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INTRODUCTION AND BACKGROUND

Purpose

The purpose of this Technical Report is to provide criminal justice
researchers with a better understanding of Predictive Attribute Analysis. We
have found PAA to be a method encumbered by complex statistical undercurrents
that are veiled by the simplistic tree diagrams and subgroup categorizations
that result from an analysis. To the extent that users of methods iike PAA
become aware of these issues, however, the interpretations drawn can be
substantially improved.

The characteristics of PAA are examined in this report by (1) considering
explicit and implicit analytic assumptions and their implications, and by (2)
conducting a series of empirical studies using PAA methods with both real and
artificial data systems. A computer program has been developed to facilitate
the conduct and evaluation of PAA studies. A% the conclusion of the report we
present some suggestions for appropriate research applications of PAA.

Scope of the Project

This project1 originated as a consequence of validity and reliability
questions that arose from the use of the Predictive Attribute Analysis method by
our agency. The primary objectives were (first) to develop for ourselves a
clear understanding of the Predictive Attribute Analysis method, (second) to use
this background to build a flexible computer program with which reseachers could
both conduct an analysis and have a sense of the confidence appropriate to the
results, and (third) to produce a comprehensive report detailing these
activities.

The Technical Report for the project provides a description of the PAA
method and a discussion of important methodological issues which bzar on its




use. Readers of the report are expected to have at least an intermediate-Tevel
background in statistics, but an attempt has been made throughout the report to
supply appropriate references for readers not familiar with particular topics.
Potential users of the computer program produced by the project are strongly
encouraged to read the entire report before attempting to use PAA in substantive
applications.

The contents of this Technical Report include: (1) a description of the
features of the Predictive Attribute Analysis method, (2) a review of some
published applications and evaluations of PAA, (3) a statement of methodological
jssues affecting the use and interpretations of PAA, (4) a discussion of
statistical issues relevant to an understanding of these methodological issues,
(5) a description of the PAAVE computer program, (6) a discussion of a series of
simulation analyses performed to investigate remaining questions about PAA, and
(7) a summary statement providing conclusions and recommendations concerning the
proper use of Predictive Attribute Analysis.

The computer program was written not only to provide a means for the
computational processing of a PAA, but also as a vehicle through which to study
some of the issues which have been found to affect the validity and reliability
of PAA results. Requisite computational features discussed in the PAA

literature, as well as features deemed useful from our present investigation of
the method, form the basis of the program. Where theory-based answers to
questions about the credibility of an analysis are not easily provided, we have
tried to provide appropriate empirical feedback through the program.

One of the most interesting and novel features of the program was not a
part of the original conceptualization. Because of our concern for the
potential variety of causes of instability within the analysis of a particular
data system, it became clear midway through the project that some means would be
necessary to evaluate the strength of such effects. Our solution -- bootstrap
resampling -- provided such valuable insights for our own applications that we

decided to automate and incorporate this cross-validation capability directly
into the version of the program we created for general distribution.

The program is intended for use by researchers who are familiar with
Predictive Attribute Analysis. As such, the program does not necessarily
prohibit some of the procedures or applications that we will caution against in
this report. We urge potential. program users to read this report thoroughly
before using the PAAVE computer program for serious analytic work.

The User's Guide provides a detailed description of the various functions
incorporated into the PAAVE computer program. Guidelines for the operation of
the program and examples illustrating different parameter specifications are
presented. The Guide is intended to be used in conjunction with this report, as
it contains little discussion of the logical, methodological, or statistical
issues to be presented here. A complete FORTRAN program listing with internal
documentation is included, as well as examples of program output.

Predictive Attribute Analysis

Predictive Attribute Analysis is a quasi-statistical technique for the
sequential subdivision of groups on the basis of characteristics of those groups
that predict a criterion attribute well.

Briefly, PAA processing proceeds as follow: Given a set of predictor
variables for a criterion of interest, the analysis begins by selecting a best
predictor attribute for the criterion variable. The total group is then divided
into subgroups on the basis of the presence or absence of this predictor
attribute. The analysis then proceeds to find the best predictor attribute
within each of the subgroups and to define new subgroups at this level,
continuing in this manner until specified stopping criteria are met.

The PAA method has often been used to explore interaction effects among a
given set of predictor variables, as weil as to define characteristics of



important subgroups of a particular population. Results are usually summarized
in the form of a PAA 'tree' (dendograph), where branches represent the sequence
of sub-categorizations and where nodes show the particular attributes found to
best predict the criterion. For example, the observed rate for an
incarcerate/not-incarcerate decision might be expected to differ depending on
the race, sex, and prior-history characteristics of individuals; a PAA might be
used to see if particular combinations of these attributes have especially high
or low incarceration rates.

Characteristics of the particular subgroups might then be studied further,
or a prediction table or equation might be constructed. Because a PAA provides
a logical decision process for selecting predictors, the (laborious) alternative
of examining all possible combinations of contingency tables is avoided.

The PAA technique is often used to highlight the interaction between the
relative usefulness of prediction information and the subgroup membership of an
individual -- an analysis typically yields a different succession of predictor
variables for each different subgroun.

Predictive Attribute Analysis is one of the class of categorical data
analysis methods which derive from the mechanization of a set of decision rules
rather than from the implementation of a formal statistical argument. More
generally, PAA can be viewed as one of the many prediction methods intended for
use with restricted-value dependent measures. The PAA method has been
considered useful by some practitioners because it is a relatively efficient
automation of an otherwise complex and cumbersome decision process.

Statistical considerations are a secondary aspect of the PAA prediction
process. They provide the means for the selection of particular variables at
particular decision points, but they are pointwise to the extent that
information on either horizontal or vertical planes of the analysis is not
incorporated into the decision. For instance, the selection of a predictor
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attribute for a given subgroup is not affected by that variable's correlation
with any previously-selected predictors for that PAA branch. One consequence of
this limited depth of field is the poor reproducability of PAA results which has
been observed, but PAA is certainly not alone amorig prediction methods in
exhibiting a characteristic of poor reproducability.

Example of the PAA Method

Predictive Attribute Analysis is perhaps best introduced through a
simplified example: Suppose one is interested in answering questions about the
relation of violent and property crimes to certain known characteristics of
large metropolitan areas. Information is available for ten such areas (courtesy
of the 1982 Information Please Almanac) regarding the following characteristics:

number of violent crimes reported, metropolitan population, number of law
enforcement officers, change in number of officers since the previous year, and
won/lost percentage for that area's National Football League franchise (Table
1.1a).

We have chosen for this example to do a Predictive Attribute Analysis in
order to 1) find characteristics of an area which best predict crime rate, and
2) see if there are meaningful combinations of characteristics having markedly
low or high predicted crime rates. Note that our illustrative analysis is
exploratory in the sense that we are stating no hypotheses prior to examining
the data.

Given our stated research questions and available data, we proceed with the
PAA method. The steps to be followed in this example are outlined in Table
1.2.

As a type of ‘attribute' analysis, PAA requires that all measures be
dichotomous -- coded as the presence or absence of the characteristic. For the

purpose of this example we choose simply to use a mean split on all variables
(although, in general, justification would be required for such a choice, since
the cutpoints for binary splits do affect PAA outcomes). Table 1.1b displays
the recoded data.
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TABLE 1.1a

Raw Data for PAA Example

Population Law Enforcement Change in Football Violent  Property
(x 1009) Officers Number of LEOS Percentage Crimes Crime
7071 28@12 - 4.9 .25¢ 1862 6874
3085 15242 - 6.4 .438 909 5192
2967 8998 - 6.7 .688 1515 7518
1688 8748 - 5.5 750 827 3872
1594 3831 - 1.1 .688 878 7874
1203 5613 -11.9 .563 1679 7125
9g4 2593 9.7 .75¢ 1298 9330
787 3726 - 4.8 .438 1963 7361
679 2121 12,5 .375 1675 9957
638 4583 - 1.5 .375 1609 6993
TABLE 1.1b
Dichotomized Data for PAA Example
POP LEO  CHE  FTB VIO  pRO

1 1 @ @ 1 9

1 1 g 1 g g

1 1 g 1 1 1

¢ 1 g 1 g g

g ') 1 1 g 1

@ @ ¢ 1 1 1

@ 9 1 @ g 1

@ g g ') 1 1

g g 1 ¢ 1 1

g ', 1 9 1 g

TABLE 1.2

Steps Comprising a Predictive Attribute Analysis.

Determine research questions, assemble data, etc.
Dichotomize variables
Determine parameters to control PAA processing algorithm

Construct 2x2 contingency tables for each combination of (dep var) x (indep
var)

Select the best (indep var) predictor of the (dep var) by the a priori
statistical criterion

Split the sample observations into two subgroups based on the two categories
of this selected predictor

Construct two sets of 2x2 tables (one for each subgroup) for (dep var) x
(remaining indep vars)

Select, for each subgroup, the best predictor from the (remaining indep vars)

Split each subgroup into two further subgroups based on the four possibie
categories of the two selected predictor variables in each branch

Proceed as above until specified stopping rriteria for the analysis are met
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Next one must select the parameters that contro! the execution of the PAA
algorithm.  Of primary importance is the statistical criterion used to measure
relative predictability; the results of a PAA can be quite different depending
on the type of predictive or associative relationship being measured. For now
we somewhat arbitrarily choose the chi-square statistic, although in general an
explicit rationale would be required.

Other parameters must also be supplied to determine at what point the
analysis will terminate. These can be in the form of statistical significance
tests (for the chi-square values), or they can be minimum cell or marginal
counts for the individual contingency tables. Because of the artificial nature
and small sample size for this example, we choose simply tovlet the ana]ysis
proceed through two Tevels and then terminate.

At this point we begin the first level of the analysis. First, 2x2
contingency tables are constructed for each pairing of the criterion (dependent)
variable (VIO) with the four predictor (independent) variabies (POP, LEO, CHG,
FTB). Chi-square statistics are then calculated for each of the four tables.
These tables and statistics are presented in Figure 1.1la. As can be seen, the
chi-square statistic for the FTB variable is the largest, so FTB is chosen as
the overall best predictor for number of violent crimes.

Next we divide the ten metropolitan areas into two subgroups based on each
area's FTB characteristic; there are five areas with values of zero (losing
seasons) and five areas with values of one (winning seasons). We then repeat
the process of contingency table construction for each of the subgroups by
generating 2x2 tables for each of the three remaining predictor/criterion
combinations and then calculating the appropriate chi-square statistics (see
Figure 1.1b). At this second level, given FTB=@, both POP and LEQ are equally-
best predictors. Given FTB=1, CHG is the best predictor.

Since we have reached our prespecified stopping criterion of two levels, we
terminate the analysis at this point.
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Chi-Square=.08
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FIGURE 1.1la

Contingency Tables for PAA Example

Level @:
Vio
Crime
g 1
gi214
LEO
1 12¢{2

Chi-Square=,28

Orig

inal Tahles

Vio
Crime
g 1

Cpl2]a
CHe  p—
.

2|2

Chi-Square=.28

FIGURE 1.1b

Contingency Tables for PAA Example

Level 1: Conditional on Value of FTB

Vio
Crime
g 1
glao
popP
1111
1 4

Chi-Square=1.88

Vio
Crime
g 1
g1311

POP
11011
3 2

Chi-Square=2.81

Vio
Crime
g 1
grol s
LEO
11111
1 4

Chi-Square=1.88

Vio
Crime

g 1
gr1ei}1

111

LEO

et

3 2
Chi-Square=.14
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Vio
Crime
g 1
g({11]4

FTB
1y3 712

Chi-Square=1.9

Vio
Crime
g 1
gri11t2

CHG
113792
1 4

Chi-Square=.56

Vio
Crime
g 1
@112
CHG
112]0
3 2

Chi-Square=3.33



In reporting the results of the analysis, one would typically say something
to the effect that "for areas with poor football records, population and number
of law enfurcement officers are the most useful predictors of violent crime
rate, whereas for areas with good football records, relative change in the
number of law enforcement officers is the most useful predictor of violent crime
rate." This answers our first research question, and reinforces our use of the
PAA method because of the different combinations of predictors found for the

different subgroups.

With respect to our second research question, it js evident from the
marginals of the second set of contingency tables (Figure 1.1b) that the
conditional probability of a high number of crimes is different for the four
terminal subgroups. For areas with poor football records and either small
populations or small numbers of officers (top row), the probability of a high
(versus low) number of violent crimes is 1.0; for areas with good football
records and an increasing number of officers (bottom row), the probability of a
high number of violent crimes is .00. Again we are pleased with our choice of
the PAA method, since we can find intuitive support for these different
expectations for crime frequency given the differing community characteristics.

We will withhold judgmental comments on the interpretation given for this
example until we have discussed some of the methodological and statistical

jssues relevant to this type of classification analysis.

Overview of PAA Literature

The review of literature accompanying this report is intended to serve as
an overview of the background and application of the PAA approach and as a
context for subsequent discussion of some methodologica’ and statistical issues.
We Took at PAA from the perspectives of both statistica] lTiterature and criminal
justice applications literature, and we attempt to relate aspects of the method
to analytical techniques which are most likely familiar to the reader. Because
of the number of tangential issues that are raised as a result of a careful
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study of the PAA approach, we encourage readers to consult the references
cited.

