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Distribution theory is ~iven for Bayesian inference from 

multinomial (or multiple Bernoulli) sampling with missin~ category 

distinctions, such as a contingen~y table with supplemental purely 

marginal counts. A new conjug~te family generalizes the usual 

Dirichlet prior distributlotJs. The posterior moments and pre

dictive probabilities are found to be proportional to ratios of 

Carlson I s hypergeometric function~j of matrix argument. Dimension

reducing integral identities and expansions are given for statistical 

use. Closed-form expressions are develof'ed for cases of nested 

missing,~istinctions. Examples al'e given, together with a simple 

method for asse:..;sment of, a Diric hlet ::;ubj ec ti ve prior distribut ion. 

1. INTR01'1]CTION 

In his two books (1950, 1965) and various articles, I.J. }ood 

popularized Bayesian conjugate-prior inference for multinomial 

sampling, in which the Dirichlet distributions form the conjuGate 

i di t ib ti c 'T'~lis matherna,tics is tractable and family of pro or s r u onv. !_ 

elegant. Densities, moments, and predictive probabilities take 

closed forms. Furthermore, the family of Dirichlet distributions 

and mixtures of Dirichlets with a small number of terms is large 

enough in many situations to offer realistic modp)s for pr~data 

subjective uncertainty. (An except jon occurs when there i3 a 

prior prejudice for local smoothness between nejg,hboring category 

probabilities, such as when the data frequencies result from group

ing a sampled continuous variablp (Dickey 1968b).) 

However, in the case of inference from data with some missing 

distinctions between categories thi3 tractability seems to fade. 

The likelihood then contains factors which are powers of the sums 

of probabilities of the confused categories. The more data values 

that miss a particular distlnction, the greater the power of the 

corresponding sum; and the greate1' the variety of such missed dis

tinctions, the more such sums there are in the likelihood. In the 

least tractable cases, the sample contains moderate amounts of data 

of assorted kinds: complete data and data with various missing 

distinctions, without nesting or other logical constraints betwpen 

the missed distinctions. 

1.1 
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bayesian treatments of multillnmjal sampling with mi::;~jn['; 

data were given a decade ago by Karson and Wrobleski (1970), 

Antelman (1972), and Kaufman and King (197~). ThpRA concerne~ 

two-way contingency tables containing data with missing informa

tion reg&;ding row or column variables. The studies were re

stricted to the 2x2 case. Basu and Pereira (1982) extended 

consideration to Kx2 tables and summarized properties 

of the Dirichlet distribution under relevant changes of 

variable. For an account of frequentist results, see Chen and 

Fienberg (1974, 1976), Dempster et al (1977), and references 

cited therein (for example, Hartley 1958). 

After formulating here the general problem of Bayesian 

multinomial inference for missing category distinctions, in 

Section 2, we shall introduce in 8~ctions 3 and 4 a representa

tion of posterior integrals from ['ir1chlet prior distributions as 

multiple hypergeoml~trj c f!lt1ction:'" spc'c:J fical1y, tl1P elegant 

d R r r> I (J')77) TI1P. pOflterior distributions function~: R an f), ar :~nn , . 

1.2 

are found to be identical to distributions developed in Dickey (1?83). 

This is then extended in Section 4 to a new conjugate prior family 

for such 

variable 

sampling. A parallel development based on changes of 

in the Dirichlet distribution yields closed forms for t;he 

case of nested missing distinctions, Section 5. This leads to new 

i f R Straightforward expansions of posterior dis-simplicat ons 0 . 

probability mixtures of Dirichlet uistributions are tributions as 

generalized- in Section 6, and related expansions of R are given. 

Examples are briefly given in Section 7. An appendix outlines a simple 

method for assessment of a DirichJ.et subjective prior distribution. 

~ t • . 

2. SAMPLING WITH Ml:',:JING DISTINCTIONS 

To begin, we shall need to establish notation for the non-

missing (uncensored) case. Denote by x = (Xl'" .,X K)' the -
vector of frequency counts for sampling from a distribution 011 a 

finite sample space hav.Lng the unknown probability vector 

~ = (ul '·· .,uK) ,. That is, Xi denotes the number of sample 

th 
values falling in the i category of probability u., i = 1, ... ,K. 

l 

For Bayesian inference concerning ~ under any noninformative-

stopping process, the vector ~ can be treated as if it were the 

frequency count from a multiple-Bernoulli sequence ~x= (0
1

" .. ,0M) 

of prespecified length M. Then x = M, where x denotes . . 
x l +·· .+XK· The corresponding likelihood function is proportional 

to the probab11tty mass of such 0 , 
-x 

pr (0 I u) -x - (2.1) 

Note that this function of ~ is parameterized by the frequencies 

~, a sufficient statistic. (The term "multiple-Bernoulli" refers 

to a fixed-length sampling distribution for 0 , for which x has -x -
the "multinomial" distribution with mass equal to the product 

of (M) multiplied by (2.1).) x 

2.1 
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The Bayesian predictive distrJbution is the subjective prob

ability of an outcome sequence ix ',Jithout condj.tiuning on the Ull

known sampling parameters ~. That is, ~ is averaged out of the 

sampling probability (2.1) according to a distribution of u. 

