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INTRODUCTION AND BACKGROUND 

Purpose 

The purpose of this Technical Report is to provide criminal justice 
researchers with a better understanding of Predictive Attribute Analysis. We 
have found PAA to be a method encumbered by complex statistical undercurrents 
that are veiled by the simplistic tree diagrams and subgroup categorizations 
that result from an analysis. To the extent that users of methods like PAA 
become aware of these issues, however, the interpretations drawn can be 
substantially improved. 

The characteristics of PAA are examined in this report by (1) considering 
explicit and implicit analytic assumptions and their implications, and by (2) 
conducting a series of empirical studies using PAA methods with both real and 
artificial data systems. A computer program has been developed to facilitate 
the conduct and evaluation of PAA studies. At the conclusion of the report we 
present some suggestions for appropriate research applications of PAA. 

Scope of the Project 

This project1 originated as a consequence of validity and reliability 
questions that arose from the use of the Predictive Attribute Analysis method by 
our agency. The primary objectives were (first) to develop for ourselves a 
clear understanding of the Predictive Attribute Analysis method, (second) to use 
this background to build a flexible computer program with which reseachers could 
both conduct an analysis and have a sense of the confidence appropriate to the 
results, and (third) to produce a comprehensive report detailing these 
activities. 

The Technical Report for the project provides a description of the PAA 
methoQ and a disGussion of important methodological issues which baar on its 
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use. Readers of the report are expected to have at least an intermediate-level 
background in statistics, but an attempt has been made throughout the report to 
supply appropriate references for readers not familiar with particular topics. 
Potential use~s of the computer program produced by the project are strongly 
encouraged to read the entire report before attempting to use PAA in substantive 

applications. 

The contents of this Technical Report include: (1) a description of the 
features of the Predictive Attribute Analysis method, (2) a review of some 
published applications and evaluations of PAA, (3) a statement of methodological 
issues affecting the use and interpretations of PAA, (4) a discussion of 
statistical issues relevant to an understanding of these methodological issues, 
(5) a description of the PAAVE computer program, (6) a discussion of a series of 
simulation analyses performed to investigate remaining questions about PAA, and 
(7) a summary statement providing conclusions and recommendations concerning the 
proper use of Predictive Attribute Analysis. 

The computer pr2gram was written not only to provide a means for the 
computational processing of a PAA, but also as a vehicle through which to study 
some of the issues which have been found to affect the validity and reliability 
of PAA results. Requisite·computational features discussed in the PAA 
literature, as well as features deemed useful from our present investigation of 
the method, form the basis of the program. Where theory-based answers to 
questions about the credibility of an analysis are not easily provided, we have 
tried to provide appropriate empirical feedback through the program. 

One of the most interesting and novel features of the program was not a 
part of the original conceptualization. Because of our concern for the 
potential variety of causes of instability within the analysis of a particular 
data system, it became clear midway through the project that some means would be 
necessary to evaluate the strength of such effects. Our solution -- bootstrap 
resampling -- provided such valuable insights for our own applications that we 
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decided to automate and incorporate this cross-validation capability directly 
into the version of the program we created for general distribution. 

The program is intended for use by researchers who are familiar with 
Predictive Attribute Analysis. As such, the program does not necessarily 
prohibit some of the procedures or applications that We will caution against in 
this report. We urge potential. program users to read this report thoroughly 
before using the PAAVE computer program for serious analytic work. 

The User's Guide provides a detailed description of the various functions 
incorporated into the PAAVE computer program. Guidelines for the operation of 
the program and examples illustrating different parameter specifications are 
presented. The Guide is intended to be used in conjunction with this report, as 
it contains little discussion of the logical, methodological, or statistical 
issues to be presented here. A complete FORTRAN program listing with internal 
documentation is included, as well as examples of program output. 

Predictive Attribute Analysis 

Predictive Attribute Analysis is a quasi-statistical technique for the 
sequential subdivision of groups on the basis of characteri~tics of those groups 
that predict a criterion attribute well. 

Briefly, PAA processing proceeds as follow: Given a set of predictor 
variables for a criterion of interest, the analysis begins by selecting a best 
predictor attribute for the criterion variable. The total group is then divided 
into subgroups on the basis of the presence or absence of this predictor 
attribute. The analysis then proceeds to find the best predictor attribute 
within each of the subgroups and to define new subgroups at this level, 
continuing in this manner until specified stopping criteria are met. 

The PAA method has often been used to explore interaction effects among a 
given set of predictor variables, as well as to define characteristics of 
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important subgroups of a particular population. Results are usually summarized 
in the form of a PAA 'tree' (dendograph), where branches represent the sequence 
of sub-categorizations and where nodes show the particular attributes found to 
best predict the criterion. For example, the observed rate for an 
incarcerate/not-incarcerate decision might be expected to differ depending on 
the race, sex, and prior-history characteristics of individuals; a PAA might be 
used to see if particular combinations of these attributes have especially high 
or low incarceration rates. 

Characteristics of the particular subgroups might then be studied further, 
or a prediction table or equation might be constructed. Because a PAA provides 
a logical decision process for selecting predictors, the (laborious) alternative 
of examining all possible combinations of contingency tables is avoided. 

The PAA technique is often used to highlight the interaction between the 
relative usefulness of prediction information and the subgroup membership of an 
individual -- an analysis typically yields a different succession of predictor 
variables for each different subgroup. 

Predictive Attribute Analysis is one of the class of categorical data 
analysis methods which derive from the mechanization of a set of decision rules 
rather than from the implementation of a formal statistical argument. More 
generally, PAA can be viewed as one of the many prediction methods intended for 
use with restricted-value dependent measures. The PAA method has been 
considered useful by some practitioners because it is a relatively efficient 
automation of an otherwise complex and cumbersome decision process. 

Statistical considerations are a secondary aspect of the PAA prediction 
process. They provide the means for the selection of particular variables at 
particular decision points, but they are pointwise to the extent that 
information on either horizontal or vertical planes of the analysis is not 
incorporated into the decision. For instance, the selection of a predictor 
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attribute for a given subgroup is not affected by that variable'S correlation 
with any previ ously-sel ected predi ctors for that I'M branch. One consequence of 
this limited depth of field is the poor reproducability of PAA results which has 
been observed, but PAA is certainly not alone among prediction methods in 
exhibiting a characteristic of poor reproducability. 

Example of the PAA Method 

Predictive Attribute Analysis is perhaps best introduced through a 
simplified example: Suppose one is interested in answering questions about the 
relation of violent and property crimes to certain known characteristics of 
large metropolitan areas. Information is available for ten such areas (courtesy 
of the 1982 Information Please Almanac) regarding the following characteristics: 
number of violent crimes reported, metropolitan population, number of law 
enforcement officers, change in number of officers since the previous year, and 
won/lost percentage for that area's National Football League franchise (Table 
lola) • 

We have chosen for this example to do a Predictive Attribute Analysis in 
order to 1) find characteristics of an area which best predict crime rate, and 
2) see if there are meaningful combinations of characteristics having markedly 
low or high predicted crime rates. Note that our illustrative analysis is 
exploratory in the sense that we are stating no hypotheses prior to examining 
the data. 

Given our stated research questions and available data, we proceed with the 
PAA method. The steps to be followed in this example are outlined in Table 
1. 2. 

As a type of 'attribute' analysis, PAA requires that all measures be 
dichotomous -- coded as the presence or absence of the characteristic. For the 
purpose of this example we choose simply to use a mean split on all variables 
(although, in general, justification would be required for such a choice, since 
the cutpoints for binary splits do affect PAA outcomes). Table l.lb displays 
the recoded data. 
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TABLE 1. la 

Raw Data for PAA Example 

Population Law Enforcement Change in Football 
(x 1~(a0) Officers Number of LEOs Percentage 

7(a71 28012 - 4.9 .25(a 

3005 15242 - 6.4 .438 

2967 8998 - 6.7 .688 

1688 8748 - 5.5 .750 

1594 3831 - 1.1 .688 

1203 5613 -11.9 .563 

904 2593 0.7 .75~ 

787 3726 - 4.8 .438 

679 2121 12.5 .375 

638 4583 - 1.5 .375 

TABLE 1. lb 

Dichotomized Data for PAA Example 

POP LEO CHG FTB VIO 

1 0 ~ 1 

1 ~ 1 0 

(a 1 1 

13 ~ 1 0 

0 ~ 1 1 (a 

0 f/J ~ 1 1 

0 f/J 1 13 ~ 

f/J ~ 13 ~ 1 

0 ~ 1 ~ 1 

0 ~ 1 ~ 1 
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V'iolent Property 
Crimes Crime 

1862 6874 

9(a9 5192 

1515 7518 

827 3872 

878 7874 

167(a 7125 

1298 9330 

1963 7361 

1675 9057 

16~9 6993 

PRO 

0 

~ 

1 

~ 

1 

1 

1 

1 

1 

~ 

TABLE 1.2 

Steps Comprising a Predictive Attribute Analysis. 

~ - Determine research questions, assemble data, etc. 

1 - Dichotomize variables 

2 - Determine parameters to control PAA processing algorithm 

3 - Construct 2x2 contingency tables for each combination of (dep var) x (indep 
var) 

4 Select the best (indep var) predictor of the (dep var) by the a priori 
statistical criterion 

5 - Split the sample observations into two subgroups based on the two categories 
of this selected predictor 

6 - Construct two sets of 2x2 tables 
(remaining indep vars) 

(one for each subgroup) for (dep var) x 

7 - Select, for each subgroup, the best predictor from the (remaining i ndep vars) 
8 - Split each subgroup into two further subgroups based on the four possible 

categories of the two selected predictor variables in each branch 

9 - Proceed as above until specified stopping rriteria for the analys~s are met 
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Next one must select the parameters that control the execution of the PAA 
algorithm. Of primary importance is the statistical criterion used to measure 
relative predictability; the results of a PAA can be quite different depending 
on the type of predictive or associative relationship being measured. For now 
we somewhat arbitrarily choose the chi-square statistic, although in general an 

explicit rationale would be required. 

Other parameters must also be supplied to determine at what point the 
analysis will terminate. These can be in the form of statistical significance 
tests (for the chi-square values), or they can be minimum cell or marginal 
counts for the individual contingency tables. Because of the artificial nature 
and small sample size for this example, we choose simply to let the analysis 
proceed through two levels and then terminate. 

At this point we begin the first level of the analysis. First, 2x2 
contingency tables are constructed for each pairing of the criterion (dependent) 
variable (VIO) with the four predictor (independent) variabies (POP, LEO, CHG, 
FTB). Chi-square statistics are then calculated for each of the four tables. 
These tables and statistics are presented in Figure 1.la. As can be seen, the 
chi-square statistic for the FTB variable is the largest, so FTB is chosen as 
the overall best predictor for number of violent crimes. 

Next we divide the ten metropolitan areas into two subgroups based on each 
area's FTB characteristic; there are five areas with values of zero (losing 
seasons) and five areas with ~alues of one (winning seasons). We then repeat 
the process of contingency table construction for each of the subgroups by 
generating 2x2 tables for each of the three remaining predictor/criterion 
combinations and then calculating the appropriate chi-square statistics (see 
Figure 1.1b). At this second level, given FTB=~, both POP and LEO are equally­
best predictors. Given FTB=l, CHG is the best predictor. 

Since we have reached our prespecified stopping criterion of two levels, we 
terminate the analysis at this point. 
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Via 
Crime 
~ 1 

~ [ffiJ POP 
1 1 2 

Chi-Square=.~8 

FTB={3 

FTB=l 

FIGURE 1.la 

Contingency Tables for PAIl Examp 1 e 
Level ~: Original Tables 

Vio Vio Via 
Crime Crime Crime 
~ 1 ~ 1 ~ 1 

~ [ffiJ " 

[: I ; I ~[ffiJ \: 

LEO CHG FTB 
1 2 2 <. 132 J. 

Chi-Square=.28 Chi-Square=.28 Chi-Square=1.9 

FIGURE 1.1b 

Contingency Tables for PAA Example 
Levell: Conditional on Val ue of FTB 

Vio Vio Via 
Crime Crime Crime 
(.J 1 (.J 1 ~ 1 

~ tHE (.J 

tHE ~ tffij POP LEO CHG 
1 1 1 1 1 1 1 

1 4 1 4 1 4 
Chi-Square=1.88 Chi-Square=1.88 Chi-Square=.56 

Vio Via Vio 
Crime Cri'me Crime 
(.J 1 (.J 1 ~ 1 

0 BIB ~ffiB ~[ffiJ POP LEO CHG 
1 o 1 111 1 2 0 

3 2 3 2 3 2 .. 
Chi-Square=2.81 Chi-Square=.14 Chi-Square=3.33 
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In reportf.ng the results of the analysis, one would typically say something 
to the effect that "fo~ areas with poor football records, population and number 
of law enf0rcement officers are the most useful predictors of violent crime 
rate, whereas for areas with good football records, relative change in the 
number of law enforcement officers is the most useful predictor of violent crime 
rate." This answers our first research question, and reinforces our use of the 
PM method because of the different combinations of predictors found for the 

different subgroups. 

With respect to our second research question, it is evident from the 
marginals of the second set of contingency tables (Figure 1.lb) that the 
conditional probability of a high number of crimes is different for the four 
terminal subgroups. For areas with poor football records and either small 
populations or small numbers of officers (top row), the probability of a high 
(versus low) number of violent crimes is 1.0; for areas with good football 
records and an increasing number of officers (bottom row), the probability of a 
high number of violent crimes is .00. Again we are pleased with our choice of 
the PAA method, since we can find intuitive support for these different 
expectations for crime frequency given the differing community characteristics. 

We will withhold judgmental comments on the interpretation given for this 
example until we have discussed some of the methodological and statistical 
issues relevant to this type of classification analysis. 

Overview of PAA Literature 

The review of literature accompanying this report is intended to serve as 
an overview of the background and application of the PAA approach and as a 
context for subsequent discussion of some methodologica? and statistical issues. 
We look at PAA from the perspectives of both statistical literature and criminal 
justice applications literature, and we attempt to relate aspects of the method 
to analytical techniques which are most likely familiar to the reader. Becau~e 

of the number of tangential issues that are raised as a result of a careful 
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study of the PAA approach, we encourage readers to consult the references 
cited. 

Predictive Attribute Analysis is one of the class of qualitative data 
analysis techniques that began to appear in the 1960 1 s. The method was 
developed by MacNaughton-Smith (1963, 1965) as an attempt to formalize the ad 
hoc approach for detecting interaction effects in the analysis of multivariate - . 
contingency tables. A number of other dendographic (or "tree") methods were 
also developed at this time, notably the Automatic Interaction Detection (AID) 
family of methods (Sonquist & Morgan, 1964). The AID methods have evolved 
considerably from the original model. See, for example, Morgan & Messang~r 
(1973) for THAID, Perreault & Barksdale (1980) for CHAID, and Breiman et al 
(1984 ) fo r CART. 

An early review of PAA is found in Simonis (1971) monograph. Simonis 
review emphasized applications of prediction methods rather than their 
theoretical or statistical justification. The work is particularly informative 
because comparisons are drawn for a half-dozen different types of association 
and prediction methods, including PAA. 

The validation studies which were conducted for each of the predictive 
techniques Simon considered readily show the difficulty of producing 
generalizable results from any of these types of prediction techniques (given 
the selected data systems under analysis). Predictive power, defined here as 
the Pearson product-moment correlation between predicted and observed outcomes 
for a validation sample, was minimal for all techniques. In summarizing the 
series of studies, Simon concluded "In failing to produce an instrument of high 
power, the study shared the general fate of criminological predictor studies ••• 
(that) although small groups of good or bad risks can be distinguished, for many 
of the cases little discrimination is achieved." Possible explanations which 
were discussed included the omission of potentially important variables and the 
over-simplification caused by the use of dichotomized variables where continuous 
measures are available • 

-11-



-...,.....--- ----------~ --- ----- ----------

Sutton (1978) used the PAA method as one analytical component of a report 
addressing variations in federal criminal sentences, using regression analysis 
as a framework to discuss predictive power and PAA as a framework to discuss 
interaction. Sutton reported poor predictive power with both regression and PAA 
techniques, and he concluded that decisions were affected 1I1 argely on factors 
that were not included in this analysis. 1I Neither the PAA nor regression 
results were cross-validated, however, and Sutton's results should therefore be 
interpreted cautiously. 