Predictive Attribute Analysis is one of the class of qualitative data
analysis techniques that began to appear in the 1960's. The method was
developed by MacNaughton-Smith (1963, 1965) as an attempt to formalize the ad
hoc approach for detecting interaction effects in the analysis of multivariate
contingency tables. A number of other dendographic (or "tree") methods were
also developed at this time, notably the Automatic Interaction Detection (AID)
family of methods (Sonquist & Morgan, 1964). The AID methods have evolved
considerably from the original model. See, for example, Morgan & Messanger
(1973) for THAID, Perreault & Barksdale (1980) for CHAID, and Breiman et al
(1984) for CART.

An early review of PAA is found in Simon's (1971) monograph. Simon's
review emphasized applications of prediction methods rather than their
theoretical or statistical justification. The work is particularly informative
because comparisons are drawn for a half-dozen different types of association
and prediction methods, including PAA.

The validation studies which were conducted for each of the predictive
techniques Simon considered readily show the difficulty of producing
generalizable results from any of these types of prediction techniques (given
the selected data systems under analysis). Predictive power, defined here as
the Pearson product-moment correlation between predicted and observed outcomes
for a validation sample, was minimai fTor all techniques. In summarizing the
series of studies, Simon concluded "In failing to produce an instrument of high
power, the study shared the general Yate of criminological predictor studies...
(that) although small groups of good or bad risks can be distinguished, for many
of the cases little discrimination is achieved." Possible explanations which
were discussed included the omission of potentially important variables and the
over-simplification caused by the use of dichotomized variables where continuous
measures are available.

-11-



Sutton (1978) used the PAA method as one analytical component.of a report
addressing variations in federal criminal sentences, using regression ?nalys1s
as a framework to discuss predictive power and PAA as a framework to é1scuss
interaction. Sutton reported poor predictive power with both regression and PAA
techniques, and he concluded that decisions were affected "largely on factors
that were not included in this analysis." Neither the PAA nor regression
results were cross-validated, however, and Sutton's results should therefore be

interpreted cautiously.

Perreault and Barksdale (1980) have approached the attribute analysis
paradigm from the perspective of marketing research. They disc?ss the use of
the original Automatic Interaction Detection (AID) model (Sonqu1s? & Morgan,
1964) and a modification (Chi-Square Automatic Interaction Detection) which .
provides certain improvements over the original method. The CHAID procedure is
similar to the AID procedure in that it is a hierarchial search procedure us?d
to identify tested interaction. Unlike the PAA procedures, it does ?ot require
a priori dichotomization of all measures. Chi-square tests for ?red1ctor
;ariables selection are modified to reflect the number of comparisons being made
at a particular decision point. Perreault and Barksdale were attract?d'to the
AID/CHAID procedures because of the non-metric assumptions aiid the ability to
combine binary, nominal, and ordinal levels of information. Noting the problems
of misuse and misinterpretation that often occur with the use of AID-type
procedures, they suggest using linear model or logit procedures to cross-
validate the preliminary hypotheses suggested by an AID analysis.

Research Issues

No comprehensive and systematic study or evaluation of the PAA method could
be found in the literature. This is especially unfortunate because of the many
conjectures and implicit assumptions accompanying most PAA applications. Some
of these points can be addressed directly through logical and statistical
arguments, but other issues are more subtle and appear to interrelate with tbe
types of data systems under analysis. These research questions form the basis

for the set of simulation analyses presented in this report. Besides providing
very useful insights into the general performance characteristics of PAA, the
simulations also led to major modifications in the PAAVE computer program to
provide the user with better feedback regarding the level of confidence
appropriate to the results of a given analysis.

Cited Issues

Predictive Attribute Analysis has some often-cited advantages and
disadvantages, as well as some unknown characteristics. These have been
suggested by the applications literature and our own use of the methods and are
summarized in Table 1.3. We have attempted to approach each of these
characteristics from a neutral perspective, Tooking for either supporting or
disconfirming evidence. In addition, we have supplemented our original list of
characteristics to be investigated beyond those which have usually been
considered in the context of evaluating a methodology such as PAA.

We often found, in informal discussions, a reluctance on the part of
practicing analysts to use PAA, especially as a singular analytic device. Most,
however, could not express particular methodological or statistical réasons for
their beliefs. We have tried in our evaluation to develop either theoretical or
empirical grounds for these expressed areas of concern.

.There are three generally cited advantages for the PAA method. Primary
among these is that PAA is especially appropriate for detecting interactions
among the predictor attributes. Whereas many analytic procedures require the a

priori specification of a model, PAA can be used in an exploratory fashion to
perhaps discover unanticipated effects.

A second cited advantage is the less-restrictive set of statistical
assumptions that a PAA imposes on the data. There is no assumption of normality
or even of continuously-distributed measures; the analysis proceeds using °

-13-
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dichotomous variables (frequently encountered in criminal justice research
problems).

TABLE 1.3

Some Cited Characteristics of PAA.

A third advantage is the clear display of the pattern of relationships that
is the byproduct of a PAA. The tree-like branching diagrams clearly depict the
subgroups and their characteristics and emphasize the stepwise nature of the
analysis as it proceeds from the most significant effects downward.

Cited Advantages

1) Identification of interaction effects.

2) Few assumptions on underlying d1s?r1bu§1ons.
3) Clear display of pattern of relationships.
4) Non symmetrical

A fourth cited advantage is that the analysis can be used in a conceptually
non-symmetrical manner. The PAA method can be directed toward answering
questions about the predictability of one attribute by other attributes rather
than questions about the (symmetrical) association of the attributes.

Cited Disadvantages

1) Difficult to implement using canned packages.

2) Requires dichotomized var1ap1es. )

3) Potential masking of non-pr1ma¥y p(ed1ctors.
ires relatively large sample size. |

b ’ Four disadvantages of the PAA method are generally noted. Perhaps most

importantly from a practical point of view, the analyses have been very
laborious to conduct with generaily available statistical software (such as SPSS
or BMDP). No dedicated procedures exist in these packages; the analyst is
forced to program each level of the analysis separately, examining printed
results for all tables and then designing the specifications for the next level
of the analysis. This can be quite cumbersome -- at the fourth level of an
analysis with 2@ predictor variables, 6@@ contingency tables must have been
produced and analyzed.

Uninvestigated Characteristics

1) Sensitivity to sampling variapi]qty..

2) Sensitivity to rank ordgr variation 1n.samp]es.
3) Sensitivity to correlations among predictors.

4) Sensitivity to type of assgc1a§1on measure used.
5) Sensitivity to stopping‘cr1ter1a.

6) Sensitivity to sample size.

A second disadvantage is the complement to the 'advantage' of being able to
use dichotomous variables; if a greater detail of information is available, the
analysis cannot take advantage of it. Only binary information is processed.

A third disadvantage is the tendency at the level of interpretation to
misrepresent the importance of non-primary predictors; that is, at the terminal
subgroup level, one tends to equate all attributes of that group, despite the
fact that some are more (statistically) pronounced discriminators.

-15-
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A fourth disadvantage is that relatively large samples are required to
conduct a PAA analysis to any depth. For example, at the fourth Tevel of a PAA
analysis, if all splits were 50%-50%, there would be an average of 156 cases per
cell for an initial sample of 10,000. However, if the splits were 30%-70%, some
cells would be expected to average 20 cases per cell; for 20%-80% splits, 4
cases. At the fifth level, even with a sample of 10@,000, 20%-80% splits along
a branch would yield cells with only 8 cases expected.

Theoretical and Empirical Issues

A number of questions have been raised about the use of PAA as a general-
purpose prediction method and about its behavior under certain conditijons.
These issues concern the reproducibility of results and the validity of the
associated interpretations. Reliability and validity are affected by both the
structural relations within the data under analysis as well as the parameters
which control the analytic processing itself. Previous literature has primarily
addressed questions of reproducibility and not questions of validity; this
report addresses both.

There are three questions related primarily to validity. First, does PAA
have the ability to recover a known structure from a given system of data?
Second, does PAA recover the best (most efficient and parsimonious) model that
represents the data? Third, how dc interrelationships among the predictors
affect the analysis?

Two questions relate primarily to reliability. Do the results of a
particular analysis replicate either (1) in terms of the predictor variables
selected or (2) in terms of the individuals who comprise each of the terminal
subgroups?

Two further questionts relate to issues of both validity and reliability;
they involve sensitivity of the analysis to (1) the statistical criteria used to
select predictor variables at each step and (2) the stopping criteria
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(statistical and otherwise) to terminate processing for particular branches.
The choice of criteria affects both the results (and hence the interpretation)

of a particular analysis and the susceptibility of that analysis to poor
reproducibility.
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Footnotes

1Support for this project was provided through the Bureau of Justice
Statistics, Cooperative Agreement # 82-BJ-CX-KOl7.
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a sample of individuals is used to generate a statement applicable to other h
persons selected from an equivalent sample. The idea is to select a set of the

most useful variables from all availzhle information, yielding a set of measures

that have, in some predefined sense, the best predictive power and then to use a
method or logic to combine these measures in as efficient and coherent'a.manner
as possible. The goal is to afford the best possible prediction capability for

the problem at hand.

Implicit in this definition are some further assumptions which should be
noted. First, the individual characteristics or attributes und?r study, both ?s
independent and dependent measures, must be both adequately def1?ed and properly
measured. Second, the formal methodology for evaluating the ava11éb]e
snformation must be a coherent and logical process that is appropriate to the
task at hand. Third, where statistical assumptions are made, they must be shown
to be appropriate given the properties of the data undgr a?alyfis. .
Interpretations must be couched in an understanding of limitations imposed by a

failure to meet these conditions.

Historically, the task of prediction has been accomplished through a .
variety of logical arithmetical and mathematical techniques. At one end of this
continuum is a simple "ynit-weighting” accumulation of points for the presence
or absence of particular attributes; at the other end are the complex
statistical methods which take inte account not only the association of.the
predictive measures with the dependent measure, but also the relatio?sh1ps among
the prediction measures themselves. (The family of multiple regression methods

is a well-known example.)

predictive Attribute Analysis is a multivariable, not a multivariate,
method. We say this to emphasize the fact that a PAA examines a number of
prediction measures at each point in the sequential process, but it does not
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examine the interrelationships among these measures at either horizontal or
vertical decision planes (in contrast, consider stepwise regression procedures).
Many of the observed deficiencies of PAA can be traced to this characteristic.

Models and Parameters

Inherent in mathematical representations of relationships is the use of a
MODEL with associated PARAMETERS. For example, Y = a + bX is the familiar model
specifying Y as a linear function of X; a &d b are the parameters of y-axis
intercept and slope, respectively. Alternative model specifications are Y
bX; + cXp or Y = a + bX] + cXo +dX1X2. Both of these models are
also linear, but the second includes a term for interaction between X; and
X2. A model of the formY = axP is, of course, not linear (except where b
1). See Winer (1971) for a thorough discussion.

n
(1]
+

It is important to remember, however, that the same sample data can be
approximated by any number of different models (with consequently different
parameters). Generally speaking, the more parameters in the model, the better
the approximation to a particular data sample. However, an equation of order
[N-1] can always be found to connect N points. The goal, therefore, is to be
parsimonious and to select the model with the fewest parameters that adequately
reproduces the relationships in question. In general, this approach will
provide a more stable model, better resistant to random sample variations.

Model specification is a difficult task. Magidson (1982) discusses some
behavioral characteristics of log-linear and attribute analysis meihods
including the consequences of such practices as (1) omitting influential
variables, (2) omitting interaction effects, and (3) misspecification of the
correct model. The point stressed is that "no analytic technique can compensate

for lack of theory in deciding which variables to include in an analysis or how
to interpret results.”
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Interaction Effects

Too often interaction among variables is treated as a phenomenon to be
either avoided at all costs, or at best, apologized for. This approach to the
analysis of complex data systems can Tead to serious misinterpretations of the
important forces that are active in the system under study, especially in cases
where the analysis is exploratory rather than hypothesis-driven.

Interaction effects are to be expected. A common-sense approach to the
study of factors affecting groups of individuals must Tead one to expect that
external influences do not impact equally on all individuals, nor do internal
characteristics have equal influence in all settings.

One of the reasons for the propagation of dendographic procedures has been
that they seemed to offer an analytic approach suited for the detection of
interaction effects. Although this appears to be the case, there are a number
of reasons that the results of a particular PAA, especially one presented in the
absence of independent confirmatory support, should be interpreted with great
caution. There are a number of different types of interaction effects, some of
which a PAA will not detect (Magidson, 1982). In addition, as we will see,
often one cannot distinguish between the detection of a main effect and an
interaction effect by using PAA. Lewis (1962) presents a general review of
various technical analytic approaches to the unravelling of interaction effects
in multidimensional tables.

Quantitative data analysis procedures typically hypothesize a model and
then proceed to estimate the parameters. A saturated medel would consist of all

main effects (of the form A, B, C, ...) and all interaction effects (of the form
AB, AC, BC, ABC, ...) for each independant variable. The detection of
interaction effects, however, is usually not emphasized, and the methods
generally espoused for the detection of interactions (eg. Winer, 1971; Kirk,
1968) are not the most efficient available.
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Qualitative data analytic procedures have tended to be more encouraging and
supportive of the analysis of interaction effects. The AID and CHAID procedures
mentioned previously, as well as the PAA procedure, were orginally advocated for
their claimed interaction detection capabilities. Log-linear methods easily
allow tests of interaction at any level of complexity, and in addition allow the
omnibus test for the presence of any significant unspecified (residual)
effects.

