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ABSTRACT

Distribution theory 1is given for Bayesian inference from
multinomial (or multiple Bernoulli) sampling with missing categcry
distinctions, such as a contingency table with supplemental purely
marginal counts. A new conjugate family generalizes the usual
Dirichlet prior distributions. The posterior moments and pre-
dictive probabilities are found to be proportional to ratics of

Carlson's hypergeometric functions of matrix argument. Dimension-

reducing Integral identitles and expansions are given for statistical

use. Closed-form expressions are developed for cases of nested
missing .distinctlions. Examples are given, together with a simple

method for assessment of a Dirichlet subjective prior distribution.
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1. TINTRCI'UCTION

In his two books (1950, 1965) and various articles, 1.J. TGood
popularized Bayesian conjugate-prior inference for multinomial

sampling, in which the Dirichlet distributions form the conjugate

family of prior distributions. This mathematics 1is tractable and

elegant. Denslties, moments, and predictive probabilities take
closed forms. Furthermore, the family of Dirichlet distributions
and mixtures of Dirichlets with a small number of terms is large
enough 1in many situations to offer realistic models for predata
subjective uncertainty. (An excertion occurs when there 13 a

prior prejudice for local smoothness between neighboring category
probabifffies, such as when the data frequencies result from group-
ing a sampled continuous variable (Dickey 1968b).)

However, in the case of inferencs from data with some missing
distinctions between éategories this tractability seems to fade.
The likelihood then contains factors whilch are powers of the sums
of probabilities of the confused categorles. The more data values
that miss a particular distinctilon, the greater the power of the
corresponding sum; and the greater the variety of such missed dis-
tinctioqsﬁ the more such sums there are in the likelihocd. 1In the
least tractable cases, the sample contains moderate amounts of data
of assorted kinds: <complete data and data with various missing

distinctions, without nesting or other logical constraints between

the missed distinctions.



Bayesian treatments of multiromial sampling with miscing
data were given a decade ago by Karson and Wrobleskil (1970),
Antelman (1972), and Kaufman and King (1973). These concerned
two-way contingency tables containing data with missing informa-
tion regé;ding row or column variables. The studies were re-
stricted to the 2x2 case. DBasu and Pereira (1982) extended
consideration to Kx2 tables and summarized properties
of the Dirichlet distribution under relevant changes of
variable. For an account of frequentist results, see Chen and
Fienberg (1974, 1976), Dempster et al (1977), and references
cited therein (for example, Hartley 1958).

After formulating here the general problem of Bayesian
multinomial inference for missing category distinctions, in
Section 2, we shall introduce in Sections 3 and 4 a representa-
tion of posterior integrals from Dirichlet prior distributions as
multipleAhypergeomutrjc functions, specifically, the elegant
functionsz R and R of rarlson (1977). The posterior distributions
are found to be identical to distributions developed in Dickey (1083).
This is then extended in Sectilon 4 to a new conjugate prior family
for such sampling. A parallel development based on changes of
variable in the Dirichlet distribution yields closed forms for the
case of nested missing distinctions, Section 5. This leads to new
siﬁplications of R. Straightforward expansions of posterior dis-
triputions as probability mixtures of Dirichlet Jdistribhutions are
generalized in Section 6, and related expansions of R are given.
Examples are briefly given in Section 7. An appendix outlines a simple

method for assessment of a Dirichlet subjective prior distribution.
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2. CGAMPLING WITH MI:!'3ING DISTINCTIONS

To begln, we shall need to establish notation for the non-

missing (uncensored) case. Denote by X = (xl,...,xK)' the

vector of frequency counts for sampling from a distribution on a

finite sample space having the unknown probabllity vector

u = (ul,...,uK)'. That is, Xy denotes the number of sample

values falling in the ith category of probability Uy i=1,...,K.

For Bayesian inference concerning u under any noninformative-

stopping process, the vector X can be treated as if it were the

frequency count from a multiple-Bernoulli sequence § = (61,. M)
=X

of prespecified length M. Then X, = M, where x denotes

xl+...+xK. The corresponding likelihood function is proportional

to the prchabllity mass of such §

>

.
VLR (2.1)

Note that this function of u 1s parameterized by the frequencies
X, a sufficient statistic. (The term "multiple-Bernoulli" refers
to a fixed-length sampling distribution for gx, for which x has
the "multinomial" distribution with mass equal to the product

of (z) multiplied by (2.1).)

2.
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The Bayesian predictive distribution is the subjective prob-
ability of an outcome sequence gx #lthout conditioning on the un-
known sampling parameters u. That 1s, u 1s averaged out of the
sampling probability (2.1) according to a distribution of u.
Whatever the prior distribution, the prior predictive probability

takes the form of a prior moment,

-
-

pr(s.) = E pr(s, |u) (2.2)

This gives the subjective probability for the outcome sequence éx

conditional only on the total count X . A similar statement holds

for posterior predictive probabilities of additional future outcomes

in terms of posterior moments. Hence, to provide Bayesian predilc-

tive probabilities, we need merely develop the prior and posterior
moments. (A similar statement will hold in the case of censored
sampline.)