Whatever the prior distribution, ttle prior predictive probability 

takes the form of a prior moment, 

= E u 

( 2.2) 

This gives the subjective probability for the outcome sequence ix 

conditional only on the total count x. A similar statement holds . 
for posterior predictive probabilities of additional future outcomes 

in terms of posterior moments. Hence, to provide Bayesian predic

tive probabilities~ we need merely develop the prior and posterior 

moments. (A similar statemant will hold in the case of censored 

samplin~.) 

The conjugate prior family for uncensored sampling is the 

Dirichlet. The random vector u is said to have the Dirichlet dis

tribution D(b) with parameter vector b = (b~j' .. ,bK)', each bi>O, 

if u has the density in any K-l of its coordinates, 

B (!2) 

for all u in the probability simplex {u: each u.>O, u =l} 
l-

'. , 
2.2 

Consider the prior dlstributj(1n, 

u '\, D(!2.) 
( 2 . L1 ) 

The corresponding prior moment is 

( 2 . 5 ) 

The predictive distribution is tht'n the Dirichlet-Bernoulli with 

mass pr(ix ) = g(~;!2.). Note that Er(~) is the probability mass 

of the outcome sequence ix' rather than the frequency count x. 

The posterior distribution curresponding to the conjugate 

prior (2.4) and likelihood function (2.1) is again Dirichlet, 

with updated parameters, 

( 2 . 6 ) 

2.3 

The posterior Dirichlet density is then f(~;!2.+~) and the posterior moment is g(~;Q+~). 

Consider n~w the generalization to sampling from the dis

tribution having probabilities u when some observations are 

censored, that is, do not report unique categories, but rather mere 

sets of categories. For example, an observation may be reported 

as falling either in category i or in category j, for a particular 

pair i<j. Denote the frequency count of such observations by y .. 
1.) 

Let Yijk be the frequency count of observations confusing a triple 

of categories, i<j < k. 
{l 

An analogous notation applies for any proper 

subset a of at least two categories: y for ac { 1 , ... ,K} . a Denote 

a sequence of N such censored outcomes by e: ( ) and 
-y = e: 1 ' . . . ,E N . 
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M _. 

denote by ';L the corr~sponding vect.or counting the confusions of 

8ach p03sible type, 
A 

';L = (Y12" "'Y123'·· "Y23 ... K)' ( 2 . 7 ) 

The dimensionality K 
of ';L is 2 -K-2, although in practice, ';L will 

be sparse with most coordinates zero. 

Consider sampling under noni~formative stopping and non

informative censoring (Dawid and Dickey 1977). The likelihood func

tion is proportional to the likelihood function from an outcome 

sequence (~x'~Y)' ~y = (£1"" ,EN)' where ~x and ~y are independent 

and the coordinates E.independently arise from prespecified 
1. 

partitions of the sample space. ~hen 

where 

(2.8) 

y . 
K-l i l · .. lk 

= IT k= 2 IT i (u + . . . +u. ) 
i l <· .. < k i l lk 

Yo 
= IT 0:. u

i
) . 

OlEa 
(2.9) 

Now, consider the effect of this likelihood function for 

inference from the Dirichlet prior density (2.3). The independence 

of the two factors in the likelihood (2.8) implies the following 

result. 

Theorem 2.1. A data sequence (6 ,E ) of prespecified length -x -y 

and censoring yattern has the predictive probab11ity 

pr(~x'~Y) = Eulb[pr(~X I~)pr(~yl~)] 

= g(~;~)h(';L;~+~), (2.10) 

em 
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2.4 
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where the first factor g is given by (2.5) and the secon0 factor 

is the' expectation or (C.'l) unoer the Dirichl~t fJ(ll'ti.al-po~tel'ilJr 

:: i s t rib uti 0 n, ~ I ~ 'V D ( Q +~) , 

(2.11) 

The posterior density of the unk~bwn probability vector u has the 

expression in terms of thi s same qllantity h; 

f(u;b+x;-y) = f(u;b+x)pr(E lu)/h(y;b+x). - - - - - - - -y - - - - (2.12) 

(The function f of three argumcnt~ generalIzes the previous nota
~ 

2.5 

tion f of two arguments (2.3); the motivation for defining a negative 

third argument will follow later.) The corresponding posterior 

moment is proportional to a ratio of such quantities, 

(2.13) 

where the proportionality factor g(~;Q+~) is the usual Dirichlet 

posterior moment (2.5), based on the uncensored part x of the 

data. 0 

Attention focuses naturally, then, on the properties and cal-

culation of the quantities h (2.11). 
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3. MULTIPLE HYPER<1E( lfvlETRTC l"UNCTIONE; 

B. C. Carlson (lg63,lg71 ,197 11,1977) developed the following 

class of multiple hypergeometric functions for an organizing and 

unifying role in the field oj' special functions. See also Dickey 

(1983) for probabilistic interpretations and statistical uses. 