In practice, however, many researchers do not investigate interactions in a
thorough manner, taking into account the different types of interaction and the
alternative methods for their detection. When only main effects are postulated
within a model, it is often due to an inability on the part of the researcher to
explicitly create and define the proper representation of an interaction
effect.l Even when interactions are hypothesized, they may be couched in
assumptions that are inappropriate to the data system under analysis.

Usually models are assumad to be hierarchial in nature, where the higher-
order effects for any model, in which a particular embedded effect is missing,
are defined to be absent (eg., absence of an AB interaction implies absence of
an ABC interaction). Models in nature are not necessarily hierarchical,
‘however, and this assumption can lead to erroneous conclusions (see Magidson,
1982). A justification for the adoption of a hierarchical model comes from the
assumption of multivariate normality: in the special case where the dependent
variable and all the independent variables jointly fit a multivariate-normal
distribution, a hierarchical model is appropriate (see Anderson, 1958). In
practice, this assumption should be questioned -- particularly when the
variables are categorical or binary in specification.

Model Detection by PAA

An important difference between PAA and techniques such as the log-linear
methods is that PAA is often used as an exploratory procedure to discover a .
model for the data system under analysis, whereas log-linear methods, e
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must be supplied with a model (for which goodness-of-fit measures are obtained). FIGURE 2.1

From this perspective, some analysts have suggested using PAA as the exploratory
method to suggest a preliminary model, then using log-linear methods to validate
that hypothesized model. One should examine, however, how suitable PAA is for
this task.

Example of Model Recovery Procedure

Model: Y=bB

Given dichotomous data,
possibilities are as follows:

1>
oo
&
| =<

—awsS I

One procedure for investigating the ability of a Predictive Attribute
Analysis to detect the actual effects imbedded in a defined model is to
consider the possible combinations of effects for a two-factor (A and B) model;
j.e., A, B, AB, A & AB, B & AB, A & B, A& B & AB effects. Where observations
are limited to the set (@#,1), the possible values of an observed criterion Y for
all combinations of A and B (and hence AB) values for the model Y=B are given in
Figure 2.1. Using the lambda statistic as a selection criterion, we find (by
application of the PAA method) only an effect for B (as expected).

— |
—a) e
R R

—

Note: Y simply equals
B, regardless of the values
of A or AB.

Contingency Tables: Y Y

As we look at the results of this exercise for the other possible models, g 1 g1
however, we find some unsettling results. As can be seen from Table 2.1, the A g1 11 Lambda = 9.0 5 gl 210 Lanbda = 1.0
model inferred from a PAA is not necessarily the model from which the 1111 . 1012 o
observations were generated. Specifically, an interaction effect (AB) cannot be
distinguished from two independent main effects (A & B) or those main effects
plus an interaction to (A & B & AB). Also, an interaction with only one
component having a main effect (A & AB) cannot be distinguished from the simple Y Given B=@ Y=Given B=1
main effect (A). g 1 g 1

gy 11410 Pl 0 1

These problems become compounded, of course, as the model expands to A 11T Lambda = 0.0 A AR Lambda = .0
incorporate more than three variables. The net effect, then, is to cast doubt
on the utility of using PAA as an independent model-generation technique.
Because an attempt to validate a prespecified model would be subject to the same
concerns, a PAA would also be inappropriate for hypothesis testing applications. PAA Tree: 8
Even as an exploratory technique, the results of any particular PAA might - - -
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TABLE 2.1

Models and Their PAA-Recovered Counterparts.

MODEL PAA TREE PAA MODEL(s)
Y=aA A Y=aA
(A main-effect) - -
Y=bB B Y=bB
(B main-effect) - -

Y=aA+bB or
Y=xAB A =
(AB interaction) - B Y=xAB
Y=aA+xAB _ A Y=aA
(A main-effect & AB interaction) - -
Y=bB+xAB ) B Y=bB
(B main-effect & AB interaction) - -
Y=aA+bB A YfaA+bB or
(A & B main-effects) - B Y=xAB
Y=3A+bB+XxAB ) A Y=aA+bB or
(A & B main-effects & AB interaction) - B Y=xAB
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produce dozens of potential models for evaluation by subsequent confirmatory
analysis.

Subgroup Classification

An alternative use of the PAA procedures, beyond the discovery of important
predictor variables, is the definition of subgroups within a population. The
premise is that, for each subgroup, the variables used to define the groups are,
in some statistical sense, the most important.

Each subgroup is detined through a series of sequentially-dependent
selection decisions. Although this process can systematically exclude certain
model effects, the final predictor composite may nonetheless contain the same
variables that would have been selected by a more valid model specification
approach. (If one considers only the final subgroups and their defining
attributes, PAA provides a system for classification that is "model independent"
in the sense that different models could require the inclusion of the same
variables.) One would then proceed to validate these groupings by alternative
analyses or by replication.

However, to the extent that any subgroups are selected by statistical
criteria, they are subject to sampling variability, raising the issue of
reliability in the findings. While order of selection may not be important for
an analysis that always proceeds to the exhaustion of all independent variables,
it does become important once stopping criteria are introduced and the analysis
does not proceed to consider subsequent predictors. Thus, the interpretation of
PAA results (in terms of any "defining" characteristics of subgroups) rapidly
becomes a very complex igsue. Furthermore, many of the parameters for assessing
reliability are data-specific (e.g., interrelationships among predictors),
requiring unique validation studies to be able to make statements about the
validity of particular results. The issue of subgroup classification will be
investigated empirically in the next chapter. l
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Validation Methods

validation, in the sense of the generalizability of results from one sample
to another, is a central issue in the context of prediction methods. Most
prediction techniques strive to minimize the unpredictable variance within a
particular sample; while this tends to optimize the predictability for that
sample, it is often to the detriment of the overall generalizability of the
results. One needs to be aware of the potential limitations of the results on
any one particular analysis when application is made to other samples. This
section describes two means for assessing this type of validity - traditional
cross-validation methods and bootstrap resampling methods. Because many of the
uncertainties surrounding the interpretation of a specific Predictive Attribute
Analysis are difficult to resolve by a strictly theoretical approach, we will
suggest an empirical approach for assessing the relative confidence we wish to
place in the results of a particular analysis.

A general discussion of validation issues in measurement can be found in
Cronbach (1971); more technical presentations are given by Stone (1974) and
Efron (1983). The focus here is on the ability to make accurate generalizations
from the analysis of one sample to a larger population, hence the general
approach is to compare the results of a number of analyses of (simulated)
samplings from a given population.

It should be mentioned that 'robust' and 'resistant' analytical procedures
are sometimes recommended for continuous-variable prediction problems. Although
a number of methods for pre-and post-processing of data have been developed
(Huber, 1981; Mosteller & Tukey, 1977), these methods can often contribute
their own shortcomings and, in any case, are often not weil suited for
categorical or dichotomous data systems. Some non-éarametric methods do offer a
reduced sensitivity to these problems, but at the risk of not finding effects
that are indeed present in the population system.
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The Cross-Validation Method

The empirical assessment of validity has traditionally been done using the
family of cross-validation methods. The simplest form of this procedure uses
two samples (or one subdivided sample) from the data system of interest: the
prediction instrument (or table or equation) is constructed using the first
sample and then validated by using that instrument to predict the dependent
measure in the second sample. A measure of predictive accuracy is then obtained
by comparing predicted and observed values of this dependent measure in the
second sample. A common extension of this cross-validation approach uses N-1
cases in the sample to develop a prediction model for the remaining case, then
averages the prediction errors for the N replications of this procedure to
obtain a measure of prediction error.

The Bootstrap Method for Resampling

The bootstrap procedure is a particularly elegant and easily applied member
of the family of cross-validation methods. Efron (1979) developed the bootstrap
as an alternative to and extension of existing cross-validation procedures. The
method requires minimal effort toward model specification, distributional
assumptions, and analytic effort, and as a sampling procedure it is applicable
in an automated form to variety of situations over a broad range of complexity
(see especially Efron & Gong, 1983; also Efron, 1982). The efficacy of the
bootstrap is demonstrated by the clarity it lends to the interpretation of PAA
results.

The procedural definition of the bootstrap sampling method is
straightforward: for some arbitrarily large number of replicationsz, a random
sample of size N is drawn with replacement from the original data set of size N.

The analysis of interest is then conducted once for each of these samples; if
desired, nonparametric estimates of statistical attributes of the data.can be
calculated. !
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The rationale behind bootstrap sampling is as follows: if one believes
that every type of multivariate data point (or "case") present in the
"population" is represented in the sample (even if not proportionally to its
frequency in the population), then one can generate approximations to random
samples from this unknown population by using repeated sampling-with-replacement
procedures. One thereby expects that at least some of the bootstrap samples
will be distributed very similarly to the unknown population. If desired, one
can then use nonparametric reasoning to generate appropriate statistical
measures and associated confidence intervals.

For the purpose of investigating PAA validity and generalizability issues,
we have used the bootstrap method to generate repeated samplings from selected
data sets. A PAA was then performed on each of those samples and the results
compared. Section III examines two aspects of the results in particular: (1)
how consistently the pattern of selection for predictor variables was

’replicated, and (2) how consistently the membership of cases in the terminal

subgroups defined by the analysis was replicated.

Analysis of 2x2 Contingency Tables

This section discusses some characteristics of two-way contingency tables
that are dichotomous in both variabies. Presented first are some considerations
involved in the use of binary-coded information, whether that is the level at
which the information is observed or whether there is an intermediary recoding
of ordinal-or interval-level information. Second, statistical measures of
association and prediction that are appropriate for 2x2 tables are considered.
Finally, this section examines how the use of these different statistical
measures can affect the results of a Predictive Attribute Analysis.

Dichotomous Variables

The analysis of criminal justice data often requires the consideration of
dichotomous information. Frequently data are available only at the level of
binary coding (incarcerated/not-incarcerated, prison/jail, felany/misdemeanor),
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even where there might be evidence for an underlying ordered succession of
categories. Quite often the dependent measure in a predictive analysis is
binary, representing the final decision (however uncertain or qualified)
resulting from a complex decision process.

Typically, measures available to an analysis are not all binary, however.
In general, it is preferable to use an analytic method which can take advantage
of the greatest detail present in the data. Logistic regression techniques, for
example, allow the use of dichotomous, ordinal, or interval measures in the

prediction of a dichotomous criterion, where PAA requires that all variables be
dichotomous.

It is preferable to choose a method of analysis for which the assumptions
are most appropriate to the characteristics of the data at hand rather than
forcing the data to fit the model (by dichotomization, for example). This
approach provides greater power for the detection of real effects within the
data and also avoids the problems of deciding at what point to create artificial
categorizations from a more detailed data representation. Bishop, Feinberg, and
Holland (1975, p. 371) note that "... different choices of boundaries (based on
collapsing of categories) can lead to different conclusions regarding the
dependence or independence of variables. Little guidance is available to help
the investigator make such choices."

In the case where PAA is determined to be an appropriate analysis but where
a number of important predictors require dichotomization, our recommendation is
to select several alternative cutpoints for each predicfor and examine the
results of the analyses. An alternative would be to create a set of binary
'dummy' variables for each category of an original variable, where (@ or 1)
would represent the (absence or presence) of that category for that variable.
These devices should be used only for variables for which there is no clear

theoretical or empirical guidance for imposing cutpoints -- theory should take
precedence over exploration.
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Statistical Measures

A useful categorization for the various measures of association for 2x2
tables is presented by Bishop, Feinberg, and Holland (1975). There are four
general classes: 1) measures based on the ordinary chi-square, 2) measures
based on the cross-product ratio, 3) proportional-reduction-of-error measures,
and 4) proportion-of-explained-variance measures.

For the purposes of this report, four statistics are considered which .
represent three of the cateogries described above. Cross-product (odds) ratio
measures are not considered since (1) they have not been a part of the PAA
applications Tliterature or much of the modern contingency table 11terat9re, and
(2) these measures possess some properties that make them appear ]ess-tnanj
optimally interpretable for PAA-type app]ications.3 This report does examine
the Chi-Square coefficient, the Phi-coefficient, Goodman & Kruskal's Lambda
coefficient, and the Uncertainty coefficient.

Each of these statistical measures is discussed with respect to several
characteristics of the measure that affect their use in a Predictive Attribute
Analysis, such as whether or not they are independent of sample size, whether
they assume a dependent/independent distinction, or whether they measure
symmetric ‘association' or asymmetric 'prediction.’'