The conjugate prior family for uncensored sampling 1is the

Dirichlet. The random vector u is sald to have the Dirichlet dis-

tribution D(b) with parameter vector b = (b"""bK)" each bi>0’
if u has the density in any K-1 of 1ts coordinates,

b, -1

f(usp) = B(D) T ME w b, (2.3)
_ K

for all u in the brobability simplex {u: each uiiO, u =1}

T it e s e s

2.5

Consider the prior distribution,
u v D(b) . (2.4)

The corresponding prior moment is

g(csb) = E
(2.5)
= B(b+c)/B(b).

The predictive distribution is then the Dirichlet-Bernoulli with

mass pr(gx) = g(x;b). Note that r(x) 1s the probability mass

of the
outcome sequence gx, rather than the frequency count x.

The posterior distribution corresponding to the conjugate
prior (2.4) and likelihood function (2.1) 1is again Dirichlet

wlth updated parameters,

ulx ~ D(b+x). (2.6)

The posterior Dirichlet density 1s then I(u;b+x) and the posterior moment is g(c;b+x) .

Consider ngw the generalization to sampling from the dis-

tribution having probabilities 4 when some observations are

censored, that is, do not report unique categories, but rather mere

sets of categories. For example, an observation may be reported

as falling either in category 1 or in category'j, for a particular

pair 1i<Jj. Denote the frequency count of such observations by y
i

J°
Let yiJk be the frequency count of observations confusing a triple

of categories, i<j<k.
o
subset ¢ of at least two categories:

An analogous notation applies for any proper

y0 for oc{l1,...,K}. Denote

a sequence of N such censored outcomes b =
Y ey (el,-. ) and

. JE:N
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denote by y the corregponding vector counting the confusions of

each possible type,

(2.7)

Y= (¥ypse-ea¥yogs-s¥og )]

The dimensionality of y 1s EK—K—Z, although in practice, y will
be sparse with most coordinates zero.

Consider sampling under noninformative stopping and non-
informative censoring (Dawid and Dickey 1977). The likelihood func-
tion is proportional to the likelihood function from an outcome
sequence (gx,gy), g, = (El""’EN)’ where & and e, are independent
and the coordinates eiindependenply arise f?om prespecified

partitions of the sample space. Then

pr(gx,gylg) = pP(Qxlg)pr(gylg), (2.8)
where
l - yil iy
pr(e |u) = M, _, 0 (u, +...+u. )
y k=2 il<...<ik i, iy
yO

- Q
n0<ziecui) . (2.9)

Now, consider the effect of this likelihood function for
inference from the Dirichlet prior density (2.3). The 1independence
of the two factors in the likelihood (2.8) implies the following

result.

Theorem 2.1. A data sequence (gx,gy) of prespecifled length

and censoring pattern has the predictive probabllity

pr(gx,gy) = Eulb[pr(gxlg)pr(gylg)]

g(x;b)h(y;b+x), ©(2.10)

S T A

ez

2.

where the [irst factor g is given by (2.5) and the second factor
is the expectation of (?.9) under the Dirichlet partial-poctevior

Aistribution, u|x v D(b+x),

p

h(y;b+x) = Eulb+xpr(gy[g). (z.11)

The posterior density of the unkaown probability vector u has the

expression in terms of this same quantity h;
Flusbtxs-y) = £lu;b+x)prie, Ju)/nly;b+x). (2.12)

(Theﬂfunction f of three arguments generalizes the previous nota-
tion f of two arguments (2.3); the motivation for defining a negative
third argument will follow later.) The corresponding posterior

moment 1s proportional to a ratio of such quantities,

c e

K "1 g
Eu|b+x,y[(nlui )no(zieoui) ]

(2.13)

= glc;b+x)h(y+e;b+x+c)/h(y;b+x).

where the proportionality factor g(c;b+x) 1is the usual Dirichlet
posterlor moment (2.5), based on the uncensored part X of the
data. [

Attentlon focuses naturally, then, on the properties and cal-

culation of the quantities h (2.11).

G



3. MULTIPLE HYPERGEOMETRIC THUNCTIONS

B. C. Carlson (1963,1971,1974,1977) developed the following
class of multiple hypergeometric tunctions for an organizing and
unifying role in the field of special functionc. See also Dickey
(1983) for probabilistic interpretations and statistical uses.

We define the function R as a moment of a homogeneous linear form

in the random vector u ~ D(b),

(k-1)

ulo 'z, . (3.1)

R, (b,z) = E

where z = (zy,...,2,)"' and u'z = u,z too.fupze. (In this section

171
we shall indicate the dimensionality of integrals in the notation

-+

we use for expectation.). This definition requires bizO for
all i, but more general definitions, including a function that
generates R, appear in Carlson (1977). Dickey (1983) exhibits
R as being, itself, the probability generating function of the
Dirichlet-multinomial distribution, the conjugate Bayesian pre-
dictive -distribution for multinomial sampling.