We define the function R as a moment of a homogeneous linear form 

i~ the random vector u ~ D(Q), 

( k-l) a R (b,z) = E (u'z) a - - ulb - - , C3.1 ) 

(In this section 

we shall indicate the dimensionality of integrals in the notation 

we use for expectation.). This definition requires bi~O for 

all i, but more general definitions, including a function that 

generates R, appear in Carlson (1977). Dickey (1983) exhibits 

R as being, itself, the probability generating function of the 

Dirichlet-multinomial distribution, the conjugate Bayesian pre

dictive -dlstribution for multinomial sampling. 

The following classical identity, attributed to Picard by 

Appell and Kamp~ de F~riet (1926), reduces the dimensionality 

of the integral representation, thus permitting computation of 

R by simple qMadrature. Although this refers to a restricted 

range of parameters, a contour integral applies more genera~ly 

(Carlson 1977, Theorem 6.8-2, p.155). 

Theorem 3.1 (Picard's identity). For -b <a<O . , 
and d = (-a b +a)' - '. , 

3.1 

----- ----------~--- --- ----~--------

Under the parameter restriction a = -b., R takes the simple 

limiting form, 

-b. 
= IIz l 

i (3.3) 

A two-way multiple hypergeometric function generalizing R, 

a functio_n of matrix argument, can be defined by considering 

a bilinear form u'Zv in independent random vectors, ~ ~ D(~) 

(K coordinates) and v ~ D(~) (L coordinates) for nonrandom matrix 

Z(KXL). Define the function R as a moment of the bilinear form, 

where 

R (b,Z,c) = E(KI-l)ECLI-l)(uIZV)a a- - ub vc -_ 

Z = 

= E (K-l) R (I ') 
ulb a £;~ ~ , .. 'J~ ~*L ' 

*1 

( 3 . 4 ) 

(3.5) 

A simpler integral representation and a dimension-reducing 

integral identity are available for R , as follows, under the 
a 

3.2 
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parameter restriction a = -c 

Theorem 3.::'. 

R (Q,Z,~) = -c 

= (3.6) 

where 

v -
w = -

wL+l 
d = [ :. _c.J 

The second equality in (3.6), first given by Dickey (lg68a), 

generalizes Picard's identity (L = 1). 0 

Note that if b = c. in (3.6), ~L+l = 0 and the L-fold 

integral becomes an (L-l)-fold integral with w
L

+l = O. More 

generally, as the following Corollary shows, the dimensionality 

of the integral can be reouced when the parameter vector ~ has 

zero~oordinate values. This property i3 usefu~ in missing 

data problems in which the high-dimensional vector l is sparse. 

Corollary 3.3. If, without loss of generality, the vector 

( I)' , (1) 
c is taken in the form c = (c n') where the subvector c 

- '-

has L(l) < L coordinates, then 

R (_b,Z,_c) = R (b Z(l) c(l» 
-c (1) -' '--c 

where Z(l) consists of the corresponding L(l) columns of 

Z, Z = (Z(1),Z(2». A similar dimension-reduction occurs whenever 

there are some columns of Z which are proportional to each other, 

or proportional to the vector of unit entries ~ = (1, ... ,1)'. 0 

3.3 

; 
~ 

\ 
I 

\ 
l 

I 
j. 

! 
i 

I 
> 
I 
} 

in principle, the integra1 idvntlty (3.6) CCin be useful for 

computation of R by <1uadratul'e whc·n L«K (or L(l)«1\). Howe'JGr, 

we have found this awkward in practice, because for interestin~ 

va1ues of the parameters, the integrands tend to have poles in 

the range of integration. At prp;icnt, ~3eries expansion::; of R 

appear more practical, as ~iven 18ter in the paper. 

3.4 
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4. TNPERF.NCE AND A NJ':\v r;ON.lllGI\TF. FAMfLY 

Under the parameter restricUon a = -c Carlson's two-way . ' 
multiple hypergeometric function R has the same form (3.6) as the 

mement quantities h (2.11) needed in Bayesian Dirichlet-prior 
. 

inference for censored multinomial sampling. To express this 

identification, specialize the matrix Z to the full-subsets in-

dicator Z = 7., consi_st1ng of zero:~ and ones whose L columns ~i 
<.. 

indicate all the proper subsets of two or more elements, 

OJ c {l, ... ,K}, 

j=l, ... L, where 

Theorem 4.1. 

{

10 if i£O,j 

otherwise, 
(4 .1) 

( 4 .2) 

( 4 .3) 

This identification ties the problems of Bayesian statistical 

inference for missing data tn a mainstream segment of the theory 

of special functions. The Dirichlet prior distribution u ~ D(Q) 

implies the predictive probability (2.10) with (4.3), 

( 4 .4) 

4.1 

and the corresponding posterior moment (2.13) becomes 

[B(Q+~+£)/B(Q+~)] (4.5) 

• Ry .+e • (Q+~+£,Z'-l-~)/Ry. (~+~,7,'-l) . 

Note that our posterior distribution (2.12) is not in the same 

family as the prior, and thus the Dirichlet family is not conjugate 

for the missing-data likelihood. This motivates the following 
", 

deve ropment . 