Perreault and Barksdale (1980) have approached the attribute analysis 
paradigm from the perspective of marketing research. They discuss the use of 
the original Automatic Interaction Detection (AID) model (Sonquist & Morgan, 
1964) and a modification (Chi-Square Automatic Interaction Detection) which 
provides certain improvements over the original method. The CHAID procedure is 
similar to·the AID procedure in that it is a hierarchial search procedure used 
to identify tested interaction. Unlike the PAA procedures, it does not require 
~ priori dichotomization of all measures. Chi-square tests for predictor 
variables selection are modified to reflect the number of comparisons being made 
at a particular decision point. Perreault and Barksdale were attracted to the 
AID/CHAID procedures because of the non-metric assumpti ons and the abil ity to 
combine binary, nominal, and ordinal levels of information. Noting the problems 
of misuse and misinterpretation that often occur with the use of AID-type 
procedures, they suggest using linear model or logit procedures to cross­
validate the preliminary hypotheses suggested by an AID analysis. 

Research Issues 

No comprehensive and systematic study or evaluation of the PAA method could 
be found in the literature. This is especially unfortunate because of the many 
conjectures and implicit assumptions accompanying most PAA applications. Some 
of these points can be addressed directly through logical and statistical 
arguments, but other issues are more subtle and appear to interrelate with the 
types of data systems under analysis. These research questions form the basis 
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for the set of simulation analyses presented in this report. Besides providing 
very useful insights into the general performance characteristics of PAA, the 
simulations also led to major modifications in the PAAVE computer program to 
provide the user with better feedback regarding the level of confidence 
appropriate to the results of a given analysis. 

Cited Issues 

are 

Predictive Attribute Analysis has some often-cited advantages and 
disadvantages, as well as some unknown characteristics. These have been 
suggested by the applications literature and our own use of the methods and 
summarized in Table 1.3. We have attempted to approach each of these 
characteristics from a neutral perspective, looking for either supporting or 
disconfirming evidence. In addition, we have supplemented our original list of 
characteristics to be investigated beyond those which have usually been 
considered in the context of evaluating a methodology such as PAA. 

We often found, in informal discussions, a reluctance on the part of 
practicing analysts to use PAA, especially as a singular analytic device. Most, 
however, could not express particular methodological or statistical reasons for 
their beliefs. We have tried in our evaluation to develop either theoretical or 
empirical grounds for these expressed areas of concern. 

.There are three generally cited advantages for the PAA method. Primary 
among these is that PAA is especially appropriate for detecting interactions 
among the predictor attributes. Whereas many analytic procedures require the a 
priori specification of a model, PAA can be used in an exploratory fashion to 
perhaps discover unanticipated effects. 

A second cited advantage is the less-restrictive set of statistical 
assumptions that a PAA imposes on the data. There is no assumption of normality 
or even of continuously-distributed measures; the analysis proceeds using 
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TABLE 1.3 

Some Cited Characteristics of PAA. 

Ci ted Advantages 

1) Identification of interact~on e!fec~s •. 
2) Few assumptions on underlYlng dls~rlbu~lons. 
3) Clear display of pattern of relatlonshlps. 
4) Non symmetrical 

Cited Di sadvantages 

1) Difficult to implement using canned packages. 
2) Requires dichotomized varia~les. . 
3) Potential masking of non-prlmary p~edlctors. 
4) Requires relatively large sample Slze. 

Uninvestigated Characteristics 

1) Sensitivity to sampling variability. 
2) Sensitivity to rank order variation in samples. 
3) Sensitivity to correlations among predictors. 
4) Sensitivity to type of association measure used. 
5) Sensitivity to stopping criteria. 
6) Sensitivity to sample size. 
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dichotomous variables (frequently encountered in criminal justice research 
problems). 

A third advantage is the clear display of the pattern of relationships that 
is the byproduct of a PAA. The tree-like branching diagrams clearly depict the 
subgroups and their characteristics and emphasize the stepwise nature of the 
analysis as it proceeds from th~ most significant effects downward. 

A fourth cited advantage is that the analysis can be used in a conceptually 
non-~mmetrical manner. The PAA method can be directed toward answering 
questions about the predictability of one attribute by other attributes rather 
than questions about the (symmetrical) association of the attributes. 

Four disadvantages of the PAA method are generally noted. Perhaps most 
importantly from a practical point of view, the analyses have been very 
laborious to conduct with generally available statistical software (such as SPSS 
or BMDP). No dedicated procedures exist in these packages; the analyst is 
forced to program each level of the analysis separately, examining printed 
results for all tables and then designing the specifications for the next level 
of the analysis. This can be quite cumbersome -- at the fourth level of an 
analysis with 2~ predictor variables, 6~~ contingency tables must have been 
produced and analyzed. 

A second disadvantage is the complement to the 'advantage ' of being able to 
use dichotomous variables; if a greater detail of information is available, the 
analysis cannot take advantage of it. Only binary information is processed. 

A third disadvantage is the tendency at the level of interpretation to 
misrepresent the importance of non-primary predictors; that is, at the terminal 
subgroup level, one tends to equate all attributes of that group, despite the 
fact that some are more (statistically) pronounced discriminators. 
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A fourth disadvantage is that relatively large samples are required to 
conduct a PAA analysis to any depth. For example, at the foutth level of a PAA 
analysis, if all splits were 50%-50%, there would be an average of 156 cases per 
cell for an initial sample of 10,000. However, if the splits were 30%-70%, some 
cells would be expected to average 20 cases per cell; for 20%-80% splits, 4 
cases. At the fifth level, even with a sample of 1~~,~~~, 2~%-8~% splits along 
a branch would yield cells with onlj 8 cases expected. 

Theoretical and Empirical Issues 

A number of questions have been raised about the use of PAA as a general­
purpose prediction method and about its behavior under certain conditions. 
These issues concern the reproducibility of results and the validity of the 
associated interpretations. Reliability and validity are affected by both the 
structural relations within the data under analysis as well as the parameters 
which control the analytic processing itself. Previous literature has primarily 
addressed questions of reproducibility and not questions of validity; this 
report addresses both. 

There are three questions related primarily to validity. First, does PAA 
have the ability to recover a known structure from a given system of data? 
Second, does PAA recover the best (most efficient and parsimonious) model that 
represents the data? Third, how do interrelationships among the predictors 
affect the analysis? 

Two questions relate primarily to reliability. Do the results of a 
particular analysis replicate either (1) in terms of the predictor variables 
selected or (2) in terms of the individuals who comprise each of the terminal 
subgroups? 

Two further questions relate to issues of both validity and reliability; 
they involve sensitivity of the analysis to (1) the statistical criteria used to 
select predictor variables at each step and (2) the stopping criteria 
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(statistical and otherwise) .to terminate processing for particular branches. 
The choice of criteria affects both the results (and hence the interpretation) 
of a particular analysis and the susceptibility of that analysis to poor 
reproduci bi 1 ity. 
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Footnotes 

1Support for this project was provided through the Bureau of Justice 
Statistics, Cooperative Agreement # 82-BJ-CX-K017. 
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a sample of individuals is used to generate a statement applicable to other 
persons selected from an equivalent sample. The idea is to select a set of the 
most useful variables from all avai1~ble information, yielding a set of measures 
that have, in some predefined sense, the best predictive power and then to use a 
method or logic to combine these measures in as efficient and coherent a manner 
as possible. The goal is to afford the best possible prediction capability for 

the problem at hand. 

Implicit in this definition are some further assumptions which should be 

noted. First, the individual characteristics or attributes under study, both as 
independent and dependent measures, must be both adequately defined and properly 

measured. Second, the formal methodology for evaluating the available 
information must be a coherent and logical process that is appropriate to the 
task at hand. Third, where statistical assumptions are made, they must be shown 

to be appropriate given the properties of the data under analysis. 
Interpretations must be couched in an understanding of' limitations imposed by a 

failure to meet these conditions. 

Historically, the task of prediction has been accomplished through a 
variety of logical arithmetical and mathematical techniques. At one end of this 
continuum is a simple "unit-weighting~ accumulation of points for the presence 

or abs.=nL~ of particular attributes; at the other end are the complex 
statistical methods which take into account not only the association of the 
predictive measures with the dependent measure, but also the relationships among 
the prediction measures themselves. (The family of multiple regression methods 

is a well-known example.) 

Predictive Attribute Analysis is a multivariable, not a multivariate, 
method. We say this to emphasize the fact that a PAA examines a number of 
prediction measures at each point in the sequential process, but it does not 
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examine the inte~relationships among these measures at either horizontal or 
vertical decision planes (in contrast, consider stepwise regression procedures). 
Many of the observed deficiencies of PAA can be traced to this characteristic. 

Models and Parameters 

Inherent in mathematical representations of relationships is the use of a 
MODEL with associated PARAMETERS. For example, Y = a + bX is the familiar model 
speci fyi ng Y as ali near functi on of X; a cmd b are the parameters of y-axi s 
intercept and slope, respectively. Alternative model specifications are Y = a + 
bX1 + cX2 or Y = a + bX1 + cX2 +dX1X2. Both of these models are 
also linear, but the second includes a term for interaction between Xl and 
X2. A model of the form Y = aXb is, of course, not linear (except where b = 

1). See Winer (1971) for a thorough discussion. 

It is important to remember, however, that the same sample data can be 
approximated by any number of different models (with consequently different 
parameters). Generully speaking, the more parameters in the model, the better 
the approximation to a particular data sample. However, an equation of order 
[N-1] can always b~ found to connect N points. The goal, therefore, is to be 
parsimonious and to select the model with the fewest parameters that adequately 
reproduces the relationships in question. In general, this approach will 
provide a more stable model, better resistant to random sample variations. 

Model specification is a difficult task. Magidson (1982) discusses some 
behavioral characteristics of log-linear and attribute analysis methods 
including the consequences of such practices as (1) omitting influential 
variables, (2) omitting interaction effects, and (3) misspecification of the 
correct model. The point stressed is that "no analytic technique can compensate 
for lack of theory in deciding which variables to include in an analysis or how 
to interpret results." 
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Interaction Effects 

Too often interaction among variables is treated as a phenomenon to be 
either avoided at all costs, or at best, apologized for. This approach to the 
analysis of complex data systems can lead to serious misinterpretations of the 
important forces that are active in the system under study, especially in cases 
where the anaJysis is exploratory rather than hypothesis-driven. 

Interaction effects are to be expected. A common-sense approach to the 
study of factors affecting groups of individuals must lead one to expect that 
external influences do not impact equally on all individuals, nor do internal 

characteristics have equal influence in all settings. 

One of the reasons for the propagation of dendographic procedures has been 
that they seemed to offer an analytic approach suited for the detection of 
interaction effects. Although this appears to be the case, there are a number 
of reasons that the results of a particular PAA, especially one presented in the 
absence of independent confirmatory support, should be interpreted with great 
caution. There are a number of different types of interaction effects, some of 
which a PAA will not detect (Magidson, 1982). In addition, as we will see, 
often one cannot distinguish between the detection of a main effect and an 
interaction effect by using PAA. Lewis (1962) presents a general review of 
various technical analytic approaches to the unravelling of interaction effects 

in multidimensional tables. 

Quantitative data analysis procedures typically hypothesize a model and 
then proceed to estimate the parameters. A saturated model would consist of all 
main effects (of the form A, B, C, .~.) and all interaction effects (of the form 
AB, AC, BC, ABC, ••• ) for each independant variable. The detection of 
interaction effects, however, is usually not emphasized, and the methods 
generally espoused for the detection of interactions (eg. Winer, 1971; Kirk, 

1968) are not the most efficient available. 
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Qualitative data analytic procedures have tended to be more encouraging and 
supportive of the analysis of interaction effects. The AID and CHAID procedures 
mentioned previously, as well as the PAA procedure, were orginally advocated for 
their claimed interaction detection capabilities. Log-linear methods easily 
allow tests of interaction at any level of complexity, and in addition allow the 
omnibus test for the presence of any significant unspecified (residual) 
effects. 

In practice, however, many researchers do not investigate interactions in a 
thorough manner, taking into account the different types of interaction and the 
alternative methods for their detection. When only main effects are postulated 
within a model, it is often due to an inability on the part of the researcher to 
explicitly create and define the proper representation of an interaction 
effect. 1 Even when interactions are hypothesized, they may be couched in 
assumptions that are inappropriate to the data system under analysis. 

Usually models are assump.1 to be hierarchial in nature, where the higher­
order effects for any model, in which a particular embedded effect is missing, 
are defined to be absent (eg., absence of an AB interaction implies absence of 
an ABC interaction). Models in nature are not necessarily hierarchical, 
'however, and this assumption can lead to erroneous conclusions (see Magidson, 
1982). A justification for the adoption of a hierarchical model comes from the 
assumption of multivariate normality: in the special case where the dependent 
variable and all the independent variables jointly fit a multivariate-normal 
distribution, a hierarchical model is appropriate (see Anderson, 1958). In 
practice, this assumption should be questioned -- particularly when the 
variables are categorical or binary in specification. 

Model Detection by PAA 

An important difference between PAA and techniques such as the log-linear 
methods is that PAA is often used as an explor~tory procedure to discover a 
model for the data system under analysis, whereas log-linear methods, 
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must be supplied with a model (for which goodness-of-fit measures are obtained). 
From this perspective, some analysts have suggested using PAA as the exploratory 
method to suggest a preliminary model, then using log-linear methods to validate 
that hypothesized model. One should examine, however, how suitable PAA is for 

this task. 

One procedure for investigating the ability of a Predictive Attribute 
Analysis to detect the actual effects imbedded in a defined model is to 
consider the possible combinations of effects for a two-factor (A and B) model; 
i.e., A, B, AB, A & AB, B & AB, A & B, A & B & AB effects. Where observations 
are limited to the set (~,1), the possible values of an observed criterion Y for 
all combinations of A and B (and hence AB) values for the model Y=B are given in 
Figure 2.1. Using the lambda statistic as a selection criterion, we find (by 
application of the PAA method) only an effect for B (as expected). 

As we look at the results of this exercise for the other possible models, 
however, we find some unsettling results. As can be seen from Table 2.1, the 
model inferred from a PAA is not necessarily the model from which the 
observations were generated. Specifically, an interaction effect (AB) cannot be 
distinguished from two independent main effects (A & B) or ~hose main effects 
plus an interaction to (A & B & AB). Also, an interaction with only one 
component having a main effect (A & ABt cannot be distinguished from t~e simple 
main effect (A). 

These problems become compounded, of course, as the model expands to 
incorporate more than three variables. The net effect, then, is to cast doubt 
on the utility of using PAA as an independent model-generation technique. 
Because an attempt to validate a prespecified model would be subject to the same 
concerns, a PAA would also be inappropriate for hypothesis testing applications. 
Even as an exploratory technique, the results of any particular PAA might 
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FIGURE 2.1 

Example of Model Recovery Procedure 

Model: Y=bB 

Given dichotomous data, 
-- possibilities are as follows: 

Contingency Tables: Y 
!1 1 

A !1ta81 
111 

Y Given B=V' 
V' 1. 

A 

~ 
V' 
1 
1 

Lambda = V'.0 

~tffiJ° A Lambda = V'.~ 
110 

PAA Tree: B 
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B AB Y 

!1 V' V' 
1 V' 1 
~ ~ !1 
1 1 1 

I I 
Note: Y simply equals 
B, regardl ess of the values 
of A or AS. 

Y 
!1 1 

B V'~ Lambda = LV' 
1~ 

Y=Given B=l 
~ 1 

0Hffi1 A Lambda = V'.V' 
201 



TABLE 2.1 

Models and Their PAA-Recovered Counterparts. 

MODEL PAA TREE 

Y=aA A 
(A main-effect) 

Y=bB B 
(B main-effect) 

Y=xAB A 
(AB interaction) B 

Y=aA+xAB A 
(A mai n-effect & AB interaction) 

Y=bB+xAB B 
(B mai n-effect & AB interaction) 

Y=aA+bB A 
(A & B main-effects) B 

Y=aA+bB+xAB A 
(A & B main-effects & AB interaction) B 
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PAA MODEL( s) 

Y=aA 

Y=bB 

Y=aA+bB or 
Y=xAB 

Y=aA 

Y=bB 

Y=aA+bB or 
Y=xAB 

Y=aA+bB or 
Y:::xAB 

produce dozens of potential models for evaluation by subsequent confirmatory 
analysis. 