THe Chi-Square coefficient can be used both as a measure of association and
as a test for independence; the latter will not be considered here since it is a
hypothesis test rather than an assessment of relationship. Table 2.2 presents a
definitional formula for Chi-Square (and the other statistics discussed here).
On the basis of the applications literature, Chi-Square seems to be the
statistical criterion of choice for PAA and the other interaction-detection
procedures (Phi being an "alternative"). However, lack of discussion in these
references as to the justification for using Chi-Square as opposed to
alternatives suggests that the choice may not have been based on careful
consideration of the properties of the available statistics.
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As a measure of association, Chi-Square is symmetric in the sense that no
distinction is made for a 'dependent' versus 'independent' variable. It ig
dependent on the sample size and has no upper bound; the Tower bound is zero.
Probability statements can be made easily by reference to tabled Chi-Square
values for a chosen significance level, where the number of degrees of freedom
for a 2x2 table is always one. An advantage that the Chi-Square statistic has
is the general familiarity it enjoys from a wide audience.

Although the computational mechanics of the Chi-Square test are easily
carried out, their derivation depends on a mathematical rationale that requires
important assumptions (1) that observations are independent of each other, and
(2) that each observation represents a single joint-event (or cell location in
the contingency table). Probabilities obtained from a chi-square table are
estimates and approximate (barring an infinite sample size). The accuracy of
this approximation depends not only on overall sample size, but on such factors
as the significance level employed, the total number of cells in the contingency
table, and the true marginal distributions in the population. Based on these
considerations, a corzervative guideline that has been generally endorsed
is to require a minimum cell frequency of 5 for tables with more than 1 degree

of freedom and 10 for tables with a single degree of freedom (as have 2x2
tables).

The Phi coefficient for a 2x2 contingency table is equivalent to the
Pearson product-moment correlation coefficient. Phi is also directly obtainable
from the chi-square coefficient as the square-root of (Chi-Square divided by the
sample size). The Phi coefficient has the resultant advantages of 1) a
standardized range of zero to one and (2) an interpretation directly analogous
to that of an ordinary correlation coefficient.

Goodman and Kruskal's (1954) Lambda caefficient is a measure of predictive
association (asymmetric) rather than of simple association (symmetric).
Specifically, lambda measures the proportional reduction in error of predicting
the one variable by having knowledge of the other variable. This approach is
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fundamentally different from that of the measures of association such as Chi-

Square or Phi.

It is possible (and frequently occurs with criminal justice measures) for
association to exist where predictability does not: Chi-Square is greater than
zero while Lambda equals zero. This does not imply that Lambda is
unsatisfactory, but rather that Lambda is a measure of a different property of
the data. In practice, PAA predictor variables selected by Lambda are typically
different from those selected by the other statistics.

Lambda ranges from zero to one, being zero only if knowledge of one
variable is of no help iw predicting the other and being one only if knowledge
of an individual's category on one variable determines the category of the other
variable. Lambda requires information in the diagonals of the 2x2 table to be
parallel (i.e., both maximums on the same diagonal), otherwise Lambda is zero.
As a measure developed for nominal-level data, Lambda considers only the mode of
the distribution. It should be noted that it is possible, even where there is
perfect predictability of a criterion variable, for Lambda to be zero if the
predictor variable contributes no new jnformation (beyond that available from
the marginal distributions).

The Uncertainty coefficient (Theil, 1967) is derived from an information-
theoretic approach. Like Lambda, it is asymmetric; it indicates the proportion
hy which uncertainty on the dependent variable is reduced by knowledge of the
independent variable. Unlike Lambda, it considers the entire distribution of
observations, not just the modal category. The Uncertainty coefficient ranges
from zero to one and is independent of the number of observations.

Use of the Various Statistics for Predictive Inference

The information available in the format of a contingency table can be
thought of in a number of research contexts. Hypotheses may relate to questions
of association of variables, to goodness-of-fit of one variable's distribution
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to a proposed model, or to questions of predictability of one measure from
another.

The a priori design model brought to an analysis like PAA can substantially
affect the results and interpretations. Different statistical measures have
been developed to meet different needs of researchers, and the assumptions of
each must be considered carefully. The use of a prediction versus an
association statistical measure in a PAA implies a different set of hypotheses
is to be tested, and hence the interpretation of results should not be the
same.

The Chi-Square and Phi coefficients are inherently tests of association,
symmetrical in nature (like a correlation coefficient). The Lambda and
Uncertainty coefficients are, on the other hand, asymmetric measures of the
predictability of one measure by the other (like a regression coefficient).
Chi-Square values for AxB and BxA tables are necessarily the same; lambda values
for AxB and BxA tables are not necessarily the same.

The difference between an associative measure and a predictive measure can
be clarified by reference to Chi-Square and Lambda as specific examples. Chi-
Square is a technique that evaluates differences between observed and expected
observations (expected either via a hypothisized distribution or from tne
marginal distribution which was observed). This is a symmetrical
conceptualization; the distributions either match or they do not. Lambda,
Fowever, is an index develcped to measure the proportional reduction in the
probability of error in predicting B by having knowledge of A. If the
information contained in A does not reduce the probability of error in
predicting B at all, Lambda equals zero; if the information completely
determines the prediction of B from A, then the index is one.

With reflection it can be seen that the idea of prediction is not
equivalent to the idea of association. It is possible, as noted above, that
statistical association exists even though the predictability measure equals
zero.
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It may be the case that A and B are not independent, but that the relationship
is such that knowledge of A does not change one's expectation about B.

Which of these types of statistics is preferable for Predictive Attribute
Analysis? In discussing the choice of measures for contingency tables, Bishop,
Feinberg, and Holland (1975, p. 393) comment: "No single measure is better than
all others in every circumstance. Different measures have different purposes,
and our selection must depend on our objective in studying a set of data. If
the focus is on departures from bivariate independence, [chi-square based
measures] are useful, while [predictive association measures] may mislead. If
the focus is on prediction, the reverse is true, and we may profitably choose

[predictive association measures]."”

Logical consideration of the properties of each of these statistics would
suggest the use of one of the predictive association measures (Lambda or
Uncertainty) rather than a measure of independence (Chi-Square or Phi).

Choosing between Lambda and Uncertainty would then depend on whether the
variables are considered to be strictly nominal or have ordinal/interval
characteristics. This decision becomes problematic where measures of both types

are present in an analysis.

In practice, Chi-Square, Phi, and the Uncertainty coefficient perform
similarly in selecting predictor variables at particular PAA nodes. Lambda very
frequent]y selects a different sequence of predictors. None of the measures
provides a significantly greater Jevel of reliability across samples when the
depth of the analysis is held constant. These comments will be discussed more
fully in the sections of this report that discuss the simulation studies and
suggest general recommendations. At this point, however, we can suggest no all-
inclusive guideline for a "best" PAA statistic.

Alternatives to PAA

The kinds of research questions which are addressed by a Predictive
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Attribute Analysis can also be addressed by a number of other analytic
techniques. If one visualizes a continuum ranging in complexity from singular
contingency table analysis, to ad hoc contingency table analyses, to logit and
probit analysis, to log-linear models, and through general-model categorical
analysis techniques, PAA would fall into the domain of the ad hoc methods.
While there are theoretical reasons for prefering the methoE;.;;_éhe
multivariate end of the continuum, there are often practical considerations
which impede the successful application of these methods. PAA is often chosen
as a compromise method.

Some general references that provide a background for issues affecting
contingency table analysis are Bishop et al (1975): Discrete Multivariate
Analysis: Theory and Practice. Fleiss (1981): Statistical Methods for Rates
and Proportions, Davis (1974): "Hierarchial Models for Significance Tests in
Multivariate Contingency Tables: An Exegesis of Goodman's Recent Papers," and
Goodman and Kruskal's (1979) Measures of Association for Cross Classifications.
Brieman et al. (1984) have developed some interesting extensions in the area of
regression-tree procedures.

In reviewing some analytical methods for the type of predicition problem
where the dependant variable (at least) is binary, it is interesting to consider
the historical evolution of those methods. The problem was initially: given
that Ordinary Least Squares (OLS) methods are not appropriate to the case when
the dependent measure is not of a continuous nature, what modifications of OLS
might prove servicable? This perspective led first to studies attempting to
delineate more clearly the conditions under which a conventional regression
analysis would provide a reasonable appropriation. The ‘conventional wisdom’
emerging from this work held that OLS could be used in situations where the

dependent measure was expected to fall midway between the extreme probabilities
of zero and one.

Modification of the OLS algebra produced the probit and the logit methods
(see Finney, 1952), both explicitly designed for predicition of a dichotomous
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dependent variable. The emphasis here is on the relative weights for the set of
predictor variables. The subsequently developed log-linear methods, due
primarily to Goodman and collegues (eg, 1978), emphasized the model development
aspect of analysis; the analysis was geared to uncover the combination of main
effects and interaction effects that could be properly used to represent the
underlying forces acting on the observations.

Both the logit and probit methods assume a dichotomous dependent variable
with categorical and/or continuous independent variables. ine techniques are
conceptually similar approaches to the problem of prediction, the major
difference being that the probit model is based on the normal function while the
logit model is based on the logistic function. (These distributions are
practically identical for our purposes.) From a pragmatic point of view, the
techniques are "no more than a convenient mathematical device for solving
certain equations" (Finney, 1971), and should be treated much as other general
transformational procedures. Other transformations have indeed been proposed,
but they seem essentially indistinguishable from logits and probits in tiieir
performance over a wide variety of applications (Finney, 1971).

Log-linear methods emphasize the evaluation of alternative model
specifications. The method for specifying these effects has an appealing
parallelism to the conventional analysis of variance methods known to most
researchers. Given a hypothesis that any effect (or group of effects) is a
component of the model, estimates can be derived for the expected cell
frequencies in the contingency table system. Given these expected frequencies,
a 1ikelihood ratio test can be performed to assess the goodness-of-fit of the

data to the specified model.

In principle, the procedure can be extended to tables of any dimension; any
effect or combination of effects can be considered. The statistical assumptions
are those of a standard Chi-Square test-- observations are independent and arise
from multinomial sampling of some population. A practical restriction is that
large samples are required in order to have a reasonable chance of expected
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frequencies greater than zero in all cells. Because the number of potential
hypotheses increases rapidly (due to the number of potential interactions), the
procedure is somewhat inappropriate as an exploratory tool for complex tables.,
Log-Tinear models, used for the Tevel of complexity of contingency tables
typically analyzed by a PAA, would have to be stated very explicitly beforehand
because of the depth of potential interaction effects. Log-]inear models in

general are inappropriate for exploring questions for which 1ittle previous
analytical work had been done.

In addition to these widely-known and generally available analytic
procedures, there are also other alternative approaches to the analysis of data
systems of the type considered here. Examples are clustering procedures,
profile-comparison procedures, multidimensiona]l scaling methods, discrimination
analysis, and general structural-model categorical methods (Pruzek & Lehrer,
1980). These methods are not addressed here, but they (and others) are

certainly not to be dismissed from consideration by the analyst.

The literature gives numerous examples of how certain methods are not well
suited to particular data systems. In the case where nested interactions are
expected to exist (that is, different interaction effects for different
subgroups), PAA-Tike procedures are generally more Tikely to detect effects than
Tog-Tinear methods. Because PAA is a conditionally-oriented method, it can
uncover effects that would otherwise be averaged out at other levels of
specification. Another type of interaction is the symmetric interaction, where
the effect is approximately equal and opposite for two subgroups. The near-zero
average makes the effect difficult to detect. These effects are generally not
detected by a PAA procedure because they fail to pass a main-effects statistical
test. Magidson (1982) shows how a lTog-linear analysis can detect these effects,
but only if the model is specified as a nested interaction mode] and not a
hierarchical model. One is thereby cautioned against limiting the use of log-
linear procedures to hierarchical models if theory suggests otherwise.
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With respect to the selection of particular analytic methods our
recommended strategy is, succinctly, a multi-method approach oriented toward

developing a consensus in conciusions.
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Footnotes

lone solution to this problem of the effective specification of complex
effects is presented in Pruzek & Walker (1982).

2Typically 109-20d,

35ee Bishop et. al. (1975), p. 383 especially.
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EMPIRICAL STUDIES OF THE PAA METHOD

The two major components of this part of the project were (1) the
development and implementation of a mainframe computer program, required for (2)
the design and conduct of a series of simulation studies. The computer program
was developed with attention to the known characteristics of PAA as discussed 1in
the previous chapters with the intent of also providing means for the control of
parameters of the analysis (type of statistic used, branch termination criteria,
etc.) that could alter the validity/reliability characteristics of the method.
The group of simulation analyses which are reported here was aimed at further
defining strengths and weakness of PAA and providing guidelines for the use and
interpretation of the method.

Introduction

The need for further study of the empirical performance characteristics of
PAA is evident from the set of unresolved research questions that remains after
the theoretical considerations presented in the previous chapter. Although some
of the inherent characteristics of the method were described, there remain other
aspects that call for investigation using real data systems. These aspects are
especially difficult to study because of their dependence on particular
interrelationships found within given data systems.

An illustration may serve to clarify the kinds of questions that remain.
It is obvious, for example, that the first split in a PAA tree will indicate the
source of the strongest main effect present in the data. This effect should be
found over sampling with a consistency that relates to the reliative magnitudes
of the correlations between the dependant variable and the set of independent
variables. (If C is predicted by A and B, given a correlation reb=.3¢ and .
rca=.-1¢, we would expect B to be consistently selected. If rea=.3¢ %
and rga=.28, we would expect random sampling variation to impact

-47-

Preceding page blank



significantly on the statistical selection process, with B having a s]1gh§ edge
What is not known a priori, however, 1is how
s at successive levels of the PAA

over a large number of samplings.)
to derive expectations for particular variable

tree, nor how the terminal subgroups defined by the complete PAA analysis might

be affected by predictor interrelationships. To questicns of this nature we

directed the efforts of the simulation studies.