4.1 A General Family. 

Dickey (1983) generalized the Dirichlet distributions to 

the family, for arbitrary matrix parameter Z oexL for arbitrary 

K, L) , 

( 4 .6) 

having density on the simplex of K probabilities, 

( 4 .7) 

(For the powers d in (4.7), the sign of the third parameter -d 

in (4.6) is defined to match the usage of Carlson's R; this avoids 

confusion in the long run.) 

The moments of V are proportional, as in (4.5), to ratios 

of R fUrlct ions, 

4.2 



(K-l) K c i L e. 
E Ib n _d[(ITlu i )ITl(~'~ ) J] u ,6, *j 

( 4 .8) 

= [B(~+~J/B(~)] 

Zero parameter coordinates .vield important reductions in 

complexity, as follows. 

Lemma 4.2. If d = (d(l)' ,Q')' (without loss of generality) 

Z = (z(l) ,z(2)), and u ~ V(~,Z,-~), then 

( 4 .9) 

In particular, V(~,Z,Q) ~ D(~), re~ardless of the matrix Z. 0 
, , 

Lemma 4.3. If b = (b' 0') :6 = (Z' Z') 
-1' -' l' 2 and ~ = (~i' ~2) , 

then u ~ V(~,Z,-~) if and only if ~2 = Q with probability one and 

(4.10) 

Lemma 4.3 holds, in particular, for the Dirichlet distribution 

(d = Q). Compare to Corollary 3.3 for R. 

4.2 Inference. 

To return to Dirichlet-prior inference for censored multi-

nomial sampling, note that our pOGterior distribution (2.12) has 

the representation in the notation of (4.6), 

(4.11) 

Hence, the posterior density f(~;~+~;-~) (2.12) is given by 
~ 

(4.7) with parameter values ~+~,Z,-~. 

i 

I 
I 
! 
! 

'1 
! 

i 
I 

\ 

I 
'{ 
t 
I q 

, I 
I 
I 
I 

! 
I 

:/ 

As stated earlier, the Dirjchlet subfamil.v i~ not closed ufldpr 

censored multinomial sampling. However, the famil.v of possible 

posterior distributions (4.11) does have trlis propert.v, and thus 

we consider prior distributions of the following form. 

Theorem 4.4. Consider the distributions 

(4.12) 

As a prior distribution, (4.12) yields the predictive probability, 

by (4.8), 

(4.13) 

and the posterior distribution as an updating of t parame er s , 

(4.14) 

The corresponding posterior density f(~~~+~;-(9.+.~O) is given by 

(4.7) with parameter values ~+~,Z,_(~+~). The Dirichlet-prior 

theory is the special case d = O. 0 

The posterior moments for (4.14) are obtained from (4.8) 

under the posterior parameter values. F 1 or examp e, the posterior 

mean is 

(4.15) 

where the coordinates Yij of the vector Yi are defined to be 

zero except for unity in the ith cGordinate. The posterior 

4.4 
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second moment is 

(b i +x . +Y .. ) (b j +x . ) = l lJ J 
(b +x +l)(b +x ) .. .. 

. R (b+X+yi+y.,Z,-d-y)/Rd + (b+x,Z,-d-Y). 
d . +y. - - - -J - - . y. - - - -

(4.16) 

Dickey (1983) proposed the UGe of V as prior distributions 

for ordinary (noncensored) multinomial sampling. We suggest, 

howeve~, that in practice, even for censored data, the usual 

Dirichlet distributions (or mixtures thereof with a small number 

of terms) may be preferred to V as prior distributions, thus 

yielding the new distributions V as posterior distributions. 

The Dirichlet has the advantage as a prior distribution of being 

convenient for subjective assessment (see Appendix), though more 

rigid in the subjective opinions it permits. 
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5. NE~.:,rl'ED CJ':N[)QRTNr1 

The posterior moments and distribution theory are consider'ably 

simplified when censoring is nested, that is, when for every two 

sets of confused categories, either one set is contained in the 

other or· they are disjoint. For example, consider a multiple

choice questionnaire. If every person in the sample either 

answers all questions or is a complete nonrespondent then the 

censoring is nested. The Dirichlet-prior inference for such 

sampling was given by Basu and Pereira (1982). 

The example can be extended to allow a particular question 

which the respondents' can choose to ignore, or even a set of 

such questions that can be ignored as a whole. A series of sets 

of questions, linearly ordered by set-inclusion and the choice to 

answer all of each such set or only its subset is also permitted 

under nested censoring. For example, suppose the questions are 

presented in the same order to each respondent, who chooses some 

arbitrary place to stop answering questions, such as how far 

he/she gets before time runs out. As long as the respondents 

answer all questions until the places they stop, the data is 
'-' 

nested. However, unconstrained decisions on whether to answer 

different questions would lead to non-nested censoring patterns 

in the data. Nested censoring is best treated in terms of nested 

partitions, which are defined in the. following . 

Define a matrix Z(KxL) to be a partition indicator if its 

columns indicate disjoint and exhaustive subsets, that is, a 

partition of {l, ... ,K}. Formally, 

5.1 



1. Each entry of Z is a zero or a one. 

2. Orthogonal columns: Zl Z = 0 for each j~K. 
-*j-*K 

3. No row has all zero entries: ~i*~Q.I, for each 

i=l, ... ,K. 