Subgroup Classification 

An alternative use of the PAA procedures, beyond the discovery of important 
predictor variables, is the definition of subgroups within a populat;on. The 
premise is that, for each subgroup, the variables used to define the groups are, 
in some statistical sense, the most important. 

Each subgroup is defi ned through a seri es of sequenti ally-dependent 
selection decisions. Although this process can systematically exclude certain 
model effects, the final predictor composite ~ay nonetheless contain the same 
variables that would have been selected by a more valid model specification 
approach. (If one considers only the final subgroups and their defining 
attributes, PAA provides a system for classification that is "model independent" 
in the sense that different models could require the inclusion of the same 
variables.) One would then proceed to validate these groupings by alternative 
analyses or by replication. 

However, to the extent that any subgroups are selected by statistical 
criteria, they are subject to sampling variability, raising the issue of 
reliability in the findings. While order of selection may not be important for 
an analysis that always proceeds to the exhaustion of all independent variab.les, 
it does become important once stopping criteria are introduced and the analysis 
does not proceed to consider subsequent predictors. Thus, the interpretation of 
PAA results (in terms of any "defining" characteristics of subgroups) rapidly 
becomes a very complex i~sue. Furthermore, many of the parameters for assessing 
reliability are data-specific (e.g., interrelationships among predictors), 
requiring unique validation studies to be able to make statements about the 
validity of particular results. The issue of subgroup classification will be 
investigated empirically in the next chapter. 
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Validation Methods 

Validation, in the sense of the generalizability of results from one sample 
to another, is a central issue in the context of prediction methods. Most 
prediction techniques strive to minimize the unpredictable variance within a 
particular sample; while this tends to optimize the predictability for that 
sample, it is often to the detriment of the overall generalizabi1ity of the 
results. One needs to be aware of the potential limitations of the results on 
anyone particular analysis when application is made to other samples. This 
section describes two means for assessing this type of validity - traditional 
cross-validation methods and bootstrap resampling methods. Because many of the 
uncertainties surrounding the interpretation of a specific Predictive Attribute 
Analysis are difficult to resolve by a strictly theoretical approach, we will 
suggest an empirical approach for assessing the relative confidence we wish to 
place in the results of a particular analysis. 

A general discussion of validation issues in measurement can be found in 
Cronbach (1971); more technical presentations are given by Stone (1974) and 
Efron (1983). The focus here is on the ability to make accurate generalizations 
from the analysis of one sample to a larger population, hence the general 
approach is to compare the results of a number of analyses of (simulated) 
samplings from a given population. 

It should be mentioned that 'robust ' and 'resistant ' analytical procedures 
are sometimes recommended for continuou~-variable prediction problems. Although 
a number of methods for pre-and post-processing of data have been developed 
(Huber, 1981; Mosteller & Tukey, 1977), these methods can often contribute 
their own shortcomings and, in any case, are often not wel1 suited for . 
categorical or dichotomous data systems. Some non-parametric methods do offer a 
reduced sensitivity to these problems, but at the risk of not finding effects 
that are indeed present in the population system. 
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The Cross-Validation Method 

The empirical assessment of validity has traditionally been done using the 
family of cross-validation methods. The simplest form of this procedure uses 
two samples (or one subdivided sample) from the data system of interest: the 
prediction instrument (or table or equation) is constructed using the first 
sample and then validated by using that instrument to predict the dependent 
measure in the second sample. A measure of predictiv'e accuracy is then obtained 
by comparing predicted and observed values of this dependent measure in the 
second sample. A common extension of this cross-validation approach uses N-l 
cases in the sample to develop a prediction model for the remaining case, then 
averages the prediction errors for the N replications of this procedure to 
obtain a measure of prediction error. 

The Bootstrap Method for Resampling 

The bootstrap procedure is a particularly elegant and easily applied member 
of the family of cross-validation methods. Efron (1979) developed the bootstrap 
as an alternative to and extension of existing cross-validation procedures. The 
method requires minimal effort toward model specification, distributional 
assumptions, and analytic effort, and as a sampling procedure it is applicable 
in an automated form to variety of situations over a broad range of complexity 
(see especially Efron & Gong, 1983; also Efron, 1982). The efficacy of the 
bootstrap is demonstrated by the clarity it lends to the interpretation of PAA 
results. 

The procedural dsfinition of the bootstrap sampling method is 
straightforward: for some arbitrarily large number of replications2, a random 
sample of size N is drawn with replacement from the original data set of size N. 
The analysis of interest is then conducted once for each of thlese samples; if 

desired, nonparametric estimates of statistical attributes of the data,can be 
calculated. 
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The rationale behind bootstrap sampling is as follows: if one believes 
that every type of multivariate data point (or "case") present in the 
"population" is represented in the sample (even if not proportionally to its 
frequency in the population), then one can generate approximations to random 
samples from this unknown population by using repeated sampling-with-replacement 
procedures. One thereby expects that at least some of the bootstrap samples 
will be distributed very similarly to the unknown population. If desired, one 
can then use nonparametric reasoning to generate appropriate statistical 
measures and associated confidence intervals. 

For the purpose of investigating PAA validity and generalizability issues, 
we have used the bootstrap method to generate repeated samplings from selected 
data sets. A PAA was then performed on each of those samples and the results 
compared. Section III examines two aspects of the results in particular: (1) 
how consistently the pattern of selection for predictor variables was 
replicated, and (2) how consistently the membership of cases in the terminal 
subgroups defined by the analysis was replicated. 

Analysis of 2x2 Contingency Tables 

This section discusses some characteristics of two-way contingency tables 
that are dichotomous in both variables. Presented first are some considerations 
involved in the use of binary-coded information, whether that is the level at 
which the information is observed or whether there is an intermediary recoding 
of ordinal-or interval-level information. Second, statistical measures of 
association and prediction that are appropriate for 2x2 tables are considered. 
Finally, this section examines how the use of these different statistical 
measures can affect the results of a Predictive Attribute Analysis. 

Dichotomous Variables 

The analysis of criminal justice data often requires the consideration of 
dichotomous information. Frequently data are available only at the level of 
binary coding (incarcerated/not-incarcerated, prison/jail, felony/misdemeanor), 
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even where there might be evidence for an underlying ordered succession of 
categories. Quite often the dependent measure in a predictive analysis is 
binary, representing the final decision (however uncertain or qualified) 
resulting from a complex decision process. 

Typically, measures available to an analysis are not all binary, however. 
In general, it is preferable to use an analytic method which can take advantage 
of the greatest detail present in the data. Logistic regression techniques, for 
example, allow the use of dichotomous, ordinal, or interval measures in the 
prediction of a dichotomous criterion, where PAA requires that all variables be 
dichotomous. 

It is preferable to choose a method of analysis for which the assumptions 
are most appropriate to the characteristics of the data at hand rather than 
forcing the data to fit the model (by dichotomization, for example). This 
approach provides greater power for the detection of real effects within the 
data and also avoids the problems of deciding at what point to create artificial 
categorizations from a more detailed data representation. Bishop, Feinberg, and 
Holland (1975, p. 371) note that " ••• different choices of boundaries (based on 
collapsing of categories) can lead to different conclusions regarding the 
dependence or independence of variables. Little guidance is available to help 
the investigator make such choices." 

In the case where PAA is determined to be an appropriate analysis but where 
a number of important predictors require dichotomization, our recommendation is 
to select several alternative cutpoints for each predic~or and examine the 
results of the analyses. An alternative would be to create a set of binary 
I dummy I variables for each category of an original variable, where (0 or 1) 
would represent the (absence or presence) of that category for that variable. 
These devices should be used only for variables for which there is no clear 
theoretical or empirical guidance for imposing cutpoints -- theory should take 
precedence over exploration. 
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Statistical Measures 

A useful categorization for the various measures of association for 2x2 
tables is presented by Bishop, Feinberg, and Holland (1975). There are four 
general classes: 1) measures based on the ordinary chi-square, 2) measures 
based on the cross-product ratio, 3) proportional-reduction-of-error measures, 
and 4) proportion~of-explained-variance measures. 

For the purposes of this report, four statistics are considered which 
represent three of the cateogries described above. Cross-product (odds) ratio 
measures are not considered since (1) they have not been a part of the PAA 
applications literature or much of the modern contingency table literature, and 
(2) these measures possess some properties that make them appear less-than­
optimally interpretable for PAA-type applications. 3 This report does examine 
the Chi-Square coefficient, the Phi-coefficient, Goodman & Kruskal's Lambda 
coefficient, and the Uncertainty coefficient. 

Each of these statistical measures is discussed with respect to several 
characteristics of the measure that affect their use in a Predictive Attribute 
Analysis, such as whether or not they are independent of sample size, whether 
they assume a dependent/independent distinction, or whether they measure 
symmetric 'association ' or asymmetric 'prediction.' 

The Chi-Square coefficient can be used both as a measure of association and 
as a test for independence; the latter will not be considered here since it is a 
hypothesis test rather than an assessment of relationship. Table 2.2 presents a 
definitional formula for Chi-Square (and the other statistics discussed here). 
On the basis of the applications literature, Chi-Square seems to be the 
statistical criterion of choice for PAA and the other interaction-detection 
procedures (Phi being an "alternative"). However, lack of discussion in these 
references as to the justification for using Chi-Square as opposed to 
alternatives suggests that the choice may not have been based on careful 
consideration of the properties of the available statistics. 
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As a measure of association, Chi-Square is symmetric in the sense that no 
distinction is made for a 'dependent ' versus 'independent ' variable. It is 
dependent on the sample size and has no upper bound; the lower bound is zero. 
Probability statements can be made easily by reference to tabled Chi-Square 
values for a chosen significance level, where the number of degrees of freedom 
for a 2x2 table is always one. An advantage that the Chi-Square statistic has 
is the general familiarity it enjoys from a wide audience. 

Although the computational mechanics of the Chi-Square test are easily 
carried out, their derivation depends on a mathematical rationale that requires 
important assumptions (1) that observations are independent of each other, and 
(2) that each observation represents a single joint-event (or cell location in 
the c~ntingency table). Probabilities obtained from a chi-square table are 
estimates and approximate (barring an infinite sample size). The accuracy of 
this approximation depends not only on overall sample size, but on such factors 
as the significance level employed, the total number of cells in the contingency 
table, and the true marginal distributions in the population. Based on these 
considerations, a cOI',~Hvative guideline that has been generally endorsed 
is to require a minimum cell frequency of 5 for tables with more than 1 degree 
of freedom and l~ for tables with a single degree of freedom (as have 2x2 
tables). 

The Phi coefficient for a 2x2 contingency table is equivalent to the 
Pearson product-moment correlation coefficient. Phi is also directly obtainable 
from the chi-square coefficient as the square-root of (Chi-Square divided by the 
sample size). The Phi coefficient has the resultant advantages of 1) a 
standardized range of zero to one and (2) an interpretation directly analogous 
to that of an ordinary correlation coefficient. 

Goodman and Kruskal's (1954) Lambda coefficient is a measure of predictive 
association (asymmetric) rather than of simple association (symmetric). 
Specifically, lambda measures the proportional reduction in error of predicting 
the one variable by having knowledge of the other variable. This approach is 
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fundamentally different from that of the measures of associatiofi such as Chi­

Square or Phi. 

It is possible (and frequently occurs with criminal justice measures) for 
association to exist where predictability does not: Chi-Square is greater than 
zero while Lambda equals zero. This does not imply that Lambda is 
unsatisfactory, but rather that. Lambda is a measure of a different property of 
the data. In practice, PAA predictor variables selected by Lambda are typically 

different from those selected by the other statistics. 

Lambda ranges from zero to one, being zero only if knowledge of one 
variable is of no help in predicting the other and being one only if know'ledge 
of an individual1s category on one variable determines the category of the other 
variable. Lambda requires information in the diagonals of the 2x2 table to be 
parallel (i.e., both maximums on the same diagonal), otherwise Lambda is zero. 
As a measure developed for nominal-level data, Lambda considers only the mode of 
the distribution. It should be noted that it is possible, even where there is 
perfect predictability of a criterion variable, for Lambda to be zero if the 
predictor variable contributes no new information (beyond that available from 

the marginal distributions). 

The Uncertainty coefficient (Theil, 1967) is derived from an information­
theoretic approach. Like Lambda, it is asymmetric; it indicates the proportion 
hy which uncertainty on the dependent variable is reduced by knowledge of the 
independent variable. Unlike Lambda, it considers the entire distribution of 
observations, not just the modal category. The Uncertainty coefficient ranges 
from zero to one and is independent of the number of observations. 

Use of the Various Statistics for Predictive Inference 

The information available in the format of a contingency table can be 
thought of in a number of research contexts. Hypotheses may relate to questions 
of association of variables, to goodness-of-fit of one variable1s distribution 
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to a proposed model, or to questions of predictability of one measure from 
another. 

The a priori design model brought to an analysis like PAA can substantially 
affect the results and interpretations. Different statistical mAasures have 
been developed to meet different needs of researchers, and the assumptions of 
each must be considered carefully. The use of a prediction versus an 
association statistical measure in a PAA implies a different set of hypotheses 
is to be tested, and hence the interpretation of results should not be the 
same. 

The Chi-Square and Phi coefficients are inherently tests of association, 
symmetrical in nature (like a correlation coefficient). The Lambda and 
Uncertainty coefficients are, on the other hand, asymmetric measures of the 
predictability of one measure by the other (like a regression coefficient). 
Chi-Square values for AxB and BxA tables are necessarily the same; lambda values 
for AxB and BxA tables are not necessarily the same. 

The difference between an associative measure and a predictive measure can 
be clarified by reference to Chi-Square and Lambda as specific examples. Chi­
Square is' a technique that evaluates differences between observed and expected 
observations (expected either via a hypothisized distribution or from toe 
marginal distribution which was observed). This is a symmetrical 
conceptualization; the distributions either match o~' they do not. Lambda, 
f1wever, is an index developed to measure the proportional reduction in the 
probability of error in predicting B by having knowledge of A. If the 
information contained in A does not reduce the probability of error in 
predicting B at all, Lambda equals zero; if the information completely 
determines the prediction of B from A, then the index is one. 

With reflection it can be seen that the idea of prediction is not 
equivalent to the idea of association. It is possible, as noted above, that 
statistical association exists even though the predictability measure equals 
zero. 
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It may be the case that A and B are not independent, but that the relationship 

is such that knowledge of A does not change one's expectation about B. 

Which of these types of statistics is preferable for Predictive Attribute 
Analysis? In discussing the choice of measures for contingency tables, Bishop, 
Feinberg, and Holland (1975, p. 393) comment: "No single measure is better than 
all others in every circumstance. Different measures have different purposes, 
and our selection must depend on our objective in studying a set of data. If 
the focus is on departures from bivariate independence, [chi-square based 
measures] are useful, while [predictive association measures] may mislead. If 
the focus is on prediction, the reverse is true, and we may profitably choose 

[predictive association measures]." 

Logical consideration of the properties of each of these statistics would 
suggest the use of one of the predictive association measures (Lambda or 
Uncertainty) rather than a measure of independence (Chi-Square or Phi). 
Choosing between Lambda and Uncertainty would then depend on whether the 
variables are considered to be strictly nominal or have ordinal/interval 
characteristics. This decision becomes problematic where measures of both types 

are present in an analysis. 

In practice, Chi-Square, Phi, and the Uncertainty coefficient perform 
similarly in selecting predictor variables at particular PAA nodes. Lambda very 
frequently selects a different sequence of predictors. None of the measures 
provides a significantly greater level of reliability across samples when the 
depth of the analysis is held constant. These comments will be discussed more 
fully in the sections of this report that discuss the simulation studies and 
suggest general recommendations. At this point, however, we can suggest no al1-

inclusive guideline for a "best" PAA statistic. 

Alternatives to PAA 

The kinds of research questions which are addressed by a Predictive 
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Attribute Analysis can also be addressed by a number of other analytic 
techniques. If one visualizes a continuum ranging in complexity from singular 
contingency table analysis, to ad hoc contingency table analyses, to logit and 
probit analysis, to log-linear mod~ls, and through general-model categorical 
analysis techniques, PAA would fall into the domqin of the ad hoc methods. 
While there are theoretical reasons for prefering the method;~the 
multivariate end of the continuum, there are often practical considerations 
which impede the successful application of these methods. PAA is often chosen 
as a compromise methodi 

Some general references that provide a background for issues affecting 
contin.gency table analysis are Bishop et al (1975): Discrete Multivariate 
Analysis: Theory and Practices Fleiss (1981): Statistical Methods for Rates 
and Proportions, Davis (1974): "Hierarchial Models for Significance Tests in 
Multivariate Contingency Tables; An Exegesis of Goodman's Recent Papers," and 
Goodman and Kruskal's (1979) Measures of Association for Cross Classifications. 
Brieman et al. (1984) have developed some interesting extensions in the area of 
regression-tree procedures. 