PAAVE: Predictive Attribute Analysis with validation Extensions

Presented below is a brief description of the PAAVEL computer prograT, its
specifications, capabilities, and limitations, and the principles that guided

its development. Potential users of the program will want to refer to the more

detailed User's Guide which accompanies this technical report.

Guidelines for Program Development.

The mainframe FORTRAN computer prografm for Predictive Attribute Analysis
was developed to (1) carry out the computational efforts required to perform a
PAA analysis (with support for data input and dichotomization), (2) a!]ow
flexible user specification of parameters controlling the PAA proces%1ng, and
(3) provide sé&era] kinds of feedback to the user regar?ing the co?f1dence -
appropriate to the results of the analysis. [t was decided early in the projec
not to attempt to incorporate methodological extensions into the program, such
as allowing categorical rather than dichotomous data or attempting 1ook-ahead
computations in the manner available in AID/CHAID programs. Th?re were two
reasons for this decision: first, computer routines already exist to perform
these manipulations, and second, the fundamental issues for this kind of
categorical analysis procedure can be adequately addressed by a study of Fh?
generic PAA processing logic. The program therefore adheres to the definitions

originally put forth by MacNaughton-Smith (1965).

1t was known at the outset of the project that the PAA computer program to
be developed would need to provide a variety of different kinds of feedback to
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the analyst. Enhancements to the otherwise straightforward PAA processing

computations thus took the form of 1) availability of information about the
competing predictor variables in addition to the selected predictor variable,
and 2) addition of alternative processing controls, such as the ability to force

the selection of particular variables at specified nodes or to select various
combinations of stopping criteria.

The program was written in a modular format, giving control of specific
processing functions to specific FORTRAN subroutines. This programming approach
was used both to facilitate development and testing and to allow for future
program modification and extension. Users of the pr¢,ram who wish to supplement
the existing features with additional processing options should find that the
existing routines can be modified without undue effort.

A diagram of the modular components of the program is presented in Figure
3.1. Raw data input, dichotomization, contingency table construction,
statistical calculations, and program output are each handled by separate
routines. The PAA algorithm itself is the responsibility of a managing routine,
and general program execution and parameter specification are controlled by the
main routine. The program also has a multilevel trace mode whereby users can
follow program execution by a series of markers which note the physical location

of program execution? and provide intermediate processing output of selected
detail.

The program was designed to allow considerable flexibility in the
specification of PAA processing options. To control branch termination, several
statistical tests are available, as well as absolute and relative cell and
marginal frequency criteria. In addition, to allow testing of specific models,
the selection of any predictor can be forced at any point in the analysis.
Processing can also be limited to a maximum depth (level) for all branches, or
can be allowed to proceed regardless of stopping criteria tests (assuming
subgroup marginals are not zero).

-49-
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FISURE 3.1
ABBREVIATED PAAVE FLOWCHART

PROGRAM COMPONENTS

PARAMETER
SPECIFICATION

DATA INPUT
& DICHOTOMIZATION

BOOTSTRAP LOOP: EACH SAMPLE

PAA LOOP: EACH LEVEL

PAA LOOP: EACH BRANCH

BOOTSTRAP
RESAMPLING:
CASE SELECTION

REREAD DATA
& COMPUTE TABLES

COMPUTE 2x2 TABLE
STATISTICS

EVALUATE
TERMINATION
CRITERIA

SELECT BEST
PREDICTOR

PRINT SELECTED
RESULTS
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Output is available at several levels of detail, depending on the needs of
the analyst; at the most voluminous level, all contingency tables and all
associated statistics can be produced. The standard mode provides one page of
output for each node in the PAA processing tree? (see the Appendix for an
example). For simulation runs, summary-level output is available, or selected
output can be written to online files and post-processed by other programs.

Program Specification and Features

The computer program has been written, with as few exceptions as possib1e3,
in standard FORTRAN-77 to facilitate conversion to other mainframe systems. It
was developed on the Burroughs 6900 using Burroughs FORTRAN-77 running under the
CANDE timesharing system.4 Due to the batch-queue-oriented nature of that

system, it was not possible to incorporate a high level of user interactivity
into the program.

The current PAAVE program5 can process 50 variables and an unlimited number
of cases in the normal processing mode, 10,000 cases in the bootstrap validation
mode. Up to 64 terminal subgroups can be derived through the nrogram (five
lTevels of PAA processing). An abbreviated flowchart is presented in Figure 3.1
to represent the general processing structure for standard and simulation
modes.

Four statistics appropriate to 2x2 contingency tables are available within
the program: Chi-square, Phi, Uncertainty, and Lambda. Justification for the
selection of these statistics and guidelines for their use has been provided
previously. For each of these statistics, a branch-termination minimum value
can be input such that any observed value below that Timit will cause processing
in that branch to terminate.

Five additional branch termination criteria are provided besides the

statistical criterion: minimum cell size, minimum cell percentage, minimum
subgroup size, minimum subgroup percentage, and minimum subgroup ratio. These
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may be used in any combination, individually or collectively. Default values
are provided in the program, or values can be entered as program parameters. - If
desired, all branch termination checks (except of course null tables) can be

ignored.

An additional program option allows the user to force the selection of a
particular variable at any point in the analysis. This option facilitates the
testing of hypothesized tree structures as well as the effect of using an
alternative predictor in the case where the (statistical) competition is close

among predictors at a particular mode.

Numerous modifications to the originally conceived computer program were a
byproduct of the series of analyses done in the evaluation component of the
study. while we do not, in this report, attempt to exercise all possible
variations of these program options, we provide them as an impetus for others to
study further the characteristics of the PAA method.

Simulation Analyses

The simulation aspect of the project was undertaken to develop a better
understanding of how the PAA algorithm functions in practice. By looking at a
series of data analyses, some of which incorporate extensive cross-validation
efforts, we can address a series of validity, reliability, and conjoint
validity/reliability research questions.

There are two types of data systems for which analyses are presented here.
The first uses artificially-generated data; by controlling some of the
otherwise variable facets of an analysis, we are better able to investigate the
effects of other facets on the results. The second uses data typical of
criminal justice databases; by observing the results of a PAA with data for
which there is an existing knowledge base, some statements can be made about the

proper use and interpretation of results.
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There is a concern in these simulations with two general aspects of the
results: 1) the magnitude of results relative to an expected outcome, and 2)
the potential variability of the results around this expectation. In other
words, we are interested not only in factors affecting the results of a single

PAA, but also in factors affecting the differences among a sampling of results
from a data population.

Research Questions Guidina the Simulation Studies

The previously discussed general research questions which have provided a
focus for the project include: 1) PAA's ability to recover a known structure
from a data system, 2) PAA's ability to determine a best (most efficient and
parsimonious) model which represents the data, 3) the effect on a PAA of
interrelationships among the predictor variables, 4) the replicability of PAA
results with respect to sequences of predictor variables, 5) the replicability
of PAA results with respect to the composition of terminal subgroups, 6) the
effect of different statistical criteria on stability of results, and 7) the
effect of different branch-termination criteria on stability of results.

The precision with which these research questions can be addressed is
enhanced by the use of bootstrap validation procedures. Bootstrapping allows
one, through repeated sampling, to derive from a sampie of data an approximation
to the sampling distribution of the population system from which the sample
originated. Therefore, even in situations where there is only a single working
sample, one can make extrapolations to the population from which the particular
sample was drawn (as if the actual population were known, and one sampled
directly from that population).

We have made extensive use of the bootstrap procedures in our simulation
work to provide a basis for conclusions about the empirical validity and
reliability of a PAA. Because of consistant findings regarding the presence of
instability in the analysis of data, we decided to incorporate the means for
computer program users to automatically conduct a validation analysis on their
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own particular data using the bootstrap procedure. This capability provides
analysts with a means to directly assess the level of confidence appropriate to

the results of a particular analysis.

The series of studies reported here examined aspects of PAA processing

ranging from the statistical properties of individual 2x2 contingency tables

having predefined characteristics through the replicability characteristics of
complete analyses using OBTS criminal justice database jnformation. Table 3.1
presents the three general categories into which the analyses have been grouped:
data systems with 1) defined interrelationships among predictors and criterion,
2) low-strength interrelationships among prediction measures, and 3) complex
(naturally occurring) interrelationships among predictors. The data systems
with defined relationships (generated from selected models with known
characteristics) were used to examine the table-wise selection of predictors by
the different statistical measures. The low-order relationship system was used
to provide a better understanding of how the PAA method functions in the (worst-
case) absence of reliable information. The data systems with naturally-
occurring complex relationships, drawn from the New York State Offender-Based
Transaction System database, were used to study the behavior of the method as a
whole for both the selection of predictor variable sequences and the definition

of terminal subgroups.

The discussions which follow for each set of simulations are paraliel in
format and include remarks on the 1) objectives, 2) procedures, 3) observations,

and 4) conclusions from each analysis.

2x2 Nodes

Objectives. This set of simulations, initiated during the early stages of
the project, was designed to provide a 'feel' for the characteristics of the
four statistical measures that were to be available in the computer program.
Levels of association, predictability, and cell frequencies were varied for a
series of 2x2 tables. Particular attention was given to the magnitude of the
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TABLE 3.1
Summary of Simulation Analyses

TYPE OF DATA SYSTEM

Low-Order

Defined Interrelationships |Interrelations

High-Order
Interrelations

2 x 2 Causal Symmetric
: PROB 8
Tables Factors Interrelation{ Random Data NYC g gﬁgﬁrgw
* * * *
* * * * *x*
* *
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instability of the statistics arising from random sampling error in tables

having small cell sizes.

Procedure. The series of 2x2 tables was constructed by selecting some
generic tables of interest and varying the ratios of row and column marginal
frequencies as well as the absolute frequency counts of cell entries. Both
artificial and published data were used. The tables were considered to be
asymmetric (in the sense that one dimension of the table was regarded as a
criterion to be predicted by the other dimension). Chi-square, Phi,
Uncertainty, and Lambda coefficients were calculated for each table.

Observations. The relative magnitudes of the statistical coefficients were
in general agreement with expectation. A1l of the statistical measures were
unstable when small cell counts (especially <5) were varied -- more soO where the
marginal ratios were high and some cells had very low relative frequencies.
Figure 3.2 presents examples. The movement of a small number of observations
could change the value of the statistic (and hence the PAA-selected predictor

variable) markedly.

The association measures (Chi-square, Phi) and the prediction measures
(Lambda, Uncertainty) were not equally affected by changes in the 2x2 tables.
It was instructive to observe the divergence of Lambda from the other
coefficients for certain types oi tables. An initial impression was that Lambda
was a rather coarse measure when compared with the other coefficients. The
Uncertainty coefficient, while asymmetric in nature, behaved empirically much
1ike the Chi-Square measure.

Conclusions. An important by-product of looking at these simplified
contingency tables and their associated statistical measures was an appreciation
for the potential instability of the statistically-driven PAA predictor
selection process for tables with small or unbalanced cell counts. This
instability has implications for the specification of such PAA parameters as
branch termination values, but even a conservative specification of these
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FIGURE 3.2
Analysis of Some Selected 2x2 Tables
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Some Abstract Ratios

115 115 115 115 5 115
510 511 512 513 4 515
7.64 5.33 3.90 2.94 .27 1.78
.833 .667 .548 .458 .389 .333
.800 .667 .500 .333 .167 0.
.643 .350 .232 .164 .120 .090
215 215 215 215 5 215
519 5141 512 513 4 515
6.12 3.90 2.57 1.73 A7 .78
.714 .548 .429 .339 .270 214
.600 .500 .429 .286 .143 0.
.486 .232 .137 .085 .054 .035
Info. from Info. Info. Info.
neither from one from both from one
category category categories category
of X of X of X of X
251 25 201 20 15} 35 201 20
251 25 201 40 357 15 201200
g. 2.78 16.00 43.51
a. .167 400 409
a. 2. 409 a.
a. .g21 .119 .151
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Some Empirical Ratios

Predicted Classification Predicted Classification
(Simon, p. 48) (Simon, p. 47)
Clinical Behavioral
(six vars) (seven vars) judgement Rating
3919 39 | 9 40 | 8 35 13
10 7 |12 8 |11 8 |11
o 119
Chi-Square 7.69 12.47 11.39 5.62
Phi .339 .431 412 .290
Lambda .053 .158 .158 2.
Uncertainty .091 .150 .135 .069
Marriage Status Age
(Simon p. 188) (Simon p. 188)
Construct Valid Construct Valid
1141147 109151 59 159 49 |61
6| 3 2 17 6l |91 62 197
Chi-Square 1.86 1.39 2.62 .83
Phi .083 072 .099 .055
Lambda a. 2. 2. @.
Uncertainty .024 .019 .007 .002
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Last Penalty

(Simon)
67| 53 59| 52
115] 35 113} 45
Chi-Square 13.17 9.54
Phi 221 .188
Lambda .150 .063
Uncertainty .036 .026

# Previous Convictions

(Simon)
37| 83 29| 78
61| 89 82| 76
Chi-Square 2.79 16.11
Phi .102 247
Lambda @. .019
Uncertainty .008 .046

-b-
{(continued)

Previous Files
(Simon)

751 45 65| 46

112| 38 110( 49

4.64 3.24
.131 .109
.058 a.
012 .0G9

# Jobs
(Simon)

231 97 30| 81

541 96 441114

9.27 .02
.185 .009
.008 2.
.026 .00006
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criteria would not necessarily protect against the mistaken jdentification of
significant effects. Also of interest was the differing best-predictor
decisions resulting from the use of an associative versus a predictive measure.