Given a partition indicator Z and K-tuple ~, define the correspond-
1 

ing partition-sum vector ~(~) = (sl(~)'" .,sL(~)) , 

~(~) = ZIU (5.1) 

Then each s j (~) = Zl U. 
-*j 

If ~ is·a probability vector, then the 

coordinates of ~(~) are the probabilities of the partition-element 

events. 

Define the coordinatewise product of two vectors as the 

vector of products of corresponding coordinates, 

ZXu = (zlul""'ZKuK) Then given a partition indicator Z 

and K-tuple ~, define the partition-inner-proportion vectors, 

j=l, ... ,L. Note that if u is a probability vector, each ~j 

consists of the conditional probabilities given the jth partition-

element event. As such; it has zero coordinates for all i not 

in the jth subset. We have the invertible mapping corresponding 

to (5.1) and (5.2): ~ ++~(~)'£jeu)(j=l, ... ,L). The following 

theorem extends a result of Wilks (1962). 

Theorem 5.1. Given a partition indicator Z, the vector ~ 

has the Dirichlet distribution ~ ~ D(Q) if and only if the L+l 

image-'vectors in (5.1), (5.2) are independently distributed and 

5.1 
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I 

( 5 . 3 ) 

r.(u) ~ D(z Xb), 
-J - -*j -

( 5 . l~ ) 

j = 1, ... ,L. Note that 

unles~ Zij = 1, the ith 

probability one. 0 

z xb = sJ.(Q)£jeQ), and that by Lemma 4.3, 
-*j 
coordinate of £j(~) equals zero with 

The following simple form of R appears to be new in the 

literature. 

Corollary 5.2. If Z is a partition indicator, 

o (5.5) 

Proof. By (5.3), 

(5.6) 

Theorem 5.1 generalizes immediately to distributions V, as 

follows. 

Theorem 5.3. Given a partition indicator Z, ~ ~ V(Q,Z,-~) 

if and only if the independent distributions (5.3), (5.4) hold 

for this same Z, with ~(Q) replaced by ~(Q)+~. 0 

Corollary 5.4. Given a partition indicator Z, the distri

bution ~~V(Q,Z,-d) has closed-form moments (in terms of the 

same Z), 
c e 

E[(ITuii)ITsj(U) j] (5.7) 

= [B(Q+£)Rd +e (Q+£,Z,-~-~)] 

5.3 



= [B(~+~)B(~(~+~J+s!.+~J/B(~(Q.+~J)] 

/[B(~)B(~(Q.)+s!.)/B(~(~»] 

= 
IrrB(~*jx(~+~»J.rB(~(Q.+~)+s!.+~)J 
~B(~*jXQ.) LB(~(Q.)+~) 

~-----~ .. ---

o 

By Lemma 4.2, this yielnG the 1l10ments of the prior distribution 

(4.12) and the posterior distributions (4.11), (4.14), under censor-

ing by a partition, provided the prior distribution refers to the 

sal.'~ partition (if to any). 

The elements of a partition of a set are subsets, anyone of 

which could then be partitioned further. Two partitions, of 

which one is a partition of an element of the other, are said to 

be directly nested. Then one is a partition of a set and the 

other is a partition of a subset. Two partitions are said to 

be nested if they belong to a sequence of successively directly 

nested partitions. Pinally, define a collection of partitions to 

be nested if they form a tree; that is, each partition is nested 

with respect to a particular partition, the root of the collection. 

Then~he root is the only partition in the collection that is a 

partition of the original set. 

Derine matrix Z(KxL) to be a two-level nested-partitions 

indicator if it indicates a collection of partitions in which 

each nonroot partition is directly nested in the root partition. 

Namely, Z = (Z(l) ,Z(2» where Z(l) indicates the root partition 

and 

(5.8) 

-----_ .. -. ~ .. 

:.n ,· .... hich each submatrix Z~2) indi(~iltes a partition of the subset 
J 

indicated by the jth column z(l) of z(1), j=l, ... ,L(l). The sub
-I' 

matrices Z3 2 ) are filled out with zero rows for zero coordinates 

of z(l). 
-*j 

Theorem 5.5 . Given the two-level nested-partitions indicator 
. ' 

Z, u ~ O(£,Z,-s!.) if and only if independently 

( 5 . 9) 

E:j 1) (~) ~ 0 (~~ ~ ) x~, Z 32
) , _~j 2 ) ) , (5.10) 

j=l, ... ,L(l») where sell and !:jl) (j=l, ... ,L(l» refer to Z(l). 
, 

In c onform~ t y to (Z (1) , Z (2) ) ,d' = (s!. (1) , d (2) ) and 

(2) (2)' L(l) 
d = (~j ) J =1 (5.11) 

and d(2) has the jth coordinate ~j2)'1; j=l, ... ,L(l). 0 

Such a two-level nested-partitions distribution V can be ex-

pressed in terms of independent Dirichlet-distributed vectors, by 

application of Theorem 5.3 to (5.10). By iteration of Theorem 5.5, 

a nested-partitions distribution of any number of levels can be so 

expressed. Thus, the moments of any nested-partitions distribution 

5.5 

can be obtained in clasen form, as in Gorollary 5.~. This yields ~urther 

new closed forms for the function R for a nested-partitions indicator. 
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6. EXPANSION BY POSSIBLE DATA 

A well known tautology in Bayesian statistics equates a pos-

terior distribution based on censored data to a probability mixture 

of posterior distributions from the possible uncensored versions of 

the observed data. The following form of this tautology exhibits 

a V distribution as being, itself, a finite mixture of Dirichlet 

6.1 

distributions. A useful expansion of R is obtained as a consequence. 

