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SUMMARY 

This report describes attempts to develop models for victimization that incorporate two 

features. First, occurrences of vict~mizations for given housing units should be dependent over 
dff 

time. while those from housing ulUt to housing unit can be independent (conditional on the 

parameters of the mode1.) Secondly, thtre should be an explicit way of using victimization 

informlHion on a given housing unit to help impute missing ob~ervations for that housing unit 

The fit'st of these goals can' be met by introducing a beta-binomial model for the number of 

months in which a given housing unit is victim!zed. The second goal has not' yet been 

succ~sfuny met within the framework of the beta-binomial model. 
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1. INTRODUCTION 

The National Crime Survey (NCS) is a survey of housing units nationwide. The residents 

of each surveyed housing unit are .asked to, describe any incidents in which they were victims 

of criminal activity. One goal of the analysis of the NCS data is to provide yearly estimates 

of the proportion of housing units which are crime-free (not victimized). One problem is that 

not everf housing unit in the NCS sample during a given year. is sampled for the entire year. 

Also, because some housing units are victimized more than others, we take the following 

approach. We assume that the n1,lmber of months of victimization for a given housing unit 

has binomial distribution conditional on a,., parameter p, and'~hen that p has a beta distribution 

with parameters a and jJ. This allows the victimizations for a given housing unit to be 

correlated with each other, but docs not fo;ce the same correlation between' victimizations in 

different ~ousing units. A housing unit with no missing data, which was in the sample for n 

months and had k months of victimization would contribute a factor of 

r(a+fJ>r(a+k)r(p+n-k) 

r(a )r(jJ)r(a+ jJ+n) 
(1.1) 

to the likelihood function of (a, il). In section 2, some numerical results are given using 1% 

Samples of the NCS data from 1975, 1976, and 1977.' These results all assume that data is 

missing at random. 

The goal of modelling non-response within the beta-binomial model proven more difficult 

to meet The approach followed is to let each missing observation be treated as part 

victimization and part non-victimization. So, a housing unit in the sample for n months with 

k months of victimization and m months of missing data wculd be treated as if it had k+mx 

months of victimization and k+m(l-x) months of non-victimization. Thiee different methods 

for defining x are described in section 4. None of them has proven satisfactory. 

2. A BETA-BINOMIAL MODEL 

Equation (1.1) gives the likelihood function for one housing unit in the sample for n 

months with k months of victimization. The sufficient statistics, then. would be the numbers 

of housing units with n months in the sample and k months of victimization f~r all n from 1 

to 12 and all k from 0 to n. 'Phesc statistics have been calculated for each of the three years 

1975, 1976, and 1977 for two of the 10 1% subsamples of NCS data. 

Recall tha~ .... the beta-binomial model can be summarized by assuming that the number of 

months of victimization for a given housing unit with Ii months of data is binomial bin(n; p) 

conditional on p, and p has a beta Be(a, jJ) distribution. The probability that a given housing 
n 
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unit is crime-free in a given month under this model is the expected value of p 
(2.1) 

E = jJ/(a+jJ), 
I' 

and the probability that a given housing unit is crime free for s months is 

e = ns {(jJ+i-l)/(a+jJ+i-l)}. (2.2) 
(I 5 I-I 

We will denote 8
12 

simply 8, ,,{thich is the probability that a given housing unit will be crime 

free for a whole yc:ar. We can measure the variation in p from housing unit to housing unit 

by its variance 

Because the 1% samples were large;: (approximately 900 housing units each), the method of 

maximum likelihood waS used to estimate a and p. and thereby provide estimates of E, 8, 
, I' 

and V. The posterior means of the parameters should be approximately the MLE's. The 
I' 

results are summarized in Tables 1 and 2. The calculations were done using double precision 

on a Y AX 11/780 using IMSL subroutine Z.XMIN. 

