)-w 
2 32 12 32 

(a -a )2b b +a 2b 2+W (b +b ) 
31 I I 12 1 1 1 1 12 

, , 
a -b· 

P = I I 

'" b +b 
I 12 

b +b 
1 12 
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C1.~.en's results apply to any ~ested configuration of missing data, so the complete density for 

( 1 8)' may always be found in the nested missing" data case. Chen's method does not generalize to 

the non-nested case, however, since distinct parameters can no longer be identified. A direct 

method of integration is still required in the· general case. 

o 
6. Conclusion 

We have shown that the conjugate-prior analysis of multivariate normal data missing at 

" 
random is tractable when the covariance matrix cai) be assumed to he known, and difficult 

otherwise. 
,.J) 

The kernel for a useful generalization of the inverse Wishart distribution is given, but 

we do .not know how to integrate it in non-nested cases. Perhaps stimulated by this notice of ari 
r, 

~~l 
-,~-,--~ -~ unsolved problem~ others will take up the challenge .. 
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