Consider, for this purpose, matrices W of possible frequency 

counts refining the observed ccnoored frequency vector l. Write 

W = (wia : i=l, ... ,K, aC{l, .. . ,K}) ( 6 . 1 ) 

This KxL matrix has columns indexed by subsets a(L=2 K-K-2). For 

each subset ac{l, ... ,K}, the column w 
-*a 

wia = 0 for ita, 

is supported on a, 

(6.2) 

and these possible frequencies for the categories in a sum to the 

observed count for a, 

w = Ya 'a 

This says, for the row-vector of column sums, 

w = l'W = y' 
. * 

(6.3a) 

(6.3b) 

Note that the column-vector of row sums, w = Wl, is a possible -*. -
uncensored frequency vector for {l, ... ,K} harmonizing with the 

observed censored frequencies l. 

Lemma 6.1. The sampling probability of a censor~d sequence is 

the weighted sum cf probabilities over all possible refinements of 

, 
-j 

1 
I 

I 
I 

I 
!.J 

"I -, 

the censored frequencies, 

pr (E I u) = -y - [
y 1 w. 

f[rr 0 ]TI.u. l· 
W Y a '!!. l l 

*0 

( 6 . 4 ) 

The notation Wly indicates that the summation is over nonnegative 

integer wia constrained by (6.2), (6.3). 0 

Proof. 

pr (E I u) -y -
Ya 

= IT (Li u.) a EO l 

= IT [ a IT 
[
y 1 wfy 0 ~*a i 

w 
u. ia ] 

l 

In a more detailed notation, one can write, 

K-l 
IT 

k=2 

(6.5) 

( 6 . 6) 

6.2 

~ Theorem 6.2. For a Dirichlet prior distribution ~ ~ D(Q), the 

posterior distribution V (2.12), (4.11) based on ~, l is a posterior

probability mixture of posterior Dirichlet distributions based on 

, 

= 

where f with two and f with three arguments are defined by (2.3) 

and (4.11), (4.7), respectively, 



-._--- -------~ --- ----------~---

---"_¥ ... = 

and 

pr(Wlb+x,y) - - -

= I 
Wly 

b+x)" 

where g and h are defined by (2.S), (2.11), (4.3). 

(6.8) 

(6.9) 

o 

Related results appear in Shefrin (1981). Theorem 6.2 can be 

generalized immediately for use of a prior distribution V(£,Z ,._g) , 

in the spirit of Theorem 4.4, merely by substituting ~+l for l· 

The representation (6.7) can be reexpressed in a general 

notation for probability mixtures, 

~I ~,l '\, D (!2.+~+~ ) *W 
* . 

(6.10) 

where W has the mass function (6.8), or its V-prior form. In this 

, 

6.3 

notation, our theorem generalizes simply to give a mixture-represent a-

tion for any V distribution, as follows. 

Theorem 6.3. Consider arbitrary Z(KxL, for arbitrary K,L). 

Conformably partition Z = (Z(l) ,z(2», 

d = (d(l) I ,d(2) I) I and L = L(1)+L(2). Then u '\, V(£,Z,-~) if and 

only if 

u '\, (6.11) 

J , 
1 

, , 
t , 
1 ., 
! 
I 
,( 
i 

H 

~ 
I! r \ 

r 
\ , 

6.4 

where W(KxL(2) has probability ma:;s 

pr (loJ) = 

(6.12) 

Rd(£'Z,-~) . 
for w o 

-* . 

Theorem 6.2 is the special case, L(l) = 0 with parameters 

£+~,~,_~. Note that the generalization of restriction (6.2), wij = 0 

for z(2) = 0, holds automatically for (6.12). Since (6.12) must sum 
ij 

to unity, we have an apparently new representation for R under the 

parameter restriction of (3.6). 

Corollary 6.4. 

ld
(2

)] W j j K (2) ij 
II zi' w J 

-*j 

In case L(l) = 0 in (6.13), R (1) = 1 as in (6.9)· 0 
d -

(6.13) 

In our experience so far, the expansions of this section have 

been more convenient and economical for computations than the naive 

quadrature of analogs of the dimension-reduced integral (3.6). 