The following classical identity, attributed to Picard by
Appell and Kamp: de Fériet (1926), reduces the dimensionality
of the integral representation, thus permitting computation of
R by simple quadrature. Although this refers to a restricted
range of parameters, a contour integral applies more generaily
(Carlson 1977, Theorem 6.8-2, p.155).

Theorem 3.1 (Picard's identity). For -b_<a<0, w = (wl,wz)',

and _q._ = (-a,b.+a~)':

T R T ST I S BT et e

I T v e T

- (1) K =Dy
R (b,z) w|a Iy (wyz, +u,)
1
-1 a-1 b +a- 1 1 "bi
= B(d) v (1-v) [Ny (vz +1-v) ldv. 0O
0
Under the parameter restriction a = -b,, R takes the simple
limiting form,
_bl
R—b (P_,E) = Hzi . (3.3)

A two—way multiple hypergeometric function generalizing R,
a funct%gp of matrix argument, can be defined by consiéering
a bilinear form u'zv in independent random vectors, u v D(b)
(K coordinates) and v v D(e) (L coordinates) for nonrandom matrix

Z(KxL). Define the function R as a moment of the bilinear form,

_ ~(K=-1 L-17 ,
Ra(0:2,0) = £ [TVe{l 1) (yiay)® (3.4)
—_ (K_l) . ' [
= Eulb Ra(E,B E*l:--’:E E*L)>
where
(2 )
Z
Z
Z s
Z = | . = (2 ...,z ). ‘ (3.5)
*] *1,
Z
| K¥ J

A simpler integral representation and a dimension-reducing

integral identity are available for Ra, as follows, under the



e o .

_The second equality in (3.6), first given by Dickey (1968a),

P— SRR MRl Bedus e i

SRR TERL SISt I e~ r s e N

3.3

parameter restriction a = -c

Theorem 3.:2.

|
=1

R_C.(Q,Z,g)

I
(23]

wla Tz, v + v 7 (3.6)

where

wo= ,» 4 = . (3.7)

generalizes Picard's identity (L = 1). (I

Note that if b, = ¢, in (3.6), dL+1 = 0 and the T-fold §

integral becomes an (L-1)-fold integral with Wi S 0. More
generally, as the following Corollary shows, the dimensionality
of the integral can be reduced when the parameter vector c¢ has

zero goordinate values. This property is useful in missing

data problems in which the high-dimensional vector y is sparse. ]

Corollary 3.3. If, without loss of generalilty, the vector
' (1)

t
¢ 1s taken in the form ¢ = (9(1) ,0') where the subvector ¢

has L(l) < L coordinates, then

_ (1) (1) . 1.
- R_c<l)<g,z e ) (2.8) :

(1)

(1) consists of the corresponding L columns of

(1) ,(2)y

where 7
Z, Z = (2 similar dimension-reduction occurs whenever

there are some columns of Z which are proportional to each other,

or proportional to the vector of unit entries 1 = (1,...,1)'. [

s e AP o s

In principle, the integral identity (3.6) can be useful for
computation of R by quadrature whcen L<<K (or L(l)<<K). However,
we have found this‘awkward in practice, because for interesting
values of the parameters, the integrands tend to have poles in
the range of integration. At prescent, seriles expansions of R

appear more practical, as pgilven later in the paper.

)



4. TNFERENCE AND A NIEW CONJUGATE KFAMILY

Under the parameter restriction a = -c , Carlson's two-way
multiple hypergeometric function R has the same form (3.6) as the

mement quantities h (2.11) needed in Bayesian Dirichlet-prior

-

inferenéé for censored multinomial sampling. To express this

identification, speclalize the matrix Z to the full-subsets in-

~

-~

dicator Z = 7, consisting of zeros and ones whose L columns 2*1
indicate all the proper subsets of two or more elements,

o, ¢ {1,...,K},

J
~ 1 irf ieoj
457 ; (4.1)
J 0 ctherwise,
j=1,...L, where
L = 2f_x-2. (4.2)
Theorem 4.1.
L dj
h(d;b) = E | 07 (L, u,) ° (4.3)

This identification ties the problems of Bayesian statistical
inference for missing data to a mainstream segment of the theory
of special functions. The Dirichlet prior distribution u ~ D(b)

implies the predictive probability (2.10) with (4.3),

pr(QX,gy) = [B(b+x)/B(b)] * Ryf9+§,Z,—g), (4.h)

1

R

e

R

SV

AT

R tesiras

IR vy

and the corresponding posterior moment (2.13) becomes

[B(b+x+c)/B(b+x)] (4.5)

"Ry ye (bFxte,Z,-y-e)/R . (btx,%,-y).

Note that our posterilor distribution (2.12) 4is not in the same
family as the prior, and thus the Dirichlet family 1s not conjugate
for the missing-data likelihood. This motivates the following

A
development.