Table 1: Estimates forSubsample #1 

. Item YEAR 
Estimat~ 1973 1974 1975 

Number 1 823 948 937 

a 0.726 0.499 0.736 

jJ 18.3 12.1 17.0 . 

rE 
- I' 

0.038 0.040 0.042 

(1 0.692 0.705 0.673 

yl/2 0.043 0.053 0.046 
I' 

IN umber or" housing units in subsample #1. 

An obvious question which arises is "How well does this model fit the data?" One of the 

major goals is to prodllce an estimate of the numbe.r of crime free housing units in a given 
) , 

year. We will address\:\ the question of how well the model fitS the data in terms of the 
I 

number of crime free housing units in each of the three years. Let" 5 stand for the 

probability that a housing Unit with s months of data is crime free for those s months. The 

beta";binomial model says that l' 5 = 8 s defined in (2.2). A more general model would be to 

say that the values of ; I are unconstrained, that is, they are twelve independent parameters. 

If we assume a uniform prior distribution for the vector; = (;1 •.•. ';12) over the product of 

----~--~ -- - -
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Table 2: Estimates for Subsampie #10 

Item YEAR 
Estimated 1973 1974 1975 

Numberl 836 966 955 

a 0.537 0.545 0.557 

fJ 11.3 11.5 

E 0.045 0.045 0.039 
p 

f) 0.675 V.Of;) 0.703 

Vl/2 0.058 0.057 0.049 
p 

lNumber of housing units in subsampie #10. 

12 unit intervals [0.0, 1.0 ]12, the posterior distribution of p wili be that of 12 independent 

beta random variables with means of 

(r +1)/(n +2) 
s s 

and variances of o 

(r + l){n -r +1)/ {(n + 2}2(n ... 3)} , 
5 ~ S 5 5 

where 11 is Lhe number of housing units with s months of data, and r is the number of those 
s 5 

housing units which were crime free. 

- To see how well the beta-binomial model fits the data, consider an unobserved housing 
, ' 0 

unit which would have s months of data, and let Y be a random variable equal to 1 if the 
5 (\ 

unit is crime free, and 0 if not. We wiII compute the-- posterior expected squared difference 

between Y and 8 for each s, and compare it to the variance of Y. The expected squared 
" :; $ 

difference will be larger than the variance, but, if the model fits well, it will not be much 

large!~ The expected squared difference between a random variable and a cO,nstant is the 

variance Rf the random variabJe plus the square of the difference between the constant and the 
,~ . 

mean of ~le random variable. This difference is known as the bias of the constant as an 

cstimate,;4f the random variable. As a measure of the lack of fit of the beta-binomial mociel. 
\ A 

we will use the square of<;:othe bias of () as an estimator of Y divided by the variance of Y 5 5 i 

for each s. We will then avcrage these ratios with weights proportional to n. 
& 

The mean of Y is the mean of "', and the variance of Y is the variance of ''''5 plus the _ s Ts s T 

expected value of ;5(1-;5)' The variance is then 

(r +1)(n -r +1)/(n +2)2. 
5 5 5 ' 5 

This was then divided into 

\. 

5 

[(r +1)/(n +2) - '8 r\ 
s s ~ 

multiplied by n
s
' summed over all s, and divided by the total number of housing units 

observed. The results are in Table 3. 

Subsample 
1 " .... 
10 

Table 3: Lack of Fit Measures for Beta-Binomial Model 

YEAR 
1973 
0.013 
0.025 

1974 
0.018 
0.022 

1975 
0.021 
0.010 

The results in Table 3 can be summarized by saying that under a model which allows the 

~ s to be unrelated to each other, thereby allowing very close fit to the data, the expected 

squared error for predicting whether a future housing unit will be crime free increases only by 

about 2% when the beta .... binomial prediction is used rather than the optimal prediction under 
'~.' 

the more general model. On the surface, a 2% increase may seem like a small amount But it 

must be compared to the lack of fit of ,some other model to put it in perspective, For 

example, if the worst possible model only had a 3% increase, then 2% would look quite large. 