In reviewing some analytical methods for the type of predicition problem 
where the dependant variable (at least) is binary, it is interesting to consider 
the historical evolution of those methods. The problem was initially: given 
that Ordinary Least Squares (OLS) methods are not appropriate to the case when 
the dependent measure is not of a continuous nature, what modifications of OLS 
might prove servicable? This perspective led first tQ studies attempting to 
delineate more clearly the conditions under which a conventional regression 
analysis would provide a reasonable appropriation. 
emerging from this work held that OLS could be used 

The 'conventional wisdom' 
in situations where the 

expected to fall midway between the extreme probabilities dependent measure was 
of zero and one. 

Modification of the OLS algebra produced the probit and the logit methods 
(see Finney, 1952), both explicitly designed for predicition of a dichotomous 
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dependent variable. The emphasis here is on the relative weights for the set of 
predictor variables. The subsequently developed log-linear methods, due 
primarily to Goodman and collegues (eg, 1978), emphasized the model development 
aspect of analysis; the analysis was geared to uncover the combination of main 
effects and interaction effects that could be properly used to represent the 
underlying forces acting on the observations. 

Both the logit and probit methods assume a dichotomous dependent variable 
with categorical and/or continuous independent variables. Ine techniques are 
conceptually similar approaches to the problem of prediction, the major 
difference being that the probit model is based on the normal function while the 
logit model is based on the logistic function. (These distributions are 
practically identical for our purposes.) From a pragmatic point of view, the 
techniques are IIno more than a' convenient mathematical device for solving 
certain equationsll (Finney, 1971), and should be treated much as other general 
transformational procedures. Other transformations have indeed been proposed, 
but they seem essentially indistinguishable from logits and probits in t:'ieir 
performance over a wide variety of. applications (Finney, 1971). 

Log-linear methods emphasize the evaluation of alternative model 
specifications. The method for specifying these effects has an appealing 
parallelism to the conventional analysis of variance methods known to most 
researchers. Given a hypothesis that any effect (or group of effects) is a 
component of the model, estimates can be derived for the expected cell 
frequencies in the contingency table system. Given these expected frequencies, 
a likelihood ratio test can be performed to assess the goodness-of-fit of the 
data to the specified model. 

In principle, the procedure can be extended to tables of any dimension; any 
effect or combination of effects can be considered. The statistical assumptions 
are those of a standard Chi-Square test-- observations are independent and arise 
from multinomial sampling of some population. A practical restriction is that 
large samples are required in order to have a reasonable chance of expected 
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frequencies greater than zero in all cells. Because the number of potential 
hypotheses increases rapidly (due to the number of potential interactions), the 
procedure is somewhat inappropriate as an exploratory tool for complex tables. 
Log-linear models, used for the level of complexity of contingency tables 
typically analyzed by a PAA, would have to be stated very explicitly beforehand 
because of the depth of potential interaction effects. Log-linear models in 
general are inappropriate for eXploring questions for which little previous 
analytical work had been done. 

In addition to these widely-known and generally available analytic 
procedures, there are also other alternative approaches to the analy~is of data 
systems of the type considered here. Examples are clustering procedures, 
profile-comparison procedures, multidimensional scaling methods, discrimination 
analysis, and general structural-model categorical methods (Pruzek & Lehrer, 
1980). These methods are not addressed here, but they (and others) are 
certainly not to be dismissed from consideration by the analyst. 

The literature gives numerous examples of how certain methods are not well 
suited to particular data systems. In the case where nested interactions are 
expected to exist (that is, different interaction effects for different 
subgroups), PAA-like procedures are generally more likely to detect effects than 
log-linear methods. Because PAA is a conditionally-oriented method, it can 
uncover effects that would otherwise be averaged out at other levels of 

specification. Another type of interaction is the symmetric interaction, where 
the effect is approximately equal and opposite for two subgroups. The near-zero 
average makes the effect difficult to detect. These effects are generally not 
detected by a PAA procedure because they fail to pass a main-effects statistical 
test. Magidson (1982) shows how a log-linear analysis can detect these effects, 
but only if the model is specified as a nested interaction model and not a 
hierarchical model. One is thereby cautioned against limiting the use of 10g­
linear procedures to hierarchical models if theory suggests otherwise. 
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With respect to the selection of particular analytic methods our 
recommended strategy is, succinctly, a multi-method approach oriented toward 

developing a consensus in conclusions. 
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Footnotes 

lOne solution to this problem of the effective specification of complex 
effects is presented in Pruzek & Walker (1982). 

2Typically 1~~-20~. 

3S ee Bishop ~. 21. (1975), p. 383 especially. 
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EMPIRICAL STUDIES OF THE PAA METHOD 

The two major components of this part of the project were (1) the 
development and implementation of a mainframe computer program, required for (2) 
the design and conduct of a series of simulation studies. The computer program 
was developed with attention to the known characteristics of PAA as discussed in 
the previous chapters with the intent of also providing means for the control of 
parameters of the analysis (type of statistic used, branch termination criteria, 
etc.) that could alter the validity/reliability characteristics of the method. 
The group of simulation analyses which are reported here was aimed at further 
defining strengths and weakness of PAA anp providing guidelines for the use and 
interpretation of the method. 

Introduction 

The need for further study of the empirical performance characteristics of 
PAA is evident from the set of unresolved research questions that remains after 
the theoretical considerations presented in the previous chapter. Although some 
of the inherent characteristics of the method were described, there remain other 
aspects that call for investigation using real data systems. These aspects are 
especially difficult to study because of their dependence on particular 
interrelationships found within given data systems. 

An illustrat,ion may serve to clarify the kinds of questions that remain. 
It is obvious, for example, that the first split in a PAA tree will indicate the 
source of the strongest main effect present in the data. This effect should be 
found over sampling with a consistency that relates to the relative magnitudes 
of the correlations between the dependant variable and the set of independent 
variables. (If C is predicted by A and B, given a correlation rcb=.3~ and 
rca=·l~, we would expect B to be consistently selected. If rca=.3~ 
and rca=.28, we would expect random sampling variation to impact 
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significantly on the statistical selection process, with B having a slight edge 
over a large number of samplings.) What is not known ~ priori, however, is how 
to derive expectations for particular variables at successive levels of the PAA 
tree, nor how the terminal subgroups defined by the complete PAA analysis might 
be affected by predictor interrelationships. To questi~ns of this nature we 

directed the efforts of the simula.tion studies. 

PAAVE:Predictive Attribute Analysis with Validation Extensions 

Presented below is a brief description of the PAAVE1 computer program, its 
specifications, capabilities, and limitations, and the principles that guided 
its development. Potential users of the program will want to refer to the more 

detailed User's Guide which accompanies this technical report. 

Guidelines for Program Development 

The mainframe FORTRAN computer program for Predictive Attribute Analysis 
was developed to (1) carry out the computational efforts required to perform a 
PAA analysis (with support for data input and dichotomization), (2) allow 
flexible user specification of parameters controlling the PAA processing, and 
(3) provide several kinds of feedback to the user regarding the confidence 
appropriate to the results of the analysis. It was decided early in the project 
not to attempt to incorporate methodological extensions into the program, such 
as allowing categorical rather than dichotomous data or attempting look-ahead 
computations in the manner available in AID/CHAID programs. There were two 
'reasons for this decision: first, computer routines already exist to perform 
these manipulations, and second, the fundamental issues for this kind of 
categorical analysis procedure can be adequately addressed by a study of the 
generic PAA processing logic. The program therefore adheres to the definitions 

originally put forth by MacNaughton-Smith (1965). 

It was known at the outset of the proje~t that the PAA computer program to 
be developed would need to provide a variety of different kinds of feedback to 
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the analyst. Enhancements to the otherwise straightforward PAA processing 
computations thus took the form of 1) availability of information about the 
competing predictor variables in addition to the selected predictor variable 
and 2) addition of alternative processing controls, such as the ability to f~rce 
the selection of particular variables at specified nodes or to select various 
combinations of stopping criteria. 

The program was written in a modular format, glvlng control of specific 
processing functions to specific FORTRAN subroutines. This progr~mming approach 
was used both to facilitate development and testing and to allow for future 

:rogra~ m~dification an~ exten~i~n. Users of the prc',ram who wish to supplenn:nt 
he eXlstlng features wlth addltlonal processing options should find that the 

existing routines can be modified without undue effort. 

A diagram of the modular components of the program is presented in Figure 
3.1. Raw data input, dichotomization, contingency table construction 
stat~stical calculations, and program output are each handled by sepa~ate 
routlnes. The PAA algorithm itself is the responsibility of a managing routine, 
and general program execution and parameter specification are controlled by th 
main routine. The program also has a multilevel trace mode whereby users can e 
follow program execution by a series of markers which note the physical location 
of program execution4 and provide intermediate processing output of selected 
deta i1 . 

The program ~~as designed to allow considerable flexibility in the 
specification of PAA processing options. To control branch termination several 
statistical tests are available, as well as absolute and relative cell :nd 
marginal frequency criteria. In addition, to allow testing of specific models 
the selection of any predictor can be forced at any point in the analysis. ' 
Processing can also be limited to a maximum depth (level) fot all branches, or 
can be allowed to proceed regardless of stopping criteria tests (assuming 
subgroup marginals are not zero). 
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Output is available at several levels of detail, depending on the needs of 
the analyst; at the most voluminous level, all contingency tables and all 
associated statistics can be produced. The standard mode provides one page of 
output for each node in the PAA processing tree2 (see the Appendix for an 
example). For simulation runs, summary-level output is available, or selected 
output can be written to online files and post-processed by other programs. 

Program Specification and Features 

The computer program has been written, with as few exceptions as possible3, 
in standard FORTRAN-77 to facilitate conversion to other mainframe systems. It 
was developed on the Burroughs 6900 using Burroughs FORTRAN-77 running under the 
CANOE timesharing system. 4 Due to the batch-queue-oriented nature of that 
system, it was not possible to incorporate a high level of user interactivity 
into the program. 

The current PAAVE programS can process 50 variables and an unlimited number 
of cases in the normal processing mode, 10,000 cases in the bootstrap validation 
mode. Up to 64 terminal subgroups can be derived through the ~~ogram (five 
levels of PAA processing). An abbreviated flowchart is presented in Figure 3.1 
to represent the general processing structure for standard and simulation 
modes. 

Four statistics appropriate to 2x2 contingency tables are available within 
the program: Chi -square, Phi, Uncertai nty, and Lambda. Justi fi cati on for the 
selection of these statistics and guidelines for their use has been provided 
previously. For each of these statistics, a branch-termination minimum value 
can be input such that any observed value below that limit will cause processing 
in that branch to terminate. 

Five additional branch termination criteria are provided besides the 
statistical criterion: minimum cell size, minimum cell percentage, minimum 
subgroup size, minimum subgroup percentage, and minimum subgroup ratio. These 
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may be used in any combination, individually or collectively. Default values 
are provided in the program, or values can be entered as program parameters •. If 
desired, all branch termination checks (except of course null tables) can be 

ignored. 

An additional program option allows the user to force the selection of a 
particular variable at any point in the analysis. This option facilitates the 
testing of hypothesized tree structures as well as the effect of using an 
alternative predictor in the case where the (statistical) competition is close 

among predictors at a particular mode. 

Numerous modifications to the originally conceived computer program were a 

byproduct of the series of analyses done in the evaluation component of the 
study. While we do not, in this report, attempt to exercise all possible 
variations of these program options, we provide them as an impetus for others to 

study further the characteristics of the PAA method. 

Simulation Analyses 

The simulation aspect of the project was undertaken to develop a better 
understanding of how the PAA algorithm functions in practice. By looking at a 
series of data analyses, some of which incorporate extensive cross-validation 
efforts, we can address a series of validity, reliability, and conjoint 

validity/reliability research questions. 

There are two types of data systems for which analyses are presented here. 

The first uses artificially-generated data; by controlling some of the 
otherwise variable facets of an analysis, we are better able to investigate the 
effects of other facets on the results. The second uses data typical of 
criminal justice databases; by observing the results of a PAA with data for 
which there is an existing knowledge base, some statements can be made about the 

proper use and interpretation of results. 
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There is a concern in these simulations with two general aspects of the 
results: 1) the magnitude of results relative to an expected outcome, and 2) 
the potential variability of the results around this expectation. In other 
words, we are interested not only in factors affecting the results of a single 
PAA, but also in factors affecting the differences among a sampling of results 
from a data population. 

Research Questions Guiding the Simulation Studies 

The previously discussed general research question~ which have provided a 
focus for the project include: 1) PAAls ability to recover a known structure 
from a data system, 2) PAAls ability to determine a best (most efficient and 
parsimonious) model which represents the data, 3) the effect on a PAA of 
interrelationships among the predictor variables, 4) the replicability of PAA 
results with respect to sequences of predictor variables, 5) the replicability 
of PAA results with respect to the composition of terminal subgroups, 6) the 
effect of different statistical criteria on stability of results, and 7) the 
effect of di fferent branch-termi nati on criteri a on stabil ity of .results. 

The precision with which these research questions can be addressed is 
enhanced by the use of bootstrap validation procedures. Bootstrapping allows 
one, through repeated sampling, to derive from a sample of data an approximation 
to the sampling distribution of the population system from which the sample 
originated. Therefore, even in situations where there is only a single working 
sample, one can make extrapolations to the population from which the particular 
sample was drawn (as if the actual population were known, and one sampled 
directly from that population). 

We have made extensive use of the bootstrap procedures in our simulation 
work to provide a basis for conclusions about the empirical validity and 
reliability of a PAA. Because of consistant findings regarding the presence of 
instability in the analysis of data, we decided to incorporate the means for 
computer program users to automatically conduct a validation analysis on their 
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own particular data using the bootstrap procedure. This capability provides 
analysts with a means to directly assess the level of confidence appropriate to 

the results of a particular analysis. 

The series of studies reported here examined aspects of PAA processing 

ranging from the statistical properties of individual 2x2 contingency tables 
having predefined characteristics through the replicability characteristics of 
complete analyses using OBTS criminal justice database information. Table 3.1 
presents the three general categories into which the analyses have been grouped: 
data systems with 1) defined interrelationships among predictors and criterion, 
2) low-strength interrelationships among prediction measures, and 3) complex 
(naturally occurring) interrelationships among predictors. The data systems 

with defined relationships (generated from selected models with known 
characteristics) were used to examine the table-wise selection of predictors by 
the different statistical measures. The low-order relationship system was used 
to provide a better understanding of how the PAA method functions in the (worst­

case) absence of reliable information. The data systems with naturally­
occurring complex relationships, drawn from the New York State Offender-Based 
Transaction System database, were used to study the behavior of the method as a 
whole for both the selection of predictor variable sequences and the definition 

of terminal subgroups. 

The discussions which follow for each set of simulations are parallel in 
format and include remarks on the 1) objectives, 2) procedures, 3) observations, 

and 4) conclusions from each analysis. 

2x2 Nodes 

Qbjectives. This set of simulations, initiated during the early stages of 

the project, was designed to provide a 'feel' for the characteristics of the 
four statistical measures that were to be available in the computer program. 
Levels of association, predictability, and cell frequencies were varied for a 
series of 2x2 tables. Particular attention was given to the magnitude of the 
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in$cabilHy of the statistics arising from random sampling error in tables 

having small cell sizes. 

Procedure. The series of 2x2 tables was constructed by selecting some 
generic tables of interest and varying the ratios of row and column marginal 
frequencies as well as the absolute frequency counts of cell entries. Both 
artificial and published data were used. The tables were considered to be 
asymmetric (in the sense that one dimension of the table was regarded as a 
criterion to 'be predicted by the other dimension). Chi-square, Phi, 
Uncertainty, and Lambda coefficients were calculated for each table. 

Observations. The relative magnitudes of the statistical coefficients were 
in general agreement with expectation. All of the statistical measures were 
unstable when small cell counts (especially <5) were varied -- more so where the 
marginal ratios were high and some cells had very low relative frequencies. 
Figure 3.2 presents examples. The movement of a small number of observations 
could change the value of the statistic (and hence the PAA-selected predictor 

variable) markedly. 