4.1 A General Family.

-

Dickey (1983) generalized the Dirichlet distributions to
the family, for arbitrary matrix parameter Z(KxL for arbitrary

K,L),
Br\’ D(E’Z:-g): (u.6)

having density on the simplex of K probabilities,

b,-1 d

1, K
() w,tynk (w'z )% (5.7)

/Ry (0:2,-4) .

B(b) "

(For the powers d in (4.7), the sign of the third parameter -d
in (4.6) 1s defined to match the usage of Carlson's R; thls avoids
confusion in the long run.)

The moments of D are proportional, as in (4.5), to ratios

of R functions,

.2

»
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[(Hlui )Hl(g é’*j) ] (4.8)

(K-1)

Eulv,z,-d

= [B(b+c)/B(b)]

* Rd +e.(9+9_,Zs-§_-§_)/Rd.(p_,Z,—(_i_).

A
Zero parametcecr coordinates yleld important reductions in

complexity, as follows.

! '
Lemma 4.2. If 4 = (g(l) ,0') (without loss of generality)

Z = (Z(l),Z(Z)), and u v D(b,Z,-d), then
u v(g,z(l),-g(lﬁ). (4.9)

In particular, 0(b,Z,0) ~ D(b), regardless of the matrix zZ. O

1 1 t
If b= (p},0") , 4= (21,2)) and u = (ul,ul) ,

then u ~ D(b,Z,-d) if and only if U, = 0 with probability one and

Lemma 4.3.

p—l v D(_b__l)zl'l’—g_)' D (uolo)

Lemma 4.3 holds, in particular, for the Dirichlet distribution

(d = 0). Compare to Corollary 3.3 for R.

4.2 Inference.

To return to Dirichlet-prlor inference for censored multi-
nomial sampling, note that our posterior distribution (2.12) has

the representation in the notation of (4.6),

ulx,y v D(b+x, Z,—l). (4.11)

Hence, the posterior density f(u;b+x;-y) (2.12) is given by

(4L.7) with parameter values b+x,Z,-y.

b,

3

S A ety yoeemi s

As stated earlier, the pirichlet subfamily is not closed under

censored multinomial sampling. However, the family of possible

posterior distributions (4.11) does have this property, and thus

we conslder prior distributions of the following form.

Theorem 4.4. Consider the distributions

~

U~ D(b,%,-d).

(4.12)

As a prior distribution, (4.12) yields %he predictive probability,

by (4.8),

pr(8, ., e,) = [B(b+x)/B(b)]

v (4.13)

’ Rd +y.(_b_+iyz"'g"y)/Rd (9,2,—@_),

and the posterior distribution as an updating of parameters,

B_IE:X u D(b‘*‘{,z,-(d_‘*'z))-

(4.11)

The corresponding posterior density Fluib+x;-(d+y))is given by
(4.7) with parameter values E+£s£’—(§+l)- The Dirichlet-prior
theory 1s the special case d=0. 0O

The posterior moments for (4.14) are obtained from (4.8)

under the posterior parameter values. For example, the posterior

mean 1s

E(uy[x,y) = [(o,+x,) / (b +x )]

(4.15)

~

(E-‘Lz{_: VA 3 —Q—y )

Ra vy, (RFXFYy2,-d-y) /Ry

where the coordinates Y1y of the vector Y; are defined to be

zero except for unity in the ith cnordinate. The posterior

4.

4
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second moment 1is

LY. b,+x.
(by+xy+yy ;) (Dyxy)
(b.+X.+l)(b.+x')

E(uiujlg,x)

7 _g— 2 % .7 . =-d-y). 4.16
+13’Z’ d. g)/Pd.+y.(g+1,Z, d-y) ( )

Dickey (1983) proposed the use of D as prior distributions
for ordinary (noncensored) multinomial sampling. We sugsgest,
however, that in practice, even for censored data, the usual
Dirichlet distributions (or mixtures thereof with a small number |
of terms) may be preferred to D as prior distributions, thus
yielding the new distributions D as posterior distributions.

The Dirichlet has the advantage as a prior distribution of beilng

convenient for subjective assessment (see Appendix), though more

rigid in the subjJective opinions it permits.

D
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5. NESTED CIFNSORTNG

The posterior moments and distribution theory are considerably
simplified when censoring is nested, that is, when for every two
sets of confused categories, either one set is contained in the
other or they are disjoint. For example, consider a multiple-
cholce questlonnaire. If every person in the sample eilther
answers all questions or is a complete nonrespondent then the
censoring is'nested. The Dirichlet-prior inference for such
sampling was gilven by Basu and Pereira (1982).

The example can be extended to allow a particular question
which the respondents can choose to ignore, or even a set of
such gquestions that can be i1gnored as a whole. A series of sets
of questions, lilnearly ordered by set-incluslon and the choice to
answer all of each such set or only 1ts subset i1s also permitted
under nested censoring. For example, suppose the questions are
presented 1n the same order to each respondent, who chooses some
arbitrary place to stop answering questilons, such as how far
he/she gets before time runs out. As long as the respondents
answer all questions until the places they stop, the data is

nestég. However, unconstrained decisions on whether to answer
different questions would lead to non-nested censoring patterns
in the data. Nested censoring is best treated in terms of nested
partitions, which are defined in the. following.