Defined Models

Objectives. One device for investigating the performance of a particular
analytic method is using it to process a data system with known characteristics.
The ability (or inability) of the method to accurately and reliably recover
these known characteristics can provide useful insights into the general
performance capabilities of the method. We used this approach to address some
of our concerns about the validity aspects of PAA by analyzing data generated
from specified models with particular effects structures.

Also of interest here were the replicability characteristics for the
analysis of simplified data systems (as a preface to the more complex systems to

be considered subsequently).

Procedure. Three sets of analyses were performed. One analysis had a
theoretical emphasis; the other two were concerned primarily with replicability
issues and secondarily with the theoretical considerations implied by their
effects. These were (1) the study of main effect-interaction effect models
discussed in Chapter II, and analyses of small data systems containing (2) a
causal factor and (3) a symmetric interaction. The latter two analyses were
based on data used by Magidson (1982) in a discussion of problematic categorical

data systems.

The design and specifications of (1) have been previously discussed in the
context of theoretical considerations of PAA. The analyses associated with this

part of the defined-models simulations were not subjected to cross-validation
because our interest was in the confounding of interpretation that could result
from using PAA in the context of model specification.
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The causal factor data set (Table 3.2) is a data system that has an
underlying factor which can be used to make the observations (almost) perfectly
predictable. For these data, the completeness of treatment determines the
survival of the patient, regardless of type of treatment or location of
facility. The conclusions drawn for analyses of subsets of these factors can be
quite misleading, however: analysis of survival by type-of-treatment suggests
that the standard treatment is preferable, but analysis of survival by type-of-
treatment by location suggests that the new treatment is to be preferred. In
reality, either treatment is equally effective when carried to completion.

The causal-factor data system was analyzed, with and without inclusion of
the causal factor (completeness) by conducting 100 replications with samples
generated by the bootstrap resampling method. Of interest was the empirical
consistancy of the PAA results for this four variable system.

The data system containing a symmetric interaction effect (Table 3.3)
contains an interaction that is approximately equal in strength - but opposite
in direction - for each of two subgroups. In particular, neither the main
effect for medication nor the main effect for sex is significant by conventional
tests. Since no effects are found in eifherAOf the two-way contingency tables,
a PAA would normally cease processing. The medication by outcome subtables
conditional on sex, however, reveal a significant benefit for the use of aspirin
for males, and an approximately equal benefit from the placebo for females.

This information would not usually be uncovered by a standard PAA.

The symmetric-interaction data system was also analyzed by using the
bootstrap method to observe the consistency of results. Of secondary interest
was the extent to which this type of interaction (as represented in this
particular data system) might pass the initial main-effects test.

Observations. The results of the model-recovery study (1) had implications

imbedded in the theoretical aspects of the method and were therefore presented
in Chapter II.
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TABLE 3.2

'Causal Factor' Data from Magidson (1982)

City A

Complete Treatment

Standard New
Alive 5  (100%) 100  (100%)
Dead 0 (0% 0 (0%)

City B
Complete Treatment
Standard New
Alive 500 (100%) 95  (100%)
Dead 0 (0% 0 (0%)
-62-

Abbreviated Treatment

Standard New
0 (0% 0 (0%
95  (100%) 900  (100%)

Abbreviated Treatment

Standard New
0 (0% 0 (0%)
500  (100%) 5 (100%)

Medication

Aspirin

Placebo

Medication

Aspirin

Placebo

TABLE 3.3

o ——— ———p 1T T T,

'Omitted Interaction' Data from Magidson (1982)

MALES
Qutcome
Not
Stricken ~ Stricken
29 171
46 160
FEMALES
Outcome
Not
Stricken Stricken
17 73
12 77
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%

Stricken

14.5%
22.3%

%

Stricken

18.9%
13.5%
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The analyses of the causal-factor data (2) and the symmetric-interaction
data (3) demonstrated a consistent stability of results; for each of the
analyses described there was no variability in the selection of predictor

variables.

For the data system with the imbedded causal factor, results were
consistantly confounding, as previously described, unless the causal factor was
included. For the data system with the symmetric interaction, this effect was
consistantly undetected using conservative statistical tests for significance.
It could be detected by an appropriate manipulation of statistical cutpoint
criterion or force-variable options, but unguided use of these options has other
consequences which are discussed later in this chapter.

Conclusions. The most important findings from these simulations were the
model-identification deficiencies of PAA discussed in Chapter II.

Results of the other two sets of analyses point out tnat, for simple data
systems containing reasonably well defined effects, a PAA can be expect?d to
provide replicable findings. However, as is also seen from the simulations,
these findings may be misleading. This, of course, can be the case with any
predictive method -- there is always the potential for misleading or erroneous
interpretations of incomplete analyses where either important measures in the
dats system are omitted or where processing is not correctly guided in the
direction of certain types of effects. We strongly suggest the use of ancillary
analysis, especially in the absence of strong theory to guide interpretation of

results.

Random Data

Objectives. Wa were interested in how PAA would function in the 'worst-
case' situation where there were almost no systematic relationships present in
the data. While there exist a number of statistical procedures for examining
the effects of supplemental error added to the data base analyzed by a
particular technique, for our purposes6 we chose to look at the results of
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analyses of a set of randomly-generated numbers. Of special interest were the
potential effectiveness of various statistical and non-statistical branch-
termination criteria available in the computer program.

Procedure. A data set consisting of 5@@ 'cases' of 11 'variables' was
created by using a FORTRAN computer program to sample data points from a
uniform random distribution of range [@#..1] and then dichotomizing these data
using @.5 as the cutpoint. The characteristics of these data were checked by
SPSS descriptive and correlation analyses.

An analysis was run on the original data set using each of the four
statistical coefficients; the program was allowed to proceed through four Tevels
of PAA processing. These 'population’ analyses provided the standard against

which bootstrap sample replications (100 samples for each statistic) were
compared.

Observations. For the population analyses, using conservative
probabilistic criteria, the analysis of these data would not have proceeded
beyond even the first predictor selection point. Values of the statistics for
the strongest predictor variable were: Chi-square=2.484, Phi=@.@7g,
Uncertainty=0.p@4, and Lambda=@.@#64. These would not be considered significant
at an alpha level of @.@5, for instance.

If the analysis is allowed to proceed, however, it is possible for the
statistical measures at succeeding nodes to indeed be judged significant. At
the sixth node of the third level, for example, Chi-square=5.074; at the third

node of the fourth level, Chi-square=5.788; at the fourth node and fourth level
Chi-square=4.455 (Figure 3.3).

]

For the 100 bootstrap replications that were run, results reflected the
relative strengths of association found within the data: greater association
generally led to better replicability. A chart of the predictor variables {
selected at each node is presented in Table 3.4 and illustrated in Figure 3.4.
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FIGURE 3.3
'Population' Analysis of Random Data
Statistic = Chi-Square

-4-
(2.48)
-3- -5-
(1.79) (1.45)

-8- -6- -6- -6~
(2.61) (2.46) (6.46) (2.99)
-2- -9-  -8- -8- -9- -3-  -7- -8-
(1.34) (2.37) (1.86) (1.64) (.76) (5.87) (1.6@) (1.85)

Note: Index number of predicter variable is enclosed in dashes, value of the
Chi-Square statistic is enclosed in parentheses.
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(Entries are Frequencies that Each Predictor was Selected at Each Node)

PAA Level
PAA Level

PAA Level

PAA Level

TABLE 3.4

Simulation Analysis for Random Data
Statistic
100 Replications

= Chi-Square

PREDICTOR VARIABLES

1 2 3 4 5 6 7 8 9110
11 1 1 33 4 119 1113 1116
10 } 15 | 11 | 11 2 | 22 114 |11 3

6 {10 | 22 | 10 { 20 6 1 7 3115

3 (12124 |4 12 | 18 3113 4 7
10 | 17 [ 19 | 11 4 91 11 7 9 3

5 7117 { 10 | 30 2 9 4 8 8

7] 16 6 @ |12 | 11 | 24 5] 14 5

2 117 )18 | 12 8 6 7112 5 10

7 120} 13 6 9 31148 14 6

3117 119 8 7 7 111 110 | 10 8
11 { 13| 17 4 7 6 81 17 9 8

5110} 10 g 6130 8 6 | 10 6

6 7417 111 4 6 | 22 8 | 16 3
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FIGURE 3.4
DISTRIBUTION OF PAA-SELECTED PREDICTOR VARIABLES

Rondom Data System, 180 Replicotions
Chi-Square Statistic

1

T T P T

R AT TR A T T

NOTES: 1) Eoch set of bars represents c node In the PAA tree.
2> Each vertical bar represents the relotive frequency

of selection for each predictor varliable.
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Notice that each variable was selected at Teast once as the best predictor of
the criterion; the predictor variable with the largest 'population' Chi-square
value was selected most frequently, but only 33% of the time.

Conclusions. Consideration of the results of the analysis of this random
data system shows that it is possible (and indeed quite Tikely) for numerous
'chance’ relationships to be selected by a PAA procedure. Theoretically, we

Xpect on average that, for an alpha of 3.5, one in twenty contingency tables
would be falsely identified as representing significant
association/predictability in the population. For a PAA carried to five levels,
there are 63 2x2 tables -- an average of three of which would be significant by
chance alone. Simple methods for dealing with this problem are not available;
one ad hoc approach would be to use the combination of both a probabilistic
cutoff criterion for the statistic and a minimum size critericn for either the
2x2 cell or marginal frequencies.

Most likely the presence of this kind of background noise would not have
pronounced effects at the early levels of a PAA of real data. Systematic
relationships would be expected to exhibit strong enough association/prediction
measures to be selected. But a few Tevels into the analysis, where strong
effects have already been extracted and predictor-criterion tables begin to have
similar statistical values, this effect becomes potentially a serious problem.
The higher in the PAA tree this occurs, the more disruptive the net effect on
the overall analysis.

The bootstrap replications conducted for this data system give an
indication of just how tenuous the selection is for predictors in a noisy
system. The strongest overall effect has borderline statistical significance
(if we accept this sample as a 'population'), but it replicates over only one
third of the samples. Proceeding farther down the PAA tree, the distribution of
selected predictor variables (Figure 3.4) becomes even more uniform across
samples.
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0BTS Probation-Eligible Data

Objectives. Aside from the theoretical and simulation-based arguments
presented, one might conjecture that there remains for some researchers the
question of whether the PAA approach might still 'work' (in the very broadest
sense of the word) for some empirical criminal justice data systems. We ask:
Can useful information, which is trustworthy, be extracted from a Predictive
Attribute Analysis of real criminal justice data?

To address this question, we conducted a series of analyses on data
considered to represent a typical research application for the PAA method. We
selected a 'Probation-Eligible' subset of the 1980 NYS Offender-Based-
Transaction-Statistics database’ ("PROB8@") for study. These data were
considered to be representative of the kind generally used by criminal justice
researchers; additionally, some of the relationships present in the pata system

were known from prior analytic work.8

We examined the results of a number of population and validation PAAs on
these data, looking at (1) issues of replicability and the implications for
statements of confidence appropriate to results, and (2) combinations of
parameter specifications providing the most meaningful results (based on our
understanding of the relationships existing within the data). In particular, we
looked at both the sequence of selected predictor variables and the individuals
comprising the terminal subgroups defined by the analysis. Ry looking at the
membership of the terminal subgroups, we hoped to be able to assess whether,
aside from the issues of model identification and variable-selection sequence,
the individuals categorized as a .resuit of the analysis were a meaningful and
reliably-clustered group on which policy decisions might be appropriately

based.

Procedure. A total of 7813 records for cases categorized as probation-
eligible were drawn from the 1980 NYS OBTS database for two regions of New York
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11
12
13
14

VAR
Name

SEX
BAD@
BAD@1
BAD@12
CLASD
CLASABC
PERS
PROP
DRUG
DOWN@
DOWN@1
AGERISK
BLACK
INCARC

_ TABLE 3.5
Description of PROB8#® Measures

VAR
Type

Sex

Prior .
Prior
Prior
Serious
Serious
Type

Type

Type
Degradation
Degradation
Age y
Race

(Dep Measure)

Description
Sex of offender [@=F, 1=M]

Prior criminal history: any

[P=No, l=Yes]

Prior criminal history: moderate
[@=No, l=Yes]

Prior criminal history: substantial
[@#=No, l=Yes]

Class D offense [@=No, 1=Yes]

Class A, B, C offenses [@=No, l=Yes]
Person crime [@=No, 1=Yes]

Property crime [@=No, 1=Yes]

Drug crime [@=No, 1l=Yes]

Charge reduced more than one class
[@=No, l=Yes]

Charge reduced one class [@=No, 1=Yes]
Offender age between 2@ and 3¢ [g=No,
1=Yes]

Offender was Black [@=No, 1l=Yes]

Offender Incarceration [@=No, l=Yes]
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State: 6078 for New York City (5 borougyhs) and 1735 for NYC suburban counties.
The variables chosen for analysis (Table 3.5) were among those used in prior
studies of incarceration predictability. The measures included individual-level
attributes of age, sex, race, and prior criminal history, as well as offense-
level characteristics such as type and sericusness of crime. The criterion to
be predicted was whether or not the individual was incarcerated. Variables not
already coded as binary data were dichotomized, principally on the basis of the
meaning attached to various ranges of the categorical and continuous measures
but with some consideration given to the empirical distributions.