The association measures (Chi-square, Phi) and the prediction measures 
(Lambda, Uncertainty) were not equally affected by changes in the 2x2 tables. 

It was instructive to observe the divergence of Lambda from the other 
coefficients for certain types of tables. An initial impression was that Lambda 
was a rather coarse measure when compared with the other coefficients. The 
Uncertainty coefficient, while asymmetric in nature, behaved empirically much 

like the Chi-Square measure. 

Conclusions. An important by-product of looking at these simplified 
contingency tables and their associated statistical measures was an appreciation 
for the potential instability of the statistically-driven PAA predictor 
selection process for tables with small or unbalanced cell counts. This 
instability has implications for the specification of such PAA parameters as 
branch termination values, but even a conservative specification of these 
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FIGURE 3.2 
Analysis of Some Selected 2x2 Tables 

-a-

Some Abstract Ratios 

tffij 5 1 tffij 5 2 tffij 5 3 tffij 5 4 tffij 5 5 

5.33 3.90 2.94 2.27 1.78 
.667 .548 .458 .389 .333 
.667 .500 .333 .167 O. 
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-b-

Some Empirical Ratios 

Predicted Classification 
(S i mon, p. 48) 

Chi-Square 
Phi 
Lambda 
Uncertainty 

Chi-Square 
Phi 
Lambda 
Uncertai nty 

(si x vars) 

fsEJ 
liE] 

7.69 
.339 
.053 
.09l 

(seven vars) 

f391!J 
[2EJ 
12.47 

.431 

.158 

.150 

Marri age Status 
(Simon p. 188) 

Construct Valid 

114 147 \109\151\ 
6 3 2 7 

1.86 1.39 
.083 .072 

\3. 0. 
• 024 .019 

Predicted Classification 
(Si mon, p. 47) 

Clinical Behavioral 
judgement Rating 

F0~ 
~ ~ 
11.39 

.412 

.158 

.135 

Age 

5.62 
.290 

0. 
.069 

(Simon p. 188) 

Construct Va 1 id 

~ 61 91 m 62 97 

2.62 .83 
.099 .055 

0. \3 • 
.007 .002 
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Chi-Square 
Phi 
Lambda 
Uncertai nty 

Chi-Square 
Phi 
Lambda 
Uncertainty 

Last Penalty 
(Simon) 

67 53 59 52 

115 35 113 45 

13.17 9.54 
.221 .188 
.150 .063 
.036 .026 

# Previous Convictions 
(Simon) 

37 83 

~ 61 89 82 76 

2.79 16.11 
.102 .247 

0. .019 
.008 .046 

-b­
(continued) 
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Previous Files 
(Simon) 

75 45 65 46 

112 38 110 49 

4.64 3.24 
.131 .109 
.058 0. 
.012 .009 

# Jobs 
(Simon) 

~ 
30 81 

54 96 44 114 

9.27 .02 
.185 .009 
.008 0. 
.026 .00006 
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criteria would not necessarily protect against the mistaken identification of 
significant effects. Also of interest was the differing best-predictor 
decisions resulting from the use of an associative versus a predictive measure. 

Defined Models 

Objectives. One device for investigating the performance of a particular 
analytic method is using it to process a data system with known characteristics. 
The ability (or inability) of the method to accurately and reliably recover 
these known characteristics can provide useful insights into the general 
performance capabilities of the method. We used this approach to address some 
of our concerns about the validity aspects of PAA by analyzing data generated 

from specified models with particular effects structures. 

Also of interest here were the replicability characteristics for the . 
analysis of simplified data systems (as a preface to the more complex system$ to 

be considered subsequently). 

Procedure. Three sets of analyses were performed. One analysis had a 
theoretical emphasis; the other two were concerned primarily with replicability 
issues and secondarily with the theoretical considerations implied by their 
effects. These were (1) the study of main effect-interaction effect models 
discussed in Chapter II, and analyses of small data systems containing (2) a 
causal factor and (3) a symmetric interaction. The latter two analyses were 
based on data used by Magidson (1982) in a discussion of problematic categorical 

data systems. 

The design and specifications of (1) have been previously d-iscussed in the 
context of theoretical considerations of PAA. The analyses associated w~th this 

part of the defined-models simulations were not subjected to cross-validation 
because our interest was in the confounding of inter'pretation that could result 

from using PAA in the context of model specification. 
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The causal factor data set (Table 3.2) is a data system that has an 
underlying factor which can be used to make the observations (almost) perfectly 
predictable. For these data, the completeness of treatment determines the 
survival of the patient, regardless of type of treatment or location of 
facility. The conclusions drawn for analyses of subsets of these factors can be 
quite misleading, however: analysis of survival by type-of-treatment suggests 
that the standard treatment is preferable, but analysis of survival by type-of­
treatment by location suggests that the new treatment is to be preferred. In 
reality, either treatment is equally effective when carried to completion. 

The causal-factor data system was analyzed, with and without inclusion of 
the causal factor (completeness) by conducting 100 replications with samples 
generated by the bootstrap resampling method. Of interest was the empirical 
consistancy of the PAA results for this four variable system. 

The data system containing a symmetric interaction effect (Table 3.3) 
contains an interaction that is approximately equal in strength - but opposite 
in direction - for each of two subgroups. In particular, neither the main 
effect for medication nor the main effect fOI' sex is significant by conventional 
tests. Since no effects are found in either. of the two-way contingency tables, 
a PAA would normally cease processing. The medication by outcome subtables 
conditional on sex, however, reveal a significant benefit for the use of aspirin 
for males, and an approximately equal benefit from the placebo for females. 
This information would not usually be uncovered by a standard PAA. 

The symmetric-interaction data system was also analyzed by using the 
bootstrap method to observe the consistency of results. Of secondary interest 
was the extent to which this type of interaction (as represented in this 
particular data system) might pass the initial main-effects test. 

Observations. The results of the model-recovery study (1) had implications 
imbedded in the theoretical aspects of the method and were therefore presented 
in Chapter II. 
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Alive 

Dead 

Alive 

Dead 

TABLE 3.2 
'Causal Factor' Data from Magidson (1982) 

City A 

Complete Treatment 

standard 

5 (100%) 

o (0%) 

New 

100 (100%) 

o (0%) 

City B 

Complete Treatment 

Standard 

500 (100%) 

o (0%) 

New 

95 (100%) 

o (0%) 
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Abbreviated Treatment 

Standard 

o (0%) 

95 (100%) 

New 

o (0%) 

900 (100%) 

Abbreviated Treatment 

Standard 

o (0%) 

500 (100%) 

New 

o (0%) 

5 (100%) 

TABLE 3.3 
'Omitted Interaction' Data from Magidson (1982) 

MALES 

Outcome 
Not % 

Medication Stricken Stricken Stricken 

Aspirin 29 171 14.5% 

Placebo 46 160 22.3% 

FEMALES 

Outcome 
Not % 

Medication Stricken Stricken Stricken 

Aspirin 17 73 18.9% 

Pl acebo 12 77 13.5% 

,. 
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The analyses of the causal-factor data (2) and the symmetric-interaction 
data (3) demonstrated a consistent stability of results; for each of the 
analyses described there was no variability in the selection of predictor 

vari abl es. 

For the data system with the imbedded causal factor, results were 
consistantly confounding, as pr~viously described, unless the causal factor was 
included. for the data system with the symmetric interaction, this effect was 

consistantly undetected using conservative statistical tests for significance. 
It could be detected by an appropriate manipulation of statistical cutpoint 
criterion or force-variable options, but unguided use of these options has other 

consequences which are discussed later in this chapter. 

Conclusions. The most important findings from these simulations were the 
model-identification deficiencies of PAA discussed in Chapter II. 

Results of the other two sets of analyses point out t~at~ for simple data 
systems containing reasonably well defined effects, a PAA can be expected to 
provide replicable findings. However, as is also seen from the simulations, 
these findings may be misleading. This, of course, can be the case with any 
predictive method -- there is always the potential for misleading or erroneous 
interpretations of incomplete analyses where either important measures in the 
dat~ system are omitted or where processing is not correctly guided in the 
di recti on of cert.ai n types of effects. We strongly suggest the use of anci 11 ary 
analysis, especially in the absence of strong theory to guide interpretation of 

results. 

Random Da,ta 

Objectives. WR were interested in how PAA would function in the 'worst­
case' situation where there were almost no systematic relationships present in 
the data. While there exist a number of statistical procedures for examining 
the effects of supplemental error added to the data base analyzed by a 
particular technique, for our purposes6 we chose to look at the results of 
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analyses of a set of randomly-generated numbers. Of special interest were the 
potential effectiveness of various statistical and non-statistical branch­
termination criteria available in the computer program. 

Procedure. A data set consisting of 500 'cases' of 11 'variables' was 
created by using a FORTRAN computer program to sample data points from a 
uniform random distribution of range [0 •• 1J and then dichotomizing these data 
using 0.5 as the cutpoint. The characteristics of these data were checked by 
SPSS descriptive and correlation analyses. 

An analysis was run on the original data set using each of the four 
statistical coefficients; the program was allowed to proceed throuQh four levels 
of PAA processing. These 'population' analyses provided the standard against 
which bootstrap sample replications (loa samples for each statistic) were 
compared. 

Observations. For the population analyses, using conservative 
probabilistic criteria, the analysis of these data would not have proceeded 
beyond even the first predictor selection point. Values of the statistics for 
the strongest predictor variable were: Chi-square=2.484, Phi=~.~7~, 

Uncertainty=~.004, and Lambda=0.064. These would not be considered significant 
at an alpha level of 0.~5, for instance. 

If the analysis is allowed to proceed, however, it is possible for the 
statistical measures at succeeding nodes to indeed be judged Significant. At 
the sixth node of the third level, for example, Chi-square=5.074; at the third 
node of the fourth level, Chi-square=5.788; at the fourth node and fourth level, 
Chi-square=4.455 (Figure 3.3). 

For the 100 bootstrap replications that were run, results reflected the 
relative strengths of association found within the data: greater association 
generally led to better replicabi1ity. A chart of the predictor variables 
selected at each node is presented in Table 3.4 and illustrated in Figure 3.4. 
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FIGURE 3.3 
'Population' Analysis of Random Data 

Statistic = Chi-Square 

-8-
(2.61) 

-3-
(1. 7 Ii' ) 

-6-
(2.46) 

-2- -9- -8- -8-
(1.34) (2.37) (1.~6) (1.64) 

-4-
(2.48) 

-5-
(1. 45) 

-6-
(6.46) 

-6-
(2.90) 

-9- -3- -7- -8-
(.76) (5.1i'7) (1.6~) (1.85) 

Note: Index number of predictor variable is enclosed in dashes, value of the 
Chi-Square statistic is enclosed in parentheses. 
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TABLE 3.4 
Simulation Analysis for Random Data 

Statistic = Chi-Square 
100 Replications 

(Entries are Frequencies that Each Predictor was Selected at Each Node) 

PAA Level = ~ 

PAA Level = 1 

PAA Level = 2 

PAA Level = 3 

1 

2 
3 

4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 

1 

11 

10 
6 

3 
10 
5 
7 

2 
7 
3 

11 
5 
6 

10 
3 

2 3 

1 1 

15 11 
10 22 

12 24 
17 19 
7 17 

16 6 

17 18 
20 13 
17 19 
13 17 
10 10 
7 17 

10 16 
12 13 
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PREDICTOR VARIABLES 

4 5 6 7 8 9 

33 4 19 1 13 1 

11 2 22 1 14 11 
10 20 6 1 7 3 

4 12 18 3 13 4 
11 4 9 11 7 9 
10 30 2 9 4 8 

Ii' 12 11 24 5 14 

12 8 6 7 12 5 
6 9 3 14 8 14 
8 7 7 11 10 10 
4 7 6 8 17 9 
9 6 30 8 6 10 

11 4 6 22 8 16 
15 7 3 14 9 9 
2 12 6 15 11 23 

10 

16 

3 
15 

7 
3 
8 
5 

10 
6 
8 
8 
6 
3 
7 
3 

, 
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FIGURE 3.4 

DISTRIBUTION OF PAA-SELECTED PREDICTOR VARIABLES 

Rando~ Da~o Sy.\e~~ lee Repllca~lona 
Chl-Squa~e Stail.ile 

t) Each .e~ of b~. ~ep~ ... n~. a node In ~he PAA ~r ... 
2) Eacn ve~~leal bar ~ep~ .. en\. the relative f~equency 

of .elec~lon for each predlc~o~ va~lable. 
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Notice that each variable was selected at least once as the best predictor of 
the criterion; the predictor variable with the largest 'population' Chi-square 
value was selected most frequently, but only 33% of the time. 

Conclusions. Consideration of the results of the analysis of this random 
data system shows that it is possible (and indeed quite likely) for numerous 
'chance ' relationships to be selected by a PAA procedure. Theoretically, we 
expect on average that, for an alpha of ~.~5, one in twenty contingency tables 
would be falsely identified as representing significant 

association/predictability in the population. For a PAA carried to five levels, 
there are 63 2x2 tables -- an average of three of which would be significant by 
chance alone. Simple methods for dealing with this problem are not available; 
one ~ hoc approach would be to use the combination of both a probabilistic 
cutoff criterion for the statistic and a minimum size criterion for either the 
2x2 cell or marginal frequencies. 

, 

Most likely the presence of this kind of background noise would not have 
pronounced effects at the early levels of a PAA of real data. Systematic 
relationships would be expected to exhibit strong enough association/prediction 
measures to be selected. But a few levels into the analysis, where strong 
effects have already been extracted and predictor-criterion tables begin to have 
similar statistical values, this effect becomes potentially a serious problem. 
The higher in the PAA tree this occurs, the more disruptive the net effect on 
the overall analysis. 

The bootstrap replications conducted for this data system give an 
indication of just how tenuous the selection is for predictors in a noisy 
system. The strongest overall effect has borderline statistical significance 
(if we accept this sample as a 'population'), but it replicates over only one 
third of the samples. Proceeding farther down the PAA tree, the distribution of 
selected predictor variables (Figure 3.4) becomes even more uniform across 
samples. 
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OBTS Probation-Eligible Data 

Objectives. Aside from the theoretical and simulation-based arguments 
presented, one might conjecture that there remains for some researchers the 
question of whether the PAA approach might still Iworkl (in the very broadest 
sense of the word) for some empirical criminal justice data systems. We ask: 
Can useful information, which is trustworthy, be extracted from a Predictive 
Attribute Analysis of real criminal justice data? 

To address this question, we conducted a series of analyses on data 
considered to represent a typical research application for the PAA method. We 
selected a IProbation-Eligible l subset of the 1980 NYS Offender-Based­
Transaction-Statistics database7 ("PROB8~") for study. These data were 
considered to be representative of the kind generally used by criminal justice 
researchers; additionally, some of the relationships present in the data system 
were known from prior analytic work. 8 

We examined the results of a number of population and validation PAAs on 
these data, looking at (1) issues of replicability and the implications for 
statements of confidence appropriate to results, and (2) combinations of 
parameter specifications providing the most meaningful results (based on our 
understanding of the relationships eXisting within the data). In particular, we 
looked at both the sequence of selected predictor variables and the individuals 
comprising the terminal subgroups defined by the analysis. By looking at the 
membership of the terminal subgroups, we hoped to be able to assess whether, 
aside from the issues of model identification and variable-selection sequence, 
the individuals categorized as a.result of the analysis were a meaningful and 
reliably-clustered group on which policy decisions might be appropriately 
based. 