Define a matrix Z(KxL) to be a partition indicator if its

columns indicate disjJoint and exhaustive subsets, that is, a

partition of {1,...,K}. Formally,
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1. Each entry of 2 is a zero or a one.

2. Orthogonal columns: z' z =
. ¥j %K

0 for each j#K.

3. No row has all zero entries: gi*#g’, for each

Given a partition indicator Z and K-tuple u, define the correspond-

!

ing partition-sum vector s(u) = (Sl<5)""’sL(5)) s

s(u) = 2'u (5.1)

Then each sj(g) = z' u.

*J

coordinates of g(g) are the probabilities of the partition-element

If u 1s-a probability vector, then the

events.

Define the coordinatewise product of two vectors as the

vector of products of corresponding coordlnates,

zxu = (2

1
lul,...,zKuK) Then given a partition indicator Z

and K-tuple u, define the partition-inner-proportion vectors,

ry(u)= z  xu/s,(u), (5.2)
*J
J=1,...,L. Note that if u 1s a probability vector, each gj
consists of the condltional probabilities given the jth partition-

element event. As such, 1t has zero coordinates for all i not

in the Jth subset. We have the 1lnvertible mapping corresponding

to (5.1) and (5.2): u +rs(u),r,(u)(j=1,...,L). The following

J
theorem extends a result of Wilks (1962).

Theorem 5.1. Given a partition indicator Z, the vector u

has the Dirichlet distribution u ~ D(b) 1f and only 1f the L+1

image” vectors in (5.1), (5.2) are independently distributed and

Ay -

it e s

(5.3)

(5.4)

Note that z xb = s,(b)r
h—*‘j—- J ="=J
coordinate of r

(b), and that by Lemma 4.3,

unless z = 1, the it

1]
probability one. 0O

J(g) equals zero with
The following simple form of R appears to be new in the
literature.

Corollary 5.2. If Z 1s a partiﬁion indicator,

Ry (B,2,-3) = B(s(b)+d)/B(s(b)) . 0O (5.5)
Proof. By (5.3),
d d
(K-1),L, 3. L (L-1) L j
Bulo Motz w7 = Byy[s(pyTys; (W ° (5.6)

Theorem 5.1 generalizes immediately to distributions D, as

follows.

Theorem 5.3. Given a partition indicator Z, u ~ D(b,Z,-d)

if and only if the independent distributions (5.3), (5.4) hold

for this same Z, with s(b) replaced by s(b)+d . 0O

Corollary 5.4. Given a partition indicator 2, the distri-

bution u ™ D(b,Z2,-d) has closed-form moments (in terms of the

same Z2),
c e
E[(Huii)ﬂsj(g) I (5.7)

= [B(b+c)R (b+c,Z,-d-e)]

d,te,

5.

3



[B(b+c)B(s(b+c)+d+c)/B(s(b+c))]

/(B(p)B(s(b)+d)/B(s(b))]

B(zyyx(b*e))

B(s(bte)+dte)
HB(E*JXE)

B(5(0)+d)

|
O

By Lemma 4.2, this yields the moments of the prior distributioﬁ
(4.12) and the posterior distributions (4.11), (4.14), under censor-
ing by a partition, provided the prior distribution refers to the
sanie partition (if to any).

The elements of a partition Qf a set are subsets, any one of
which could then be partitioned further. Two partitions, of

which one 1s a partition of an element of the other, are saild to

be directly nested. Then one 1s a partition of a set and the

other 1s a partition of a subset. Two partitions are said to

be nested if they belong to a sequence of successively directly
nested partitions. Finally, define a collection of partitions to
be nested if they form a tree; that 1s, each partition is nested
with respect tc a particular partition, the root of the collection.
Thenthe root is the only partition in the collection that is a

partition of the original set.

Define matrix Z(XxL) to be a two-level nested-partitions

indicator i1f it indicates a collection of partitions in which

each nonroot partition is directly nested in the root partition,.

\
Namely, Z = (z(1>,z(2)) where Z(l’ indicates the root partition

and

(1)
7(2) = (z(2))L

Bhi T, (5.8)

5

i

11 which each submatrix Zgg) indicates a partition of the subset

indicated by the jth column z(l) of Z(l) j=1,...,L(l).

_.* . "
J
(2) are filled out with zero rows for zero coordinates

The sub-

matrices Z

of g(l).
*J

Theorem 5.5. Glven the two-level nested-partitions indicator

Z, u~ D(b,2,-d) if and only if independently

s (wy) ~ ps (p)+a (P 4g(@)) (5.9)

2 42 3

r§l>(g)«10(z(1)xb 7(2) -d(z)), (5.10)
- Ty T ~J

J:l,...,L(l); where §(l) and 551)(j=l,.,.,L<1)) refer to Z(l).