To see that 2% is a close fit, compare the lack of fit measures in Table 4 for the model 

which say!; that the data doesn't matter. Under this model, which ought to fit very poorly, 

the prediction for Y is always 
5 

Subsample 
1 
10 

Table 4: Lack of Fit Measures for Poorly 'Fitting Model 

1973 
0.842 
2.321 

o 

"YEAR 
1974 
1.595 
2.464 

1975 
2.291 
0.492 

The increases in expected squared error for this poorly fitting model range from 50% to 250%, 

which are much larger than the 2% increses for the beta-binomial model. So, on an absolute 
~~...,'t 

scale, the beta-binomial model fits well. In the next section, '- we will compare this model to 

another' well-fining model. 

Before conclud!ng the discussion of lack of fit, it should be noted that there are other 

methods for measuring the lack of fit of the beta~binomial model. First of all, we need not 

have r~~icted attention to crime-free housing units. We could have also considered all those 

withexactly'one month of victimization, those with exactly two months of victimization, etc. 

Except for s=12, the number of victimized housing units with s months ""of data is quite small. 

A large number of lack of fll measures based on such small samples would not be very useful. 

Secondly, we could have used more familiar lack of fit measures such as chi-suared statistics. 

One problem with .such measures, however, is that there is no explicit alternative to ,compare a 

model to. Without any alternative in mind, it is difficult to justify an~ particular lack of fit 
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statistic. 

3. COMPARISON TO AN<4.l1= HOC ESTIMATOR 

Griffin (1983) considers an intuitively plausible estimator of (j which she calls the 

modified ad-hoc estimator e~. The formula for this estimator is 

fI = ~12 sr I U:12 sr + 12l:12 (n -r )}. 
I ~·I s ~·I ~ s· J ~ s 

This estimator is not based explicitly on any model. but there is a model for victimization 

under which it is strongly consistent (see Griffin, 1983). Under this model. 

(j = 12 (j I {(l2-s)() + s}. 
s 

(3.1) 

By plugging the value of 8'1 into (3.1) for (j. we can obtain a set of estimates for (j which 
/~ 5 

differ from those obtained from the beta-binomial model. The remarkable fact is that the 

two sets of estimates are nearly identical in all cases compared. For subsample #10. lack of 

fit measures were calculated for the modified ad hoc model in the same manner as for the 

beta-binomial model. For the three years 1973-5, the measures were 0.028. 0.025. and 0.009. 

These compare favorably with those of the beta-binomial model in Table 3 row 2. The 

advantage to the modified ad hoc model is that it has only one parameter rather than two to 

estimate. The disadvantclges are that it does not allow (without further modification) estimates 

of the probabilities of being victimized in 1, 2. 3 •. etc. months. and that the formula (3.1) is 

not intuitively understandable. 

4. ATIEMPTS TO MODEL MISSING DATA 

As previously mentioned, the attempts to model missing data within the' beta-binomial 

model consist'ro of treating each month of missing data as if it were ~arlvictimizati()n and 

part non-victimization. A number x between 0 and 1 would be added to the number or 

months of victimization for every month of missing data for a given housing unit. The 

number 1-x would be added to the number of months of non-victimization. The likelihood 

function for a given housing unit with n months of observed data. m months of missing data, 
() 

and k months of victimization would be 

r(a+ P)r(a+k+mx)r(,8+n-k-lom(l-x» 
r(a)r(,8)r(a+ ,8+n+m) 

(4.1) 

Two. different methods of defining x were considered. A third method of modelling non­

response did not involve defining x. and is described after the first two. None of the 

methodS proved useful for maximum likelihood estimation. 