~-- ~-----~ 

-- - ,..--- -

____________________________ _ ____ ~ _______ ~----------------~--------.......... -= ...... ~~r·~·~·*&~' 

can be easily combined with the partition
Such expansion methods 

~ tLle preceding section to minimize the number 
nestlbg methods of 1 

as in Ant elman (1972) for special cases. 
of terms involved, 

Recur-

easily set up for the multinomial coefficients. 
sion relations are 

6.5 
7.1 

7. EXAMPLES 

Example 1. Contingency Tables with Supplemental Margins. 

An interesting special case of censored multinomial sampling 

is provided by contingency tables with supplemental purely marginal 

~ data. Consider a two-way table with three independent multinomial 

data sets, respectively for: the cross-classified table, itself; 

the row variable alone; and the column variable alone. By the like-

lihood principle~ for suitable models: these data can be directly com-
, 

bined into the inferential eGuivalent of a single censored llU.lltinomial !3ample. 

Chen and Fienberg (l974) analyze such data, given here in 

Table 1, -6n M+N = 456 premature live births, classified by serum 

bilirium level (mg. per 100 ml, II Low" 0-1. 0) and/or a composite 

health index (0-10, "Low" ("healthier") 0-6) . 

. Table 1. Data on premature live births (Chen and Fienberg 1974). 

Serum Health Index Supplemental data 
bilirium Low High on serum bilirium 

Low 35 75 11 

High 57 112 13 

Supplemental data 
on health index 117 36 

For the cross-classified cell probabilities u
ij 

(i serum 

bilirium, j health index), a uniform prior distribution, 
I , 

(ull,u12,u2l,u22) ~ D(Q), Q = (1,1,1,1) , yields a posterior 

distribution V(Q+~,Z,-~), where x 1s given by the cross-classified 

body of Table 1, 



1 0 1 0 
0 1 1 0 

Z = (7.1) 
1 0 0 1 

0 1 0 1 

and d = (117,36,11,13) This posterior distribution can be 

expressed as a mixture of nested-partition distributions by 

Theorem 6.3, by expanding the two lower powers (u
ll

+u
12

)11 and 

13 (u 21+u 22 ) . The resulting posterior means are given in Table 2 

with the posterior standard deviations and correlations, and the 

maximum likelihood solution from Chen and Fienberg (1974). These 

Bayesian estimates are not very different from the maximum likeli-

hood values, as should be expected from a uniform prior distribution 

and reasonable sample sizes. Hence, as is true of the likelihood 

~nference, appreciable information is gained in the Bayesian 

analysis from the supplemental marginal data. 

Table 2. Estimates of cross-classified cell 'probabilities for 

data on premature live births. 

~ 

Cell probabilities u ll u12 
-

Max.-likelihooci est. 0.1880 0.2090 

Posterior mean 0.1888 0.2.096 

Posterior SD 0.0255 0.0206 

Posterior correla-
tions u ll 

1 -0.21 

u12 1 

u 21 

u
21 

u
22 

0.2960 0.3090 

0.2950 0.3065 

0.0277 0.0230 

-0.60 -0.20 

-0.21 -0.40 

1 -0.35 

Example 2. Combining Surveys with Different Questionnaires 

Kadane (1982) analyzed dakl 1'I ' om tWI) :~:1.lIl1lll' :·.tt!'Vt',\':~ ,'I' 

attitudes on the death penalty. The primary categories are, 

fnr i = 1,2.3.4: 

1. 

2 . 

Would not decide guilt versus innocence 

in a fair and impartial manner. 

Fair and impartial on guilt versus innocence; 

and, on sentencing, would always vote for the 

death penalty, regardless of circumstances. 

3. Fair and impartial; and would never vote 

for the death penalty. 

4. Fair and impartial; and would sometimes and 

sometimes not vote for the death penalty. 

A survey by the Field Research Corporation produced data x =68 
, 1 ' 

x 3=97, Y2,4=6 7 4 (M+N=839), and a Harris survey produced data , 

x 2=15, Yl,3,4=1484 (M+N=1499). By the likelihood principle, these 

two multinomial samples. can be directly combined in the form of a 

single censored multinomial sample, for hi h th w c e censoring is not 

nested (M+N=2338). 

A genuine Bayesian analysis reports the coherent effect of 

data ~n prior distributions expressing actual expert opinion prior 

to knowledge of the data. To i 1 t s mu a e aspects of such a process, 

we assessed a Dirichlet distribution by interactive elicitation 

of the opinion of a social psychologist ith' t w In erests in legal 

7.3 
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matters, a person who was not yet familiar with the two Gurveyo. 

(Our assessment method is outlinecl in the Appendix.) The resulting 

prior and posterior distributions are, respectively~ D(£) with £ as given in 
, 

Table 3, and V(~+x~Z,-~) where b+x = (70.8, 26.2, 118.0, 105.0) , 

Z = 

and Q = (674~ 1484) 

o 
1 
o 
1 

(7·2) . 

674 Using the method of Theorem G.3 to expand (u
2

+u
4

) in V, 

we obtain a probability mixture of nested-partition distributions, 

each having closed-form moments. The resulting posterior means, 

7.4 

standard deviations, and correlations for the four cell probabilities 

are given in Table 3, together with the posterior means from a 

uniform prior distribution, and the estimates obtained by simply 

solving the following simultaneous linear equations. Setting each 

u i and u a equal to the corresponding observed frequency ratio, we 

have the system, 

, r 
f 
!I 
I, 
I 
j: 
r 
f 

\ 

Table 3. Estimation of death-penalty attitudes, combining 

two surveys analyzed by Kadane (1982). 