In conformity to (z<l),z(2)),g' (9(1) ,d(g) ) and

2) <g‘2)'>Lm

( .
g SERRFES U

(5.11)

and 5(2) has the Jth coordinate gég)';; J=1,...,

Such & two-level nested-partitions distribution 0 can be ex-
pressed in terms of independent Dirichlet-distributed vectors, by

application of Theorem 5.3 to (5.10). By iteration of Theorem 5.5,

a nested-partitlons distribution of any number of levels can be so

expressed. Thus, the moments of any nested-partitions distribution

can be obtalned in closed form, as in Corollarv 5.4.

5.

new closed forms for the function R for a nested-partitions indicator.

5

This yields further
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6. EXPANSION BY POSSIBLE DATA

A well known tautology in Bayesian statistics equates a pos-
terior distribution based on censored data to a probablility mixture
of posterior distributions from the possible uncensored versions of

the observed data. The following form of this tautology exhibits

a D distribution as being, itself, a finite mixture of Dirichlet

distributions.

Consider, for this purpose, matrices W of possible freqguency

counts refining the observed censored frequency vector y. Write

W = (wigz i=1,...,K, oc{l,...,K}) (6.1)

K

This KxL matrix has columns indexed by subsets o(L=2"-K-2). For

each subset oc{l,...,K}, the column W is supported on o,
*0
¢,

w, =0 for igo,

10 (6.2)

and these possible frequencies for the categories in o sum to the

observed count for o,

W= ¥ (6.3a)
This says, for the row-vector of column sums,
wo o= 1'W =y (6.3b)
. %
Note that the column-vector of row sums, w = Wl, is a possible
*n
uncensored frequency vector for {1,...,K} harmonizing with the

observed censored frequenciles y.

Lemma 6.1. The sampling probability of a censored sequence is

the weighted sum ¢ f probabilities over all possible refinements of

A useful expansion of R 1s obtained as a consequence.

TR S i e

X, W

the censored frequencies,

Y W

prie |u) = J(n_ | % {jn.u, It
Y w%y G{W*O} ii

(6.4)

The notation W|y indicates that the summation is over nonnegative

integer Wi constrained by (6.2), (6.3). DO

Proof.
(e lu) Yo
pr(e lu) = n0<zieoui) (6.5)
=1 Yo I, u 1o
o v |w i i
*o‘ g\~ %o
y W
- no[ w0 Hi uliO]
Wy —¥g
In a more detailled notation, one can write,
y K-1 y
no |0 | = moom Tpeeety (6.6)
Trg) k=2 <<l iR,
71 k

¢ Theorem 6.2.

For a Dirichlet prior distribution u ~ D(b), the

posterior distribution D (2.12), (4.11) based on x, y is a posterior-
probabllity mixture of posterior Dirichlet distributions based on

w s
* .

fusb+x;-y) (6.7)

= f(u;b+x+w, Jpr(W|b+x,y),
Wiy

where f with two and f with three arguments are defined by (2.3)
and (4.11), (4.7), respectively,

o



pr(W|b+x,y) (6.8)
'yG
= [HO[ }]g(u ;0+Xx)/h(y; b+x)
e w *. —_— —_-
L
and
h(y; btx) (6.9)
y
= Lol gw ; bex),
le 9w * . -

where g and h are defined by (2.5), (2.11), (4.3). O

Related results appear 1n Shefrin (1981). Theorem 6.2 can be

generalized immediately for use of a prior distribution D(b,Z,-d),

in the spirit of Theorem 4.4, merely by substituting d+y for y.

The representation (6.7) can be reexpressed in a general
notation for probability mixtures,

ulx,y v D(b+x+w )*W
* .

(6.10)

where W has the mass function (6.8), or its D-prior form. In this

notation, our theorem generalizes simply to give a mixture-representa-

tion for any D distributlion, as follows.

Theorem 6.3.

Consider arbitrary Z(KxL, for arbitrary K,L).
Conformably partition Z = (Z(l),z(2)),

H 1 1
a=@P",a®"" ana L= 412 Then u v 0(b,2,-) if and
only if

o Doty 2 gt ye,

*.

(6.11)

6.
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where W(KXL(2)) has probability mass

2[5
J W
pr(W) = H§=l H§=lz§§) 1J
s 5
(1) (1)
R (b+w ,2 -d )
B(b+ 1) 272 =4
(o, ) alt) b (6.12)
B(g) Rd(E,Z,—Qj ’
for w = g(z) 0
* .

Theorem 6.2 1s the specilal case, L(l) = 0 with parameters

E+§’Z9‘Z' Note that the generalization of restriction (6.2), Wy g =0
for z§§) = 0, holds automatically for (6.12). Since (6.12) must sum

to unity, we have an apparently new representation for R under the

parameter restriction of (3.6).

Corollary 6.4.

Ry (B.2,-d) (6.13)
) (2)
d; W
_ A I N 1
wldkz) ﬂ*j !