Procedure. A total of 7813 records for cases categorized as probation­
eligible were drawn from the 1980 NYS OBTS database for two regions of New York 
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VAR 
# 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

VAR 
Name 

SEX 

BAD0 

BAD~l 

BAD~12 

CLASD 

CLASABC 

PERS 

PROP 

DRUG 

DOWN0 

DOWNti}l 

AGERISK 

BLACK 

INCARC 

TABLE 3.5 
Description of PROB80 Measures 

VAR 
~ Descrietion 

Sex Sex of offender ["=F, 1 =M] 

Pri9r Prior criminal history: any 
[0=No, l=Yes] 

Prior Prior criminal history: moderate 
[~=No, l=Yes] 

Prior Prior criminal history: substanti al 
[0=No, l=Yes] 

Seri ous Class D offense [~=No, l=Yes] 

Serious Class A, B, C offenses ["=No, l=Yes] 

Type Person crime [~=No, l=Yes] 

Type Property crime [~=No, l=Yes] 

Type Drug crime [~=No, l=Yes] 

Degradati on Charge reduced more than one class 
[~=No, l=Yes] 

Degradati on Charge reduced one class [~=No, l=Yes] 

Age Offender age 
l=Yes] 

between 20 and 3~ [~=No, 

Race Offender was Black [~=No, l=Yp.s] 

(Dep Measure) Offender Incarceration [~=No, l=Yes] 
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State: 6@78 for New York City (5 borou~hs) and 1735 for NYC suburban counties. 
The variabl~s chosen for analysis (Table 3.5) were among those used in prior 
studies of incarceration predictability. The measures included individual-level 
attributes of age, sex, race, and prior criminal history, as well as offense­
level characteristics such as type and seriousness of crime. The criterion to 
be predicted was whether or not the individual was incarcerated. Variables not 
already coded as binary data were dichotomized, principally on the basis of the 
meaning attached to various ranges of the categorical and continuous measures 
but with some consideration given to the empirical distributions. 

As with the previous data systems, a 'population' analysis was run on the 
original data for each of the four statistical coefficients; this was done 
separately for the New York City and the NYC Suburban regions. Selected PAA 
trees are presented in Figures 3.5 (NYC, Chi-square), Figure 3.6 (NYC, Lambda), 
Figure 3.7 (suburban, Chi-square), and Figure 3.8 (suburban, Lambda). This set 
of population analyses was again the standard to which bootstrap replications 
were compared. In general, the strategy was to conduct a set of 100 resamplings 
for each of the four statistical criteria for both regions; the processing was 
limited to a depth of four levels (16 terminal subgroups) where population­
sample terminal subgroup comparisons were made. In addition to the results 
reported directly here (through Tables and Figures), a number of analyses that 
were either partial or extended versions of the ones reported were run to insure 
that conclusions being drawn were appropriate. 

We wished here to have a more formal means of evaluating the information 
provided by the resampling replications with regard to the terminal 
subgroups delineated by the analysis. A supplementary computer program was 
written to compare the case membership of the terminal subgroups selected by the 
population analysis to the terminal subgroups selected by each of the bootstrap 
replications. Phi coefficients were calculated for all population-sample 
comparisons and averaged across the 100 replications to provide (1) an index of 
the goodness-of-fit for the samples to the popu1ation and (2) and indication of 

-72-

I 

t 

{ 

( 

l 
t 

I=f~' 
a 
! 

=r 
r';\'-

~-

-r =-
I 
f··,,-

-,~::; 

~ 
1, 

~f'-
) ... 

FIGURE 3.5 
'Population' Analysis for PROB8@ Data 

NYC, Statistic = Chi-Square 

BAD@l (BAD(312) 
183.4 (138.5) 
prior (prior) 

BAD(312 
58.@ 

prior 

BLACK (PROP) CLASD 
9.1 (8.7) 17.6 
race (type) serious 

BAD0 (BAD@l) 
867.1 (805.3) 
pi"i or (pri or) 

CLASD 
14.4 

serious 

SEX SEX 
3.6 3.7 
sex sex 

Note: Information at each node is in the format: 
VARIABLE (RUNNER-UP) 
stat val (stat val) 
info type (info type) 

CLASABC 
14.5 

serious 

SEX 
6.8 
sex 

CLASD 
23.8 
serious 

DOWN(31 
9.4 

deg rada t ion 

SEX 
6.1 
sex 

Runner-up predictors are given only when they have very similar stat 
values to the selected predictor. 
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AGERISK 
.~30 
age 

CLASD 
.~25 
serious 

----------

FIGURE 3.6 
'Population' Analysis for PROB8~ Data 

NYC, Statistic = Lambda 

BLACK 
.~29 
race 

BAD~l 
.2~5 
prior 

BAD~l 
.~77 
prior 

CLASD (BAD~) 
.103 (.~95) 
seri ous (pri or) 

BAD~ 
.111 
prior 

PROP 
.~81 
type 

CLASD 
.~~8 
serious 

BLACK 
.~38 
race 

Note: Information at each node is in the format: 
VARIABLE (RUNNER-UP) 
stat val (stat val) 
info type (info type) 

Runner-up predictors are given only whe~l they have very similar stat 
values to the selected predictor. 
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PERS 
(32.2) 
type 

DOWN~l 
(4.5) 

degradation 

FIGURE 3.7 
'Population' Analysis for PROB8~ Data 
NYC-Suburban, Statistic = Chi-Square 

PROP 
(I~3. 6) 
type 

SEX 
(5.3) 
sex 

BAD~l 
(17.6) 
prior 

BLACK 
(8.2) 
race 

BAD~l 
(181.1) 
prior 

BLACK 
(6.7) 
rac:e 

DOWN~l 
(24.8) 

degradatioll 

PERS 
(7.~) 
type 

Note: Information at each node is in the format: 
VARIABLE (RUNNER-UP) 
stat val (stat val) 
info type (info type) 

SEX 
(8.9) 
sex 

DOWN~ 
(5.2) 

degradation 

Runner-up predictors are given only when they have very similar $,t;at 
values to the selected predictor. 
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BADIn 
.f/J77 
prior 

FIGURE 3.8 
'Population' Analysis for PROB8~ Data 

NYC-Suburban, Statistic = Lambda 

DOWNf/J 
(.033) 

degradation 

CLASD 
.167 
serious 

BLACK 
(.051) 
race 

BAD0 
(.151) 
pr~or 

Note: Information at each node is in the format: 
VARIABLE (RUNNER-UP) 
stat val (stat val) 
info type (info type) 

PROP 
(.033) 
type 

Runner-up predictors are given only when they have very similar stat 
values to the selected predictor. 
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variability across the set of sample analyses. Figure 3.9 illustrates this 
process. 

Observations. We discuss here only the analyses for the New York City 
data; specific results for the two regions were generally different (as 
anticipated), but the conclusions drawn regarding the PAA method itself were 
equivalent. We begin with the series of population analyses. 

for the analysis using the Chi-Square statistic as the predictor-selection 
criterion, a probability-based termination criterion (alpha = 0.05) was used. 
Figure 3.5 displays the PAA tree for the analysis, conducted to a maximum of 
four levels for each branch. At nodes where alternative measures were close 
runners-up to the selected variable, they are noted in parentheses. 

The initial split was based on the BADf/J measure (a measure of prior 
criminal history) with the BAD01 measure being a relatively close runner-up 
(Chi-square of 867. versus 805.). Of interest is the far left branch of the 
tree: [BAD0->BAD01->BADf/J12->BLACKJ. Although these four measures are highly 
correlated, they are successively selected in a branch that might be thought of 
as a progressively-more-incriminating characterization. 

For the analysis using Phi as the predictor-selection criterion, results 
were the same as the Chi-square analysis except where branch processing was 
allowed to continue beyond the point where the Chi-square minimum terminated the 
analysis (a less-restrictive minimum statistic was used here). 

For the analysis using the Uncertaintl coefficient, results were the same 
as for the Chi-square/Phi analyses through the third level of processing. The 
far left branch [BAD~->BADf/Jl->BAD~12->PROP] did not precisely replicate the Chi­
square results described previously; it would, however, be speculation to 
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FIGURE 3.9 
Procedure for Comparing population and Sample 

Subgroup Membersip 

Comparison Table 
for Each Terminal Group 

of the PM: 

SAMPLE CASES 

POPULATION CASES 
Absent Present 

from Sroup in Group 

Absent 
From A B 

Group 

,'-

Present 
in C 0 

Group 

L-__ --'"-.-~-

Where: A and 0 indicate corresponding classifications 
Band C indicate differing classifications 
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attempt substantive explanations for the points of divergence found at the nodes 
in the fourth level. 

For the analysis using the Lambda coefficient, results were entirely 
different from the above three analyses (see Figure 3.6). Recall, of course, 
that Lambda measures improvement in predictability -- not simply predictability. 
The first split was based on BAD01 rather than BAD0, and the left-hand branch 
proceeds [BAD0l->AGERISK->CLASD->PROP] rather than [BAD0->BAD0l->BAD012-> 
BLACK]. Sex, which appeared quite frequently in the third level of the previous 
three analyses, did not appear at all here. Race appeared much more frequently 
for the Lambda-based PAA than the other analyses. 

For the bootstrap validation series of analyses, 100 replications of the 
population PAA for each statistical criterion were run. Results are discussed 
in terms of (1) replication of predictor variable sequences in the PAA tree, and 
(2) replication of subgroup membership. 

In bri ef, the PAA tree structures did not repl i cate well beyond the fi rst 
level. For NYC data, Tables 3.6 through 3.8 present the distribution of 
predictors selected at each node of the analysis for Chi-Square, Uncertainty, 
and Lambda coefficients. Figures 3.1~, 3.11, and 3.12 correspond to these 
tables and illustrate graphically how the results at successive nodes of a 
particular branch become less ,and less reliable. (A perfectly-replicated PAA 
would, for example, have only one bar for each node.) These representations 
require careful study to determine the source of dispersion at each node, 
however, $ince the variables selected at each node are conditional on the 
variables selected at th.e previous decision point, and hence the counts at lower 
levels for any particular variable can be the by-product ofa number of 
different paths. The end result, however, seems to be a tendency toward a 
more uniform distribution of predictors as one proceeds do\tln the PAA tree. 

With regard to the stability of subgroup membership across samples, there 
were three general questions: (l} what statementg can be made about the global 
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TABLE 3.6 
Simulation Analysis for PROB8~ Data 

Region = NYC Statistic = Chi-Square 
1~~ Replications 

(Entries are Frequencies that Each Predictor was Selected at Each Node) 

Variable Number 

Node 1 2 3 4 5 6 7 8 9 10 11 12 

Level =@ 1 100 

Leve 1!:1 2 100 
3 100 

Level=2 4 10 2 57 3 4 
5 2 89 1 8 
6 5 37 58 
7 59 11 2 19 5 1 3 

Level =3 8 -11 52 
\ 

2 11 2 2 4 
9 23 1 9 1 19 39 5 

10 5 9 70 1 15 
11 18 2 4 52 24 
12 52 22 1 2 2 1 13 4 
13 8 6 2 11 1 49 13 6 
14 5 1 30 27 15 2 1 '7 6 
15 29 36 1 3 3 8 1 4 15 

-80-

13 

24 

16 
3 

3 
4 
6 

, 
i 

.:r 

~'l' 
"~."'- ' 

I 
,~ 

~j-,) ~~.-

i 
~~: ... ~ 

TABLE 3.7 
Simulation Analysis for PROB8@ Data 

Region = NYC Statistic = Uncertainty 
1~~ Replications 

(Entries are Frequencies that Each Predictor was Selected at Each Node) 

VARIABLE NUMBER 

NODE 1 2 3 4 5 6 7 8 9 10 11 12 13 

Level =@ 1 100 

Level=l 2 100 
3 100 

Level=2 4 3 2 65 5 25 
5 1 90 1 8 
6 5 37 58 
7 64 10 2 18 2 1 3 

Level =3 8 6 59 4 13 2 1 5 1 9 
9 19 2 6 1 32 29 11 3 

10 5 9 71 15 
11 14 1 6 49 30 
12 53 21 1 2 2 1 12 5 3 
13 6 5 2 11 1 50 15 7 3 
14 4 1 17 34 24 2 1 7 5 5 
15 28 37 1 2 3 7 3 4 15 

, 
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TABLE 3.8 
Simulation Analysis for PROB80 Data 
Region = NYC Statistic = Lambda 

1!l'0 Replications 
(Entries are Frequencies that Each Predictor was Selected at Each Node) FIGURE 3.19 

NODES 1 2 3 4 5 

1 100 
-! 

Level =0 

Level =1 2 51 
3 3 95 

Level=2 4 34 
5 
6 12 2 
7 17 

Level=3 8 3 11 
9 64 

10 44 
11 5 
12 70 
13 66 3 
14 3 
15 

VARIABLE NUMBER 

6 7 8 9 10 11 12 

23 

1 
51 ! 

29 
11 

26 10 
11 10 

53 3 
16 3 

-82-

13 

26 
2 

9 

47 
1 

50 
15 

31 
9 

30 

95 

DISTRIBUTION OF PAA-SELECTED PREDICTOR VARIABLES 

PROBSe Data Sy.tem~ lee ReplIcatIon. 
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FIGURE 3.1 t 

DISTRIBUTION OF PAA-SELECTED PREDICTOR VARIABLES 

?ROB80 Da~a Sy.lem~ 100 Repll~a~lo~. 
U~cer~aln~y Slatl.llc 
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NOTES: 1) Each .e~ of bar. repr .. en~. a node In the PAA ~r ... 
2' Each vertical bar repre.ent. th4 relative frequency 

of •• Iectlo~ for each predlc~or variable. 
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FIGURE 3.12 

DISTRIBUTION OF PAA-SELECTED PREDICTOR VARIABLES 

PROB80 Pa~a Sv.t.~~ 100 Repllcallo~. 
L~do Slall.lic 

NOTES, 1) Each .el of bara repr ... ~~. a r~d. I~ the PAA lree. 
2) Eoc:n verllcal bar repre.e~l. U~ rcdatlve frequ.~cy 

of .elecllo~ for each ~~ed(c\o~ variable. 
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level of sample-population agreement, (2) what is the variability around this 
measure of agreement, and (3) are there any meaningful differences in stability 
for different predictor-selection statistical criteria? We found that (1) there 
was generally a poor correspondence between sample and population subgroup 
classification - typically less than 50 percent Icorrectl classification, (2) 
there was considerable variability around this correspondence, generally 
becomming more variable (and unreliable) as one progresses to deeper levels of 
the analysis, and (3) these results held true regardless of the statistical 

criterion used. 

Table 3.9 and Figures 3.13-3.15 present the goodness-of-fit coefficients 
and respective frequency distributions for each statistical criterion, averaged 
across the l0~ replications. Looking at the distribution for the Chi-square 
criterion (Figure 3.13), one can see that only 8 percent of the sample terminal 
subgroups (16 subgroups times 100 replications) contained exactly the same 
individuals as the corresponding population terminal subgroups. The median 
goodness-of-fit coefficient, which is equivalent here to a correlation 
coefficient, is .44; that is, the expected correlation between the membership of 
the population and any corresponding sample terminal subgroup is only .44. The 
variablity of these measures is high for each of the statistical criteria, as 
evidenced by the spread of the distributions and the resulting quartile 

statistics ~Table 3.9). 

Conclusions. Consideration of the series of analyses of the PROB8~ data 
leads us to conclude that Predictive Attribute Analysis does not have particular 
utility when used with 'real ' cr;~inal justice data. PAA tree structures did 
not replicate well beyond the initial levels of analysis. Even considering only 
terminal subgroup membership, a single PAA cannot be expected to provide a 
reliable representation of the groups of individuals who cluster together. 
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TABLE 3.9 
lerm~nal Subgroup Analysis for PROB80 Data 

Comparlson of PHI Goodness-of-Fit Coefficients 
(Population-Sample) For 100 Samples 

U Q!Jartile 
Medi an 
L Quartil e 

U Quartile 
t·ledi an 
L Quartil e 

U Quartil e 
Median 
L Quartile 
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NYC 
Region 

Suburban 
Region 

.617 .671 
.408 .440 

.285 .306 

.610 .739 
.402 .499 

.284 .377 

.764 .671 
.640 .362 

.453 .232 
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Footnotes 

lWe use this acronym primarily to allow us to easily distinguish the 
computer program from the analytical technique which it implements, secondarily 
to emphasize the evaluat.ion capabilities of the program. 

2Even at one page per node, a 4-level analysis with l~~ replications can 
generate 32~~+ pages of OUtput; with four statistical criteria. 12,8~0+ pages. 

3These are documented in the User's Guide and the internal nrogram 
documentation. 

4The program has also been compiled ar.d run on the SPERRY 11~~/83 using 
ASCII FORTRAN. 

5program dimensions are easy to modify. See the User's Guide for 
discussion. 

6Initially, we expected to re-analyze some of the data systems discussed in 
this report contaminated with various percentages of randomly-distributed error 
(perhaps 5%, l~%, 2~%). Because of our findings of poor-reproducability from 
the original analyses, however, we doubted the utility of much further effort 
toward documenting subtleties of PAA performance. 