Cell probabilities u l u 2 u
3 

u 4 

Combined survey data 

x 68 15 97 0 -
Y... Yl,3,4=1484 y 4= 2, 674 

(M+N = 2337) 

I"! 

Estimate by observed 

frequency ratios 0.081 0.010 0.116 0.793 

Posterior mean from 

uniform prior 0.082 0.011 0.116 0.791 

Expert prior mean bib 0.020 0.080 0.150 0.750 - • 

(b = 140) . 
Expert prior SD 0.012 0.023 0.030 0.036 

Posterior mean 0.073 0.016 0.122 0.789 

Posterior SD 0.008 0.003 0.010 0.013 

Posterior cOrTelations 

u1 1 -0.01 -0.10 -0·55 

u 2 1 -0.01 -0.23 

u
3 

1 -0.74 

The·~hree vector estimates are not very different. Note 

that the expert post~rior mean vector is farther away from the 

., 
... . t·' 
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7 .6 

observed-frequency estimate than js the posterior mean yielded by 

the uniform prior distribution, and this is true in each coordinate 

separately. This ~eems reasonable in that the uniform prior 

expresses greater uncertainty than the expert prior. The effect 
,..-, 

of ei~her prior is to move each coordinate of the observed-

frequency estimate toward the corresponding prior mean. The uni-

form prior, however, moves the first coordinate estimate in the opposi~e 

direction than does the expert prior. Hence, the uniform prior dis-

tribution seems less reasonable than the expert prior in this case. 

... .,. 

f 
I, 

! 
Ii 
~ , 
~ ,[ 
I' ti 
)' 

I 
" 

Ii 
I r 
I 
\ 
" , 

'+I 

APPENDIX. A Simple Method for Assessment 

of a Dirichlet Subjectjve Prior Distribu-

tion in Multinomial Sampling. 

A subjective prior distribution in the Dirichlet family can 

be assessed, as follows, in the multiple-Bernoulli or multinomial 

sampling context and notation of Section 2. Our method is a 

"device of imaginary results", in the language of 1. J. Good. 

That is, the expert whose opinion is being assessed imagines 

hypothetical data and the method elicits his pretended reaction 

to it. Of course, real data can be used in a similar way. The 

elicitations refer only to the Dirichlet-Bernoulli predictive 

distribution. Indeed the predictive distribution is primary 

and c~n be assessed by the method, regardless of the significance 

or not of assuming an imbedded mUltiple-Bernoulli process and 

Dirichlet mixing distribution. The assessment proceeds in three 

steps. 

1. Elicit predictive probabilities for a single future 

observation, 

pr(o=i) = bi/b., i=l, ... ,K. (A.l ) 

2. Condition opinion on an imaginary (or real) future 

sample with frequencies ~ = (xl'" '}xK). Elicit conditional 

predictive probabilities for a further future observation, 

b 
pr(o=il~) = b.+x 

x 
pr(o=i)+b ~x u i 

(A.2) 

A.I 
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where pr(o=i) was obtained in step 1 and u i denotes the usual 

relative-frequency estimate, 

(A.3) 

Solve for b., 

b = x (A.4) 

3 . Calculate b i ' 

b i <,; pr ( 0 = i) b .' i = 1 , ... ,K . (A.5) 

In practice, the numerator and denominator in (A.4) should 

have the same sig~. Under the conjugate-prior model, pr(o=il~) 

lies between pr(8=i) and u i . The ratio of its distance to u i 

to its distance to pr(o=i) is b Ix , a (positive) constant in i. . . 
If pr(8=il~) is elicited and (A.4) solved for b for v~rious i 

values, then these b values can be averaged. Similarly, an 

average b can be obtained from consideration of several samples x. 

Pooling of saMples would permit nested conditioning and avoid the 

need for forgetting or unpretending· 
(i 
The values given in Table A.l were elicited from a social 

psychologist for Example 2 of Section 7. The simple average 

of the assessed b values is b.= 140. 

A.2 

e 't ..... .lftItII,-.u~,tt;~,~L.\'. ""'f":; ... "~ •t~r ... S.·~ ... rs.'m.·~ ........ ----

i 

Prior-predictive 
probabilities 

pr(o=i) 

(Elicited] 

Table A.l. Assessment of an expert 

prior distribution for death-penalty 

attitude surveys. 

I 1 2 3 4 

0.02 0.08 0.15 0.75 

Imaginary sample data 

xi 16 20 32 132 

(M = 200) 

Relative~~requency 
estimate 

" 
u i 0.08 0.10 0.16 0.66 

Posterior-predictive 
probabilities 

pre o=il~) 0.05 0.09 0.16 0.70 

[Elic'~ed] 

Solution 

b 200 . 200 C' 160 

(b = 140) . 

b i = b.pr(o=i) 2.8 11.2 21.0 105.0 

. 

A·3 

. 
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