(Blotw. )/B(D)IR (1) (wu 21, alt))
* . . *.

In case Iﬁl) = 0 in (6.i3), Rd(l) =1 as in (6.9). O

In our experience so far, the expanslons of this section have
peen more convenlent and economical for computations than the naive

quadrature of analogs of the dimension-reduced integral (3.6).

.~

4
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| | 7. EXAMPLES
Such expansion methods can be easily combined with the partition- .

nestf%g methods of the preceding section to minimize the number

: ! Example 1. Contingency Tables with Supplemental Margins.
of terms involved, as in Antelman (1972) for special cases. Recur-

sion relations are easily set up for the multinomial coefficlents.

An interesting special case of censored multinomial sampling

i1s provided by contingency tables with supplemental purely marginal
¥ data. Consider a two-way table with three independent multinomial

i
i ! data sets, respectively for: the cross-classified table, itself;

the row variable alone;

and the column variable alone. By the like-

lihood principle, for sultable models. these data can be directly com-

bined into the inferential eguivalent of a single censored multinomial sample.

Table 1, -6n M+N =

!
1
i
i x Chen and Fienberg (1974) analyze such data, given here in
h |
! % 456 premature live births, classified by serum
!
i

bilirium level (mg. per 100 ml, "Low" 0-1.0) aqd/or a composite

i

'i

i health index (0-10, "Low" ("healthier") 0-6).
E

i

i

; . Table 1. Data on premature live births (Chen and Fienberg 1974).
% / Serum Health Index Supplemental data
g ﬁ bilirium Low High on serum bilirium
| |
- : '
. % I Low 35 75 11
' b
§ ; High 57 112 13
! i .
3 / Supplemental data
i ! on health index 117 36
%
! b For the cross-classified cell probabilitiles u
I

13 (1 serum
bilirium, J health index), a uniform prior distribution,

' .
(ullsulgsuzl:u22) v D(E), E = (l,l,l,l) s yields a posterior

9 -
- bk e AN A
s o S

distribution D(b+x,Z,-d), where x is given hy the cross-classified
| body of Table 1,



o - O+
. O O

and d = (117,36,11,13)

o o +HH
= P OO

(7.1)

This posterior distribution can be

expressed as a mixture of nested-partilition distributions by

Theorem 6.3, by expanding the two lower powers (u

(uyy+uy,

11140)

)13. The resulting posterior means are given 1in Table 2

11 and

with the posterior standard deviations and correlations, and the

maximum likelihood solution from Chen and Fienberg (1974). These

Bayesian estimates are not very different from the maximum likeli-

hood values, as should be expected from a uniform prior distribution

and reasonable sample sizes.

Hence,

as 1s true of the likelihood

inference, appreciable information 1s gained in the Bavesilan

analysls from the supplemental marginal data.

Table 2. Estimates of cross-classified cell ‘'probabilities for

data on premature live births.

o
Cell probabilities ull u12 u21 u22
Max.-likelihood_est. 0.1880| 0.2090 0.2960 0.3090
Posterior mean 0.1888] 0.2096 0.2950 0.3065
Posterior SD 0.0255| 0.0206 0.0277 0.0230
Posterior correla~
tions Uy 1 -0.21 -0.60 -0.20
Uq 5 1 -0.21 -0.40
u 1 -0.35

21
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Example 2. Combining Surveys with Different Questionnaires

Kadane (1982) analyzed data irom two sample surveyvs off

attitudes on the death penalty. The primary categories are,

for 1 =1,2.3.4:

1. Would not decide guilt versus innocence
in a fair and impartial manner.

2. PFalr and impartial on guilt versus innoéence;
and, on sentencing, would always vote for the
death penalty, regardless of circumstances.

3. Fair and impartial; and would never vote
for the death penalty.

4, PFair and impartial; and would sometimes and

sometimes not vote for the death penalty.

A survey by the Field Research Corporation produced data, x =68,

1
x3=97, y2’4=67“ (M+N=839), and a Harris survey produced data,
x2=15, yl’3’u=lU8M (M+N=1499). By the likelihood principle, these
two multinomial samples. can be directly combined in the form of a
single censored multinomial sample, for which the censoring is not
nested (M+N=2338).

A genuine Bayeslan analysis reports the coherent effect of
data ¢n prior distributions expressing actual expert opinion prior
to knowledge of the data. To simulate aspects of such a process,

we assessed a Dirichlet distribution by interactive elicitation

of the opilnion of a social psychologist with interests in legal

LD
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matters, a person who was not yet lamiliar with the two surveys.