As with the previous data systems, a 'population' analysis was run on the
original data for each of the four statistical coefficients; this was done
separately for the New York City and the NYC Suburban regions. Selected PAA
trees are presented in Figures 3.5 (NYC, Chi-square), Figure 3.6 (NYC, Lambda),
Figure 3.7 (suburban, Chi-square), and Figure 3.8 (suburban, Lambda). This set
of population analyses was again the standard to which bootstrap replications
were compared. In general, the strategy was to conduct a set of 100 resamplings
for each of the four statistical criteria for both regions; the processing was
limited to a depth of four levels (16 terminal subgroups) where population-
sample terminal subgroup comparisons were made. In addition to the results
reported directly here (through Tables and Figures), a number of analyses that
were either partial or extended versions of the ones reported were run to insure
that conclusions being drawn were appropriate.

We wished here to have a more formal means of evaluating the information
provided by the resampling replications with regard to the terminal
subgroups delineated by the analysis. A supplementary computer program was
written to compare the case membership of the terminal subgroups selected by the
population analysis to the terminal subgroups selected by each of the bootstrap
replications. Phi coefficients were calculated for all population-sample
comparisons and averaged across the 100 replications to provide (1) an index of
the goodness-of-fit for the samples to the population and (2) and indication of
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BAD@12
58.0
prior

BLACK (PROP)
9.1 (8.7)
race (type)

Note: Information at each node is in the format:

FIGURE 3.5

'"Population' Analysis for PROB8§ Data
NYC, Statistic = Chi-Square

BADQ (BAD@L)
867.1 (805.3)
prior {(prior)

BAD@1 (BAD@12)
183.4 (138.5)
prior (prior)

CLASD

14.4

serious
CLASD SEX SEX
17.6 3.6 3.7
serious sex sex

VARIABLE (RUNNER-UP)
stat val (stat val)
info type (info type)

CLASD
23.8
serious
CLASABC DOWN@1
14.5 9.4
serious degradation
SEX -——— SEX -——
6.8 6.1
sex sex

Runner-up predictors are given only when they have very similar stat
values to the selected predictor.
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FIGURE 3.6
'Population' Analysis for PROB8@ Data
NYC, Statistic = Lambda

BAD@1
.205
prior
AGERISK CLASD
P30
age
-CLASD BLACK BAD@L
825 @29 .GZ?

. serious race prior
PROP -- CLASD -- -- BLACK
.g8l .008 938
type serious race

Note: Information at each node is in the format:
VARIABLE (RUNNER-UP)
stat val (stat val)
info type (info type)

L1083
serious (prior)

(BAD®)
(.095)

BAD®
11
prior

Runner-up predictors are given only wheu they have very similar stat

values to the selected predictor.
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PERS
(32.2)

type

DOWNG1
(4.5)
degradation

Note: Information at each node is in the format: ;
VARIABLE (RUNNER-UP)
§tat val (stat val)
info type (info type)

Runner-up predictors are given only when they have very simi s
values to the selected predictor. Y y.similar stat

e ————— S W2

. ) FIGURE 3.7
Population' Analysis for PROB8J Data
NYC-Suburban, Statistic = Chi-Square

BAD@1
(181.1)
prior
PROP
P DOWNG1
(%3.6) (24.g)
type degradation
BAD@1 -- SE
(17.6) (8?9)
prior sex
SEX BLACK BLACK -- -- PERS
(5.3) (8.2) (6.7) (7.9) %g?g?
sex race race type degradation
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FIGURE 3.8
'Population' Analysis for PROB8@ Data
NYC-Suburban, Statistic = Lambda

BAD(
(.151)
prior
DOWN® ' PROP
(.933) (.933)
degradation type

BAD@1 CLASD - -
877 .167
prior serious
-- - BLACK - - - -- --
(.951)
race

Note: Information at each node is in the format:
VARIABLE (RUNNER-UP)
stat val (stat val)
info type (info type)

Runner-up predictors are given only when they have very similar stat
values to the selected predictor.
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variability across the set of sample analyses. Figure 3.9 illustrates this
process.

Observations. We discuss here only the analyses for the New York City
data; specific results for the two regions were generally different (as
anticipated), but the conclusions drawn regarding the PAA method itself were
equivalent. We begin with the series of population analyses.

for the analysis using the Chi-Square statistic as the predictor-selection
criterion, a probability-based termimation criterion (alpha = 0.05) was used.
Figure 3.5 displays the PAA tree for the analysis, conducted to a maximum of
four levels for each branch. At nodes where alternative measures were close
runners-up to the selected variable, they are noted in parentheses.

The initial split was based on the BAD@ measure (a measure of prior
criminal history) with the BAD@Ll measure being a relatively close runner-up
(Chi-square of 867. versus 805.). Of interest is the far left branch of the
tree: [BADP->BADP1->BAR@L12->BLACK]. Although these four measures are highly
correlated, they are successively selected in a branch that might be thought of
as a progressively-more-incriminating characterization.

For the analysis using Phi as the predictor-selection criterion, results
were the same as the Chi-square analysis except where branch processing was
allowed to continue beyond the point where the Chi-square minimum terminated the
analysis (a less-restrictive minimum statistic was used here).

For the analysis using the Uncertainty coefficient, results were the same
as for the Chi-square/Phi analyses through the third level of processing. The
far left branch [BAD@->BAD@1->BAD@12->PROP] did not precisely replicate the Chi-
square results described previously; it would, however, be speculation to
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FIGURE 3.9
Procedure for Comparing Population and Sample
Subgroup Membersip

Comparison Table
for Each Terminal Group
of the PAA:

SAMPLE CASES

Where:

POPULATION CASES
Absent Present
from &roup in Group

Absent
From A B
Group

Present
in C D
Group

N

A and D indicate corresponding c1a§sifjcations
B and C indicate differing classifications
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attempt substantive explanations for the points of divergence found at the nodes
in the fourth level.

For the analysis using the Lambda coefficient, results were entirely
different from the above three analyses (see Figure 3.6). Recall, of course,
that Lambda measures improvement in predictability -- not simply predictability.
The first split was based on BAD@1 rather than BAD@, and the left-hand branch
proceeds [BAD@l->AGERISK->CLASD->PROP] rather than [BAD@->BAD@1->BAD@12->
BLACK]. Sex, which appeared quite frequently in the third level of the previcus
three analyses, did not appear at all here. Race appeared much more frequently
for the Lambda-based PAA than the other analyses.

For the bootstrap validation series of analyses, 100 replications of the

population PAA for each statistical criterion were run. Results are discussed
in terms of (1) replication of predictor variable sequences in the PAA tree, and
(2) replication of subgroup membership.

In brief, the PAA tree structures did not replicate well beyond the first
level. For NYC data, Tables 3.6 through 3.8 present the distribution of
predictors selected at each node of the analysis for Chi-Square, Uncertainty,
and Lambda coefficients. Figures 3.1, 3.11, and 3.12 correspond to these
tables and illustrate graphically how the results at successive nodes of a
particular branch become less and less reliable. (A perfectly-replicated PAA
would, tor example, have only one bar for each node.) These representations
require careful study to determine the source of dispersion at each node,
however, since the variables selected at each node are conditional on the
variables selected at the previous decision point, and hence the counts at lower
levels for any particular variable can be the by-product of a number of
different paths. The end result, however, seems to be a tendency toward a
more uniform distribution of predictors as one proceeds down the PAA tree.

With regard to the stability of subgroup membership across samples, there Q
were three general questions: (1} what statements can be made about the global
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TABLE 3.6 s,
Simulation Analysis for PROB8@ Data G
Region = NYC Statistic = Chi-Square
1P@ Replications o,
(Entries are Frequencies that Each Predictor was Selected at Each Node)

TABLE 3.7
Simulation Analysis for PROB8#J Data
Region = NYC Statistic = Uncertainty
) 100 Replications
(Entries are Frequencies that Each Predictor was Selected at Each Node)

Variable Number

VARIABLE NUMBER

Node 1 2 3 4 5 6 7 8 9110 11 | 12 | 13 ur?, — NODE 1 2 3 4 5 6 7 8 9110|111} 12 | 13
Level=@ 1 100 S Level=@ 1 100
Levei=l 2 100 "'“s T Level=l 2 100
3 100 Jo- 3 100
Level=2 4 | 10 2 57| 3| 4 24 — — Level=2 4 | 3 2 65 6
5 | 2 89 1 8 P 5 |1 o 5 . |2
6 5 37 58 o 6 5 37 58
7 59 11 2 19 5 1 3 — 7 64 10 2 18 2 1 3
(
Level=3 8 |11 52 2 {11 2 2 4 16 I - Level=3 8 6 59 4 | 13 2 1
9 93 1 g 1| 19 | 30 5 3 9 19 2 6 1] 32 23 1% g
10 | 5 9 70| 1 15 —_ 10 | 5 9 71 15
11 18 2 | 4] 52 24 : 11 | 14 1 6 | 49 30
12 52 22 1 2 2 11 13 4 3 ” i 12 53 21 1 2 2 1412 5 3
13 8 6 2 | 11 1] 49 | 13 . 6 4 -— — 13 6 5 2 |11 11501 15 7 3
14 | 5 113 (27|15 2| 1} 7| 6| 6 1 14 | 4 117 {3alaal| 211 71| 5| 5
15 29 36 1 3 3 8 1 4 | 15 - 15 28 37 1 2 3 7 3 4 115
N
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Simulation Analysis for PROB8@ Data
= NYC

Region

10 Replications
(Entries are Frequencies that Each Predictor was Selected at Each Node)

TAB

LE 3.8

Statistic = Lambda

VARIABLE NUMBER

NODES 2 3 4 5 6 7 8 9 {1011 {12 | 13
Level=@ 1 100
Level=l 2 51 23 26
3 3 95 2
Level=2 4 34 51 9
5 1 29
6 12 2 11 47
7 17 1
Level=3 8 3011 26 10 | 50
g 64 11 10 15
10 44
11 5 53 3131
12 70 16 3 9
13 66 3 30
14 3
15 95
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FIGURE 3.12
DISTRIBUTION OF PAA-SELECTED PREDICTOR VARIABLES

PROB8Q Data System, |80 Replications
Chi=Square Stotistic

LLodL
bbb b

NOTES: 1) Each set of bars represents a node In the PAA tree.

2) Eoch vertlical bor represents the relative frequency
of selectlon for each predictor variable.
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FIGURE 3.11
DISTRIBUTION OF PAA~SELECTED PREDICTOR VARIABLES

PROB88 Data System, 108 Replications
Uncertainty Stotistic

LLuL
Lol b

FIGURE 3,12
DISTRIBUTION OF PAA~SELECTED PREDICTOR VARIABLES

PROB88 Dato System, 100 Rep!lications
Lambda Statistic

Al Dl

NOTES: 1) Each set of bars represents a node In the PAA tree.
23 Each vertical bar represents the relative frequency

of selectlion for sach predictor variable.

NOTES: 1) Egeh set of bars represents a rode In the PAA tree,
2) Eoch vertlcal bor represents the rclottive frequency
of selection for each mredictur variable.
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level of sample-population agreement, (2) what is the variability around this
measure of agreement, and (3) are there any meaningful differences in stability
for different predictor-selection statistical criteria? We found that (1) there

TABLE 3.9
1ermjna] Subgroup Analysis for PROB8@ Data
Comparison of PHI Goodness-of-Fit Coefficients
(Population-Sample) For 100 Samples

was generally a poor correspondence between sample and population subgroup
classification - typically less than 50 percent icorrect' classification, (2)
there was considerable variability around this correspondence, generally
becomming more variable (and unreliable) as one progresses to deeper levels of
the analysis, and (3) these results held true regardless of the statistical

criterion used.

Table 3.9 and Figures 3.13-3.15 present the goodness-of-fit coefficients
and respective frequency distributions for each statistical criterion, averaged
across the 198 replications. Looking at the distribution for the Chi-square
criterion (Figure 3.13), one can see that only 8 percent of the sample terminal
subgroups (16 subgroups times 100 replications) contained exactly the same
individuals as the corresponding population terminal subgroups. The median
goodness-of-fit coefficient, which is equivalent here to a correlation
coefficient, is .44; that is, the expected correlation between the membership of
the population and any corresponding sample terminal subgroup is only .44. The
variablity of these measures is high for each of the statistical criteria, as
evidenced by the spread of the distributions and the resulting quartile
statistics +Table 3.9).