The first method of defining x was to let it be a third parameter in the model. From 

I 

l i 
l 
I 
; 
! 

it 
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the fact that the fact that the gamma function is convex for positive arguments. it follows that 

the minimum of (4.1), as a function of x for fixed g and P. will occur at 

Xo = 0.5(11 - a + m)/m. (4.2) 

The maximum will occur at one of the endpoints 0 or 1. If Xo is not between 0 and 1, then 

(4.1) will be monotone in x for fixed a and fl. The maximum would then occur at x = 0 if 

fJ > a and at x = 1 if fJ < a. Typically, p will be much larger than ~ so that the maximum 

would occur at x = 0, and not much useful information would be contained in the MLE. 

The second method of defining x was to set it equal to E defined in (2.1). It was 
p 

hoped that if those housing units with missing data had more victimizations than the olhers, 

the estimate of Ep would be increased oyer its estimate assuming th.e data missing at random. 

However, the same feature which drove the estimate of x above to D. causes the estimate of E 
p 

to be smaller under this new model unless the housing units with missing data had more 

months of victimization than of non-victimization. Since this was rarely the c~ose. the MLE of 

Ep was of necessity smaller under this new model than under the missing-at-random-model. 

regardless of whether those housing units with missing data had more or fewer victimizations 

than the others. 

As an example. take the year 1973 for subsample #1. Table 5 gives a summary of the 

victimization records for those housing. units with missing data. 

Table 5: Summary of Missing Data 

No. Missing_Months No. Housing Units Percent Victimization! 
O. 667 3.60 
1 16 4.55 
2 21 6.67 
3 M ~ 
4 20 3.96 
5 12 2.38 
6 44 8.45 
7· 5 0 
8 8 6.25 
950 
10 5 0 
11 6 0 

'The entry in this column on row i is the average over all housing units with i months of 
missing data of the percentage of months of data for which a victimization was recorded. 

Note that most hOUSing units with missing data had more month~. of victimizatKm per month 

of data than those with complete data. However. the MLE of E under the second model 
p 

described above was only 0.015, which is much smaller than 0.038 estimated using the missing-

at-random model. 

. , 
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A third attempt to model missing data was to say that conditional on p, the probability 

that there was a victimization during a missing month was p, and the probability of no 

victimization was I-p. The contribution to the likelihood of a and jJ for a housing unit with 

n months of observed data, m months of missing data, and k months of victimization would 

be 

, I 

S a+k-I ")jJ+n-k-I 2 2m r(a+ jJ) p (I-p [p +(I-p) J dp -'-:---:-"""7 
(0,1) r(a)r(,O) 

This method, unfortunately, has the same problem that the other two have. The extra factor 
~ 

p'i+(1_p~] is maximized at p=O and p=l. This will cause the MLE of EI' to decrease as long as 

the MLE of a is much less than the MLE of jJ. 

5. CONCLUSION 

A model for victimization has been proposed and fit to data from the National Crime 

Survey. The model was designed so that there would be dependencies between victimizations at 

each housing unit The model is., related to a gamma-poisson model. for repeated events 

describe.d by Nelson (1982). In the gamma-poisson model, the conditional propability given y 

of having x victimizations In time t would equal e -yt( yt)x Ix!. while y would have a gamma 

distribution r(a, jJ). To compare this J~ the beta-bin~mial model. assume that r has units of 

victimizations per month. Then one ca~write 
p = 1 - e-Y, 

where p is the (conditional) probability of being victimized in a given month. Transforming 

the rea, fJ) density for y into the density of p. we obtain 

{jJa Ir(a)} [-log (l-p)] a-I (1_p}jJ-l (5.1) 
c 

for the density of p. If a is much smaller than ,8. then this density will be concentrated near 

small values of p, for which <-logc(1-p) is approximately P:. Also, if a is muc,h smaller than fl. 
pa is approxima~ely r(a+,o)/r<,O). with these two approximations, (5.1) can be ap~oximaled 

by a' beta Be(a~ ,0) density. These two models should then produce similar results when only 

number of months of victimization are available. rather than the total number of victimizations 

and when they occurred. 
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