7For a more complete description of this database than will be presented 
here, refer to New York State Criminal Justice Processing: Felony Offenders 
Disposed in 198~, 3 Vol., Harig, Thomas, Division of Criminal Justice Services, 
OPARSS, (1983). 

8Frederick, Bruce C. and Sher~ood E. Zimmerman. Discrimination and the 
Decision to Incarcerate, (Albany, NY) Division of Criminal Justice Services, 
OPARSS, (983). 
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CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents a brief recapitulation of the findings detailed in 
the other sections of this report. Recommendations are based on the discussions 
contained in this Technical Report as well as our own experiences in using the 
PAA method. We attempt to provjde generalizations which are germaine to 
practical applications of PAA in criminal justice research problems. 

Appropriate Applications for PAA 

The proper design of a PAA requires a prior knowledge of some of the 
charac.teri sti cs of the data system under study. The proper i nterpretati on of 
the results of a PAA requires efforts toward the validation of initial findings. 
Therefore, a PAA should not be the first step in the analysis of a complex data 
system, nor should it be the last. 

Predictive Attribute Analysis is not appropriate for model-development 
applications. This is contrary to popular perception and usage. It is the case 
regardless of whether the application is exploratory or confirmatory in nature. 
Because a PAA cannot, in principle, distinguish between a main effect and an 
interaction effect, it is incorrect to presume that one has uncovered a complex 
(yet significant) interaction effect defined by the sequence of variables 
selected at the nodes along a particular PAA branch. The PAA algorithm simply 
detects the series of strongest main effects (which mayor may not be components 
of higher-order interaction terms) that are conditional on the defining 
characteristics of the subgroups found at the particular nodes of the analysis. 
Thus, in either exploratory or confirmatory types of analysis, one cannot be 
certain as to the particular model that is most appropriate to the data. 
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Predictive Attribute Analysis is perhaps best used as a somewhat 
serendipitous pre-formal-analysis data description technique. As such, the 
analysis is used as an exploratory tool to suggest effects and relationships 
which might not have previously occurred to the analyst. Any hypotheses 
resulting from this exploratory act'ivity, however, require validation by 

independent means. 

Choice of a PAA Design 

Although we have suggested that the method may be appropriately used in an 

exploratory manner, that is not to say that we have recommended its use in a 
haphazard manner. If the use of a Predictive Attribute Analysis has been deemed 

appropriate, there are important considerations in the selection of the 
parameters to guide the processing within a PAA. The interpretability of the 
information resulting from any analysis, even exploratory, is a function of the 

precision of the questions asked beforehand. 

As a general approach, we suggest the accumulation of as much prior 
evidence as possible when addressing particular research questions; complex 
social science models sugge.sted by post hoc deduction seldom replicate 
convincingly. The development of a useful prediction model should be expected 
to require iteration, and a hypothesis-based approach provides a good sequential 
analysis strategy for validating true effects and for rejecting competing 

alternative explanations. 

Some prior theory, however complete, should guide the specification of 
parameters supplied to a Predictive Attribute Analysis. Especially important 
among these parameter-specification considerations are the statistical criterion 
used to measure predictive power, the stopping criteria used, and the depth at 
which the results of the analysis are to be considered acceptably valid. The 
conclusions drawn from particular PAAs ~/ere shown differ markedly depending on 
whether a measure of association (or a measure of predictability) was used. 
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In assembling the set of predictor variables to be used in an analysis, it 
is important to remember that the PAA method is not a multivariate procedure 
where interrelationships among the predictor variables are explicitly 
controlled. The pattern of predictor variable selection as well as the final 
subgroup definitions are a function of the interrelationships of the prediction 
measures. This characteristic must be kept in mind, lest one particular 
tfactor,t by virtue of a relative over-representation in the set of predictors, 
appear inordinately influential. Conversely, the exclusion of a demonstrably 
good predictor can seemingly elevate the importance of less effective 
predictors. We suggest that at least one of the ancillary statistical 
techniques used in conjunction with the PAA should focus on interrelationships 
among the variables in the data system. 

Interpretation of Results 

The PAA method has observed instability with respect to replication across 
samples drawn from a particular population data system. This is true for both 
the branching pattern of predictor variables and for the particular individuals 
comprising the membership of the terminal sUbgroups. 

Analysts should, therefore, exercise caution when determining the depth of 
the analysis at which results are to be reported. While appropriately 
conservative stopping criteria may be of some use in this regard, they typically 
do not provide either definitive or statistically-interpretable bounds. The 
bootstrap resampling capabilities provided by the computer program provide 
valuable information for such decisions, and their use is strongly encouraged. 

Since we classify PAA as an exploratory type of method, we caution analysts 
to conscienciously examine alternative hypotheses when using the method. An 
everpresent consideration is whether or not unrepresented effects are a 
significant underlying influence behind the observations that are the focus of 
analysis. A PAA should be regarded as only one component of a comprehensive 
analytic strategy, typically incorporating several statistical techniques, which 
attempts to converge on a proper interpretation. 
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Summary 

A Predictive Attribute Analysis, as a cautiously conducted and properly 
interpreted component of a well-planned and thorough research design, may 
provide useful information to the criminal justice data analyst. Its inherent 
limitations, however, argue against casual use and informal interpretation. 
Research conclusions which are based on the results of a Predictive Attribute 
Analysis should always be accompanied by additional supporting evidence. 
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<PREDICTIVE ATTRIBUTE ANALYSIS> <VERS:84.02><NYS*DCJS> 
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PRO B 8 0 . . 
REGION=NYC-SUBS 

POP U L A T ION 

STAT ISTIC=CH I SQ . 
A N A L Y SIS 
RUNDATE=1/2,9/84 

• * •• * •• **** •• **~*******.** ••• ***.***.******.****.**.****.********************* 

CONTINGENCY TABLE ANALYSIS LEVEL= 0 GROUP=1 
==--===========~==~=========~====-====-===============================~======== 

INDEP CHI-SQ INDEP SUBGROUP COMPOSITION 
VAR II STATUS STATISTIC VAR #I -0- -1- -XO- -X1------ ------ ---.... --- ----- ----------------------~----

1 35.856 1 129. 160*. 7.4 92.6 
2 181.067 2 1087. 64 j. 62.7 37.3 
3 112.619 3 682. 1053. 39.3 60.7 
4 59.107 4 277. 1458. 16.0 84.0 
5 16.169 5 1050. 685. 60.5 39.5 
6 0.029 6 1641. 94. 94.6 '5.4 
7 7.084 7 1347. 388. 77.6 22.4 
8 9.944 S 691. 1044. 39.8 60.2 
9 7.393 1624. 111. 93.6 6.4 

10 8.707 10 1044. 691. 60.2 39.8 
11 8.437 11 235. 1500. 13.5 86.5 
12 17.327 12 1093. 642. 63.0 37.0 
13 24.723 13 1155. 580. 66.6 33.4 

CONTINGENCY TABLE ANALYSIS LEVEL= 0 GROUP= 1 
===========-==========-======================================================== 

F R E QUE N C I E S -----------------------------------

PREDICTOR -O-
Il 2 -1-

CRITERION 1114 

-0-
276. 
374. 

650. 

-1-

811. 
274 •. 

1085. 

1087. 
648. 

1735. 

PER C E N TAG E S -----------------------------------

PREDICTOR -0-
, 2 .-1-

CR.ITERION '14 
-0-

15.9 
21.6 
37.5 

-1-

46.7 
15.8 

62.5 

62.7 
3,7.3 

100.0 

---~---------------------------------------------------------------------------
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<PREDICTIVE ATTRIBUTE ANALYSIS> <VERS:84.02><NYS*DCJS> 

****************************************************************************** 
? ROB 8 0 . . POP U L A T ION 
REGION=NYC-SUBS 'STATISTIC=CHISQ 

A N A L Y SIS 
RUNDATE=1/29.~84 

****************************************************************************** 

CONTINGENCY ~ABLE ANALYSIS LEVEL= 1 GROUP= '1 
===============================================================~=============== 

INDEP CHI-SQ INDEP SUBGROUP COMPOSITION VAR , STATUS STATI STI C VAR II -0- ...... 1- -%0- -%1-
-~---- --------- ---------------------------

1 10.232 1 52. 1035. 4.8 95.2 
2 0.000 2 1087. o. 100.0 0.0 
3 10.207 3 682. 405. 62.7 37.3 
4 13.923 4 277. 810. 25.5 74.5 
5 13.357, 5 651. 436. 59.9 4g:~ 6 0.130 6 1055. 32. 97.1 
7 2.600 7 882. 205. 81.1 18.9 
8 23.590 8 392. 69.5. 36.1 63.9 
9 7.022 9 1039. 48. 95.6 4.4 

10 11.959 10 609. 478. 56.0 44.0 
11 0.352 11 129. 958. 11.9 88~1 
12 2.891 12 618. 469. 56.9 43.1 
13 19.265 13 692. 395. 63.7 36.3 

CONTINGENCY TABLE ANALYSIS LEVEL= 1 GROUP= 1 
=======================a======a=====~=============================~============ 

F R E Q U E N C I E S P E R C E N T A G E S 
-------------------------~--------- -----------------------------------

CRITERION "14 CRITERION '14 
-0- -1- -0- -1-

PREDICTOR -a- 133. 259. 392. PREDICTOR -0- 12.~ 23.8 36.1 , 8 -1- 143. 552. 695. fI 8 -1- 13. 50.8 6;5.9 

276. 811. 1087. 25.4 74.6 100.0 

----------------------------------------~--------------------------------------
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**********************************.*************.***************************** 
PRO B 8 0 . . 
REGIO~=NYC-SUBS 

POP U L A T ION 
STATISTIC=CHISQ 

A N A L Y SIS 
RUNDATE=1/29184 

****************************~~***********************.************************ 

CONTINGENCY TABLE ANALYSIS LEVEL= 1 GROUP= 2 
=============:~=================z============================================== 

INDEP CHI-SQ Q~gE: aUBGROUP COMPi~ITION VAR 1# STATUS STATISTIC - - u1- - - -%1------ ----..... --------- ----- ---------------------------
1 9.525 1 77. 571 ... 11.9 88.1 
2 0.000 2 O. 648. 0.0 100.0 
3 0.000 3 o. 648. 0.0 100.0 
4 0.000 4- o. 648. 0.0 100.0 
5 3.667 5 399. 249. 61.6 38.4 
6 5.6'39 6 586. 62 90.4 9.6 
7 20.482 7 465. 183. 71.8 28.2 
8 6.169 8 299. 349. 46.1 53.9 
9 0.133 9 585. 63. 90.3 9.7 

10 10.416 10 435. 213. 67.1 32.9 
11 24.831 11 106. 542. 16.4 83.6 
12 1.516 12 475. 173. 73.3 26.7 
13 1.423 13 463. 185. 71.5 28.5 

CONTINGENCY TABLE ANALYSIS LEVELs 1 GROUP= 2 
=======s==================================:=============s====================== 

F R E QUE N C I E S 
-----~-----------------------------

PREDICTOR -O-
Il 11 -1-

CRITERION .,4 

-0- -1-

38. 
336. 
374. 

2S~: 
274. 

106. 
542. 

648. 

PER C E N TAG E S -----------------------------------
CR ITERION .14 

-0- -1-

PREOt"CTOR 
" 11 

-~-- - 5.; 51. 10 .,5 1.8 ~~:~ 
57.7 42 0 3 100.0 

-------------------------------------------------------------------------------
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;PREDICTIVE ATTRIBUTE ANALYSIS> 
** 

<VERS:84.02><NYS*DCJS> 
. ******************** **********~******************************************** 

PRO B 8 0: POP U L A T ION A N A L Y SIS 
REGION=NYC-SUBS STATISTIC=CHISQ RUNDATE=1/29184 

~******************** 
. *********************.*********************************** 

===~~~~i~~;~i~=~~~~~=~~~~~~~!:=====________________ LEVEL= 2 GROU~= 1 
----------------============================ 

INDEP 
VAR /I ----.. 

1 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

PREDICTOR 
" 7 

CHI-SQ STATUS STATISTIC ------ ---------
3:888 
0.001 
2.644 

18.118 
0.386 

32.163 
0.000 
1.461 

21.081 
17.476 

2.737 
4.735 

CRITERION M14 

-0-
-1-

-0-

90. 
43. 

133. 

-1-

97. 
162. 
259. 

187. 
205. 
392. 

INDEP 
VAR , _8~BG~O~~_ COMPOSITION 

-%0- -%1------
------------------------~--

1 17. 375. 4.3 95.7 2 392. o. 100.0 0.0 3 242. 150. 61.7 38.3 4 80. 312. 20.4 79.6 5 250. 142. 63.8 36.2 6 364. 28. 92.9 7.1 7 187. 205. 47.7 52.3 8 392. o. 100.0 0.0 9 344. 48. 87.8 12.2 10 199. 193. 50.8 49.2 11 97. 295. 24.7 75.3 12 234. 158. 59.7 40.3 13 245. 147. 62.5 37.5 

PER C E N TAG E S 
-----------------------------------

CRITERION 1114 

-0- -1-
PREDICTOR -O-

Il 7 -1- ¥~.O 24.7 47.7 
.0 41.3 52.3 

33.9 66.1 100.0 
------------~------------------------------------------------------------------

"'.~-."---, .... ,, 



.~----~---

PREDICTIVE ATTRIBUTE ANALYSIS> 
<VERS:84.02><NYS.DCJS> 

.•••••• * ••••••••••• ** ••••••••••••••• * •••••••••••••••••••••••••••••••••••••• ~ •• 
PRO B 80: POP U L A T ION A N A L Y SIS 
REGION=NYC-SUBS STATISTIC=CHISQ .RUNDATE=1/29/84 

~ •••••••• ~ •••••••••••••••• ** ••• * •••• * •••••••••• * ••• * •••••••••••••••••••••••••• 

CONTINGENCY TABLE ArIALYSIS ___________________ ~ ___ =~i~;~~=~==~~~~~~==~======= 
======================~======-----------------------

INDEP CHI-SQ INOE~ _ a~BGRO~~_ COM~~a!TIO~%1 _ 
VAR II STATUS STATISTIC VAR 

--,.------ ----- -------------------------~------ ------
1 S·609 1 ~5. 660. S.g 95.0 

• 00 2 6 5. o. 100. 0.0 

3 17.574 3 440. 255. 63.3 36.7 
9.157 4 197. 498. 28.3 71.7 

4 5 401. 294. 57.7' 42.3 
5 0.728 
6 0.048 6 691. 4. 99.4 0.6 

7 0.000 7 695. 00 100.0 0.0 
0.000 8 o. 695. 0.0 100.0 

8 9 695. O. 100.0 0.0 
9 0.000 

10 0.005 10 410. 285. 59.0 41.0 
11.024 11 32. 663. 4.6 . 95.4 

11 384. 311" 55.3 44.7 
12 0.318 12 
13 16.962 13 447. 248. 64.3 ._ 35.7 

I 

T E N LYSIS ' LEVEL= 2 GROUp: 2 CONTINGENCY ABL A A ________________________ ========= 
==============================================-------------------------

F R E'g U E N C I E S -----------------------------------

PREDICTOR -0-
# 3 -1-

CRITERION 1114 

-0-

69. 
74. 

143. 