Conclusions. Consideration of the series of analyses of the PROB8J data
leads us to conclude that Predictive Attribute Analysis does not have particular
utility when used with ‘real' criminal justice data. PAA tree structures did
not replicate well beyond the initial levels of analysis. Even considering only
terminal subgroup membership, a single PAA cannot be expected to provide a
reliable representation of the groups of individuals who cluster together.

-86-

Chi-Square

Lambda

U Quartile
Median
L Quartile

U Quartile
Median
L Quartile

U Quartile
Median
L Quartile
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NYC
Region

Suburban
Region

.617
.408

.285

.610
.402

. 284

.764
.640

.453

671
.440

.306

739
.499

.377

.671
.362

.232



FREQUENCY OF OCCURRENCE <X>

FIGURE 3.13
PROBS@ SUBGROUP ANALYSIS: CHI-SQUARE STATISTIC

Distribution ¢ Population—Sample Goodness—of-Fit Coefficients

i@

PHI COEFFICIENT

NOTES

Values are from the onalysis of NYC-suburbon data,
108 replications,
statistical criterion = chl-square.
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FREQUENCY OF OCCURRENCE (%)

Dietribution of Population-Sample Goodness—of-Fit Coafficients

18

'
—

FIGURE 3.14
PROB8@ SUBGROUP ANALYSIS: UNCERTAINTY STATISTIC

[ 1 L i i 3 L 5 1 3 ]

g.ee .18 .20 .5 .4 - 58 .69 .74 .68 .90 1.00
PHI COEFFICIENT

NOTES

Values are from the onalysis of NYC-suburbon data,
109 replications,
statistical criterlon = uncertalnty.
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FREQUENCY OF OCCURRENCE (XD

FIGURE 3.1S
PROB82 SUBGROUP ANALYSIS: LAMBDA STATISTIC
Distribution of Population-Sample Goodness—cf-Fit Coefficients

18

| "H
e L Hillll
L [ '} '] 4 ] l‘ 1 1 1 - |

8.08 .10 .28 .39 .48 .58 .59 .70 .69 .90 (.00
PHX COEFFICIENT

NOTES

Values are from the onalynis of NYC-suburban dota,
189 replicotions,
stotistical criterion = |ambda
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Footnotes

lye use this acronym primarily to allow us to easily distinguish the
computer program from the analytical technique which it implements, secondarily
to emphasize the evaluation capabilities of the program.

2Even at one page per aode, a 4-level analysis with 100 replications can
generate 320@+ pages of output; with four statistical criteria, 12,800+ pages.

3These are documented in the User's Guide and the internal program
documentation.

4The program has also been compiled and run on the SPERRY 1108/83 using
ASCII FORTRAN.

5Program dimensions are easy to modify. See the User's Guide for
discussion.

51nitia1]y, we expected to re-analyze some of the data systems discussed in
this report contaminated with various percentages of randomly-distributed error
(perhaps 5%, 10%, 20%). Because of our findings of poor-reproducability from
the original analyses, however, we doubted the utility of much further effort
toward documenting subtleties of PAA performance.

TFor a more complete description of this database than will be presented
here, refer to New York State Criminal Justice Processing: Felony Offenders
Disposed in 1984, 3 Vol., Harig, Thomas, Division of Criminal Justice Services,

OPARSS, (1983).

8Frederick, Bruce C. and Sherwood E. Zimmerman. Discrimination and the
Decision to Incarcerate, (Albany, NY) Division of Criminal Justice Services,

OPARSS, (1983).

-91-



L e A SR A B S

w—

et

- T
b

— T
e

- FE
<iati

- T
Lt

— T
it

TR W

T, W
e

TR

_ B Preceding page blank

IV
CONCLUSIONS AND RECOMMENDATIONS



A A S

CONCLUSIONS AND RECOMMENDATIONS

This chapter presents a brief recapitulation of the findings detailed in
the other sections of this report. Recommendations are based on the discussions
contained in this Technical Report as well as our own experiences in using the
PAA method. We attempt to provide generalizations which are germaine to
practical applications of PAA in criminal justice research problems.

Appropriate Applications for PAA

The proper design of a PAA requires a prior knowledge of some of the
characteristics of the data system under study.  The proper interpretation of
the results of a PAA requires efforts toward the validation of initial findings.
Therefore, a PAA should not be the first step in the analysis of a complex data
system, nor should it be the last.

Predictive Attribute Analysis is not appropriate for model-development
applications. This is contrary to popular perception and usage. It is the case
regardless of whether the application is exploratory or confirmatory in nature.
Because a PAA cannot, in principle, distinguish between a main effect and an
interaction effect, it is incorrect to presume that one has uncovered a complex
{yet significant) interaction effect defined by the sequence of variables
selected at the nodes along a particular PAA branch. The PAA algorithm simply
detects the series of strongest main effects (which may or may not be components
of higher-order interaction terms) that are conditional on the defining
characteristics of the subgroups found at the particular nodes of the analysis.
Thus, in either exploratory or confirmatory types of analysis, one cannot be
certain as to the particular model that is most appropriate to the data.
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Predictive Attribute Analysis is perhaps best used as a somewhat

serendipitous pre-forma17ana]ysis data description technique. As such, the

analysis is used as an exploratory tool to suggest ef

which might not have previously occurred to the analyst. Any hypotheses

resu

1ting from this exploratory activity, however, require validation by

jndependent means.

expl
haph

parameters to guide the processing within a PAA.
information resulting from any analysis, even exp

Choice of a PAA Design

fects and relationships

Although we have suggested that the method may be appropriately used ir an

oratory manner, that is not to say that we have recommended its use in a

azard manner. If the use of a Predictive Attribute Analysis has been deemed
appropriate, there are jmportant considerations in the selection of the

precision of the questions asked beforehand.

evidence as possible when addressing particular research

As a general approach, we suggest the accumulation of as much prior

e ety

social science models suggested by post hoc deduction seldom replicate

questions; complex

The interpretability of the
loratory, is a function of the

convincingly. The development of a useful prediction model should be expected

to requir
analysis strategy for validating true effects and for rejectin

alternative explanations.

parameters supplied to a Predictive Attribute Analysis.

Some prior theory, however complete, should guide the specification of

e jteration, and a hypothesis-based approach provides a good sequen
g competing

among these parameter-specification considerations are the
used to measure predictive power, the stoppin
which the results of the analy
conclusions draw

whe

tial

Especially important
statistical criterion

ther a measure of association (or a measure of predictabi]ity) was u
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sed.

g criteria used, and the depth at
sis are to be considered acceptably valid. The
n from particular PAAs vere shown differ markedly depending on

o In assembling the set of predictor variables to be used in an analysis, it
is important to remember that the PAA method is not a multivariate procedure
where interrelationships among the predictor variables are explicitly
controlled. The pattern of predictor variable selection as well as the final
subgroup definitions are a function of the interrelationships of the prediction
measures. This characteristic must be kept in mind, lest one particular

'factor,' by virtue of a relative over-representation in the set of predictors,
appear inordinately influential. Conversely, the exclusion of .a demonstrably
good predictor can seemingly elevate the importance of less effective
predictors. We suggest that at least one of the ancillary statistical

techniques used in conjunction with the PAA should focus on interrelationships
among the variables in the data system.

Interpretation of Results

The PAA method has observed instability with respect to replication across
samples drawn from a particular population data system. This is true for both
the branching pattern of predictor variables and for the particular individuals
comprising the membership of the terminal subgroups.

Analysts should, therefore, exercise caution when determining the depth of
the analysis at which results are to be reported. While appropriately
conservative stopping criteria may be of some use in this regard, they typically
do not provide either definitive or statistically-interpretable bounds. The
bootstrap resampling capabilities provided by the computer program provide
valuable information for such decisions, and their use is strongly encouraged.

Since we classify PAA as an exploratory type of method, we caution analysts
to conscienciously examine alternative hypotheses when using the method. An
everpresent consideration is whether or not unrepresented effects are a
significant underlying influence behind the observations that are the focus of
analysis. A PAA should be regarded as only one component of a comprehensive
analytic strategy, typically incprporating several statistical techniques, which

attempts to converge on a proper interpretation,
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Summary

A Predictive Attribute Analysis, as a cautiously conducted and properly
interpreted component of a well-planned and thorough research design, may
provide useful information to the criminal justice data analyst. Its inherent

~ limitations, however, argue against casual use and informal interpretation.

Research conclusions which are based on the results of a Predictive Attribute
Analysis should always be accompanied by additional supporting evidence.
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S 0.020 S 40. 66. 37.7 62.3
6 2.323 6 102. be 96.2 3.8
7 1.608 7 39 67 36,8 63.2
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10 0.000 10 106. 0. 100.0 0.0
11 0.000 11 106. O. 100.0 0.0
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12 0.093 12 169. 86. 66.3 33.7
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cemeeef R E QU ENCIE S .. cememb B R C ENT AGE S .
‘CRITERION #14 : CRITERION #14
== - =-Q=- -1 =
P ED T R “y- Y 17. 77. PR T R =0~ 2 - ‘5.9 9.‘
RPOISTOR 2T 5% i g WISTOR 2T 23 433 626
764, 181. 255. 29.0 71.0 100.0

<PREDICYIVE ATTRIBUTE ANALYSIS> CVERS:84402><NYS+DCJS>

ittt****tttt*ﬁ*t*it'tti*t***ttt***ﬁt****tt***t**********i****t****titt*i*ttttt
PROBS8O : POPULATION ANALYSTIS
- . {
REGION=NYC=-SUBS STATISTIC=CHISQ RUNDATE=1/29/84

LA 2222 YT
*ﬁ******itﬁtﬁ*t*****!*ttiit*tﬁ****i**ﬁ*kﬁiﬁ**ﬁ**ﬁ*it*ti*it**i****tt*

=--SONTINGENCY TAaLE aNALYSIS , LEVEL: 3 gRoup: 7
INDEP -
DREE srarus g?ir??r:c Inpee _SUBGROUP_ COMPOSITION,
1 .000 y 69. « 100.0 0
¢ §I§08 2 0. 63. 0-0 10028
4 0.000 i 8' 23' 8'8 388'8
1.617 5 . . . .
s 1.617 51. 18+ 73.9  26.1
§ 4.638 6 64n 5. 92.8 7.2
7 §:957 7 60, 3. 87.0 13.0
§ 3:041 g 16. 53. 23.2 74.8
L ] 62. 7' . 89. -
Bl A O 1
0.828 12 48. 21, . .
13 4.066 13 43. 26. 23:% 39:3
CONTINGENCY TA '
====:==========l=g§5=:gégl§£§========================gsggg:=g==ggggg‘:—--Z ------
—eeeFREQUENCIES PERCENTAGES
CRITERION #14 . CRITERION #14
—0- -1- -o— -1-
PREDICTOR =-0- 50. 10. 60. -Q=
S A RITOR T TR g fg
S4. 1s. 69. 78.3 21.7  100.0



<PREDICTIVE ATTRIBUTE ANALYSIS> <VERS:84.02><NYS*DCJS>

TR R L R T R PR R L 2
PROBSB8O : POPULATTION ANALYSTIS
REGION=NYC-SUBS STATISTIC=CHISQ RUNDATE=1/29/84

I EE22 2223232222223 2 322 22 222X 2222222322223 2832322232222 2232222222 ds)

PROBS8O : POPULATION

ANALYSTIS
REGION=NYC-SUBS STATISTIC=CHISQ

RUNDATE=1/29/84

___CONTINGENCY TABLE ANALYSIS LEVEL= 3_GROUP= 8§
T e e e P A A PROCE
S==== ============§=g=§=2=g===l=§=5=g===:=g=§===:=§-§-9-£-£_I-9_R S
INDEP CHI-SQ INDEP SUBGROUP, COMPOSITION -
VAR # ETATUS STATISTIC VAR # Q- 1= :EO' __'51:
1 0.000 1 0. 473, 0.0 100.0
2 0.000 2 De. 473. 0.0 100.0
3 0.000 3 (V) 473, 0.0 100.0
4 0.000 &4 Q. 473, 0.0 100.0
5 1570 b 308. 165. 65.1 34,9
6 3.843 6 620, 53. 88.8 11.2
7 3.879 7 366, 107. 7T7.4 22.6
8 0.007 8 197. 276. 1.6 58.4
9 0.838 9 43S. 38. 92.0 8.0
10 5.178 10 280, 192, 9.2 40,8
11 0.000 11 O 473, 0.0 100.0 2
12 0.441 12 b4 . 109. 77.0 23.0
13 0.169 13 349, 124, 73.8 26.2 8
11
7 3 _ ;
CONTINGENCY TABLE ANALYSIS LEVEL= 3 GROUP= 8 11 1 ' |
===============================3=======3===3========3=3====3=================== 13 13 - - 7 10
o, FREQUENCIES oo P ERCENTAGES
CRITERION ¥#14 CRITERION #14
‘ -0— -1- -0- -l=
PREDICTOR =Q~- 155. ° 125. 80. PREDICTOR =Q~- .8 - b 9
# 10 -?- 127 66. %93- [ *0 '?- %%-8 %2.0 20.%

282. 191. 473, ) 59.6 40.4 100.0
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