(Our assessment method 1s outlined in the Appendix.) The resulting

prior and posterior distributions are, respectively, D(b) with b as given in

1
Table 3, and D(b+x,%Z,-d) where b+x = (70.8, 26.2, 118.0, 105.0) ,

0 1 '
- z =11 of , (7.2)
0 1)
11
and d = (674, 1&8&)'
Using the method of Theorem 6.3 to expand (u2+uu)67u in D,

we obtain a probability mixture of nested-partition distributions,
each having closed-form moments. The resulting posterior means,
standard deviations, and correlations for the four cell probabilities
are given in Table 3, together wlth the posterior means from a
uniform prior distribution, and the estimates obtained by simply
solving the following simultaneous linear eqﬁations. Setting each

uy and u0 equal to the corresponding observed frequency ratio, we

have the system,

68/839, uy =

=
I

97/839, u,tu, = 674/839; (7.3)

15/1499, u 1484/1499. (7.4)

[t
1]

1+u3+uu =

!

A AT et SN

Table 3.

two surveys analyzed by Kadane (1982).

Estimation of death-penalty attitudes, combining

Cell probabillities ul u2 u3 uu
Combined survey data
X 68 15 97 0
y yl’3’4=lu84 Yo,y 674
(M+N = 2337)
n

Estimate by observed
frequency ratios 0.081 0.010 0.116 0.793
Posterior mean from
uniform prior 0.082 0.011 0.116 0.791
Expert prior mean b/b, 0.020 0.080 0.150 0.750
(b, = 140)
Expert prior SD 0.012 0.023 0.030 0.036
Posterior mean 0.073 0.016 0.122} 0.789
Posterior SD 0.008 0.003 0.010 0.013
Posterlor correlations

uy 1 -0.01 -0.10 -0.55

U, 1 -0.01 -0.23

usg 1 -0.74

The- three vector estimates are not very different. Note

that the expert postérior mean vector is farther away from the



observed-frequency estimate than is the posterior mean yielded by

the uniform prior distribution, and this 1is true in each coordinate
separately. This seems reasonable in that the uniform prior

expresses greater uncertainty than the expert prior. The effect

of ef%her prior is to move each ccordinate of the observed-

frequency estimate foward the corresponding prior mean. The uni-

form prior, however, moves the first coordinate estimate in the opposite
direction than does the expert prior: Hence, the uniform prior dis-

tribution seems less reasonable than the expert prior in this case.

SR R

APPENDIX. A Simple Method for Assessment

of a Dirichlet Subjective Prior Distribu-

tion in Multinomial Sampling.

A subjective prior distribution in the Dirichlet family can

be assessed, as follows, in the multiple-Bernoullil or multinomial

sampling context and notation of Section 2. Our method is a
"device of imaginafy results", in the language of I.J. Good.
That 1s, the expert whose opinion is being assessed 1magines
hypothetical data and the method elicits his pretended reacticn
to it. Of course, real data can be used in a similar way. The
elicitatlons refer only to the Dirichlet-Bernoulll predictive
distribution. Indeed the predictive distribution is primary
and can be assessed by the method, regardless of the significance
or not of assuming an imbedded multiple-Bernoulli process and
Dirichlet mixing dispribution. The assessment proceeds in three
steps.

1. Elicit predictive probabilities for a single future
observation,

pr(é=1) = bi/b-’ i=1,...,K. (A.1)

2. Condition opinion on an imaginary (or real) future

sample with frequencles x = (xl,...,x Elicit conditional

K)'
predictive probabilitles for a further future observation,

X ~

b X,
pr(6=i|§) = 'b—'Tx—' pr‘(6=i)+b——:g(-—-ui ) (A-2)
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~

where pr(é=1i) was obtained in Step 1 and ui denotes the usual

relative-frequency estimate,

>

ug = oxg/x, (A.3)
Solve for bt ,
_ai—pr(6=il§)
b. = % | Gr(E=ITEI-pr(8=1) | (A.4)
3. Calculate bi 5
b, = pr(é=1)b_, 1=1,...,K (A.5)

i

In practice, the numerator and denominator in (A.4) should

have the same sign. Under the conjugate-prior model, pr(6=il§)

lies between pr(§=i) and uy - The ratio of its distance to uy
to its distance to pr(é=1) is b /x_, a (positive) constant in 1.
If pr(6=i|£) is ellcited and (A.4) solved for Db, for various 1

values, then these b_  values can be averaged. Similarly, an
average b  can be obtained from consideration of several samples X.
Pooling of samples would permit nested conditioning and avold the

need for forgetting or unpretending.

fal

The values glven in Table A.l were elicited from a soclal
psychologist for Example 2 of Section 7. The simple average

of the assessed b_ values is b_= 140.

A
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Table A.1l.

prior distribution for death-penalty

attitude surveys.

i

ro

B ek Uk bt shdha dRATEG oo bR

Assessment of an expert

Prior-predictive
probabilities

pr(é=1)
[Elicited]

0.

15

0.75

Imaglinary sample data

Xy

(M = 200)

16

20

32

132

Relative-frequency
estimate

~

4y

.16

0.66

Posterlor-predictive
probabilities

pr(d=1i|x)
[Elic'*ed]

0.09

.16

0.70

Solution

(b = 140)

200

200

160

b, = b_pr(d=1i)

2.8

11.2

21.

105.0
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