-1-

~~~: 
552. 695. 

PER C E N TAG E S 
---------------------------~-------

PREDICTOR -O-
Il 3 -1-

CRITERION 1114 

--0-

9.9 
10.6 

20.6 

-1-

100.0 

---------------------------------------------------------------------~---------

:PREOICTIVE ATTRIBUTE ANALYSIS> <VERS:84.02><NYS·OCJS> 
I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

PRO B 8 0 . . 
REGION=NYC-SUBS 

POP U L A T ION 
STATISTIC=CHISQ 

. 
A N A L Y SIS 
RUNi>ATE=1/29/84 

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

CONTINGENCY TABLE ANALYSIS LEVEL= 2 GROUP= 3 
=============================================================================== 

INDEP CHI-SQ INDEP SUBGROUP COMPOSITION 
VAR II STATUS STATISTIC VAR tI -0- -1- -XO- -X1------ ------ --------- ----- ---------------------------

1 ·0.01 n 1 s: 98. 7.5 92.6 O.OOll 2 106. 0.0 100. 
3 0.000 3 o. 106. 0.0 100.0 
4 0.000 4 o. 106. 0.0 100.0 
5 0.020 5 40. 66-. 37.7 62.3 
6 2.323 6 102. 4. 96.2 3.8 
7 1.608 7 39. 67. 36.8 63.2 
8 0.185 8 86. 20. 81.1 18.9 
9 1.888 9 88. 18. 83.0 17.0 

10 0.000 10 106. O. 100 •. 0 0.0 
11 0.000 11 106. O. 100.0 0.0 
12 . 0.058 12 63. 43. 59.4 40.6 
13 0.444 13 71. 35. 67.0 33.0 

CONTINGENCY TABLE ANALYSIS LEVEL= 2 GROUP= 3 
========~~===================================================================== 

F R E QU EN C I E S -----------------------------------

PREDICTOR 
# 6 

-0-
-1-

CRITERION 1114 

-0-

38. o. 
38. 

-1-

64. 
4. 

68. 

102. 
4 .. 

106. 

PER C E N T.A G E S -----------------------------------
CRITERION #14 

-0- -1-

PREOICTOR -~- 35.8 60.~. 96·i # 6 - - 0.0 3. 3. 
35.8 64.2 100.0 

-------------------------------------------------------------------------------

- - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - ~ - - - - - - -
CURRENT PAA BRANCH TERMINATES 

---- - - - --- - - - ---- - -- - - - - - -- - - - - - - - -- -
THE FOLLOWING TEST CONDITIONCS) HAVE NOT BEEN MET: 

* THE OBSERVED CHI-SQ STATISTIC OF 
WAS LESS THAN THE SPECIFIED MINIMUM OF 

-- - - - -- - - - - -- - - -- - -

2.323 
3.841 

- - - - - - - - - - - - - - - -



------~.~--------------~,~.--. 

PREDICTIVE ATTRIBUTE ANALYSIS> 
<VERS:84.02><NYS*DCJS> 

***********************************************************~***************** 
P ROB 8 0: POP U L A T I ON A N A L Y SIS 

REGION=NYC-SUBS STATISTIC=CHISQ RUNDATE=1/29/84 

******************-********************************************************** 

LEVEL= 2 GROUP= 4 
CONTINGENCY TABLE ANAL!!!! _________ s_s_= __ ================================== 

:========================------------- - - -

CHI-SQ INDEP SUBGROUP COMP08ITIONX1 
INDEP STATUS STATISTIC VAR 1# -0- -1- -x - --
VAR 1# ----- ----------------------~------------------ ------

8.881 1 69. 473. 12.7 87.3 
1 0.000 2 o. 542. 0.0 100.0 
2 3 O. 542. 0.0 100.0 
3 0.0100 4 O. 542. 0.0 100.10 

0.0010 4 5 359. 183. 66.2 33.8 
5 1.1039 6 484. 58. 89.3 10.7 
6 6.572 1 426. 116. 78.6 21.4 
7 7.7610 8 213. 329. 39.3 60.7 
8 10.835 9 497. 45. 91.7 8.3 
9 0.370 10 329. 213. 60~7 39.3 

10 3.254 
1~ 41~: 

542. 0.0 100.10 
11 0.101010 1310. 76.0 24.0 
12 0.554' 150. 72.3 27.7 
13 0.622 13 392. 

, . LEVE'= 2 GROUP: 4 CONTINGENCY TABLE ANALYSIS _____ = ________ ==================s======== 
======================================----- --------

F R E QUE N C I E S -----------------------------------

'REDICTOR -0-
1# 1 -1-

CRITERION 1114 

-0-

54. 
2821.' 

-1-

PER C E N T A 6 E S 
--------------------------------~-~ 

CRITERION 1114 

-0- -1-

1~:~ 
62.0 38.0 100.0 

336. 206. 

-------------------------------------------------------------------------------

PREDICTIVE ATTRIBUTE ANALYSIS> <VERS:84.02><NYS*DCJS> 

***************************************************************************** 
PRO B 8 0: POP ~ L A T ION A N A L Y SIS 
REGION=NYC-SUBS STATISTIC=CHISQ RUNDATE=1/29/84 

'*************************ft****************************~********************** 

INDEP CHI-SQ INOEP _B~BGRO~~_ COMPOSITION 
VAR II STATUS STATISTIC VAR II -XO- ·-X1--...... _- ------ ------_._- ----- ---------------------------

1 0.237 1 7. 180. 3.7 96.3 
2 0.0100 2 187. o. 100.0 0.0 
3 0.076 
4 2.6167 

3 127. 60. 67.9 32.1 
4 43. 144. 23.0 77.0 

5 2.209 
6 0.237 

5 161. 26. 86.1 13.9 

7 0.101010 
6 180. 7., 96.3 3.7 

8 0.000 
7 187. o. 1100.10 0.10 

9 1.1080 
8 187. O. 100.0 0.0 

10 2.543 
9 139. 48. 14,,3 25.7 

11 4.533 
10 45. 142. 24.1 75.9 

12 1.286 
11 17. 170. 9.1 90.9 

13 
12 119. 68. 63.6 36.4 

1.1'91 13 1310. 57. 69.5 30.5 

=_ £ON!I~~~~£!_T~!~~_~~~~!!IS ' LEVEL; 3 GROUP= 1 _s_==_= _______ s ___________ ==s================================================= 

F R E QUE N C I E S 
__________ M __________ ~ ____________ _ 

CRITERION N14 

-0-

4. 
86. 
90. 

-1-

97. 
1~b: 
187. 

PER C E N TAG E S 
-------------~---------------------

CRITERION 1114 

-0- -1-

PREDI~TOR -0-
II 1 -1- 2.~ 46. 73~ 44. 9g:~ 

48 e 1 51.9 100.0 

-------------------------------------------------------------------------------



<VERS:84a02><NYS*DCJS> 
PREDICTIVE ATTRIBUTE ANALYSIS> 
***************************************************************************** 

PRO B 80: POP U L A T ION A N A L Y SIS 

REGION=NYC-SUBS STATISTIC=CHISQ RUNDATE=1/29/84 

****************************************************************~~ .*********** 

LEVEL= 3 GROUP= 2 CONTINGENCY TABLE ANALYSIS __________________ =========================== 
:=================================------------------

INDEP CHI-SQ INDEP SUBGROUP COMPOSITION 1 

VAR t# STATUS STATISTIC VAR II -0- -1- -XO- -X-
----- -------------------------------- ------ .... --------

1 5.343 1 10. 195. 4.9 95.1 
0.000 2 205. o. 100.0 0.0 

2 2.030 3 115. 90. 56.1 43.9 
3 1.517 4 37. 168. 18.0 82.0 

·4 2.248 5 89. 116. 43.4 56.6 
5 0.052 6 184. 21. 89.8 10.2 
6 7 O. 205. 0.0 100.0 
7 8. 000 

.000 8 205. O. 100.0 0.0 
8 0.000 9 205. o. 100.0 0.0 
9 1.717 10 154. 51. 75.1 24.9 

10 2.826 11 80. 125. 39.0 61.0 
11 0.421 12 115. 90. 56.1 43.9 
12 13 115. 90. 56.1 43.9 
13 0.990 

IS LEVEl= 3 GROUP= 2 . CONTINGENCY TABLE ANAlYS ___________ = _______ =========================== 
=================================----------- -------

F R E QUE N C I E S 
----------------~------------------

PREDICTOR -O-
Il 1 -1-

CRITERION N14 

-0-

3~: 
43. 

-1-

15~: 
162. 

PER C E N TAG E S 
-----------------------------~-----

PREDICTOR -O-
Il 1 -1-

CRITERION _14 

-0-
2.4 

18.5 

21.0 

-1-

2.4 
76.6 

19.0 

4.9 
95.1 

100.0 

-_~.:;t----------------------------------------------------------------------------

• 

<PREDICTIVE ATTRIBUTE A\~AL.YSIS> <VERS:84.02><NYS*DCJS> 

****************************************************************************** 
PRO B 8 0 

REGION=N'IC-SUBS 

POP U L A T ION 

STATISTIC=CHISQ 

A N A L Y SIS 

RUNDATE=1/29/84 

****************************************************************************** 

CONTINGENCY TABLE ANALYSIS LEVEL= 3 GROUP= 3 
=============================================================================== 

INDEP CHI-SQ INOEP SUBGROUP COMPOSITION 
VAR " STATUS STATISTIC VAR II -0- -1- -XO- -X1------ ------ --------- ----- ---------------------------

1 5. 995 1 23. 417. 5.2 94.8 
2 .000 2 440. o. 100.0 0.0 
3 0.000 3 440. o. 100.0 0.0 
4 1.664 4 197. 243. 44.8 55.2 
5 0.293 5 249. 191. 56.-6 43.4 
6 0.265 6 436. 4. 99.1 0.9 
7 0,000 7 440. O. 100.0 0.0 
8 0.000 8 O. 440. 0.0 100.0 
9 0.000 9 440. o. 100.0 0.0 

10 0.892 10 246. 194. 55.9 44.1 
11 4.389 11 14. 426. 3.2 96.8 
12 0.006 12 215. 225. 48.9 51.1 
13 8.237 13 270. 170. 61.4 38.6 

CONTINGENCY TABLE ANALYSIS lEVEL= 3 GROUP= 3 
=============================================================================== 

F R E QUE N C I E S 
----------------------~------------

CRITERION 1114 

-0- -1-

PREDICTOR -~- 53. 
"3 -- 16. 

~17 •. 
54. H8: 

69 •. 371. 440. 

PER C E N TAG E S 

PREDICTOR 
If 13 

-0-
-1-

CRITERION 1114 

-0- -1-

1!.0 4~.·3 
.6 35.0 

13.7 84~J 

61.4 
38.6 

100.0 

----~-----------------------------------------~--------------------------------



r 

:PREOICTIVE ATTRIBUTE ANALYSIS> <VERS:84a02><NYS*OCJS> 

,*********************************************************************~******* 

PRO B 8 0 . 
e 

REGION=NYC-SUBS 
POP U L A T ION 
STATISTIC=CHISQ 

A N A L Y SIS 
RUNOATE=1/29/84 

,**************************************************************~************** 

CONTINGENCY TABLE AWALYSIS. ___ ~~Y~~~_~ __ §~2~~~ __ ! ______ _ 
======================::============.===============-----------------------------

INOEP CHI-SQ INOEP _~~BGRO~~_ COMPOS nION 
VAR " STATUS STATISTIC VAR " -XO- -%1-
-~--- ------ --------- ----- -----~---------------------

1 5.253 1 12. 243. 4.7 95.3 
2 0.000 2 255. o. 100.0 0.0 
3 0.000 3 O. 255. 0.0 100.0 

O. 255. 0.0 100.0 4 0.000 4 
5 2.743 5 152. 103. 59.6 40.4 
6 0.000 6 255. O. 100.0 0.0 
7 0.000 7 255. o. 100.0 0.0 
8 0.000 8 O. 255. 0.0 100.0 
9 0.000 9 255. O. 100.0 0.0 

10 0.164 10 164. 91. 64.3 35.7 
11 4.139 11 18. 237.- 7.1 92.9 
12 0.093 12 169. 86. 66.3 33.7 
13 6.686 13 177. 78. 69.4 30.6 

CONTINGENCY TABLE ANALYSIS LEVEL= 3 GROUP= 4 
===========================~==============a===s===K===========================. 

F R E QUE N C I E S -----------------------------------
'CRITERION '14 

--0- -1-

~2: 
74. 

117. 
64. 

181. 

177. 
78. 

255. 

PER C E N TAG E S 
-----------------------------------

CRITERION 1#14 

-0- -1-

2~:~ 
29.0 

45.9 
25.1 
71.0 

69.4 
30.6 

100.0 

~--~-------------~------------------------------------------------------------- • 
••• 

. ~ 

• • • • 

<PREOICTIVE ATTRIBUTE ANALYSIS> 
<VERS:84.02><NYS*OCJS> 

****************************************************************************** 
PRO B 8 0 POP U L A T ION A N A L Y SIS 
REGION=NYC-SUBS . \ 

STATISTIC=CHISQ RUNOATE=1/29/84 
************************************************** •••• *****.*.* ••• *.** ••• **.** 

===~~~J;~~~~~~=J~~;~=~~~~!!!!______________ _ LEVEL= 3 GROUP= 7 
--------------------=-================================== 

INOEP CHI-SQ VAR M STATUS STATISTIC ----- - __ .e __ ---------
~ 8:888 3 0.000 4 0.000 5 1.617 6 4.638 7 6.957 8 3.041 9 0.254 10 0.176 11 0.000 12 0.828 13 4.066 

F R E QUE N C I E S -----------------------------------
CRITERION #14 

-0- -1-

PREOI~TOR -~- SO. 10. 6~: II - - 4. s. 
54. 15. 69. 

INOEP SUBGROUP COMPOSITION liAR M -0- -1- -XO- -%1----------------------------
1 69. 

6S: 
100.0 O.g 2 o. 0.0 100. 3 o. 69. 0.0 100.0 4 O. 69. 0.0 100.0 5 51. 18. 73.9 26.1 6 64. 5. 92.8 7.2 7 60. 9. 87.0 13.0 8 16. 53. 23.2 76.8 9 62. 7. 89.9 10.1 10 49. 20. 71.0 29.0 11 O. 69. 0.0 100.0 12 48. 21. 69.6 30.4 13 43. 26. 62.3 37.7 

PER C E N T' AGE S -----------------------------------
CRITERION *14 

-0- -1-
72.5 

5.8 
78.3 

1~:~. ?I:8 
21.7 100.0 

------------------------------~------------------------------------------------

, 



-...,----

<PREDICTIVE ATTRIBUTE ANALYSIS> <VERS:84.02><NYS·DCJS> 

••••••••••••• ** ••••• **.*** •••••• ********.*** ••• * ••• ** •••• ***********.*.***.*** 
PRO B 8 0 . . 
REGION=NYC-SUBS 

POP U L A T ION 
STATISTIC=CHISQ 

A N A L Y SIS 
RUNDATE=1/29/84 

*****************************.***********.** •• *.* •••• * •••• **** ••••• * ••••••• *.* 

CONTINGENCY TABLE ANALYSIS LEVEL= 3 GROUP= 8 
=============================================================================== 

INDEP CHI-SQ INDEP SUBGROUP, COMPOSITION 
VAR # STATUS STATISTIC VAR II -0- -1- -XO- -X1---_ .... ------ --------- ----- ---------------------------

1 0.000 1 O. 473" 0.0 100.0 
2 0.000 2 O. 473. 0.0 100.0 
3 0.000 3 o. 473. 0.0 100.0 
4 0.000 4 o. 473. 0.0 100.0 
5 1.570 5 308. 165. 65.1 34.9 
6 3.843 6 420. 53. 88.8 11.2 
7 3.879 7 366. 107. 77.4 22.6 
8 0.007 8 197. 216. 41.6 58.4 
9 0.838 9 435. 38. 92.0 8.0 

10 5.178 10 280. 193. 59.2 40.8 
11 0.000 11 O. 473. 0.0 100.0 
12 0.441 12 364. 109. 71.0 23.0 
13 0.169 13 349. 124. 73.8 26.2 

CONTINGENCY TABLE ANALYSIS LEVEL= 3 GROUP= 8 
=============================================================================== 

F R E Q U E N C I E ;) P E R C E N T A G E S ----------------------------------- -----------------------------------
CRITERION M14 CRITERION #14 

-0- -1- -0- -1-
PREDICTOR -~-II 10 - - 155. 125. 

127. 66. ¥80. 93. 
PRED~CTOR 

II 0 -~-- - ~2.8 6.8 ¥t:~ 59·i 40. 
282. 191. 473. 59.6 40.4 100.0 

---------------------------------------------------~---------------------------

'PREDICTIVE ATTRIBUTE ANALYSIS> 
_.......... <VERS:84.02><NYS*OCJS> 

••••••••••••••••••••• * •••••• *.*.* •••• *.* •• *.****.*.****.**** •• **~*. 
PRO B 8 a POP U L A T ION A N A L Y SIS 
REGION=NYC-S~BS STATISTIC=CHISQ RUN~ATE=1/29/84 

-*.*.*.***.**** •• *.*. . . ** ••••••• * ••••• * ••••• * •••••• *.* ••••• ***.****.*.*** ••• * ••• 

~=~=~===~=~=~=~=~=~=!=!-~-~ ___ ! R E E FOR PRE D I C TOR S 
- ---------==================================== 

2 

8 
11 

7 
1 

11 1 13 13 
10 7 



---------------

-------~ - ---
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